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Abstract
We prove new results about the robustness of noise-blind decoders for the problem of re-
constructing a sparse vector from underdetermined linear measurements. Our results imply
provable robustness of equality-constrained �1-minimization for random measurements with
heavy-tailed distributions and, furthermore, correspond to a generalization of bounds on
inscribed bodies of random polytopes.

We further propose a new algorithm for the reconstruction of low-rank matrices from
few linear observations or from missing data, based on the iterative minimization of well-
designed quadratic models of a non-convex objective. Our method, which is an instance of
Iteratively Reweighted Least Squares (IRLS), is the first of its kind to combine data efficiency
with computational scalability and fast local convergence rates. We show that the method
attains a superlinear local convergence rate under near-optimal assumptions on the sample
complexity for several random observation models. These theoretical statements are sup-
ported by computational experiments which suggest an improved data efficiency compared
to the state-of-the-art. We provide an implementation of the proposed IRLS algorithm that
solves computational issues of previous related methods.

Finally, we extend the framework to the completion of structured low-rank matrices such
as low-rank Hankel or Toeplitz matrices. For this more flexible model, we propose an IRLS
algorithm with quadratic local convergence rate under weak assumptions on the number and
distribution of provided samples.

Zusammenfassung
Für das Problem der Rekonstruktion dünnbesetzter Lösungen unterbestimmter linearer Glei-
chungssysteme zeigen wir neue Resultate, die die Robustheit von Dekodern betreffen, wel-
che keine Schätzung des Messfehlers benötigen. Sie implizieren eine beweisbare Robustheit
von �1-Minimierung mit Gleichheitsnebenbedingung bei zufälligen Messungen mit schwe-
ren Verteilungsenden. Zudem generalisieren wir Schranken, die die Geometrie von zufälligen
Polytopen beschreiben.

Die Arbeit entwickelt zudem einen neuen Algorithmus für die Identifikation von Niedri-
grangmatrizen anhand von wenigen Beobachtungen. Der Algorithmus basiert auf der itera-
tiven Minimierung von quadratischen Modellen nicht-konvexer Zielfunktionen und kann als
„Iteratively Reweighted Least Squares“-Methode (IRLS) betrachtet werden. Er ist der erste
seiner Art, der eine sehr gute Dateneffizienz mit numerischer Skalierbarkeit sowie schnellen
lokalen Konvergenzraten kombiniert. Dabei beweisen wir, dass der Algorithmus eine superli-
neare lokale Konvergenzrate aufweist unter schwachen Annahmen an den Informationsgehalt
von Messdaten, denen gewisse randomisierte Beobachtungsregeln zugrunde liegen. Numeri-
sche Experimente illustrieren die Dateneffizienz unseres Ansatzes, für welchen wir eine effizi-
ente Implementierung beschreiben. Dies löst numerische Stabilitätsprobleme, die verwandte
Methoden aufweisen.

Wir zeigen auf, wie sich diese Ideen auf die Vervollständigung von struktuierten Niedri-
grangmatrizen, wie etwa Hankel- oder Toeplitzmatrizen niedrigen Ranges, übertragen lassen.
Wir stellen einen IRLS-Algorithmus für dieses flexiblere Modell vor, der eine quadratische Kon-
vergenzrate aufweist, und zwar beweisbar unter schwachen Annahmen an die Anzahl und die
Verteilung der vorliegenden Einträge der zu rekonstruierenden Matrix.
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Introduction

At the end of this decade, the advent of data-driven inference and prediction methods that
combine computational tools with the presence of unprecedented swaths of information easily
available in digital formats has been one of the more important driving forces of innovations
for many businesses. These methods are expected to provide have an important impact on
societies and individuals in the future, as they have been seen to perform on par with human or
better than humans on tasks that had been known to be notoriously hard: Image classification
[KSH12], playing Go [Sil16] and language translation [BCB14] are just a few famous examples
of tasks that can be solved by computer programs considerably well by today.

Many of these advances have been achieved by computer scientists using tools like deep
neural networks [LBH15], which can be seen as classes of functions that concatenate linearities
with non-linearities and that allow for efficient computations even in the case of millions of
high-dimensional data points. In the last five years, it has been a very active field of research
to improve empirical performances by finding the most adequate network architecture for
a specific task, and to extend the applicability of the techniques to new problems. In this
process, experimentation and simultations have played a crucial role.

One might wonder, what is the role of mathematics and mathematicians in all of this?
First, it is clear that the theories of linear algebra, calculus, and optimization provide

the building blocks to even just write down what one of these machine learning systems are
actually doing: Backprogation, for example, is an efficient algorithm to compute the gradient
of a loss function defined on the network with respect to changes in the so-called weights
which define the linearities of the network, but can be interpreted as a smart application of
the conventional chain rule in calculus [GBC16]. The loss function is typically then optimized
based on the available data using a variant of stochastic gradient descent [RM51,KY03], which
is well studied in optimization.

Thus, one contribution a mathematician might be well-suited to make is to come up with
a new building block such as an optimization algorithm or a computational “trick” to be used
to in the more complex machine learning architecture.

Another, possibly even more relevant contribution of mathematics can be clarity. Among
the thousands of possible architectures, which one should we use on which type of data?
Even when real datasets are messy and complicated, proving certain optimality properties
or error bounds for a network architecture given a certain, simplified type of data can be
more convincing than the mere empirical success in experiments. This is due to the fact that
experiments are always finite and limited, and it is not always easy for other researchers
to reproduce the exact hyperparameters and algorithm specifications that have been used in
published works [DST09,HIB+18].

This thesis does not discuss neural network architectures, but somewhat different prob-
lems: We study recovery problems involving data that is intrinsically low-dimensional, but
embedded in a very high-dimensional space, and which is observed not directly, but through
linear measurements. The low-dimensional structures we are interested in consist of sparse
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vectors and low-rank matrices. As we will see, this modelling is flexible enough to tackle various
problems in medical imaging, computational physics, seismology, recommender systems and
control theory.

In our investigations, the mindset outlined above will be, however, our guiding principle.
On one the hand, we provide new theory shedding light on the performance of algorithms
that had been previously proposed. On the other hand, we will develop new algorithms that
improve on previous methods in important aspects, while providing theory validating the
scope of these improvements. This dissertation consists of the three following chapters:

• In Chapter 1, we discuss the robustness to noise of classical algorithms designed to
recover sparse vectors from underdetermined, linear measurements. This problem is
also called compressed sensing, as by using well-designed measurements, the number of
samples to identify the original sparse vector can be chosen to be surprisingly small. We
show that reconstruction with small errors is possible using classical convex decoders
under the presence of noise even if the noise level information is not used in the decoder,
for a considerably larger class of measurements than it had been known before.

• In Chapter 2, we focus on the related, but different problem of recovery of a low-
rank matrix from incomplete linear measurements. After discussing shortcomings of
previous methods for this widely studied problem with applications in machine learning
and computational physics, we propose a new algorithm based on iterative quadratic
majorization of non-convex surrogates of the rank function. We embed the derivation
of this algorithm, which we call MatrixIRLS as it is an instance of Iteratively Reweighted
Least Squares, into a comprehensive review of that class of algorithms, explaining why
our approach improves considerably previously proposed IRLS algorithms. We provide
a local convergence theory that includes results about fast local convergence under
quite weak assumptions, and discuss why our implementation allows for a scalability of
MatrixIRLS to problems involving very high-dimensional data. We provide numerical
experiments illustrating that our algorithm can beat the state-of-the-art in terms of data
efficiency.

• In Chapter 3, we consider the more general problem of completing structured low-rank
matrix from few entries. We motivate this modelling by illustrating how it naturally
arises in signal processing and in time series analysis, for example in harmonic retrieval
problems. We modify the IRLS framework of Chapter 2 to be applicable to this problem
and propose the algorithm StrucIRLS. We show that the low intrinsic dimension of
the model can be indeed utilized to reduce the number of optimization variables to
the number of degrees of freedom, while using fast matrix-vector multiplication if the
structured matrix is of Hankel or Toeplitz type. In terms of convergence analysis, we
obtain similar results as in Chapter 2, including a local quadratic convergence rate of the
algorithm under weak assumptions. Again, numerical experiments show an improved
data efficiency compared to competing methods.

Chapters 1 to 3 all contain original work the author of this dissertation had been conducting
during his Ph.D. studies, partially jointly with collaborators. In this context, I acknowledge
in the respective chapters the contribution of my collaborators. The chapters are largely self-
contained. However, for a full understanding of Chapter 3, the first sections of Chapter 2 can
be helpful.
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Chapter 1

Robustness of Noise-Blind Compressed Sensing

There are many engineerings problems in signal processing and medical imaging which are
in fact data acquisition problems. In situations where the acquisition cost is high, it is of
interest to find ways to reduce this cost while still obtaining the gist of the data up to a high
accuracy. A considerable amount of research on efficient algorithms for this problem and on
their understanding has been conducted, and the common framework to tackle this problem
is often called compressed sensing.

Indifferently on what this framework is about precisely, one might want to ask: What
happens if the data to be processed is corrupted by noise? Do the algorithms that are used
in the processing break down, or are they are able to cope with this situation, maybe even
provably so?

A positive answer to this question is desired for any algorithm that hopes to be used for
realistic engineering problems. In many cases it is possible to use prior knowledge of the
magnitude and type of the noise as an algorithmic parameter to ensure optimal reconstruction
or optimal processing.

The goal of this first chapter of the thesis is to present and develop theory for the un-
derstanding of an inherent noise-robustness of efficient optimization approaches for recovering
sparse vectors from incomplete linear measurements—which is how the compressed sensing or
sparse recovery problem can be defined mathematically. We show that a large class of linear
system matrices—usually called measurement matrices in the compressed sensing setting—
allows for robust recovery by these efficient methods even if no or little prior knowledge about
the noise is present, a setting that we call noise-blind compressed sensing.

We also shed light on the connection of our results to the geometry of certain random
polytopes that are spanned by the columns of respective measurement matrices.

The work presented in this chapter is based on the preprint [KKR18] co-authored with Felix
Krahmer and Holger Rauhut and a subsequent generalization, for which the author of this
dissertation was the leading author. Parts of this work will also appear in [GKK+19], jointly co-
authored with Olivier Guédon, Felix Krahmer, Shahar Mendelson and Holger Rauhut, which
further generalizes and strengthens the obtained results, focussing on the geometrical property
of random polytopes that underly the implications for compressed sensing presented here.

1.1 Introduction: Compressed Sensing
Consider the following mathematical problem: Let x0 ∈ R

# be a high-dimensional vector and
A ∈ R;×# be a matrix with fewer rows than columns, i.e., with ; < #.

Is it possible to reconstruct x0 from its linear image y = Ax0 ∈ R; if y and A are given?
Basic linear algebra answers this in the negative, as there is a # −;-dimensional affine space
of vectors {x ∈ R# : Ax = y} that is compatible with the underdetermined linear system.

However, it has been observed since the 1960’s that in certain situations, it is possible to
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invert the system
y = Ax

perfectly and solve it for x0, even in a computationally efficient way: Work by Logan [Log65]
about frequency estimation and of geophysicists [TBM79] suggested for many measurement
matrices A, the vector x0 ∈ R# can be reconstruted by solving the �1-norm minimization
problem

min
z∈R#
‖z‖1 subject to Az = y,

under the additional assumption that x0 is sparse enough. In particular, this minimization
problem can be solved by standard methods from convex optimization as it is even equivalent
to a linear program.

Definition 1.1.1. Let A, # ∈ N such that A ≤ #.
We say that the vector x ∈ R# is A-sparse if x ∈ ΣA and

ΣA := {z ∈ R# : # supp(z) ≤ A} =
{
z ∈ R# : z7 = 0 for at least # − A indices 7 ∈ [#]

}
.

We define the �0-norm (which is not a norm in the mathematical sense) of F as

‖x‖0 = # supp(x) = #
{
7 ∈ [#] : x7 , 0

}
.

The sparsity assumption becamemore andmore useful with the advent of wavelets [Dau88,
Dau92] and other sparsifying transforms [SCD02], as they can be used to represent many
natural images and signals by approximately sparse, high-dimensional vectors.

In the past 15 years, seminal papers [CT05, CRT06a, CRT06b, Don06] and subsequent
progress have provided a quite thorough understanding of why and when �1-minimization
can indeed find the sparsest vector compatible with underdetermined linear measurements,
see [FR13] for an overview.

In particular, by using randomization in the measurement process, i.e., in the design of �,
it has been shown that an almost linear scaling of linear measurements ; with respect to the
signal sparsity A is sufficient to guarantee efficient reconstruction of sparse vectors, or more
precisely, if

; ∼ A log(e #/A),

with high probability.
The implications of this theory to science and medicine have been already manifold,

as it has, for example, led to shorter magnetic resonance imaging (MRI) scanning times in
the newest generation of commercially used MRI scanners [LDSP08, FWHS16]. The idea
behind this acceleration is the realization that an intelligently designed sensing process can
be used to obtain compressed versions of high-resolution MRI images, reducing the amount
of data traditionally needed to obtain images of similar quality. By reducing costs and new,
previously infeasible MR imaging variants with new diagnostic possibilities, the resulting gains
of efficiency have been a main talking point in the June 2017 briefing of the recent Gauss Prize
winner David Donoho in front of the United States Congress with respect to the benefits of
foundational mathematical research [Don18].

Another, quite different successful application of the compressed sensing framework has
been seen in the context of exploration seismology [Her10], which aims to detect gas or oil
fields from large seismic imaging data volumes. These data volumes are traditionally collected
by deploying a large amount of sources and receivers in a uniform sampling pattern across a
vast area, which can be a land or sea area. Compressed sensing-type sampling schemes and
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reconstruction techniques enable seismic explorations to be carried out more efficiently, also
due to their reduced requirements on equipment and crews. Furthermore, these sampling
schemes are also more compatible with external, geographic constraints or unpredictable
weather situations [MLJ+17,BML+17].

1.1.1 Stability under Model Misfit

A key factor contributing to why compressed sensing is applicable in these fields is its ability
to cope with approximate models and errors in the measurement process. In particular, in a
slight generalization of the setting above, we seek to recover an approximately sparse vector
x0 ∈ R

# from noisy, underdetermined measurements

y = Ax0 +w (1.1)

with A ∈ R;×# , ; < #, and where w ∈ R< is an unknown noise vector. Approximate sparsity
can be measured, for example, in terms of a best A-term approximation error

fA(x0)1 := inf{‖x0 − z‖1 : z ∈ R# , ‖z‖0 ≤ A},

the �1-distance of x0 to the set of A-sparse vectors. This quantity is equal to zero for any
s-sparse vector x, i.e., if ‖x0‖0 ≤ A.

Under the absence of noise, corresponding to w = 0, we can hope to recover x0 by solving
the equality-constrained �1-minimization program

Δ1(y) := arg min
z∈R#

‖z‖1 subject to Az = y. (1.2)

In fact, for simplicity, if we assume that A is an ; × # matrix with independent standard
Gaussian N(0, 1) random variables and

; ≥ �A log(e #/A) (1.3)

for a small constant �, it can be shown that the minimizer1 Δ1(y) of (1.2) then coincides with
x0 if ‖x0‖0 ≤ A and more generally [CRT06a,CT06,FR13],

‖x0 − Δ1(y)‖1 ≤ �f1(x0)A and ‖x0 − Δ1(y)‖2 ≤ �
f1(x0)A
√
A

, (1.4)

with high probability, where � is again a constant. This quantifies the approximation quality
of (1.2) in presence of an imperfect sparsity model.

1.1.2 Robustness and Noise-Aware Sparse Recovery

In the case of noisy measurements (1.1) with w , 0, the optimization problem can be altered to
take prior knowledge on w into account. In particular, if a bound [ on the noise level is known
such that ‖w‖2 ≤ [, one commonly considers the quadratically constrained �1-minimization
program

Δ1,[(y) := arg min
z∈R#

‖z‖1 subject to ‖Az − y‖2 ≤ [, (1.5)

which is, as (1.2), a convex optimization problem. Then it can be shown that for a Gaussian
; × # matrix A with ; ≥ �A log(e #/A) with high probability, the minimizer Δ1,[(y) of (1.5)

1The uniqueness of the minimizer is not a trivial statement, but we omit the proof here.
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satisfies

‖x0 − Δ1,[(y)‖1 ≤ �f1(x0)A + �
√
A[ and ‖x0 − Δ1,[(y)‖2 ≤ �

f1(x0)A
√
A
+ �[, (1.6)

where � and � are absolute constants [CRT06b,FR13].
The bounds (1.6) are strong results, as they show that reconstruction of signals is possible

with quantifiable bounds from severely imcomplete, as potentially ; � #, measurements,
while assuring stability, as vectors need to be only approximately sparse, and furthermore
robustness to inaccurate observations such as y = Ax0 +w with w , 0.

The assumption on A to be a Gaussian matrix with i.i.d. entries enabling guarantees of the
form (1.6) can be relaxed to matrices with sub-Gaussian entries, for example by establishing
a so-called restricted isometry property [BDDW08,Can08] for A with high probability, which is
likewise possible for the almost linear scaling (1.3) of measurements ; with respect to signal
sparsity A.

In some applications, it is typically impossible to design measurement matrices with such
a high degree of randomness, since structural constraints are prescribed. In magnetic reso-
nance imaging, measurementmatrices resemble randomly subsampled partial Fouriermatrices
[LDSP08], for which (1.6) has been shown [CT06,RV08,HR17] only for logarithmically smaller
sparsity levels than in (1.3). In radar imaging, subsampled random circulant matrices play an
important role [Rom09], the existing theory establishes results similar to the ones known for
partial Fourier matrices [RRT12,KMR14].

In order to gauge the adequacy of existing setups and to enable the design of improved
measurement designs, the extension of robust and stable recovery guarantees such as (1.6) to
broad classes of matrices has been intensely studied by different authors.

More precisely, the above results could be extended to more structured matrices with
independent rows [MPTJ08] or columns [Ver12, Section 5.6.1], if the distribution of the rows
resp. columns obeys strong concentration properties, as it is the case for sub-Gaussian random
vectors.

A further generalization of the validatity of the guarantees (1.6) has been shown by
Mendelson and Lecué [ML17], see also [DLR18]. The authors generalize the results to random
matrices with independent, possibly quite heavy-tailed entries whose distributions have only
log(#) finite moments or, alternatively, to random matrices with independent columns, whose
linear forms have log(#) finite moments, which additionally fulfill a small-ball assumption.
The proofs depart from the classical method of establishing a restriced isometry property for
the corresponding matrices, as it can be shown that it simply does not hold for heavy-tailed
distributions in the regime of optimal scaling of measurements ; vs. sparsity A [ALPTJ11].
Similar results for a smaller class of distributions with exponential tail behavior have already
been shown in [Fou14,Kol11].

We note that all the results described in this section address an algorithmic setting that is
noise-aware: The decoder (1.5) based on quadratically constrained �1-minimization requires
a correct estimate [ of the noise level such that ‖w.‖2 ≤ [ to establish (1.6).

This noise-awareness can be problematic in two cases:

• Underestimated noise level: The above results do not contain any statement on what
to expect if the noise level is underestimated such that [ < ‖w‖2.

• Overestimated noise level: For a choice of [ that corresponds to an overestimation
of the noise level, i.e., if ‖w‖2 � [, the bounds (1.6) may be very pessimistic as they
depend on [ rather on the true noise level ‖w‖2.
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Remark 1.1.1. Ideas very similar to the principles of compressed sensing can be used for high-
dimensional variable selection in a statistical context. In particular, consider the regression
problem where an outcome variable G7 is observed ; times such that for each 7 ∈ [;], a set of
# predictor variables (071, . . . , 07#) is associated. If it is known that only A � # variables play
an important role in the prediction, it has been proposed to use the least absolute shrinkage and
selection operator (LASSO) [Tib96, TWH15], which can be formulated in its Lagrangian form
as the solution of

V̂ = arg min
V∈R#

‖AV − y‖22 + _‖V‖1. (1.7)

In (1.7), A = (07 8)7∈[;],8∈[#] is the predictor variable matrix and _ is a tuning parameter, and the
selected variables correspond to the non-zero coordinates of the parameter vector V̂ ∈ R# .

The tuning parameter _ plays a similar role as [ in (1.5) and is to be chosen based on the
expected observation error. If little knowledge about the observation error is available, it is not
clear how to optimally chose _ [Wai19, Section 7.3.2], and it is popular to rely on data-dependent
strategies such as cross validation [TWH15], which are not well-understood.

1.2 Noise-Blind Sparse Recovery
In many realistic application scenarios of compressed sensing, it might be difficult to obtain
accurate prior knowledge on the noise vector E in (1.1), which makes the choice of [ in (1.5)
difficult. Indeed, multiple, qualitatively different error sources can contribute to the noise E:

For example, in magnetic resonance imaging applications, modelling the sensing process
as a linear sensing process such as (1.1) is already a simplification, as the underlying Fourier
transform only approximates more complicated physical effects. The discretization from a
continuous linear model to a discrete one is similarly hard to quantify. These error sources
should not be neglected, as they need to be considered in addition to the conceptually simpler
physical noise on the measurements, for which a simple statistical model as a Gaussian one
might be appropriate.

This raises the question of whether there are decoders that can be used in noise-blind
situations.

1.2.1 Noise-Blind Guarantees for �1-Minimization

This question has been already studied by P. Wojtaszczyk [Woj10,DPW09], who observed that
conventional equality-constrained �1-minimization (1.2), which is equivalent to setting [ = 0
in (1.5), exhibits an inherent noise-robustness in certain cases.

This noise-robustness of (1.2) is not implied by, for example, a restricted isometry property
of the measurement matrix A and neither by weaker properties such as robust null space
properties [FR13, Chapter 4] or restricted eigenvalue properties [Wai19], despite the fact that
the latter are almost equivalent to the success of �1-minimization in the noiseless case.

However, by using so-called (�1-)quotient properties, Wojtaszczyk provided a robustness
analysis for (1.2) in the case of Gaussian [Woj10] measurement matrices A, which has been
later adapted to sub-Gaussian matrices [DPW09]. These quotient properties are related to
geometric properties of random polytopes associated to the random matrix A, which will be
pointed out in Section 1.3.

The precise forms of the resulting error bounds depend on the distribution, and can be
expressed such that

‖x0 − Δ1(y)‖1 ≤ �f1(x0)A + �
√
A|||w||| and ‖x0 − Δ1(y)‖2 ≤ �

f1(x0)A
√
A
+ �|||w|||, (1.8)
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where the norm ||| · ||| is such that

• ||| · ||| = ‖ · ‖2 is the Euclidean norm if � is Gaussian, and

• ||| · ||| = max{‖ · ‖2,
√

log(e #/;)‖ · ‖∞} is an interpolation norm between Euclidean norm
‖ · ‖2 and supremum norm ‖ · ‖∞, if A is a matrix with i.i.d. sub-Gaussian entries.

In [Fou14], it was shown that matrices with i.i.d. Weibull entries exhibit the same behavior
as Gaussian matrices. By considering, for example, Bernoulli matrices A with symmetric i.i.d.
{±1} entries, it can be seen that the weaker bound quantified by max{‖ · ‖2,

√
log(e #/;)‖ · ‖∞}

is indeed necessary for some sub-Gaussian matrices [FR13, Section 11.3], and the bounds (1.8)
cannot be expected to hold for ||| · ||| = ‖ · ‖2 in these cases.

Our Contribution

The presented noise-blind error bounds cover only specific cases of measurement matrices �,
which are much more restricted than the state-of-the-art of noise-aware results as presented
in Section 1.1.2. In particular, bounds as in (1.8) are only available for very few matrices with
heavy-tailed distribution or structured random matrices [FR13, Chapter 11].

In this chapter, we extend the noise-blind bounds (1.8) to measurement matrices without
concentration properties, but fulfilling only weak moment assumptions. This matches even the
weakest possible conditions for sample complexity-optimal recovery in the noiseless or noise-
aware case [ML17,DLR18]. Furthermore, we weaken the assumptions on the distribution of �
for the robustness regimes both with respect to the Euclidean norm ‖ ·‖2 andwith respect to the
max{‖ · ‖2,

√
log(e #/;)‖ · ‖∞}. Our results provide a better understanding on the transition

between the two regimes, and remarkably, our findings suggest that a super-Gaussian property
of distributions is instrumental for achieving the tighter robustness bound (1.8) with respect
to ||| · ||| = ‖ · ‖2. We present the results in Section 1.4. Our proofs differ from previous
proofs of quotient properties, which crucially relied on concentration properties of the random
measurement matrix. More precisely, our proofs rely on lower bounds on certain empirical
processes, and can be seen as applications of Mendelson’s small ball method [Men15,KM15].

In [BA18], quotient properties were used to analyze the robustness of quadratically con-
strained �1-minimization (1.5) for underestimated noise levels such that ‖w‖2 > [. We
formulate our results such that underestimated noise levels are also covered. The analysis of
quadratically constrained �1-minimization for underestimated noise levels if A fulfills a quo-
tient property relative to max{‖ · ‖2,

√
log(e #/;)‖ · ‖∞} is new to the best of our knowledge.

1.2.2 Noise-Robustness of Other Decoders

We note that instead of convex decoders minimizing �1-norms, there are also many other
efficient algorithmic approaches to reconstruct sparse vectors from noisy, incomplete measure-
ments. For some of these algorithms, guarantees as (1.8) can be shown. In particular, for the
greedy algorithms Compressive Sampling Matching Pursuit (CoSaMP) [NT09] and Orthogo-
nal Matching Pursuit (OMP) [PRK93,Zha11], it can be shown that the iterates converge to a
vector x] such that

‖x0 − x]‖1 ≤ �f1(x0)A + �
√
A‖w‖2 and ‖x0 − x]‖2 ≤ �

f1(x0)A
√
A
+ �‖w‖2

if the matrix A fulfills a restricted isometry property of appropriate order [FR13, Section
6.4], and a similar statement holds true for iterative hard thresholding algorithms [BD09],
[FR13, Section 6.3].
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However, while these algorithms are noise-blind in the a sense that prior knowledge about
the error w is not an algorithmic parameter, they need another type of prior knowledge
about the target sparsity A. Furthermore, the strongest available guarantees for these types
of iterative methods are all based on the restricted isometry property, which does not hold
for heavy-tailed measurement matrices A. An extension of these guarantees to non-RIP
matrices has not been successful yet [DLR18, Section VI].While some guarantees in the optimal
parameter regime are available for distribution-dependent versions of iterative algorithms, it is
conjectured that these alterations are necessary for heavy-tailed measurement matrices [FL17].

We further note that there is an �1-type decoder which comes with a certain, intrinsic
noise-blindness: The tuning parameter _ of the square-root LASSO [BCW11,ABB19,TLT18]

V̂ = arg min
V∈R#

‖AV − y‖2 + _‖V‖1

can be chosen with prior knowledge about the noise. Still, even this decoder needs prior
knowledge about the model, as _ depends [ABB19] on the sparsity level A.

1.3 Geometry of Random Polytopes
In this section, we explore a connection between the conditions on the measurement matrix A
that implies robust recovery guarantees of noise-aware compressed sensing and the properties
of a geometric object associated to A.

Consider a matrix A ∈ R;×# with columns A1, . . . ,A# ∈ R
;.

Definition 1.3.1. For a finite subset ( ⊂ R;, we denote the convex hull conv(() of ( by

conv(() =

{
|( |∑
7=1

U7(7 : (1, . . . , ( |( | ∈ (,U1, . . . ,U |( | ≥ 0 and
|( |∑
7=1

U7 = 1

}
,

and the absolutely symmetric convex hull absconv(() of ( by

absconv(() =

{
|( |∑
7=1

U7(7 : (1, . . . , ( |( | ∈ ( and
|( |∑
7=1

|U7 | ≤ 1

}
.

Then we note that the image AB#
1 of the �1-unit ball B#

1 = {x ∈ R# : ‖x‖1 = 1} with
respect to the matrix A can be written as

conv(±A1, ...,±A#) = absconv(A1, ...,A#) = AB#
1 , (1.9)

or in other words, as a polytope spanned by the columns A7 and their negative counterparts
−A7 [Zie95]. This polytope is random if A is a randommatrix, as it is the case for measurement
matrices typically considered in the context of compressed sensing.

1.3.1 The �1-Quotient Property and Inscribed Bodies of Random Polytopes

The first noise-blind robustness guarantees for �1-minimization outlined in Section 1.2.1 were
proved by Wojtasczyk in [Woj10, DPW09], who established a connection to results about
random polytopes absconv(A1, ...,A#) known in asymptotic geometric analysis, see [AAGM15]
for an overview of this field of study.

We formulate a few notable results that were the starting point of [Woj10,DPW09].

Theorem 1.1 ([Glu89,Kas83,Woj10]). Let A1, . . . ,A# be independent vectors whose entries are
independent standard Gaussian random variables and 0 < V < 1. Then there exist constants
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�̃(V),�(V) and � such that if # ≥ �̃(V);, then

absconv(A1, ...,A#) ⊃

√
log (4#/;)
�(V)

B;
2 (1.10)

with probability at least 1 − 2 exp(−�#1−V;V).

This statement corresponds to a lower bound on the inradius of absconv(A1, ...,A#) = AB#
1 ,

i.e., on the radius of the largest Euclidean ball that is contained in the random polytope.
A slightly weaker statement can be deduced for random polytopes generated by vectors

whose entrywise distribution has a tail that is below the one of a Gaussian—so-called sub-
Gaussian distributions; see for example [Ver18] for an extensive treatment.

Definition 1.3.2. We say that a random variable b is !-sub-Gaussian if

P(|b| ≥ W) ≤ 2 exp
(
−
W2

!2

)
for all W ≥ 0.

Theorem 1.2 ([LPRTJ05]). Let A1, . . . ,A# be independent vectors whose entries are independent,
mean-zero, of variance 1 and !-sub-Gaussian, let 0 < V < 1. Then there exist constants �̃(V, !),
�(V, !) and � such that if # ≥ 20(V, !)<, then

absconv(A1, ...,A#) ⊃
1

�(V, !)
(√

log(4#/;)�;2 ∩ �
;
∞

)
(1.11)

with probability at least 1 − 2 exp(−�#1−V<V).

This result basically says that while a random polytope absconv(A1, ...,A#) defined by
A7 with sub-Gaussian entries might not always contain a large Euclidean ball, it generically
contains a slightly different regular convex body, namely, the intersection of an Euclidean ball
in the scaling of (1.10) and of an �∞-ball. Theorem 1.2 has been generalized to isotropic,
log-concave vectors [DGT09], [BGVV14, Chapter 11].

In [Woj10,DPW09], the authors used the results on the geometric properties of Theorem
1.1 and Theorem 1.2 to show guarantees for stable and robust recovery for equality-constrained
�1-minimization from noisy measurements. They restated (1.10) and (1.11) using the following
definition of quotient properties.

Definition 1.3.3 ([Woj10, Fou14,BA18]). A matrix A ∈ R;×# is said to possess the �1-quotient
property with constant 2 relative to a norm ||| · ||| on R; if, for all w ∈ R;, there exists z ∈ R#

such that
Az = w and ‖z‖1 ≤ 2A

1/2
∗ ‖w‖, (1.12)

with A∗ = ;/log(e #/;).

The precise relationship between the �1-quotient property and the geometric inclusions
(1.10) and (1.11) can be specified in Proposition 1.3.1, whose proof we provide for completeness.

We note that the name quotient property is motivated by the fact that (1.12) can be refor-
mulated using a quotient norm of the set [w] = z + ker A of preimages of a vector w ∈ R;

with w = Az. More precisely, it holds that

‖[w]‖�1/ker A ≤ 2A
1/2
∗ |||w||| for all w ∈ R;
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is equivalent to (1.12), if ‖[w]‖�1/ker A is defined such that

‖[w]‖�1/ker A = inf{‖z‖1 : Az = w}.

Proposition 1.3.1 ([Woj10],[BA18, Proposition II.15]). The following holds for any matrix A ∈
R;×# with columns A1, . . . ,A# ∈ R

;.

1. 1√
;
satisfies the �1-quotient property relative to ||| · ||| = ‖ · ‖2 with constant 2−1 if and only

if
absconv(A1, ...,A#) ⊃ 2

√
log(4#/;)B;

2 .

2. 1√
;
� satisfies the �1-quotient property relative to ||| · ||| = max(‖ · ‖2,

√
log(e #/;)‖ · ‖∞)

with constant 2−1 if and only if

absconv(A1, ...,A#) ⊃ 2
(
B;
∞ ∩

√
log(4#/;)B;

2
)
.

Proof. Assume that 1√
;

A satisfies the �1-quotient property relative to ||| · ||| with constant 2−1.

Then for any w ∈ 2
√

log(4#/;)B ||| · ||| := {w ∈ R; : |||E||| ≤ 2
√

log(4#/;)}, there exists a
vector u ∈ R# fulfilling 1√

;
Au = 1√

;
w and ‖u‖1 ≤

√
;

2
√

log(4#/;)
||| w√

;
||| =

|||w |||
2
√

log(4#/;)
≤ 1, which

implies that w ∈ AB#
1 = absconv(A1, ...,A#).

Conversely, assume that
√

log(4#/;)B ||| · ||| ⊂ absconv(A1, ...,A#). Givenw ∈ R;, we define

ŵ = 2
√

log(4#/;)w
|||w ||| . Then |||ŵ||| ≤ 2

√
log(4#/;) and therefore ŵ ∈

√
log(4#/;)B ||| · |||. Due to

the assumption, there exists ẑ ∈ R# such that Aẑ = ŵ and ‖ẑ‖1 ≤ 1. Using the definition
of ŵ, we obtain that z =

√
; |||w |||

2
√

log(4#/;)
fulfills 1√

;
Az = w and ‖z‖1 = ‖ẑ‖1

√
;

2
√

log(4#/;)
|||w||| ≤

√
;

2
√

log(4#/;)
|||w|||, which shows that 1√

;
A fulfills the �1-quotient property with constant 2−1

relative to ||| · |||.
The two statements then follow by specifying that B ||| · ||| = B;

2 for ||| · ||| = ‖ · ‖2 and

B ||| · ||| =
(√

log(4#/;)
−1

B;
∞ ∩ B;

2
)
for ||| · ||| = max(‖ · ‖2,

√
log(e #/;)‖ · ‖∞). �

We note that results such as (1.10), (1.11) (or in a different language, involving the �1-
quotient property) are statements of relevance beyond just the scope of understanding sparse
recovery decoders. In particular, following the arguments of [LPRTJ05], these geometric
properties have implications on bounds of other geometric quantities of the corresponding
random polytopes such as their volume and their mean width. Lower bounds on the volume
of random polytopes have also been used in the context of differential privacy [HT10].

Our Contribution

In this chapter, we establish statements about inclusions such as (1.10) and (1.11) for a sig-
nificantly enlarged class of random matrices �. In particular, this class includes heavy-tailed
entry-wise distributions which do not fulfill strong concentration properties. We refer to
Section 1.4.1 for the details.

1.3.2 Polytope Geometry and Sparse Recovery Conditions

Polytope geometry can also be used to understand the success of �1-minimization for sparse
recovery itself regardless of robustness questions. Indeed, in [Don06], the equivalence of the
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solution of the equality-constrained �1-minimization program

min
z∈R#
‖z‖1 subject to Az = y, (1.13)

with the solution of the �0-minimization problem with ‖z‖0 := # supp(z) such that

min
z∈R#
‖z‖0 subject to Az = y

was characterized by the following geometric property of the polytope absconv(A1, ...,A#) =

AB#
1 .

Definition 1.3.4 ([Grü03, Don05]). A centrally symmetric polytope % is called (centrally) A-
neighborly if for all 9 + 1 non-antipodal vertices D1, . . . , D9+1 ∈ {±A1, . . . ,±A#}, the convex hull
conv(D1, . . . , D9+1) is a 9-face of %.

A 9-face is a set (on the boundary of %) that can be written as an intersection of % with
a 9-dimensional hyperplane. The neighborliness of absconv(A1, ...,A#) gives rise to the most
well-known geometrical approach to the understanding of the success of compressed sensing.

Proposition 1.3.2 ([Don05, Theorem 1]). Every A-sparse vector x is the unique solution of (1.13)
with y = Ax if and only if absconv(A1, ...,A#) is A-neighborly.

By using Proposition 1.3.2, understanding the number of 9-faces of AB#
1 can be used to

calculate sharp phase transitions that correspond to the empirically observed behavior of
�1-minimization for sparse recovery [DT09].

The result of Proposition 1.3.2 can be equivalently formulated in terms of the null space
property of a matrix A. This is a slightly weaker property than the robust sparse recovery
conditions for noise-aware �1-minimization mentioned in Section 1.1.2. In this sense, the
results of [Fou14, ML17, DLR18] also imply the A-neighborliness of absconv(A1, ...,A#) with
high probability for ; ∼ A log(e #/A).

1.4 Main Results
In this section, we present the main results of this chapter.

In Section 1.4.1, we prove more general statement than Theorem 1.2, requiring only dis-
tributions with logarithmically many well-behaved moments (Theorem 1.3). Furthermore, we
establish a generalized version of Theorem 1.1 as compared to the ones for Gaussian [Glu89] or
Weibull [Fou14] distributions; namely, our result only requires (independent) matrix entries
to be super-Gaussian (for the precise meaning of this concept, we refer to Definition 1.4.2),
see Theorem 1.4.

Using these results, we provide in Section 1.4.2 new robustness guarantees for noise-
blind �1-minimization for measurement matrices with quite general entrywise distributions
in the regime of optimal sample complexity ; ≈ �A log(e #/A) in Theorem 1.5. Our result
covers both the case of equality-constrained �1-minimization (cf. Remark 1.4.3) and the case
of quadratically constrained �1-minimization with underestimated noise level, as studied in
[BA18].

Notably, we provide a unified proof strategy for our results, which covers all previous results
for matrices with independent entries, both on Gluskin-type inclusions and on the robustness
of noise-blind �1-minimization. The proofs of our results can be found in Section 1.6.

In Section 1.5, our results are complemented by numerical experiments, confirming the
robustness of noise-blind �1-minimization for certain heavy-tailed measurement scenarios and
exploring the recovery properties for different types of noise.
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1.4.1 Geometry of Random Polytopes from General Distributions

We obtain results that depend on fine properties of the distribution of the vertices �1, . . . , �#
of the random polytope absconv(�1, ..., �#). The first notion we need is the one of isotropic
random vectors, which is a generalization of random variables with unit !2-norm.

Definition 1.4.1. We say that an ;-dimensional random vector X = (F1, . . . , F;) is

1. isotropic if E[XX) ] = I;.

2. centered if E[X] = 0.

3. unconditional if for every (Y7);7=1 ∈ {−1, 1};, (F1, F2, . . . , F;) has the same distribution as
(Y1F1, Y2F2, . . . , Y;F;).

A helpful tool will be the following mild notion of stochastic domination.

Definition 1.4.2 (Stochastic domination). Let X,Y be centered random vectors in R<. We say
that X (stochastically) dominates Y with constants _1 and _2 if for every t ∈ R< and every W > 0,

P
(
|〈X, t〉| ≥ W

)
≥ _1 P

(
|〈Y, t〉|A ≥ _2W

)
.

Accordingly, we say that a centered random variable F (stochastically) dominates a random
variable G with constants _1 and _2 if for every W > 0,

P
(
|F | ≥ W

)
≥ _1 P

(
|G | ≥ _2W

)
.

Definition 1.4.3 (Weak moment growth condition). Let F be a centered random variable with
unit variance. We say that F fulfills the weak moment assumption of order 9 with constants ^
and U ≥ 1/2 if

‖F‖!> ≤ ^>
U for all 4 ≤ > ≤ 9.

We say that a centered, isotropic random vector - fulfills the weak moment assumption of
order 9 with constants ^ and U ≥ 1/2 if

‖〈X, t〉‖!> ≤ ^>
U for all 4 ≤ > ≤ 9

for all t ∈ (;−1 = {y ∈ R; : ‖y‖2 = 1}.

Theorem 1.3 (�1-quotient property formatriceswith general distribution). LetA =
(
A1, . . . ,A#

)
be an (; × #) random matrix with independent, isotropic columns A7 ∼ - for all 7 ∈ [#], let
0 < V ≤ 1. Assume that one of the following two conditions is fulfilled:

(a) X is unconditional and there exist constants 21 > 1 and 0 < 20 ≤ 1 such that

‖〈X, e7〉‖!1 ≥ 20‖〈X, e7〉‖!2 = 20

for all ; standard basis vector e7 ∈ R;, and such that the first 2?0 moments ‖〈X, t〉‖!?
exist for ?0 =

V

4
log(#/;)
log(21/20)

and for all t ∈ (;−1, and fulfill

‖〈X, t〉‖!2? ≤ 21‖〈X, t〉‖!?

for all ? ≤ ?0 and for all t ∈ (;−1.
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(b) The coordinates of X = (F1, . . . , F;) are independent and fulfill the weak moment assump-

tion of order ?0 = max
{
4, V4

log(#/;)
log( 32

9 ^
444U)

}
with constants ^ and U ≥ 1/2.

There exist constants �̃, � > 0 such that in either case, if # ≥ �̃;,

absconv(A1, ...,A#) ⊃
1
�

(
B;
∞ ∩

√
log(4#/;)B;

2
)

and 1√
;

A fulfills the �1-quotient property with constant � relative to the clipped �2-norm

‖ · ‖(
√

log(e #/;)) := max{‖ · ‖2,
√

log(e #/;)‖ · ‖∞},

both with probability at least 1 − 2 exp(−2#1−V;V).

Our second result addresses vectors with i.i.d. entries having tails that are heavier than
the one of a Gaussian random variable.

Theorem 1.4 (�1-quotient property for super-Gaussian matrices). Let A =
(
A1, . . . ,A#

)
be an

(;×#) randommatrix with independent, isotropic columns A7 ∼ - for all 7 ∈ [#], let 0 < V ≤ 1.
Assume that one of the following two conditions is fulfilled:

(a) X dominates a standard Gaussian vector G with constants 1/2 and _2 ≥ 1.

(b) The coordinates of X = (F1, . . . , F;) are independent and dominate the standard Gaussian
random variable 6 with constants 1 and _2 ≥ 1.

There exist constants �̃, � > 0 such that in either case, if # ≥ �̃;,

absconv(A1, ...,A#) ⊃
1
�

√
log(4#/;)B;

2

and 1√
;

A fulfills the �1-quotient property with constant � relative to the Euclidean norm ‖ · ‖2,

both with probability at least 1 − 2 exp(−2#1−V;V).

In some sense, it can be said that the conditions (a) and (b) are fulfilled by random vectors
X that do not exhibit a sub-Gaussian behavior as the random variables from Definition 1.3.2,
but, on the contrary, rather a super-Gaussian behavior.

Remark 1.4.1. 1. In the statement of Theorem 1.3, the constants �̃ and � depend on V and
20, 21 and ^,U, respectively. In particular, � can be chosen such that

� =


8
√

2� exp(V/2)

20
√
V log(21/20)

∼
exp(V/2)

20
√
V log(21/20)

, in the case of condition (a),
16� exp(V/2)

2

√
V log( 32

9 ^
444U)
∼

exp(V/2)
√
V(log(^)+4U)

, in the case of condition (b),

and �̃ such that �̃ =
(

72
20

)4/V
∼ (2−4

0 )
1
V , and �̃ =

(
18√
22

)4/V
∼ (2−4)

1
V , respectively.

2. The constants of Theorem 1.4 depend on V and _1 and can be chosen as

� =
4
√

2 eV/2 _2√
V

∼
exp(V/2)_2√

V
,
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and �̃ = e
(

2
√
cV+16

√
2c_2

4V

) 4
V

∼
(
V−1/2 + _2V

−1) 4
V .

We note that in both cases, it was not our objective to find the best possible constants �̃ and �.
By considering the case of 2; < # < �̃; with much smaller 2 than �̃ separately and analyzing
the smallest singular value of �, the range of validity of the theorem can be extended considerably,
cf. also [FR13, Theorem 11.19]. For lower bounding the least singular values under the present
random models, results as in [KM15] are useful tools.

We note the inclusion of the statement of Theorem 1.3

AB#
1 ⊃

1
�

(√
log (4#/;)B;

2 ∩ B;
∞

)
(1.14)

can be expressed equivalently in terms of !?-centroid bodies, as introduced by [LZ97] and
studied by Paouris [Pao06].

Definition 1.4.4. Let  be a convex body in R; with volume one, let ? ≥ 1 and ` be the uniform
measure of  . We call the set /?( ), defined implicitly via its support function ℎ/?( ) such that

ℎ/?( )(B) = ‖〈·, t〉‖!?( ) =
( ∫

 

|〈X, t〉|?3`(X)
)1/?

for all t ∈ (;−1, the !?-centroid body of  .

As pointed out in [DGT09], it can be seen that (1.14) is equivalent to

AB#
1 ⊃

1
�
21Zlog(4#/;)

(
1
2

B;
∞

)
,

since the norms ‖〈·, t〉‖!log(4#/;)(
1
2 B;∞)

and ‖t‖(
√

log(e #/;)) := max{‖t‖2,
√

log(e #/;)‖t‖∞} are
equivalent.

Remark 1.4.2. After a version of the results presented in Theorem 1.3 and Theorem 1.4 was
published on arXiv [KKR18] in June 2018, the authors of [GLT19] and [Men19] presented different
proofs to generalize Theorem 1.3 further. In particular, [GLT19] weakens assumption (b) in
Theorem 1.3 to random variables variables fulfilling a small ball assumption (and with unit
!2-norm). [GLT19] does not consider dependencies between entries of - , unlike case (a) of
Theorem 1.3. A similar result was obtained in [Men19], but with a simpler proof.

1.4.2 Implications for Robustness of Noise-Blind Compressed Sensing

As pointed out in Section 1.2.1, stable reconstruction guarantees can be shown for equality-
constrained �1-minimization

Δ1(y) := arg min
z∈R#

‖z‖1 subject to Az = y, (1.15)

for a wide range of possibly heavy-tailed measurement matrices �, as it is the case for robust
and stable guarantees for quadratically constrained �1-minimization

Δ1,[(y) := arg min
z∈R#

‖z‖1 subject to ‖Az − y‖2 ≤ [ (1.16)

in a noise-aware setting. These results can be achieved by establishing the following property
for A with high probability [ML17,DLR18].
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Definition 1.4.5 (Robust null space property, [FR13, Section 4.3]). A matrix A ∈ R;×# is said
to satisfy the robust null space property of order A (with respect to ||| · |||) with constants 0 < d < 1
and g > 0 if

‖v(‖1 ≤ d‖v(‖1 + g|||Av|||

for all v ∈ R# and all ( ⊂ [#] with |(| ≤ A.

We use Theorem 1.3 and Theorem 1.4 together with the results of [ML17, DLR18] about
robust null space properties as defined in Definition 1.4.5 to obtain robust and stable guarantees
for (1.15) and (1.16) in noise-blind scenarios with high probability, if the measurement matrix
A is drawn from a wide range of i.i.d. entrywise distributions. The precise formulation of the
result is as follows.

Theorem 1.5. Let B = (187) be an ; × # random matrix with independent symmetric entries
187 ∼ 1 for all 8 ∈ [;], 7 ∈ [#] and A := 1√

;
B. For A ∈ N, let fA(x)1 := inf{‖x − z‖1 : z ∈

R# , ‖z‖0 ≤ A} be the �1-error of the best A-term approximation of x ∈ R# . Assume [ ≥ 0.

1. Assume that that 1 satisfies the weak moment assumption from Definition 1.4.3 of order
max(4, log(#))with constants ^ andU ≥ 1/2. Then there exist constants 2̃1, 2̃2, �̃,�, �, � >
0 depending only on ^ and U such that if

# ≥ �̃;, ; ≥ log2U−1(#) and A ≤ 2̃2A∗ := 2̃2
;

log(e #/;)
,

with probability at least 1 − 3 exp(−2̃1;), the solution Δ1,[(Ax + w) of quadratically
constrained �1-minimization (1.5) given the measurement matrix A and data vector y =
Ax +w fulfills the �>-error estimates

‖x − Δ1,[(Ax +w)‖>

≤
�

A1−1/>
fA(x)1 + A

1/>−1/2
∗

(
�[ + �

‖w‖(
√

log e #/;)

‖w‖2
max{‖w‖2 − [, 0}

) (1.17)

for 1 ≤ > ≤ 2, for all x ∈ R# and all w ∈ R;, where ‖ · ‖(
√

log(e #/;)) := max{‖ ·
‖2,

√
log(e #/;)‖ · ‖∞}.

2. If the random variable 1 is as in (a) with the additional assumption that 1 dominates a
standard Gaussian random variable 6 with constants 1 and _2 ≥ 1, there exist constants
2̃1, 2̃2, �̃,�, �, � > 0 depending on ^, U and _2 such that if

# ≥ �̃;, ; ≥ log2U−1(#) and A ≤ 2̃2A∗ := 2̃2
;

log(e #/;)
,

with probability at least 1 − 3 exp(−2̃1;), the solution Δ1(Ax + w) of quadratically con-
strained �1-minimization (1.5) fulfills the �>-error estimates

‖x − Δ1,[(Ax +w)‖> ≤
�

A1−1/>
fA(x)1 + A

1/>−1/2
∗

(
�[ + �max{‖w‖2 − [, 0}

)
(1.18)

for 1 ≤ > ≤ 2, and for all x ∈ R# and w ∈ R;.

For the proof of Theorem 1.5, we refer the reader to Section 1.6.3.
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Remark 1.4.3. We point out that robust recovery guarantees of Theorem 1.5 can be specified for
the noise-blind equality-constrained �1-minimization program (1.15),

Δ1,0(y) = Δ1(y) = arg min
z∈R#

‖z‖1 subject to Az = y,

such that for all 1 ≤ > ≤ 2,

‖x − Δ1(Ax +w)‖> ≤
�

A1−1/>
fA(x)1 + A

1/>−1/2
∗ �‖w‖(

√
log e #/;)

and
‖x − Δ1(Ax +w)‖> ≤

�

A1−1/>
fA(x)1 + A

1/>−1/2
∗ �‖w‖2

for all x ∈ R# and w ∈ R; in the first and second part of Theorem 1.5, respectively.
This means that the existing robust recovery guarantees for this decoder using matrices with

i.i.d. sub-Gaussian [FR13, Theorem 11.10], Gaussian [FR13, Theorem 11.9] and Weibull [Fou14,
Theorem 11] random variables can be considered as special cases of the theorem.

Next, we illustrate the generality of the assumptions of Theorem 1.4 and Theorem 1.5 by
enumerating randommodels which are covered by our theory, but which mostly have not been
covered by the robustness analyses of [LPRTJ05,Woj10,Fou14].

Example 1.4.1. Let � be a real random matrix with i.i.d. entries 087 = 1√
;

187
‖187 ‖!2

, 8 ∈ [<], 7 ∈ [#].

1. Assume that the 187 are distributed as 1W, where 1W is a k 1
W
-random variable with the same

distribution as sign(6)|6 |2W, where 6 is a standard normal variable and W > 0. Then,

1W is of exponential type, i.e., has a probability density function of >(F) = 21 e−
|F |

1
W

22 . If
1/2 ≤ W ≤ 1, the assumptions of the second part of Theorem 1.5 apply, cf. [DLR18, Example
V.4]. In particular, the 187/‖187‖!2 dominate a standard Gaussian 6 with parameters 1 and
1 ≤ _2 ≤ 2. We note that the special cases W = 1

2 and W = 1 have been covered already by
the existing theory, in the latter case by [Fou14].

For W > 1, the theorem still applies as 1W keeps dominating a standard Gaussian random
variable with parameters 1 and _2 ≤ 2, but this is only true assuming a more restrictive
upper bound 2̃2(W) ;

log(e #/;) on the sparsity, where 2̃2(W) depends on W, cf. [DLR18, Example
V.4].

2. Let 3 ∈ N. If the 187 are distributed as Student-B variables 13 with 3 degrees of freedom,
they dominate (after normalization) the standard Gaussian 6 with parameters 1 and some
1 ≤ _2 ≤ 2 as well, so that Theorem 1.5.2 applies if enough “small” moments are provided,
i.e., if additionally 3 ≥ log(#).

3. If the 187 are distributed as symmetric Weibull variables 1@ with exponent 1 ≤ @ ≤ 2, recovery
guarantees or equality-constrained �1-minimization that are robust relative to the �2-norm
have been shown in the optimal regime of ; already in [Fou14]. Since the normalized
symmetric Weibull variables 187/‖187‖!2 dominate the standard Gaussian 6 with parameters
1 and some 1 ≤ _2 ≤ 2 also here, Theorem 1.5.2 also applies in the setting of [Fou14].

A comparison of the two parts of Theorem 1.5 suggests the existence of qualitatively dif-
ferent robustness regimes of equality-constrained �1-minimization (1.15), depending on subtle
properties of the measurement matrix �—a phenomenon that is not present for noise-aware
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Figure 1.1 – y-axis: Reconstruction errors ‖ F̂ − F0‖2 of the solutions F̂ of (1.15) and (1.16) from
measurements G = �F0 + E, where E is a random spherical noise vector with ‖E‖2 = 10−2,
for different measurement matrices �. x-axis: number of rows ;.

formulations of �1-minimization. In particular, the analysis suggests that measurement matri-
ces with entries drawn from certain “super-Gaussian” distributions comewith an asymptotically
more robust behavior than those whose entries are drawn from certain sub-Gaussian, bounded
distributions as the Rademacher distribution of random signs.

1.5 Numerical Experiments
In this section, we show in a case study that the results of Theorem 1.5 provide an appropriate
explanation for the empirical robustness behavior of different measurement matrices. In
particular, we consider three types of measurement matrices: random matrices with i.i.d.
Gaussian, Bernoulli and Student-t entries. The presented numerical experiments have been
conducted usingMATLAB R2017b on aMacBook Pro with a 2.3 GHz Intel Core i5 processor. The
convex optimization problems of our experiments are solved using the CVX package [GB14].

1.5.1 Behavior under Spherical Noise

In our first experiment, we perform simulations for the reconstruction of a A-sparse vector
F0 ∈ R

# with ‖F0‖2 = 1 from measurements G = �F0 + E which are perturbed by a random
vectorE ∈ R; that is drawn from the uniform distribution on the sphere of radius ‖E‖2 = 10−2.
To obtain our reconstruction result F̂, we use equality-constrained �1-minimization (1.15) as
defined by Δ1(G), also called basis pursuit (BP) and quadratically constrained �1-minimization
(1.16), also called basis pursuit denoising (BPDN)

Δ1,[(G) = arg min
H∈R#

‖H‖1 subject to ‖�H − G‖2 ≤ [,

where the noise level estimate [ is chosen such that [ ∈ {‖E‖2, 2‖E‖2, 0.5‖E‖2}, i.e., the noise
level ‖E‖2 is either estimated accurately or over- or underestimated by a factor of two. The
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support ( of F0 is drawn uniformly among the
(#
A

)
possibilities, and the non-zero coordinates

are drawn uniformly on the sphere S(−1 = {F ∈ R# : ‖F‖2 = 1, supp(F) ⊂ (}.
In Figure 1.1, the resulting recovery �2-errors ‖ F̂ − F0‖2 can be observed for the three

different random models (in case of Student-t measurements, 9 = 9 degrees of freedoms were
used) for the measurement matrix � mentioned above, where the parameters were chosen as
# = 5000, A = 10 and ; ∈ {d9#/20e, 9 = 1, . . . , 14}. The reported errors are averaged over
500 runs of the simulation.

We notice that in the experiment, the recovery error of the equality-constrained formula-
tion (1.15) is comparable to the one of quadratically constrained �1-minimization (1.16) with
correctly estimated or underestimated noise level [ ∈ {‖E‖2, 0.5‖E‖2}, if � has a small num-
ber of rows ; ≤ 500. For larger ;, the robustness of (1.16) improves further if [ = ‖E‖2,
whereas it stagnates for underestimated noise of [ = 0.5‖E‖2 and it deteriorates slightly for
(1.15).

It can be also observed that an overestimation of the noise level such that [ = 2‖E‖2 in
(1.16) leads to a significantly worse reconstruction error ‖ F̂ − F0‖2 than all the other methods,
for all the considered number of measurements ;.

Importantly, we observe that the robustness behavior of the algorithms does not depend on
the choice of Gaussian, Bernoulli or Student-t measurement matrices in this case of presence
of spherical noise.

This is precisely in accordance to the result of Theorem 1.5: Bernoulli variables 1 fulfill
the assumptions of the first part of the theorem, but not of the second part, since they are
sub-Gaussian. On the other hand, Gaussian and Student-t variables (with a sufficient number
of degrees of freedom) fulfill the assumptions for the stronger statement of Theorem 1.5.2. In
general, Bernoulli measurement matrices entail the weaker statement predicting a reconstruc-
tion error of

‖F − Δ1(G)‖2 ≤ �‖E‖(
√

log e #/;)

with a constant � for equality-constrained �1-minimization. For spherical noise, though,
this coincides with the statement of Theorem 1.5.2, since ‖E‖(

√
log e #/;) = ‖E‖2 with high

probability under this noise model.

