©2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists,

or reuse of any copyrighted component of this work in other works.

Towards Understanding the Performance of P4
Programmable Hardware

Hasanin Harkous*T, Michael Jarschelf, Mu He*, Rastin Pries’, Wolfgang Kellerer*
*Technical University of Munich, firstname.lastname @tum.de
tNokia Bell Labs, firstname.lastname @nokia.com
Munich, Germany

Abstract—P4 programmable data planes are becoming more
popular due to the flexibility they provide in describing the packet
processing pipeline. P4 successfully abstracts the processing
pipeline of data planes using a limited set of constructs. The
performance variation as a function of the configured P4 pipeline
is an important aspect that should be studied. Analyzing the
impact of different P4 constructs on packet latency helps in
understanding the overall performance of P4 programmable
devices.

In this paper, we analyze the impact of a basic set of P4
constructs on packet processing latency to derive the influential
parameters. We use the derived results to propose a method
for estimating the packet latency of P4-based network functions
implemented using the surveyed P4 constructs. Finally, we
validate the accuracy of the proposed method by applying it
to realistic network functions.

Index Terms—Programmable Data Plane, Performance Eval-
uation, P4

I. INTRODUCTION

Traffic demands of computer networks are in constant
flux: the increasing number of devices and emerging new
applications call for flexible network designs that can adapt
to changing traffic patterns [1]. In this regard, the emergence
of Software-Defined Networking (SDN) and Programming
Protocol-Independent Packet Processors (P4) [2] follows the
paradigm shift toward network programmability, which en-
ables new perspectives to build adaptable networks.

Since its proposal, the data plane programming language P4
has captured the attention from both academia and industry.
In a nutshell, P4 describes the processing pipeline of packets,
including parsing, match-action, and deparsing, all of which
can be customized. Furthermore, new protocols (e.g., HULA
[3]) and applications (e.g., Inband-Network Telemetry (INT)
[4]) can be efficiently prototyped with P4.

As another advantage, P4 is a high-level domain-specific
language which abstracts details of devices (i.e., targets), and
only keeps the logical steps of packet processing. Therefore,
the same P4 design can be executed on various targets,
including BMv2 software switch [5], Netronome SmartNIC
[6], TOFINO ASIC Switch [7] and NetFPGA [8]. To leverage
different targets for different use cases, we need to fully
understand their performance characteristics. We try to answer
the question: what is the relation between packet processing
latency and a certain pipeline structure? which is not yet fully
explained in the literature. In this paper, we fill this research
gap starting with the widely used Netronome SmartNIC [6].

Performance analysis of P4 targets is challenging because
each stage of a P4 pipeline can have different features and
building blocks which makes it practically impossible to eval-
uate all combinations. In this regard, we start our evaluation by
measuring the simplest cases and gradually increase the com-
plexity of the pipeline (including parser, control blocks, and
deparser) to make the evaluation procedure more meaningful.
The measurement results enable us to present a generalized
estimation method for predicting packet latency by analyzing
P4 programs. With this method, we can cover a wide set of
possible network functions rather than measuring particular
ones. Overall, we make the following main contributions:

o We analyze the impact of P4’s various basic elements on

packet latency and identify the influential variables.

e We propose and validate a method to estimate the total
packet latency of a P4 pipeline implemented on Smart-
NIC.

This paper is organized as follows. The related work is listed
in Section II. Section III provides some background informa-
tion about P4 and Netronome SmartNIC. Section IV introduces
our measurement testbed and methodology. We discuss the
measurement results and provide a latency estimation method
in Section V. Section VI concludes the paper.

II. RELATED WORK

In the following, we review the previous work targeting
the performance evaluation of programmable networks. Begin
et al. [9] presented an analytical queueing model to evaluate
the performance of a DPDK-based software switch which
is abstracted as a polling system. A model based black-box
systematic testing method [10] is introduced for the multiple-
level pipeline of an SDN data plane. Jarschel et al. [11]
developed a mathematical model for the forwarding speed and
blocking probability of an OpenFlow switch. With extensive
measurements, He et al. [12] explored potential latencies
involved in OpenFlow hardware switches that motivate a
rethinking of the switch design. Jose et al. [13] explored the
design of compilers for programmable ASIC switches that map
logical lookup tables to physical tables, while meeting data and
control dependencies in the program.