1.5.2 Behavior under Heavy-Tailed Noise

Next, instead of uniform spherical noise, we consider more heavy-tailed noise such that E =
10−2 Ẽ

‖Ẽ‖2
∈ R;, where (Ẽ)7 are i.i.d. kU random variables for the parameter U = 0.2, cf. also

1.4.1.1. Such a noise has most of its mass in just few coordinates, and the size of its largest entry
‖E‖∞ is comparable to its �2-norm ‖E‖2, i.e. ‖E‖∞ ≈ ‖E‖2 = 10−2 with high probability.

In this case, the conclusions about the recovery accuracy of equality-constrained �1-
minimization (1.15) that can be drawn from Theorem 1.5.1 and Theorem 1.5.2 predict a better
behavior of Gaussian and Student-t measurements than for Bernoulli measurements, in par-
ticular for ; � #: Since then

‖E‖(
√

log e #/;) =
√

log e #/; · ‖E‖∞ ≈
√

log e #/; · ‖E‖2 =
√

log e #/; · 10−2

with high probability, Theorem 1.5 predicts a reconstruction error of

‖F − Δ1(G)‖2 ≤ � ·

√
log

e #
<
· 10−2
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Figure 1.2 – y-axis: Reconstruction errors ‖ F̂ − F0‖2 of the solutions F̂ of (1.15) and (1.16) from
measurements G = �F0 + E, E = 10−2 · Ẽ

‖Ẽ‖2
where the entries of Ẽ are i.i.d. k0.2 random

variables, for different measurement matrices �. x-axis: number of rows of ;.

for Bernoulli measurements, but a reconstruction error of

‖F − Δ1(G)‖2 ≤ � · 10−2

for the two other, more heavy-tailed measurement models (here, � is some constant).
These predictions can be well confirmed in the experiment illustrated in Figure 1.2, re-

peating the experiment from Section 1.5.1 for this different, heavy-tailed noise model: Unlike
before, the reconstruction error of equality-constrained �1-minimization (1.15) for Bernoulli
matrices is now consistently worse than for the Gaussian and Student-B measurement matri-
ces if ; � #, i.e., if ; = 250, . . . , 2000. It is interesting to note that equality-constrained
�1-minimization with Student-t matrices (with 9 = dlog(#)e = 9 degrees of freedom) is even
slightly more robust than in the case of Gaussian matrices, especially if ; is small.

On the other hand, the relative performance of Student-t measurements is worse than the
one of Gaussian measurements if the noise-aware quadratically constrained �1-minimization
(1.16) is used as a reconstruction algorithm.

As for spherical noise, we also note here that overestimating the noise level by a factor of
two ([ = 2 · ‖E‖2) in (1.16) leads to worse reconstructions than the noise-blind usage of (1.15).

We want to stress two conclusions from these experiments:

• The noise-blind reconstruction algorithm (1.15) is at least as robust in presence of certain
heavy-tailed measurement matrices as in the case of Gaussian measurement matrices,
especially if the measurement matrix has few rows ;.

• While a very precise choice in the noise level estimate [ of (1.16) leads to better re-
constructions than using the noise-blind variant (1.15), the reconstructions deteriorate
quickly once [ is chosen as an overestimate of the actual noise level. In this sense, it

27



is preferred to choose an underestimated [ or even [ = 0 (resulting again in (1.15)) in
situations where there is little a priori knowledge about the noise E.

1.6 Proofs
In this section, we provide proofs of Theorem 1.3, Theorem 1.4 and Theorem 1.5.

A starting point for our proofs is Lemma 1.6.1, which provides a necessary and sufficient
condition for the �1-quotient property relative to a norm ||| · |||. We define the dual norm ||| · |||∗
of a norm ||| · ||| such that

|||E|||∗ = max{|〈G,E〉| : |||G ||| ≤ 1}.

Lemma 1.6.1 ([FR13, Lemma 11.17]). A matrix � ∈ R;×# has the �1-quotient property with
constant 3 relative to ||| · ||| if and only if

|||E|||∗ ≤ 3A
1/2
∗ ‖�

∗E‖∞ for all E ∈ R;,

where A∗ = ;/log(e #/;).

The general proof strategy uses the framework of Mendelson’s small ball method [Men15,
KM15,DLR18]. The quantity ‖�∗E‖∞ is lower bounded by a non-negative empirical process,
which then will be lower bounded with high probability. This is formalized in the following
lemma.

Lemma 1.6.2. Let � =
(
�1, . . . , �#

)
∈ R;×# be a matrix with columns �7 ∈ R;, 7 ∈ [#]. If

inf
E∈( |||·|||∗

(
1
#

#∑
7=1

|〈�7,E〉|log(#)

) 1
log(#)

≥
1
�

√
log

(e #
;

)
, (1.19)

where ( ||| · |||∗ = {E ∈ R; : |||E|||∗ = 1} is the unit sphere of the dual norm ||| · |||∗ of some norm
||| · |||, then 1√

;
� fulfills the �1-quotient property with constant � relative to the norm ||| · |||.

Proof. Let E ∈ R;. Then( 1
√
;
�

)∗
E


∞

≥
1

e
√
;
‖�∗4‖log # =

1
e
√
;

(
#∑
7=1

|〈�7,E〉|log(#)

) 1
log(#)

=
1
√
;

(
1
#

#∑
7=1

|〈�7,E〉|log(#)

) 1
log(#)

,

as #1/? = #1/log(#) = e. It follows from Lemma 1.6.1 that the �1-quotient property of 1√
;
�

with constant � relative to the norm ‖ · ‖ is implied by

‖�∗E‖∞ ≥
1
�

√
log(e #/;)|||E|||∗ for all E ∈ R;,

where ‖ · ‖∗ is the dual norm of the norm ‖ · ‖. This implies that(
1
#

#∑
7=1

|〈�7,E〉|log(#)

) 1
log(#)

≥
1
�

√
log

(e #
;

)
|||E|||∗ for all E ∈ R;

is a sufficient condition for the assertion of the lemma. �
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The following result due to [KM15, Theorem 1.5] will be used to show the sufficient
condition of Lemma 1.6.2.

Lemma 1.6.3 ([KM15, Theorem 1.5],[DLR18, Lemma III.1]). Let 1 ≤ ? < ∞, let ( ⊂ R; be a
set and �1, . . . , �# be i.i.d. copies of a random vector - in R;. For C > 0, define

&((C) := inf
E∈(

P(|〈-,E〉| ≥ C)

and

R#(() := E

[
sup
E∈(

����� 1
#

#∑
7=1

n7〈�7,E〉

�����
]
, (1.20)

where (n7)7∈[#] is a Rademacher sequence that is independent from �1, . . . , �# . Then, for B > 0,
with probability at least 1 − 2e−2B2 ,

inf
E∈(

1
#

#∑
7=1

|〈�7,E〉|? ≥ C?
(
&((2C) −

4
C
R#(() −

B
√
#

)
. (1.21)

1.6.1 Proof of Theorem 1.3

For the proof of Theorem 1.3, we use some facts about !?-centroid bodies [LZ97,Pao06], which
can be related to the clipped �2-norm, which is defined for all @ > 0 such that

‖B‖(
√
@) := max{‖B‖2,

√
@‖B‖∞}

for all B ∈ R;. We recall some definitions and facts about !?-centroid bodies.

Definition 1.6.1. Let  be a symmetric convex body in R; with volume one.

1. The support function ℎ : R; → R of  is defined as

ℎ (F) := max{〈F, G〉, G ∈  }.

We note that  can be implicity defined by providing the support function ℎ .

2. Let ? ≥ 1 and ` the uniform measure of  . We call the symmetric convex body /?( )
implicitly defined via its support function ℎ/?( ) such that

ℎ/?( )(B) = ‖〈·, B〉‖!?( ) =
( ∫

 

|〈-, B〉|?3`(-)
)1/?

for all \ ∈ R; the !?-centroid body of  .

Remark 1.6.1. We note that if  is a symmetric convex body,  coincides with the unit ball with
respect to the norm

‖F‖ := inf{_ ≥ 0 : F ∈ _ }

defined by its Minkowski functional. In this case, the support function ℎ is the dual norm ‖ · ‖ ∗
of ‖ · ‖ ,

ℎ (F) = ‖F‖ ∗ = ‖F‖ ◦

and furthermore, the polar body  ◦ of  defined as

 ◦ := {G ∈ R; : 〈F, G〉 ≤ 1, G ∈  }
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is the unit ball with respect to that norm ‖ · ‖ ∗ .

The proof of our main result will crucially use the following norm equivalence (see also
[DGT09]).

Lemma 1.6.4 (Corollary of (4) of [BGMN05]). There exist constants 0 < 2 < � such that for
all @ ≥ 1,

2‖〈·, B〉‖!@(�;∞) ≤
√
@‖B‖

(
√
@)

∗ ≤ �‖〈·, B〉‖!@(�;∞)

and √
@

�
‖B‖/@(�;∞) ≤ ‖B‖

(
√
@) ≤

√
@

2
‖B‖/@(�;∞),

where ‖B‖(
√
@) := max{‖B‖2,

√
@‖B‖∞} is the norm of B defined by the symmetric convex body

 :=
(
�;2 ∩

1
√
@
�;∞

)
and ‖ · ‖(

√
@)

∗ is such that

‖B‖
(
√
@)

∗ = inf
C∈R;

{
‖C‖2 +

1
√
@
‖B − C‖1

}
for B ∈ R; is the dual norm of ‖ · ‖(

√
@). In particular, this implies that

1
�
/@(�

;
∞) ⊂

√
@�;2 ∩ �

;
∞ ⊂

1
2
/@(�

;
∞)

for all @ ≥ 1.

Proof. It follows from (4) of [BGMN05] that there exist constants 0 < 2 < � such that

2‖〈·, B〉‖!@(�;∞) ≤
√
@‖B‖

(
√
@)

∗ ≤ �‖〈·, B〉‖!@(�;∞).

For the fact that ‖B‖(
√
@)

∗ = infC∈R;

{
‖C‖2 +

1√
@
‖B−C‖1

}
is the dual norm of ‖ · ‖(

√
@) at B we refer

the reader to the proof of [FR13, Theorem 11.9]. The other conclusion follows from properties
of dual norms as ‖B‖(

√
@) = (‖B‖

(
√
@)

∗ )∗. �

Another lemma about the dual norm ‖B‖(
√
@)

∗ that will be used is as follows.

Lemma 1.6.5 ([FR13, Lemma 11.22]). Assume that @ is an integer. Then the dual norm ‖ · ‖(
√
@)

∗

of ‖ · ‖(
√
@) is comparable with the norm ‖ · ‖@,† defined by

‖B‖@,† := max

{
@∑

�=1

‖B�� ‖2 : �1, . . . , �@ form a partition of [;]

}
(1.22)

in the sense that
1
√
@
‖B‖@,† ≤ ‖B‖

(
√
@)

∗ ≤

√
2
√
@
‖B‖@,†

for all B ∈ R;.

We proceed with a lemma bounding the Rademacher complexity of !@-unit balls.

30



Lemma 1.6.6. Let �1, . . . , �# be i.i.d. isotropic random vectors in R; such that �7 ∼ - for all
7 ∈ [#]. Let (!@(�

;
∞) := {G ∈ R; : ‖〈·, G〉‖!@(�;∞) = 1} be the unit sphere of !@(�;∞) for some @ ≥ 2.

Then, for all @ ≥ 2, the Rademacher complexity parameter of Lemma 1.6.3

R#((
!@(�

;
∞)) := E

[
sup

E∈(‖·‖∗

����� 1
#

#∑
7=1

n7〈�7,E〉

�����
]
,

where (n7)#7=1 is a Rademacher sequence independent of the (�7)#7=1, fulfills

R#((
!@(�

;
∞)) ≤

√
;

#
.

Proof. Let ℎ := 1√
#

∑#
7=1 n7�7, where (n7)#7=1 is a Rademacher sequence independent of

�1, . . . , �# .
Then we obtain

R#((
!@(�

;
∞)) = E

[
sup

E∈(!@ (�
;
∞)

�����
〈
E,

1
#

#∑
7=1

n7�7

〉�����
]
=

1
√
#
E
[

sup
E∈R;

‖ 〈·,E〉 ‖!@ (�;∞)≤1

〈E, ℎ〉
]

≤
1
√
#
E
[(

sup
E∈R;

‖ 〈·,E〉 ‖!@ (`)≤1

‖E‖2

)
‖ℎ‖2

]
≤

1
√
#
E [‖ℎ‖2] ,

(1.23)

by using Hölder’s inequality and the isotropicity of `, i.e.,

‖E‖2 = ‖〈·,E〉‖!2(�
;
∞)
≤ ‖〈·,E〉‖!@(�;∞) = 1

for all E ∈ (!@(�
;
∞) as ? ≥ 2. Furthermore, using Jensen’s inequality, we estimate

E
[
‖ℎ‖2

]
=

1
√
#
E
[
‖

#∑
7=1

n7�7‖2

]
≤

1
√
#
E
[
‖

#∑
7=1

n7�7‖
2
2

]1/2

=
1
√
#

(
E�

[
En

[ #∑
7,9=1

;∑
8=1

n7n9(�7)8(�9)8
] ] )1/2

=
1
√
#

(
E1

[ #∑
7=1

;∑
8=1

(�7)8(�7)8
] )1/2

=
1
√
#

( #∑
7=1

E
[
‖�7‖

2
2
] )1/2

=
1
√
#
(# · ;)1/2 =

√
;,

using again that �7 ∼ - is isotropic by assumption. Putting the two estimates together
concludes the proof. �

As a preparation for the proof of Theorem 1.3, we provide a lemma which goes back to an
argument of Rafał Latała, and which appeared in [DGT09, Section 2.1].

Lemma 1.6.7. Let @ ≥ 1 and - = (F1, . . . , F;) an ;-dimensional random vector with uncondi-
tional, isotropic distribution, and let 0 < 20 ≤ 1 be a constant such that

E[|〈-, 47〉|] = ‖〈-, 47〉‖!1 ≥ 20‖〈-, 47〉‖!2 = 20

for all 7 ∈ [;], where 47 is the 7-th standard basis vector of R;.
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Then, for all \ ∈ ( ‖ · ‖2 ,
‖〈-, \〉‖!@ ≥ 20‖〈-, \〉‖!@(�;∞).

Proof. Let n1, . . . , n; be independent Rademacher random variables defined on the probability
space (Ω,F,Q), i.e., Q(n7 = 1) = Q(n7 = −1) = 1/2 for all 7 ∈ [;]. Since - is unconditional,
we have that

‖〈-, \〉‖!@ =

(∫
R;

����� ;∑
7=1

F7\7

�����@ 3`(-)
)1/@

= ‖〈-, \〉‖!@ =

(∫
Ω

∫
R;

����� ;∑
7=1

n7\7 |F7 |

�����@ 3`(-)3Q(n)
)1/@

≥

(∫
Ω

����� ;∑
7=1

n7\7

∫
R;
|〈-, 47〉|3`(-)

�����@ 3Q(n)
)1/@

≥ 20

(∫
Ω

����� ;∑
7=1

n7\7

�����@ 3Q(n)
)1/@

.

(1.24)

By the contraction principle (cf. [FR13, Theorem 8.3]), it follows that(∫
Ω

����� ;∑
7=1

n7\7

�����@ 3Q(n)
)1/@

≥

(∫
�;∞

∫
Ω

����� ;∑
7=1

n7G7\7

�����@ 3Q(n)3G
)1/@

=

(∫
Ω

∫
�;∞

����� ;∑
7=1

n7G7\7

�����@ 3G3Q(n)
)1/@

=

(∫
�;∞

����� ;∑
7=1

G7\7

�����@ 3G
)1/@

= ‖〈-, \〉‖!@(�;∞),

as the uniform distribution in �;∞ = {G ∈ R
; : ‖G‖∞ ≤ 1} is unconditional. Inserting this into

(1.24) finishes the proof of the lemma. �

Lemma 1.6.8. Assume that - is an ;-dimensional random vector with unconditional, isotropic
distribution, and let 0 < 20 ≤ 1 be a constant such that

‖〈-, 47〉‖!1 ≥ 20‖〈-, 47〉‖!2

for all ; standard basis vectors 47 ∈ R;. Furthermore, assume that there is a constant 21 > 1
such that the first 2? moments ‖〈-,E〉‖!@(`) exist for all E ∈ (

;−1 and fulfill

‖〈-,E〉‖!2@ ≤ 21‖〈-,E〉‖!@ (1.25)

for all E ∈ (;−1 and for all @ ≤ ?. Then, it holds that:

1. For all 2 ≤ @ ≤ ?,

P
(
|〈-,E〉| ≥

20

2
‖〈·,E〉‖!@(�;∞)

)
≥

1
4

(
22
0

22
1

)@
.

2. Consider the the unit ball (!?(�
;
∞) = {E ∈ R; : ‖〈·,E〉‖!?(�;∞) = 1}. If ? = V

4
log(#/;)
log(21/20)

, then

&
(!?(�

;
∞)

(
C
)

:= inf
E∈(!?(�

;
∞)

P
(
|〈-,E〉| ≥ C

)
≥

1
4

(;
#

) V
4

for C = 20
2 . If furthermore # ≥  4/V;, then

&
(!?(�

;
∞)

(
C
)
≥
 

4

(;
#

) V
2
.
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Proof. 1. The proof of the first statement follows ideas of [DGT09, Lemma 2.7.].

Let @ ≥ 1 and E ∈ R;. By the Paley-Zygmund inequality (see, e.g., [DlPG12, Chapter
3.3]) it follows that

P
(
|〈-,E〉| ≥

20

2
‖〈·,E〉‖!@(�;∞)

)
= P

(
|〈-,E〉|@ ≥

2@0

2@
‖〈·,E〉‖@!@(�;∞)

)
≥

(
E
[
|〈-,E〉|@

]
−

2@0
2@ ‖〈·,E〉‖

@
!@(�

;
∞)

)2

E
[
|〈-,E〉|2@

] =

(
‖〈-,E〉‖@!@ −

2@0
2@ ‖〈·,E〉‖

@
!@(�

;
∞)

)2

‖〈-,E〉‖2@!2@

.

(1.26)

From Lemma 1.6.7, it follows that

2@0‖〈·,E〉‖
@
!@(�

;
∞)
≤ ‖〈·,E〉‖@!@ ,

and inserting this into (1.26) yields, together with assumption (1.25),

P
(
|〈-,E〉| ≥

20

2
‖〈·,E〉‖!@(�;∞)

)
≥ 22@

0

(
1 −

1
2@

)2 ‖〈-,E〉‖2@!@
‖〈-,E〉‖2@!2@

≥
1
4
22@
0

1
22@
1
=

1
4

(
22
0

22
1

)@
.

2. Let ? = V

4
log(#/;)
log(21/20)

. From the statement of 1. it follows that for all E ∈ (!?(�
;
∞),

P
(
|〈-,E〉| ≥

20

2

)
≥

1
4

(
22
0

22
1

)?
=

1
4

(
22
0

22
1

) V
4

log(#/;)
log(221/2

2
0)

=
1
4

(;
#

) V
4
.

Since # ≥  4/V; is equivalent to
(
;
#

)V/4
≤  

(
;
#

)V/2, the last statement follows.
�

Proof of Theorem 1.3. Consider condition (a).
Using Lemma 1.6.3 for the choice of ( = (!?0 (�

;
∞), C = 20/4 and B = #

1−V
2 ;

V
2 , we obtain

with probability at least 1 − 2 exp(−2#1−V;V) that

inf
E∈(

!?0 (�
;
∞)

1
#

#∑
7=1

|〈�7,E〉|log # ≥
( 20

4

) log #
(
&
(
!?0 (�

;
∞)

( 20
2

)
−

16
20

R#((
!?0 (�

;
∞)) − 1

(;
#

) V
2

)
(1.27)

Plugging in the estimates

&
(
!?0 (�

;
∞)

( 20
2

)
≥
 

4

(;
#

) V
2

for # ≥  4/V; from Lemma 1.6.8 and

R#((
!?0 (�

;
∞)) ≤

√
;

#
≤

(;
#

) V
2
,

from Lemma 1.6.6 and 0 < V ≤ 1, we obtain the bound

inf
E∈(

!?0 (�
;
∞)

1
#

#∑
7=1

|〈�7,E〉|log # ≥
( 20

4

) log #
(
 

4
−

16
20
− 1

) (;
#

) V
2
≥

( 20
4

) log #
(
 

4
−

17
20

) (;
#

) V
2

for (1.27). Choosing  = 72/20 and therefore  /4−17/20 = 1/20, we see that this is equivalent
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to

inf
E∈(

!?0 (�
;
∞)

(
1
#

#∑
7=1

|〈�7,E〉|log #

)1/log #

≥
20

4

(
1
20

) 1
log(#) (;

#

) V
2 log #
≥
20

4
· 1 · e−V/2 ≥

20

4 eV/2
.

By Lemma 1.6.2, this implies that 1√
;
� fulfills the �1-quotient property with constant � =

4 eV/2
20

√
log(e #/;) relative to the norm ‖ · ‖/?0 (�

;
∞)
, as (!?0 (�

;
∞) is the unit sphere of the dual

norm of ‖ · ‖/?0 (�
;
∞)
. Thus, by Definition 1.3.3, for all E ∈ R;, there exists a vector H ∈ R# such

that 1√
;
�H = E and

‖H‖1 ≤
4 exp(V/2)

20

√
log(e #/;)A1/2∗ ‖E‖/?0 (�

;
∞)
≤

4 exp(V/2)
20

√
log(e #/;)A1/2∗

�
√
?0
‖E‖(

√
?0),

with A∗ = ;
log(e #/;) and � being the constant from Lemma 1.6.4. Using that√

log(e #/;)
√
?0

≤

√√√ 8

V log
(
21
20

)
and the fact that

√
?0 =

√
V

4
log(#/;)
log(21/20)

≤
√

log(e #/;), if follows from this that 1√
;
� fulfills the

�1-quotient property with constant � = 8
√

2� exp(V/2)

20
√
V log(21/20)

relative to the norm ‖ · ‖(
√

log(e #/;)) =

max{‖ · ‖2,
√

log(e #/;)‖ · ‖∞}, which shows the statement of Theorem 1.3 under the set of
conditions (a).

Assume now condition (b).
Let E ∈ R; and - = (F1, . . . , F;) be a random vector fulfilling the weak moment assump-

tion of order ?0 = . . . with constants ^ and U ≥ 1/2.
It is clear from the definition of ‖ · ‖(

√
@) that @1 ≤ @2 implies ‖E‖(

√
@1) ≤ ‖E‖(

√
@2) for all

E ∈ R;. It follows by duality that @1 ≤ @2 implies ‖E‖(
√
@1)

∗ ≥ ‖E‖
(
√
@2)

∗ . We note that due to
Lemma 1.6.4 and the upper inequality of Lemma 1.6.5, there exists a constant 2 > 0 such that

‖〈·,E〉‖!?0 (�
;
∞)
≤

√
?0

2
‖E‖

(
√
?0)

∗ ≤

√
2
2
‖E‖?0,†,

where ‖E‖?0,† = max
{∑?0

�=1 ‖B�� ‖2, �1, . . . , �?0 form a partition of [;]
}
. Therefore,

P
(
|〈-,E〉| ≥ C‖〈·,E〉‖!?0 (�

;
∞)

)
≥ P

(
|〈-,E〉| ≥

√
2C
2
‖E‖?0,†

)
. (1.28)

Let now �1, . . . , � b@c be a partition of [;] such that ‖E‖?0,† =
∑?0
�=1 ‖E�� ‖2, cf. (1.22). Then

P

(
|〈-,E〉| ≥

√
2C
2
‖E‖?0,†

)
= P

(
|〈-,E〉| ≥

√
2C
2

?0∑
�=1

‖E�� ‖2

)
≥ P

( ∑
8∈��

F 8E8 ≥

√
2C
2
‖E�� ‖2 for all � ∈ [?0]

)
=

?0∏
�=1

P
( ∑
8∈��

F 8E8 ≥

√
2C
2
‖E�� ‖2

)
,
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where we used that the coordinates F1, . . . F; of - are independent. Combining this with
(1.28), we obtain

P
(
|〈-,E〉| ≥ C‖〈·,E〉‖!?0 (�

;
∞)

)
≥

?0∏
�=1

P
( ∑
8∈��

F 8E8 ≥

√
2C
2
‖E�� ‖2

)
. (1.29)

Using the symmetry of the distribution of the F 8 and choosing C = 2

2
√

2
, it follows that

P
( ∑
8∈��

F 8E8 ≥

√
2C
2
‖E�� ‖2

)
=

1
2
P
(��� ∑
8∈��

F 8E8

��� ≥ √2C
2
‖E�� ‖2

)
=

1
2
P
(��� ∑
8∈��

F 8E8

��� ≥ 1
2
‖E�� ‖2

)
≥

1
2

(
1 − (1/2)2)

)2

‖F‖4!4

≥
9

32^444U ,

using the Paley-Zygmund inequality [DlPG12, Chapter 3.3], [FR13, Lemma 7.17] and the weak
moment assumption of order ?0 on - in the last two inqualities. Combining this lower bound
with (1.29), we obtain

P
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2

2
√

2
‖〈·,E〉‖!?0 (�

;
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≥
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32^444U
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=
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4 log( 32

9 ^444U)
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≥  
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#

) V
2

for # ≥  4/V;. Using this, we can proceed as under condition (a) and use Lemma 1.6.6
and Lemma 1.6.3 with (!?0 (�

;
∞), C = 2

4
√

2
and B = #

1−V
2 ;

V
2 , we obtain with probability at least

1 − 2 exp(−2#1−V;V) that
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;
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1
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!?0 (�

;
∞)) −
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#
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2

)
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(
2

4
√
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) log #
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√
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Choosing  = 18
√

2/2, we see that this implies that if # ≥ (18
√

2/2)4/V;, thenwith probability
at least 1 − 2 exp(−2#1−V;V),

inf
E∈(

!?0 (�
;
∞)

(
1
#

#∑
7=1

|〈�7,E〉|log #

)1/log #

≥
2

4
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(
1
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) 1
log # (;

#

) V
2 log #
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2

4
√

2
e−V/2 =

2

4
√

2 eV/2
.

Arguing as above we conclude that with probability at least 1−2 exp(−2#1−V;V), 1√
;
� fulfills

the �1-quotient propertywith constant � =
16� exp(V/2)

2

√
V log( 32

9 ^
444U)

relative to the norm ‖·‖(
√

log(e #/;)) =

max{‖ · ‖2,
√

log(e #/;)‖ · ‖∞}, which concludes the proof. �
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1.6.2 Proof of Theorem 1.4

To prove the statement of Theorem 1.4 about matrices with �1-quotient property relative to
the Euclidean norm ‖ · ‖2, we again use Lemma 1.6.3. However, instead of applying with
respect to unit balls (!?(�

;
∞), we apply it with respect to the Euclidean unit ball ( ‖ · ‖2 = {G ∈

R; : ‖G‖2 = 1}. As a preparation, we show the following lemma.

Lemma 1.6.9. Let �1, . . . , �# be i.i.d. isotropic random vectors in R; such that �7 ∼ - for
all 7 ∈ [#]. Let ( ‖ · ‖2 = {G ∈ R; : ‖G‖2 = 1} be the Euclidean unit sphere and (n7)#7=1 be a
Rademacher sequence independent of the (�7)#7=1. Then the Rademacher complexity parameter
of Lemma 1.6.3 fulfills

R#((
‖ · ‖2) := E

[
sup

E∈(‖·‖2

����� 1
#

#∑
7=1

n7〈�7,E〉

�����
]
≤

√
;

#
.

Proof. Let ℎ := 1√
#

∑#
7=1 n7�7, where (n7);7=1 is a Rademacher sequence independent of

�1, . . . , �# . Then we obtain

R#((
‖ · ‖2) = E

[
sup

E∈(‖·‖2

�����
〈
E,

1
#

#∑
7=1

n7�7

〉�����
]
= E

[ 1
#

#∑
7=1

n7�7


2

]
=

1
√
#
E[‖ℎ‖2],

since the dual norm of the Euclidean norm ‖ · ‖2 coincides with the Euclidean norm.
As in the proof of Lemma 1.6.6, it can be shown that E

[
‖ℎ‖2

]
≤
√
;, using the isotropicity

of the �7, which concludes the proof. �

To achieve ameaningful lower bound of the tail parameter&(‖·‖2 (C) in Lemma 1.6.3, we will
a powerful result about tensorization of stochastic domination as defined in Definition 1.4.2.

Lemma 1.6.10 ([KW92, Theorem 3.2.1]). Let F1, . . . , F; and G1, . . . , G; be independent random
variables such that for all 7 ∈ [;], F7 stochastically dominates G7 with constants _1 and _2. Then,
the random vector - = (F1, . . . , F;) dominates . = (G1, . . . , G;)with constants 1

2 d 1
_1
e
and _2d

1
_1
e,

or more explicitly,

P
(��〈-, B〉�� > W) ≥ 1

2
⌈ 1
_1

⌉ P (��〈., B〉�� > _2

⌈
1
_1

⌉
W

)
for any B ∈ R; and W > 0.

We proceed to the proof of Theorem 1.4.

Proof of Theorem 1.4. Wefirst show that condition (b) of Theorem 1.4 actually implies condition
(a): Let - = (F1, . . . , F;) be an isotropic random vector with independent coordinates that
dominate standard Gaussian variables 6 with constants 1 and _2 ≥ 1. Then Lemma 1.6.10
implies that - dominates a standard Gaussian vector � = (61, . . . , 6;) with constants 1/2 and
_2, which corresponds to condition (a).

Without loss of generality, we therefore assume condition (a). Using Lemma 1.6.3 for
( = ( ‖ · ‖2 , C = log(e #/;)... and B = #

1−V
2 ;

V
2 , it follows that with probability at least 1 −
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2 exp(−2#1−V;V),

inf
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) V
2

) 1
log #

,

(1.30)

where we used Lemma 1.6.9 in the last inequality.
Let � = (61, . . . , 6;) be a standard Gaussian vector. As we have ‖E‖2 = 1 for E ∈ ( ‖ · ‖2 ,

〈�,E〉 is a standard Gaussian random variable in this case and it follows from Lemma 1.6.10
that

P(|〈-,E〉| ≥ 2C) ≥
1
2
P(|〈�,E〉| ≥ 2_2C) =

1
2
P(|61 | ≥ 2_2C)

=
1
√

2c

∫ ∞

2_2C

e−H
2/2 3H ≥

1
√

2c

∫ 4_2C

2_2C

e−H
2/2 3H ≥

1
√

2c
2_2C exp(−8_2

2C
2).

Inserting that C =
√
V log(e #/;)

4
√

2_2
, we obtain
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(
|〈-,E〉| ≥
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2
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4
√
c

√
V log(e #/;)

( ;
e #

) V
4

≥
4
√
V

√
c
 

(;
#

) V
2

if  > 0 and # ≥ e  
4
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4V , it follows from that and
(1.30) that with probability at least 1 − 2 exp(−2#1−V;V),
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if # ≥ e  
4
V;. Using Lemma 1.6.2, we conclude that with probability at least 1 −
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relative to the Euclidean norm ‖ · ‖2 if # ≥ �̃; with

�̃ = e

(
2
√
cV + 16

√
2c_2

4V

) 4
V

.

�

1.6.3 Proof of Theorem 1.5

We continue with the proof of Theorem 1.5.

Proof. 1. Assume first that 1 is a random variable with unit variance which fulfills the
weak moment assumption of Definition 1.4.3 of order max{4, log(#)} with constants ^
and U ≥ 1/2. We first note that then, with probability at least 1 − exp(−21(U, ^);), �
fulfills the �2-robust null space property of order 2̃2A∗, where A∗ = ;/log(e #/;) and
0 < 2̃2 < 1, and constants d = 0.9, g > 0 relative to the �2-norm, i.e.,

‖F(‖2 ≤
d

A1/2
‖F(2 ‖1 + g‖�F‖2 (1.31)

for all F ∈ R# and ( ⊂ [#] with A = |(| ≤ 2̃2A∗ and (2 = [#] \( if ; ≥ log2U−1(#), where
21 = 21(U, ^), 2̃2 and g depend on ^ and U. Indeed, this follows from [DLR18, Theorem
V.1] resp. [DLR18, Corollary V.3], as for a row vector 1→ = (11, . . . , 1#)with i.i.d. entries
17 ∼ 1 and a vector B ∈ R# with ‖B‖2 = 1

P
(
| 〈1→, B〉 | ≥ 2−1/2) ≥ (1 − 1/2)2

E[|1|4]
≥

1
4^444U =: X > 0, (1.32)

which holds due to the Paley-Zygmund inequality [DlPG12], [FR13, Lemma 7.17], and
furthermore since

^244U−2

(2−1/2)2X2
≤ 2^1042 log(2)(8U+1)+4U−2

We call the event on which (1.31) holds ENSP.

It then follows from the classical result [FR13, Theorem 4.22] that there exist constants
� ′ > 1, �′ > 0 such that if ‖E‖2 ≤ [, on the event ENSP, it holds that

‖F − Δ1,[(�F + E)‖> ≤
� ′

A1−1/>
fA(F)1 + A

1/>−1/2
∗ �′[

for A = 2̃2A∗, and this is true for all 1 ≤ > ≤ 2 and all F ∈ R# . Since A 7→ fA(F)1/A
1−1/>

is non-increasing, we may replace A also by a smaller value A′ < A = 2̃2A∗, which implies
inequality (1.17) for the case of ‖E‖2 ≤ [.

Consider now the case ‖E‖2 > [ and let H ∈ R# such that ‖�H−E‖2 ≤ [. It follows again
by [FR13, Theorem 4.22] that on the event ENSP, for 1 ≤ > ≤ 2, there exist constants
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� ′ > 1, �′ > 0 such that

‖F − Δ1,[(�F + E)‖> =
(F + H) − Δ1,[

(
�(F + H) + E − �H

)
− H


>

≤
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)
>
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]
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1/>−1/2�′[ + �A1/>−1/2
[
‖H‖1

A1/2
+ A1/2−1/>‖H‖>

]
. (1.33)

Moreover, we note that since V

4
log(#/;)

log( 32
9 ^

444U)
≤ log(#), the assumptions of Theorem 1.3(b)

are fulfilled for V = 1, and therefore there exist constants �̃ and � (depending on ^ and
U) such that with probability at least 1 − 2 exp(−2;), � = 1√

;
� fulfills the �1-quotient

property relative to the norm ‖ · ‖(
√

log(e #/;)) := max{‖ · ‖2,
√

log(e #/;)‖ · ‖∞} with
constant �̃ if # ≥ �̃;, and we call the corresponding event EQP-clipped.

Consider now on the event EQP-clipped ∩ ENSP, which occurs with probability at least
1 − 3 exp(−min{2, 21(U, ^)};), a vector H̃ ∈ R# such that �H̃ = E and

‖ H̃‖1A
−1/2
∗ ≤ �̃‖E‖(

√
log(4#/;)), (1.34)

which exists due to the �1-quotient property relative to the norm ‖ · ‖(
√

log(4#/;)). If
H ∈ R# is chosen such that H := (1 − [/‖E‖2)H̃, it holds that

‖�H − E‖2 =
�H̃ − E − �H̃ [

‖E‖2


2 =

[

‖E‖2
‖−�H̃‖2 = [.

Choose ( as an index set of A largest absolute coefficients of H̃. It is known [FR13, Chapter
4.3] that the �2-null space property (1.31) implies the �>-null space property for 1 ≤ > ≤

2 in the form
‖ H̃(‖> ≤

d

A1−1/>
‖ H̃(2 ‖> + gA

1/>−1/2‖�H̃‖2.

Together with Stechkin’s estimate (see, e.g., [FR13, Proposition 2.3]) this gives

‖ H̃‖> ≤ ‖ H̃(‖> + ‖ H̃(2 ‖> ≤
d

A1−1/>
‖ H̃(2 ‖1 + gA
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‖ H̃‖1 + gA
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≤
1 + d
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‖ H̃‖1 + gA
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√
log(4#/;)).

(1.35)
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Using (1.33) and A = 2̃2A∗ we obtain

‖F − Δ1,[(�F + E)‖>
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where we used (1.34) and (1.35) in the second inequality. Since A 7→ fA(F)1/A
1−1/>

is non-increasing, again we may replace A by a smaller value A′ < A = 2̃2A∗. This

concludes the proof of (1.17), as the constants can be defined as � = � ′, � = �′2̃
1
2−

1
>

2

and � = 2̃
1
>
−1

2 � ′
(
(d + 2)�̃ + 2̃ 1/2

2 g
)
.

2. Suppose now that 1 is as above, but additionally dominates a standard Gaussian random
variable 6 with constants 1 and _2 ≥ 1. As in the first statement, with probability at
least 1− exp(−21(U, ^);), � fulfills the �2-robust null space property (1.31) of order 2̃2A∗
with constants d = 0.9 and g > 0 relative to the �2-norm if ; ≥ log2U−1(#), defining
the event ENSP.

Conditional on ENSP, it follows from [BA18, Theorem II.22] that there exist constants
� > 1, � > 0 that depend only on ^ and U such that

‖F − Δ1,[(�F + E)‖> ≤
�

A1−1/>
fA(F)1 + A

1/>−1/2
∗

(
�[ + �(QA∗(�)1 + g)max{‖E‖2 − [, 0}

)
(1.36)

for all 1 ≤ > ≤ 2 and A ≤ 2̃2A∗, where A∗ = ;/log(e #/;) and

QA∗(�)1 := sup
E∈R; \{0}

min
C∈R# ,�C=E

‖C‖1
√
A∗‖E‖2

. (1.37)

Furthermore, we note that the assumptions on the random matrix � are such that
Theorem 1.4 can be applied for V = 1, which implies that there exist constants �̃ and
� (depending on the parameter _2 which quantifies the stochastic domination of the
Gaussian) such that with probability at least 1 − 2 exp(−2;), � = 1√

;
� fulfills the �1-

quotient property relative to the Euclidean norm ‖ · ‖2 with constant � if # ≥ �̃;. We
call the event on this �1-quotient property holds EQP-�2 . Recalling Definition 1.3.3, the
definition of the �1-quotient property, we note that in this case

QA∗(�)1 ≤ �.

Thus, combining this with (1.36), we conclude that on the event ENSP ∩ EQP-�2 , which
holds with probability at least 1−3 exp(−min{2, 21(U, ^)};), (1.18) is true for all A ≤ 2̃2A∗
if # ≥ �̃< and ; ≥ log2U−1(#) with the constant � := ��+ g. This concludes the proof.

�
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1.7 Outlook and Open Problems
In this chapter of the thesis, we studied the robustness of so-called noise-blind compressed
sensing settings. We showed that in fact, the guarantees that have been established in the
literature for measurement matrices whose entries are drawn independently from certain spe-
cific distributions or families of distribution like Gaussian and sub-Gaussian are generalizable
to the weakest known assumptions provably sufficient (that are known to be almost necessary)
to imply compressed sensing recovery guarantees in the noiseless case [ML17,DLR18]. These
noise-blind guarantees come in two different versions, depending on whether the entrywise
distributions exhibit a super-Gaussian behavior or not. The underlying key properties are so-
called �1-quotient properties, which are equivalent to certain geometric inclusions of random
polytopes spanned by the column vectors of the measurement matrix.

An interesting problem that remains open is whether statements such as Theorem 1.3 and
Theorem 1.4 can be also shown for structured random matrices, such as subsampled random
circulant matrices [Rom09], time-frequency structured random matrices [PRT13, KMR14] or
random partial Fourier matrices [CT06,HR17], because there are hardly any results present
in the literature for these measurement matrices of great relevance in applications. Our
techniques do not carry over to these matrices, as the columns of the measurement matrix are
not independent in these cases, which was an important ingredient in our proof strategy.

In [BA18], the authors derive results about noise-blind compressed sensing using mea-
surement matrices sampled from bounded orthonormal systems, which is a class of random
matrices that includes random partial Fourier matrices as a special case. The proof derives a
statement about an �1-quotient property relative to the Euclidean norm indirectly by using
lower bounds on the smallest singular value of the measurement matrix. This comes at a
price of additional logarithmic factors in a bound [BA18, Theorem IV.12] of the type (1.18).
A removal of these logarithmic factors or an analysis involving noise robustness relative to a
clipped �2-norm would be interesting, but is left to future work.

We note that there also exist approaches which modify the measurement matrix � if �
does not fulfill any �1-quotient property. By adding certain columns to �, it might be possible
to establish recovery guarantees for noise-blind �1-decoders which use that modified mea-
surement matrix [Woj12,HLSJ18]. One advantage of this modification is that the acquisition
process is not altered, as the modification just involves the decoder. However, the sparse re-
covery quality of the altered measurement matrix might be compromised by this due to worse
restricted isometry or null space properties. Therefore, finding optimal modifications is not
yet well-understood.

Finally, we leave it to a future investigation to generalize the conditions on the measure-
ment matrix available in the literature [SY10] for �>-quotient properties corresponding to
�>-quasinorms with 0 < > < 1. These are relevant for the noise robustness analysis of the
non-convex decoders

Δ>(G) = arg min
H∈R#

‖H‖
>
> subject to �H = G,

which exhibit some advantageous properties compared to convex decoders [Cha07,ZMW+17].
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Chapter 2

Tight Quadratic Bounds: Making Iteratively
Reweighted Least Squares Work For Low-Rank
Promoting Objectives

The entirety of this chapter is dedicated to the following basic problem: Assume there is
a matrix X0 ∈ R31×32 with 31 rows and 32 columns that is known to be of a low rank
rank(X0) � min(31, 32) =: 3. To put it differently, we assume that there are matrices
U ∈ R31×@ and V ∈ R32×@ with @ � 3 such that

X0 = UV∗.

However, this matrix is not provided directly, but just through underdetermined linear
measurements or observations, which means through its image

y = Φ(X0)

with respect to a linear operator Φ : R31×32 → R; with non-trivial null-space, i.e., with

; � 3132.

Is it possible to identify or recover X0 just from the knowledge of y and Φ and if yes, how?
This problem is usually called the low-rank matrix recovery problem [DR16].

This problem has gained considerable attention in the last few years, as it turns out
that low-rank models are ubiquitous and arise in many ways in physics, engineering, data
science and applied mathematics. In particular, they arise in areas as diverse as system
identification [LHV13,LV10], signal processing [AR15], quantum tomography [GLF+10,Gro11],
phase retrieval [CSV13, CESV13, GKK15], and machine learning [SRJ05]. An instance of this
problem of particular importance, e.g., in recommender systems [SRJ05, GNOT92, KBV09,
CR09], is the matrix completion problem, where the measurements correspond to entries of
the matrix to be recovered. In one form or the other, many problems in the mentioned fields
can be considered as instances of the low-rank matrix recovery problem.

There is a certain analogy to the compressed sensing problem detailed in Chapter 1, where
the goal was to identify sparse, high-dimensional vectors from underdetermined linear mea-
surements. As with the �0-minimization problem for the sparse vector recovery of Chapter 1,
we can formulate the low-rank matrix recovery problem in an optimization framework such
that

min
X∈R31×32

rank(X) subject to Φ(X) = y, (2.1)

a formulation that is also called affine rank minimization [RFP10].
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If thematrix -0 used to define (2.1) is diagonal, this problem reduces to the �0-minimization
problem, which is known to be NP-hard in general [Nat95]. However, within the last decade, a
large body of research has been dedicated to develop tractable algorithms that provably solve
(2.1) in many important cases. The nuclear norm minimization (NNM) approach [Faz02,CR09],
which solves a surrogate semidefinite program, is particularly well-understood. For NNM,
recovery guarantees have been shown for a number of measurements on the order of the
information theoretical lower bound @(31 + 32 − @), if @ denotes the rank of a 31 × 32-matrix
[RFP10,CR09]; i.e., for a number of measurements; ≥ d@(31+32−@)with some oversampling
constant d ≥ 1. Even though NNM is solvable in polynomial time, it can be computationally
very demanding if the problem dimensions are large, which is the case in many potential
applications. Another issue is that although the number of measurements necessary for
successful recovery by nuclear norm minimization is of optimal order, it is not optimal. More
precisely, it turns out that the oversampling factor d of nuclear norm minimization needs to
be much larger than the oversampling factor of some other, non-convex algorithmic approaches
[ZL16a,TW13].

These limitations of convex relaxation approaches have led to a rapidly growing line
of research discussing the advantages of non-convex optimization for the low-rank matrix
recovery problem [JMD10, TW13,HH09, JNS13,WYZ12, TW16, Van13,WCCL16a, TBS+16]. For
several of these non-convex algorithmic approaches, recovery guarantees comparable to those
of NNM have been derived [CLS15,TBS+16,ZL16a,SL16]. Their advantage is a higher empirical
recovery rate and an often more efficient implementation. While there are some results about
global convergence of first-order methods minimizing a non-convex objective [GLM16,BNS16]
so that a success of the methodmight not depend on a particular initialization, the assumptions
of these results are not always optimal, e.g., in the scaling of the numbers of measurements
; in the rank @ [GLM16, Theorem 5.3]. For survey articles on the recent progress on the
theoretical properties of many non-convex approaches, we refer to [CW18,CLC19]. We note
that there is currently no clear picture about which algorithm is best to solve low-rank matrix
recovery problems.

The material of this chapter is partially based on the paper [KS18], where a similar algo-
rithm for Schatten-> minimization was proposed and analyzed. This paper was jointly con-
ceived and written by the author of this dissertation and Juliane Sigl, who both contributed
equally to the paper. The results of the paper [KS18] also appeared in the Ph.D. dissertation
[Sig18], and a preliminary version of [KS18] was presented at the 12th International Confer-
ence on Sampling Theory and Applications in Tallinn, Estonia, in July 2017 [KS17]. Parts of
the analysis contained in this chapter, in particular Section 2.3.2 and Section 2.3.3, take a very
different view point than the paper [KS18] by providing a constructive approach to design
the weight operator. We note that Section 2.3.3 is based on discussions and joint work with
Felix Krahmer, Tomáš Masák and Claudio Verdun. Section 2.3.2 and Section 2.3.3 motivate the
definition of the algorithm MatrixIRLS, which has many similar properties as the harmonic
mean weight operator of [KS18], but the latter work used variational tools in its analysis,
in contrast to our constructive approach. The proof of the locally superlinear convergence
presented in Section 2.4.2 follows similar ideas as the on in [KS18], but covers also the case of
> = 0. The results of Section 2.5.3 and Section 2.6 have not been published before writing this
dissertation.

2.1 Introduction
The goal of this chapter is to improve solution strategies for matrix optimization problems
such as (2.1). We provide a new, improved approach based on a framework usually called

43



Iteratively Reweighted Least Squares (IRLS), which is a conceptually simple class of algorithms
that has been previously studied in many other contexts. We will argue why this approach
combines a few desirable properties, since it is

• data efficient in the sense that the required amount of inputs is close to the information
theoretic limit,

• scalable to large problems.

Our investigations will also provide provable algorithmic guarantees for our strategy and quan-
tify the local rate of convergence to global minimizers of (2.1) under certain assumptions on
the measurements.

In the following, we argue why these properties are desirable in the first place.

2.1.1 Data Efficiency

What is meant by data efficiency in the context of the problems we are interested in? In fact,
this concept is related to the uniqueness of the affine rank minimization problem (2.1), i.e.,
conditions when (2.1) has not more than one solution of rank @ = rank(-0).

Proposition 2.1.1 ([Van13,Lee13]). The set

M@ = {X ∈ R31×32 : rank(X) = @}

is a smooth submanifold of R31×32 of dimension @(31 + 32 − @).
If X = UΣV∗ is a singular value decomposition of the rank-@ matrix X ∈ R31×32 with

Σ = diag(f7(X))@7=) and matrices U ∈ R31×@ and V ∈ R32×@ with orthonormal columns, then the
tangent space of M@ at X is given by

)- (M@) = {UM1V∗ + UM∗2 +M3V∗ : M1 ∈ R
@×@,M2 ∈ R

32×@,M∗2V = 0,M3 ∈ R
31×@,M∗3U = 0}

= {UM̃∗1 + M̃2V∗ : M̃1 ∈ R
32×@, M̃2 ∈ R

31×@}.

The proof of this proposition uses tools from differential geometry which are beyond
the scope of this thesis. However, understanding its interplay with the linear operator Φ :
R31×32 → R;, which is determined by matrices A1, . . . ,A; ∈ R

31×32 such that

Φ(X)� = tr(A∗�X) for all � ∈ [;], (2.2)

of (2.1) is a key for obtaining necessary and sufficient conditions for the uniqueness of the
solution (2.1). In particular, it was shown in [ENP12] that if the A1, . . . ,A; are indepen-
dent Gaussian matrices and 31 = 32, (2.1) recovers a fixed rank-@ matrix X0 ∈ R31×32 with
probability 1 (“non-uniform recovery”) under the condition that

; ≥ @(31 + 32 − @) + 1,

and all rank-@ matrices (“uniform recovery”) under the condition that

; ≥ 2@(31 + 32 − 2@).

Using arguments from algebraic geometry, these identifiability conditions can be generalized
to operators Φ associated to matrices A1, . . . ,A; that are generic, i.e., for example drawn from
a continuous probability distribution [Xu18,CRWX18]. Furthermore, [CRWX18] showed that
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for generic measurement matrices A1, . . . ,A;, if

; < @(31 + 32 − @),

even a non-uniform recovery property for (2.1) cannot hold.
From an information theoretic point of view, the dimension

deg 5 = @(31 + 32 − @)

of M@ can be also seen as the number of degrees of freedom of an (31 × 32)-dimensional rank-@
matrix. In fact, the number deg 5 coincides [CR09] with the number of parameters used to
determine the singular values f1, . . . ,f@, and left and right singular vectors U ∈ R31×@ and
V ∈ R32×@ of a (31 × 32)-dimensional rank-@ matrix X = U diag(f7)@7=7V

∗: The number of free
parameters of the matrix U with orthonormal columns is (31−1)+(31−2)+ . . .+(32−(@−1)) =
31@ −

@(@+1)
2 , as can be seen from the normalization, i.e., each columns has at most 31 − 1

free parameters, and by successively imposing the orthogonality relations. By an analogous
argument we see that there are 32@−

@(@+1)
2 free parameters in a description of +, and therefore

@ + 31@ −
@(@ + 1)

2
+ 32@ −

@(@ + 1)
2

= @ + @(31 + 32) − @(@ + 1) = @(31 + 32 − @) = deg 5 .

These considerations suggest that if the rank @ of a matrix X0 is low such that @ �
min(31, 32), it is often possible to identify it using (2.1) if the dimension ; of the range space
of Φ fulfills

; ≈ deg 5 = @(31 + 32 − @).

As there is little hope to solve (2.1) directly in a computationally efficient manner, it
is of interest to develop algorithms which are possibly iterative, but which have similar data
efficiency properties as (2.1) in its ability to recover low-rank matrices, i.e., which are successful
already if ; is about as small as deg 5 .

To see why data efficiency is relevant in the the context of applications of our modelling,
we consider the recommender system setting where low-rank matrix modelling has been used
with quite some success.

For a company using online marketing of their products, an important question to consider
is how to guess what their potential and actual customersmight like, and to target personalized
products recommended by an algorithm to a specific customer based on what they know about
the customer, e.g., based on a user’s usage history of their website.

With the goal of improving their internally used algorithm, the company Netflix announced
a competition in 2006 [BL07]: They published an (anonymized) dataset of many ratings
ranging from one to five provided by the a large collection of users of their DVD rental service,
quantifying how much specific users liked certain movies they had watched. The idea of
the competition was to award $1,000,000 to any person or team that could improve the
predicitions of user preferences by at least 10% compared to the algorithm used at the time
by the company.

This competition about winning the Netflix Prize spurred a large research activity in the
emerging field of machine learning, culminating in involved algorithms that combined many
statistical models and algorithms tuned to the data, and a final conclusion of the competition
in 2009 by reaching the 10% improvement [Kor09].

However, one of the most influential ideas and contributing models to the winning solution
[Fun06,KBV09] was the idea to consider the user-movie datamatrix X ∈ R31×32 for 31 users and
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32 movies, whose (7, 8)-th entry X7 8 is given by the 7-th user’s rating of movie 8. Of course, this
matrix is in large parts unknown. While this matrix contains a lot of unknown values, it was
argued that, if all users’ movie preferences were known, i.e., the matrix contained no unknown
entries, the resulting matrix X0 would be (approximately) of low rank @ � 3 = min(31, 32)

[RFP10], as any given user could be modelled as a linear combination of just few typical model
users or preference types.

Based on this modelling, many variants of methods were proposed and successfully used
in the competition [Fun06,KBV09] which would be called non-convex optimization approaches
based on matrix factorization [CLC19] in the recent literature, optimizing a function � :
R31×@ ×R31×@ → R for some tuning parameter _ and some estimate of the rank @, defined for
example such that

�(U,V) := ‖Φ(UV∗) − y‖2� + _
(
‖U‖2� + ‖V‖

2
�

)
(2.3)

by an alternating minimization or (stochastic) gradient descent scheme, where Φ from (2.2)
is such that

Φ(X)� = X7� 8�

with (7�, 8�) ∈ [31] × [32] for � = 1, . . . ,;, and ; is the total number of given ratings in the
dataset. These schemes attempt, in fact, to solve (2.1), while using knowledge about the rank
@ of X.

Assuming that the low-rank model is reasonable, it can be said that for the purpose of
building a recommender system, it is important that an algorithm of choice of this type is
able to identify the best low-rank model compatible with the training data, based on the limited
training data of ; of user’s movie ratings that are available. This means that it will be helpful
if an algorithm returns a feasible point of (2.1) with a rank that this as low as possible, or, in
the formulation of (2.3), matrices U and V of a rank as low as possible, while still obtaining a
measurement error ‖Φ(UV∗) − y‖2� that is zero or as small as possible.

2.1.2 Amenability to Rigorous Analysis

Important steps towards the understanding of the low-rank matrix recovery problem were
achieved in [CR09,CT10,RFP10,Rec11,Che15], when it proved that in many cases, a number
of measurements

; ≈ �@� (2.4)

or
; ≈ �@� log2(�) (2.5)

where � = max(31, 32) and � is an absolute constant, suffices to reconstruct a rank-@ solution
X0 of (2.1) by the solving convex optimization formulation

min
X∈R31×32

‖X‖∗ subject to Φ(X) = y, (2.6)

where ‖X‖∗ = ‖X‖(1 is the so-called nuclear norm.
The nuclear norm is an instance of a class of quasi-norms that plays an important role in

this chapter. For > > 0, We call

‖X‖(> :=

(∑3

7=1 f
>

7
(X)

)1/>
, for > < ∞,

f1(X), for > = ∞
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the Schatten-> quasi-norm for the matrix X ∈ R31×32 .
The great advantage of the nuclear normminimization formulation (2.6) is that, unlike (2.1),

it is solvable in polynomial time complexity as it belongs to the class of convex optimization
algorithms [Ber99, BV04], since the the Schatten-> quasinorm is actually a norm for > ≥ 1,
and (2.6) corresponds to > = 1.

As (2.6) can be solved directly, and due to the guarantee that its solution corresponds
to the minimum-rank solution of (2.1), this gives us a certain level of reliance that even for
problem data we have not seen yet, the algorithm will work reliably, and furthermore, we
know that there cannot be a lower rank solution than the one returned by nuclear norm
minimization, if the conditions of the theorems of [CT10, RFP10, Rec11] are fulfilled. In
particular for more critical applications as quantum tomography [GLF+10, Gro11, BK10], this
reliability is important.

Similar assumptions, often stronger than (2.4) and (2.5) by logarithmic factors log(�),
powers of the rank @ or by the dependence on the condition number ^ of the matrix to be
recovered, have been shown to provably imply the convergence of non-convex optimization
methods, such as for various methods optimizing an objective such as (2.3), to low-rank
solutions, see for example the works [KMO10,CLS15,GLM16, SL16,MWCC19] and the survey
[CLC19].

On the other hand, we note that for approximate message passing algorithms [PSC14a,
PSC14b, KKM+16] or methods motivated from a Bayesian framework [BLMK12, XW15], very
good low-rank recovery properties have been reported—in some sense even better ones. For
these methods, rigorous sample complexity bounds as in the works mentioned above have not
been proven, and, perhaps consequently, these methods have not gained the attention they
could have if it was just for their empirical performance.

This could be regarded as an extra-mathematical motivation for actually proving algorith-
mic guarantees. Therefore, one important focus of this chapter will also be the establishment
of theoretical guarantees of the proposed algorithm.

2.1.3 Scalability

In many applications of the low-rank recovery setting, the problem dimensions are quite
large: The Netflix prize competition data set, for example, contains data about 31 ≈ 480000
users and 32 ≈ 17000 with ; ≈ 108 observations in the training dataset [ZWSP08]. In this
case, working with full or dense matrices X ∈ R31×32 , storing 3132 variables in memory, is
computationally almost prohibitive.

The nuclear norm formulation of (2.6) has been well-studied and well-understood, as
we mentioned above. However, solvers need to work with the full matrices in memory,
and furthermore, while (2.6) being provably equivalent to a semidefinite program [FHB03],
standard semidefinite program solvers as SDPT3 [TTT99] of cubically in the problem size
of 3132. To mitigate this problem, a lot of work has been done to make solvers of (2.6)
somehow more scalable, for example by using first order optimization methods involving soft
thresholding operators [CCS10,MHT10,YK15]. Most of these first-order methods are, however,
rather designed to solve the unconstrained variant of (2.6)

min
X∈R31×32

‖Φ(X) − y‖22 + _‖X‖∗

for some _ > 0, which, while being also of large interest, is not quite the same. Other
approaches [CC18] for solving nuclear-norm type problems are based on conditional gradients
[RSW15] or the Frank-Wolfe method [FGM17].
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Not only, but also because of the scalability problems of convex optimization approaches
as the nuclear norm formulation, in large-scale applications, methods based on matrix fac-
torization as described above (2.3) have been more popular [KBV09], due to their memory
requirement of $(@�) and also lower demands in their time complexity [CC18].

Thismotivates the derivation of amethod that has comparable space and time requirements
as the matrix factorization approach, rather than working with full (31 × 32)-dimensional
matrices.

2.1.4 Outline

We give a brief overview of the structure of this chapter. In Section 2.2, we introduce low-rank
promoting surrogate objectives of the rank function, laying out the theory of the functions to be
optimized by our framework. In Section 2.3, we introduce the concept of Iteratively Reweighted
Least Squares (IRLS) algorithms, discussing prior literature and deriving our algorithmic
approach, which we call MatrixIRLS. This section contains our first main theoretical result
Theorem 2.4, which is the basis for an interpretation of IRLS in terms of an objective function.

In Section 2.4, we show and state results about the convergence behavior of MatrixIRLS,
concluding the section with the second main result of this chapter, Theorem 2.7, characterizing
fast local convergence of MatrixIRLS.

While the conditions of Theorem 2.7 are stated in terms of an abstract assumption, we
verify this assumption for various measurement models in Section 2.5, including sub-Gaussian
operators, Gaussian rank-one measurements and entry-wise measurements as present for the
matrix completion problem.

Section 2.6 contains computational considerations, elaborating on the scalability of our
method, and Section 2.7 contains numerical experiments with artificial data. Section 2.8
contains proofs that have beed added for completeness, corresponding to properties that have
been know already for previous IRLS algorithms for low-rank matrix recovery.

Finally, in Section 2.9, we discuss and summarize our contributions, and provide an outlook
to remaining open questions in Section 2.10.

2.2 Optimization of Surrogate Objectives Promoting Low-Rank Solutions
In this section, we pave the ground for MatrixIRLS, a computational approach for the affine
rank minimization problem

min
X∈R31×32

rank(X) subject to Φ(X) = y,

of (2.1) which is the main focus of this chapter.
While (2.1) is the problem we would like to solve, its objective rank(X) is particularly

difficult to handle from an optimization point of view due to two properties: its non-convexity
and its non-smoothness. As it was discussed in the introduction, replacing rank(X) by the
nuclear norm ‖X‖∗ =

∑3
7=1 f7(X), which is the norm associated to the convex hull of the set

of (Frobenius norm-normalized) rank-one matrices [CRPW12], gives rise to an optimization
problem whose minimizer solves (2.1) in many cases, opening the door for the mature theory
and methods for convex optimization to deal with the non-smoothness of ‖X‖∗.

However, putting even its computational challenges aside for the moment, it can be seen
that its data efficiency properties are not optimal, i.e., the nuclear norm minimizer under the
affine constraint might not coincide with the (unique) minimizer X0 of (2.1) if the dimension
; of the range space of Φ is just slightly larger than the number of the degrees of freedom of
X0 (see also Section 2.1.1) [RFP10, p. 497].
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Already in the beginning of the 2000s when the minimization of the nuclear norm was
proposed as a computationally tractable “heuristic” [Faz02] promoting low-rank solutions of
linearmatrix equations, theminimization of the logarithm of the determinant (log-det) objective

min
X∈R3×3

log det(X + nI) subject to Φ(X) = y,X � 0, (2.7)

was proposed, where n > 0 is a small regularization parameter for low-rank matrix recovery
problems for which the ground truth matrix X0 ∈ R31×32 is additionally known to be square
(i.e., 31 = 32 = 3) and positive semidefinite [FHB03]. The rationale behind log det(X + nI)
is that due to its concavity and just logarithmic growth, its minimizers might be closer to the
minimizers of a rank objective than the minimizers of the convex nuclear norm ‖X‖∗ [RFP10],
which coincides with the trace of X for positive semidefinite matrices since

‖X‖∗ =
3∑
7=1

f7(X) =
3∑
7=1

_7(X) = tr(X).

Iterative algorithms for the solution of (2.7) had been proposed early [Faz02,FHB03], and
can be based on the following observation: Since �n(X) = log det(X + nI) is concave in X and
smooth with derivative ∇�n(X) = (X+ nI)−1, for any positive semidefinite X(9) ∈ R3×3 , we have
that

log det(X + nI) ≤ �n(X(9)) + 〈∇�n(X(9)),X − X(9)〉

= log det(X(9) + nI) + tr((X(9) + nI)−1X) − tr((X(9) + nI)−1X(9)),

which motivates an iterative algorithm of a sequence of weighted trace minimizations such
that

X(9+1) = arg min
X�0,Φ(X)=y

tr((X(9) + nI)−1X) for 9 ≥ 0. (2.8)

This approach has been also more recently proposed and analyzed for the phase retrieval
problem [CESV13], which can be formulated as a rank-1 matrix recovery problem on the cone
of positive semidefinite matrices.

Remark 2.2.1. We note that well-known positive semidefinite embedding of general rectangular
matrices X ∈ R31×32 , an analogous approach can be derived for the general affine rank minimiza-
tion problem (2.1) without positive semidefinite constraint [FHB03]. In particular, as for (2.7),
iterative strategies can be derived from

min
X∈R31×32 ,Z1∈R

31×31 ,Z2∈R
32×32

log det(diag(Z1, Z2) + nI) subject to Φ(X) = y,
(
Z1 X
X∗ Z2

)
� 0,

since diag(Z1, Z2) is positive semidefinite if the constraint
(
Z1 X
X∗ Z2

)
� 0 is fulfilled. One com-

putational disadvantage of this formulation we mention already here is that by the semidefinite
lifting, the optimization variable has become an ((31+32)×(31+32))matrix instead of a (31×32)

matrix, which might be wasteful.

Despite the good empirical behavior of simple iterative procedures as (2.8) for solving
(2.7) [FHB03], there are many theoretical questions related to non-convex rank surrogates
as in (2.7) which are poorly understood, and practical issues deterring a wide popularity of
corresponding optimization approaches to large-scale applications of low-rankmatrix recovery.
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2.2.1 Connections Between Convex and Non-Convex Optimization Programs and Affine
Rank Minimization

In this section, we review theory that characterizes when the affine rank minimization problem
(2.1) can be solved exactly by convex or non-convex reformulations such as nuclear norm
minimization (2.6) or the minimization of a logarithm of a determinant (2.7).

In a certain analogy to the (robust) null space properties (see Definition 1.4.5) of mea-
surement matrices � which imply that equality-constrained �1-minimization (1.2) recovers
sparse vectors, null space properties can also be formulated for measurement operators
Φ : R31×32 → R; defining low-rank matrix recovery problems, for example as in the fol-
lowing definition.

Definition 2.2.1 ([RXH11,MBS14, Fou18]). Let 3 = min(31, 32) and 5 : [0,∞) → [0,∞) be a
function. We say that Φ : R31×32 → R; fulfills the rank null space property with respect 5 of
order @ if

@∑
7=1

5 (f7(H)) <
3∑

7=@+1

5 (f7(H)) for all H ∈ ker(Φ) \ {0},

where f(H) = (f1(H), . . . ,f3(H)) ∈ R3 is the vector of singular values of H ordered in a non-
increasing way.

These null space properties provide necessary and sufficient conditions for the equivalence
of the optimization problems

min
X∈R31×32

�(X) subject to Φ(X) = y, (2.9)

where f(X) ∈ R3 is the vector of ordered singular values of X and � the spectral function such
that �(X) =

∑3
7=1 5 (f7(X)), with affine rank minimization (2.1). This connection is formalized

in the following theorem, whose proof we provide as it has been omitted in [Fou18]. It
generalizes the proof of [FR13, Theorem 4.40], which covers the case of 5 being the identity
map.

Theorem 2.1 ([Fou18, Theorem 2]). Let 5 : [0,∞) → [0,∞) be a concave function satisfying
5 (0) = 0. Given a linear operator Φ : R31×32 → R;, every matrix - ∈ R31×32 of rank at most
@ fulfilling y = Φ(X) is the unique solution of (2.9) if and only if Φ fulfills the rank null space
property with respect to 5 of order @.

Proof. We first assume that Φ is such that every X′ ∈ R31×32 of rank at most @ is the unique
solution of (2.9) with y = Φ(X′). Consider a matrix H ∈ ker(Φ) \ {0} and its singular value
decomposition

H =
(
U U⊥

) (
diag(f1(H), . . . ,f@(H)) 0

0 dg(f@+1(H), . . . ,f3(H))

) (
V∗

V∗⊥

)
,

where U ∈ R31×@,U⊥ ∈ R31×(31−@),V ∈ R32×@ and V⊥ ∈ R32×(32−@) are matrices with or-
thonormal columns and U∗U⊥ = 0, V∗V⊥ = 0. Then H1 = U diag(f1(H), . . . ,f@(H))V∗ and
H2 = U⊥ dg(f@+1(H), . . . ,f3(H))V∗⊥ fulfill H = H1 + H2 and as H ∈ ker(Φ), Φ(H1) = Φ(−H2).
Since H1 is of rank at most @ by construction, using the assumption on the unique minimizer
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of (2.9) with y = Φ(H1) implies that

@∑
7=1

5 (f7(H)) = �(f(H1)) < �(f(−H2)) = �(f(H2)) =

3∑
7=@+1

5 (f7(H)).

Conversely, assume that Φ is such that for all H ∈ ker(Φ) \ {0},
∑@
7=1 5 (f7(H)) <∑3

7=@+1 5 (f7(H)) if f(H) = (f1(H), . . . ,f3(H)) are the ordered singular values of H. Con-
sider a matrix X′ ∈ R31×32 of rank at most @, and let X be an arbitrary matrix X , X′ such that
Φ(X) = Φ(X′). Due to the concave Mirksy inequality [Fou18, Theorem 1], which states that for
any concave function 5 : [0,∞) → [0,∞) with 5 (0) = 0,

3∑
7=1

| 5 (f7(X)) − 5 (f7(Y))| ≤
3∑
7=1

5 (f7(X − Y)) for all X,Y ∈ R31×32 , (2.10)

and which is a generalization of a classical inequality in matrix analysis due to Mirksy [Mir60],
[SS92, Theorem 4.11], we have that the singular values of H = X′ − X, X′ and X fulfill

�(X) = �(X′ − H) =
3∑
7=1

5 (f7(X′ − H)) ≥
3∑
7=1

| 5 (f7(X′)) − 5 (f7(H))| .

Since 5 (f7(X′)) = f7(X′) = for 7 > @, we conclude that

�(X) ≥
@∑
7=1

{ 5 (f7(X′)) − 5 (f7(H))} +
3∑

7=@+1

5 (f7(H)) >
@∑
7=1

5 (f7(X′)) + 0 = �(X′),

where we used the rank null space property assumption in the last inequality. This concludes
the proof as X′ is therefore the unique minimizer of (2.9). �

From Theorem 2.1, we can see that the rank null space property with respect to the function
5 = id characterizes the success of nuclear norm minimization. This property with respect to
the function 5 = id of order @ holds with high probability for many random linear operators
Φ : R31×32 → R; if ; is such that

; ≥ �@(31 + 32), (2.11)

where � ≥ 1 is a dimensionless constant, example for random operators Φ whose matrix
representation consists of i.i.d. standard Gaussians [CP11,RXH11] or which are associated to
Gaussian rank-one measurements [KKRT16]. We note that (2.11) is optimal, at least up to a
constant factor, as can be seen in Section 2.1.1.

The next statement tells us that from a theoretical point of view, optimization problems
with spectral objectives � associated to concave functions 5 tend to have better low-rank
recovery properties than the those with convex objectives such as the nuclear norm. It is a
generalization of [Fou18, Corollary 3], see also [Aud14].

Lemma 2.2.1. Let @ ∈ N, let 51, 6 : [0,∞) → [0,∞) be functions such that 51 is monotonously
increasing and 6 is concave with 6(0) = 0. Then the success of rank-@ recovery via (2.9) where the
associated function of � is 51, implies the success of rank-@ recovery via (2.9) where the associated
function of � is 52 := 6 ◦ 51.

Proof. By assumption it holds the linear operator Φ : R31×32 → R; is such that every matrix
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X′ ∈ R31×32 of rank at most @ is the unique solution of

min
X∈R31×32

3∑
7=1

51(f7(X)) subject to Φ(X) = y

with y = Φ(X′). By Theorem 2.1, this implies that Φ fulfills the rank null space property with
respect to 51 of order @, i.e.,

@∑
7=1

51(f7(H)) <
3∑

7=@+1

51(f7(H)) for all H ∈ ker(Φ) \ {0},

and by this very theorem, it remains to show that

@∑
7=1

52(f7(H)) <
3∑

7=@+1

52(f7(H)) for all H ∈ ker(Φ) \ {0}

for 52 with 52(F) = 6( 51(F)) for any F ≥ 0, which is equivalent to

@∑
7=1

1∑3
8=@+1 6( 51(f8(H)))/6( 51(f7(H)))

< 1 for all H ∈ ker(Φ) \ {0}. (2.12)

Supposing that
6( 51(f8( 5 �)))

6( 51(f7(H)))
≥
51(f8(H))
51(f7(H))

(2.13)

for all 7 ∈ [@] and 8 ∈ {@ + 1, . . . , 3} if H ∈ ker(Φ) \ {0}, the conclusion of the lemma follows,
as

@∑
7=1

1∑3
8=@+1 6( 51(f8(H)))/6( 51(f7(H)))

≤

@∑
7=1

1∑3
8=@+1 51(f8(H)))/ 51(f7(H)))

in this case and therefore (2.12) is implied by the rank null space property with respect to 51
of order @.

It remains to show (2.13). For this, we note that for any H ∈ ker(Φ) \ {0}, f8(H) ≤ f7(H) if
7 ∈ [@] and 8 ∈ {@ + 1, . . . , 3}, and furthermore 51(f8(H)) ≤ 51(f7(H)) due to the monotonicity
of 51. By the concavity of 6, as 51(f8(H) = (1 − _) · 0 + _ · 51(f7(H)) if _ = 51(f8(H))/ 51(f7(H)),
it follows that

6( 51(f8(H))) ≥ (1 − _) · 6(0) + _ · 6( 51(f7(H))) = _ · 6( 51(f7(H))) =
51(f8(H))6( 51(f7(H)))

51(f7(H))
,

since 6(0) = 0, which concludes the proof. �

From Lemma 2.2.1, we can infer that n-regularized Schatten-> quasinorm minimization
has stronger low-rank recovery properties than nuclear norm minimization if 0 < > < 1,
and that a n-regularized log-det minimization has stronger low-rank recovery properties than
n-regularized Schatten-> quasinorm minimization for any 0 < > ≤ 1.

Corollary 2.2.1. Let 5>,n : [0,∞) → [0,∞) be the function defined such that 5>,n(F) = (F+n)>−n>

for n > 0, 0 < > ≤ 1, and 50,n : [0,∞) → [0,∞) be such that 50,n(F) = log(F + n) − log(n) for
n > 0. Then, the following statements hold.
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1. If a linear operator Φ : R31×32 → R; is such that for all matrices X′ ∈ R31×32 of rank at
most @ and 5 G = Φ(X′), the unique minimizer of the nuclear norm minimization problem

min
X∈R31×32

‖X‖∗ subject to Φ(X) = y (2.14)

coincides with X′, then the minimizers of the optimization problems

min
X∈R31×32

3∑
7=1

5>,n(f7(X)) subject to Φ(X) = y (2.15)

are unique and coincide with X′, for all > ∈ [0, 1) and all n > 0.

2. Let n1 > n2 > 0 and 0 < > < 1 be fixed. If a linear operator Φ : R31×32 → R; is such that
for all matrices X′ ∈ R31×32 of rank at most @ and y = Φ(X′), the unique minimizer of the
n1-regularized Schatten-> minimization problem

min
X∈R31×32

3∑
7=1

(f7(X) + n1)
> subject to Φ(X) = y

coincides with X′, then the minimizer of the of the n2-regularized Schatten->minimization
problem

min
X∈R31×32

3∑
7=1

(f7(X) + n2)
> subject to Φ(X) = y

is unique and coincides with X′. Furthermore, this is not true if 0 < n1 < n2.

3. Let n1 > n2 > 0. If a linear operator Φ : R31×32 → R; is such that for all matrices
X′ ∈ R31×32 of rank at most @ and y = Φ(X′), the unique minimizer of the n1-regularized
log-det minimization problem

min
X∈R31×32

3∑
7=1

log(f7(X) + n1) subject to Φ(X) = y

coincides with X′, then the minimizer of the of the n2-regularized log-det minimization
problem

min
X∈R31×32

3∑
7=1

log(f7(X) + n2) subject to Φ(X) = y

is unique and coincides with X′. Furthermore, this is not true if 0 < n1 < n2.

4. Let n > 0 and 0 ≤ > < ? ≤ 1. If a linear operator Φ : R31×32 → R; is such that for all
matrices X′ ∈ R31×32 of rank at most @ and y = Φ(X′), the unique minimizer of

min
X∈R31×32

3∑
7=1

5?,n(f7(X)) subject to Φ(X) = y

coincides with X′, then this also holds for the optimization problem (2.15).

Proof. 1. In view of Lemma 2.2.1, we can define 51(F) := F and 6(F) := 52(F) = (F+n)
>−n>.

6 : [0,∞) → [0,∞) fulfills then 6(0) = 0, is twice differentiable on its domain with
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6′′(F) = >(> − 1)(F + n)>−2. As a differentiable function with non-positive second
derivative, 6 is concave for > < 1, and applying Lemma 2.2.1 implies the statement.

2. Let n1 > n2 > 0. Since adding and subtracting constants n>1 and n
>

2 does not change
the minimizer of an objective function, we can define 51(F) := (F + n1)

> − n> and
52(F) := (F + n2)

> − n>. Then we have 6( 51(F)) = 52(F) if we define 6 : [0,∞) → [0,∞)
such that

6(G) :=
[
(G + n

>

1)
1/> − n1 + n2

] >
− n

>

2 ,

and it holds that 6(0) = 0. Since 6 is furthermore twice differentiable with

6′(G) =
(G + n

>

1)
1/>−1(

(G + n
>

1)
1/> + n2 − n1

)1−>

and

6′′(G) =

(
1
>
− 1

) (
(G + n

>

1)
1/>−2(

(G + n
>

1)
1/> + n2 − n1

)1−> −
(G + n

>

1)
2/>−2(

(G + n
>

1)
1/> + n2 − n1

)2−>

)
,

which is non-positive on the domain and thus, 6 is concave. The result follows from
Lemma 2.2.1.

3. This follows from the same argument as in 2., defining the function 6 : [0,∞) → [0,∞)
such that

6(G) := log (exp(G + n1) − n1 + n2) − log(n2).

4. This follows from defining 51(F) := (F + n)? − n?, 52(F) := (F + n)> − n> and 6(G) :=
(G + n?)>/? − n>, and from applying Lemma 2.2.1 along the same lines.

�

Disregarding the potential intractability related to the minimization of the non-convex
functions

∑3
7=1 5>,n(f7(X)) for > < 1 for the moment, we summarize the conclusions that can

be drawn from Corollary 2.2.1:

• Minimizing non-convex n-regularized Schatten-> quasinorms related to > < 1 recovers
low-rank solutions to underdetermined linear systems always when nuclear norm min-
imization (2.14) recovers the low-rank solution. There might be cases in which nuclear
norm minimization does not recover the low-rank solution, but n-regularized Schatten->
quasinorm does.

• If n2 < n1, it can be seen that n2-regularized Schatten-> quasinormminimization recovers
low-rank solutions in potentially more cases than n1-regularized Schatten-> quasinorm
minimization, and an analogue statement is true for n2- and n1-regularized log-det
minimization.

• For fixed regularization parameter n > 0, n-regularized logdet minimization

min
X∈R31×32

3∑
7=1

log(f7(X) + n) subject to Φ(X) = y (2.16)

recovers low-rank solutions in potentially more cases than n-regularized Schatten-> quasi-
norm minimization for any 0 < > < 1, or than nuclear norm minimization.
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2.2.2 Issues and Open Questions

The discussion of Section 2.2.1 suggests that minimizing non-convex objectives such as (2.15)
or (2.16) under the linear constraint could be promising, as solving these problems will return
us the actual solution of (2.1) in many cases, while the functions being now at least continuous,
unlike the rank funciton rank(X).

However, due to their non-convexity, (2.15) or (2.16) do not possess the property of convex
optimization problems that local minima are actually global, which means that algorithms
such as variants of gradient descent, which converge in general to (first order) stationary
points [Ber99], do not necessarily solve the problem, but might find non-global minimizers or
saddle points instead of global minimizers.

One important class of algorithms that has been proposed to solve these type of prob-
lems has been mentioned at the beginning of this section: Reweighted algorithms such as
(2.8) [Faz02, FHB03] which–in the general case of rectangular matrices– boil often down to
reweighted nuclear norm algorithms [MF10b].

For these methods, excellent empirical results have been reported in the literature [LTYL15,
YM18, GZZF14, GXM+17], but results about conditions for convergence to a low-rank matrix
have not been obtained. The situation is somewhat comparable to what is known about (re-
)weighted �1-minimization methods for sparse recovery [CWB08,WN10,ZL12], which achieve
good empirical results, but which have not been understood completely on a theoretical level.

A major issue of reweighted nuclear normmethods is that from a computational viewpoint,
at each (outer) iteration, a problem similar to nuclear norm minimization (2.6) needs to be
solved, which results in the scalability issues described above.

Lastly, the question of the choice of the n-smoothing parameter is an issue, as it is not clear
how to choose it and there is little theory supporting any specific rule. For a discussion of
smoothing parameters in the sparse recovery setting, we refer to [WN10, Section V].

As a summary, we conclude that while the modelling with non-convex rank objectives
appears promising based on empirical results obtained for a fewmethods, many open questions
remain, which is probably why they have beenmainly ignored by the most influential literature
in the field [DR16,CLC19].

2.3 Iteratively Reweighted Least Squares for Rank Surrogates
In this section of the thesis, we discuss a specific class of optimization approaches to minimize
rank surrogate objectives as (2.9), (2.7), (2.6) under linear constraints.

These approaches belong to the algorithmic framework of Iteratively Reweighted Least
Squares (IRLS), a framework which goes back to the 1930s [Wei37].

The basic strategy of IRLS is to mimic the minimization of an objective � (a spectral
function � as in (2.9)) by solving a sequence of weighted least squares problems.

In particular, for some n > 0, assume that �n : R31×32 → R is a continuously differentiable
function that can be considered as a smoothing of an objective � to minimized as in (2.9),

min
X∈R31×32

�(X) subject to Φ(X) = Y.

The idea of Iteratively Reweighted Least Squares now consists of an iterative algorithm the
performs the following three main conceptual steps in each iteration 9:

1. Define tight quadratic upper bound: Given the current iterate X(9) and the smoothing
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parameter n9 > 0, we define a quadratic function &n9(·|X
(9)) such that

&n9(X|X
(9)) = �n9(X

(9)) + 〈∇�n9(X
(9)),X − X(9)〉 +

1
2
〈X − X(9),,(9)(X − X(9))〉 (2.17)

with the so-called weight matrix (or weight operator),(9) : R31×32 → R31×32 fulfilling

∇�n9(X
(9)) =,(9)(X(9)) (2.18)

and which is a global upper bound or global majorizer of �n9 such that

&n9(X|X
(9)) ≥ �n9(X) for any X ∈ C31×32 . (2.19)

By construction, &n9 fulfills further

&n9(X
(9) |X(9)) = �n9(X

(9)). (2.20)

2. Solve weighted least squares problem: The new iterate X(9) is defined as

X(9+1) = arg min
X:Φ(X)=Y

〈X,,(9)(X)〉, (2.21)

which is actually a minimizer of &n9(·|X
(9)) under the linear data constraint described by

the linear operator Φ and data vector G ∈ CΩ from (2.9). This is due to property (2.20),
as therefore

&n9(X|X
(9)) = �n9(X

(9)) +
1
2

(
〈X,,(9)(X)〉 − 〈X(9),,(9)(X(9))〉

)
for any X ∈ C31×32 .

It is well-known (see [NW06, Chapter 16.1]) that the solution of (2.21) is given explicitly
by the solution of a linear system, as the weight operator ,(9) is always chosen to be
positive definite.

It is clear from (2.19) and (2.20) that �n9(X
(9+1)) ≤ �n9(X

(9)), i.e., we obtain a decrease in
the objective �n9 by the calculation of the new iterate X(9+1).

3. Update smoothing: The smoothing parameter n9 controls both the steepness of the
optimization landscape of �n9(·) and the conditioning of the system matrix of the linear
system to be solved in (2.21). Therefore its choice plays an important role in this
framework.

Typically, a non-decreasing rule for n9+1 is chosen. Precise rules will be discussed later
in this chapter.

While the focus of this chapter is the application of the IRLS framework to the affine
rank minimization problem where � is a low-rank promoting spectral function with matrix-
valued optimization variable X , IRLS can be used for a range of quite different problems. In
Section 2.3.1, we provide an overview of the most relevant literature about IRLS methods, also
discussing some prior workwhere IRLS has been already used for low-rankmatrix optimization
problems.

By establishing connections to the second-order derivative structure of low-rank promoting
spectral functions, we discuss in Section 2.3.2 choices of quadratic bounds &n that are much
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tighter than the ones proposed previously in the literature. In Section 2.3.1, we show that the
proposed choice of quadratic functions &n, which a priori majorizes the smoothed spectral
function �n just locally, is indeed a global majorizer of �n. This corresponds to the first main
result of the chapter.

Based on this, we formulate an improved class of IRLS algorithms for Schatten-> quasi-
norm minimization and for logdet-minimization in Section 2.3.4, which we call MatrixIRLS.

2.3.1 Existing Approaches

Possibly the very first instance of a method that contains the main idea of IRLS was proposed
by E. Weiszfeld [Wei37,WP09] in 1937 for the Fermat-Weber problem of finding a vector x̂ ∈ R3

that minimizes the sum of (weighted) Euclidean distances to the vectors a1, . . . , a; ∈ R3 ,

x̂ = min
x∈R3

;∑
7=1

l7‖x − a7‖2 (2.22)

with weights l1, . . . ,l; > 0. Unlike the IRLS framework above, Weiszfeld’s algorithm does
not involve an objective with updated smoothing – for convex objectives, the smoothing is
less crucial than for non-convex objectives. A modern exposition including many historical
remarks can be found in [BS15]. We note that in statistics, the objective of (2.22) (with l7 = 1
for any 7 ∈ [;]) is called spatial median [DM87] or !1-median [VZ00] of the data points
a1, . . . , a; ∈ R;.

The name Iteratively Reweighted Least Squares comes from regression problems: While in
classical linear regression the regression coefficients x1, . . . , x< of a linear model with explana-
tory variables in the columns of an (overdetermined) matrix A ∈ R;×< with ; > < and
dependent variables y1, . . . , y; are calculated by solving the least squares problem

min
x∈R<
‖Ax − y‖22 , (2.23)

regression estimates that are more robust to outliers from the statistical model can be obtained
by solving an �>-regression problem [Nyq83] for 1 ≤ > ≤ 2 such as

min
x∈R<
‖Ax − y‖>> . (2.24)

Unlike (2.23), its solution cannot be obtained by solving just a linear system if > < 2, but
a simple computational strategy [Sch73,MS74, BT74, HW77] with remarkable properties to
obtain the solution of �>-regression consists of iterating

x(9+1) = arg min
x∈R<

;∑
7=1

E
(9)

7
((Ax)7 − y7)2 ,

E
(9+1)
7

=

���(Ax(9+1))7 − y7
���>−2

for any 7 ∈ [;].

(2.25)

Osborne [Osb85, Chapter 5.4] showed that this IRLS algorithm is locally convergent to the
solution of (2.24) with a linear rate for 1 ≤ > < 31. �>-regression problems are of interested
also beyond the classical statistical context, e.g., in semi-supervised learning using graph >-
Laplacians [BH09,EACR+16], also for > > 2. In approximation theory, similar algorithms for
!∞- and !>-norm approximation with orthogonal polynomials had already been proposed in

1For > = 1, the additional assumption that the solution of (2.24) is unique is needed.
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the 1960s [Law61,RU68]. A historical account of some of the history of IRLS methods in the
approximation theory community can be found in [Wat01].

In the image processing community, the idea of IRLS is usually known under the name of
half-quadratic minimization [AV97,NN05], interpreting the procedure as an alternating mini-
mization of a variational functional that is quadratic in one of its two variables. The first papers
to introduce this idea to obtain efficient algorithms for minimizing total variation [ROF92] type
of regularizations are [GR92,GY95]. In [ODBP15], IRLS algorithms are considered as a part of
a general framework of iteratively reweighted algorithms to minimize non-convex objectives
for applications in computer vision.

The IRLS framework was formulated and extended to general convex and coercive func-
tionals defined on a convex domain in [BDMS09], allowing for a general class of continuously
differentiable smoothing functions �n and respective quadratic approximations &n. In [Bec15],
asymptotic sublinear rate of convergence to the minimizer of a convex functional � was shown
for an IRLS scheme corresponding to a fixed smoothing parameter n.

In Chapter 1, the problem of finding sparse solutions of underdetermined linear systems
with system matrices A ∈ R;×<, ; � <, and measurement vector y ∈ R;, was already
intensively presented and studied. An IRLS algorithm for the log-sum objective, the vector
analogue of the log-det objective from (2.7), and for �>-minimization

min
�x=y
‖x‖>> (2.26)

for 0 < > ≤ 1 has been proposed in [GR97, RK99] under the name FOCUSS. An additional
challenge compared to the problems tackled by the IRLS algorithms above is here the potential,
severe non-convexity of the objective, as in (2.26) for > < 1. This renders the convergence
to non-global, local minima that are far from the optimal function value to be an issue
[GR97,WN10].

To mitigate this, IRLS algorithms with smoothing strategies for (2.26) were proposed in
[CY08, DDFG10,WN10, Vor12, VD17], and a non-trivial theoretical analysis of the algorithm’s
convergence behavior was provided in [DDFG10]. In particular, it was shown that, under the
assumption that � fulfills an �>-null space property [FR13, Chapter 4] and that there is a sparse
solution x0 compatible with the measurements, the IRLS strategy of [DDFG10]

• converges globally to the sparse solution (convex case of > = 1), and that

• for any 0 < > < 1, the corresponding IRLS strategy converges to the sparse solution if
the iterations begin with a vector sufficient close to x0.

• Furthermore, a local convergence analysis showed locally linear convergence for > = 1
and, interestingly, locally superlinear convergence with a rate of 2 − > for 0 < > < 1.

A result about a local rate of convergence of order 2 − > can be already found also for
FOCUSS [GR97, RK99], which, unlike the IRLS of [DDFG10], does not use any smoothing of
the objective. The result even holds for the log-sum case, which can be seen as the limit case
> → 0 in a certain sense, where a quadratic local convergence rate is available. However,
FOCUSS has worse sparse recovery properties than the smoothed IRLS variants [CY08], and
unlike the local convergence analysis of [DDFG10], [GR97, Theorem 3] is of asymptotic nature.

The works most related to this chapter of the thesis are the papers [MF10a,MF12,FRW11],
where Iteratively Reweighted Least Squares algorithms for the low-rank recovery problem
(2.1) were proposed and analyzed. In [FRW11], an algorithm called IRLS-M was conceived to
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minimize the smoothed nuclear norm

�n(X) =
31∑
7=1

51,n(f7(X)) (2.27)

with

51,n(f7(X)) =
f7(X), if f7(X) > n,

1
2

(
f2
7
(X)
n
+ n

)
, if f7(X) ≤ n,

of a matrix X ∈ R31×32 . This is done by using quadratic bounds &n9(·|X
(9)) as defined in (2.17)

corresponding to the weight operator,(9) defined by

,(9)(X) = (X(9)X(9)∗)−1/2
n9 X, (2.28)

where (X(9)X(9)∗)n9 is the matrix resulting from replacing its singular values
(
f2
7
(X(9))

)3
7=1 by(

max(n2
9
,f2

7
(X(9))

)3
7=1. Furthermore, the smoothing n9 is updated according to the rule that

for some 2 > 0,
n9+1 = max

(
n9, 2f@+1(X(9))

)
, (2.29)

for any iteration 9 ∈ N, where @ is a guess of the rank of thematrix -0 of lowest rank compatible
with the measurements such that Φ(-0) = . in (2.1).

The authors of [FRW11] show that the accumulation points of the sequence of iterates
(- (9))9∈N are minimizers of �n∗ under the linear constraint defined by the measurements (Φ,. )
if n∗ := lim9→∞ n9 > 0. Furthermore, it was shown that the smoothing parameters eventually
convergence to 0, i.e., n∗ = 0, and the iterates converge to the nuclear norm minimizer if Φ
fulfills an appropriate restricted isometry or strong null space property (see Section 2.2.1 for a
discussion).

In this sense, it can be said that the analysis for IRLS-M has generalized the corresponding
property of the IRLS strategy of [DDFG10] for sparse vector recovery to low-rank matrix
recovery as far as the first bullet point above is concerned, but a generalization of the other
two could not be achieved.

Around the same time, but independently, the papers [MF10a,MF12] proposed a family of
IRLS algorithms for low-rank matrix recovery to minimize, for a given parameter 0 ≤ > ≤ 1,
the smoothed functionals �n : R31×32 → R given by

�n(X) =

{∑32
7=1

(
f2
7
(X) + n2) >

2 for 0 < > ≤ 1,∑32
7=1 log

(
f2
7
(X) + n2) for > = 0,

(2.30)

corresponding to smoothed Schatten-> quasi-norms for > > 0 and to a smoothed logdet objec-
tive for > = 0. At iteration 9, their algorithms use quadratic bounds &n9(·|X

(9)) corresponding
to the weight operator

,(9)(X) = X(X(9)∗X(9) + n2
9 I32)

>
2−1, (2.31)

while using the smoothing update rule

n9+1 =
n9

[
(2.32)

for any 9 ∈ N and some given parameters n0 > 0, [ > 1.
For this IRLS algorithm, [MF10a,MF12] obtain a similar (but slightly weaker) convergence
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statement as [FRW11] in the nuclear norm case corresponding to > = 1. For the non-convex
cases > < 1, they also show that the accumulation points of the iterate sequence (- (9))9∈N are
stationary points of the smoothed functionals (2.30) under the linear constraint. Unlike in the
sparse vector recovery case [DDFG10], local convergence statements or rates of convergence
have not been obtained for > < 1.

In [LXY13], the authors presented an analysis of extensions of the IRLS algorithms of
[DDFG10] and of [MF12, FRW11] to unconstrained �>-minimization and Schatten-> minimiza-
tion, that is, for IRLS algorithms designed to solve

min
x∈R<
‖x‖>> +

1
2_
‖�x − y‖22

or
min

X∈R31×32
‖X‖>(> +

1
2_
‖Φ(X − Y‖2�

for a given regularization parameter _ > 0. For their algorithms, the authors prove analogue
results to the ones of [DDFG10] and of [MF12,FRW11]. While the authors claim that the local
convergence rate analysis of their sparse recovery IRLS [LXY13, Theorem 2.9] will extend to the
low-rank matrix recovery case and is left to be shown by the interested reader [LXY13, p.950],
no numerical evidence is presented to support this claim.

Finally, a few recent works were dedicated to a more refined convergence analysis of IRLS
algorithms without updated smoothing: For continuously differentiable objectives and not
necessarily convex �n, the authors of [RZ15] show convergence of the sequence of iterates to
the set of stationary points and provides a qualitative analysis of basin of attractions of local
minima. [RYZ18] extends these results to the case of inexactly solved weighted least squares
problems, for example by conjugate gradient methods, and strengths the analysis of [RZ15]
by showing that the iterates’ trajectory has finite length with convergence to stationary points.
A similar statement follows from [BP16, Theorem 6].

2.3.2 The Quest for Optimal Quadratic Bounds: Second-Order Structure of Spectral
Functions

In Section 2.3.1, we saw that it has been possible to derive IRLS algorithms for non-convex
�>-minimization problems (2.26) with local convergence guarantees under appropriate as-
sumptions on the null space property of the linear operator defining the problem, including
guarantees indicating a local rate of convergence of order 2 − > [DDFG10]. It is also well-
documented that this superlinear convergence rate often can be observed already after quite
few iterations, for example in [DDFG10, Section 8.1], making IRLS a simple and scalable,
viable algorithmic option for �>-quasi norm minimization [ZMW+17].

However, in the low-rank matrix recovery context, the IRLS algorithms of [MF12, FRW11]
for Schatten-> quasi-norm minimization

min
X∈R31×32

3∑
7=1

f
>

7
(X) subject to Φ(X) = y,

with 0 < > < 1 have not been known to possess local convergence guarantees of a similar
type, despite the similar nature of the two problems, and neither has any superlinear rate
been observed empirically [MF12, Figures 1-2].2

2This is also the case for the natural extension of IRLS-M of [FRW11] to > < 1, adapting the exponent of the
weight matrix in its weight operator,(9).

60



This raises the following questions:

1. Why do the quasi-norm variants of the IRLS algorithms [MF12,FRW11] not exhibit a
fast convergence behavior? Is it due to a fundamental difference between the structure
of sparse and low-rank recovery problems?

2. Is it possible to define improved IRLS algorithms for non-convex rank surrogates
which combine fast local convergence rates with good global convergence behav-
ior?

In the rest of this section, we shed light on both questions.
From an algorithmic point of view, it can be said that the algorithms of [MF12] and [FRW11]

differ in basically two main details (apart from implementation details): The choice of the
smoothing, including the choice of n9 (see (2.29) and (2.32)) and the fact that the weight
operator ,(9) of [FRW11] acts through left-multiplication on X, whereas ,(9) acts through
right-multiplication on X in the IRLS proposed by [MF12].

Recalling the results for sparse recovery, it can be conjectured that the local convergence
rate does not depend on the exact choice of the smoothing, or at least, that any fast convergence
rate would be rather deterred than promoted by any sort of smoothing, as even the unsmoothed
IRLS variant FOCUSS [GR97,RK99] exhibited the fast convergence rate of order 2 − >.

For this reason, leaving details in the smoothing aside, and taking the version of [MF12] as
a starting point, it is straightforward to conceive an IRLS algorithm based on the minimization
of weight least squares problems

X(9+1) = arg min
X:Φ(X)=y

〈X,,(9)(X)〉 (2.33)

with weight operator,(9) : R31×32 → R31×32 ,

,(9)(X) = (X(9)X(9)∗ + n2
9 I31)

>
2−1X, (2.34)

which we call IRLS-col as the matrix (X(9)X(9)∗ + n2
9
I31)

>
2−1 acts on the columns of X through

left-multiplication. Following up on this convention, we call the IRLS algorithms defined
by the weight operator (2.31) in the subsequent discussion IRLS-row, as the weight matrix
(X(9)∗X(9)+n2

9
I32)

>
2−1 acts on X through right-multiplication, corresponding to a transformation

of the rows of X.
It is important to observe that the quadratic forms of (2.33) are quite different, even in the

case of rectangular matrices X ∈ R31×32 with 31 = 32, depending on whether IRLS-row or
IRLS-col is used: If X(9) = U9Σ9V∗9 is a singular value decomposition of a rectangluar matrix
X(9), then

W(9)col := (X(9)X(9)∗ + n2
9 I31)

>
2−1 = U9 diag(f̃(9)

7
)37=1U∗9,

where

f̃
(9)

7
=

(
(Σ9)

2
77 + n

2
9

) >−2
2

(2.35)

for 7 ∈ [3], but
W(9)row := (X(9)∗X(9) + n2

9 I32)
>
2−1 = V9 diag(f̃(9)

7
)37=1V∗9,

61



so that, for example, if U9 = I31 ,

〈X,,(9)(X)〉 = tr(X∗,(9)(X)) = tr
(
X∗U9 diag(f̃(9)

7
)37=1U∗9X

)
= tr

(
X∗ diag(f̃7)37=1X

)
=

31∑
7=1

32∑
8=1

f̃
(9)

8
X2
7 8

for IRLS-col, but

〈X,,(9)(X)〉 = tr(X∗,(9)(X)) = tr
(
(XV9)

∗XV9 diag(f̃(9)
7
)37=1

)
=

31∑
7=1

32∑
8=1

f̃
(9)

7
(X(9)V9)

2
7 8

if we decide to use IRLS-row, so that the landscape of the quadratic forms is very much
different, for example, if V9 is far from the identity.

In fact, it turns out that the IRLS algorithms of [MF12] and [FRW11] only use either
information about the column space or about the row space of the current iterate - (9) to
define the quadratic forms to be minimized in the next iteration, but not information about
both of them. This seems to be quite unnatural from an information-theoretic point of view,
as a certain low-rank (rank-@) matrix X0 is characterized by the fact that it is an element of
the intersection of its (@-dimensional) row space and its (@-dimensional) column space.

The theoretical convergence properties of the algorithms in the papers that have been our
main focus of discussion, [DDFG10,MF12, FRW11], are derived using a variational approach,
interpreting the main steps (2.17) and (2.21) of the IRLS algorithm as an alternating minimiza-
tion of a functional depending on both X and the weight operator ,. While this approach
serves to a certain extent its purpose, it is not a constructive approach to derive more suitable
weight operator rules, as the precise form of the weight operator is already implicit in the
design of the variational functional (which is called J in the three papers).

First-order derivation of IRLS algorithms

To understand from where a potential deficiency of IRLS-row and IRLS-col arises, let us
recall the following, simple argument to derive IRLS algorithms, which goes back to [GR92],
see also [CBAB97, Theorem 1]:

For the recovery of a sparse, <-dimensional vector x, let 0 < > ≤ 2 and consider the
n9-smoothed �> quasi-norm �n9(x) := 2

>

∑<
7=1(|F7 |

2 + n2
9
)>/2. Then the function �n9 : R< → R,

�n9(x) := �n9(
√
|x|) is concave in its argument and therefore (see, e.g., [BV04, Chapter 3.1])

�n9(x) = �n9((x)
2) ≤ �n9((x

(9))2) + 〈∇�n9((x
(9))2), x2 − (x(9))2〉

= �n9(x
(9)) +

3∑
7=1

1

((x(9)
7
)2 + n2

9
)1−>/2

(
x2
7 − (x

(9)

7
)2

)
=: &n9(x|x

(9)),

where ∇�n9 : R< → R< is the gradient of �n9 fulfilling

�n9(x) = ∇�n9(y) = diag

(
1

(G7 + n
2
9
)1−>/2

)<
7=1

,

and x2 and (x(9))2 denote the vectors of squared coordinates of x and x(9), respectively.
This shows already that we have obtained with &n9(·|x

(9)) a valid, global quadratic bound
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(2.19) of �n9 which coincides with �n9 at x = x(9), i.e., (2.20) holds. This gives rise to precisely
the algorithm of [DDFG10], as &n9(·|x

(9)) can now be minimized under the the linear constraint
to obtain a descent in the function value of �n9(x).

An analogue argument can be used to derive the algorithms IRLS-col and IRLS-row:
Indeed, if �n9 : R31×32 → R is the n9-smoothed Schatten-> quasi-norm such that

�n9(X) =
2
>

tr
(
XX∗ + n2

9 I31

) >
2

(2.36)

and if �n9 : R31×31 → R is defined such that �n9(Y) =
2
>

tr
(
Y + n2

9
I31

) >
2 , we will make below

rigorous that �n9 is concave for 0 < > ≤ 2 and therefore

�n9(X) = �n9(XX∗) ≤ �n9(X
(9)X(9)∗) + 〈∇�n9(X

(9)X(9)∗),XX∗ − X(9)X(9)∗〉

= �n9(X
(9)) + tr

( (
X(9)X(9)∗ + n2

9 I31

) >
2−1

(
XX∗ − X(9)X(9)∗

))
=: &n9(X|X

(9)),

(2.37)

as the gradient ∇�n9 of �n9 at X(9)X(9)∗ fulfills ∇�n9(X
(9)X(9)∗) =

(
X(9)X(9)∗+n2

9
I31

) >
2−1. Compar-

ing this to (2.17) and (2.34) quadratic bound &n9(·|X
(9)), we see that we have basically derived

IRLS-col with this estimate.
However, if we just slightly change �n9 such that �n9(X) =

2
>

tr
(
XX∗ + n2

9
I32

) >
2 , and set �n9

as �n9(Y) =
2
>

tr
(
Y + n2

9
I32

) >
2 , we obtain

�n9(X) = �n9(X
∗X) ≤ �n9(X

(9)∗X(9)) + 〈∇�n9(X
(9)∗X(9)),X∗X − X(9)∗X(9)〉

= �n9(X
(9)) + tr

( (
X(9)∗X(9) + n2

9 I32

) >
2−1

(
X∗X − X(9)∗X(9)

))
=: &n9(X|X

(9)),

(2.38)

which corresponds to IRLS-row due to (2.31).
The fact that this standard derivation of IRLS algorithms does not lead to a unique quadratic

upper bound of �n in the rank surrogate case suggests that it is worthwhile to look for a deeper
understanding of the problem structure.

In [KS18], we analyze an IRLS algorithm called Harmonic Mean Iteratively Reweighted Least
Squares (HM-IRLS), which comes to its name as it corresponds to choosing the quadratic bounds
&n9(·|X

(9)) and the associated weight operator,(9) as the harmonic mean of the corresponding
ones used in IRLS-col and IRLS-row (or, to put differently, the harmonic mean of the right
hand sides of (2.37) and (2.38)). More precisely, instead of (2.31) or (2.34), the harmonic
mean weight operator,(9) : R31×32 → R31×32 is defined such that for any X31×32 ,

,(9)(X) = U9

[
H(9) ◦

(
U∗9XV9

) ]
V∗9, (2.39)

where U9 ∈ R
31×31 and V9 ∈ R

32×32 are again left and right singular vector matrices of X(9),
A ◦ B denotes the entrywise (Hadamard) product of the matrices A ∈ R31×32 and B ∈ R31×32

and H(9) is defined as
(H(9))7 8 =

2

(f̃7
(9)
)−1 + (f̃8

(9)
)−1

for any 7 ∈ [31], 8 ∈ [32] with f̃7(9) as in (2.35).
The analysis of [KS18] shows that this choice of,(9) leads to considerably tighter quadratic

63



bounds than IRLS-col or IRLS-row, achieving fast local convergence properties of order 2−>,
comparable to what has been obtained for the non-convex variants of [DDFG10] for sparse
recovery. On the other hand, it was shown that simpler weight operator choices as the
arithmetic mean of the weight operators of IRLS-col and IRLS-row do not possess these
favorable properties.

But is there a way to justify the success of the harmonic mean weight operator (2.39) in
a more constructive way? Are there maybe weight operators corresponding to even tighter
quadratic bounds than the harmonic mean ones?

To understand this, the derivative structure of smoothed spectral functions �n will be
crucial. As a preparation, we collect a few results on first and second (generalized) derivatives
of spectral functions.

Definition 2.3.1 (Spectral functions over R31×32 , [Fri81,Lew95,Bec17,LS05a,LS05b]). A func-
tion � : R31×32 → R is called a spectral function overR31×32 if there exists a function 5 : R3 → R

for which � = 5 ◦ f, where

f : R31×32 → R3 ,X 7→ f(X) = (f1(X), . . . ,f3(X))

is the function mapping matrices in R31×32 to its singular value vector f(X). In this case, we call
5 the associated function of �.

An important property of spectral functions � is that they are, the singular values f(X),
unitarily invariant in the sense that for any U ∈ O31 = {U ∈ R31×31 : UU∗ = U∗U = I31},
V ∈ O32 = {V ∈ R32×32 : VV∗ = V∗V = I32} and X ∈ R31×32 ,

�(U∗XV) = �(X).

Remark 2.3.1. We note that in the matrix calculus literature, the term spectral function more
commonly refers to functions that are defined on the space of symmetric matricesS3 = {X ∈ R3×3 :
X∗ = X} as a concatenation of the function _ : S3 → R3 , - → _(X) = (_1(X), . . . , _3(X)mapping
matrices to their eigenvalues with a real-valued function 5 [Lew96, LS01, LS02,MS18], while
functions of singular values as in Definition 2.3.1 are sometimes called singular value functions
[LS05a, LS05b]. We follow the more general Definition 2.3.1, used also in [Bec17, Chapter 7],
throughout this thesis.

Definition 2.3.2 (Absolutely permutation symmetric functions). 1. Let x ∈ R3 . We call
@(x) ∈ R3 the non-increasing rearrangement of x if it holds that

@(x)1 ≥ @(x)2 ≥ . . . ≥ @(x)3

and there is a permutation matrix P ∈ P3 such that @(x)7 = (Px)7 for all 7 ∈ [3].

2. We call a matrix P signed permutation matrix if there exists a permutation matrix P0 ∈ P
3

and a diagonal matrix D ∈ R3×3 with only values of −1 and 1 on the diagonal such that
P = P0D. We denote the corresponding set by ±P3 .

3. We say that a function 5 : R3 → R is absolutely permutation symmetric if

5 (x) = 5 (@(|x|)) (2.40)

for any F ∈ R3 .
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We note that (2.40) is equivalent to

5 (x) = 5 (Px)

for all signed permutation matrices P ∈ ±P3 .

In the following, whenever it is clear that 3 = min(31, 32) refers to the minimum of two
dimension parameters 31 and 32, for D ∈ R3 , we use the notation dg(D) ∈ R31×32 for the
rectangular diagonal matrix such that for any 7 ∈ [31], 8 ∈ [32],

dg(D)7 8 =

{
D7, if 7 = 8,
0, else.

We proceed with the following results due to Lewis and Sendov [LS05a] about first deriva-
tives and convexity of spectral functions.

Proposition 2.3.1. Let � : R31×32 → R be a spectral function � = 5 ◦ f with an associated
function 5 : R3 → R that is absolutely permutation symmetric. Then, � is differentiable at
X ∈ R31×32 if and only if 5 is differentiable at f(X) ∈ R3 .

In this case, the gradient ∇� of � at X is given by

∇�(X) = U dg
(
∇ 5 (f(X)

)
V∗

if X = U dg
(
f(X)

)
V∗ for unitary matrices U ∈ O31 and V ∈ O32 .

Proof. The statement about differentiability follows directly from [LS05a, Corollary 7.4]. The
expression for the gradient ∇�n(-) follows by specifying the formula of [LS05a, Theorem 7.1]
to the case of singleton subgradients. �

Proposition 2.3.2 ([LS05a, Proposition 6.1]). Let 5 : R3 → R be convex and absolutely
permutation symmetric. Then the spectral function 5 ◦ f is convex on R31×32 if and only if 5 is
convex.

Proposition 2.3.1 and Proposition 2.3.2 can be used to make the calculations of (2.37)
and (2.38) rigorous, as, first, the concavity of the functions �n9 follows from the concavity
of the function 6n9 : R3 → R, 6n9(x) =

2
>

∑31
7=1(|G7 | + n

2
9
)>/2 in x and Proposition 2.3.2, and,

second, if X(9) = U9 dg(f(X(9)))V9 with unitary U9 ∈ O
31 and V9 ∈ O

32 , then .9 = X(9)X(9)∗ =
U9 dg(f2(X(9)))U∗

9
, and therefore

∇�n9(X
(9)X(9)∗) = ∇�n9(.

(9)) = U9 dg
(
((f2

7 (X
(9)) + n2

9 )
>/2−1)

31
7=1

)
U∗9 =

(
X(9)X(9)∗ + n2

9 I31

) >
2−1,

which justifies (2.37) and IRLS-col. An analogue argument can be made to justify (2.38) and
IRLS-row.

Related to the presented derivation of IRLS algorithms based on a change of variables are
certain recipes that can be found in the literature as a guideline to derive IRLS algorithms
[ODBP15, Algorithm 6], [RZ15, (2.2), (2.3) and Proposition 2.6].

In fact, these recipes are based on property (2.18), which required that the spectral function
�n9 and weight operator,(9) : R31×32 → R31×32 fulfill

∇�n9(X
(9)) =,(9)(X(9)).
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This property is needed to ensure that the quadratic bound &n9(X|X
(9)) of (2.17) is quadratic

in X without a term that is linear in X. The purely quadratic structure of &n9(·|X
(9)) can be

justified by the desire to obtain quadratic bounds with a similar geometry as the function �n9
to be majorized, which also attains its global minimum at the origin (if no constraints are
present) in all cases we are interested in.

Indeed, recalling the spectral function �n9 with

�n9(X) =
2
>

tr
(
XX∗ + n2

9 I31

) >
2
=

2
>

31∑
7=1

(
f2
7 (X) + n

2
9

) >
2

used for IRLS-col above, we use Proposition 2.3.1 to see that

∇�n9(X) = U dg

(
f7(X)

(f2
7
(X) + n2

9
)1−

>
2

)3
7=1

V∗

if U ∈ O31 and V ∈ O32 are unitary such that X = U dg(f(X))V∗. This verifies that (2.18) holds,
since furthermore

,(9)(X(9)) = W(9)colX
(9) = (X(9)X(9)∗ + n2

9 I31)
>
2−1X(9)

= U9 diag((f2
7 (X
(9)) + n2

9 )
>
2−1)37=1U∗9U9 dg(f(X(9)))V∗9

= U9 dg

(
f7(X(9))

(f2
7
(X(9)) + n2

9
)1−

>
2

)3
7=1

V∗9 = ∇�n9(X
(9)).

Analoguously, (2.18) can be easily verified for IRLS-col, and also for the variant HM-IRLS
[KS18].

This illustrates why the constructive rules [ODBP15, Algorithm 6], [RZ15, (2.2), (2.3) and
Proposition 2.6], which are adapted to functions �n that are separable in the coordinates of
their argument, are not sufficient to obtain a unique formulation of IRLS for low-rank matrix
recovery.

Our approach: Second-order derivation of IRLS

Wenowwould like to take a different point of view on the problem, which involves (generalized)
second derivatives of spectral functions.

A relationship between IRLS algorithms and second-order methods as Newton’s method
was already observed in [Wat77], where Watson argued that IRLS for �>-regression (2.24)
with 1 < > < 2 [Sch73,MS74] corresponds to taking a step of Newton’s method with a step
length of >− 1 times the original Newton step length, see also [Li93]. In [GR97, Section V.C],
it was observed that for non-convex sparsity surrogates, the unsmoothed IRLS variant FOCUSS
correspond to a modified Newton’s method where the modification is such that the negative
eigenvalues of the Hessian of the objective a replaced by the positive ones at an appropriate
scaling.

In general, Newton-type algorithms exhibit often quadratic or superlinear convergence
rates if they are used in a neighborhood of a desired solution, however, it is not clear whether
they actually provide a descent in the objective at each iteration.

A step of Newton’s method (see, e.g., [NW06, Chapter 3]), also called Newton-Raphson
method [Ber99], to minimize a spectral function �n9 with evaluation point X(9) ∈ R31×32 under
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the linear constraint Φ(X) = Y would correspond to solving

X(9+1) = arg min
X:Φ(X)=Y

�n9(X
(9)) + 〈∇�n9(X

(9)),X − X(9)〉 +
1
2
〈X − X(9),∇2�n9(X

(9))(X − X(9))〉 (2.41)

if �n9 is a twice continuously differentiable function, where the Hessian of �n9 at X(9),
∇2�n9(X

(9)), is a linear operator such that ∇2�n9(X
(9)) : R31×32 → R31×32 .

However, if �n9 is an n9-smoothed Schatten-> quasi-norm with > < 1 as in (2.36), we expect
the Hessian ∇2�n9(X

(9)) to be indefinite in general, since far from the zero matrix 0 ∈ R31×32 ,
the n9-smoothing will not play any role and �n9 will be locally concave, whereas close to the
zero matrix 0 ∈ R31×32 , (2.36) is basically quadratic, and therefore convex.