Regarding programmable networks implemented with P4,
WhipperSnapper [14] was the first benchmarker that can
generate various test cases which cover both target-agnostic
properties, e.g., the latency of parsing and state access, and

target-dependent properties, e.g., occupied hardware resources.
Performance evaluation of various P4 targets can be found in
the literature, e.g., PAFPGA [15] and P4-to-VHDL [16] for
FPGA, and PISCES [17] for Open vSwitch. In a nutshell,
they evaluate the impact of the number of headers, tables, and
actions on the processing latency or throughput. Furthermore,
PANFV [18] considers the performance degradation during
changing the packet processing pipeline at runtime.

In this paper, we focus on a SmartNIC, whose performance
has not been studied in previous research, and generate repre-
sentative test cases that give us the most insights and enable
estimation of its packet processing latency.

III. BACKGROUND

In this section, we briefly overview the basic elements of
a P4 program and the architecture of Netronome SmartNICs
under evaluation.

P4 Programming Language: P4 is a domain-specific lan-
guage for describing the pipeline of packet processors. The
language can describe arbitrary data plane protocols and can
run on different platforms. In the latest P45 version [19], the
language is separated from the target’s architecture so that
each can evolve independently. While the target’s architecture
reveals the view of the pipeline, defining the programmable
and non-programmable blocks, the P4 code describes the
functionality that should run on the programmable devices.
A typical packet processing pipeline, programmed via P4, is
abstracted into the following stages:

Parser: The parser is the block where bits are extracted
from packets and saved into header structures. Parsers are
programmed as a Finite State Machine.

Control Blocks: The extracted headers are manipulated
and transformed at this stage. The body of a control block
resembles a traditional imperative program. Match-action units
(i.e., tables) can be applied from within the control blocks.
The match-action units are made up of keys, with three
matching types, and a set of actions that can be applied
upon matching. The actions are defined separately, and they
can be called explicitly in the control block, or implicitly
by the match-action units. The actions consist of a basic set
of operations, such as modifying header fields, modifying
metadata, evaluating arithmetic and binary expressions.

Deparser: The modified packet is reconstructed at this stage
where headers are appended to the packet before leaving the
packet processor pipeline.

Netronome SmartNIC: The Netronome SmartNIC is a
Network Processor Unit (NPU) that can be programmed via
P4. It has a highly parallel architecture with tens of multi-
threaded purpose-built cores. In addition, the architecture
utilizes hierarchical transactional memory and built-in accel-
erators to enhance its processing performance. A P4 program
is compiled using the open-source front-end compiler from
P4.org [19], and a back-end compiler from Netronome to
generate target-specific C implementation of the datapath. The
C files are then used to generate the firmware to be down-
loaded on the SmartNIC. Further details about the SmartNIC

architecture and its programmability via P4 can be found
in [20]. A schematic showing Netronome SmartNIC’s pipeline
is presented in Fig. 1.

Parse } ,,(Match)*»(Action

netor

Load
Balance

PCIE P4 Datapath
(run to completion) Thread #
| Thread #:
N Thread #

Fig. 1: P4 pipeline with multi-threaded architecture in
Netronome SmartNICs [20].

IV. TESTBED SETUP AND METHODOLOGY

In this section, we describe the testbed setup and the exper-
iments designed to understand the latency cost of different P4
constructs.

MoonGen

D

Server | Server Il

Fig. 2: Testbed setup consisting of P4 programmable Smart-
NIC and packet generator.

Fig. 2 shows the built setup. We perform the experiments
using two Nokia NDCS16 AirFrame Compute Nodes with 16
cores (dual-socket Intel Xeon CPU E5-2630 v3 @ 2.40GHz)
and 64GB of 2133 MHz DDR4 memory. An Agilio CX
2x10GbE SmartNIC from Netronome [6] is plugged into
Server I through the PCI bus. The two physical ports of the
SmartNIC are connected to two interfaces of Server II running
MoonGen packet generator [21]. For every measurement case,
a different P4 program is loaded into the SmartNIC. More than
100 thousand packets of length 1000 Bytes are generated by
MoonGen and sent over one link to the SmartNIC at 10 Gbps
rate. After being processed in the SmartNIC, packets are sent
back to MoonGen for measuring and reporting packet latency
results.