Thus, we can say that the quadratic model of �n9 used by (2.41) will not fulfill a majorization
property as (2.19), not even locally around X(9). While there might be line search techniques
or other step-size rules that can be applied to ensure a descent in the objective, this is not
the avenue we want to pursue, also since evaluations of spectral functions as �n9 will be
computationally expensive.

In [BL88], a general framework for quadratic approximation was presented which ensures
the majorization property (2.19) at each iteration for a scheme that, translated to our matrix
function setting, replaces the Hessian ∇�n9(X

(9)) at each iteration by a matrix operator � :
R31×32 → R31×32 that is a global upper bound such that

� � ∇2�n9(X)

for any - ∈ R31×32 . Here, as usual, we use the symbol � in the sense of Loewner order such
that two matrix operators �, � : R31×32 → R31×32 fulfill � � � if and only if

〈Z, �(Z)〉 ≥ 〈Z, �(Z)〉

for all matrices Z ∈ R31×32 .
The framework of [BL88] does not quite correspond to what our intended IRLS scheme is

supposed to do, as the weight operators,(9) of (2.17) depend on the matrix X(9), but it gives
us the intuition that

,(9) � ∇2�n9(X
(9)) (2.42)

will be at least a necessary condition we will need to fulfill for any - (9) to have any chance to
ensure the majorization property (2.19).

To ensure a property as (2.42), it is crucial to understand second derivatives of spectral
functions.

Second derivatives of spectral functions have been considered in the literature almost
exclusively for the case of functions depending on the eigenvalues of a symmetric matrix
[LS01,LS02,QY03,DK15], but, to the best of the author’s knowledge, not of spectral functions
as defined in Definition 2.3.1.

However, it is possible to derive results for second derivatives of functions depending on
the singular values of a matrix by combining Proposition 2.3.1 with results on the derivatives
of certain spectral operators [DSST18], so-called non-Hermitian Loewner operators [Yan09,
Theorem 2.2.6], [Nof17, Corollary 3.10].

As a preparation for the next result, we define the symmetrization operator ( : R3×3 →
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R3×3 that maps any Z ∈ R3×3 such that

((Z) =
1
2
(Z + Z∗), (2.43)

and the antisymmetrization operator ) : R3×3 → R3×3 such that

)(Z) =
1
2
(Z − Z∗) (2.44)

for any Z ∈ R3×3 .

Theorem 2.2. Let 5 : R≥0 → R be differentiable function with !-Lipschitz first derivative 5 ′ such
that 5 ′ is right differentiable at 0 and 5 ′(0) = 0.

Then the spectral function � : R31×32 → R, �(X) =
∑3
7=1 5 (f7(X)) =

∑3
7=1 5 (f7) is differen-

tiable with !-Lipschitz gradients ∇� and furthermore almost everywhere twice differentiable.
In particular, � is twice differentiable at X ∈ R31×32 if and only if 5 is twice differentiable at

all f1, . . . ,f3 . In that case, if additionally 31 ≤ 32, the Hessian ∇2�(X) of � at X is given by

∇2�(X)(Z) = U
[
H1 ◦ ((U∗ZV1) + H2 ◦ )(U∗ZV1) H3 ◦ (U∗ZV2)

]
V∗ (2.45)

for any Z ∈ R31×32 . In the notation of (2.45), X has the singular value decomposition X =
U dg(f)V∗ with U ∈ O31 , V =

[
V1 V2

]
∈ O32 , V1 ∈ R

32×3 , V2 ∈ R
32×(32−3), ) and ( are as in

(2.43) and (2.44), and H1 ∈ R
3×3 is such that for 7, 8 ∈ [3],

(H1)7 8 =

{
5 ′(f7)− 5

′(f8)

f7−f8
if f7 , f8,

5 ′′(f7) if f7 = f8,

the matrix H2 ∈ R
3×3 is such that for 7, 8 ∈ [3],

(H2)7 8 =

{
5 ′(f7)+ 5

′(f8)

f7+f8
if f7 + f8 , 0,

5 ′′(f7) if f7 = f8 = 0,

and H3 ∈ R
31×(32−3) is such that for 7 ∈ [31], 8 ∈ [32 − 3],

(H3)7 8 =

{
5 ′(f7)/f7 if f7 , 0,
5 ′′(f7) if f7 = 0.

Proof. Since 5 is differentiable, it follows from Proposition 2.3.1 that the spectral function � is
differentiable with gradient

∇�(X) = U dg
(
∇ 5 (f(X)

)
V∗ = U dg

( (
5 ′(f7)

)3
7=1

)
V∗

at any X ∈ R31×32 . Functions as X 7→ ∇�(X) are also called non-Hermitian Löwner operators
[Löw34,SS08,DSST18] or generalized matrix functions [HBI73,Nof17], and [ACP16, Theorem
1.1] implies that since 5 ′ is !-Lipschitz, X 7→ ∇�(X) is !-Lipschitz with respect to the Frobenius
norm. Rademacher’s theorem then implies that ∇� is almost everywhere differentiable (with
respect to the Lebesgue measure).

Furthermore, it follows from [Yan09, Theorem 2.2.6] that 5 is twice differentiable at
f = f(X) if and only if � is twice differentiable at X, and the formula for the Hessian (2.45)
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at the points of twice differntiablity X is due to [Yan09, Theorem 2.2.6] and [Nof17, Corollary
3.10]. �

In the remainder of this chapter, we focus on a specific family of spectral functions which
are smoothings of (scaled) Schatten-> quasi-norms and logdet objectives and generalizations
of (2.27) [FRW11]. This family is given by {�>,n : 0 ≤ > ≤ 1, n > 0} in Lemma 2.3.1.

Lemma 2.3.1. Let 0 ≤ > ≤ 1 and n > 0. Define the function 5>,n : R≥0 → R such that

5>,n(f) =

{ 1
>
f>, if f > n,

1
2

f2

n2−> +
(

1
>
− 1

2

)
n>, if 0 ≤ f ≤ n

(2.46)

for 0 < > ≤ 1, and

5>,n(f) =

{
log(f), if f > n,
1
2
f2

n2 +
1
2 (2 log(n) − 1) , if 0 ≤ f ≤ n

(2.47)

for > = 0.
Then the spectral function �>,n : R31×32 → R defined by

�>,n(X) =
3∑
7=1

5>,n(f7(X)) =

∑3
7=1

[
log (max(f7(X), n)) + 1

2

(
min(f7(X),n)2

n2 − 1
)]

, if > = 0,∑3
7=1

[
1
>

max(f7(X), n)> + 1
2

(
min(f7(X),n)2

n2−> − n>
)]

, if 0 < > ≤ 1,
(2.48)

is differentiable³ with n>−2-Lipschitz gradient ∇�>,n, which is given by

∇�>,n(X) = U dg

((
f7(X)

max(f7(X), n)2−>

)3
7=1

)
V∗

for any X ∈ R31×32 , where X = U dg
(
f(X)

)
V∗ = U dg

(
f
)
V∗ is a singular value decomposition

with unitary matrices U ∈ O31 and V ∈ O32 .
Furthermore, �>,n is twice differentiable for all X ∈ Dn :=

{
X : f7(X) , n for all 7 ∈ [3]

}
and, defining ' := |{7 ∈ [3] : f7(X) > n}| and if additionally 31 ≤ 32, its Hessian ∇2�>,n(X) :
R31×32 → R31×32 at X ∈ Dn is given by

∇2�>,n(X)(Z) = U
[
H1 ◦ ((U∗ZV1) + H2 ◦ )(U∗ZV1) H3 ◦ (U∗ZV2)

]
V∗, (2.49)

where ) and ( are as in (2.43) and (2.44),
[
V1 V2

]
= V, V1 ∈ R32×3 , V2 ∈ R32×(32−3), and

H1 ∈ R
31×32 is such that

(H1)7 8 =



(
> − 1

)
f
>−2
7

if 7, 8 ≤ ' and f7 = f8,
f
>−1
7
−f

>−1
8

f7−f8
=

f
1−>
8
−f

1−>
7

f
1−>
7

f
1−>
8
(f7−f8)

if 7, 8 ≤ ' and f7 , f8,

f
>−1
7
−

f8

n2−>

f7−f8
if 7 ≤ ', ' < 8,

f
>−1
8
−

f7

n2−>

f8−f7
if 8 ≤ ', ' < 7,

n>−2 if ' < 7, 8,

(2.50)

3Whenever there is no ambiguity about >, we will call 5>,n and �>,n also 5n and �n, respectively.
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the matrix H2 ∈ R
3×3 is such that for 7, 8 ∈ [3],

(H2)7 8 =



f
>−2
7

if 7, 8 ≤ ' and f7 = f8,
f
>−1
7
+f

>−1
8

f7+f8
=

f
1−>
8
+f

1−>
7

f
1−>
7

f
1−>
8
(f7+f8)

if 7, 8 ≤ ' and f7 , f8,

f
>−1
7
+

f8

n2−>

f7+f8
if 7 ≤ ', ' < 8,

f
>−1
8
+

f7

n2−>

f8+f7
if 8 ≤ ', ' < 7,

n>−2 if ' < 7, 8,

(2.51)

and H3 ∈ R
31×(32−3) is such that for 7 ∈ [31], 8 ∈ [32 − 3],

(H3)7 8 =

{
f
>−2
7

if 7 ≤ ',
n>−2 if ' < 7.

Proof. Considering first the one-dimensional functions 5>,n from (2.46) and (2.47), we note
that 5>,n is differentiable on R>0 with derivative

5 ′>,n(f) =


f>−1 = f

f2−> , if f > n, > > 0
f

n2−> , if 0 ≤ f < n, > > 0,
1
f
= f

f2 , if f > n, > = 0
f
n2 , if 0 ≤ f < n, > = 0

=
f

max(f, n)2−>
for f , n.

For the case f = n, we note that

lim
ℎ>0,ℎ→0

5>,n(n + ℎ) − 5>,n(n)

ℎ
= lim

ℎ>0,ℎ→0

1
>
(n + ℎ)> − 1

>
n>

ℎ
= n>−1

and

lim
ℎ<0,ℎ→0

5>,n(n + ℎ) − 5>,n(n)

ℎ
= lim

ℎ>0,ℎ→0

1
2
(n+ℎ)2

n2−> + (
1
>
− 1

2 )n
> − 1

>
n>

ℎ
= n>−2 lim

ℎ>0,ℎ→0

1
2 (n + ℎ)

2 − 1
2n

2

ℎ
= n>−1

for > > 0, which shows that
5 ′>,n(f) =

f

max(f, n)2−>
(2.52)

for any f > 0 and 0 ≤ > ≤ 1, as an analogous calculation shows the existence and value of
5 ′>,n(n) for > = 0.

Furthermore, 5 ′>,n is Lipschitz continuous with Lipschitz constant ! = 1
n2−> , as its (general-

ized) derivative is globally bounded by 1
n2−> . 5 ′>,n is also right differentiable at 0 and 5 ′>,n(0) = 0.

In fact, it can be seen that 5 ′>,n is differentiable almost everywhere except from at f = n, and

5 ′′>,n(f) =

{
(> − 1)f>−2, if f > n,
n>−2, if f < n.

(2.53)

The statements of Lemma 2.3.1 then follow directly from Proposition 2.3.1 and Theorem 2.2 by
inserting the formulas (2.52) and (2.53). �
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Based on Lemma 2.3.1, we can now state necessary conditions for quadraticmatrix functions
&n(·|X(9) to be local upper bounds onto the smoothed spectral functions �n at a given X(9) ∈
R31×32 .

Theorem 2.3 (Necessary condition for quadratic upper bounds for smoothed rank surrogates).
Let 31 ≤ 32 and - (9) ∈ Dn :=

{
X ∈ R31×32 : f7(X) , n for all 7 ∈ [3]

}
be a matrix where the

spectral function �n from (2.48) is twice differentiable, let X(9) = U9 dg(f(9))V∗
9
be a singular value

decomposition of X(9) with U9 ∈ O
31 , V9 =

[
V(9)1 V(9)2

]
∈ O32 , V(9)1 ∈ R

32×3 , V(9)2 ∈ R
32×(32−3),

and let ' = |{7 ∈ [3] : f(9)
7
> n}| be the number of singular values of X(9) larger than n.

Let H(9)1 ∈ R
31×31 , H(9)2 ∈ R

31×31 and H(9)3 ∈ R
31×(32−31) be matrices and

(H(9)1 )7 8 ≥ (> − 1)(f(9)
7
)>−2 and (H(9)2 )7 8 ≥ (f

(9)

7
)>−2 for all 7, 8 ≤ ' with f(9)

7
= f
(9)

8
, (C1)

(H(9)1 )7 8 ≥
(f
(9)

7
)>−1−(f

(9)

8
)>−1

f
(9)

7
−f
(9)

8

and (H(9)2 )7 8 ≥
(f
(9)

7
)>−1+(f

(9)

8
)>−1

f
(9)

7
+f
(9)

8

for all 7, 8 ≤ ' with f(9)
7
, f
(9)

8
,

(C2)

(H(9)1 )7 8 ≥
(f
(9)

7
)>−1−

f
(9)
8

n2−>

f
(9)

7
−f
(9)

8

and (H(9)2 )7 8 ≥
(f
(9)

7
)>−1+

f
(9)
8

n2−>

f
(9)

7
+f
(9)

8

for all 7 ≤ ', ' < 8, (C3)

(H(9)1 )7 8 ≥
(f
(9)

8
)>−1−

f
(9)
7

n2−>

f
(9)

8
−f
(9)

7

and (H(9)2 )7 8 ≥
(f
(9)

8
)>−1+

f
(9)
7

n2−>

f
(9)

8
+f
(9)

7

for all 8 ≤ ', ' < 7, (C4)

(H(9)1 )7 8 ≥ n
>−2 and (H(9)2 )7 8 ≥ n

>−2 for all 8 ≤ ', ' < 7, (C5)

(H(9)3 )7,8−31 ≥ (f
(9)

7
)>−2 for all 7 ≤ ' and 8 > 31, (C6)

(H(9)3 )7,8−31 ≥ n
>−2 for all ' < 7 and 8 > 31. (C7)

Then the conditions (C1)–(C7) are necessary for the quadratic matrix function (see also (2.17))
&n(·|X(9) : R31×32 → R31×32 defined by

&n(X|X(9)) = �n(X(9)) + 〈∇�n(X(9)),X − X(9)〉 +
1
2
〈X − X(9),,(9)(X − X(9))〉

with weight operator,(9) : R31×32 → R31×32 such that

,(9)(Z) = U9

[
H(9)1 ◦ ((U

∗
9
ZV(9)1 ) + H(9)2 ◦ )(U

∗
9
ZV(9)1 ) H(9)3 ◦ (U

∗
9
ZV(9)2 )

]
V∗9,

to be a local upper bound of �n in a neighborhood of X(9), i.e., to fulfill

&n(X|X(9)) ≥ �n(X)

for all X ∈ R31×32 in an open neighborhood of X(9).

Proof. The result of Theorem 2.3 follows from Lemma 2.3.1 and Taylor’s theorem: Indeed,
by Lemma 2.3.1, if any of the conditions (C1)–(C7) is not fulfilled, there exists a pair (7, 8) ∈
[31] × [32] and a matrix Z ∈ R31×32 such that U∗

9
ZV9 =

1√
2
(474
∗
8
+ 484

∗
7
), U∗

9
ZV9 =

1√
2
(474
∗
8
− 484

∗
7
)

(if 8 ≤ 31) or U∗
9
ZV9 = 474

∗
8
(if 8 > 31). In the first case, it follows then that

〈Z,,(9)(Z)〉 = 〈U∗9ZV9,H
(9)

1 ◦ (U
∗
9ZV9)〉 = (H

(9)

1 )7 8 < 〈Z,∇
2�>,n(X(9))(Z)〉,
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and the two other cases are analogous.
By Taylor’s theorem, since ∇2�n(X(9)) is continuous in a neighborhood of X(9), for any

X ∈ R31×32 that is close enough to X(9), there exists a matrix ΘX(9),X such that

〈Z,,(9)(Z)〉 < 〈Z,∇2�n
(
ΘX(9),X

)
(Z)〉,

and therefore

�n(X) = �n(X(9)) + 〈∇�n(X(9)),X − X(9)〉 +
1
2
〈X − X(9),∇2�n

(
ΘX(9),X

)
(X − X(9))〉

> �n(X(9)) + 〈∇�n(X(9)),X − X(9)〉 +
1
2
〈X − X(9),,(9)(X − X(9))〉 = &n(X|X(9)),

if X is chosen such that there exists \ > 0 with Z = \ · (X − X(9)). �

It can be verified that the conditions of Theorem 2.3 are fulfilled for weights chosen as
in the papers [FRW11] and [MF12] (adapted to our specific smoothing), or in other words,
chosen as IRLS-col or IRLS-row.

2.3.3 Global Majorization of Rank Surrogate by Tight Quadratic Bounds

The analysis of Section 2.3.2 provides local tight quadratic bounds onto smoothed rank surro-
gates as �n from (2.48), for example, by replacing the inequalities in conditions (C1)–(C7) by
strict inequalities.

However, a global majorization property of the quadratic function &n(·|X(9)) as (2.19) would
be highly desirable for an IRLS scheme as outlined in the beginning of Section 2.3.

In this section, we propose a specific choice of the weight operator ,(9) that combines
tight local majorization with global majorization of �n on the entirety of its domain.

Without loss of generality, we will assume 31 ≤ 32; the definition can be adapted to cover
the case of 31 > 32 by considering transposed matrices.

To give the precise definition, we define, similar to (2.43) and (2.44), the extended sym-
metrization operator (̃ : R31×32 → R31×32 that maps any Z =

[
Z1 Z2

]
∈ R31×32 , Z1 ∈ R

31×31 ,
Z2 ∈ R

31×(32−31) such that
(̃(Z) =

[ 1
2 (Z1 + Z∗1) Z2

]
(2.54)

and the extended antisymmetrization operator )̃ : R31×32 → R31×32 such that

)̃(Z) =
[ 1

2 (Z1 − Z∗1) 031×(32−31).
]

(2.55)

Furthermore, we use the following definition.

Definition 2.3.3 (Power mean). Let −∞ ≤ ? ≤ ∞. We call

"?(0, 1) =



min(0, 1), if ? = −∞,(
0?+1?

2

) 1
?

, if ? ∈ (−∞, 0) ∪ (0,∞),
√
01, if ? = 0,

max(0, 1) if ? = ∞

(2.56)

the ?-power mean [Bul03, Section III.1, Definition 1] of the numbers 0, 1 > 0.

In Definition 2.3.4, we define the weight operator,(9) to be used and analyzed in the rest
of this chapter.
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Definition 2.3.4 (Weight operator of MatrixIRLS). Let 31 ≤ 32, let 0 ≤ > ≤ 1 and n > 0. Let
X(9) ∈ R31×32 be a matrix with singular value decomposition X(9) = U9 dg(f(9))V∗

9
be a singular

value decomposition of X(9) with U9 ∈ O31 , V9 ∈ O32 , and '9 = |{7 ∈ [3] : f(9)
7
> n}| be

the number of singular values of X(9) larger than n. For X(9), we define the weight operator
,(9) : R31×32 → R31×32 of MatrixIRLS such that

,(9)(Z) = U9

[
H(9)1 ◦ (̃(U

∗
9ZV9) + H(9)2 ◦ )̃(U

∗
9ZV9)

]
V∗9, (2.57)

where (̃ and )̃ are as in (2.54) and (2.55) and H(9)1 ,H(9)2 ∈ R31×32 are matrices with positive
entries such that

(H(9)1 )7 8 = " >
>−2
(f̃
(9)

7
, f̃(9)

7
) =


1

max(f(9)
7

,n)max(f(9)
8
,n)
, if > = 0,(

max(f(9)
7

,n)>+max(f(9)
8
,n)>

)1−2/>

21−2/> , if 0 < > ≤ 1,
(2.58)

where " >
>−2

is the power mean (2.56) of power ? = >

>−2 , f̃
(9)

7
= max(f(9)

8
, n)>−2 for all 7 and

(H(9)2 )7 8 =

(
max(f(9)

7
, n)

) >−1
+

(
max(f(9)

8
, n)

) >−1

max(f(9)
7
, n) +max(f(9)

8
, n)

=



(f
(9)

7
)>−1+(f

(9)

8
)>−1

f
(9)

7
+f
(9)

8

if 7, 8 ≤ '9,

(f
(9)

7
)>−1+n>−1

f
(9)

7
+n

if 7 ≤ '9, '9 < 8,

(f
(9)

8
)>−1+n>−1

f
(9)

8
+n

if 8 ≤ '9, '9 < 7,

n>−2 if '9 < 7, 8.
(2.59)

Remark 2.3.2. In the definition of the weights on the symmetric part H(9)1 , we note that their
entries correspond to the

• geometric mean of f̃(9)
7

and f̃(9)
8

for > = 0, and to the

• harmonic mean for > = 1, while

• interpolating between these to means by the >

>−2 -power mean for 0 < > < 1.

Furthermore, for the case of > = 0, we see that H(9)1 and H(9)2 actually coincide as then

(H(9)2 )7 8 =

(
f
(9)

7
∨ n

)−1
+

(
f
(9)

8
∨ n

)−1

f
(9)

7
∨ n + f

(9)

8
∨ n

=
f
(9)

7
∨ n + f

(9)

8
∨ n

(f
(9)

7
∨ n)(f

(9)

8
∨ n)

(
f
(9)

7
∨ n + f

(9)

8
∨ n

)
=

1

(f
(9)

7
∨ n)(f

(9)

8
∨ n)

= (H(9)1 )7 8.

This means that in the case of > = 0, which corresponds to the weight operator of a logdet-objective
(2.48),,(9) of Definition 2.3.4 can be written as mapping any / ∈ R31×32 to

,(9)(Z) = U9

[
H(9) ◦ (U∗9ZV9)

]
V∗9

with H(9) = H(9)1 = H(9)2 .
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We note as it is the case for the Hessian ∇2�n(X(9)) from (2.49) in section 2.3.2, ,(9)

from Definition 2.3.4 is a self-adjoint operator: Indeed, by the cyclicity of the trace, for any
Y, Z ∈ R31×32 ,

〈Y,,(9)(Z)〉 = tr
(
Y∗U9

[
H(9)1 ◦ (̃(U

∗
9ZV9) + H(9)2 ◦ )̃(U

∗
9ZV9)

]
V∗9

)
= tr

(
(U∗9YV9)

∗
[
H(9)1 ◦ (̃(U

∗
9ZV9) + H(9)2 ◦ )̃(U

∗
9ZV9)

] )
= tr

((
(̃(U∗9YV9) + )̃(U∗9YV9)

)∗ [
H(9)1 ◦ (̃(U

∗
9ZV9) + H(9)2 ◦ )̃(U

∗
9ZV9)

] )
= tr

( (
(̃(U∗9YV9)

)∗ [H(9)1 ◦ (̃(U
∗
9ZV9)

] )
+ tr

( (
)̃(U∗9YV9)

)∗ [H(9)2 ◦ )̃(U
∗
9ZV9)

] )
= tr

( (
H(9)1 ◦ (̃(U

∗
9YV9)

)∗
(̃(U∗9ZV9)

)
+ tr

( (
H(9)2 ◦ )̃(U

∗
9YV9)

)∗
)̃(U∗9ZV9)

)
= tr

( (
H(9)1 ◦ (̃(U

∗
9YV9) + H(9)2 ◦ )̃(U

∗
9YV9)

)∗ [
(̃(U∗9ZV9) + )̃(U∗9ZV9)

] )
= tr

( (
H(9)1 ◦ (̃(U

∗
9YV9) + H(9)2 ◦ )̃(U

∗
9YV9)

)∗
(U∗9ZV9)

)
= 〈,(9)(Y), Z〉,

where we used the fact that

R31×32 = span
(

1
√

2
(474
∗
8 + 484

∗
7 ), 474

∗
9 : 7, 8 ∈ [31], 9 ∈ [32 − 31]

)
⊕span

(
1
√

2
(474
∗
8 − 484

∗
7 ) : 7, 8 ∈ [31]

)
and that )̃ and (̃ are the respective orthogonal projection operators in the fourth and sixth
equality, and tr(C∗(B ◦ A)) = tr((C ◦ B)∗A) for any matrices A,B,C [Ber09, Fact 7.6.10] in the
fifth equality.

Furthermore, with this argument we can diagonalize,(9) and we see that the eigenvalues
of the operator are

_(,(9)) =
{
(H(9)1 )7 8 : 7 ∈ [31], 8 ∈ [32], 7 ≤ 8

}
∪

{
(H(9)2 )7 8 : 7 ∈ [31], 8 ∈ [31], 7 < 8

}
. (2.60)

In particular, since all the (H(9)1 )7 8 and (H
(9)

2 )7 8 are positive, this means that ,(9) from
Definition 2.3.4 is positive definite, whereas the second derivative ∇2�n(X(9)) of �n at - (9)

always has also negative eigenvalues (as long as ' ≤ 1), compare, e.g., the values

(H1)77 = (> − 1)(f(9)
7
)>−2

of the diagonal of the matrix H1 from (2.49).
We now obtain the following global majorization result of the quadratic defined &n(·|-

(9))

by,(9) from Definition 2.3.4.

Theorem 2.4 (Global majorization of smoothed rank surrogate by MatrixIRLS quadratic).
Let 0 ≤ > ≤ 1 and n > 0, let X(9) ∈ R31×32 and,(9) : R31×32 → R31×32 be as in Definition 2.3.4,
and let �n : R31×32 → R be the n-smoothed rank surrogate function (2.48). Then the property
(2.18) is fulfilled such that

∇�n(X(9)) =,(9)(X(9)),

and the quadratic function &n(·|X(9)) : R31×32 → R defined by

&n(X|X(9)) = �n(X(9)) + 〈∇�n(X(9)),X − X(9)〉 +
1
2
〈X − X(9),,(9)(X − X(9))〉 (2.61)
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globally majorizes �n (cf. (2.19)) such that

&n(X|X(9)) ≥ �n(X)

for any X ∈ R31×32 .

To prove the second statement of Theorem 2.4, we will pursue an analytical approach
involving optimality conditions of the function &n(·|X(9)) − �n(·). However, as �n(·) is not a
C2 function on the entirety of its domain, but only differentiable with Lipschitz continuous
gradient, we introduce the following generalized notion of derivatives.

Definition 2.3.5. Let � : R31×32 → R be a differentiable function with whose gradi-
ent ∇� is Lipschitz continuous in a neighborhood of X ∈ R31×32 , and let D� := {X :
� is twice differntiable at X}. Then we define the generalized Hessian at X as the set

∂2�(X) = conv
(
{" ∈ {� : R31×32 → R31×32 linear} : ∃(X�)� ⊂ D� s. t. X� → X,∇2�(X�) → "}

)
.

Remark 2.3.3. Differentiable functions with locally Lipschitz continuous gradient are also called
C1,1 functions [HUSN84, KT88, CC90, YJ92] or !�1 functions [Qi94, Fac95] in the literature.
Definition 2.3.5 goes back to [HU77,HUSN84] and is based on the notion of generalized Jacobian
as defined by Clarke [Cla75, Cla90] — the generalized Hessian of Definition 2.3.5 is just the
generalized Jacobian of the gradient ∇� of �.

With Definition 2.3.5, we can formulate necessary second-order conditions for minima of
�n.

Theorem 2.5 ([HUSN84, Theorem 3.1]). Let � : R31×32 → R be a differentiable function with
whose gradient ∇� is Lipschitz continuous on R31×32 .

If X0 ∈ R31×32 is a local minimum of �, then ∇�(X) = 0 and for each Δ ∈ R31×32 , there exists
a matrix M ∈ ∂2�(X) such that

〈Δ,"Δ〉 ≥ 0.

Proof of Theorem 2.4. By Lemma 2.3.1, �n is differentiable with Lipschitz gradient

∇�n(X) = U dg

((
f7(X)

max(f7(X), n)2−>

)3
7=1

)
V∗ (2.62)

at X ∈ R31×32 , where X = U dg
(
f(X)

)
V∗ = U dg

(
f
)
V∗ is a singular value decomposition with

unitary matrices U ∈ O31 and V ∈ O32 .
Inserting X(9) = U9 dg

(
f(X(9))

)
V∗
9
into the definition (2.57) of the weight operator ,(9),

we see that

,(9)(X(9) = U9

[
H(9)1 ◦ dg

(
f(X(9))

) ]
V∗9 = U9 dg

((
f7(X(9))

max(f7(X(9)), n)2−>

)3
7=1

)
V∗9,

which shows the first statement of Theorem 2.4.
For the second statement of the theorem, let �n : R31×32 → R be the function such that

�n(X) := &n(X|X(9)) − �n(X) (2.63)

or any X ∈ R31×32 . It suffices to show that

�n(X) ≥ 0 (2.64)

75



for any X ∈ R31×32 .
As&n(·|X(9)) is quadratic, it is in C∞, and since �n(·) is differentiable with Lipschitz gradient,

also �n is differentiable with Lipschitz continuous gradient.
Furthermore, �n is coercive as a difference of a quadratic function and the function �n(·),

which is >-homogenous function (0 < > ≤ 1) or has logarithmic growth (> = 0). As �n is
continuous, (2.64) is shown therefore if all local minima of �n are non-negative, and this again
can be shown by showing that all points stationary points X satisfy �n(X) ≥ 0.

Let now X ∈ R31×32 be a stationary point of �n(·), i.e., let X be such that ∇�n(-) =
,(9)(X) − ∇�n(X) = 0 or, equivalently, such that

,(9)(X) = ∇�n(X). (2.65)

Thus, inserting (2.62) and the formula for ,(9) from Definition 2.3.4 into (2.65), we see that
(2.65) is equivalent to

U∗U(9)
[
H(9)1 ◦ (̃(U

∗
9UΣV∗V9) + H(9)2 ◦ )̃(U

∗
9UΣV∗V9)

]
V∗9V = dg

((
f7(X)

max(f7(X), n)2−>

)3
7=1

)
,

which can be written as

Ũ
[
H(9)1 ◦ (̃(Ũ

∗ΣṼ) + H(9)2 ◦ )̃(Ũ
∗ΣṼ)

]
Ṽ∗ = dg

((
f7(X)

max(f7(X), n)2−>

)3
7=1

)
, (2.66)

if we define Ũ =
(
C̃1, . . . , C̃31

)
= U∗U9 and Ṽ =

(̃
D1, . . . , D̃32

)
= V∗V9. As Ũ and Ṽ

are orthogonal matrices, their columns (̃C7)
31
7=1 and (̃D7)

32
7=1 constitute bases of R31 and R32 ,

respectively, and (̃C7̃D∗8 )
31,32
7=1,8=1 constitutes a basis of R31×32 as an outer product of two bases.

For the next proof step, we define the vectorization operator

vec : R31×32 → R3132 ,X =
[
X1 . . . X32

]
7→ Xvec =

©«
X1
...

X32

ª®®¬
that stacks the columns of a matrix X, and use the notation � = Ṽ ⊗ Ũ ∈ R3132×3132 for the
Kronecker product of Ũ and Ṽ. Furthermore, we write & ∈ R3132×3132 for the matricization of
the matrix operator that describes the basis transformation mapping from the coefficients of
the orthonormal basis{

1
√

2
(474
∗
8 + 484

∗
7 ), 474

∗
9 : 7, 8 ∈ [31], 9 ∈ [32 − 31]

}
∪

{
1
√

2
(474
∗
8 − 484

∗
7 ) : 7, 8 ∈ [31]

}
(2.67)

to the coefficients of the standard basis{
474
∗
8 : 7, 8 ∈ [31], 9 ∈ [32]

}
.

With this notation, by applying vec to both sides of (2.66), it can be seen that (2.66) is
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equivalent to

�&


diag

( (
(H(9)1 )7≤ 8

)
vec

)
diag

( (
(H(9)2 )7> 8

)
vec

) &∗�∗Σvec = (DX)vec

with the notation DX = dg
(

f7(X)
max(f7(X),n)2−>

)3
7=1

.
Let @ be the rank of X, i.e., @ = rank(X). By considering the restriction of

the latter equation to the entries corresponding to the the double index set � =

{(9, :) ∈ [31] × [32] : 9 , : or (9 = : and f9(-) = 0)}, we learn that

©«�&

diag

( (
(H(9)1 )7≤ 8

)
vec

)
diag

( (
(H(9)2 )7> 8

)
vec

) &∗�∗Σvec
ª®¬� = 0, (2.68)

where (v)� is the restriction of the vector v ∈ R3132 to the elements indexed by �, and
|� | = 3132 − @. Since �, &, &∗ and the diagonal matrix with entries of H1 and H2 are all of full
rank, their products are, and also

"�,: := ©«�&

diag

( (
(H(9)1 )7≤ 8

)
vec

)
diag

( (
(H(9)2 )7> 8

)
vec

) &∗ª®¬�,: (2.69)

is of full rank 3132 − @. Thus, there exist 3132 − @ columns of the matrix "�,: of (2.69) that are
linear independent. Let � ⊂ [31] × [32] be the double index set corresponding to this set of
3132 − @ columns.

Then, "�,� is of full rank 3132 − @, and in particular, it has an empty null space. As the
right hand side of (2.68) is zero, this entails that

(�∗Σvec)� = 0,

and since (�∗Σvec)� =
(
Ũ∗ΣṼ

)
�
, it follows that(

Ũ∗ΣṼ
)
7 8
= 0

for all (7, 8) ∈ �.
This shows that there can be at most @ non-zero entries in the (31 × 32)-matrix Ũ∗ΣṼ.
Furthermore, it holds that Ũ∗ΣṼ has, in fact, exactly @ non-zero entries, which are dis-

tributed across @ non-zero columns and @ non-zero rows. Indeed, if this was not the case, (2.66)
could not be fulfilled, as the matrix DX on the right hand side has rank @ (as rank(X) = @), and
as Ũ and Ṽ are orthogonal matrices and therefore of full rank.

This means that there exists an (@ × @) submatrix M1 of Ũ∗ΣṼ such that

M1 = P diag
(
f�(X)

)@
�=1

(2.70)

and M1 as exactly one non-zero entry in each row and in each column, and where P ∈ R@×@ is
a signed permutation matrix, cf. Definition 2.3.2. Since DX is non-zero at precisely the locations
where Σ = dg(f(X)) in non-zero, Ũ∗DXṼ has the same @ locations of non-zeros as Ũ∗ΣṼ, and
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there exists an an (@ × @) submatrix M2 of Ũ∗DXṼ such that

M2 = P diag
(

f�(X)
max(f�(X), n)2−>

)@
�=1

(2.71)

with the same matrix P as above.
Taking this into account, we can determine the singular values f1(X), . . . ,f@(X) of the

stationary point - . As (2.66) is equivalent to[
H(9)1 ◦ (̃(Ũ

∗ΣṼ) + H(9)2 ◦ )̃(Ũ
∗ΣṼ)

]
= Ũ∗DXṼ, (2.72)

we obtain the restricted matrix equations

H(9)1 ◦ (̃(Ũ
∗ΣṼ) = (̃(Ũ∗DXṼ), (2.73)

and
H(9)2 ◦ )̃(Ũ

∗ΣṼ) = )̃(Ũ∗DXṼ). (2.74)

Since Ũ∗ΣṼ and Ũ∗DXṼ have @ non-zero entries with @ non-zero rows and columns at the same
locations, and due to (2.70) and (2.71), there exist @ index pairs {(7�, 8�)@�=1} ⊂ [31] × [32] such
that (7�, 8�)@�=1 = [31] × [32] \ � =: �2, and it holds that

(Ũ∗ΣṼ)7,8 =

{
(Ũ∗ΣṼ)7�,8� = ±f�(X),
0,

and (Ũ∗DXṼ)7,8 =

{
(Ũ∗DXṼ)7�,8� = ±(DX)�,�, if (7�, 8�) ∈ �2,
0, otherwise,

(2.75)
where the sign of (Ũ∗ΣṼ)7�,8� and (Ũ

∗DXṼ)7�,8� always coincides.
Thus, for each � ∈ [@], we obtain up to two equations from (2.73) and (2.74), which can be

stated adequately if we define a function l : [@] → [@] ∪ ∅ such that for any � ∈ [@], l maps
to

l(�) =

{
�′ ∈ [@] if (Ũ∗ΣṼ)7�,8� = ±f�(X) and there exists �′ ∈ [@] s.t. (Ũ∗ΣṼ)8�,7� = ±f�′(X),
∅ otherwise.

In particular, let now � ∈ [@].
We consider now three cases: The case that l(�) = ∅, the case that l(�)�′ ∈ [@] such

that sgn
(
Ũ∗ΣṼ

)
7�,8�
= sgn

(
Ũ∗ΣṼ

)
7l(�),8l(�)

, and the third case such that l(�) , ∅ and also

sgn
(
Ũ∗ΣṼ

)
7�,8�
, sgn

(
Ũ∗ΣṼ

)
7l(�),8l(�)

.

Case 1: Suppose l(�) = ∅.
In this case (2.73) implies that

1
2
(H(9)1 )7�,8� (f�(X) + 0) =

1
2

f�(X)
max(f�(X), n)2−>

+ 0

and (2.74) implies that

1
2
(H(9)2 )7�,8� (f�(X) − 0) =

1
2

f�(X)
max(f�(X), n)2−>

− 0,
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which can only be fulfilled for f�(X) , 0 if (7�, 8�) are such that

max(f�(X), n) = (H
(9)

1 )
−1

2−>
7�,8�
= (H(9)2 )

−1
2−>
7�,8�

.

If > > 0, the (7, 8)-th entry of (H(9)1 ) and (H
(9)

2 ) only coincide if (7, 8) is a double index corre-
sponding to the diagonal, or if both 7� > '9 and 8 > '9 due to their definitions (2.58) and
(2.59). As diagonal indices (7�, 8�) are excluded due to l(�) = ∅, (H(9)1 )7�,8� = (H

(9)

2 )7�,8� can be
only true if

f�(X) =
[
(n>)1−2/>

]− 1
2−>
= n
−
>−2
2−> = n.

If > = 0, it follows that

f�(X) =
[
(f
(9)

7
∨ n)(f

(9)

8
∨ n)

]− 1
2
=



√
f
(9)

7
f
(9)

8
if 7, 8 ≤ '9,√

f
(9)

7
n if 7 ≤ '9, '9 < 8,√

f
(9)

8
n if 8 ≤ '9, '9 < 7,

n if '9 < 7, 8.

Case 2: Suppose l(�) = �′ ∈ [@] and sgn
(
Ũ∗ΣṼ

)
7�,8�
= sgn

(
Ũ∗ΣṼ

)
7l(�),8l(�)

.

In this case we obtain from (2.73) and (2.74) the equations

1
2
(H(9)1 )7�,8�

(
f�(X) + fl(�)(X)

)
=

1
2

(
f�(X)

max(f�(X), n)2−>
+

fl(�)(X)
max(fl(�)(X), n)2−>

)
(2.76)

and

1
2
(H(9)2 )7�,8�

(
f�(X) − fl(�)(X)

)
=

1
2

(
f�(X)

max(f�(X), n)2−>
−

fl(�)(X)
max(fl(�)(X), n)2−>

)
. (2.77)

Due to the symmetry of these equations, we assume that l(�) ≤ � without loss of generality. If
(7�, 8�) is such that (H(9)2 )7�,8� =

1
n2−> , (2.76) and (2.77) can be only fulfilled if f�(X),fl(�)(X) ≤ n.

Now let (H(9)2 )7�,8� <
1

n2−> .
By rearranging (2.77) we obtain

(H(9)2 )7�,8�f�(X) −
f�(X)

max(f�(X), n)2−>
= (H(9)2 )7�,8�fl(�)(X) −

fl(�)(X)
max(fl(�)(X), n)2−>

. (2.78)

As the function ℎ : (0,∞) → R,

f 7→ ℎ(f) := (H(9)2 )7�,8�f −
f

max(f, n)2−>

is only negative in the interval
(
0, (H(9)2 )

−1
2−>
7�,8�

)
, and has negative derivative for all f ∈ (0, n), and

positive derivative for f ∈
(
n, (H(9)2 )

−1
2−>
7�,8�

)
, we can infer from (2.78) that either

(a) fl(�)(X) = f�(X) or
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(b) fl(�)(X) < n < f�(X) ≤ (H
(9)

2 )
−1

2−>
7�,8�

.

In the case of (a), we can rearrange (2.76) to obtain

max(fl(�)(X), n) = max(f�(X), n) = (H
(9)

1 )
−1

2−>
7�,8�

.

For (b), we know that fl(�)(X)
max(fl(�)(X),n)2−>

=
fl(�)(X)
n2−> , and therefore substracting (2.77) from (2.76)

yields the equation

1
2
(H(9)1 )7�,8�

(
f� + fl(�)

)
−

1
2
(H(9)2 )7�,8�

(
f� − fl(�)

)
=
fl(�)

n2−> ,

f� := f�(X) and fl(�) := fl(�)(X), which can be rearranged such that

1
2

(
(H(9)1 )7�,8� − (H

(9)

2 )7�,8�

)
f� =

(
1

n2−> −
1
2

(
(H(9)1 )7�,8� + (H

(9)

2 )7�,8�

))
fl(�).

The left hand side of the latter equation is smaller or equal to 0 since

(H(9)2 )7�,8� − (H
(9)

1 )7�,8�

for any (7�, 8�), whereas the right hand side is strictly positive due to the assumption that

(H(9)2 )7�,8� <
1

n2−> .

This is a contradiction, which means that case (b) cannot occur.
To sum up, the only remaining possibilities for values of f� and fl(�) in Case 2 are

f� ≤ n and fl(�) ≤ n

(if 7� > '9 and 8� > '9) or

fl(�) = f� = (H
(9)

1 )
−1

2−>
7�,8�

.

Case 3: Suppose l(�) = �′ ∈ [@] and sgn
(
Ũ∗ΣṼ

)
7�,8�
, sgn

(
Ũ∗ΣṼ

)
7l(�),8l(�)

.

In this case, we obtain from (2.73) and (2.74) the equations

1
2
(H(9)1 )7�,8�

(
f� − fl(�)

)
=

1
2

(
f�

max(f�, n)2−>
−

fl(�)

max(fl(�), n)2−>

)
(2.79)

and
1
2
(H(9)2 )7�,8�

(
f� + fl(�)

)
=

1
2

(
f�

max(f�, n)2−>
+

fl(�)

max(fl(�), n)2−>

)
. (2.80)

As in Case 2, we can assume without loss of generality that fl(�) ≤ f�.
If fl(�) = f�, (2.79) is fulfilled, and we obtain

max(fl(�)(X), n) = max(f�(X), n) = (H
(9)

2 )
−1

2−>
7�,8�

from (2.80) implying that fl(�) = f� ≤ n if 7� > '9 and 8� > '9, and that fl(�) = f� = (H
(9)

2 )
−1

2−>
7�,8�

if (7�, 8�) is such that 7� ≤ '9 or 8� ≤ '9.
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Let now fl(�) < f�. Rearranging (2.79), we obtain

(H(9)1 )7�,8�f� −
f�

max(f�, n)2−>
= (H(9)1 )7�,8�fl(�) −

fl(�)

max(fl(�), n)2−>
, (2.81)

and as above, the monotonicity of f 7→ ℎ(f) := (H(9)1 )7�,8�f −
f

max(f,n)2−> implies that

fl(�) < n < f� ≤ (H
(9)

1 )
−1

2−>
7�,8�

,

since

ℎ′(f) =

{
(H(9)1 )7�,8� −

1
n2−> , if f ≤ n,

(H(9)1 )7�,8� + (1 − >)f
>−2, if f > n

and ℎ(f) < 0 if and only if f ∈
(
0, (H(9)1 )

−1
2−>
7�,8�

)
.

We now have considered all possible cases, and we conclude, as a summary, that for each
� ∈ [@], one of the following three statements is true:

fl(�)(X) = f�(X) = (H
(9)

1 )
−1

2−>
7�,8�

, (2.82)

fl(�)(X) < n < f�(X) ≤ (H
(9)

1 )
−1

2−>
7�,8�

(2.83)

(if (H(9)1 )
−1

2−>
7�,8�
> n) or

f�(X) ≤ n and fl(�)(X) ≤ n (2.84)

(if (H(9)1 )
−1

2−>
7�,8�
= n).

As the last part of the proof of Theorem 2.4, we now provide an alternative expression of
the function value of �n(·) at stationary points X. Let X again be a stationary point of �n(·) of
rank @. Then

�n(X) = �n(X(9)) +
1
2

(
〈X,,(9)(X)〉 − 〈X(9),,(9)(X(9))〉

)
− �n(X) = �̃n(X) − �̃n(X(9)) (2.85)

with the definition that �̃n(X) := 1
2 〈X, ,̃

(9)(X)〉 − �n(X). At stationary points X, �̃n can be
rewritten as a function of depending exclusively on the singular values of X. Recall that
' = |{� ∈ [3] : f�(X) > n}|. Indeed, we note that then, using (2.72) and the notation
f� = f�(X),

1
2
〈X, ,̃(9)(X)〉 =

1
2
〈Ũ∗ΣṼ,

[
H(9)1 ◦ (̃(Ũ

∗ΣṼ) + H(9)2 ◦ )̃(Ũ
∗ΣṼ)

]
〉 =

1
2
〈Ũ∗ΣṼ, Ũ∗DXṼ〉

=
1
2
〈Σ,DX〉 =


1
2

(
' +

∑
�:f�≤n

f2
�

n2

)
, if > = 0,

1
2

( ∑
�:f�>n

f
>

�
+

∑
�:f�≤n

f2
�

n2−>

)
, if 0 ≤ > ≤ 1,

and the value of the smoothed objective �n(X) at X is

�n(X) =

∑3
�=1

[
log (max(f�, n)) + 1

2

(
min(f�,n)2

n2 − 1
)]

, if > = 0,∑3
�=1

[
1
>

max(f�, n)> + 1
2

(
min(f�,n)2

n2−> − n>
)]

, if 0 ≤ > ≤ 1.
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This means that for > = 0, we obtain

�̃n(X) =
1
2
(' − (3 − ')) −

3∑
�=1

log (max(f�, n)) = −
3

2
−

3∑
�=1

log (max(f�, n)) (2.86)

and

�̃n(X) = −
(
1
>
−

1
2

) 3∑
�=1

max(f�, n)> (2.87)

for > > 0. Inserting this back in (2.85), this means that

�n(X) =


3∑
�=1

log
(
max(f�(X(9)), n)

)
−

3∑
�=1

log (max(f�(X), n)) if > = 0,(
1
>
− 1

2

) [
3∑
�=1

max(f�(X(9)), n)> −
3∑
�=1

max(f�(X), n)>
]

if 0 < > ≤ 1,
(2.88)

as X(9) is also a stationary point of �n.
Let now again X be an arbitrary stationary point of �n of rank @, and recall the double

index set �2 = {(7�, 8�)@�=1} ⊂ [31] × [32] of (2.75).
In the case of > = 0, by (2.82)–(2.84), we see that

3∑
�=1

log (max(f�(X), n)) =
@∑

�=1

log (max(f�(X), n)) + (3 − @) log(n)

≤

@∑
�=1

log
(
(H(9)1 )

−1
2
7�,8�

)
+ (3 − @) log(n)

=

@∑
�=1

log
(√

max(f(9)
7�
, n)

√
max(f(9)

8�
, n)

)
+ (3 − @) log(n)

=
1
2

(
@∑

�=1

log(max(f(9)
7�
, n)) +

@∑
�=1

log(max(f(9)
8�
, n))

)
+ (3 − @) log(n)

≤
1
2

(
@∑
7=1

log(max(f7(X(9)), n)) +
@∑
8=1

log(max(f8(X(9)), n))

)
+ (3 − @) log(n)

≤

3∑
7=1

log(max(f7(X(9)), n)),

where we used the definition (2.58) of H(9)1 in the second equality and the fact that, due to
the specific structure of the double index set �2 (see also (2.70) and (2.71)), each 7� ∈ [31] and
8� ∈ [32] can only occur once in the second inequality.
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Similarly, for > > 0, we calculate that

3∑
�=1

(max(f�(X), n)> =
@∑

�=1

(max(f�(X), n)> + (3 − @)n> ≤
@∑

�=1

(
(H(9)1 )

−1
2−>
7�,8�

) >
+ (3 − @)n>

=

@∑
�=1

©«
max(f(9)

7
, n)> +max(f(9)

8
, n)>

2
ª®¬
−
>−2
2−>

+ ((3 − @)n>

=
1
2

(
@∑

�=1

max(f(9)
7�
, n)> +

@∑
�=1

max(f(9)
8�
, n)>

)
+ (3 − @)n>

≤
1
2

(
@∑
7=1

max(f7(X(9)), n)> +
@∑
8=1

max(f8(X(9)), n)>
)
+ (3 − @)n>

≤

3∑
7=1

max(f7(X(9)), n)>,

using the same arguments as above.
Using this in (2.88), we conclude that

�n(X) ≥ �n(X(9)) = 0

for any stationary point X of �n.
By Theorem 2.5, it follows that there is no local minimum of �n with negative objective

value. Thus, �n ≥ 0 globally as �n is coercive, and this concludes the proof of Theorem 2.4.
�

2.3.4 Formulation of MatrixIRLS

Theorem 2.4 paves the ground for a new Iteratively Reweighted Least Squares algorithms
for low-rank matrix recovery, which we call MatrixIRLS. They optimize logdet or Schatten->
based objectives (2.48), and they are based precisely on the three basic steps of IRLS outlined
in the beginning of Section 2.3, where the quadratic upper bounds &n9(·|X

(9)) are defined with
the weight operators,(9) (2.57) from Definition 2.3.4.

Before we describe MatrixIRLS in a schematic way, we recall the original problem, affine
rank minimization (2.1), we are interested in: For a given linear operator Φ : R31×32 → R;

with non-trivial nullspace and observations Y ∈ R;, we are looking for the matrix X0 of lowest
rank such that Φ(X0) = Y.

We introduce the notation that the best rank-@ approximation T@(X) of a matrix X ∈ R31×32

with singular value decomposition X =
[
U(9) U(9)⊥

] [
diag(f7(X))@7=1 0

0 diag(f7(X))3@=+1

] [
V(9)

V(9)∗⊥

]
,

where U(9) ∈ R31×@ and V(9) ∈ R32×@ are matrices with orthonormal columns, is a matrix that
fulfills

T@(X) = U(9) diag(f7(X))@7=1V(9)∗ = arg min
Z:rank(Z)≤@

‖Z − X‖, (2.89)

where ‖ · ‖ can be any unitarily invariant norm. We note that the last inequality is nothing
but the famous Eckardt-Young-Mirsky theorem [EY36,Mir60].
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Algorithm 1 MatrixIRLS for low-rank matrix recovery
Input: Linear operator Φ : R31×32 → R;, observations y ∈ R;, rank estimate @̃, concavity

parameter 0 ≤ > ≤ 1.
Output: Sequences (X(9))9≥1 ⊂ R31×32 and (n9)9≥1.
Initialize 9 = 0, n(0) = ∞ and,(0) = id : R31×32 → R31×32 .
for 9 = 1, 2, . . . do

1. Use a conjugate gradient method to solve linearly constrained quadratic program

X(9) = arg min
Φ(X)=y

〈X,,(9−1)(X)〉. (2.90)

2. Find best rank-(̃@ + 1) approximation of X(9) to obtain T̃@(X(9)) = U(9) diag(f(9)
7
)̃@
7=1V(9)∗

and f(9)
@̃+1, update smoothing:

n9 = min
(
n9−1,f@̃+1(X(9))

)
(2.91)

3. Update ,(9) as in (2.57), using parameters n = n9 and > in (2.58) and (2.59), and the
information U(9),V(9) and f(9)1 , . . . ,f@̃+1 from item 2.

Algorithm 1 is defined in a way that has a few computational advantages compared to
other IRLS algorithms as [DDFG10,MF12,FRW11].

We defer implementation details and several computational aspects to Section 2.6.
The choice of the rule (2.91) for the update of the smoothing parameter n plays an important

role in the convergence analysis and also has major implications on the geometry of the
optimization landscape. On the other hand, there will be several rules that work well. We
refer to [Vor12,VD17, FPRW16] for smoothing parameter rules for IRLS algorithm that do not
depend on estimates of the model order @̃, but still would allow for a similar analysis.

2.4 Convergence Analysis of MatrixIRLS
In this section, we provide a theoretical convergence analysis of MatrixIRLS. Furthermore,
these convergence properties are put into a relation with existing convergence results about
other IRLS algorithms for low-rank matrix recovery such as IRLS-col and IRLS-row [FRW11,
MF12].

In Section 2.4.1, we first state some results that are the outcome of a majorize-minimization
interpretation of MatrixIRLS, which are enabled by the global majorization result of Theo-
rem 2.4. These results hold for any linear measurement operator Φ : R31×32 → R;.

We then proceed to a more refined local convergence analysis in Section 2.4.2, which
is based on a (local) restricted isometry property or null space property of the measurement
operator Φ.

2.4.1 Basic Properties and Minimization of Smoothed Objective

The statements of the following theorem guarantee that MatrixIRLS is actually a valid strategy
to minimize the auxiliary objectives �n, as they never increase the objective �n. Recall the
definition (2.48) of the smoothed logdet and smoothed Schatten-> objective �n : R31×32 → R,
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which was defined such that

�n(X) =

∑3
7=1

[
log (max(f7(X), n)) + 1

2

(
min(f7(X),n)2

n2 − 1
)]

, if > = 0,∑3
7=1

[
1
>

max(f7(X), n)> + 1
2

(
min(f7(X),n)2

n2−> − n>
)]

, if 0 < > ≤ 1.
(2.92)

Theorem 2.6 (Monotonicity & Stationary Points Are Accumulation Points). Let Φ : R31×32 →

R;, Y ∈ R;, 0 ≤ > ≤ 1 and @̃ ∈ N. Let (X(9), n9)9≥1 a sequence of outputs of MatrixIRLS
corresponding to these parameters. Then the following holds.

1. The sequence
(
�n9(X

(9))
)
9≥1 is non-increasing, i.e., �n9(X

(9)) ≤ �n9−1(X
(9−1)) for any 9 ∈ N.

2. For any 9 ∈ N,

�n9(X
(9)) ≥

{∑3
7=1 log

(
(f7(X(9))

)
if > = 0,

1
>
‖X(9)‖>(> if 0 < > ≤ 1,

where X(9) = U9 dg(f7(X))V∗9 is a singular value decomposition of X(9) ∈ R31×32 .

3. If > > 0 or if n̄ := lim9→∞ n9 > 0, then the iterates X(9) and X(9+1) fulfill lim9→∞ ‖X(9) −
X(9+1)‖� = 0.

4. If n̄ := lim9→∞ n9 > 0, then each subsequence of (X(9))9 has a convergent subsequence,
and each accumulation point X̄ of (X(9))9 is a stationary point of �n̄ subject to the linear
constraint {X : Φ(X) = Y}.

We provide a proof for the statements of Theorem 2.6 in Section 2.8.

Remark 2.4.1. 1. We note that the statements of Theorem 2.6 had been shown already for
the IRLS algorithms of [DDFG10, FRW11,MF12]. However, we in particular state this as
the majorization property (2.19) is not trivial for the tight quadratic bounds defined by the
,(9) from (2.57). In the variational framework of [DDFG10, FRW11,MF12], (2.19) is an
outcome of the minimization of the variational functional J (see, e.g., [DDFG10, (7.9)]),
an argument that is much harder to make for the more involved structure of the weight
operator of MatrixIRLS.

2. The assumption of statement 3. and 4. that n̄ := lim9→∞ n9 > 0 is not really a restriction
in a practical setting, at least if we know that a matrix 5 -0 ∈ R

31×32 of rank @ is compatible
with the measurements and if we used this knowledge algorithmitcally by chosing @̃ = @ in
MatrixIRLS: In this case, n̄ = 0 would just imply that iterates X(9) are of rank at most @ in
the limit case 9 → ∞, which is a desirable result, as we are interested in finding low-rank
solutions of the linear system.

The next lemma provides an explicit formula for the calculation of the new iterate X(9) of
MatrixIRLS and its characterization by optimality conditions. It is well-known in the IRLS
literature ([DDFG10, Eq. (1.9) and Lemma 5.2], [FRW11, Lemma 5.1]. We provide a proof in
Section 2.8 for completeness.

Lemma 2.4.1. Let 0 ≤ > ≤ 1 be arbitrary, let Φ : R31×32 → R; and y ∈ R;. Let ,(9−1) :
R31×32 → R31×32 be the weight operator of Definition 2.3.4 defined based on X(9−1) ∈ R31×32 .
Then the solution of (2.90) is unique and

X(9) = arg min
Φ(X)=y

〈X,,(9−1)(X)〉 = (,(9−1))−1
(
Φ∗

(
Φ(,(9−1))−1Φ∗

)−1
(y)

)
, (2.93)
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where (,(9−1))−1 : R31×32 → R31×32 is the inverse matrix operator of,(9−1).
Moreover, a matrix X(9) ∈ R31×32 coincides with the one of (2.93) if and only if

〈,(9−1)(X(9)), [〉 = 0 for all [ ∈ kerΦ and Φ(X(9)) = y. (2.94)

While (2.93) provides an explicit formula for the calculation of a new iterate X(9) of
MatrixIRLS, using this formula by calculating full matrix operator inversions can be quickly
prohibitive from a computational perspective for large data dimensions if the problem structure
is not fully used. We refer to Section 2.6 for a detailed discussion of these computational
aspects.

2.4.2 Local Convergence Theory: Superlinear Convergence Rates

In the following section, we state our main theoretical results about convergence properties
of the algorithm MatrixIRLS of Section 2.3.4. Furthermore, we discuss why they improve
considerably on what has been obtained for the algorithms IRLS-col and IRLS-row [FRW11,
MF12].

As discussed in Section 2.1.1, it cannot be expected that a low-rank matrix recovery algo-
rithm like MatrixIRLS succeeds to converge to a low-rank matrix without any assumptions on
the measurement operator Φ : R31×32 → R; that defines the recovery problem (2.1), i.e., the
problem

min
X∈R31×32

rank(X) subject to Φ(X) = y,

together with the data vector y ∈ R;.
Apart from the fact that the dimensionality of the range space of Φ needs to be larger than

the number of degrees of freedom deg 5 (X0) = @(31 + 32 − @) of the rank-@ matrix X0 to be
recovered, i.e.,

; ≥ deg 5 (X0) = @(31 + 32 − @),

it is desirable that Φ fulfills a certain genericity property, avoiding that there are more rank-@
solutions than X0 and ensuring that (2.1) is a well-conditioned problem.

Genericity assumptions of this type are, for example, rank null space properties as discussed
in Section 2.2.1, or the following restricted isometry property, which is a sufficient condition for
rank null space properties.

Definition 2.4.1 (Restricted isometry property (RIP)). The restricted isometry constant X@ > 0
of order @ of the linear map Φ : R31×32 → R; is defined as the smallest number such that

(1 − X@)‖X‖2� ≤ ‖Φ(X)‖
2
�2
≤ (1 + X@)‖X‖2�

for all matrices X ∈ R31×32 of rank at most @.
If Φ has a restricted isometry constant X@ < 1 for some @, we say that Φ fulfills the restricted

isometry property (RIP) of order @ with constant X@.

It can be shown (see proof of [CDK15, Theorem 4.1]) that the restricted isometry prop-
erty order 2@ with a constant X2@ <

2√
2+3
≈ 0.4531 implies the following strong rank null

space properties [FRW11,OMFH11,FR13], which are slightly stronger than the rank null space
properties discussed in Section 2.2.1.

Definition 2.4.2 (Strong Schatten-> null space property). Let 0 < > ≤ 1. We say that a linear
map Φ : R31×32 → R; fulfills the strong Schatten-> null space property (Schatten-> NSP) of
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order @ with constant 0 < W@ ≤ 1 if( @∑
7=1

f2
7 (X)

) >/2
<

W@

@1− >
2

( 3∑
7=@+1

f
>

7
(X)

)
(2.95)

for all X ∈ ker(Φ) \ {0}.

More precisely, it can be seen that X2@ <
2√
2+3

of Definition 2.4.1 implies that the strong

Schatten-> NSP (2.95) of order @ holds with the constant W@ =
(
√

2+1)>
2>

X
>

2@
(1−X2@)>

.
Linear maps that are instances drawn from certain random models are known to fulfill the

restricted isometry property with high probability if the number of measurements is sufficiently
large [DR16], and, a fortiori, the Schatten-> null space property. In particular, this is true for
sub-Gaussian linear measurement maps Φ : R31×32 → R; whose matrix representation is
such that

1
√
;
Φ̃ ∈ R;×3132 , where Φ̃ has i.i.d. standard sub-Gaussian entries, (2.96)

as it is summarized in the following lemma that is well-known in the compressed sensing
literature.

Proposition 2.4.1 ([CP11, Theorem 2.3]). Let @ ∈ N and 0 < X < 1. Then there exists constants
�(X) and �1 such that if Φ : R31×32 → R; is a sub-Gaussian random operator (e.g. as defined
in (2.96)) and if

; ≥ �(X)@(31 + 32),

then Φ fulfills the restricted isometry property of order @ with constant X@ = X, with probability
at least 1 − 4−�2;.

However, we note that there are also important linear operators Φ for which the properties
Definition 2.4.1 and Definition 2.4.2 do not hold, but which are generic enough to still allow for
a local convergence analysis of MatrixIRLS (or other low-rank matrix recovery algorithms).
In particular, this is case for the entrywise sampling operators Φ : R31×32 → R; such that

Φ(X)� = 〈47�4
∗
8�
,X〉 = X7�,8� for � = 1, . . . ,;, (2.97)

for any X ∈ R31×32 , where (7�, 8�) ∈ [31] × [32] are double index pairs for all � ∈ [;]. Such a Φ
can be used to define the well-known low-rank matrix completion problem [SRJ05,GNOT92,
CR09,Rec11]. ForΦ as in (2.97), it can be easily shown that the properties from Definition 2.4.1
and Definition 2.4.2 cannot hold if ; < 3132 [CR09].

To cover a class of linear operators as large as possible in our convergence analysis, we will
use Assumption 2.1 below. To state this assumption, we use the notion of the tangent space
) = )Z of the manifold of rank-@ matrices at a given matrix

Z =
[
U U⊥

] [
Σ 0
0 Σ⊥

] [
V∗

V∗⊥

]
, (2.98)

where U ∈ R31×@ and V ∈ R32×@ are matrices with orthonormal bases of the first @ left resp.
right singular vectors of X their columns, and Σ ∈ R@×@ and Σ⊥ ∈ R(31−@)×(32−@) being diagonal
matrices with the (ordered) singular values of X on their diagonals. In particular, we define
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) = )Z as the linear subspace of R31×32 of dimension @(31 + 32 − @) such that

)Z := {UM∗ + M̃V∗ : M ∈ R32×@, M̃ ∈ R31×@}. (2.99)

Tangent spaces as defined in (2.99) play an important role in Riemannian optimization ap-
proaches for low-rank matrix recovery [Van13,WCCL16a], but also in the analysis of convex
optimization approaches [CT10,Rec11].

Assumption 2.1. There exists a constant 2(@, 31, 32) depending on @ ∈ N, 31 and 32 and a radius
b > 0 such that the linear operator Φ : R31×32 → R; fulfills for a given matrix X ∈ R31×32 that

‖[‖� ≤ 2(@, 31, 32)‖P)⊥Z
[‖� for all [ ∈ kerΦ, (2.100)

for any Z ∈ R31×32 such that
‖Z − X‖(∞ ≤ bf@(X).

In (2.100), P)⊥Z
is the projection onto the orthogonal complement )⊥Z of the tangent space )Z of

the rank-@ manifold at Z as defined in (2.99).

We note that explicit formulas can be given for the action of P)Z (the projection onto the
tangent space )/) and P)⊥Z

[Rec11, Section 2]: It holds that for any X ∈ R31×32 ,

P)Z(X) = UU∗X + XVV∗ − UU∗XVV∗

and
P)⊥Z
(X) = (I −P)Z)(X) = (I − UU∗)X(I − VV∗).

Assumption 2.1 will be discussed and verified for measurement operators corresponding to
the matrix completion setting and others in Section 2.5.

In the following theorem, we provide a local convergence statement for MatrixIRLS in
the non-convex setting of > < 1 under Assumption 2.1, stating that the algorithm recovers a
rank-@ matrix X0 if the 9-th iterate obtain an iterate X(9) is close enough to X0.

Theorem 2.7 (Local Convergence with Superlinear Rate of order 2 − >). Let X0 ∈ R31×32 be
a matrix of rank @, and let Φ : R31×32 → R; be a linear operator that fulfills Assumption 2.1
for X0 with constant 2(@, 31, 32) and radius b > 0. If the output matrix X(9) ∈ R31×32 of the 9-th
iteration of MatrixIRLS with inputs Φ, y = Φ(X0), > ∈ [0, 1) and @̃ = @ fulfills

‖X(9) − X0‖(∞ ≤ min(b, Z)f@(X0) (2.101)

for some 0 < Z < 1 (which might depend on 3 and @), then

X(9)
9→∞
−−−−→ X0

if also the condition number ^ = f1(X0)
f@(X0)

of -0 and Z are sufficiently small, in particular, if ` from
(2.119) fulfills

`‖X(9) − X0‖
1−>
(∞
< 1. (2.102)

Furthermore, the local convergence rate is of order 2− > in the sense that ` from (2.119) (which
depends on 3, Z and ^) is such that

‖X(9+1) − X0‖(∞ ≤ `‖X
(9) − X0‖

2−>
(∞

. (2.103)
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The second part of Theorem 2.7 states that in a neighborhood of a low-rank matrix X0
that defining the problem data Y = Φ(X0), the algorithm MatrixIRLS converges to X0 with
a convergence rate that is superlinear of the order 2 − >, if Φ and X0 fulfill Assumption 2.1.
This means that for the very non-convex logdet-objective corresponding to > = 0, the local
convergence rate is even quadratic.

Remark 2.4.2. It is interesting to compare Theorem 2.7 with a related result for an IRLS algorithm
for the sparse vector recovery problem in [DDFG10, Theorem 7.9]. We observe that while the
statement describes the observed rates of convergence very accurately (cf. Section 2.7.2), the
experiments are much more optimistic about the size of the neighborhood enabling a fast rate
of convergence than condition (2.102). We leave a proof of a potentially larger radius of fast
convergence to future work.

In the rest of this section, we prove Theorem 2.7. In the proof of Theorem 2.7, we will use
the following bound on perturbations of the singular value decomposition, which is originally
due to [Wed72]. The result bounds the alignment of the subspaces spanned by the singular
vectors of two matrices by their norm distance, given a gap between the first singular values of
the one matrix and the last singular values of the other matrix that is sufficiently pronounced.

Lemma 2.4.2 (Wedin’s bound [Ste06]). Let X and sX be two matrices of the same size and their
singular value decompositions

X =
(
U U⊥

) (
Σ 0
0 Σ⊥

) (
V∗

V∗⊥

)
and sD =

(
sU sU⊥

) (
sΣ 0
0 sΣ⊥

) (
sV∗
sV∗⊥

)
,

where the submatrices have the sizes of corresponding dimensions. Suppose that X,U satisfying
0 < X ≤ U are such that U ≤ fmin(Σ) and fmax(sΣ⊥) < U − X. Then

‖sU∗⊥U‖(∞ ≤
√

2
‖X − sX‖(∞

X
and ‖sV∗⊥V‖(∞ ≤

√
2
‖X − sX‖(∞

X
. (2.104)

As a first step towards the proof of Theorem 2.7, we show the following lemma.

Lemma 2.4.3. Let X0 ∈ R31×32 be a matrix of rank @, let (X(9), n9 = f@+1(X(9))) be the output
sequence of Algorithm 1 for parameters Φ, y = Φ(X0), @ and 0 ≤ > ≤ 1 at the 9-th iteration, and
let (2.100) be fulfilled for X(9) and the corresponding tangent space onto the manifold of rank-@
matrices )9 := )X(9) with constant 2(@, 31, 32). Then

‖X(9+1) − X0‖(∞ ≤ 2(@, 31, 32)
2n

2−>
9
‖,(9)(X0)‖(1 , (2.105)

where,(9) : R31×32 → R31×32 is the weight operator (2.57) corresponding to X(9).

Proof of Lemma 2.4.3. Let [(9+1) := X(9+1) − X0. From (2.100), it follows that

‖[(9+1)‖2(∞ ≤ ‖[
(9+1)‖2� ≤ 2(@, 31, 32)

2‖P)⊥
9
([(9+1))‖2� (2.106)

We now recall the definition of the weight operator ,(9) : R31×32 → R31×32 from Defini-
tion 2.3.4, and if

X(9) = U9Σ9V∗9 =
[
U(9) U(9)⊥

] [
Σ(9) 0

0 Σ
(9)
⊥

] [
V(9)∗

V(9)∗⊥

]
(2.107)

is a singular value decomposition with U(9) ∈ R31×@, U(9)⊥ ∈ R31×(31−@), V(9) ∈ R31×@, V(9)⊥ ∈
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R32×(32−@), we have that

〈Z,,(9)(Z)〉 = 〈U∗9ZV9,H
(9)

1 ◦ (̃(U
∗
9ZV9) + H(9)2 ◦ )̃(U

∗
9ZV9)〉

= 〈(̃ ◦ (U∗9ZV9),H
(9)

1 ◦ (̃(U
∗
9ZV9)〉 + 〈)̃(U∗9ZV9),H

(9)

2 ◦ )̃(U
∗
9ZV9)〉

(2.108)

where (̃, )̃ , H(9)1 ∈ R
31×32 and H(9)2 ∈ R

31×32 are as in Definition 2.3.4.
If Z = P)⊥

9
([(9+1)) ∈ )⊥

9
, we know that U(9)∗Z = 0 and ZV(9) = 0, and therefore

U∗9ZV9 =

[
U(9)∗

U(9)∗⊥

]
Z

[
V(9) V(9)⊥

]
=

(
0 0
0 U(9)∗⊥ ZV(9)⊥

)
with U(9)∗⊥ ZV(9)⊥ ∈ R

(31−@)×(32−@).
By assumption of Lemma 2.4.3, we know that n9 = f@+1(X(9)), which means that '9 :=

|{7 ∈ [3] : f7(X(9)) > n}| ≤ @, and therefore (H(9)1 )7 8 = (H
(9)

2 )7 8 = n
>−2
9

for all 7, 8 > @. This
entails with (2.108) that

〈P)⊥
9
([(9+1)),,(9)(P)⊥

9
([(9+1)))〉

= n
>−2
9

(〈
(̃
(
U∗9P)⊥

9
([(9+1))V9

)
, (̃

(
U∗9P)⊥

9
([(9+1))V9

)〉
+

〈
)̃

(
U∗9P)⊥

9
([(9+1))V9

)
, )̃

(
U∗9P)⊥

9
([(9+1))V9

)〉)
= n

>−2
9
〈U∗9P)⊥

9
([(9+1))V9,U∗9P)⊥

9
([(9+1))V9〉

= n
>−2
9
〈P)⊥

9
([(9+1)),P)⊥

9
([(9+1))〉 = n

>−2
9
‖P)⊥

9
([(9+1))‖2� ,

using the cyclicity of the trace and the fact that U9 and V9 are orthonormal matrices.
Inserting this into (2.106), we obtain

‖[(9+1)‖2(∞ ≤ 2(@, 31, 32)
2n

2−>
9

〈
P)⊥

9
([(9+1)),,(9)(P)⊥

9
([(9+1)))

〉
≤ 2(@, 31, 32)

2n
2−>
9

〈
[(9+1),,(9)([(9+1))

〉
,

(2.109)

where the last inequality holds since ,(9) is positive definite and since〈
P)⊥

9
([(9+1)),,(9)(P)9([

(9+1)))
〉
= 0 due to the orthogonality of )9 and )⊥

9
. Due to

Lemma 2.4.1, we know that the new iterate X(9+1) fulfills

0 = 〈,(9)(X(9+1)), [(9+1)〉 = 〈,̃(9)([(9+1) + X0), [(9+1)〉,

and therefore〈
[(9+1),,(9)([(9+1))

〉
= −

〈
,̃(9)(X0), [(9+1)

〉
≤ ‖,(9)(X0)‖(1 ‖[

(9+1)‖(∞ ,

using Hölder’s inequality for Schatten-> (quasi-)norms [GGK00, Theorem 11.2]. Dividing
(2.109) by ‖[(9+1)‖(∞ concludes the proof of Lemma 2.4.3. �

In order to obtain a fast local convergence rate, it is crucial to bound ‖,(9)(X0)‖(1 . For this,
we split ‖,(9)(X0)‖(1 into three parts and estimate the parts separately by using the classical
singular subspace perturbation result of Lemma 2.4.2.

Lemma 2.4.4. Let,(9) : R31×32 → R31×32 be the weight operator (2.57) corresponding to X(9),
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let n9 = f@+1(X(9)) = f
(9)
@ and X0 ∈ R

31×32 be a rank-@ matrix. Then,(9)(X0)

(1
≤ @(1 − Z)>−2f@(X0)

>−1

(
1 + 4

‖[(9)‖(∞

n9

f1(X0)

f@(X0)
+ 2

‖[(9)‖2(∞

f@(X0)>n
2−>
9

f1(X0)

f@(X0)

)
.

Proof. Indeed, using the decompositions

H(9)1 =

[
(H(9)1 )U,V (H(9)1 )U,V⊥

(H(9)1 )U⊥,V (H(9)1 )U⊥,V⊥

]
and

H(9)2 =

[
(H(9)2 )U,V (H(9)2 )U,V⊥

(H(9)2 )U⊥,V (H(9)2 )U⊥,V⊥

]
of the weighting factor matrices of Definition 2.3.4 with (H(9)1 )U,V, (H

(9)

2 )U,V ∈ R@×@, we note
that

max
7∈[@],8∈[@]

((H(9)1 )U,V)7 8 = max
7∈[@],8∈[@]

(H(9)1 )7 8 ≤


1

f
(9)
@ ·f

(9)
@

if > = 0,(
(f
(9)
@ )

>+(f
(9)
@ )

>

2

)1−2/>
if > > 0,

= (f
(9)
@ )

>−2,

max
7∈[@],8∈[@]

((H(9)2 )U,V)7 8 = max
7∈[@],8∈[@]

(H(9)2 )7 8 ≤
(f
(9)
@ )

>−1 + (f
(9)
@ )

>−1

f
(9)
@ + f

(9)
@

= (f
(9)
@ )

>−2,

(2.110)

and

max
(
max
7,8
((H(9)1 )U,V⊥)7 8,max

7,8
((H(9)1 )U⊥,V)7 8

)
= max

7∈[@],@+1≤ 8≤32
(H(9)1 )7 8 ≤

(
(f
(9)
@ )

> + n
>

9

2

)1−2/>

≤

√
(f
(9)
@ )

>−2n
>−2
9
≤ 2(f(9)@ )

>/2−1n
>/2−1
9

,
(2.111)

using the the fact that
(
(f
(9)
@ )

>+n
>

9

2

)1−2/>

is the ? = >

>−2 -th power mean of (f(9)@ )>−2 and n
>−2
9

,√
(f
(9)
@ )

>−2n
>−2
9

the geometric mean (? = 0) and the power mean inequality [Bul03, Section
III.3, Theorem 1] in the second inequality. Furthermore,

max
(
max
7,8
((H(9)2 )U,V⊥)7 8,max

7,8
((H(9)2 )U⊥,V)7 8

)
= max

7∈[@],@+1≤ 8≤32
(H(9)2 )7 8 ≤

(f
(9)
@ )

>−1 + n
>−1
9

f
(9)
@ + n9

≤
2n>−1

9

f
(9)
@

≤ 2(f(9)@ )
>/2−1n>/2−1

(2.112)

and
max
7,8
((H(9)1 )U⊥,V⊥)7 8 = max

7,8
((H(9)2 )U⊥,V⊥)7 8 = n

>−2
9

. (2.113)

In view of these entrywise bounds on the submatrices of H(9)1 and H(9)2 , we calculate, using the

91



definition of the weight operator (2.57) and (2.107), that,(9)(X0)

(1
≤

U(9)[(H(9)1 )U,V ◦ (̃(U(9)∗X0V(9)) + (H(9)2 )U,V ◦ )̃(U(9)∗X0V(9))]V(9)∗

(1

+

U9

[
H(9)1 ◦ (̃

([
0 U(9)∗X0V(9)⊥

U(9)∗⊥ X0V(9) 0

])
+ H(9)2 ◦ )̃

([
0 U(9)∗X0V(9)⊥ )

U(9)∗⊥ X0V(9) 0

])]
V∗9


(1

+

U(9)⊥ [(H
(9)

1 )U⊥,V⊥ ◦ (U
(9)∗
⊥ X0V(9)⊥ )]V

(9)∗
⊥


(1
=: (I) + (II) + (III).

We now bound the terms (I), (II) and (III) separately.
First, we see that

(I) =
(H(9)1 )U,V ◦ (̃(U(9)∗X0V(9)) + (H(9)2 )U,V ◦ )̃(U(9)∗X0V(9))


(1

≤
√
@

(H(9)1 )U,V ◦ (̃(U(9)∗X0V(9)) + (H(9)2 )U,V ◦ )̃(U(9)∗X0V(9))

�

≤
√
@

(H(9)1 )U,V ◦ (̃(U(9)∗X(9)V(9)) + (H
(9)

2 )U,V ◦ )̃(U(9)∗X(9)V(9))

�

+
√
@

(H(9)1 )U,V ◦ (̃(U(9)∗[(9)V(9)) + (H
(9)

2 )U,V ◦ )̃(U(9)∗[(9)V(9))

�

≤
√
@

(H(9)1 )U,V ◦ Σ
(9)


�
+
√
@(f
(9)
@ )

>−2‖U(9)∗[(9)V(9)‖� ,

where we used the Cauchy-Schwartz inequality in the first inequality, the notation [(9) =

X(9)−X0 and the triangle inequality in the second inequality and (2.110) in the third inequality.
Since (H(9)1 )U,V ◦ Σ

(9)

�
=

(
@∑
7=1

(f
(9)

7
)2>−2

)1/2

≤
√
@(f
(9)
@ )

>−1

and
‖U(9)∗[(9)V(9)‖� ≤

√
@‖U(9)∗[(9)V(9)‖(∞ ≤

√
@‖[(9)‖(∞ ≤

√
@Zf@(X0)

from assumption (2.138), it follows then that

(I) ≤ @(f(9)@ )
>−2

(
f
(9)
@ + Zf@(X0)

)
.

We can use the proximity assumption (2.138) further to get rid of the dependence on 9 in the
bound, as

f@(X0) = f@(X(9) − [(9)) ≤ f
(9)
@ + f1([

(9)) = f
(9)
@ + ‖[

(9)‖(∞ ≤ f
(9)
@ + Zf@(X0),

using f7+8−1(A) ≤ f7(A + B) + f8(B) for any 7, 8 (cf. [HJ91, Theorem 3.3.16]) with A + B =
- (9) − [(9) and B = [9 so that

f
(9)
@ ≥ (1 − Z)f@(X0), (2.114)

and hence

(I) ≤ @(f@(X0)
>−2(1 − Z)>−2 (f@(X0)(1 − Z) + Zf@(X0)) = @(1 − Z)>−2f@(X0)

>−1. (2.115)
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For the term (II), we calculate that

(II) ≤
√

2@

H(9)1 ◦ (̃

([
0 U(9)∗X0V(9)⊥

U(9)∗⊥ X0V(9) 0

])
+ H(9)2 ◦ )̃

([
0 U(9)∗X0V(9)⊥ )

U(9)∗⊥ X0V(9) 0

])
�

≤ 2
√

2@(f(9)@ )
>/2−1n

>/2−1
9

(U(9)∗X0V(9)⊥

�
+

U(9)∗⊥ X0V(9)

�

)
≤ 2
√

2@(f(9)@ )
>/2−1n

>/2−1
9

(
‖U(9)∗U0Σ0‖� ‖V∗0V(9)⊥ ‖(∞ + ‖U

(9)∗
⊥ U0‖(∞ ‖Σ0V∗0V(9)‖�

)
,

using the singular value decomposition X0 = U0Σ0V∗0 of the rank-@ matrix X0 with U0 ∈ R
31×@,

V0 ∈ R32×@. This allows us to use the singular subspace perturbation result of Lemma 2.4.2,
so that ‖V∗0V(9)⊥ ‖(∞ and ‖U(9)∗⊥ U0‖(∞ can compensate for the negative power of the n9, avoiding
a blow-up of term (II): Indeed, using Lemma 2.4.2 with X = X0, sX = X(9), U = f@(X0) and
X = (1 − Z)f@(X0) results in

max(‖V∗0V(9)⊥ ‖(∞ , ‖U
(9)∗
⊥ U0‖(∞) ≤

√
2‖[(9)‖(∞

(1 − Z)f@(X0)
,

and since ‖U(9)∗U0Σ0‖� ≤ ‖Σ0‖� ≤
√
@f1(X0), ‖Σ0V∗0V(9)‖� ≤

√
@f1(X0), and n

>/2
9
≤ (f

(9)
@ )

>/2,
we obtain with (2.114) that

(II) ≤ 4@(1 − Z)>−2f@(X0)
>−1 ‖[

(9)‖(∞

n9

f1(X0)

f@(X0)
. (2.116)

It remains to bound the last term (III). For (III), we can use subspace perturbation lemma
twice in the same summand and (2.113), such that

(III) =
(H(9)1 )U⊥,V⊥ ◦ (U

(9)∗
⊥ X0V(9)⊥ )


(1
= n

>−2
9
‖U(9)∗⊥ X0V(9)⊥ ‖(1 ≤

√
@n

>−2
9
‖U(9)∗⊥ X0V(9)⊥ ‖�

≤
√
@n

>−2
9
‖U(9)∗⊥ U0‖(∞ ‖Σ0‖� ‖V∗0V(9)⊥ ‖(∞

≤
√
@n

>−2
9

√
2‖[(9)‖(∞

(1 − Z)f@(X0)

√
@f1(X0)

√
2‖[(9)‖(∞

(1 − Z)f@(X0)
= 2@(1 − Z)−2n

>

9
f@(X0)

−1
‖[(9)‖2(∞

n2
9

f1(X0)

f@(X0)
.

(2.117)

Combining (2.115)–(2.117) finally yields the statement of Lemma 2.4.4. �

We can now put Lemma 2.4.3 and Lemma 2.4.4 together to prove the local convergence
statement of Theorem 2.7.

Proof of Theorem 2.7. Let 9 = 90 and X(9) be the 9-th iterate of MatrixIRLSwith the parameter
stated in Theorem 2.7. Then, by Lemmas 2.4.3 and 2.4.4,

‖X(9+1)−X0‖(∞ ≤ 2(@, 31, 32)
2n

2−>
9

@(1−Z)>−2f@(X0)
>−1

(
1 + 4

‖[(9)‖(∞

n9

f1(X0)

f@(X0)
+ 2

‖[(9)‖2(∞

f@(X0)>n
2−>
9

f1(X0)

f@(X0)

)
,

and, since ‖[(9)‖(∞ ≤ Zf@(X0) due to (2.138) and since

n9 ≤ f@+1(X(9)) = ‖X(9) − X(9)@ ‖(∞ ≤ ‖X
(9) − X(9)0 ‖(∞ = ‖[

(9)‖(∞ ,

where X(9)@ ∈ R31×32 denotes the best rank-@ approximation of X(9) in any unitarily invariant
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norm, we obtain

‖X(9+1) − X0‖(∞ ≤
2(@, 31, 32)

2@ (1 + 4^ + 2Z>^))
(1 − Z)2−>f@(X0)1−>

‖X(9) − X0‖
2−>
(∞

, (2.118)

using the notation ^ := f1(X0)/f@(X0).
Thus, the statement of Theorem 2.7 is shown with

` :=
2(@, 31, 32)

2@ (1 + 4^ + 2Z>^)
(1 − Z)2−>f@(X0)1−>

. (2.119)

�

As already mentioned in the discussion of existing approaches in Section 2.3.1, a statement
about superlinear convergence of the IRLS algorithms low-rank matrix recovery variants of
[MF12, FRW11, LXY13] as Theorem 2.7 has not been shown, and in fact, is not observed nu-
merically, as will be investigated in Section 2.7.2. For algorithm of [KS18] which combines
the weights of IRLS-col and IRLS-row as their harmonic mean (2.39), a comparable state-
ment as Theorem 2.7 was shown, relying a stronger Schatten-> null space property as defined
inDefinition 2.4.2 instead of Assumption 2.1.

Remark 2.4.3. We note that the weight operators of the previously studied IRLS approaches
IRLS-col and IRLS-row [FRW11, MF12] expressed in a notation similar to (2.39) or Defini-
tion 2.3.4 such that

,(9)(X) = U9

[
H(9) ◦

(
U∗9XV9

) ]
V∗9

where H(9) ∈ R31×32 is such that

(H(9))7 8 =
(
f7(X(9))2 + n2

9

) >/2−1
, for any 7 ∈ [31], 8 ∈ [32] (2.120)

for IRLS-col and such that

(H(9))7 8 =
(
f8(X(9))2 + n2

9

) >/2−1
, for any 7 ∈ [31], 8 ∈ [32] (2.121)

for IRLS-row.
It turns out that for both IRLS-col and IRLS-row, there are some entries of H(9) that are

too large to allow for superlinear convergence rates. In fact, if we consider the tangent space

)9 = {U(9)M∗ + M̃V(9)∗ : M ∈ R32×@, M̃ ∈ R31×@}

onto the rank-@ manifold at iterate X(9) (U(9) and V(9) are, as above, the matrices of first @ left
resp. right singular vectors) or, which is, from a different point of view, the direct sum of the
spaces spanned by the first @ left singular vectors and the first @ right singular vectors, there are
indices of H(9) corresponding to some parts of )9 with simply too large entries resp. weights.

To be precise, if we tried to replicate the proof of Lemma 2.4.4 by a decomposition of the term
‖,(9)(X0)‖(1 such that

,(9)(X0)

(1
≤

U(9)[(H(9))U,V ◦ (U(9)∗X0V(9))]V(9)∗

(1
+

U9

[
H(9) ◦

(
0 U(9)∗X0V(9)⊥

U(9)∗⊥ X0V(9) 0

)]
V∗9


(1

+

U(9)⊥ [(H
(9))U⊥,V⊥ ◦ (U

(9)∗
⊥ X0V(9)⊥ )]V

(9)∗
⊥


(1
=: (I) + (II) + (III),
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some of the entries of H(9) active in term (II) are too large, if H(9) is as in (2.120) or (2.121).
A similar situation would arise if H(9)1 of (2.58) was defined as any ?-power mean of f̃(9)

7
=

max(f(9)
7
, n)>−2 and f̃(9)

8
= max(f(9)

8
, n)>−2 of power ? > 0, i.e., of any power mean that is larger

than the geometric mean. In particular, by this argument, it can be seen that the straightforward
choice of arithmetic mean of f̃(9)

7
and f̃(9)

8
would not lead to a superlinear convergence rate for

> < 1.

2.5 Measurement Models for MatrixIRLS with Guarantees From an Optimal
Number of Samples

In this section, we will verify Assumption 2.1 for several measurement models that arise in
well-studied applications, and corresponding linear operators Φ : R31×32 → R;. This makes
sure that Theorem 2.7 is applicable for these measurement models.

By doing this, in particular, we show that Theorem 2.7 holds for

• operators Φ with dense sub-Gaussian matrices with independent entries as covered by
Proposition 2.4.1,

• symmetric rank-one measurements as in the phase retrieval setting,

• entry-wise measurements that correspond to a matrix completion setting,

for a sample complexity or number of measurements ; that is optimal up to dimension-free
constants.

2.5.1 Sub-Gaussian Measurements

The in some sense most generic linear operators Φ : R31×32 → R; for our purposes are dense,
so called sub-Gaussian operators.

Definition 2.5.1 ([Ver18, Chapter 2.5]). We call a linear operator Φ : R31×32 → R; sub-
Gaussian if its action on matrices X ∈ R31×32 is such that

Φ(X)� = 〈A�,X〉

for all � ∈ [;], where (A�)
;
�=1 are independent (31 × 32)-dimensional random matrices whose

entries ((A�)7 8)7 8, 7 ∈ [31], 8 ∈ [32], are independent and fulfill

P(|(A�)7 8 | ≥ B) ≤ 2 exp(−B2/ 2) (2.122)

for some constant  > 0.

We note that an important special case of sub-Gaussian measurement operators are Gaus-
sian operators, whose entrywise random variables (A�)7 8 are centered Gaussian random vari-
ables. Low-rank recovery problems with measurement operators Φ as in Definition 2.5.1 have
been widely studied in the literature [RFP10, JMD10,TBS+16,PKCS18,ZLTW18].

They have been mentioned already in (2.96) in Section 2.4.2, and they are a popular object
of study because they fulfill a restricted isometry property (see Definition 2.4.1), with high
probability, already for a number measurements ; that is

; ≈ �@(31 + 32),

for some constant � > 1, which is close to the number of degrees of freedom deg 5 of a rank-@
matrix of dimension (31 × 32), see the discussion of Section 2.1.1. That statement corresponds
to Proposition 2.4.1.
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In the following, we verify that for sub-Gaussian operators Φ, Assumption 2.1 is fulfilled
with high probability for a number of measurements ; that are at least a constant multiple of
the number of degrees of freedom of the low-rank model.

Proposition 2.5.1. Let Φ : R31×32 → R; be a sub-Gaussian operator as defined in Defini-
tion 2.5.1, let @ ∈ N. Then there exists a constant � > 1 such that if

; ≥ �@(31 + 32),

the following statements hold with high probability.

1. Φ fulfills the strong Schatten-1 null space property of Definition 2.4.2 of order @ with a
constant 0 < W@ ≤ 1.

2. Φ fulfills (2.100) of Assumption 2.1 for all tangent spaces ) = )Z onto the rank-@ manifold
with constant 2(@, 31, 32) such that

2(@, 31, 32) ≤

√
23
@
.

Proof. Fixing X < 4√
41
, we know from Proposition 2.4.1 that if

; ≥ 2�(X)@(31 + 32),

Φ fulfills the restricted isometry property of Definition 2.4.1 of order 2@ with restricted isometry
constant X2@ = X with high probability. By applying an adaptation of [FR13, Theorem 6.13] to
the rank case, it follows that then

‖[@‖� <
W@
√
@
‖[2‖(1 (2.123)

for all matrices [ ∈ kerΦ, if [@ is a best rank-@ approximation of [ ∈ R31×32 and [2 = [ − [@,
with a constant of W@ = X√

1−X2−X/4
< 1, i.e., Φ fulfills the strong Schatten-1 null space property

of order @ with this constant W@ < 1.⁴ This shows the first statement.
Furthermore, we can then calculate that

‖[‖� ≤ ‖[@‖� + ‖[2‖� ≤
W@
√
@
‖[2‖(1 + ‖[2‖�

≤

(
W@
√
3 − @ +

√
@

√
@

)
‖[2‖� ≤

√
23
@
‖[2‖� ,

where we used (2.123) in the second inequality and the Cauchy-Schwarz inequality on the
vector of singular values of [2 in the third inequality.

Finally, we note that

[2 = P)[⊥
([) = (I − U[U∗[)[(I − V[V∗[)

with U[ ∈ R31×@ and V[ ∈ R32×@ being the matrices with the first @ left resp. right singular

⁴Alternatively, while arriving at slightly different constants, following the proof of [CDK15, Theorem 4.1] results
in qualitatively the same statement.
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vectors of [ in their columns. By [Dax10, Corollary 31], it then follows that

‖[2‖� = ‖(I − U[U∗[)[(I − V[V∗[)‖� ≤ ‖P)⊥([)‖�

for any tangent space ) (2.99) of the rank-@ manifold. This shows that (2.100) is fulfilled with

2(@, 31, 32) =

√
23
@
.

�

With Proposition 2.5.1, we can specify Theorem 2.7 for the case of sub-Gaussian measure-
ment operators Φ.

Corollary 2.5.1 (Local convergence statement for sub-Gaussian operators). Let X0 ∈ R
31×32 be

a matrix of rank @, and let Φ : R31×32 → R; be a sub-Gaussian operator as in Definition 2.5.1.
There exists a constant � ≥ 1 such that if

; ≥ �@(31 + 32),

with high probability, the following holds: If the output matrix X(9) ∈ R31×32 of the 9-th iteration
of MatrixIRLS with inputs Φ, y = Φ(X0), > ∈ [0, 1) and @̃ = @ fulfills

‖X(9) − X0‖(∞ ≤
1(

23−>(1 + 6^)3
) 1

1−>
f@(X0), (2.124)

then
X(9)

9→∞
−−−−→ X0

and furthermore, the local convergence rate is of order 2 − > in the sense that

‖X(9+1) − X0‖(∞ ≤ `‖X
(9) − X0‖

2−>
(∞

(2.125)

with

` :=
23−>3(1 + 6^)
f@(X0)1−>

.

Proof. We first note that by Proposition 2.5.1, Assumption 2.1 is fulfilled in the sense that

(2.100) holds, with high probability, for all matrices Z ∈ R31×32 with 2(@, 31, 32) =

√
23
@
. Thus,

b of Theorem 2.7 can be chosen such that b = ∞, which does not impose any restriction on
the statement.

Now, we quantify when the condition

`‖X(9) − X0‖
1−>
(∞
< 1 (2.126)

is fulfilled: With ˜̀as in (2.119) and ‖X(9) − X0‖(∞ ≤ Zf@(X0), we see that

˜̀‖X(9) − X0‖
1−>
(∞
=

23
@
@ (1 + 4^ + 2Z>^)
(1 − Z)2−>f@(X0)1−>

‖X(9) − X0‖
1−>
(∞
≤

2 · 22−> (1 + 4^ + 2^)
f@(X0)1−>

Z1−>f@(X0)
1−>

= 23−>(1 + 6^)Z1−> < 1,

if
Z <

1

2(3−>)/(1−>)(1 + 6^)1/(1−>)3
1

1−>
.
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This shows that (2.126) is fulfilled if

‖X(9) − X0‖(∞ <
1

2(3−>)/(1−>)(1 + 6^)1/(1−>)3
1

1−>
f@(X0),

and the statement of Corollary 2.5.2 is shown for the choice of

` =
23−>3(1 + 6^)
f@(X0)1−>

.

�

2.5.2 Phase Retrieval with Gaussian Measurements

While sub-Gaussianmeasurement operators as described above have nice theoretical properties
as they exhibit restricted isometry properties already if the number of measurements is quite
small, direct applications of these operators in the low-rank matrix recovery setting are scarce.
An additional issue that limits their applicability in large-scale data analysis settings is the fact
that they pose computational challenges for many algorithms:

If Φ : R31×32 → R; is sub-Gaussian as in Section 2.5.1, the time complexity of calculating
Φ(X) for an arbitrary matrix X ∈ R31×32 is $(;3132), which cannot be smaller than

$(@3�2)

even if ; ∼ @(31 + 32) (recall the notation 3 = min(31, 32) and � = max(31, 32)).
In the following, we briefly explain the applicability of MatrixIRLS for the so-called phase

retrieval problem [GS72, Fie82, CESV13, CSV13, CLS15], which arises in astronomy [FD87],
microscopy [TLRW14] and X-ray crystallography [Mil90].

If x0 ∈ C3 is a complex-valued object (often a vectorization of a 2D image), in these
applications, what happens mathematically is that the only knowledge about the object itself
is provided through ; phaseless linear measurements

(G�)
;
�=1 = y = |Ax0 |

2 = (|〈a�, x0〉|
2);�=1, (2.127)

where

A =


a∗1
a∗2
...

a∗;


is a complex (; × 3) matrix with rows a∗

�
. In particular, the phase (or in a real setting, the

sign of) the linear measurements 〈a�, x0〉, � = 1, . . . ,; is not available for the decoder or
reconstruction algorithm.

If the number of measurements ; ≥ 3 is large enough, however, it is possible to show that
x can be reconstructed uniquely from the phaseless measurements [BCE06, EM14] for many
sets of measurement vectors (a�)�=1; . In many cases, it is possible to obtain reconstructions
by tractable algorithms in these cases [GS72,Fie82,CESV13,CSV13,CLS15].

In [CESV13,CSV13,CL14], it was demonstrated that the phase retrieval problem can actually
be reformulated as a recovery problem of a rank-one matrix of size (3 × 3). In fact, if we define
the matrix X0 := x0x∗0 ∈ C

3×3 , the measurements (2.127) which are quadratic in x0

G� = |〈a�, x0〉|
2 = a∗�x0x∗0a� = a∗�X0a�
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become linear in X0, and we know that the rank-one and positive definite matrix X0 is a
solution to the linear system

Φ(X) = y

with linear operator Φ : C3×3 → C; such that

Φ(X)� = a∗�Xa� = tr(a∗�Xa�) = tr(a� 5 0∗�X) = 〈a�a
∗
�,X〉 (2.128)

for all � ∈ [;]. Algorithmically, it was proposed in [CESV13,CSV13] that X0 could be recovered
by solving the nuclear norm minimization problem

min
X∈C3×3 ,X�0

‖X‖(1 subject to Φ(X) = y (2.129)

with Φ as in (2.128), and, once X0 is calculated, the vector x0 ∈ C
3 with correct phase can be

easily calculated as it is the only eigenvector of X0 with non-zero eigenvalue.
From a theoretical point of view, the works [CESV13, CSV13, KKRT16] established that

with high probability, (2.129) successfully recovers any vector x0 ∈ C3 from corresponding
measurements y = Φ(x0x∗0), if the a� are random complex Gaussian vectors and if

; ≥ 23

for a fixed constant 2 > 1.
The Gaussian assumption on the measurement vector a� may not fully correspond to

the structure of the phaseless measurements in applications of phase retrieval in astronomy or
microscopy, where some type of windowed or modulated Fourier measurements are more com-
mon [CSV13], but they are already more realistic than the sub-Gaussian operators described
in Definition 2.5.1.

While it is more difficult to incorporate the positive definiteness constraint X � 0 of (2.129)
into the IRLS framework explicitly, it is natural to apply MatrixIRLS to optimize

min
X∈C3×3 :X∗=X

�>,n(X) subject to Φ(X) = y

with �>,n(X) as in (2.48) using Algorithm 1 with, for example, > = 0 and @̃ = 1. It is to be
expected that in case enough measurements ; are provided, there is not only a unique rank-
one positive definite matrix compatible with the measurements, this solution is also unique
among all Hermitian rank-ones matrices [KKRT16].

The theory of this chapter mainly addressed the case of real low-rank matrices X, but the
entire theory can be also translated to the complex domain without many changes.

The fact that the Hermitian constraint X∗ = X can be incorporated into MatrixIRLS quite
easily comes from the fact that for Hermitian matrices X(9), the subspaces spanned by the
first @ left and right singular vectors are the same, so setting V9 = U9 in the definition of the
weight operator,(9) (see again Definition 2.3.4) of MatrixIRLS allows us to define the weight
operator such that

,(9)(X) = U9

[
H(9)1 ◦ (U

∗
9XU9)

]
U∗9 (2.130)

for X ∈ C3×3 , where (H(9)1 ) ∈ R
3×3 is defined as in (2.58). In (2.130), the weights corresponding

to (H(9)2 ) do not appear, since the projection onto the anti-Hermitian part )̃ : C3×3 → C3×3 ,
)̃(X) := 1

2 (X − X∗) (see (2.55)) is zero if applied to a Hermitian matrix X.
Using the weight operator from (2.130), we obtain the following proposition.
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Proposition 2.5.2 (Preservation of Hermiticity by weight operator). Let X(9) ∈ C3×3 be a
Hermitian matrix with singular value decomposition X(9) = U9 dg(f(9))V∗

9
. Then the weight

operator ,(9) : C3×3 → C3×3 of (2.130) preserves Hermiticity, i.e., for any X ∈ C3×3 with
X∗ = X, it holds that (

,(9)(X)
)∗
=,(9)(X).

Proof. By its definition, the matrix (H(9)1 ) ∈ R3×3 of (2.58) is real symmetric as 3 = 31 = 32,
so it is Hermitian as a matrix over the complex domain. Thus,(

,(9)(X)
)∗
=

(
U9

[
H(9)1 ◦ (U

∗
9XU9)

]
U∗9

)∗
= U9

[
H(9)∗1 ◦ (U∗9X

∗U9)

]
U∗9 = U9

[
H(9)1 ◦ (U

∗
9XU9)

]
U∗9

=,(9)(X),

using that X∗ = X. �

Using results from [KKRT16] about null space properties for measurement operators Φ :
C3×3 → C; with rank-one measurements (2.127) that are complex Gaussian, we can specify
Theorem 2.7 for the phase retrieval setting.

Corollary 2.5.2 (Local convergence of MatrixIRLS for Phase Retrieval). Let 5 F0 ∈ C3 , and
assume the measurement operator Φ : C3×3 → C; consists of independent complex Gaussian
rank-one measurements (a�);�=1 as in (2.128), i.e., the 3-dimensional random vectors (a�);�=1
are independent with independent complex standard Gaussian entries (a�)8 ∼ N(0, 1/

√
2) +

7N(0, 1/
√

2), 8 ∈ [3]. There exists a constant 2 ≥ 1 such that if

; ≥ 23, (2.131)

with high probability, the following holds: If the output matrix X(9) ∈ R of the 9-th iteration of
MatrixIRLS with inputs Φ, y = Φ(x0x∗0), > ∈ [0, 1) and @̃ = 1 fulfills

‖X(9) − x0x∗0‖(∞ ≤
1(

23−>(1 + 6^)3
) 1

1−>
‖x0‖

2
2 , (2.132)

then
X(9)

9→∞
−−−−→ x0x∗0

and furthermore, the local convergence rate is of order 2 − > in the sense that

‖X(9+1) − x0x∗0‖(∞ ≤ `‖X
(9) − x0x∗0‖

2−>
(∞

(2.133)

with

` :=
23−>3(1 + 6^)

‖x0‖
2−2>
2

.

Proof. Let 0 < W < 1. From the statement and proof of [KKRT16, Theorem 1.2], it follows
that there exists a constant �(W) ≥ 1 such that if (2.131) is fulfilled, then Φ fulfills with
high probability the strong Schatten-1 null space property of Definition 2.4.2 of order 1 with
constant W = W1. Following the proof of Proposition 2.5.1.2, we see that Φ fulfills condition
(2.100) for all tangent spaces ) = )/ onto the rank-one manifold with constant 2(3) =

√
23.
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The statement of corollary 2.5.2 follows then from the proof of Corollary 2.5.2, using that

f1(x0x∗0) = ‖x0x∗0‖(∞ = ‖x0‖
2
2 .

�

2.5.3 Matrix Completion

In Section 2.4.2, it has already been mentioned that a strong Schatten-> null space property
cannot hold for low-rank matrix completion, which is the class of low-rank matrix recovery
problems that has perhaps been most widely studied in the literature [CR09, CT10, Rec11,
Che15, DR16, CLC19,MWCC19]. Recall that in this setting, the linear measurement operator
Φ : R31×32 → R; corresponds to a set of double indices (7�, 8�);�=1 ⊂ [31] × [32] such that

Φ(X)� = 〈47�4
∗
8�
,X〉 = X7�,8� (2.134)

for any � ∈ [;], for arbitrary X ∈ R31×32 . Here, 47� and 48� denote the 7�-th and 8�-th standard
basis vector of R31 and R32 , respectively.

In fact, if (s7,s8) ∈ [31] × [32] is an index pair such that (s7,s8) , (7�, 8�);�=1, the matrix [ = 4
s74
∗
s8

is of rank @ = 1, and %)[([) = [ if )[ is the tangent space onto the rank-1 matrix manifold at
[, which implies that

‖[‖� > 2(@, 31, 32)‖P)⊥[
([)‖� = 0,

for any constant 2(@, 31, 32) > 0, as %)⊥[ ([) = 0, despite [ being an element of kerΦ. This
means that condition (2.100) of Assumption 2.1 cannot be fulfilled for all tangent spaces )Z,
unlike it was the case if Φ fulfilled a restricted isometry property or a strong Schatten-> null
space property.

In the rest of this section, we will establish that Assumption 2.1 holds, on the other hand,
at least locally around a fixed matrix X0 ∈ R

31×32 of rank @, if enough entries are provided by
Φ and if this matrix fulfills a suitable incoherence condition.

Incoherence conditions on the low-rank matrix X0 to be completed prevent that the in-
formation of the subspace in which X0 lies in is too concentrated in few columns or rows,
which would cause an image of X0 with respect to an entrywise operator as Φ to contain
too little information to invert Φ by any reconstruction algorithm. Similar conditions of this
type have been used in the literature [CR09,Rec11,Che15], establishing, for example, recovery
guarantees for nuclear norm minimization in the low-rank matrix completion setting.

We will use the following definition of incoherence, which quantifies the alignment of the
standard basis (474∗8 )

31,32
7=1,8=1 of R31×32 with the tangent space onto the rank-@ manifold at rank-@

matrix X0 ∈ R
31×32 .

Definition 2.5.2. We say that a rank-@ matrix X ∈ R31×32 with singular value decomposition
X = UΣV∗, U ∈ R31×@, V ∈ R32×@, is `0-incoherent if there exists a constant `0 ≥ 1 such that

max
1≤7≤31,1≤ 8≤32

‖P) (474
∗
8 )‖� ≤

√
`0@

31 + 32

3132
, (2.135)

where ) = )X = {UM∗ + M̃V∗ : M ∈ R32×@, M̃ ∈ R31×@} is the tangent space onto the rank-@
manifold at X.

Remark 2.5.1. We note that the assumption that a rank-@ matrix X ∈ R31×32 is `0-incoherent
according to Definition 3.3.1 is weaker than similar assumptions [CR09, Definition 1.2, A0 and
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A1], [Rec11, Definition 1, Theorem 2], and even than the assumption [Che15, (2)], which is
the weakest available incoherence condition in the literature that is used for showing successful
completion by nuclear normminimization. More precisely, [Che15] calls a matrix X `0-incoherent
if

max
1≤7≤31

‖U∗47‖2 ≤
√
`0@

31
and max

1≤ 8≤32
‖V∗48‖� ≤

√
`0@

32
. (2.136)

In fact, condition (2.136) is weaker than (2.135). This can be seen from the calculation that

‖P) (474
∗
8 )‖

2
� = ‖UU∗474∗8 + 474

∗
8VV∗ − UU∗474∗8VV∗‖2� = ‖UU∗474∗8 (I − VV∗) + 474∗8VV∗‖2�

= ‖UU∗474∗8 (I − VV∗)‖2� + ‖474
∗
8VV∗‖2� ≤ ‖UU∗474∗8 ‖

2
� ‖I − VV∗‖2 + ‖474∗8VV∗‖2�

≤ ‖U∗474∗8 ‖
2
� + ‖474

∗
8V‖

2
� = ‖U

∗47‖
2
2 + ‖V

∗48‖
2
2 ≤

`0@

31
+
`0@

32
≤
`0@(31 + 32)

3132

for any 7 ∈ [31], 8 ∈ [32], if (2.136) is fulfilled, which holds since

‖U∗474∗8 ‖
2
� = tr(484∗7 UU∗474∗8 ) = tr(4∗7 UU∗47) = 4∗7 UU∗47 = ‖U∗47‖22

and similarly ‖474∗8V‖
2
� = ‖V

∗48‖
2
2 .

To establish Assumption 2.1 of the measurement operator Φ around a `0-incoherent matrix
X0 for a number of samples ; as small as possible, we resort to randomness in the distribution
of the indices (7�, 8�) of known entries in (2.134), along the same line of reasoning as in the
case of sub-Gaussian operators or the operator of random rank-one measurements.

Our model for the locations (7�, 8�);�=1 of the entries of X provided by Φ(X) assumes that
are they are distributed uniformly without replacement among all possible locations [31] × [32].
We obtain the following local convergence statement for MatrixIRLS.

Corollary 2.5.3 (Local convergence of MatrixIRLS for Matrix Completion). Let X0 ∈ R31×32

be a matrix of rank @ that is `0-incoherent, and let Φ : R31×32 → R; consist of entry-wise
measurements (2.134) for a set of locations (7�, 8�);�=1 that is drawn uniformly without replacement.
There exists a constant � ≥ 1 such that if

; ≥ �`0@(31 + 32) log(31 + 32). (2.137)

with high probability, the following holds: If the output matrix X(9) ∈ R31×32 of the 9-th iteration
of MatrixIRLS with inputs Φ, y = Φ(X0), > ∈ [0, 1) and @̃ = @ fulfills

‖X(9) − X0‖(∞ ≤ min

(
�1

√
`0@

3
,
(
�2

`0

3 log(�)^

) 1
1−>

)
f@(X0), (2.138)

where �1 and �2 are absolute constants, then

X(9)
9→∞
−−−−→ X0

and furthermore, the local convergence rate is of order 2 − > in the sense that

‖X(9+1) − X0‖(∞ ≤ `‖X
(9) − X0‖

2−>
(∞

(2.139)
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with

` := 22−> �̃3 log(�)
`0@f@(X0)1−>

@(1 + 6^).

In the proof of Corollary 2.5.3, we will actually work with a sampling model of the the
locations (7�, 8�);�=1 that is one of independent sampling with replacement. By the argument of
[Rec11, Proposition 3], the statement then carries over to the above model of sampling without
replacement.

Due to the model of sampling with replacement, it is possible to sample locations (7, 8) ∈
[31] × [32] more than once, but the following proposition due to [Rec11] bounds the number
of repetitions of each location.

Lemma 2.5.1 ([Rec11, Proposition 5]). Let � = max(31, 32) and V > 1, let Ω = (7�, 8�);�=1 be a
multiset of double indices from [31] × [32] fulfilling ; < 3132 that are sampled independently
with replacement. Then with probability at least 1 − �2−2V, the maximum number of repetitions
of any entry in Ω is less than 8

3V log(�) for � ≥ 9 and V > 1. Consequently, we have that with
probability of at least 1 − �2−2V, the operator RΩ : R31×32 → R31×32 defined such that

RΩ(X) := Φ∗(Φ(X)) =
;∑
�=1

〈47�4
∗
8�
,X〉47�4

∗
8�

(2.140)

fulfills

‖RΩ‖(∞ ≤
8
3
V log(�).

Next, we use a lemma of [Rec11] that can be seen as a result of a local restricted isometry
property, and which will help us to ensure Assumption 2.1. We detail its proof since we use
the weaker incoherence definition of Definition 3.3.1 instead of the incoherence notions of
[Rec11,Che15].

Lemma 2.5.2 ([Rec11, Theorem 6]). Let 0 < n ≤ 1
2 , let X0 ∈ R

31×32 be a `0-incoherent matrix
whose tangent space )0 = )X0 onto the rank-@ manifold (2.99) fulfills (2.135) and RΩ : R31×32 →

R31×32 be defined as in (2.140) from ; independent uniformly sampled locations. Then3132

;
P)0RΩP)0 −P)0


(∞

≤ Y (2.141)

holds with probability at least 1 − (31 + 32)
−2 provided that

; ≥
7
Y2`0@(31 + 32) log(31 + 32). (2.142)

Proof. First we define the family of operators Z�, Z̃� : R31×32 → R31×32 such that for X ∈
R31×32 ,

Z�(X) :=
3132

;
〈47�4

∗
8�
,P)0(X)〉P)0(47�4

∗
8�
) −

1
;
P)0 :=

3132

;
Z̃�(X) −

1
;
P)0(X)

for any � ∈ [;]. Then

E[Z�] =
1

3132

31∑
7=1

32∑
8=1

3132

;
〈474
∗
8 ,P)0(·)〉P)0(474

∗
8 ) −

1
;
P)0 =

1
3132

3132

;
P)0IP)0 −

1
;
P)0 = 0.

(2.143)
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Since for X ∈ R31×32

〈47�4
∗
8�
,P)0(X)〉P)0(47�4

∗
8�
) = 〈P)0(47�4

∗
8�
),X〉P)0(47�4

∗
8�
)

we obtain

‖〈47�4
∗
8�
,P)0(X)〉P)0(47�4

∗
8�
)‖� ≤

���〈P)0(47�4
∗
8�
),X〉

��� ‖P)0(47�4
∗
8�
)‖� ≤ ‖P)0(47�4

∗
8�
)‖2� ‖- ‖�

by Cauchy-Schwartz, and thus the norm bound

3132

;

Z̃�


(∞
≤
3132

;
‖P) (47�4

∗
8�
)‖2� ≤

3132

;
max

7∈[31],8∈[32]
‖P)0(47�4

∗
8�
)‖2�

≤
3132

;

`0@(31 + 32)

3132
=
`0@(31 + 32)

;

(2.144)

using the incoherence assumption (2.135) in the last inequality. Similarly, 1
;
P)0


(∞

=

 1
;
P)0IP)0


(∞

≤
1
;

31∑
7=1

32∑
8=1

〈P)0(474
∗
8 ), (·)〉P)0(474

∗
8 )


(∞
≤
`0@(31 + 32)

;
.