Four experiments are designed to study the effect of the ba-
sic elements of a P4 pipeline on packet latency. The examined
P4 constructs cover header parsing, actions applied on headers,
and match-action tables. The results of these experiments are
used in Subsection V-E to derive a method for estimating
the packet latency of network functions, which is made up
of the examined constructs, by analyzing its P4 program. In
the following, we describe the objective of the performed
experiments and the P4 pipelines used for every test case. Note
that all tested P4 pipelines contain a single table responsible
for modifying the egress port while matching on the ingress
port based on a fixed rule. Additionally, the applied actions are

defined as explicit actions, in the control block of the ingress
stage, unless it is specified that they are implicitly invoked due
to table matching.

A. Modifying Header Fields

The objective of this experiment is to study the effect of
modifying a different number of fields of the same header.
This answers the question: How will the processing latency of
a P4 pipeline vary if a single IP header field, such as source
IP address, was modified compared to the case when multiple
IP header fields, such as source and destination IP addresses,
were modified? For this purpose, we consider two sets of P4
programs that differ in the following: In the first set, a single
header field of three different headers is modified, while in the
second set all the fields of the headers are modified.

B. Executing Operations

In this experiment, we investigate the latency cost of the
application of arithmetic and binary operations on header fields
defined in P4 actions. We aim to study the impact of each
type of operation on the processing latency separately. For
this purpose, we consider two sets of P4 programs where we
vary the number of applied binary operations in the first set,
while we vary the number of applied arithmetic operations in
the second set. Note that the compiler ignores the expressions
if the result is not used in the P4 pipeline. For this purpose the
header fields are modified in all the P4 pipelines considered
in this experiment.

C. Parsing and Modifying Headers

TABLE I: Parsing and Modifying Headers.

Case ID Parsed Headers Modified Headers

Eth IPv4 UDP | Eth IPv4 UDP
A0 + - - - - -
Al + - - + - -
BO + + - - - -
Bl + + - + - -
B2 + + - - -
B3 + + - + -
(60] + + + - - -
C1 + + + + - -
Cc2 + + + - + -
C3 + + + - - +
C4 + + + + -
C5 + + + - +
C6 + + + - +
C7 + + + + +

The objective of this experiment is to investigate the impact
of header parsing and header modification on the processing
latency. We look into the output of varying these two parame-
ters in the same experiment to analyze the relationship between

these P4 stages, besides analyzing its scaling behavior. The
summary of the tested P4 pipelines in this experiment is shown
in Table I. First, we increase the number of parsed headers
from one to three, which correspond to Case IDs A*, B*,
and C* shown in Table I. Afterward, we consider all possible
combinations of modifying the parsed headers. For example,
while A0, BO, and CO correspond to the cases where only
parsing of headers takes place, Al, B3, and C7 correspond to
the cases where all parsed headers are modified. Furthermore,
we measure the latencies of all the cases listed in Table I when
header modification takes place using explicit actions, from
within P4 control blocks, as well as when it takes place using
implicit actions, as a result of table matching, to analyze the
difference. In total, the latencies of 28 different P4 pipelines
were measured in this experiment. Note that the analysis in this
experiment is limited to three headers since the used packet
generator can only measure the latency of Ethernet and UDP
packets [21].

D. Adding Tables

The objective of this experiment is to quantify the latency
cost of adding tables into a P4 pipeline. We start by a pipeline
that contains a single table responsible for modifying the
egress port while matching on the ingress port based on a
single installed rule. Then, we increase the number of defined
tables in the ingress stage of the pipeline up to 10 tables, while
measuring the latency cost of added tables. All added tables
match on a single field and perform no actions.

V. RESULTS & ESTIMATION METHOD

In this section, the results of the experiments described in
Subsections IV-A, IV-B, IV-C, and IV-D are presented and in-
terpreted in Subsections V-A, V-B, V-C, and V-D respectively.
Finally, we make use of the analyzed measurement results to
propose a method for estimating the latency of P4 programs
in Subsection V-E. Note that all conclusions derived in this
section are valid for Netronome SmartNICs.

A. Impact of Header Fields Modification

i "' P
10000 P—
2 OO =Q=] ==
2 8000 ! 1 ! ' ' +
g LI | L LI |
c 6000
- +
E 4000
©
— 2000 |——Modifying Single Field

o —— Modifying Multiple Fields
Eth Eth IPv4 IPv4 UDPUDP

Headers

Fig. 3: Forwarding latency given number of modified fields.