(2.145)
We note that if operators A and B are positive semidefinite, then ‖A − B‖(∞ ≤

max(‖A‖(∞ , ‖B‖(∞), and as both Z̃� and P)0 are positive semidefinite,

‖Z�‖(∞ ≤ max
(
3132

;

Z̃�


(∞

,
1
;

P)0


(∞

)
=
`0@(31 + 32)

;

for all � ∈ [;]. For the expectation of the squares of Z�, we obtain

EZ�Z
∗
� =
(3132)

2

;2 E
[
(Z̃�)

∗Z̃�

]
−
3132

;
E

[
Z̃�

]
P)0 −

3132

;
P)0E

[
Z̃�

]
+

1
;2 P)0

=
(3132)

2

;2 E
[
(Z̃�)

∗Z̃�

]
+ (1 − 2)

1
;2 P)0 ,

as P2
)0
= P)0 and E[Z̃�] =

1
3132

P)0 . Thus, ;∑
�=1

EZ�Z
∗
�


(∞

≤

;∑
�=1

EZ�Z
∗
�


(∞
=

;∑
�=1

 (3132)
2

;2 E
[
(Z̃�)

2
]
−

1
;2 P)0


(∞

≤

;∑
�=1

max
(
(3132)

2

;2

E [
(Z̃�)

2
]

(∞
,

1
;2

P)0


(∞

)
≤

;∑
�=1

max
(
(3132)

2

;2

E [
‖P)0(47�4

∗
8�
)‖2� Z̃�

]
(∞

,
1
;2

)
≤

;∑
�=1

max
(
(3132)(31 + 32)`0@

;2

EZ̃�


(∞

,
1
;2

)
≤

;∑
�=1

max
(
(31 + 32)`0@

;2 ,
1
;2

)
=
`0@(31 + 32)

;
,

where we used that ‖P)0 ‖2 ≤ 1 since P)0 is a projection in the third inequality, the definition
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of `0 in the fourth and the fact that EZ̃� =
1

3132
P)0 (see (2.143)) in the fifth. As the Z� are

Hermitian, it follows by the matrix Bernstein inequality (see, e.g., [Ver18, Theorem 5.4.1])
that

P

(3132

;
P)0RΩP)0 −P)0


(∞

≥ Y

)
≤ (31 + 32) exp

(
−

;Y2/2
`0@(31 + 32) + `0@(31 + 32)n/3

)
≤ (31 + 32) exp

(
−

;Y2

2`0@(31 + 32) + `0@(31 + 32)/3

)
,

(2.146)

using that Y ≤ 1
2 in the last inequality.

Furthermore, if (2.142) is fulfilled, then

(31 + 32) exp

(
−

;Y2

7
3`0@(31 + 32)

)
≤ (31 + 32)

−2,

which shows that (3.37) holds with a probability of at least 1 − (31 + 32)
−2. �

The goal is now to establish the local restricted isometry statement of (3.37) for tangent
spaces )X corresponding to matrices X ∈ R31×32 that are close to X0.

We show the following refinement of [WCCL16b, Lemma 4.2].

Lemma 2.5.3. Let X0,X ∈ R31×32 be matrices and assume that 0 < Y < 1 and that the following
three conditions hold:

(a) For RΩ : R31×32 → R31×32 as in (2.140),

‖RΩ‖(∞ ≤
16
3

log(�).

(b) The tangent space )0 = )X0 onto the rank-@ manifold at X0 fulfills3132

;
P)0RΩP)0 −P)0


(∞

≤ Y.

(c) The spectral norm distance between X and X0 fulfills

‖X − X0‖(∞ ≤

√
3

32
√

log(�)
√
(1 + Y)

Y

√
;

3132
f@(X0).

Then the tangent space ) = )X onto the rank-@ manifold at X fulfills3132

;
P)RΩP) −P)


(∞

≤ 4Y. (2.147)
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Proof. For any Z ∈ R31×32 , we haveRΩP)0(Z)
2
�
= 〈RΩP) (Z),RΩP) (Z)〉 ≤

16
3

log(�)
〈
P)0(Z),RΩP)0(Z)

〉
=

16
3

log(�)
〈
P)0(Z),P)0RΩP)0(Z)

〉
=

16
3

log(�)
(〈
P)0(Z),

;

3132
P)0(Z)

〉
+

〈
P)0(Z),

(
P)0RΩP)0(Z) −

;

3132
P)0(Z)

)〉)
≤

16
3

log(�)
(
;

3132
+ Y

;

3132

) P)0(Z)
2
�
≤

16
3

log(�)(1 + Y)
;

3132
‖Z‖2� ,

where the first inequality follows from condition (a) and the second one from condition (b).
It follows that RΩP)0

 ≤ √
16
3

log(�)(1 + Y)
;

3132
. (2.148)

Furthermore, if U,U0 ∈ R31×@ and V,V0 ∈ R32×@ are the matrices of first @ left and right
singular vectors of X and X0, respectively, it holds that for any Z ∈ R31×32 ,

(P) −P)0)(Z) = UU∗Z + ZVV∗ − UU∗ZVV∗ − U0U∗0Z − ZV0V∗0 + U0U∗0ZV0V∗0
=

(
UU∗ − U0U∗0

)
Z(I − V0V∗0) + (I − UU∗)Z(VV∗ − V0V∗0),

which we use to estimate

‖(P) −P)0)(Z)‖� ≤ ‖UU∗ − U0U∗0‖(∞ ‖Z‖� ‖I − V0V∗0‖(∞ + ‖I − UU∗‖(∞ ‖Z‖� ‖VV∗ − V0V∗0‖(∞

≤
‖T@(X) − X0‖(∞

f@(X0)
‖Z‖� · 1 + 1 · ‖Z‖�

‖T@(X) − X0‖(∞

f@(X0)

≤ 2
‖T@(X) − X‖(∞ + ‖X − X0‖(∞

f@(X0)
‖Z‖� ,

where T@(X) is the best rank-@ approximation (3.21). Here, we used the results

‖UU∗ − U0U∗0‖(∞ ≤
‖T@(X) − X0‖(∞

f@(X0)

and
‖VV∗ − V0V∗0‖(∞ ≤

‖T@(X) − X0‖(∞

f@(X0)

of [WCCL16a, Lemma 4.2, ineq. (4.3)], which bound the distance between the projections
onto the left and right singular subspaces of X and X0.

From the Eckardt-Young-Mirsky theorem (3.21), it then follows that

‖(P) −P)0)‖(∞ ≤
4‖X − X0‖(∞

f@(X0)
. (2.149)
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With this, we further bound

‖RΩP) ‖(∞ ≤
PΩ(P) −P)0)


(∞
+

RΩP)0


(∞

≤
16
3

log(�)
4 ‖X − X0‖(∞

f@(X0)
+

RΩP)0


(∞

≤
16
3

log(�)
√

3

8
√

log(�)
√
(1 + Y)

Y

√
;

3132
+

√
16
3

log(�)(1 + Y)
;

3132

=
2
√

3

√
log(�)

1√
(1 + Y)

Y

√
;

3132
+

√
16
3

log(�)(1 + Y)
;

3132

≤ 2
√

3 log(�)
√

1 + Y
√

;

3132
,

(2.150)

where the second inequality follows from (2.149) and the third from condition (c). To prove
the statement (2.147), we calculate3132

;
P)PΩP) −P)


(∞

≤
P) −P)0


(∞
+
3132

;

P)RΩP) −P)RΩP)0


(∞

+
3132

;

P)RΩP)0 −P)0RΩP)0


(∞
+

P)0 −
3132

;
P)0RΩP)0


(∞

≤
P) −P)0


(∞
+
3132

;
‖RΩP) ‖(∞

P) −P)0


(∞

+
3132

;

RΩP)0


(∞

P) −P)0


(∞
+

P)0 −
3132

;
P)0RΩP)0


(∞

≤
4 ‖X − X0‖(∞

f@(X0)
+
3132

;
‖RΩP) ‖(∞

4 ‖X − X0‖(∞

f@(X0)

+
3132

;

RΩP)0


(∞

4 ‖X − X0‖(∞

f@(X0)
+

P)0 −
3132

;
P)0RΩP)0


(∞

≤ 4Y0

where in the second inequality, we utilized the factP∗Ω = PΩ so that ‖P)PΩ‖(∞ = ‖PΩP) ‖(∞ .
The very last estimate follows from conditions (b) and (c) and the bounds (2.148) and (2.150)
for ‖PΩP) ‖(∞ and

PΩP)0


(∞
. �

We conclude this section with the proof of Corollary 2.5.3.

Proof of Corollary 2.5.3. Assume that there are; locationsΩ = (7�, 8�);�=1 in [31]×[32] sampled
independently uniformlywith replacement, where; fulfills (2.137) with � := 7/Y2 and Y = 0.1.
By Lemma 3.7.1, it follows that the corresponding operatorRΩ : R31×32 → R31×32 from (2.140)
fulfills

‖RΩ‖(∞ ≤
16
3

log(�) (2.151)

on an event called �Ω, which occurs with a probability of at least 1−�−2, and by Lemma 3.7.2,
the tangent space )0 = )5 -0 corresponding to the `0-incoherent rank-@ matrix X0 fulfills3132

;
P)0RΩP)0 −P)0


(∞

≤ Y
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on an event called �Ω,)0 , which occurs with a probability of at least 1 − �−2. Let Y = 1
10 . If

X(9) ∈ R31×32 is such that ‖X(9) − X0‖(∞ ≤ b̃f@(X0) with

b̃ =

√
3

32
n√

log(�)(1 + n)

√
;

3132
=

√
3

32
1

10
√

log(�)(11/10)

√
;

3132
, (2.152)

it follows by Lemma 2.5.3 that on the event �Ω ∩ �Ω,)0 , the tangent space )9 := X(9) onto the
rank-@ manifold at X(9) fulfills 3132

;
P)9RΩP)9 −P)9


(∞

≤ 4Y. (2.153)

Next, we claim that on the event �Ω ∩ �Ω,)0 ,

‖[‖� ≤

√
�̃3 log(�)

`0@
‖P)⊥

9
([)‖� . (2.154)

for any [ ∈ kerΦwith some constant �̃, where Φ : R31×32 → R; is the measurement operator
(2.134) associated to Ω = (7�, 8�);�=1.

Indeed, to show this claim, we first note that [ ∈ kerΦ if and only if [ ∈ ker RΩ. Let
[ ∈ ker RΩ. Then

‖P)9([)‖
2
� = 〈P)9([),P)9([)〉

=

〈
P)9([),

3132

;
P)9RΩP)9([)

〉
+

〈
P)9([),P)9([) −

3132

;
P)9RΩP)9([)

〉
≤

〈
P)9([),

3132

;
P)9RΩP)9([)

〉
+ ‖P)9([)‖�

P)9 −
3132

;
P)9RΩP)9


(∞

‖P)9([)‖�

≤

〈
P)9([),

3132

;
P)9RΩP)9([)

〉
+ 4n‖P)9([)‖

2
� ,

using (2.153) in the last inequality, which implies that

‖P)9([)‖
2
� ≤

1
1 − 4n

3132

;
〈P)9([),P)9R

2
ΩP)9([)〉 =

1
1 − 4n

3132

;
‖RΩP)9([)‖

2
�

≤
23132

;
‖RΩP)9([)‖

2
�

using the fact that RΩ : R31×32 → R31×32 is positive semidefinite and has eigenvalues that are
0 or larger or equal than 1 only. Furthermore, we used that n ≤ 1

10 in the last inequality.
Since [ ∈ ker RΩ, it holds that

0 = ‖RΩ([)‖� =

RΩ

(
P)9([) +P)⊥

9
([)

)
�
≥ ‖RΩP)9([)‖� − ‖RΩP)⊥

9
([)‖�

so that
‖RΩP)9([)‖� ≤ ‖RΩP)⊥

9
([)‖� ≤

16
3

log(�)‖P)⊥
9
([)‖� ,
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where we used (2.151) in the last inequality. Inserting this above, we obtain

‖[‖2� = ‖P)9([)‖
2
� + ‖P)⊥

9
([)‖2� ≤

(
23132

;

162

32 log(�)2 + 1
)
‖P)⊥

9
([)‖2�

≤

(
23132

�`0@(31 + 32) log(31 + 32)

162

32 log(�)2 + 1
)
‖P)⊥

9
([)‖2�

≤
�̃3 log(�)

`0@
‖P)⊥

9
([)‖2� ,

where we used the sample complexity condition (2.137) in the second inequality and the
definition

�̃ :=
4162

� · 32

for the constant �̃. This shows the claim (2.154). In fact, (2.154) is shown with this proof
not only for )9, but for all tangent spaces )Z onto the rank-@ manifold associated to matrices
Z ∈ R31×32 fulfilling

‖Z − X0‖(∞ ≤ b̃f@(X0)

with b̃ as in (2.152). This means that Assumption 2.1 is shown on the event �Ω ∩ �Ω,)0 for the
matrix X0 with radius

b :=
�

320

√
30
11

√
`0@

3
≤

√
3

32
1

10
√

log(�)(11/10)

√
�`0@(31 + 32) log(31 + 32)

3132

≤ b̃ =

√
3

32
1

10
√

log(�)(11/10)

√
;

3132

and constant

2(@, 31, 32) =

√
�̃3 log(�)

`0@
.

To finish the proof of Corollary 2.5.3, we need to make sure that Theorem 2.7 is applicable,
which means that ˜̀ from (2.119), i.e.,

˜̀= 2(@, 31, 32)
2@ (1 + 4^ + 2Z>^)

(1 − Z)2−>f@(X0)1−>

with ‖X(9) − X0‖(∞ ≤ Zf@(X0) is small enough such that

˜̀‖X(9) − X0‖
1−>
(∞
< 1.

If Z ≤ 1/2, then

˜̀‖X(9) − X0‖
1−>
(∞
≤ 22−>2(@, 31, 32)

2@ (1 + 4^ + 2Z>^) Z1−>

≤ 22−> �̃3 log(�)
`0@

@(1 + 6^)Z1−> = 22−> �̃3 log(�)
`0

(1 + 6^)Z1−> < 1,
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where the last inequality holds if

Z <

(
`0

22−>�̃3 log(�)(1 + 6^)

) 1
1−>

.

This means that the statement of Corollary 2.5.3 is true with constant

` = 22−> �̃3 log(�)
`0@f@(X0)1−>

@(1 + 6^)

if

‖X(9) − X0‖(∞ ≤ min

(
�1

√
`0@

3
,
(
�2

`0

3 log(�)^

) 1
1−>

)
f@(X0)

≤ min(Z, b)f@(X0) = min

(
�

320

√
30
11

√
`0@

3
,
(

`0

22−>�̃3 log(�)(1 + 6^)

) 1
1−>

)
f@(X0)

for constants �1 =
�

320

√
30
11 and �2 =

1
12·22−>�̃

, with probability at least 1 − 2�−2 (which is
a lower bound for the probability that the event �Ω ∩ �Ω,)0 occurs), if the sampling model
of Ω is one of uniformly sampling with replacement. By the argument of [CRT06a, Section
II.C], [Rec11, Proposition 3], the result extends to the sampling model of independent lo-
cations without replacement with the same probability bound. This concludes the proof of
Corollary 2.5.3. �

2.6 Computational Considerations
In this chapter so far we presented an algorithm, called MatrixIRLS, and analyzed its local
convergence suggesting superlinear convergence rates of the iterates to a low-rank solution
under certain assumptions. To make the approach scalable to real-world applications in-
volving not only very small data sets, it is not sufficient that the algorithm needs only few
iterations to obtain a high precision solution. In fact, it is also desirable that the iterations
are computationally efficient in terms of time and space complexity—one iteration should not
take too many basic arithmetic operators, and the iterates should not be stored in a way that
creates unnecessary memory overhead or that uses more parameter to describe the data than
necessary.

What does this mean for low-rank matrices and their recovery? In Section 2.1.1, it became
already evident that a (31 × 32)-dimensional matrix X of rank @ can be described such that

X = ©«
| |

u1 . . . u@
| |

ª®¬ ·
©«
f1

. . .
f@

ª®®¬ ·
©«
−− v∗1 −−

...
−− v∗@ −−

ª®®¬ = UΣV∗

using its singular value decomposition with a (31 × @)-matrix U, a (32 × @)-matrix V, and a
diagonal (@ × @)-matrix Σ. While the added number of entries of U, V and Σ amounts to

31@ + 32@ + @
2 = @(31 + 32 + @),
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we saw already that its actual number of degrees of freedom is slightly lower with

deg 5 = @(31 + 32 − @),

as the orthogonality and normalization of the columns of U and V can be taken into account,
and the knowledge about diagonality of Σ also indicates that it has, in fact, only @ non-zero
values to be stored due to its diagonal structure.

If � = max(31, 32), both quantities are of order

$(�@).

In most applications where low-rank matrix recovery can be used, for example, to build
a model for a recommender system [KBV09, BL07] (matrix completion) or to reconstruct a
2D image from phaseless measurements in ptychography [TLRW14] (phase retrieval), good
models correspond already to very low ranks

@ � 3 = min(31, 32)

compared to the ambient dimensions 31 and 32. The Netflix prize dataset [BL07] for example,
which is already more than a decade old and might not represent a typical size of training
data sets for contemporary commercial recommender systems, consists of around 31 = 480000
users and 32 = 17000 movies, but models with ranks @ in the dozens returned already very
competitive results [KBV09,RR13]. In ptychography, typical test 2D test images are of the size
500 × 500, resulting in (3 × 3)-dimensional recovery problems of matrices of rank @ = 1 with
3 = 250000 [XSH+18].

From these examples it becomes clear that there are many applications where it is pro-
hibitive that any algorithm of choice, iterative or non-iterative,

• stores full (31 × 32)-dimensional matrices X ∈ R31×32 ,

• uses any operations that scale quadratically in the matrix dimensions 31 and/or 32,

as the resulting time or space complexity of

Ω(3132)

is by orders of magnitudes worse than what do expect from algorithms that have complexities
that are basically linear in � and polynomial in @.

While we do not provide a global complexity analysis of MatrixIRLS due to the local nature
of our convergence analysis, we detail in this section why MatrixIRLS avoids any quadratic
dependency on the matrix dimensions in its memory and iteration costs.

2.6.1 Low-Rank Structure of Weight Operator

We recall that the step of calculating the new iterate X(9+1) ∈ R31×32 as the solution of the
weighted least squares problem

min
Φ(X)=y

〈X,,(9)(X)〉.

defined by the weight operator,9 : R31×32 → R31×32 (2.57) associated to the last iterate X(9) ∈
R31×32 and the problem data (measurement operator Φ : R31×32 → R; and measurement
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vector y ∈ R;) can be calculated such that

X(9+1) = (,(9))−1
(
Φ∗

(
Φ(,(9))−1Φ∗

)−1
(y)

)
,

as it was stated in Lemma 2.4.1. Here, (,(9))−1 : R31×32 → R31×32 is the inverse of the matrix
operator,(9)–the inverse exists as,(9) is positive definite with eigenvalues (see (2.60))

_(,(9)) =
{
(H(9)1 )7 8 : 7 ∈ [31], 8 ∈ [32], 7 ≤ 8

}
∪

{
(H(9)2 )7 8 : 7 ∈ [31], 8 ∈ [31], 7 < 8

}
.

It is a priori not clear why there is hope to calculate X(9+1) in a time complexity that is
quadratic or sub-quadratic in the dimension of X(9+1), even if iterative solvers are used to
solve, for example, the linear system(

Φ(,(9))−1Φ∗
)

z = y

for z ∈ R; before X(9+1) can be calculated such that X(9+1) = (,(9))−1(Φ∗(z)).
In particular, just the application of a matrix operator mapping from R31×32 → R31×32 to

a (31 × 32)-matrix can cost as much as

$((3132) · (3132)) = $(3
2�2).

However, as a preliminary result, we state the following result about cost of the application
of any power of a matrix operator,(9).

Lemma 2.6.1 (Time complexity of the application of weight operators). Let 9, @ ∈ N, a ∈ R and
n9 > 0, let "(9) : R31×32 → R31×32 be the a-th power of the weight operator,(9) of MatrixIRLS
as defined in (2.57) of Definition 2.3.4 associated to the matrix X(9) ∈ R31×32 that has at most @
singular values larger than n9 > 0 with singular value decomposition

X(9) = U9Σ9V∗9 =
[
U(9) U(9)⊥

] [
Σ(9) 0

0 Σ
(9)
⊥

] [
V(9)∗

V(9)∗⊥

]
,

where U9 ∈ O31 , V9 ∈ O32 , U(9) ∈ R31×@, U(9)⊥ ∈ R31×(31−@), V(9) ∈ R32×@, V(9)⊥ ∈ R32×(32−@),
Σ(9) = diag(f1(X(9)), . . .f@(X(9))) and Σ

(9)
⊥ = dg(f@+1(X(9)), . . .f3(X(9))).

Then for any Z ∈ R31×32 ,

"(9)(Z) = U(9)[(H(9)1 )
a
U,V ◦ (̃(U

(9)∗ZV(9)) + (H(9)2 )
a
U,V ◦ )̃(U

(9)∗ZV(9))]V(9)∗

+ U(9)
(
(D(9)1 )

a + (D(9)2 )
a
)

U(9)∗Z(I − V(9)V(9)∗)

+ (I − U(9)U(9)∗)ZV(9)
(
(D(9)1 )

a + (D(9)2 )
a
)

V(9)∗

+ n
a(>−2)
9

(
I − U(9)U(9)∗

)
Z

(
I − V(9)V(9)∗

)
,

(2.155)

where H(9)1 ,H(9)2 ∈ R
31×32 are the matrices from (2.58) and (2.59), (H(9)1 )

a, (H(9)2 )
a ∈ R31×32 are
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their entrywise a-th powers with decompositions⁵

(H(9)1 )
a =

[
(H(9)1 )

a
U,V (H(9)1 )

a
U,V⊥

(H(9)1 )
a
U⊥,V (H(9)1 )

a
U⊥,V⊥

]
, (H(9)2 )

a =

[
(H(9)2 )

a
U,V (H(9)2 )

a
U,V⊥

(H(9)2 )
a
U⊥,V (H(9)2 )

a
U⊥,V⊥

]
,

and where (D(9)1 )
a, (D(9)1 )

a are (@ × @) diagonal matrices such that(
(D(9)

�
)a
)
77
=

(
(H(9)

�
)aU,V⊥

)
71

for � = 1, 2 for all 7 ∈ [@].
In particular, this means that the image of Z with respect to "(9), "(9)(Z), can be computed

in a time complexity of
$(3132@).

Proof. Since the eigenvalues of,(9) are as stated above and,(9) is diagonalized by the outer
product V(9) ⊗ U(9), it holds that for any Z ∈ R31×32 ,

"(9)(Z) = U9

[
(H(9)1 )

a ◦ (̃(U∗9ZV9) + (H
(9)

2 )
a ◦ )̃(U∗9ZV9)

]
V∗9 =(

U(9) U(9)⊥
) [
(H(9)1 )

a ◦ (̃

([
U(9)∗X0V(9) U(9)∗X0V(9)⊥
U(9)∗⊥ X0V(9) U(9)∗⊥ X0V(9)⊥

])
+ (H(9)2 )

a ◦ )̃

([
U(9)∗X0V(9) U(9)∗X0V(9)⊥
U(9)∗⊥ X0V(9) U(9)∗⊥ X0V(9)⊥

])] (
V(9)∗

V(9)∗⊥

)
=

(
U(9) U(9)⊥

) [ [
(H(9)1 )

a
U,V ◦ (̃

(
U(9)∗X0V(9)

)
+ (H(9)2 )

a
*,+ ◦ )̃

(
U(9)∗X0V(9)

)
0

0 0

]
+

[
(H(9)1 )

a
U,V⊥

(H(9)1 )
a
U⊥,V

]
◦ (̃

([
0 U(9)∗X0V(9)⊥

U(9)∗⊥ X0V(9) 0

])
+

[
(H(9)2 )

a
U,V⊥

(H(9)2 )
a
U⊥,V

]
◦ )̃

([
0 U(9)∗X0V(9)⊥

U(9)∗⊥ X0V(9) 0

])
+ n

a(>−2)
9

[
0 0

0 (̃
(
U(9)∗⊥ X0V(9)⊥

)
+ )̃

(
U(9)∗⊥ X0V(9)⊥

)] ] (
V(9)∗

V(9)∗⊥

)
=:

(
U(9) U(9)⊥

)
[(I) + (II) + (III) + (IV)]

(
V(9)∗

V(9)∗⊥

)
.

Here, we used crucially that due to the definition of H(9)1 and H(9)2 , all the entries of (H(9)1 )U⊥,V⊥

and (H(9)1 )U⊥,V⊥ are equal to n
>−2, and therefore, the entries for their a-th entrywise power are

equal to na(>−2)
9

.
From this calculation, we see that the first summand corresponds to U(9)[(H(9)1 )

a
U,V ◦

(̃(U(9)∗ZV(9)) + (H(9)2 )
a
U,V ◦ )̃(U

(9)∗ZV(9))]V(9)∗.
For the fourth summand, since

(̃
(
U(9)∗⊥ X0V(9)⊥

)
+ )̃

(
U(9)∗⊥ X0V(9)⊥

)
= U(9)∗⊥ X0V(9)⊥ ,

⁵See the proof of Lemma 2.4.4 for the same decompositions.
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we have that(
U(9) U(9)⊥

)
n
a(>−2)
9

[
0 0

0 (̃
(
U(9)∗⊥ X0V(9)⊥

)
+ )̃

(
U(9)∗⊥ X0V(9)⊥

)] (
V(9)∗

V(9)∗⊥

)
= n

a(>−2)
9

U(9)⊥ U(9)∗⊥ X0V(9)⊥ V(9)∗⊥ = n
a(>−2)
9

(
I − U(9)U(9)∗

)
X0

(
I − V(9)V(9)∗

)
,

using that
U(9)U(9)∗ + U(9)⊥ U(9)∗⊥ = I and V(9)V(9)∗ + V(9)⊥ V(9)∗⊥ = I (2.156)

in the last equality.
To cope with the terms U9 [(II) + (III)]V∗

9
, we note that the matrices

(H(9)
�
)aU,V⊥

have constant rows for � = 1, 2 (same for the columns of (H(9)
�
)aU⊥,V), so that their action by

the Schur product ◦ can be realized by corresponding multiplication with the matrices (�(9)
�
)a.

Also here, we use (2.156), which shows formula (2.155).
To obtain the bound on the number of basic arithmetic operations for the calculation

of "(9)(X), we can calculate first U(9)∗Z ∈ R@×32 and ZV(9) ∈ R31B7;4A@, and these matrix
multiplications are of order $(@3132) using the standard algorithm. Calculating then the
(@ × @) matrix U(9)∗ZV(9) costs $(@23), and all operations needed to calculate

-̃1 := (H(9)1 )
a
U,V ◦ (̃(U

(9)∗ZV(9)) + (H(9)2 )
a
U,V ◦ )̃(U

(9)∗ZV(9)) ∈ R@×@

are $(@2). Furthermore, the diagonal multiplications needed to obtain

-̃2 :=
(
(D(9)1 )

a + (D(9)2 )
a
)

U(9)∗Z ∈ R@×32

and
-̃3 := ZV(9)

(
(D(9)1 )

a + (D(9)2 )
a
)
∈ R31×@

are $(@�). The remaining operations consist then of additions and subtractions, and of
multiplications of -̃1, -̃2 and -̃3 with U(9) from the left and V(9)∗ from the right, which cost
again $(@3132). �

In fact, a close look at the formula of "(9) from Lemma 2.6.1 reveals an interesting structure
that relates its action to the tangent space onto the rank-@ manifold at X(9),

)9 := {UM∗ + M̃+∗ : M ∈ R32×@, M̃ ∈ R31×@},

which can be also parametrized such that Z ∈ )9 if and only if there exist matrices Z1 ∈ R
@×@,

Z2 ∈ R
@×31 , Z3 ∈ R

31×@ such that

Z = U(9)Z1V(9)∗ + U(9)Z2(I − V(9)V(9)∗) + (I − U(9)U(9)∗)Z3V(9)∗. (2.157)

Comparing this parametrization to (2.155), we observe that "(9) acts on Z = P)9(Z)+P)
>4@>

9
(Z)
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such that

"(9)(Z) = %)9D
a

�(9)
%∗)9(Z) + n

a(>−2)
9

P)⊥
9
(Z)

= %)9

(
Da

�(9)
− n

a(>−2)
9

I)9
)
%∗)9(Z) + n

a(>−2)
9

Z,
(2.158)

where %)9 : )9 → R31×32 is a linear operator corresponding to an orthonormal basis of )9, so
that we have for the projection P)9 : R31×32 → R31×32 that

P)9 = %)9%
∗
)9
,

and Da

�(9)
: )9 → )9 is an (almost) diagonal operator that maps any Z ∈ )9 written as

Z = U(9)Z1V(9)∗ + U(9)Z2(I − V(9)V(9)∗) + (I − U(9)U(9)∗)Z3V(9)∗

to

Da

�(9)
(Z) = U(9)

[
(H(9)1 )

a
U,V ◦ (̃(Z1) + (H

(9)

2 )
a
U,V ◦ )̃(Z1)

]
V(9)∗

+ U(9)
(
(D(9)1 )

a + (D(9)2 )
a
)

Z2(I − V(9)V(9)∗) + (I − U(9)U(9)∗)Z3

(
(D(9)1 )

a + (D(9)2 )
a
)

V(9)∗.

(2.159)

We formalize the computational implication of this observation in the following lemma.

Lemma 2.6.2. The operator "(9) : R31×32 → R31×32 from Lemma 2.6.1 can be written such that

"(9) = %)9

(
Da

�(9)
− n

a(>−2)
9

I)9
)
%∗)9 + n

a(>−2)
9

I,

where Da

�(9)
: )9 → )9 is the operator from (2.159).

If elements of )9 are appropriately parametrized, the action of Da

�(9)
has a time complexity of

$(@�).

2.6.2 Harnessing Low-Rank Structure for Updates with Sub-Quadratic Complexity

In this section, we explain how the observation of Lemma 2.6.2 can be used for efficient
computations in MatrixIRLS. Using the definition of "(9) from Lemma 2.6.1 with exponent
a = −1, we rewrite formula (2.93) for the new iterate X(9+1) such that

X(9+1) = (,(9))−1
(
Φ∗

(
Φ(,(9))−1Φ∗

)−1
(y)

)
= "(9)

(
Φ∗

(
Φ"(9)Φ∗

)−1
(y)

)
.

As above, if we define z :=
(
Φ"(9)Φ∗

)−1
(y) ∈ R; as the solution of(

Φ"(9)Φ∗
)

z = y,

we know that
X(9+1) = "(9)Φ∗(z). (2.160)

Using Lemma 2.6.2, we know that(
Φ"(9)Φ∗

)−1
=

(
Φ%)9

(
D−1
�(9)
− n

2−>
9

I)9
)
%∗)9Φ

∗ + n
2−>
9

ΦΦ∗
)−1

.
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Next, we use the Sherman-Morrison-Woodbury formula [Woo50, FRW11], [HJ12, (0.7.4.1)],
which states that for any invertible B ∈ R;×;, C ∈ R� and any matrices E, F ∈ R;×�,

(B + ECF∗)−1 = B−1 − B−1E(C−1 + F∗B−1E)−1F∗B−1. (2.161)

Using (2.161) with B = n2−>
9

ΦΦ∗, C =
(
D−1
�(9)
− n

2−>
9

I)9
)
and E = F = Φ%)9 , we obtain that

z =
(
Φ"(9)Φ∗

)−1
(y)

=

[
n
>−2
9

I − (n2−>
9

ΦΦ∗)−1Φ%)9

(
n

2−>
9

C−1 + %∗)9Φ
∗(ΦΦ∗)−1Φ%)9

)−1
%∗)9Φ

∗

]
(ΦΦ∗)−1(y).

(2.162)

Furthermore, inserting the formula for "(9) from Lemma 2.6.2 in (2.160), we obtain

X(9+1) =
[
%)9

(
D−1
�(9)
− n

2−>
9

I)9
)
%∗)9Φ

∗ + n
2−>
9

Φ∗
]
(z). (2.163)

If we now apply the projector %∗)9 to this equality, restricting the equation to )9, it follows that

X(9+1)
)9

:= %∗)9(X
(9+1)) = %∗)9%)9C%

∗
)9
Φ∗(y) + n2−>

9
%∗)9Φ

∗(z)

= C%∗)9Φ
∗(y) + n2−>

9
%∗)9Φ

∗(z) =
(
C + n2−>

9
I
)
%∗)9Φ

∗(y)

= D−1
�(9)

%∗)9Φ
∗(z).

Inserting now (2.162) for z, we obtain

X(9+1)
)9

= D−1
�(9)

n
>−2
9

[
%∗)9Φ

∗ − %∗)9Φ
∗(ΦΦ∗)−1Φ%)9

(
n

2−>
9

C−1 + %∗)9Φ
∗(ΦΦ∗)−1Φ%)9

)−1
%∗)9Φ

∗

]
(ΦΦ∗)−1(y)

= D−1
�(9)

n
>−2
9

[
I − %∗)9Φ

∗(ΦΦ∗)−1Φ%)9

(
n

2−>
9

C−1 + %∗)9Φ
∗(ΦΦ∗)−1Φ%)9

)−1
]
%∗)9Φ

∗(ΦΦ∗)−1(y)

= D−1
�(9)

n
>−2
9

[
n

2−>
9

C−1
(
n

2−>
9

C−1 + %∗)9Φ
∗(ΦΦ∗)−1Φ%)9

)−1
]
%∗)9Φ

∗(ΦΦ∗)−1(y)

=
(
I + n2−>

9
C−1

) (
n

2−>
9

C−1 + %∗)9Φ
∗(ΦΦ∗)−1Φ%)9

)−1
%∗)9Φ

∗(ΦΦ∗)−1(y)

=:
(
I + n2−>

9
C−1

)
W9,

(2.164)

where W9 is the solution of the dim()9) × dim()9) ≈ $(@�) × $(@�) positive definite linear
system (

n
2−>
9

C−1 + %∗)9Φ
∗(ΦΦ∗)−1Φ%)9

)
W9 = %

∗
)9
Φ∗(ΦΦ∗)−1(y), (2.165)

which is now the main cost in the calculation of X(9+1)
)9

, as the application of the operator(
I + n2−>

9
C−1

)
needs just $(@�) operations–the opertor C =

(
D−1
�(9)
− n

2−>
9

I)9
)
from above can

be inverted easily.
Furthermore, for the part X(9+1)

)⊥
9

of X(9+1) that is orthogonal to the subspace )9, if we define

the linear operator %)⊥
9

: )⊥
9
→ R31×32 analogously to the one of )9, i.e., such that

P)⊥
9
= %)⊥

9
%∗
)⊥
9

.
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Using this notation, it follows from (2.163) and (2.162) that

X(9+1)
)⊥
9

= %∗
)⊥
9

(X(9+1)) = n
2−>
9

P)⊥
9
Φ∗(z)

= %∗
)⊥
9

Φ∗
[
I − (ΦΦ∗)−1Φ%)9

(
n

2−>
9

C−1 + %∗)9Φ
∗(ΦΦ∗)−1Φ%)9

)−1
%∗)9Φ

∗

]
(ΦΦ∗)−1(y)

= %∗
)⊥
9

Φ∗(ΦΦ∗)−1 [
y − Φ%)9(W9)

]
,

(2.166)

also inserting the definition of W9 from (2.165) in the last equality.
Now, we as we will verify shortly, we can use (2.164) and (2.166) to obtain an exact

representation of X(9+1) that is

• memory-efficient in the sense that it only needs $(@� + ;) parameters, and

• (potentially) computationally efficient in the sense that the computational cost is for the
calculation of the update of X(9+1) is dominated by the cost of the inner iterations of a
iterative linear system solver for (2.165), which can be as low as $(@2� +;@) depending
on the measurement operator Φ : R31×32 → R;.

Indeed, we have that

X(9+1) = %)9(X)9) + %)⊥9 (X)⊥9 )

= %)9

(
I + n2−>

9
C−1

)
W9 + %)⊥

9
%∗
)⊥
9

Φ∗(ΦΦ∗)−1 [
y − Φ%)9(W9)

]
= %)9

(
I + n2−>

9
C−1

)
W9 +

(
I − %)9%

∗
)9

)
Φ∗(ΦΦ∗)−1 [

y − Φ%)9(W9)
]

= Φ∗(ΦΦ∗)−1 (
y − Φ%)9(W9)

)
+ %)9

((
I + n2−>

9
C−1

)
W9 − %

∗
)9
Φ∗(ΦΦ∗)−1 (

y − Φ%)9(W9)
) )

=: Φ∗(ΦΦ∗)−1r9 + %)9
((

I + n2−>
9

C−1
)
W9 − %

∗
)9
Φ∗(ΦΦ∗)−1r9

)
=: Φ∗(ΦΦ∗)−1r9 + %)9 W̃k

with the definition of the residual r9 := y − Φ%)9(W9) ∈ R
; and the vector W̃ ∈ )9 that lives in

the tangent space )9, which is a linear space of dimension @(31 + 32 − @).
The pair (r9, W̃9) can be used as a memory-efficient representation for X(9+1).
This fact alone should not be a surprise, as already (2.160) hints at a representation of

X(9+1) that is $(;) by using the vector z ∈ R;.
However, the representation we derived by (r9, W̃9) has the advantage that for many mea-

surement operators Φ : R31×32 → R;, all computational steps are sub-quadratic in 3, and
furthermore, the linear system (2.165) to be solved is well-conditioned at least in the limit. The
latter aspect will be discussed in Section 2.6.3.

For the first aspect, we recall that it has been already briefly mentioned that sub-Gaussian
operators Φ as discussed in Section 2.5.1 are computationally problematic, as images Φ(X) of
arbitrary (31 × 32) matrices X need $(;3132) basic arithmetic operations. The situation is
similar for the Gaussian rank-one measurements as in the phase retrieval setting Section 2.5.2
(even if the complexity of these measurements is smaller if X is provided, for example, in a
factorized form).

For entrywise measurementsΦ as in thematrix completion setting of Section 2.5.3, however,
the situation is considerably better, as obtaining the images Φ(X) ∈ R; does not involve
computations (except from entrywise access to the entries of X)), and can be done in $(;). In
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the remainer of this section, we will therefore focus on the matrix completion setup exclusively.
We note that many of the following properties are similar, for example, for Fourier-type rank-
one measurements as present in many variations of the phase retrieval problem [CESV13,
TLRW14,XSH+18].

First, we note the if Φ : R31×32 → R; is such that there exists a set of distinct locations
Ω = (7�, 8�);:=1 ⊂ [31] × [32] with

Φ(X)� = 〈47� , 4
∗
8�
,X〉

for all � ∈ [;], it holds that
ΦΦ∗ = I ∈ R;×;,

which simplifies some terms above.
Therefore, we can summarize the following simplified outline of an implementation of

step (2.90) of MatrixIRLS for matrix completion:

1. Calculate %∗)9Φ
∗(y) ∈ )9.

2. Solve (
n

2−>
9

I

D−1
�(9)
− n

2−>
9

I
+ %∗)9Φ

∗Φ%)9

)
W9 = %

∗
)9
Φ∗(y) (2.167)

for W9 ∈ )9 by a conjugate gradient method [HS52], [QSS10, Chapter 4].

3. Calculate residual r9 := y − Φ%)9(W9) ∈ R
;.

4. Calculate W̃9 =
(

D−1
�(9)

D−1
�(9)
−n

2−>
9

I

)
W9 − %

∗
)9
Φ∗(r9) ∈ )9.

By the calculations above, we obtain an implicit representation of the new iterate X(9+1) ∈

R31×32 such that
X(9+1) = Φ∗(r9) + %)9(W̃k). (2.168)

For elements of )9 such as W9, we use the representation of (2.157) such that we keep the
@(31 + 32 + @) parameters of the matrices (W9)1 ∈ R@×@, (W9)2 ∈ R@×32 and (W9)3 ∈ R31×@ such
that

%)9(W9) = U(9)(W9)1V(9)∗ + U(9)(W9)2(I − V(9)V(9)∗) + (I − U(9)U(9)∗)(W9)3V(9)∗. (2.169)

By Lemma 2.6.2, applications of powers of the operator D�(9) then have a time complexity of
$(@�), and the same is true for the very similar operators

n
2−>
9

I

D−1
�(9)
− n

2−>
9

I
and

D−1
�(9)

D−1
�(9)
− n

2−>
9

I
.

What remains to be shown is that the linear operator Φ%)9 : )9 → R; and its adjoint
(Φ%)9)

∗ = %∗)9Φ
∗ : R; → )9 are similarly affordable.

Indeed, this is the case: To calculate, for example,

Φ%)9(W9) ∈ R
;
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if (W9) ∈ )9 is given as in (2.169), we note that

%)9(W9) = U(9)(W9)1V(9)∗ + U(9)(W9)2(I − V(9)V(9)∗) + (I − U(9)U(9)∗)(W9)3V(9)∗

= U(9)
[
(W9)1V(9)∗ + (W9)2 − ((W9)2V(9))V(9)∗

]
+

[
(W9)3 − U(9)(U(9)∗(W9)3)

]
V(9)∗

=: U(9)M1 +M2V(9)∗,

i.e., %)9(W9) can be written as a sum of two products of (31 × @) and (@ × 32) matrices, whose
entries can then be calculated in

$(; · @),

as for, e.g., for all � ∈ [;],

Φ(U(9)M1)� =
(
U(9)M1

)
7�,8�
=

@∑
9=1

(U(9))7�,9(M1)9,8� .

Furthermore, the calculation of the matrices M1 ∈ R
@×32 and M2 ∈ R

31×@ can be done in

$(@2�)

arithmetic operators as, for example M1 can be obtained by multiplying (@ × @)- with (@ × 32)-
matrices and (@ × 32)- with (32 × @)-matrices.

By considering the adjoint, it is possible to calculate also the image of %∗)9Φ
∗ in

$(;@ + @2�)

basic operations.
We summarize the discussion of this section in the following theorem.

Theorem 2.8 (Sub-Quadratic Complexity of MatrixIRLS for Matrix Completion). Let 9, @ ∈ N
and n9 > 0, letX(9) ∈ R31×32 be the 9-th iterate of MatrixIRLS (Algorithm 1), assumewe are given
its first r singular vectors U(9) ∈ R31×@, V(9) ∈ R32×@ and singular vectors f1(X(9)), . . . ,f@(X(9)).
Assume that f�(X(9)) ≤ n9 for all � > @.

If Φ is as in the matrix completion problem, i.e., the input operator Φ : R31×32 → R; is
as in Section 2.5.3, then the new iterate X(9+1) ∈ R31×32 can be calculated implicity in a time
complexity of

$
(
(;@ + @2�) · #CG_inner

)
,

where #CG_inner is the number of inner iterations used in the conjugate gradient method to solve
(2.167).

In particular, if the sample complexity ; is as the lower bound in (2.137), then this can be
written as

$
((
`0@

2� log(�) + @2�
)
· #CG_inner

)
,

where `0 is the incoherence factor of Definition 3.3.1.
Furthermore, the space complexity of the representation of X(9+1) is

$(; + @�)

or
$(`0@� log(�)),
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respectively.

The result of Theorem 2.8 comes from the fact that the per iteration cost of an iteration of
the conjugate gradient (CG) method is dominated by the cost of matrix-vector multiplication
with the system matrix (

n
2−>
9

I

D−1
�(9)
− n

2−>
9

I
+ %∗)9Φ

∗Φ%)9

)
,

and by the cost of calculating scalar products in the domain [QSS10, Chapter 4]. As the
domain of the system is )9 and due to the use of the representation (2.169), one scalar product
costs only $(@2�), which is dominated by the cost of matrix-vector multiplication (;@ + @2�).

We note that the number of CG iterations #CG_inner plays a critical role in the bound of
Theorem 2.8. In exact arithmetic, it is known that the CG method terminates with the exact
solution X(9+1) after at most #CG_inner = dim()9) = $(@�) iterations [QSS10, Theorem 4.11].

As this would re-introduce a quadratic dependence on the dimension �, solving the system
exactly is computationally prohibitive for the large-scale problems we are interested in.

However, for practical purposes, the conjugate gradient method can be stopped after a fixed
number of iterations, or according to a fixed stopping rule. This returns an inexact solution
X(9+1) of (2.90), which might be enough to ensure overall progress of the IRLS method.

A discussion of stopping criteria is beyond the scope of this work, but we refer to [FPRW16]
for a such a discussion for an IRLS algorithm for the sparse recovery problem.

We conclude this section with a short discussion of the other main computational step of
Algorithm 1, the calculation of the best rank-̃@ approximation

T̃@(X(9+1)) = U(9+1) diag(f(9+1)
7
)̃@7=1V(9)∗ (2.170)

and the (̃@ + 1)-st singular value of X(9+1).
Many modern methods as Lanczos bidiagonalization [SZ00, LXQ15], randomized block

Krylov methods and others [ZL16b, MM15] can be used for this step, see [HMT11] for an
overview.

Most of these methods are designed such that matrix-vector multiplications (or matrix-
matrix multiplications with tall matrices) are their main computational steps, resulting in very
accurate estimates of the first @̃ singular values and singular vector pairs after $(̃@) (up to
logarithmic factors in the dimension �) matrix-vector multiplications.

In the following lemma, we show that the implicit representation (2.168) of X(9+1) leads,
similarly as in Theorem 2.8, to a sub-quadratic cost of matrix-vector multiplication.

Lemma 2.6.3 (Matrix-vector multiplication with iterates in implicit representation). Let X(9+1)

be the updated iterate of MatrixIRLS as in (2.168), let v ∈ R32 . Then the time complexity for
the calculation of

X(9+1)v ∈ R31

is
$(; + @�).

Proof. Let r9 ∈ R;, let W̃ ∈ )9 be such that

%)9 (̃W) = U(9)(W̃9)1V(9)∗ + U(9)(W̃9)2(I − V(9)V(9)∗) + (I − U(9)U(9)∗)(W̃9)3V(9)∗

for matrices (W̃9)1 ∈ R@×@, (W̃9)2 ∈ R@×32 and (W̃9)3 ∈ R31×@.
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Then

X(9+1)v =
(
Φ∗(r9) + %)9(W̃k)

)
v

=

;∑
:=1

47�(r9)�4
∗
8�
v +

[
U(9)(W̃9)1V(9)∗ + U(9)(W̃9)2(I − V(9)V(9)∗) + (I − U(9)U(9)∗)( ˜̃W9)3V(9)∗

]
v

=

;∑
:=1

47�(r9)�4
∗
8�
v + U(9) (W̃9)1V(9)∗ + (W̃9)2 − ((W̃9)2V(9))V(9)∗︸                                        ︷︷                                        ︸

=:M1

v + (W̃9)3 − U(9)(U(9)∗(W̃9)3)︸                       ︷︷                       ︸
=:M2

V(9)∗v

=

;∑
:=1

47�(r9)�v8� + U(9)(M1v) +M2(V(9)∗v)

for any v ∈ R32 .
The result follows because

∑;
:=1 47�(r9)�v8� is a sum of ; elements, because M1D and V(9)∗D

can be done in$(@32) operations, and because themultiplication of these withU(9),M2 ∈ R
31×@

then costs another $(@31). �

The methods for the partial singular value decompositions mentioned above also need
matrix-vector multiplications with the transpose X(9+1)∗ ∈ R32×31 of X(9+1), but, as can be
easily verified, the same bound as in Lemma 2.6.3 also holds for these.

2.6.3 Conditioning of System Matrix

In this section, we provide a result about the spectrum of the system matrix

A := D9 + %
∗
)9
Φ∗Φ%)9 :=

(
n

2−>
9

I

D−1
�(9)
− n

2−>
9

I
+ %∗)9Φ

∗Φ%)9

)
(2.171)

of (2.167). It is well-known that the shape of the spectrum of the system matrix A plays
an important role in the convergence of the conjugate gradient iterations. In particular, the
CG method terminates after � iterations (in exact arithmetic) if A has � distinct eigenvalues
[NW06, Theorem 5.4] and a bound on the error W� − W∗ of the �-th iterate W� to the exact
solution W∗ of the linear system [NW06, (5.36)] can be provided by

〈W� − W
∗,A(W� − W∗)〉 ≤ 2

(√
^(A) − 1√
^(A) + 1

)
〈W0 − W

∗,A(W0 − W
∗)〉 ,

where
^(A) :=

_max(A)
_min(A)

(2.172)

is the condition number of A.
It has been a common problem for IRLS methods that the linear systems to be solved

become ill-conditioned close to the desired (low-rank or sparse, depending on the problem)
solution [DDFG10, FRW11, FPRW16]. Close to the solution the smoothing parameter n9 is
typically very small, resulting in “very large weights” on large parts of the domain induced by
the quadratic form

〈X,,(9)(X)〉.

For the sparse recovery problem, it has been observed [Vor12] that this blow-up can be a
problem for an iterative approach, and in [FPRW16], an analysis was pursued for an IRLS
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algorithm for the sparse recovery problem about with which precision the linear system for
each outer iteration 9 needs to be solved by a conjugate gradient method to ensure overall
convergence.

However, the underlying issue of bad conditioning of the IRLS system matrices was not
addressed or solved in [FPRW16] (see Section 5.2 of [FPRW16] for a discussion).

We now argue that by solving the linear systems (2.171), these issues are mitigated, and we
show the following statement about its good conditioing in the case that X(9) is close enough
to a rank-@ matrix X0.

Theorem 2.9. Let � : R@(31+32−@)×@(31+32−@) be as in (2.171), but acting on a basis representation of
)9. Let X(9) ∈ R31×32 be the 9-th output of MatrixIRLS for an input with operator Φ : R31×32 →

R; as in Section 2.5.3, observation y = Φ(X0), where X0 ∈ R31×32 is a `0-incoherent rank-@
matrix, and rank estimate @̃ = @. Let n9 = f@+1(X(9)) < f@(X(9)) and � as in Corollary 2.5.3, let
�1 > 0 be a constant that is small enough. If

‖X(9) − X0‖(∞ ≤ min
(
�

2
2−>
1

(`0@

3

) 1
2−>

,
1
4

)
f@(X0),

and
; ≥ �`0@(31 + 32) log(31 + 32),

it holds that with high probability, the spectrum _(A) fulfills

_(A) ⊂
;

3132

[
6
10

;
24
10

]
.

In particular, it then holds that the condition number of A fulfills

^(A) ≤ 4.

Remark 2.6.1. As a basis representation of )9, we can use for example W9 represented by
{(W̃9)1, (W̃9)2, (W̃9)3} such that (W̃9)1 ∈ R@×@, (W̃9)2 ∈ R@×(32−@) and (W̃9)2 ∈ R(31−@)×@ such that

U(9)(W̃9)1V(9)∗ + U(9)(W̃9)2V(9)∗⊥ + U(9)⊥ (W̃9)3V(9)∗. (2.173)

Proof. Recall the definitions D9 =
n

2−>
9

I

D−1
�(9)
−n

2−>
9

I
and A = D9 + %

∗
)9
Φ∗Φ%)9 . We know that D9 � 0

since D−1
�(9)
� n

2−>
9

I, as all of its eigenvalues _7 are such that _7 ≥ f
2−>
@ (X(9)) ≥ n

2−>
9

, see (2.159).
Furthermore, the eigenvalues of D9 are given by

_(D9) =
{
(H(9)1 )

−1
7 8 : 7 ∈ [31], 8 ∈ [32], 7 ≤ 8, 7 ≤ @ or 8 ≤ @

}
∪

{
(H(9)2 )

−1
7 8 : 7 ∈ [31], 8 ∈ [31], 7 < 8, 7 ≤ @ or 8 ≤ @

}
,

which means that

‖D9‖(∞ ≤
n

2−>
9

f@(X)2−> − n
2−>
9

≤
n

2−>
9

(3/4f@(X0))2−> − n
2−>
9

, (2.174)

using that f@(X(9)) ≥ (1−1/4)f@(X0) since ‖X(9)−X0‖(∞ ≤
1
4f@(X0), see also (2.114). Also, since

n9 = f@+1(X(9)) ≤ ‖X(9) − X0‖(∞ ≤
1
4f@(X0) and further n9 = f@+1(X(9)) ≤ �

2
2−>
1

( `0@
3

) 1
2−> f@(X0),
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we have that

n
2−>
9

(3/4f@(X0))2−> − n
2−>
9

≤
�2

1
`0@
3

(3/4 − 1/4)2−>
f@(X0)

2−>

f@(X0)2−>
≤ 4�2

1
`0@

3
.

This implies that

0 ≤ _min(D9) ≤ _max(D9) = ‖D9‖(∞ ≤ 4�2
1
`0@

3
≤ 4�2

1
;

�3� log(�)
≤

;

3132
,

if the constant �1 > 0 is small enough, using the lower bound on the sample complexity ;.
The second summand in A, the matrix %∗)9Φ

∗Φ%)9 , is positive semidefinite already due to
its factorized form. We note that by following the proof of Corollary 2.5.3, we see that under
the assumptions of Theorem 2.9, we have that for P)9 : R31×32 → R31×32 , Z 7→ %)9%

∗
)9
(Z) and

PΩ : R31×32 → R31×32 , Z 7→ Φ∗Φ(Z),

3132

;

%)9 [
%∗)9Φ

∗Φ%)9 −
;

3132
I
]
%∗)9


(∞

=

3132

;
%)9%

∗
)9
Φ∗Φ%)9%

∗
)9
− %)9%

∗
)9


(∞

=

3132

;
P)PΩP) −P)


(∞

≤
4
10

on an event � that holds with high probability.
As %)9 is a matrix with orthonormal columns such that %∗)9%)9 = I, this implies that%∗)9Φ∗Φ%)9 − ;

3132
I

(∞

≤
4;

103132

on the event �. Thus, the bound on the spectrum of A follows from this and (2.174) sinceA −
3
2

;

3132
I

(∞

=

D9 + %
∗
)9
Φ∗Φ%)9 −

3
2

;

3132
I

(∞

≤

D9 −
1
2

;

3132
I

(∞

+

%∗)9Φ∗Φ%)9 − ;

3132
I

(∞

≤
1
2

;

3132
+

4
10

;

3132
=

9
10

;

3132
.

The condition number bound follows immediately since ^(A) = _max(A)
_min(A)

= 4. �

There is a caveat for the applicability of Theorem 2.9 for the analysis of a practical imple-
mentation of MatrixIRLS: It might be undesirable to use basis representations as (2.173) of
elements of the linear space )9 for W9 in (2.167), since these representations use the matrices
U(9)⊥ ∈ R

31×(31−@) and V(9)⊥ ∈ R
32×(32−@) of last singular vectors of X(9) explicitly, which we might

not want to use as the resulting projections Φ%)9 will not be as cheap as in Section 2.6.2.
However, Theorem 2.9 can be used to show at least that A acting on elements of )9 given

by the redundant representation of (2.157) (which uses @(31 + 32 + @) instead of dim()9) =
@(31 + 32 − @) parameters) has @(31 + 32) concentrated eigenvalues and only 2@2 small ones.

As a summary, since Theorem 2.9 gives a bound on the condition number of the linear
systemmatrix A that is a small constant, the theory of the conjugate gradient methods suggests
that very good solutions can be found already after few, in particular, after

#CG_inner = cst.
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CG iterations (where cst. is small), for each IRLS iteration, at least in the neighborhood of a
low-rank matrix X0 that is compatible with the measurements.

Taking into account the statement of Theorem 2.8, this suggests that at least locally, a new
iterate X(9+1) can be calculated with a time complexity of

$
(
(;@ + @2�) · #CG_inner

)
= $

(
;@ + @2�

)
.

Together with the superlinear convergence rate of the (outer) IRLS iterations, this suggests
that MatrixIRLS is indeed an algorithm that can achieve high-accuracy low-rank solutions of
underdetermined systems sub-linearly in the matrix dimension (31 × 32), or sub-quadratically
in � = max(31, 32).

2.7 Numerical Experiments
In this section, we explore the numerical performance of IRLS algorithms for low-rank matrix
recovery. We focus on a verification of convergence rates and on the comparison of various
low-rank matrix recovery algorithms of different kind in terms of data efficiency.

As a representative of IRLS algorithms for low-rank matrix recovery using tight quadratic
bounds as studied in this dissertation, we use the algorithm HM-IRLS, presenting the ex-
periments of the paper [KS18] in Sections 2.7.1 to 2.7.3. HM-IRLS has similar properties as
MatrixIRLS, especially in terms of convergence rates (see Theorem 2.7 and the discussion
thereafter) and data efficiency, which is why the experiments can be regarded as representa-
tive for MatrixIRLS up to a certain degree.

In particular, we demonstrate first in Section 2.7.2 that the superlinear convergence rate
that was proven theoretically for Algorithm 1/MatrixIRLS in Theorem 2.7 (and for HM-IRLS
in [KS18]) can indeed be accurately verified in numerical experiments, which is in contrast to
older variants of IRLS.

In Section 2.7.3, we then examine the recovery performance of HM-IRLS for the matrix
completion setting with the performance of other state-of-the-art algorithms comparing the
measurement complexities that are needed for successful recovery for many random instances.

The numerical experiments are conducted on Linux andMac systemswithMATLAB R2017b.
An implementation of HM-IRLS for matrix completion including code reproducing many con-
ducted experiments is available at https://github.com/ckuemmerle/.

2.7.1 Experimental Setup

In the experiments, we sample (31 × 32) dimensional ground truth matrices X0 ∈ R31×32 of
rank @ such that X0 = U0Σ0V∗, where U0 ∈ R31×@ and V0 ∈ R32×@ are independent matrices
with i.i.d. standard Gaussian entries and Σ ∈ R@×@ is a diagonal matrix with i.i.d. standard
Gaussian diagonal entries, independent from U0 and V0.

We recall that a rank-@ matrix X ∈ R31×32 has deg 5 = @(31 + 32 − @) degrees of freedom,
which is the theoretical lower bound on the number of measurements that are necessary for
exact reconstruction [CP11]. The random measurement setting we use in the experiments
can be described as follows: We take measurements of matrix completion type, sampling
; = bd deg 5 c locations Ω = (7�, 8�);�=1 and corresponding entries of X0 uniformly over the
3132 possibles to obtain y = Φ(X0), cf. Section 2.5.3. Here, d is such that 3132

deg 5
≥ d ≥ 1 and

parametrizes the difficulty of the reconstruction problem, from very hard problems for d ≈ 1
to easier problems for larger d.

However, this uniform sampling of Φ could yield instances of measurement operators
whose information content is not large enough to ensure well-posedness of the corresponding
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low-rank matrix recovery problem, even if d > 1. More precisely, it is impossible to recover a
matrix exactly if the number of revealed entries in any row or column is smaller than its rank
@, which is explained and shown in the context of the proof of [PABN16, Theorem 1].

Thus, in order to provide for a sensible measurement model for small d, we exclude
operators Φ that sample fewer than @ entries in any row or column. Therefore, we adapt
slightly the sampling model covered by Theorem 2.7 such that operators Φ are discarded and
sampled again until the requirement of at least @ entries per column and row is met and
recovery can be achieved from a theoretical point of view.

We note that the described phenomenon is very related to the fact that matrix completion
recovery guarantees for the uniform sampling model require at least one additional log factor,
i.e., they require at least ; ≥ log(max(31, 32)) deg 5 = log(�) deg 5 sampled entries [DR16,
Section V].

While we detail the experiments for the matrix completion measurement setting just
described in the remaining section, we add that Gaussian measurement models also lead to
very similar results in experiments.

2.7.2 Convergence Rate Comparison with Other IRLS Algorithms

In this subsection, we vary the Schatten-> parameter between 0 and 1 and compare the corre-
sponding convergence behavior of HM-IRLS with the IRLS variant IRLS-col, which performs
the reweighting just in the column space, and with a variant called AM-IRLS, corresponding
to weight operators with are the arithmetic mean of the ones of IRLS-col and IRLS-row as
they have been defined and discussed in Section 2.3.2.

In particular, all these IRLS variants optimize the smoothed Schatten-> objective

�n(X) =
3∑
7=1

(
f2
7 (X) + n

2
) >

2
,

for 0 < > ≤ 1 by iteratively solving the weighted least squares problems (2.90), i.e.,

X(9+1) = arg min
Φ(X)=y

〈X,,(91)(X)〉,

for weight operators,(9) : R31×32 → R31×32 defined such that

,(9)(X) = U9

[
H(9) ◦

(
U∗9XV9

) ]
V∗9,

where X(9) = U9 dg(f(9)
7
)V∗

9
, U9 ∈ O31 , V9 ∈ O32 is a singular value decomposition of the

previous iterate X(9) ∈ R31×32 , and H(9) ∈ R31×32 such that

(
H(9)

)
7 8
=


2
[ (
(f
(9)

7
)2 + n2

9
)

2−>
2 +

(
(f
(9)

8
)2 + n2

9
)
) 2−>

2
]−1 for HM-IRLS,(

(f
(9)

7
)2 + n2

9

) >−2
2 for IRLS-col,(

(f
(9)

8
)2 + n2

9

) >−2
2 for IRLS-row, and

2.5.31
2 ·

[ (
(f
(9)

7
)2 + n2

9

) >−2
2 +

(
(f
(9)

7
)2 + n2

9

) >−2
2

]
for AM-IRLS.

(2.175)

It can be checked that the corresponding weight operator,(9) for IRLS-col and IRLS-row is
equal to the definitions of (2.34) and (2.31), respectively.
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Figure 2.1 – Relative Frobenius errors as a function of the iteration < for oversampling factor
d = 2 (“easy” problem).

The smoothing parameter n9 is chosen according to the rule

n9+1 = min
(
n9,f@+1(X(9+1))

)
,

which is the same rule (2.91) as in Algorithm 1 resp. MatrixIRLS. In Algorithm 1 this would
correspond to choosing @̃ = @, i.e., the correct rank estimate.

We recall that IRLS-col is very similar to the IRLS algorithms of [FRW11] and [MF12] and
differs from them basically just in the choice of the n-smoothing. We present the experiments
with IRLS-col to isolate the influence of the weight matrix type, but very similar results can
be observed for the algorithms of [FRW11] and [MF12].⁶

In the matrix completion setup of Section 2.7.1, we choose 31 = 32 = 40, @ = 10 and
distinguish easy, hard and very hard problems corresponding to oversampling factors d of 2.0,
1.2 and 1.0, respectively. The algorithms are provided with the ground truth rank @ and are
stopped whenever the relative change of Frobenius norm ‖- (9) − - (<−1)‖�/‖-

(<−1)‖� drops
below the threshold of 10−10 or a maximal iteration of iterations <max is reached.

Convergence Rates

First, we study the behavior of the three IRLS algorithms for the “easy” setting of an oversam-
pling factor of d = 2, which means that 2@(31+32−@)

3132
= 0.875 of the entries are sampled, and

parameters > ∈ {0.1, 0.5, 0.8, 1}.
In Figure 2.1, we observe that for > = 1, HM-IRLS, AM-IRLS and IRLS-col have a quite

similar behavior, as the relative Frobenius errors ‖- (<) − -0‖�/‖-0‖� decrease only slowly,
i.e., even a linear rate is hardly identifiable. For choices > < 1 that correspond to non-
convex objectives, we observe a very fast, superlinear convergence of HM-IRLS, as the iterates
- (<) converge up to a relative error of less than 10−12 within fewer than 20 iterations for
> ∈ {0.8, 0.5, 0.1}. Precise calculations verify that the rate of convergences are indeed of

⁶Implementations of the mentioned authors’ algorithms were downloaded from https://faculty.
washington.edu/mfazel/ and https://github.com/rward314/IRLSM, respectively.
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Figure 2.2 – Relative Frobenius errors as a function of the iteration < for oversampling factor
d = 1.2 (hard problem). Left column: G-range [10−10; 100]. Right column: Enlarged section
of left column corresponding to G-range of [10−2; 100].

order 2 − >, the order predicted by Theorem 2.7. We note that for these examples, the fast
convergence rate not only kicks in locally, but starting from the very first iteration.

On the other hand, it is easy to see that AM-IRLS and IRLS-col converge linearly, but
not superlinearly to the ground truth -0 for > ∈ {0.8, 0.5, 0.1}. The linear rate of AM-IRLS is
slightly better than the one of IRLS-col, but the numerical stability of AM-IRLS deteriorates
for > = 0.1 close to the ground truth (after iteration 43). This is due to a bad conditioning
of the quadratic problems as the X(<) are close to rank-@ matrices. In contrast, no numerical
instability issues can be observed for HM-IRLS.

For the hard matrix completion problems with oversampling factor of d = 1.2, we observe
that for > = 0.8, the three algorithms typically do not converge to ground truth. This can be
seen in the example that is shown in Figure 2.2, where HM-IRLS, AM-IRLS and IRLS-col all
exhibit a relative error of 0.27 after 100 iterations. We do not visualize the result for > = 1,
as the iterates of the three algorithms do not converge to the ground truth either, which is to
be expected: In some sense, they implement nuclear norm minimization, which is typically
not able to recover a low-rank matrix from measurements with an oversampling factor as
small as d = 1.2 [DGM13]. The dramatic difference in behavior between HM-IRLS and the
other approaches becomes very apparent for more non-convex choices of > ∈ {0.01, 0.25, 0.5},
where the former converges up to a relative Frobenius error of less than 10−10 within 15 to 35
iterations, while the others do not reach a relative error of 10−2 even after 100 iterations. For
HM-IRLS, the convergence of order 2 − > can be very well locally observed also here, it just
takes some iterations until the superlinear convergence begins, which is due to the increased
difficulty of the recovery problem.

Finally, we see in the example shown in Figure 2.3 that even for the very hard problems
where d = 1, which means that the number of sampled entries corresponds exactly to the
degrees of freedom @(31+32− @), HM-IRLS can be successful to recover the rank-@ matrix if the
parameter > is chosen small enough (here: > ≤ 0.25). This is not the case for the algorithms
AM-IRLS and IRLS-col.

We summarize that among the three variants HM-IRLS, AM-IRLS and IRLS-col, only
HM-IRLS is able to solve the low-rankmatrix recovery problem for very low sample complexities
corresponding to d ≈ 1. Furthermore, among the four considered algorithms, it is the only
algorithm that exhibits a superlinear rate of convergence at all.
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Figure 2.3 – Relative Frobenius errors as a function of the iteration < for oversampling factor
d = 1.0 (very hard problem). Left column: G-range [10−10; 100]. Right column: Enlarged
section of left column corresponding to G-range of [10−2; 100].

2.7.3 Matrix Completion: Recovery Performance Compared to State-Of-The-Art
Algorithms

After comparing the performance of HM-IRLSwith other IRLS variants, we now conduct exper-
iments to compare wit the empirical performance of of low-rank matrix recovery algorithms
different from IRLS.

To obtain a comprehensive picture, we consider not only the IRLS variants AM-IRLS and
IRLS-col, but a selection of other methods, which are chosen to be a representative set of
state-of-the-art methods based on different strategies in our next experiments. In particular,
we conduct experiments to compare to the Riemannian optimization algorithm Riemann_Opt
[Van13], the alternating minimization approaches AltMin [HH09], ASD [TW16] and BFGD
[PKCS18], and finally the algorithms Matrix ALPS II [KC14] and CGIHT_Matrix [BTW15],
which are based on iterative hard thresholding. As the IRLS variants, all these algorithms use
knowledge about the actual ground truth rank @.

In the experiments, we examine the empirical recovery probabilities of the different al-
gorithms systematically for varying oversampling factors d, determining the difficulty of the
low-rank recovery problem as the sample complexity fulfills ; = bd deg 5 c. We recall that a
large parameter d corresponds to an easy reconstruction problem, while a small d, e.g., d ≈ 1,
defines a very hard problem.

We choose 31 = 32 = 100 and the @ = 8 as parameter of the experimental setting,
conducting the experiments to recover rank-8 matrices X0 ∈ R100×100. We remain in the
matrix completionmeasurement setting described in Section 2.7.1, but now sample 150 random
instances of X0 and Φ for different numbers of measurements varying between ;min = 1500
to ;max = 4000. This means that the oversampling factor d increases from dmin = 0.975 to
dmax = 2.60. For each algorithm, a successful recovery of X0 is defined as a relative Frobenius
error ‖Xout−X0‖�/‖X0‖� of thematrix Xout returned by the algorithm of smaller than 10−3. The
algorithms are run until stagnation of the iterates or until the maximal number of iterations
<max = 3000 is reached. The number <max is chosen large enough to ensure that a recovery
failure is not due to a lack of iterations.

In the experiments, except for AltMin, for which we used our own implementation, we
used implementations provided by the authors of the corresponding papers for the respective
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Figure 2.4 – Comparison of empirical success rates of state-of-the-art algorithms, as a function
of the oversampling factor d

algorithms, using default input parameters provided by the authors. The respective code
sources can be found in the references.

Beyond the state-of-the-art performance of proposed IRLS method

The results of the experiment can be seen in Figure 2.4. We observe that HM-IRLS exhibits a very
high empirical recovery probability for > = 0.1 and > = 0.5 as soon as the sample complexity
parameter d is slightly larger than 1.0, which means that ; = bd@(31+ 32− @)c measurements
suffice to recover (31 × 32)-dimensional rank-@ matrices with d close to 1. This is very close to
the information theoretical lower bound of deg 5 = @(31 + 32 − @). Very interestingly, it can be
observed that the empirical recovery probability reaches almost 1 already for an oversampling
factor of d ≈ 1.1, and remains at exactly 1 starting from d ≈ 1.2.

Relatively good success rates can also be observed for the algorithms AM-IRLS and
IRLS-col for non-convex parameter choices > ∈ {0.1, 0.5}, reaching an empirical success
probability of almost 100% at around d = 1.5. AM-IRLS performs only marginally better than
the classical IRLS strategy IRLS-col, which are both outperformed considerably by HM-IRLS. It
is important to note that in accordance to what was observed in Section 2.7.2, in the successful
instances, the error threshold that defines successful recovery is achieved already after a few
dozen iterations for HM-IRLS, while typically only after several or many hundreds for AM-IRLS
and IRLS-col. Furthermore, it is interesting to observe that the algorithm IRLS-MF, which
corresponds to the variant studied and implemented by [MF12] and differs from IRLS-col
mainly only in the choice of the n-smoothing (2.91), has a considerably worse performance
than the other IRLS methods. This is plausible since the smoothing severely influences the
optimization landscape of the objective to be minimized.

The strong performance of HM-IRLS is in stark contrast to the behavior of all the algorithms
that are based on different approaches than IRLS and that we considered in our experiments.
They basically never recover any rank-@ matrix if d < 1.2, and most of the algorithms need a
sample complexity parameter of d > 1.7 to exceed a empirical recovery probability of a mere
0.5. A success rate of close to 0.8 is reached not before raising d above 2.0 in our experimental
setting, and also only for a subset of the comparison algorithms, in particular for Matrix
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ALPS II, ASD, AltMin. The empirical probability of 1 is only reached for some of the IRLS
methods, and not for any competing method in our experimental setting, even for rather large
oversampling factors such as d = 2.5. While we do not rule out that a possible parameter
tuning could improve the performance of any of the algorithms slightly, we conclude that for
hard matrix completion problems, the experimental evidence for the vast differences in the
recovery performance of HM-IRLS compared to other methods is very apparent.

Thus, our observation is that the tight quadratic bound IRLS algorithms as HM-IRLS algo-
rithm recover low-rank matrices systematically with nearly the optimal number of measurements,
and need fewer measurements than all the state-of-the-art algorithms we included in our experi-
ments, if the non-convexity parameter > is chosen such that > � 1.

We note that the very sharp phase transition between failure and success that can be
observed in Figure 2.4 for HM-IRLS indicates that the sample complexity parameter d is
indeed the major variable determining the success of HM-IRLS. In contrast, the wider phase
transitions for the other algorithms suggest that they might depend more on other factors, as
the realizations of the random sampling model and the interplay of measurement operator Φ
and ground truth matrix -0.

Another conclusion that can be drawn from the empirical recovery probability of 1 is that,
despite the severe non-convexity of the underlying Schatten-> quasi-norm for, e.g., > = 0.1,
HM-IRLS with the initialization of - (1) as the Frobenius norm minimizer does not get stuck in
stationary points if the oversampling factor is large enough. The preceding discussion of this
chapter gives also a meaningful interpretation of choosing the non-convexity parameter > = 0,
resulting in a log-det type objective (2.27), which has not been studied by the theory of [KS18].
Experiments suggest that a choice of > = 0 admits usually one of the best performances, if the
not the very best among all > ∈ [0; 1].

Further experiments conducted with random initializations as well as severely adversary
initializations, e.g., with starting points chosen in the orthogonal complement of the spaces
spanned by the singular vectors of the ground truth matrix -0, lead to comparable results. We
leave the systematic study of this aspect to future work.

As a summary, we claim that, for the low-rank matrix completion problem, HM-IRLS
exhibits a global convergence behavior for oversampling factors in a range for which competing
non-convex low-rank matrix recovery algorithms fail to succeed.

This good global convergence behavior goes beyond our local analysis of Section 2.4.2. A
detailed theoretical investigation of such behavior remains for future work.

2.8 Further Proofs
In this section, we provide proofs of some properties that have been shown already for previous
IRLS algorithms [DDFG10,FRW11,MF12].

2.8.1 Proof of Theorem 2.6

Proof of Theorem 2.6. 1. To show the first statement, let 9 ∈ N and let n9−1 > 0, X(9−1) ∈

R31×32 be the output of MatrixIRLS at iteration 9 − 1. As the quadratic &n9−1(·|X
(9−1)

(see (2.61)) defined by the weight operator ,(9−1) of MatrixIRLS at iteration 9 − 1 is
defined as

&n9−1(X|X
(9−1)) = �n9−1(X

(9−1))+〈∇�n9−1(X
(9−1)),X−X(9−1)〉+

1
2
〈X−X(9−1),,(9−1)(X−X(9−1))〉

and since
∇�n9−1(X

(9−1)) =,(9−1)(X(9−1)),
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due to Theorem 2.4, it holds that

&n9−1(X|X
(9−1)) = �n9−1(X

(9−1)) +
1
2

(
〈X,,(9−1)(X)〉 − 〈X(9−1),,(9−1)(X(9−1))〉

)
. (2.176)

In particular, as 2&n9−1(X|X
(9−1)) and 〈X,,(9−1)(X)〉 differ just by terms not depending

on X, it follows that

X(9) = arg min
Φ(X)=Y

〈X,,(9−1)(X)〉 = arg min
Φ(X)=Y

&n9−1(X|X
(9−1)). (2.177)

Thus, we can use this to see that

�n9−1(X
(9)) ≤ &n9−1(X

(9) |X(9−1)) ≤ &n9−1(X
(9−1) |X(9−1)) = �n9−1(X

(9−1)),

where we used the global majorization statement of Theorem 2.4 in the first inequality
and (2.177) in the second inequality, and the last equality follows directly from (2.176).

Taking this into account, the statement of Theorem 2.6.1 is shown if

�n9(X
(9)) ≤ �n9−1(X

(9)), (2.178)

for n9 chosen as in the smoothing update step (2.91) of MatrixIRLS. And indeed, that
the latter is true can be inferred from the dependence on n of the univariate functions
5>,n that constitute the objective �n(X(9)) = �>,n(X(9)) of MatrixIRLS (see (2.48)) such
that

�n(X(9)) =
3∑
7=1

5>,n(f7(X(9))),

where 5>,n is such that

5>,n(f) =


log (max(f, n)) + 1

2

(
min(f,n)2

n2 − 1
)
, if > = 0,

1
>

max(f, n)> + 1
2

(
min(f,n)2

n2−> − n>
)
, if 0 < > ≤ 1

for any f ≥ 0. To show the claim (2.178), we first note that

n9 ≤ n9−1

due to (2.91). Defining fixed f a function ℎf : R≤0 → R such that ℎf(n) = 5>,n(f), we
obtain

ℎ′f(n) =

{
2−>

2 n>−1 +
>−2

2
f2

n3−> =
2−>

2 n>−3 (
n2 − f2) if n > f,

0 if n < f,

for all 0 ≤ > ≤ 1. This means that ℎf is a piecewise differentiable function with almost
everywhere non-negative derivative and, thus, ℎf is a non-decreasing function and in
particular,

5>,n9(f) = ℎf(n9) ≤ ℎf(n9−1) = 5>,n9−1(f). (2.179)

As (2.179) holds for all f = f7(X(9)), the claim (2.178) is shown.
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2. We note that

�n9(X) =
∑

7:f7(X)>n9

log(f7(X)) +
∑

7:f7(X)≤n9

(
log(n9) +

1
2

(
f7(X)2

n2
9

− 1

))
if > = 0. Since f̃ 7→ log(f̃2) is concave, we have that(

log(n9) +
1
2

(
f7(X)2

n2
9

− 1

))
≥ log (f7(X))

for any 7 ∈ [3] with f7(X) ≤ n9, as in this case

log(f) =
1
2

log(f2) ≤
1
2

log(n2
9 ) +

1
2
(n2
9 )
−1

(
f2 − n2

9

)
= log(n9) +

1
2
n−2
9

(
f2 − n2

9

)
for any f > 0. Similarly for 0 < > ≤ 1, the function he function ℎ : R≤0 → R,
ℎ(f̃) = 1

>
f̃>/2 is concave, and therefore

1
>
f> =

1
>
(f2)>/2 ≤

1
>
(n2
9 )
>/2 +

1
2
(n2
9 )
>/2−1

(
f2 − n2

9

)
=

1
2
f2

n
2−>
9

+

(
1
>
−

1
2

)
n
>

9
.

With this, we argue that

5>,n(f) ≥

{
log(f),
1
>
f>,

which finishes the proof of Theorem 2.6.2 by inserting f = f7(X) and summing over all
7 ∈ [3].

3. By (2.177), and statement 1., it holds that

�n9−1(X
(9−1)) − �n9(X

(9)) ≥ �n9−1(X
(9−1)) − &n9−1(X

(9) |X(9−1))

= −
1
2

(
〈X(9),,(9−1)(X(9))〉 − 〈X(9−1),,(9−1)(X(9−1))〉

)
.

By Lemma 2.4.1, we know that X(9) from (2.90) fulfills the optimality condition

〈,(9−1)(X(9)), [〉 = 0 for all [ ∈ kerΦ and Φ(X(9)) = Y.

Choosing [ = X(9−1) − X(9), we see that

〈X(9),,(9−1)(X(9))〉 − 〈X(9−1),,(9−1)(X(9−1))〉 =

= 〈X(9),,(9−1)(X(9))〉 − 〈X(9−1),,(9−1)(X(9−1))〉 + 2〈,(9−1)(X(9)),X(9−1) − X(9)〉

= −
(
〈X(9−1),,(9−1)(X(9−1))〉 + 2〈,(9−1)(X(9)),X(9−1)〉 + 〈X(9),,(9−1)(X(9))〉

)
= −〈(X(9) − X(9−1)),,(9−1)(X(9) − X(9−1))〉

and therefore

�n9−1(X
(9−1))−�n9(X

(9)) ≥ fmin(,
(9−1))‖X(9)−X(9−1)‖2� ≥ max(f1(X(9−1)), n9−1)

>−2‖X(9)−X(9−1)‖2� .
(2.180)

132



Furthermore, if > > 0 or if n̄ = lim9→∞ n9 > 0, we know that the sequence (X(9))9≥1 is
bounded. Indeed, if > > 0,

1
>
‖X(9)‖>(∞ =

1
>
f1(X(9))> ≤ �n9(X

(9)) ≤ �n1(X
(1)) ≤ 3

1
>

max(f1(X(1)), n1)
> =: 2>

for all 9 ∈ N and therefore

fmin(,
(9−1)) ≥ max(f1(X(9−1)), n9−1)

>−2 ≥ max(>21/>
> , n9−1)

>−2 ≥ max(>21/>
> , n1)

>−2 =: �>,

where we used that min1≤7≤31,1≤ 8≤32 min
(
(H(9−1)

1 )7 8, (H
(9−1)
2 )7 8

)
=

max(f1(X(9−1)), n9−1)
>−2 due (2.58) and (2.59) of Definition 2.3.4.

Inserting this into (2.180), we obtain that

�n9−1(X
(9−1)) − �n9(X

(9)) ≥ �>‖X(9) − X(9−1)‖2�

and, summing over 2 ≤ 9 ≤  , this results in

�n1(X
(1)) ≥ �n1(X

(1)) − �n (X
( )) ≥ �>

 −1∑
9=1

‖X(9+1) − X(9)‖2�

and
∑∞
9=1 ‖X

(9+1) − X(9)‖2� = 0 for  →∞, and therefore

lim
9→∞
‖X(9+1) − X(9)‖� = 0.

If, on the other hand, > = 0, suppose that n̄ = lim9→∞ n9 > 0. In this case we can
likewise argue that the sequence (X(9))9≥1 is bounded as

�n9−1(X
(9−1)) ≤ �n1(X

(1)) ≤ max(0, log(max(f1(X(1)), n1))) =: 20

and

�n9−1(X
(9−1)) ≥ log(max(f1(X(9−1)), n9−1)) − 3 log(n9−1) − 3/2

≥ log(max(f1(X(9−1)), n9−1)) − 3 log(n̄) − 3/2.

Rearranging the last two inequalities, we obtain that

max(f1(X(9−1)), n9−1) ≥ exp (20 + 3 log(n̄) + 3/2)

and therefore

fmin(,
(9−1)) ≥ max(f1(X(9−1)), n9−1)

−2 ≥ exp [(−2) (20 + 3 log(n̄) + 3/2)] =: �0.

As above for > > 0, this shows that lim9→∞ ‖X(9+1) − X(9)‖� = 0.

4. In the proof of statement 3., we showed that the sequence (X(9))9≥1 is bounded. In
particular, this already shows that each subsequence of (X(9))9≥1 has a convergent subse-
quence. Let (X(9�))�≥1 be such a sequence with lim�→∞ X(9�) = X̄. As the matrix operator
,(9�) of Definition 2.3.4 depends continuously on X(9�), there exists a weight operator
,̄ : R31×32 → R31×32 such that ,̄ = lim�→∞,

(9�). Using statement 3. of this theorem,
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it also holds that X(9�+1) → Z̄ and therefore

〈,̄X̄, [〉 = lim
�→∞
〈,(9�)(X(9�+1)), [〉 = 0

for all [ ∈ kerΦ. Noting now that the first statement of Theorem 2.4 implies that

∇�n̄(X̄) = ,̄(X̄),

as ,̄ is the weight operator corresponding to X̄, we obtain that

〈�n̄(X̄), [〉 = 0 for all [ ∈ kerΦ and Φ(X̄) = Y,

which means that X̄ is a stationary point of �n̄ subject to the linear constraint Φ(X) = Y.
This finishes the proof of Theorem 2.6.

�

2.8.2 Proof of Lemma 2.4.1

Proof of Lemma 2.4.1. First, we observe that the function X 7→ 〈X,,(9−1)(X)〉 is strictly convex
as the matrices H(9−1)

1 and H(9−1)
2 used in the definition of ,(9−1) have all positive entries,

cf. Definition 2.3.4. Therefore, we can define the fractional operator (,(9−1))1/2 : R31×32 →

R31×32 such that

〈X,,(9−1)(X)〉 = 〈(,(9−1))1/2(X), (,(9−1))1/2(X)〉 = 〈Z, Z〉

if we define Z = (,(9−1))1/2(X). With this change of variables, the constraint Φ(X) = Y can be
written such that �Φ(9−1)(Z) := Φ((,(9−1))−1/2(Z)) = Y

with the (underdetermined) linear operator �Φ(9−1) : R31×32 → R;. Then,

Z(9) = arg min
Z∈R31×32 :�Φ(9−1)(Z)=Y

〈Z, Z〉 =�Φ(9−1)
†

(Y) =�Φ(9−1)
∗

(�Φ(9−1)�Φ(9−1)
∗

)−1(Y),

where �Φ(9−1)
†

is the Moore-Penrose inverse of �Φ(9−1) [Ber09, Proposition 6.1.5] and, reversing
the change of variables,

X(9) = (,(9−1))−1/2(Z(9)) = (,(9−1))−1/2 ◦ (,(9−1))−1/2
(
Φ∗(Φ(,(9−1))−1Φ∗)−1(Y)

)
= (,(9−1))−1

(
Φ∗

(
Φ(,(9−1))−1Φ∗

)−1
(Y)

)
,

which shows the equality of (2.93).
To show the second statement, we note that (2.93) is equivalent to

〈X(9) + [,,(9−1)(X(9) + [)〉 > 〈X(9),,(9−1)(X(9))〉 for all [ ∈ kerΦ \ {0} and Φ(X(9)) = Y,

which in turn is equivalent to

2〈,(9−1)(X(9)), [〉 + 〈[,,(9−1)([)〉 > 0 for all [ ∈ kerΦ \ {0} and Φ(X(9)) = Y. (2.181)

It is now easy to observe that holds if and only if (2.94) is true: Suppose that (2.94) holds. As
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,(9−1) is positive definite, 〈[,,(9−1)([)〉 > 0 for [ ∈ kerΦ \ {0} and therefore (2.181) is true.
Conversely, supposing that (2.181) is true would lead to a contradiction if there existed an

[ ∈ ker \{0} such that 〈,(9−1)(X(9)), [〉 > 0, as then B[ ∈ kerΦ \ {0} would fulfill

2〈,(9−1)(X(9)), B[〉 + 〈(B[),,(9−1)(B[)〉 < 0

for B > 0 chosen appropriately small. Similarly, 〈,(9−1)(X(9)), [〉 < 0 leads to a contradiction.
�

2.9 Discussion and Summary of Contributions
We conclude this chapter with a summary of the contributions of our investigations.

In Section 2.2, we reviewed the theory of non-convex rank surrogate objectives that are
non-convex spectral functions, arguing that they can be considered a promising tool to derive
more tractable formulations of the rank minimization problem

min
X∈R31×32

rank(X) subject to Φ(X) = y,

while themselves resulting in optimization problems that are challenging in their own right
due to their non-convexity.

We then explored a family of algorithms called Iteratively Reweighted Least Squares (IRLS),
reviewing existing results and investigating the adaption of this framework to the optimization
of rank surrogate objectives. While this has been attempted already in the works [MF12,
FRW11, LXY13], we pinpoint why their derivation, which is related to the optimization of
high-dimensional functions depending on separable variables, leads to multiple different, but
sub-optimal IRLS formulations, which we called IRLS-col and IRLS-row.

In Sections 2.3.2 to 2.3.4, we proposed a new formulation of IRLS for low-rank matrix
recovery named MatrixIRLS, which improves on IRLS-col and IRLS-row as the underlying
weight operator corresponds to considerably tighter quadratic bounds on the spectral objec-
tives. The tightness of the quadratic bounds is further related to the second-order derivative
structure of spectral functions.

MatrixIRLS in comparison with other IRLS algorithms

In this context, we proved Theorem 2.4, which indicates that the quadratic functions induced
by the weight operator ,(9) (cf. Definition 2.3.4) of MatrixIRLS is indeed still a global
majorizer of the function to be minimized, ensuring a monotonous decrease of the objective
with subsequent iterations of MatrixIRLS. The monotonous decrease results in a statement
about subsequence convergence of the algorithm’s iterates to stationary points of the smoothed
logdet/Schatten-> objective (Theorem 2.6)–a statement that had previously also been shown
for the older IRLS variants of [MF12,FRW11]. Optimally, we would like, of course, to obtain a
statement that ensures convergence to global minimizers of our objectives. A statement that
strong is, unfortunately, difficult to achieve due to the non-convexity of the Schatten-> quasi
norm/the smoothed objectives �n. From some point of view, a result that strong is beyond
the scope of existing theory even for structurally simpler settings IRLS for the related sparse
recovery problem [DDFG10].

However, for MatrixIRLS, it is possible to develop a local convergence theory, which we did
with Theorem 2.7, our second main theorem. It suggests that under regularity assumptions
on the linear operator Φ, MatrixIRLS converges with a locally superlinear convergence rate of
order 2 − >, where > ∈ [0; 1) is the non-convexity parameter corresponding to a Schatten->
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quasi-norm objective for > > 0 and to a logdet-objective for > = 0, and a lower bound on the
radius of fast convergence is provided.

This fast convergence rate has neither been proved nor observed in experiments for pre-
vious IRLS algorithms [MF12, FRW11, LXY13] of the type of IRLS-col and IRLS-row (see
Remark 2.4.3 and Section 2.7.2), suggesting that our algorithms constitute a substantial im-
provement on them, see also the experiments of Section 2.7.1 for a numerical verification.
Compared to the local convergence result [KS18, Theorem 11], which implies a local conver-
gence rate of order 2− > for HM-IRLS if 0 < > ≤< 1, we note that Theorem 2.7 also covers the
important case of > = 0, and furthermore [KS18, Theorem 11] admits only a smaller bound on
the radius implying fast local convergence [KS18, Theorem 11] than Theorem 2.7.

It is worthwhile to compare the properties of MatrixIRLS with the behavior of the IRLS
algorithm of [DDFG10] designed to solve the sparse vector recovery problem by mimicking
�>-minimization for 0 < > ≤ 1. [DDFG10, Theorem 7.9, Figure 8.3] provided a comparable
local convergence statement as Theorem 2.7. This means that our algorithms can be seen as
an adequate generalization of the well-known IRLS for sparse vector recovery [GR97,DDFG10]
the setting of the recovery of low-rank matrices.

Furthermore, it can be observed that the convergence of the algorithm of [DDFG10] to a
sparse vector often breaks down if > is smaller than 0.5 [DDFG10, Section 8]. In contrast to
that, we observed that IRLS algorithms with tight quadratic bounds do not suffer from this
loss of global convergence for > � 0.5 in the low-rank case Section 2.7.3. We explain this
difference by the choice of the n-smoothing, which would, translated to the matrix, correspond
to

n9 = min
(
n9−1,

f@+1(X(9))
3

)
,

see [DDFG10, Eq. (1.9)]. This smoothing is more adapted to solving the problem for a
convex objective with > = 1, but too small to be adequate for very non-convex objectives
corresponding to > ≈ 0. Elaborating on this is beyond the scope of this thesis, but we claim
that our investigations also contribute how to improve IRLS for sparse vector recovery–we
leave translating the proof of Theorem 2.7 to the sparse vector case to future work.

In the context of the large literature about low-rank matrix recovery algorithms, also the
convergence rate result of Theorem 2.7 is remarkable, since there are only few low-rank recovery
algorithms which exhibit either theoretically or practically verifiable superlinear convergence
rates. In particular, although the algorithms of [MMBS13] and NewtonSLRA of [SS16] do
show superlinear convergence rates, the first is not competitive to MatrixIRLS in terms of
sample complexity and the second has neither applicable theoretical guarantees for most of
the interesting problems nor the ability of solving medium size problems.

Optimal Sample Complexity for Local Guarantees of MatrixIRLS

We now briefly review the implications of our analysis on the data efficiency of MatrixIRLS.
In Section 2.5, we verified the assumptions ensuring fast local convergence of MatrixIRLS

for three models for the measurement operator Φ: Sub-Gaussian operators, phase retrieval
and matrix completion. Our analysis showed that local convergence occurs already for a
number of measurements or samples ; that is optimal (up to constants) from a information
theoretic point of view, i.e., compared to the number of degrees of freedom of the model.

In this context, we single out the bound on the sample complexity for the problem of
completing `0-incoherent rank-@ matrices of dimension (3 × 3) from of Corollary 2.5.3, which
guarantees local convergence of MatrixIRLS to the rank-@ matrix with high probability for ;
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randomly sampled entries if ; fulfills

; ≥ �`0@3 log(3), (2.182)

for some constant � ≥ 1. First, we note that the statement of Corollary 2.5.3 has not yet been
proven in the paper [KS18], as stronger assumptions than Assumption 2.1 were used to show
the local convergence statement.

The bound (2.182) is optimal up to the constant �, as has been shown in [CT10, Theorem
1.7], [Che15, Proposition 1], and improves, to the best of our knowledge, on the best bounds
for any algorithm for low-rank matrix completion. In particular, the state-of-the-art theoretical
guarantee by Chen [Che15, Theorem 1], which built on previous work of [CT10,Gro11,Rec11],
for the success of the nuclear norm minimization program

min
X∈R31×32

‖X‖∗ subject to Φ(X) = y

requires
; ≥ `0@ log2(3)

sampled entries, which is a factor of log(3) more samples than (2.182)⁷.
Most of the recent research on non-convex approaches for the low-rank matrix recovery or

completion problem is considerably different from our approach, as they often start already
from amatrix factorization approach that assumes iterates X = LR∗ ∈ R31×32 are already being
represented as an (outer) product of two matrices L ∈ R3×@, R ∈ R3×@, and then optimize an
objective like � : R3×@ ×R3×@ → R,

�(L,R) = ‖Φ(LR∗) − y‖2� ,

by regularized or non-regularized gradient descent, or by alternating minimization, see
[CLC19] for a survey.

Also for these approaches, convergence guarantees have been obtained, but even the best
guarantees require more samples than (2.182): For unregularized gradient descent, recent
results [MWCC19,CLL19] showed that

; ≥ �2(^)`2
0@

2 log(3)

samples suffice for convergence (with 2(^) being a constant depending on the condition number
^ of X0), which is suboptimal with respect to (2.182) by a factor of `0@. Another algorithm
with one of the smallest requirements on ; is the Grassmann manifold based gradient descent
algorithm of [KMO10], which provably converges if a good initialization is provided and if the
sample complexity fulfills

; ≥ `2
0^

2@3 max(^4@, log(3)).

We would like to stress here that the provided convergence analysis of MatrixIRLS is of
local nature, and does not guarantee that the algorithm converges from any initialization to
the desired low-rank matrix.

⁷We also note that our assumption on the `0-incoherence of the matrix X0 `0-incoherence is slightly weaker
than the one of [Che15], see Definition 3.3.1.
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State-of-the-art Data Efficiency

However, the experimental results of Section 2.7.3 suggest that at least in the investigated set-
ting of recovering random low-rank matrices from few, random entrywise samples (low-rank
matrix completion), tight quadratic bound IRLS algorithms for non-convex rank surrogates
perform very favorably in terms of data efficiency, i.e., they need very few data samples ;
to reconstruct low-rank matrices. The experiment was designed in a representative manner,
comparing to previous IRLS algorithms as IRLS-col, but also to other algorithms representa-
tive of the state-of-the art, such as Riemannian optimization techniques [Van13], alternating
minimization approaches [HH09, TW16], algorithms based on iterative hard thresholding
[KC14, BTW15], and others [PKCS18]. We saw that HM-IRLS recovers low-rank matrices sys-
tematically with an optimal number of measurements that is very close to the theoretical lower
bound on the number of measurements that is known to be necessary for recovery, with high
empirical probability.

One possible conclusion of the experiments is that in fact, despite the severe non-convexity
of the underlying objective for > � 1, convergence of MatrixIRLS to bad local minima or
saddle points happens only rarely, as otherwise, the good empirical recovery rate observed
in Section 2.7.3 could not be realized. This indicates that the performance of MatrixIRLS
is robust to the choice of the initialization and that it can be used as competetive a stand-
alone algorithm to recover low-rank matrices, and low requirements on the sample complexity
indicated by the local statements of Section 2.5.1 might be extendable to a global convergence
analysis.

Scalability: Breaking Quadratic Complexity for IRLS Algorithms

Finally, another important aspect of our contributions are the computational considerations
for MatrixIRLS presented in Section 2.6. In that section, we presented how it is possible to
implement MatrixIRLS in the case of matrix completion actually in a way where all basic
operations require only a time complexity of

$(;@ + @2�),

where @ is the target rank, � = max(31, 32) the maximum of the ambient dimensions of the
matrix to be recovered and ; the number of observed entries. This is precisely the order of
the complexity of gradient descent approaches optimizing a data fit objective such as (2.3)
based on matrix factorization [CC18, p. 23].

From a scalability point of view, this makes IRLS competitive with the currently most
studied and most popular approaches for the low-rank matrix recovery problem. Compared
to first-order methods based on matrix factorization, our method has the advantage that
there is no need to choose step sizes of gradient steps, for which it might be difficult to find
good general rules–our method’s main free parameters are related to the accuracy of the
solutions linear system to be solved by a conjugate gradient method, which has been studied
in abundance in numerical linear algebra for a long time.

The papers [MF12] and [FRW11], which introduced the first IRLS variants for low-rank
recovery, also elaborated on the implementation of their respective methods for matrix com-
pletion.

[MF12] uses two different projected gradient descent approaches in their implementation,
working always with full matrices and full singular values decompositions, which scale in
general cubically in the matrix dimension such that $(32�).

The paper [FRW11] covers an algorithm of the type of IRLS-col for > = 1, but not the
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generalization for > < 1. However, generalizing their implementation in the most natural way
to > < 1 would lead to an objective similar to the objective (2.92) of MatrixIRLS, i.e., similar
to

�n(X) =
3∑
7=1

[
1
>

max(f7(X), n)> +
1
2

(
min(f7(X), n)2

n2−> − n>
)]

.

Furthermore, a variant of the “Woodbury trick” of Section 2.6.2 is used [FRW11, Section 4.2.1]
to reduce the problem size from solving the (; × ;) linear systems(

Φ(,(9))−1Φ∗
)

z = y

to 32 systems of size @ × @. The authors use crucially that a weight operator,(9) : R31×32 →

R31×32 such as (2.28) acts column-wise on X, creating a certain separability of the problem in the
case of matrix completion. This separability is not preserved if we use weight operators such
as the harmonic mean operator of [KS18] or MatrixIRLS, which means that the simplification
of [FRW11] is not applicable in our case. Overall, [FRW11] still works with full matrices stored
across iterations in memory.

We note that due to the column- or row-wise action of the weight operators of [MF12,
FRW11], it is not possible to obtain an algorithm for the phase retrieval setting of Section 2.5.2
with their weight operator, as the Hermiticity of the matrices is not preserved, unlike for
MatrixIRLS (see Proposition 2.5.2).

Due to the usage of an objective �n that is slightly different from (2.92), i.e., by using

�n(X) =
3∑
7=1

(
f2
7 (X) + n

2
) >

2

for 0 < > ≤ 1 which necessitates the calculation of all singular values in each iteration,
an implementation with the advantages of Section 2.6 had not been possible for the tight
quadratic bound IRLS variant HM-IRLS described in [KS18].

2.10 Outlook
Beyond the results we covered in this chapter, there are many questions related to IRLS
algorithms for low-rank matrix recovery that remain for future investigations.

First of all, the part of our convergence analysis that includes convergence rates is inherently
local and does not imply a convergence of MatrixIRLS to the solution of the affine rank
minimization problem (2.1) starting from any initialization point X(1).

There are ways how to modify our algorithm to obtain a provably globally convergent
algorithm with superlinear local convergence rates for interesting sample complexities. For
example, it would be possible to devise a two-stage procedure, which in the first stage, for
example, uses a projected gradient scheme as in [CW15, ZL16a] to bring an iterate X(9) into
the basin of fast convergence (2.138) of MatrixIRLS, and then use MatrixIRLS in a second
phase to obtain fast convergence starting from X(9). Using this first stage, it would only take
$(:=6(�)) (sub-Gaussian operators) or $(`0@ log(�)) (matrix completion) iterations [CC18] to
arrive at our basin of fast convergence in the case of > = 0, but the convergence of the first
stage would require a larger sample complexity (which is still near-optimal in the sense that ;
would need to scale linearly in � up to a logarithmic factor, but with a dependence on higher
powers of @).

However, we did not pursue this road due to the good empirical behavior of our framework,
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which does not seem to require a distinct first stage. We think that an explanation of this
phenomenon is that while there are many saddle points in the landscape of �n if the number
of observations ; is close to the number of degrees of freedom deg 5 , MatrixIRLS is able to
escape them quickly. Connecting the structure of the weight operator to the second-order
structure of the spectral objectives (see Section 2.3.2) can be a key tool for establishing this
rigorously, building on recent ideas about saddle-escaping modified Newton methods for non-
convex optimiztion [PMR19]. In fact, our framework fits well into the one of [PMR19], as
the entries of the matrices H(9)1 and H(9)2 of (2.58) and (2.59) in the definition of the weight
operator ,(9) are very similar to the absolute value of the eigenvalues of the Hessian of of �n
(see Lemma 2.3.1).

Furthermore, it remains slightly unclear why using weight operators with the harmonic
mean of f̃(9)

7
and f̃(9)

8
(in the notation of Definition 2.3.4) or even taking weight operators,(9)

corresponding to the ?-power mean with ? = −∞ and setting H(9)2 = H(9)1 , resulting in the
formula,(9) : R31×32 → R31×32 such that

,(9)(Z) = U9

[
H(9) ◦ (U∗9ZV9)

]
V∗9,

for Z ∈ R31×32 where H(9) ∈ R31×32 with

(H(9))7 8 = "−∞(f̃
(9)

7
, f̃(9)

8
) = min

(
max(f(9)

7
, n)>−2,max(f(9)

8
, n)>−2

)
,

leads to a very good and even better empirical behavior than the precise choice of weight
operators in MatrixIRLS. While for these “extremely tight” weight operators our proof of
the global majorization result Theorem 2.4 does not go through and therefore leaves the
interpretation of the corresponding IRLS algorithm as a monotonously minimizing scheme of
the objective �n (see Theorem 2.6) still open, our result on locally superlinear convergence
under very weak assumptions on Φ can be easily extended to these operators. This leads to
the question whether the proof of Theorem 2.4 can be improved, ensuring the same property
for even tighter weight operators.

In many, if not almost all practical applications of low-rank modelling, it is to be expected
that the linear measurements y = Φ(X0) are not exact, but perturbed by (unknown) noise,
similar to the sparse recovery setting of Chapter 1. In these cases, the measurements would
rather correspond to

y = Φ(X0) +w

with w ∈ R; such that, e.g., ‖w‖2 ≤ [ for some small [ > 0.
The IRLS framework, including an analysis similar to [DDFG10,FRW11], has already been

extended to this case in [LXY13]. Without any conceptual changes, it is possible to translate
MatrixIRLS to this setting by solving unconstrained problems

X(9) = arg min
X∈R31×32

‖Φ(X) − y‖22 + _〈X,,
(9−1)(X)〉.

instead of (2.90) for a suitable tuning parameter _ > 0, optimizing an objective J>,n that is a
sum of a smoothed Schatten-> or log-det objective and a data-fit term such that

J>,n(X) = ‖Φ(X) − y‖22 + _�>,n(X)

with �>,n as in (2.48).
We leave the adaption of the theoretical analysis to this unconstrained variant to future
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work, noting that on a computational level, the two algorithms will be very similar.
Finally, we think that an adaption of our framework to other, related low-rank matrix

optimization problems is very well possible and promising. For example,an extension of
these ideas to problems where both sparsity and low-rank structures are available, such as
in robust principical component analysis [CLMW11], sparse phase retrieval [JOH13, IVW17] or
blind deconvolution [ARR14, LLSW19] remain for future work. The first work in this direction
is presented in Chapter 3.
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Chapter 3

Recovery of Structured Low-Rank Matrices by
Iteratively Reweighted Least Squares

In this chapter, we build on the optimization framework presented in Chapter 2 to develop
and analyze an algorithm for a different problem.

Similarly to Chapter 2, consider a linear operator Φ mapping from complex (31 × 32)-
matrices to a ;-dimensional vector which is such that it is has non-trivial nullspace, i.e.,
with

; < 3132.

If @ ∈ N is the target rank and working on a complex domain, taking a different point of view,
the low-rank matrix recovery problem of Chapter 2 can be reformulated using the non-convex
and non-smooth set

M≤@ := {X ∈ C31×32 : rank(X) ≤ @}

of matrices with rank at most @ as solving the problem

Find X ∈ C31×32 such that Φ(X) = y and X ∈ M≤@, (3.1)

where y ∈ C; is the vector with measurement data.
Now what if we knew, for some reason, that the matrix X we are looking for additionally

lies in a subspace Sof considerably smaller dimension dim(S) � 3132 than the ambient matrix
space?

In this scenario, (3.1) would become the problem

Find X ∈ C31×32 such that Φ(X) = y and X ∈ M≤@ ∩ S. (3.2)

As we are interested here in the recovery of low-rank matrices that possess an an additional
linear structure indicated by S, we call (3.2) a structured low-rank matrix recovery problem
[MU13,CC14,SLO+14].

From a mathematical point of view, the additional subspace constraint can actually be
helpful as there is hope to identify a matrix X0 ∈ M≤@ ∩ S such that y = Φ(X0) ∈ C

; from a
number of measurements; that is smaller than what we needed in Chapter 2, as the number of
degrees of freedom of the model might by smaller than @(31 + 32 − @). However, the additional
constraint might pose computational difficulties.

The content of this chapter is partially based on the conference publications [KV18,KV19].
The author of this dissertation is the main author of these publications, which are based on
joint work and co-authored with Claudio Verdun. Preliminary versions of this work have been
presented at the 4th International TravelingWorkshop on Interactions between low-complexity
data models and Sensing Techniques (iTWIST) in November 2018 in Marseille, France, in July
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2019 at the 13th International Conference on Sampling Theory and Applications in Bordeaux,
France, and in September 2019 at theWorkshop on Low-RankModels and Applications (LRMA)
in Mons, Belgium.

3.1 Introduction
We first motivate the setting described by (3.1) and define the problem precisely in Sec-
tions 3.1.1 and 3.1.2, before we state our contributions and related work in Sections 3.1.3
and 3.1.4.

3.1.1 Motivation

Already in some of the first works in which the nuclear norm relaxation of the rank mentioned
in Chapter 2 was proposed [Faz02, FHB04], an important application of their framework was
seen in system identification and control theory. In fact, if the discrete, noiseless trajectory of a
linear time-invariant system is arranged into a Hankelmatrix, it can be seen that the resulting
matrix is of the rank of the model order of the system [Mar19]. This modelling can be used to
identify the system from realizations with noisy or incomplete data, for example by using the
nuclear norm of the Hankel matrix as a part of an objective function [LV10,FPST13].

A Hankel is simply a matrix with constant anti-diagonals. More precisely, for any <, 31 ∈ N

such that 32 = <− 31 + 1, we can define the (linear) Hankel operator H (associated to (<, 31))
such that H : C< → C31×32 ,

x = (x0, . . . , x<−1) 7→ H(x) =



x0 x1 x2
... x32−1

x1 x2
... ... x32

x2
... ... ... ...

... ... ... ... ...

x31−1
... ... ... x<−2

x31 x31+1
... x<−2 x<−1


, (3.3)

and say that X ∈ C31×32 is a Hankel matrix if there exists x ∈ C< such that

X = H(x).

The parameter 31 is often called pencil parameter or window length [HS90, YKJL17, GZ13,
PTV16].

In the sense of (3.2), the Hankel operator H then defines a linear subspace S of C31×32

such that
S=

{
X ∈ C31×32 : ∃x ∈ C< such that H(x) = X

}
,

and S has the dimension dim(S) = <. Since < = 31 + 32 − 1 and cannot be larger than
� = max(31, 32), this is often a subspace of considerably smaller dimension than the ambient
matrix space C31×32 .

The occurrence of matrices with Hankel or related structures goes far beyond control
theory. In signal processing, an important problem is the estimation or the retrieval of
harmonic signals from just a finite number of continuous time samples [SM05]. Some of the
most common methods for this problem used in applications are so-called subspace methods
such as ESPRIT [RK89], MUSIC [Sch86] and the matrix pencil method [HS90,Hua92], whose
main steps can be considered as partial singular value decompositions of the Hankel matrix
related to the sample sequence [PT13, PTV16]. The underlying mathematical problem goes
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back to the year 1795 and G. de Prony [dP95]1 and can be stated as follows:
If F : [0, 1] → C is a periodic, continuous function (“signal”) that is a superposition of

@ � < exponentials, i.e., its value at the time B ∈ [0, 1] fulfills

F(B) =

@∑
9=1

U9 e2c759B, (3.4)

where U1, . . . ,U@ ∈ C are (unknown) complex amplitudes and 51, . . . , 5@ ∈ [0, 1) are fixed (un-
known) frequencies, we would like to reconstruct the amplitudes (U9)@9=1 and the frequencies
( 59)

@
9=1 just from a finite sequence of < samples

x = (x0, . . . , x<1)

with

x8 = F
(
8

<

)
(3.5)

for 8 ∈ {0, 1, . . . , < − 1}.
This problem had been solved in its simplest form by Prony already more than 200 years

ago, but unfortunately, the classical method is quite sensitive to noise on the time samples
[SP95]. For this reason, a variety of methods has been proposed to obtain more stable esti-
mators. In this context, the above mentioned subspace methods are one important class, but
also different approaches such as approximate Prony’s methods [PT10], generalized Prony’s
methods [PP13], approaches based on continuous total variation or atomic norm regular-
ization [BTR13, BTSR13,CFG14, YX16], on compressed sensing (by discretizing the frequency
space) [MCW05,SB12], sparse Bayesian learning [HBFR14], andmethods based on non-convex
optimization [FWS+16].

If we include variations and multi-dimensional generalizations of the model (3.4), there
are very different names for the above modelling in different communities, including spec-
tral compressed sensing [DB13], line spectral estimation [HS90, BTR13], harmonic retrieval
[KAR83] and super-resolution [CFG14].

Techniques solving (3.4) are useful to solve a variety of engineering problems in direction
of arrival estimation [YLSX17], fluorescence microscopy [SHL10], analog-to-digital conversion
[TLD+10] and radar and sonar imaging [PEPC10]. Finally, we refer to a generalization of the
exponential summodel by the concept of finite rate of innovation (FRI) [DVB07,MV05,VMB02],
which is well-known in signal processing.

Importantly, what relates (3.4) with structured low-rank matrices is the following obser-
vation.

Proposition 3.1.1 (Low-rankness of Hankel matrices from sum-of-exponential samples (see
e.g. [Eld15, Proposition 15.2])). Let F : [0, 1] → C be a continuous function fulfilling (3.4)
for parameters U1, . . . ,U@ ∈ C and 51, . . . , 5@ ∈ [0, 1) such that none of the 59 coincide. If
H : C< → C31×32 is the Hankel operator (3.3) associated to (<, 31) and if

@ < min(31, 32),

then
rank (H(x)) = @,

1The reader can check the appearance of Hankel matrices in the original manuscript by de Prony: http:
//users.polytech.unice.fr/~leroux/PRONY.pdf
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where x = ((x)0, . . . , (x)<1) is the vector of consecutive samples x8 = F
(
8

<

)
, 8 ∈ {0, 1, . . . , < − 1},

of the function F.

Proposition 3.1.1 is the foundation of subspace methods like ESPRIT. They use that in the
case of noisy samples

x̃8 = x8 +w8 (3.6)

with some noise vector w ∈ C< with not too large entries w8, the Hankel matrix H(̃x) is not
too far from a rank-@ matrix.

This concept can be generalized in multiple ways, for example, to multi-dimensional
signals F, where the corresponding low-rank matrix is then not Hankel, but block-Hankel
(with Hankel blocks) or multi-level Hankel [Mar19]. In several applications, it is not necessary
to estimate the frequencies ( 59)@9=1, but recovering the noiseless samples by using the low-
rank property of their associated structured matrix implicitly is sufficient. This is for example
the case in control theory [FPST13, Mar19], in geophysics, where there has been a recent
interest in methods involving rank-reduction of Hankel-type matrices related to missing data
problems [GSC13,OS11, JYLM16], or in time series analysis, where this technique is known as
singular spectrum analysis [GNZ01]. The same idea applies to inpainting or denoising problems
in imaging, where the spectral sparsity of image patches in the Fourier domain can be taken
advantage of, and the rank can play the role of a regularizer [YKJL17,JY15,OJ16]. In particular
in magnetic resonance imaging (MRI), these techniques have been applied successfully [Hal13,
LJK+16,MJKM17,WM17].

All the mentioned ideas can be also transferred to low-rank (block-/multi-level) Toeplitz
matrices, which are matrices with constant diagonals. Indeed, this can be easily seen from the
fact that a Hankel matrix can be transformed into a Toeplitz matrix through a permutation of
its rows and columns, and this operation, due to the orthonormality of permutation matrices,
does not affect the rank.

Encompassing also other generalizations, we call a matrix X ∈ R31×32 structured if its
elements can be determined from substantially fewer than 3132, i.e., if it has $(�) =

$(max(31, 32)) degrees of freedom.

3.1.2 Problem statement

In the rest of this chapter, we will restrict ourselves to matrices with Hankel structure as in
(3.3), noting that the setting can be easily adapted to other linear matrix structures.

As we saw in Proposition 3.1.1, low-rank Hankel matrices arise naturally in many appli-
cations. In analogy to the unstructured low-rank matrices discussed in Chapter 2, we now
consider the problem of their recovery from underdetermined linear measurements.

In particular, we focus on the completion of low-rank Hankel matrices. This setting arises
under the exponential sum model of (3.4) in the case of missing samples: Assuming that not
a sequence of equidistant samples x = ((x)0, . . . , (x)<1) fulfilling (3.5) are given, but, on the
other hand, just a subset Ω ⊂ {0, 1, . . . , < − 1} of these, completing the sequence of samples
by using the low-rank prior on the Hankel matrix is of interest as a means to compensate for
the loss of data.

In particular, let ; < <, Ω = {l1, . . . ,l;} ⊂ {0, . . . , < − 1} be an index set of cardinality
|Ω| = ;, and %Ω : C< → C;, x 7→ %Ω(x) =

∑
l8∈Ω 4

∗
l8

x be the linear subsampling operator
associated to the subset Ω. Let y := %Ω(x0) ∈ C; correspond to the partial samples of an
unknown full sample vector x0 ∈ C

<. Then we define the low-rank Hankel matrix completion
problem such that
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X̂ = H(̂x) s.t. x̂ = arg min
x∈C<,%Ω(x)=y

rank (H(x)) , (3.7)

or in other words, the problem of finding the Hankel-structured matrix X ∈ C31×32 of
lowest rank compatible with the samples y ∈ C;.

While the problem (3.7) is the main focus of this chapter, we also consider the structured
low-rank approximation problem (SLRA) associated to x ∈ C< and rank @ < min(31, 32) defined
as

x̂ = arg min
z∈C<A.B.

rank(H(z))≤@

‖H(z) −H(x)‖2�(E), (3.8)

where ‖ · ‖�(E) is a suitable weighted Frobenius norm [CH15,Mar19] associated to a collection
of weights w ∈ C31×32 , w7 8 > 0 for all 7 ∈ [31], 8 ∈ [32] induced by the inner product

〈A,B〉�(w) =
31∑
7=1

32∑
8=1

w7 8A7 8B7 8,

where A,B ∈ C31×32 .
Due to the interplay of the linear Hankel subspace and the non-convex low-rank structure,

it is non-trivial to find efficient computational approaches to solve (3.7) or (3.8).

3.1.3 Our Contribution

In this chapter, we develop a new Iteratively Reweighted Least Squares (IRLS) algorithm for
the structured low-rank completion problem. It optimizes a log-det objective over a subspace
of structured matrices, as for example, the space of Hankel matrices. These matrices are of
relevance for the harmonic retrieval problem [CWW18] and for system identification [FPST13].

As IRLS algorithms for similar problems, our approach minimizes quadratic upper bounds
on the smoothed surrogate objective with iteratively updated smoothing. Building on the
framework introduced in Chapter 2, the proposed algorithm called StrucIRLS uses tight
quadratic bounds motivated from the second-order derivative structure of the smoothed rank
surrogate. Extending the general framework of Chapter 2 to the structured case, we incor-
porate the linear subspace structure into the IRLS framework, which is crucial to solve the
original problem in a information theoretically and computationally attractive way.

We prove that locally, StrucIRLS converges to an incoherent rank-@ Hankel matrix H(x0)

with locally quadratic convergence rate, with high probability, under the assumption that the
sample locations Ω = {l1, . . . ,l;} are uniformly distributed in {0, . . . , < − 1}, if the sample
complexity or number of samples ; fulfills

; ≥ �`02A@ log(<), (3.9)

where � is an absolute constant and

2A = max
( <
31

,
<

32

)
(3.10)

is a constant that depends on the window length 31, see Theorem 3.2 for details. This result
indicates a favorable data-efficiency of the algorithm, as the required sample complexity is
near-optimal, being just a constant and a logarithmic factor in < larger than the number of
degrees of freedom

deg 5 = 2@
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of the rank-@ Hankel matrix. The requirement on the sample complexity (3.9) is weaker than
comparable conditions implying the convergence of other methods for the problem.

Apart from incorporating the subspace constraint without any need of additional pro-
jections, we show that our approach can be computationally attractive, as it only contains
operations that scale sub-linearly in the dimension of the matrix space. This is of particular
importance in real-world engineering instances of the problem, where <, 31 and 32 can be
very large and a quadratic growth of dimensionalty from x to H(x) can be a computational
issue. Furthermore, for multi-dimensional harmonic retrieval problems [CC18, JLY16, AC14],
H can be a block Hankel matrix operator whose size is non-trivial except from for very small
problem instances,

In experiments with artificial data arising from the problem of spectral super-resolution of
frequencies with small separation, we observe that StrucIRLS exhibits an empirical recovery
probability close to one from fewer samples than existing state-of-the-art approaches for the
low-rank Hankel matrix completion task.

3.1.4 Related Work

The low-rank Hankel approximation problem (3.8) is older than the corresponding completion
problem (3.7): A simple approach for the formerwas proposed by Cadzow [Cad88], alternating
between projections onto the rank-@ manifold (which correspond to partial singular value
decompositions) and onto the Hankel subspace. However, the optimality of the method is
not clear, and counterexamples for the convergence of the method can be constructed, cf.
[Moo94, Section VI]. Beside recalling the above-mentioned connection to subspace methods
in signal processing, we mention the non-convex optimization approaches that have been
proposed in [CH15, IUM14].

For the low-rank Hankel completion problem, an alternating projection method adapting
the denoising variant [Cad88] had been proposed in [OS11] in a geophysics journal. Building
up on the success of nuclear norm minmization for unstructured matrix recovery problems,
Chen and Chi [CC14] analyzed the Hankel nuclear norm minimization (HNNM) problem (that
had been proposed before in control theory [FHB04,FPST13,LV10])

x̂ = arg min
x∈C<,PΩ(H)=y

‖H(x)‖(1
(3.11)

and showed guaranteed recovery for (3.11), with high probability, under the assumption
that the ground truth H(x0) is `0-incoherent, and that ; = |Ω| locations in Ω are sampled
uniformly at random, given a number of samples that is near-optimal up to several factors
logarithmic in <, or more precisely, that is such that

; ≥ �`12A@ log4(3132) (3.12)

with absolute constant �, 2A as in (3.10) and `1 being a suitable incoherence factor. This was
improved by [JLY16] to two log factors in the dimension in the special case of wrap-around
Hankel matrices [JLY16, Theorem 2]. As we saw in Chapter 2, nuclear norm-based modelling
has their approaches computational limitations as it is equivalent to solving a semidefinite
program (SDP). Even for fast solvers, this results in the very best case in optimization problems
with $(�2) = $(<2) variables. They also considered the multi-dimensional generalizations
(multi-level/block).

Computationally more advantageous non-convex optimization strategies such as (fast)
iterative hard thresholding (FIHT) [CWW19] and projected gradient descent (PGD) [CWW18]
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have also been recently developed for low-rank Hankel completion. In practical applications,
these algorithms are of greater interest than nuclear norm minimization due to their higher
empirical recovery rate and their more scalable implementation [CWW19]. If a two-step
procedurewith distinct intialization phase is used for FIHT, the sample complexity requirement
of [CWW19] is

; ≥ �`12A^
6@2 log(<) log(

√
< log(<)). (3.13)

Furthermore, the projected gradient descent approach of [CWW18] possesses a sufficient
condition for convergence from

; ≥ �`2
12A^

2@2 log(<)). (3.14)

In both formulas, ^ = f1(H(x0))
f@H(x0))

corresponds to the condition number of the ground truth
Hankel matrix H(x0).

We note that in comparison to (3.9), the assumptions on the sample complexity of (3.12)–
(3.14) are stronger. However, we would like to stress that unlike the guarantees for HNNM,
PGD or FIHT, our result is of local nature, i.e., Theorem 3.2 not even implies that StrucIRLS
converges from the initialization we chose. In this sense, the situation corresponds to what
we proved about MatrixIRLS for unstructured reccovery in Chapter 2.

As a summary, we observe that just from the current state of the theory, it is hard to
quantify which algorithmic approach provides an optimal tradeoff between data efficiency,
i.e., the ability to identify the model for a number of samples ; as small as possible, space
complexity and time complexity.

Finally, we note that in [OJ17], an IRLS approach has already been used for the Hankel or
Toeplitz structured low-rank matrix recovery problem. The algorithm GIRAF (Generic Iterative
Reweighted Annihilating Filter) of [OJ17] is a fast algorithm desinged for large-scale 2D MRI
reconstruction problems. It corresponds to a low-rank IRLS algorithm based on IRLS-row
(see Section 2.3.2 and [MF12,FRW11]), but applied to a half-circulant extension of the Toeplitz
matrix arising from the data recovery problem. This half-circulant extension is not expected
to be very low-rank even if H(x) is, which renders the connection to the original problem
unclear. However, the authors of [OJ17] report good empirical results despite this fact. The
authors of [OJ17] do not provide a convergence analysis for their algorithm.

3.1.5 Outline

This chapter is organized as follows. In Section 3.2, we introduce the proposed IRLS algorithm
called StrucIRLS for the completion of structured low-rank matrices, outlining the main steps
of the iterative procedure. In Section 3.3 we present our main theoretical results, interpreting
the algorithm in terms of a non-convex rank objective and providing the local convergence
guarantee with quadratic convergence rate. In Section 3.4 we detail computational aspects of
StrucIRLS.

Moreover, the connection to harmonic retrieval or super-resolution problems is detailed
in Section 3.5. Then numerical experiments and comparisons to state-of-the-art methods for
structured low-rank matrix recovery are carried out in Section 3.6. In Section 3.7, we provide
the proof of the locally quadratic convergence rate under appropriate assumptions on the
coherence of such matrices before concluding

3.2 Formulation of StrucIRLS
We recall the framework of Iteratively Reweighted Least Squares algorithms whose main steps
were already introduced in the beginning of Section 2.3: Given a family of functions (�n :
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C31×32 → R)n>0 that are n-smoothings of the objective � : C31×32 → R to be minimized in the
first place, we define, for a given n9 > 0 and X(9) ∈ C31×32 , a quadratic upper bound &n9(·|X

(9)),
which is tight, but still a global majorizer of �n9 .

The global quadratic upper bound function &n9(·|X
(9)) is then minimized under the data

constraint, resulting in a weighted least squares problem, returning the update X(k+1) ∈ C31×32

of the iterate. As a last step of a given iteration, the smoothing parameter n90 is updated to
n9+1 ≤ n9, leading with X(k+1) to the definition of the updated quadratic bound function
&n9+1(·|X

(9+1)) of the next iteration.
Recalling the formulation of the low-rank Hankel matrix completion problem (3.7) we

want to solve, i.e.,
X̂ = H(̂x) s.t. x̂ = arg min

x∈C<,PΩ(x)=y
rank (H(x)) ,

where y ∈ C; is a vector of samples and %Ω : C< → C; a subsampling operator corresponding
to a set Ω = {l1, . . . ,l;} ⊂ {0, . . . , <− 1}, we see that the (intractable) objective to optimize
is still the rank function rank(·), as in Chapter 2. However, the domain of the objective is now
restricted to the set of Hankel matrices.

Motivated by the discussion of Section 2.2.1, where the log-det objective was identified as
the one whose minimizers most closely resembles those of the rank objective, and by the fast
predicted convergence rate due to Theorem 2.7, we define the objective � : C31×32 → R,

X→ �(X) =
3∑
7=1

5 (f7(X)) :=
3∑
7=1

log (f7(X))

recalling the convention 3 = min(31, 32), and its n-smoothing �n : C31×32 → R,

X→ �n(X) :=
3∑
7=1

5n (f7(X)) =
3∑
7=1

[
log (max(f7(X), n)) +

1
2

(
min(f7(X), n)2

n2 − 1
)]

.

n−n

5 (f)

5n(f)

Figure 3.1 – Smooth approximation 5n(f) for 5 (f) = log |f|.

For a visualization of the relationship between � and �n, we refer to Figure 3.1, which
clarifies the geometry of their singular value-wise one-dimensional functions 5 : R→ R and
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5n : R→ R with 5 (f) = log |f| and

5n(f) =

{
log |f|, if |f| ≥ n,

log(n) + 1
2

(
f2

n2 − 1
)
, if |f| < n.

Now, we note that the Hankel structure of matrices induced by the Hankel operator
H : C< → C31×32 implies, in particular, that all Hankel matrices X ∈ Swith

S= {X ∈ C31×32 : ∃x ∈ C< such that H(x) = X}

are symmetric in the sense that the symmetrization operator (definition without loss of gener-
ality for 32 ≥ 31) (̃ : C31×32 → C31×32 ,

Z =
[
Z1 Z2

]
7→ (̃(Z) =

[ 1
2 (Z1 + Z∗1) Z2

]
,

where Z1 ∈ C
31×31 , Z2 ∈ R

31×(32−31), returns the Hankel matrix itself, i.e.,

(̃(X) = X (3.15)

for any X ∈ S.
Specifying the case > = 0, we can therefore leverage Definition 2.3.4 of the weight operator

,(9) : C31×32 → C31×32 of MatrixIRLS and its global majorization result, Theorem 2.4, to
obtain, for any x ∈ C<, that

Jn9(x) := �n(H(x)) ≤ &n9

(
H(x)|H(x(9))

)
= Jn9(x

(9)) +
1
2

(
〈H(x),,(9)(H(x))〉 − 〈H(x(9)),,(9)(H(x(9)))〉

)
,

(3.16)

for any Hankel matrix X(9) = H(x(9)) ∈ C31×32 defined by the coordinates of a vector x(9) ∈ C<.
In (3.16), the weight operator,(9) : C31×32 → C31×32 is defined such that

,(9)(Z) = U9

[
H(9)1 ◦ (U

∗
9ZV9)

]
V∗9 (3.17)

where U9 ∈ C
31×31 , V9 ∈ C

32×32 are unitary matrices and f(9)
7
= f7(H(x(9))) for 7 ∈ [3], such

that
H(x(9)) = U9 dg(f(9))V∗9

is a singular value decomposition of H(x(9)), and H(9)1 ∈ R
31×32 is such that

(H(9)1 )7 8 =
1

max(f(9)
7
, n9)max(f(9)

8
, n9)

(3.18)

for any 7 ∈ [31], 8 ∈ [32], cf. (2.58). We note that due to (3.15), only the matrix of weights
H(9)1 appears, but not H(9)2 of (2.59).

In particular, the inequality of (3.16) is due to the following important fact: Since the
global majorization statement of Theorem 2.4,

�n9(X) ≤ &n9(X|H(x
(9))),
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holds for any (31×32)-matrix X, it in particular also holds for any elementH(x) of the subspace
of Hankel matrices S.

Incorporating the Subspace Constraint

As in the unstructured case studied in Chapter 2, we can now devise the first step of an IRLS
strategy by minimizing the right hand side of (3.16) under the linear constraint described by
the set

{x ∈ C< : %Ω(x) = y}.

As the first and third summand of the right hand side of (3.16) are constant and do not depend
on the unknown x, we obtain the new iterate x(9+1) ∈ C< as the solution of the weighted least
squares problem

x(9+1) := arg min
%Ω(X)=y

〈
H(x),,(9)(H(x))

〉
. (3.19)

In fact, by writing down the optimization problem (3.19), we can already observe that we
have reduced the domain of our optimization from the 3132-dimensional matrix domain to the
<-dimensional domain C<.

Using Hankel matrices not explicitly, but the subspace structure implicitly through the
Hankel operator H : C< → C31×32 and its adjoint H∗ : C31×32 → C<, we see that the
objective function of (3.19) is indeed quadratic in x ∈ C<: Since the adjoint H∗ of the Hankel
operator fulfills

〈H(x), Z〉 = 〈x,H∗(Z)〉

for any Z ∈ C31×31 and x ∈ C<, it follows that〈
H(x),,(9)(H(x))

〉
=

〈
x,H∗,(9)Hx

〉
=: 〈x, ,̃(9)x〉,

using the definition of the structured weight operator

,̃(9) := H∗,(9)H ∈ C<×<, (3.20)

which is a positive definite (< × <) matrix.
This reasoning shows that the constraint of an Hankel subspace is not only compatible well

with the quadratic nature of an IRLS approach, but is even able to reduce the problem size.
Based on this, we define Algorithm 2, our proposed Structured Iteratively Reweighted Least

Squares algorithm (StrucIRLS) for the low-rank Hankel matrix completion problem.
We recall the following notation: We best rank-@ approximationT@(X) of amatrixX ∈ C31×32

with singular value decomposition X =
[
U(9) U(9)⊥

] [
diag(f7(X))@7=1 0

0 dg(f7(X))3@=+1

] [
V(9)

V(9)∗⊥

]
,

where U(9) ∈ C31×@ and V(9) ∈ C32×@ are matrices with orthonormal columns, is a matrix that
fulfills

T@(X) = U(9) diag(f7(X))@7=1V(9)∗ = arg min
Z:rank(Z)≤@

‖Z − X‖, (3.21)

where ‖ · ‖ can be any unitarily invariant norm.
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Algorithm 2 StrucIRLS for structured low-rank matrix completion
Input: Set of observed coordinates Ω ⊂ {0, 1, . . . < − 1} with |Ω| = ;, structure operator

H : C< → C31×32 , vector of samples y ∈ C;, rank estimate @̃.
Output: Sequences (x(9))9≥1 ⊂ C< and (n9)9≥1.
Initialize 9 = 0, n(0) = ∞ and ,̃(0) = H∗H : C< → C<.
for 9 = 1, 2, . . . do

1. Use a conjugate gradient method to solve linearly constrained quadratic program

x(9) = arg min
%Ω(x)=y

〈x, ,̃(9−1)x〉. (3.22)

2. Find best rank-(̃@ + 1) approximation of H(x(9)) to obtain

T̃@(H(x(9))) = U(9) diag(f(9)
7
)̃@7=1V(9)∗ (3.23)

and f(9)
@̃+1, update smoothing:

n9 = min
(
n9−1,f@̃+1(H(x(9)))

)
(3.24)

3. Update ,̃(9) as in (3.20) (see also (3.17) and (3.18)) , using the information U(9),V(9)

and f(9)1 , . . . ,f@̃+1 from item 2.

The algorithm StrucIRLS as described Algorithm 2 can be regarded as an algorithm for
structured low-rank matrix completion for any kind of linear matrix structures induced by a
linear operator H : C< → C31×32 with < < 3132. However, it is not true that the linear system
(3.22) corresponding to step 1 can be solved efficiently for any operator H, since the cost of
performing a matrix-vector multiplication with the structured weight operator matrix

,̃(9−1) = H∗,(9−1)H ∈ C<×<,

which, as we saw in Section 2.6, plays a crucial role in implementations of iterative solvers,
depends on H.

Furthermore, the cost of calculating the low-rank approximations (3.23) of H(x(9)) will
depend on H if methods like Lanczos bidiagonalization [SZ00, LXQ15], randomized power
iteration [HMT11] or randomized Block Krylov [MM15] methods are used, not using structured
matrices H(x(9)) explicitly, but rather using its action on vectors.

We refer to Section 3.4 for a discussion of these aspects in the case of Hankel operators H.
In Section 3.3, we provide a convergence analysis for Algorithm 2 similar to the one obtained
for MatrixIRLS in Section 2.4.

As in the last chapter, we note that the choice of the rule (3.24) for the update of the
smoothing parameter n plays an important role in the convergence analysis and also has major
implications on the geometry of the optimization landscape.

Remark 3.2.1. Similar to other IRLS algorithms, StrucIRLS can be interpreted within the
majorization-minimization (MM) framework [Lan16, SBP17]. As described in [SBP17], in this
framework, functions &(·|H(x(9))) with simple (not necessarily quadratic) structure are defined
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to fulfill properties (3.16) and

J(F(9)) = &
(
H(x(9))|H(x(9))

)
with respect to a function J, and then minimized to obtain an iterative optimization strategy to
minimize J.

An important additional ingredient of StrucIRLS (and of MatrixIRLS for the unstructured
case) which is usually not present in the MM framework, is the updated smoothing of (3.24),
which changes the objective J itself across the iterations as well, and not only the surrogate
&(·|H(x(9))).

In this sense, the interplay between all the different steps are crucial for IRLS. As the survey
[SBP17], which described MM procedures, states: “On one hand, to achieve a fast convergence
rate, a surrogate function that tries to follow the shape of the objective function is preferable.
On the other hand, it should be simple to minimize so that the computational cost per iteration
is low”. Despite this difference to MM procedures, IRLS can be interpreted as a method that tries
to find a good compromise between these competing goals.

3.3 Convergence Analysis of StrucIRLS
In this section, we provide a convergence analysis of StrucIRLS. In Section 3.3.1, we first
state results about a basic interpretation of StrucIRLS in terms of log-det objective functions.
These results hold for any subsampling set Ω ⊂ {0, 1, . . . , < − 1} and any structure operator
H.

Subsequently, we provide a more refined local convergence analysis in Section 3.3.2 for
the Hankel matrix completion case, assuming that a sufficient number of samples ; = |Ω| are
uniformly drawn at random.

3.3.1 Basic Properties and Minimization of Smoothed Objective

The statements of the following theorem guarantee that StrucIRLS is actually a valid strategy
to minimize the auxiliary objectives Jn, which are define in Theorem 3.1.

Theorem 3.1 (Monotonicity & Stationary Points Are Accumulation Points). Let %Ω : C< → C;,
y ∈ C; and H : C< → C31×32 be linear operators and @̃ ∈ N. Let (x(9), n9)9≥1 be a sequence of
outputs of StrucIRLS corresponding to these parameters. Define, for any n > 0, the functions
(smoothed) log-det objectives J : C< → R,

x→ J(x) =
3∑
7=1

log (f7(H(x)))

and Jn : C31×32 → R,

x→ Jn(x) =
3∑
7=1

[
log (max(f7(H(x)), n)) +

1
2

(
min(f7(H(x)), n)2

n2 − 1
)]

. (3.25)

Then the following holds.

1. The sequence
(
Jn9(x

(9))
)
9≥1 is non-increasing, i.e., Jn9(x

(9)) ≤ Jn9−1(x
(9−1)) for any 9 ∈ N.

2. For any 9 ∈ N,

Jn9(x
(9)) ≥

3∑
7=1

log
(
f7(H(x(9)))

)
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where H(x(9)) = U9 dg(f7(H(x(9))))V∗9 is a singular value decomposition of H(x(9)).

3. If n̄ := lim9→∞ n9 > 0, then the iterates x(9) and x(9+1) fulfill lim9→∞ ‖x(9) − x(9+1)‖2 = 0.

4. If n̄ := lim9→∞ n9 > 0, then each subsequence of (x(9))9 has a convergent subsequence,
and each accumulation point x̄ of (x(9))9 is a stationary point of J̄n subject to the linear
constraint {x : %Ω(x) = y}.

Proof. This results follow directly from following the proof of Theorem 2.6, in particular using
the observation (3.16). �

For a visualization of statement 2., we refer to Figure 3.1.

3.3.2 Local Convergence Theory: Quadratic Convergence Rate

In this section, we provide a convergence analysis for StrucIRLS that is related to the one
provided in Section 2.4 for MatrixIRLS.

In particular, we provide a local convergence guarantee stating that StrucIRLS recovers
a rank-@ Hankel matrix H(x0) if we obtain an iterate x(9) that is close enough to the ground
truth x0 that parametrized the rank−@ matrix H(x0). This is the case, with high probability,
already from a small number of noiseless samples G = %Ω(x0) provided that the H(x0) has
enough information spread across the singular values, a property known as incoherence which
is analogue to Definition 3.3.1 in Chapter 2. Moreover, we show that the local convergence
attains a locally quadratic convergence rate.

To define the incoherence notion that is adequate for our purposes, we recall the definition
(2.99) of a tangent space ) onto the manifold of rank-@ matrices

M@ = {X ∈ C31×32 : rank(X) = @}

at a matrix

Z =
[
U U⊥

] [
Σ 0
0 Σ⊥

] [
V∗

V∗⊥

]
,

where U ∈ C31×@ and V ∈ C32×@ are matrices with orthonormal bases of the first @ left resp.
right singular vectors of X their columns, and Σ ∈ R@×@ and Σ⊥ ∈ R(31−@)×(32−@) being diagonal
matrices with the (ordered) singular values of X on their diagonals: In this case, we define
) = )Z such that

)Z := {UM∗ + M̃V∗ : M ∈ C32×@, M̃ ∈ C31×@}. (3.26)

Intuitively, we can say that a rank-@ matrix Z has low incoherence if the projections of all
elements of the standard Hankel basis onto the tangent space ) associated to Z are small. In
particular, we define the standard Hankel basis as follows: If H : C< → C31×32 is a Hankel
operator and if 49 ∈ C< is the 9-th standard basis vector of C<, we define the matrices

H9 :=
H(49)

‖H(49)‖�
∈ C31×32 (3.27)

for 9 = 1, 2, . . . , <. In fact, it can be easily seen that they attain the value min(9, <+ 1− 9)−1/2

on the indices corresponding to the 9-th antidiagonal and the value 0 for all other indices. We
can observe that the set

{H9 : 9 ∈ [<]}

is an orthonormal basis of the subspace Sof (31 × 32) Hankel matrices.

154



The following definition is a weaker version of the incoherence notion of [CC14], see also
Definition 3.3.1 and the following Remark 2.5.1.

Definition 3.3.1. We say that a rank-@ Hankel matrix H(x) ∈ C31×32 with singular value
decomposition H(x) = UΣV∗ and corresponding tangent space ) = {UM∗ + M̃V∗ : M ∈

C32×@, M̃ ∈ C31×@} is `0-incoherent if there exists a constant `0 ≥ 1 such that

max
1≤9≤<

‖P) (H9)‖� ≤

√
`0@

31 + 32

3132
(3.28)

where H9 denotes the 9-th element (3.27) of the orthonormal standard Hankel basis.

Remark 3.3.1. We note that the assumption that a tangent space ) is `0-incoherent according
to Definition 3.3.1 is weaker than similar assumptions [CC14, Definition 1] ,[YKJL17, (A.18)],
[CWW19, Definition 1; CWW18]. In particular, assuming that

max
1≤9≤<

‖U∗H9‖� ≤

√
`0@

31
and max

1≤9≤<
‖V∗H∗9 ‖� ≤

√
`0@

32

as in [YKJL17, (A.18)], we obtain

‖P) (H9)‖
2
� = ‖UU∗H9 +H9VV∗ − UU∗H9VV∗‖2� = ‖UU∗H9(I − VV∗) +H9VV∗‖2�
= ‖UU∗H9(I − VV∗)‖2� + ‖H9VV∗‖2� ≤ ‖UU∗H9‖

2
� ‖I − VV∗‖2 + ‖H9VV∗‖2�

≤ ‖U∗H9‖
2
� + ‖H9V‖2� ≤

`0@

31
+
`0@

32
=
`0@(31 + 32)

3132
.

We recall that in our completion setting stated in Section 3.1.2, it was assumed that we are
given an index set

Ω = {l1, . . . ,l;} ⊂ {0, . . . , < − 1}

of cardinality ; to define the subsampling operator %Ω : C< → C;, x 7→ %Ω(x) =
∑
l8∈Ω 4

∗
l8

x.
To prevent arbitrarily adversary sampling sets Ω which would not convey the structure of
x well, we resort to randomness in the distribution of the indices l1, . . . ,l; in order to
obtain a convergence theorem. In particular, we will assume that we are given ; indices
l1, . . . ,l; that are sampled uniformly at random among the < possible ones {0, . . . , <1}

(without replacement).
We then obtain a local convergence statement implying fast local convergence given enough

randomly distributed samples, formalized in Theorem 3.2.

Theorem 3.2 (Local Convergence with Quadratic Rate). Let H : C< → C31×32 be the Hankel
operator associated to the parameters (<, 31). Let x0 ∈ C< be vector such that H(x0) ∈ C31×32

is a rank-@ matrix that is `0-incoherent in the sense of Definition 3.3.1. Let Ω ⊂ {1, . . . , <}
be a collection of ; indices Ω sampled uniformly at random among {0, 1, . . . , < − 1}, let 2A =
max

(
<
31
, <
32

)
. There exist constants � ≥ 1, �1 and �2 such that if

; ≥ �`02A@ log(<), (3.29)

with probability at least 1 − 2<−2, the following holds: If n9 = f@+1(H(x(9))) and if the output
vector x(9) ∈ C< of the 9-th iteration of StrucIRLS with inputs Ω, H, y = %Ω(x0) and @̃ = @

fulfills

‖H(x(9)) −H(x0)‖(∞ ≤ min

(
�1

√
`02A@√
< log(<)

,�2
1

<2@^

)
f@(H(x0)),
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then
x(9)

9→∞
−−−−→ x0

and furthermore, the local convergence rate is quadratic in the sense that there is a constant `
such that, H(x(9+1)) −H(F0)


(∞
≤ `

H(x(9)) −H(x0)
2
(∞

,

which can be chosen such that

` =
24(9<2 + 1)@^
f@(H(x0))

,

where ^ = f1(H(x0))
f@(H(x0))

is the condition number of H(x0).

It is instructive to compare the sufficient condition for the sample complexity (3.29) with
corresponding conditions for local convergence results for PGD [CWW18] and FIHT [CWW19],
which require an order of Ω(`2

0^
2@2 log(<)) and Ω(`0@ log(<)) samples respectively. We note

that a global convergence theory for HNNM [CC14], a convex optimization procedure, is available
if Ω(`0@ log4(<)) samples are provided.

Furthermore, while being a sufficient condition, we note that (3.29) can be seen as an
indication to choose the window length parameter 31 ≈

<
2 to make the Hankel matrices as

square as possible, as in this case, the parameter

2A = max
(
<

31
,
<

32

)
in the bound is minimized. However, the same conclusions can be already drawn from the
bounds in [CC14,CWW18,CWW19].

3.4 Computational Considerations
While the presentation of StrucIRLS and its convergence analysis is somewhat similar to the
algorithm for unstructured recovery discussed in Chapter 2, it is not possible to translate the
implementation of Section 2.6 in a one-by-one manner.

As in Section 2.6, we are interested in using an algorithm that runs with a time and space
complexity of

=(3132).

In most applications, due to statistical reasons, we would choose the window length parameter
31 such that the structured matrices are approximately square. In this case, this means that
we are interested in a space and time complexity of

=(<2)

for StrucIRLS.
In this section, we restrict ourselves to the case of Hankel-structured matrices defined by a

Hankel operator H : C31×32 → C< such as in (3.3) with 31 = Θ(<) and 32 = Θ(<).
This is due to the fact that Hankel matrices possess a convolutional structure, i.e., they

can be seen as a restricted, rearranged circulant matrices. These circulant matrices can be
diagonalized by a discrete Fourier transform, which means that, by using the Fast Fourier
Transform (FFT), matrix-vector multiplications can be performed in $(< log(<)) instead of
Θ(<2), as it would be the case for unstructured matrices [KS99,Pan01,BQW09,Kor10,PT15].

To review how to perform these fast matrix-vector multiplication with Hankel matrices,
let x ∈ C< and H(x) ∈ C31×32 . H(F(9)) now can be embedded into a so-called circulant matrix
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C(x), defined by the circulant operator C : C< → C<×< that maps a vector x ∈ C< to

C(x) =
(
C(x)7 8

)<,<
7=1,8=1 =

(
(x(7−8) mod <

)<,<
7=1,8=1 ∈ C

<×<, (3.30)

which then can be diagonalized this by a discrete Fourier transform. As a preparation of what
follows below, we recall formulas for the actions of the circulant operator C and its adjoint
operator C∗ : C<×< 7→ C< of C.

Lemma 3.4.1 (Cf. [Pan01]). Let C : C< → C<×< be the circulant operator of (3.30) and
C∗ : C<×< 7→ C< its adjoint. Then the action of C on a vector x ∈ C< can be written such that

C(F) =
√
<F diag(Fx)F∗, (3.31)

and the action of C∗ on a matrix Y ∈ C<×< such that

C∗(Y) =
√
<F∗ diag(F∗Y∗F),

where F ∈ C<×< is the unitary discrete Fourier transform (DFT) matrix and diag : C<×< → C<

such that diag(M) = (M77)
<
7=1 for a matrix M ∈ C<×<.

Proof. The formula (3.31) follows, e.g., from [Pan01, Theorem 2.6.4].
Let Y ∈ C<×< and x ∈ C<. Using that

C(x) =
√
<F diag(Fx)F∗,

〈Y, C(x)〉 =
√
<〈Y, F diag(Fx)F∗〉

= 〈F∗YF, diag(Fx)〉 =
√
< tr(F∗Y∗F diag(Fx)) =

√
<

<∑
7=1

[F∗Y∗F]77[diag(Fx)]7

=
√
<〈diag(F∗Y∗F), Fx〉 =

√
<〈F∗ diag(F∗Y∗F), x〉.

�

As described in Section 2.6.2, fast matrix-vector multiplications are very helpful in the
second step of an IRLS iteration, where information for the definition of the weight operator
updated is calculated by obtaining a best rank-@ + 1 approximation. In StrucIRLS, this cor-
responds to (3.23), and by saving the interates x(9) ∈ C< in memory, but not H(x(9)) ∈ C31×32 ,
we can make used of the above considerations to obtain a sub-quadratic time complexity.

We will not detail here how to solve the weighted least squares problem (3.22) in the most
efficient way, However, in a implementation that uses conjugate gradients [HS52] with an
appropriate stopping criterion, to obtain a fast implementation, it is necessary that matrix-
vector multiplications with the (positive definite) structured weight operator matrices ,̃(9) from
(3.20), i.e., with

,̃(9) = H∗,(9)H ∈ C<×<

where,(9) : C31×32 → C31×32 is as in (3.17), are computationally affordable.
To make sure that this is the case, we provide in the following theorem a time complexity

bound on the matrix-vector multiplication with ,̃(9).

Theorem 3.3. Let x(9) ∈ C< and n9 > 0 such that f@+1(H(x(9))) ≤ n9, let H : C< → C31×32

be the Hankel operator. Then the multiplication of ,̃(9) ∈ C<×< with a vector x ∈ C< can be
computed in $(<@2 + <@ log <) operations.
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Proof. Let x ∈ C< be arbitrary. Recalling the equation (3.20), we have ,̃(9) = H∗,(9)H. First,
we note that the Hankel matrix H(x) = [H(x)]31,32

7,8=1 = (x7+8−1)
31,32
7,8=1 can be embedded into a

circulant matrix [C(x)]<,<
7,8=1 = x((7−8) mod <)+1 with the vector x ∈ C< as its first row such that

H(x) = %31IantiC(x)�%
∗
32
= P31 C(x)P

∗
32
, (3.32)

where J is the permutation matrix such that [J]7 8 = 1 if 8 = 7 + 1 or 7 = 1 and 8 = < and
zero elsewhere and Ianti the matrix with entries equal to 1 only on the main antidiagonal.
Furthermore, %31 : C< → C31 , x 7→ (x1, . . . , x31)

) and %32 : C< → C32 , x 7→ (x1, . . . , x32)
)

denote the projection into the first 31 and 32 coordinates, respectively, and P31 ∈ C
31×< and

P32 ∈ C
32×< are given by

P31 = %31Ianti and P32 = %32J∗.

By Lemma 3.4.1, it follows that that the circulant matrix C(x) can be diagonalized by the
(unitary) discrete Fourier transform F =

( 1√
<

e−2ci(8−1)(9−1)/< )<
9,8=1 ∈ C

<×<, such that

C(x) = FD√<FxF∗,

where D√<Fx = diag(
√
<Fx) ∈ C<×< is as in Lemma 3.4.1. Combined with (3.32), we have

H(x) = %31IantiC(x)J%
∗
32
= P31F�√<FxF∗P∗32

.

Next, we use our assumption that there at most @ singular values of H(F(9)) larger than n9
to obtain a simplified version of (2.155) from Lemma 2.6.1: Thus, we can write the action of
the weight operator,(9) : C31×32 → C31×32 on a matrix Z ∈ C31×32 such that

,(9)(Z) = U[HU,V ◦ (U∗ZV)]V∗+
+ U (D)U∗Z(I − VV∗)
+ (I − UU∗)ZV (D)V∗

+ n
(−2)
9
(I − UU∗) Z (I − VV∗) ,

where HU,V ∈ R
@×@ such that (HU,V)7 8 =

1
f
(9)

7
f
(9)

8

for 7, 8 ∈ [@], U = U(9), V = V(9) and D ∈ R@×@

diagonal such that (D)77 = 1
f
(9)

7
n9

for 7 ∈ [@].

Then, using the linearity of H∗, we rearranged the matrix vector product ,̃(9)x such that

,̃(9)x = H∗,(9)(H(x)) = H∗U[�U,V ◦ (U∗H(x)V)]V∗ +H∗UD(U∗H(x)V⊥)V∗⊥
+H∗U⊥U∗⊥H(x)V)DV∗ + n−2

9 H∗U⊥U∗⊥H(x)V⊥V∗⊥
= H∗U[�U,V ◦ (U∗H(x)V)]V∗ +H∗UDU∗H(x)(I − VV∗)

+H∗(I − UU∗)H(x)VDV∗ + n−2
9 H∗(I − UU∗)H(x)(I − VV∗)

= n−2
9 H∗H(x) +H∗

[
[U(D − n−2

9 I)U∗]H(x)
]
+H∗

[
H(x)[V(D − n−2

9 I)V∗]
]

+H∗
[
U(�U,V ◦ (U∗H(x)V) − U∗H(x)VD − DU∗H(x)V + n−2

9 U∗H(x)V)V∗
]

(3.33)

The four terms can be separately analyzed. Before continuing, we note that the action of the
adjoint of the Hankel operator is given by H∗(. ) = C∗(P∗

31
.P32) =

√
<F∗ diag(F∗P∗

32
. ∗P31F),
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since indeed,

〈.,H(F)〉 = 〈.,P31 C(F)P
∗
32
〉 = tr(. ∗P31 C(F)P

∗
32
) = tr(P∗32

. ∗P31 C(F))

= 〈P∗31
.P32 C(F)〉 = 〈C∗P∗31

.P32 , F〉 = 〈H
∗(. ), F〉.

(3.34)

Then, inserting the result from Lemma 3.4.1, leads us to the result. Defining D̄ = D− n−2
9

I and
plugging (3.32) into the previous equations implies the following four observations:

1. Since H∗H : C< → C< is a diagonal operator multiplying the 7-th element with a
fixed number a7, we obtain that n−2H∗H(x) = {n−2a7x7}<−1

7=0 can be performed in $(<)

operations.

2. H∗
[
UD̄U∗H(x)

]
=
√
<F∗ diag(F∗P∗

32
(UD̄U∗H(F))∗P31F)

=
√
<F∗ diag (P∗

32
P32Fdiag (

√
<Fx)F∗) = <F∗ diag (F∗P∗

32
P32Fdiag (Fx)F∗P∗

31
UD̄U∗P31F).

The matrix "1 = F∗P∗
32
P32Fdiag (FF)F∗P∗

31
U ∈ C<×@ can be computed in $('< log <)

by using the FFT @ times while, by counting the dimensions, the precomputed matrix
"2 = D̄U∗P31F ∈ C@×< can be performed in $(@2<).

3. H∗
[
H(F)VD̄V∗

]
is analogous to the previous case and can also be calculated in $(@2<+

'< log <) operations.

4. H∗
[
U(� ◦ (U∗H(F)V) − U∗H(F)VD̄ − D̄U∗H(F)V + n−2U∗H(F)V)V∗

]
is of the form

H∗
[
U(� ◦ � − �D̄ − D̄� − 9�)

]
and the Schur product can be simplified leading to

<F∗ diag
(
F∗P∗

32
V(�∗new ◦ [V

∗P32Fdiag (FF)F∗P∗
31

U])U∗P31F
)
, where [�new]7 8 = [�]7 8 +

n−2 − D̄77 − D̄8 8.
Again, by counting dimensions, "3 = (�

∗
new ◦ [V

∗P32Fdiag (FF)F∗P∗
31

U])U∗P31F can
be performed in $(@2<) operations, since �new ∈ C@×@ and U∗P31F ∈ C@×<. Then, the
product of the precomputed matrix "4 = F∗P∗

32
V ∈ C<×@ by "3 has also complexity

$(@2<). Lastly, the outer operation F∗ diag ("3"4) needs $(< log <) by using FFT.

This shows an overall complexity of $(<@ log < + @2<). �

Thus, we see that matrix-vector multiplication with ,̃(9) is, up to a logarithmic factor in
<, almost linear in the dimension of x ∈ C< if @2 � <.

3.5 Connection to Harmonic Retrieval
As mentioned in the Section 3.1.1, in many applications the parsimonious signals one en-
counters is specified by parameters in a continuous domain. They are often modelled as a
superposition of point sources in the spectral or the time domain and the goal is to retrieve
these highly localized patterns through the acquisition of a small number of samples, which
means that a sum of exponentials model such as 3.4 is available. If in the application the sam-
ples are not consecutive, as in 3.5, but irregular, for example, corresponding to a subsampled
equidistant grid, low-rank Hankel matrix completion techniques such as StrucIRLS can be
used to complete the sequence to obtain an equidistant sample sequence.

In a second step, to retrieve the model parameters {U9}@9=1 and { 59}@9=1 of (3.4), we could
consequently use classical methods such as the original Prony’s method [dP95], MUSIC [Sch86],
ESPRIT [RK89], or the Matrix Pencil method [HS90]. This might be an interesting application,
as these methods are not designed to deal with the case of non-consecutive samples.
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Our methods can also be extended not to cover the case of missing samples, but of noisy
samples such that

x̃8 = x8 +w8

for 8 ∈ {0, 1, . . . , < − 1} with w8, for example, independent Gaussian noise for all 8 ∈
{0, 1, . . . , < − 1}, cf. (3.6).

In this case, it is possible to adapt our ideas to solve first the Hankel structured low-rank
approximation problem (3.8) with input x = x̃, and then use a method for harmonic retrieval of
choice such as Prony or ESPRIT or others (see Section 3.1.1) to retrieve the model parameters
{U9}

@
9=1 and { 59}@9=1 based on the denoised sample vector F̂ ∈ C<.
In our framework, this would correspond to dropping the linear constraint %Ω(x) = y and

optimizing instead the unconstrained optimization problem

min
z∈C<
‖z − x‖22 + _Jn(z)

with Jn as in (3.25), for a suitable _ > 0. From the theory presented in this thesis, it is clear
that this would involve solving the sequence of weighted least squares problems

x(9) = arg min
z∈C<

(
〈z − x, z − x〉 + _

〈
z, ,̃(9−1)z

〉)
, (3.35)

while updating the weight operator matrix ,̃(9) and the smoothing parameter n9 as in
StrucIRLS.

If the model order @ of the sum of exponentials is known, it is possible to find good choices
for the regularization parameter _ by a simple grid search.

3.6 Numerical Experiments
In this section, explore the performance of StrucIRLS empirically. We focus on the setting of
completing low-rank Hankel matrices completion setting from random samples.

We conduct an experiment mimicking the setup of the experiments of [CWW18], con-
sidering the completion of Hankel matrices H(F) from ; sample coordinates Ω that are
drawn uniformly at random, of a vector x = ((x)0, . . . , (x)<−1) such that (x)8 = F(8/<) for all
8 ∈ {0, . . . , < − 1}, < = 127, with sum-of-exponentials model F : [0, 1] → C,

F(B) =

@∑
9=1

U94
(2c759)B,

where the 59 and 29 are sampled at random independently such that 59 ∼ U([0, 1]), |U9 | =
1 + 1029 , 29 ∼ U([0, 1]). In Figure 3.2, the empirical recovery probabilities averaged across
50 simulations for each pair of ; and @ are documented in comparison with the atomic
norm minimization algorithm (ANM) [BTSR13], projected gradient descent (PGD)[CWW18],
fast iterative hard thresholding (FIHT) [CWW19], Hankel nuclear norm minimization (NNM)
[CC14], and a non-convex optimization method operator on the frequency parameter space
[FWS+16].

In the experiment, we do not us the weight operator of StrucIRLS indicated by (3.17), but
one that corresponds to an even tighter quadratic bound based on a harmonic mean weight
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Figure 3.2 – Hankel matrix completion, ; measurements of vector x ∈ C< with < = 127.
x-axis: number of measurements ;, y-axis: model order @.

operator. Furthermore, we use the objective

Jn(x) =
3∑
7=1

log
(
f2
7 (H(x)) + n

2
)

instead of the one in (3.25).
We observe our IRLS algorithm exhibits the best performance, with successful recovery

already when ; ≈ 2@, despite the fact that some frequencies 59 will be very close if @ is not
too small, which is known to compromise the performance of methods such as ANM [BTR13].
The data corresponding to the same experiment is visualized also in Figure Figure 3.3.

Furthermore, we provide an experiment that investigates the potential of an IRLS approach
for Hankel low-rank approximation (cf. Section 3.1.2), if used as a preprocessing for the
harmonic retrieval problem as indicated in Section 3.5.

For this, we repeat an experiment of [HV18, Section VI]: Using equispaced samples from a
signal that is a sum of two frequencies located at 51 = 0.35 and 52 = 0.40 (both with unitary
amplitude) that are perturbed by additive Gaussian noise (with different signal-to-noise ratios
(SNR)), we first use a variant of StrucIRLS for the Hankel low-rank approximation problem
to obtained denoised samples. In the algorithm, we use an automated rule for the tuning
parameter _ (see (3.35)).

After denoising, we use ESPRIT to obtain the frequencies, which is arguably one of best
algorithms for frequency estimation for low noise levels [Fan16]. As a comparison, we use the
algorithms [Cad88,CH15,HV18] (combined with ESPRIT for frequency retrieval, respectively),
vanilla-ESPRIT [RK89] and Prony’s method. For our method, we choose the regularization
parameter _ from (3.35) according to an adaptive rule that uses the information of the model
order @ = 2.
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Figure 3.3 – Hankel matrix completion, Max. rank @ with 75% empirical recovery probability
for a number of ; samples x ∈ C< with < = 127.
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Figure 3.4 – Frequency estimation experiment, @ = 2, U1 = U2 = 1 and 51 = 0.35 and
52 = 0.40.
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The results corresponding to an average over 500 independent noise realizations for each
SNR value can be seen in Figure 3.4. In this simple experiment, and our method obtains
a lower MSE on the vector of frequencies 5 = ( 51, 52) than the competing methods across
different noise SNRs.

3.7 Proof of Theorem 3.2
For the proof of Theorem 3.2, we can use the strategy that had been used in Chapter 2 for
proving the respective convergence result for MatrixIRLS.

Similarly to the proof of Corollary 2.5.3, we start by adapting the sampling model of
Theorem 3.2 as follows: We sample the collection Ω of indices l1, . . . ,l; ∈ {0, 1, . . . , < − 1}
from a random model of independent sampling with replacement (this means that Ω could
contain the same index more than once).

Lemma 3.7.1 (Based on Proposition 5 from [Rec11]). Let V > 1, let Ω = (l�)
;
�=1 be a multiset

of indices in {0, 1, . . . , < − 1} fulfilling ; < <, that is sampled independently with replacement.
Then with probability at least 1 − <1−2V, the maximum number of repetitions of any entry in Ω
is less than 8

3V log(<) for all < ≥ 9.
Defining the operator RΩ : C< → C< such that

RΩ(x) := %∗Ω%Ω(x)) =
;∑
�=1

4l�
4∗l4::

x, (3.36)

we have consequently that with probability at least 1 − <1−2V

‖RΩ‖(∞ ≤
8
3
V log(<).

Proof. The proof follows exactly the same lines as [Rec11, Proposition 5], with the only dif-
ference that in the application of the Chernoff bound, the probability of a head is given by 1

<

instead of 1
3132

because we are sampling a vector x ∈ C<. This leads to a bound <1−2V instead
of max(31, 32)

2−2V. �

As a preparation of the next result, which corresponds to a local restricted isometry property
(see [CR09, Section 4.2] for some discussion) around matrices that are `0-incoherent to the
standard Hankel basis, we define the operator G : C< → C31×32 such that

G(x) =
<−1∑
9=0

(x)9H9,

where the H9 ∈ C
31×32 are the standard Hankel basis matrices (3.27).

Lemma 3.7.2 ([CC14, Lemma 3]). Let H(x) ∈ C31×32 be a rank-@ Hankel matrix with left and
right singular vector matrices U ∈ C31×@ and V ∈ C32×@ and tangent space ) (3.26). If H(x) is
`0-incoherent with respect to Definition 3.3.1, thenP)GG

∗P) −
<

;
P)GPΩG

∗P)


(∞

≤ Y (3.37)

. holds with probability at least 1 − <−2 provided that ; ≥ 6
7Y2`02A@ log(<), where 2A =

max
{
<
31
, <
32

}
.
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Proof. This lemma is a special case of the result of [LLJY18, Lemma 23]. For completeness, we
provide a proof. First we define the family of operators

Z� :=
<

;
P)G4l�

4∗l�
G∗P) −

1
;
P)GG

∗P)

for any � ∈ [;]. Then

E[Z�] =
1
<

<∑
7=1

<

;
P)G474

∗
7 G
∗P) −

1
;
P)GG

∗P) =
1
<

<

;
P)GG

∗P) −
1
;
P)GG

∗P) = 0.

Since for - ∈ C31×32

P)G4l�
4∗l�

G∗P) (-) = 〈G(4l�
),P) (-)〉�P)G(4l�

) = 〈P)G(4l�
), -〉�P)G(4l�

),

we obtain

‖P)G4l�
4∗l�

G∗P) (-)‖� ≤
��〈P)G(4l�

), -〉�
�� ‖P)G(4l�

)‖� ≤ ‖P)G(4l�
)‖2� ‖- ‖�

by Cauchy-Schwartz, and thus the norm bound <
;
P)G4l�

4∗l�
G∗P)


2
≤

<

;
‖P)G(4l�

)‖2� ≤
<

;
max
9∈[<]
‖P) (H9)‖

2
� ≤

<

;

2`02A@

<
=

2`02A@

;

(3.38)

using the incoherence assumption on the subspace ) in the last inequality. Similarly, 1
;
P)GG

∗P)


2
≤

1
;

<∑
9=1

P)G494
∗
9G
∗P)


2 ≤

2`02A@

;
(3.39)

and therefore ‖Z�‖2 ≤
4`02A@
;

for all � ∈ [;]. For the expectation of the squares of Z�, we
obtain

EZ�Z
∗
� =

<2

;2E
[
(P)G4l�

4∗l�
G∗P) )

∗(P)G4l�
4∗l�

G∗P) )
]
−

1
;2 (P)GG

∗P) )
∗(P)GG

∗P) )

and therefore ;∑
�=1

EZ�Z
∗
�


2

≤

;∑
�=1

EZ�Z
∗
�


2 =

;∑
�=1

(
<2

;2

E [
(P)G4l�

4∗l�
G∗P) )

2]
2 +

1
;2 ‖P)GG

∗P) ‖
2
2

)
≤

;∑
�=1

(
<2

;2 ‖P)G4l�
4∗l�

G∗P) ‖2
E [

P)G4l�
4∗l�

G∗P)

]
2 +

1
;2 2`02A@ · 1

)
≤

;∑
�=1

(
<2

;2
2`02A@

<

E [
P)G4l�

4∗l�
G∗P)

]
2 +

1
;2 2`02A@

)
=

;∑
�=1

(
<2

;2
2`02A@

<

1
<
P)GG

∗P)


2
+

1
;2 2`02A@

)
=

1
;

4`02A@,

where we used that ‖P)GG
∗P) ‖2 ≤ 1 sinceP)GG

∗P) is a projection and (3.39) in the second
inequality, (3.38) in the third inequality and the fact that the {l�} are uniformly distributed
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at random among [<] in the second equality. As the Z� are Hermitian, it follows by the matrix
Bernstein inequality (see, e.g., [Ver18, Theorem 5.4.1]) that

P
( <
;
P)GPΩG

∗P) −P)GG
∗P)


2
≥ n

)
≤ 23132 exp

(
−

;n2/2
4`02A@ + 4`02A@n/3

)
≤ 2
(< + 1)2

4
exp

(
−

;n2

2`02A@ + `02A@/3

)
=

1
2
(< + 1)2 exp

(
−

;n2

7
3`02A@

)
≤ <−2,

(3.40)

where the last inequality holds if 1
2 (<+1)2<2 ≤ exp

(
3;n2

7`02A@

)
, which is implied by the condition

; ≥ 6
7n2`02A@ log(<). �

As a consequence of it, it is possible to establish a crucial inequality that controls the
projection onto the tangent space.

Lemma 3.7.3 ([YKJL17, Lemma 20]). Let x ∈ C< be such that ) is the tangent space of the
embedded rank r matrix manifold at the point H(x). Assume that (3.37) holds for Y ≤ 1

2 . Then,
for any z ∈ C<, it holds that

‖P)H(z)‖� < 3< ‖P)⊥H(z)‖� for all z ∈ ker %Ω.

Proof. The proof follows from [CC14, |Lemma 1]. �

The next lemma is the counterpart Lemma 2.5.3. We included the refinement of [WCCL16b,
Lemma 4.2], obtaining weaker third condition.

Lemma 3.7.4 ([CWW19, Lemma 8]). Let x0, x ∈ C< be such that H(x0) and H(x) are rank-
@ matrices with tangent spaces onto the rank-@ manifold )0 and ) , respectively. Assume that
0 < Y < 1/10 and that the following three conditions hold:

a. ‖RΩ‖ ≤
8
3 log(<) for RΩ as in (3.36),

b. ‖P)0 GG
∗P)0 −

<
;
P)0 GPΩG

∗P)0 ‖ ≤ Y

c. ‖H(x(9)) −H(x0)‖(∞ ≤
√
;Y

16
√
< log(<)(1+Y)f@(H(x0)).

Then we have P)GG
∗P) − >

−1P)GPΩG
∗P)

 ≤ 4Y, (3.41)

and, as a consequence of Lemma 3.7.3, we have

‖P)H(z)‖� < 3< ‖P)⊥H(z)‖� ∀z ∈ ker %Ω. (3.42)

We can finally prove our main result, Theorem 3.2.

Proof of Theorem 3.2. We proceed as in the proof of Corollary 2.5.3.
If ; ≥ 600

7 `02A@ log(<), then on the event �Ω ∩ �Ω,)0 , on which the statements of both
Lemma 3.7.1 (with V = 2) and Lemma 3.7.2 hold, we have that

‖RΩ‖(∞ ≤
16
3

log(<)
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and P)GG
∗P) −

<

;
P)GPΩG

∗P)


(∞

≤ Y

for Y = 1/10, whereas the probability that �Ω ∩ �Ω,)0 hold is at least 1 − 2<−2.
On �Ω ∩ �Ω,)0 , it holds then that for any x ∈ C< such that

‖H(x) −H(x0)‖(∞ ≤ b̃f@(H(x0)),

with

b̃ =

√
;Y

16
√
< log(<)(1 + Y)

,

that
‖H(z)‖2� ≤ ‖P) (H(z))‖2� + ‖P)⊥(H(z))‖2� ≤

(
9<2 + 1

)
‖P)⊥(H(z))‖2� .

Due to the assumption on the sample complexity;, this implies that Assumption 2.1 is fulfilled
with constant 2(31, 32) =

√
9<2 + 1 for H(x0) with radius

b = �

√
`02A@√
< log(<)

.

Inserting this into the statement of Theorem 2.7, we obtain that for any H(x(9)) such that

‖H(x(9)) −H(x0)‖(∞ ≤ min

(
�1

√
`02A@√
< log(<)

,�2
1

<2@^

)
f@(H(x0)),

where �1 and �2 are appropriately chosen absolute constants, we have that

‖H(x(9+1)) −H(x0)‖(∞ ≤ `‖H(x
(9)) −H(x0)‖

2
(∞

with ` = 4(9<2 + 1)@6^/f@(H(x0)).
This finishes the proof of Theorem 3.2.

�

3.8 Conclusion and Future work
In this chapter, we formulated an IRLS algorithm designed for structured low-rank matrix
recovery problems. We exhibited beneficial computational properties and theoretical guaran-
tees for local convergence. In particular, we proved that the proposed algorithm StrucIRLS
converges quadratically to the global minimizer of the low-rank completion problem of ma-
trices Hankel structure if the iterates are in a neighborhood of this minimizer, under a weak
assumption on the number of provided random samples. This number depends only linearly
on the rank of the Hankel matrix and logarithmically on the ambient dimension, which is
considerably weaker than the sufficient conditions that are available for other methods such
as projected gradient descent [CWW18], iterative hard thresholding [CWW19] or those based
on convex relaxations [FHB04,CC14, JLY16].

The numerical experiments we conducted show that the strong local convergence state-
ments for our algorithm capture indeed a very competitive data efficiency, as the method is able
to complete structured low-rank Hankel matrices from fewer samples than other state-of-the-art
methods. An important open question that remains for future work is the establishment of a
global convergence theory, as our convergence theory is inherently local, allowing for strong
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convergence statements just in a neighborhood of a ground truth solution. The promising
numerical experiments suggest that convergence to the ground truth, however, is in fact not
a mere local phenomenon, but can be observed with empirical certainty once enough mea-
surements or known entry of the structured matrix are provided, starting from the generic
initialization of Algorithm 2. We expect that analysing the saddle escaping behavior of the
algorithm as outlined in Section 2.10 will lead to a more comprehensive understanding.

We also showed that an IRLS approach designed for the structured low-rank approximation
problem has potentially interesting applications as a preprocessing step in harmonic retrieval
problems. A generalization of our framework can also be used to cope with noise on the
samples in the structured matrix completion problem, using an unconstrained formulation as
in Section 3.5 with similarities to [LXY13]. We leave the establishment of a convergence theory
that includes error bounds for this case to future investigations.

The wide applicability of structured low-rank modelling in signal processing and in control
theory was briefly mentioned in the motivation for this chapter. We expect that methods such
as ours that are able to cope well with missing or non-equidistantly sampled data can lead to
new applications, which would not be possible to realize with conventional algorithms such as
subspace methods, as these methods typically require very regular samples.
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