Fig. 3 shows the box plots of the measured packet latency,
in nanoseconds (ns), when a single field of Ethernet, [Pv4 and
UDP headers is modified versus the case when multiple fields
are modified. For all the considered headers, we can observe
that the latency results when modifying a single header field
are very similar to the results when multiple header fields

are modified. This is justified as the SmartNIC writes the
complete new header when a single field is modified. This is
also consistent with the P4 language deparsing syntax, where
complete headers are emitted in case they are modified. As a
result, we infer that the packet latency of a P4 pipeline depends
on the number of modified headers disregarding the number
of fields modified within a header.

B. Impact of Operations Execution

& 15000 © 15000
n - - - - - - » - - - -
SNETC ISR BRRCT-RY- R
c 1L " c 1 1L L4 %
< T T I < P84 v v e
& 5000 & 5000
s s
3 o S o

0 5 10 15 20 25 0 5 10 15 20 25

Number of Binary Operations Number of Arithmetic Operations

(a) Binary Operations. (b) Arithmetic Operations.

Fig. 4: Forwarding latency given number of executed opera-
tions.

Fig. 4 shows the box plots of packet latency, in ns, as
a function of the number of operations applied on header
fields. From Fig.s 4a and 4b, we can observe that the increase
in packet latency is negligible when more binary operations
are applied, while it reaches approximately 1.9useconds (us)
when the number of arithmetic operations increases to 25. The
SmartNIC efficiently performs operations in on-chip memory
[20] which lead to negligible latency when processing binary
operations and minimal latency when processing arithmetic
operations. As a result, the latency cost of binary operations
can always be neglected when estimating the packet latency of
a P4 pipeline, while arithmetic operations should be included
only if a significant number of operations is applied.

C. Impact of Headers Parsing and Modification

12000 T
Il Explicit Actions

I Implicit Actions
10000|] STDEV

8000 -

6000 1

4000 1

Average Latency in nanosec

2000

(0]
A0 A1

BO B1 B2 B3

CO C1 C2 C3 C4 C5 C6 C7
Case ID
Fig. 5: Forwarding latency given number of parsed and mod-
ified headers.

Fig. 5 shows the average and standard deviation of packet
latency when P4 pipelines defined in Table I are loaded
into the SmartNIC. The cases that have the same parsing

stage are grouped together, referenced as A*, B*, and C*
respectively. The latency results when headers are modified
using explicit actions are shown in black, while the latency
results when actions are applied implicitly are shown in brown.
Recalling that the number of fields modified within a header
does not impact the packet latency, as discussed in Subsection
V-A, the analysis in this section focuses on the impact of
parsing and modifying different headers disregarding which
fields are modified. From Fig. 5, we can derive the following
observations:

Headers Parsing: From cases A0, BO and CO, we can
observe that the impact of parsing additional headers, without
header modification, on packet latency is negligible. Note that
this observation is valid while parsing up to three headers, and
further scaling is needed to generalize this statement.

Headers Modification: The latency cost of modifying

additional headers is clearly observable. For example, in the
case of UDP parsing, when the number of modified headers
varied from O to 3 as in cases CO, C1, C4, C7, the total
additional latency reached 3.3 us in the explicit case and 2.8
us in the implicit case.
Additionally, we can observe that the extra latency of modi-
fying headers is not additive. For example, adding the extra
latency of modifying Ethernet and IPv4 headers separately,
as in Bl and B2, sums up more than the case B3 where
both headers are modified within the same pipeline. This is
interpreted as a result of single memory access for writing the
headers in B3 compared to adding the latencies in B1 and
B2 where memory is accessed twice even though less data is
written in each case.

Relation between Parsing and Header Modification: We
can observe that modifying the same header while having
different parsing stages, leads to different latency costs. For
example, modifying the Ethernet header while parsing a differ-
ent number of headers, leads to different latency results as can
be observed from cases Al, B1, and C1. The latter observation
shows that the latency cost of varying the parsing stage and
varying the number of modified headers is not independent.
Further implementation details from the target vendor are
needed to understand the concurrency model between the
stages of the P4 program.

Moreover, we can observe that with identical parsing blocks,
the latency varies according to the number of modified headers
with less effect, 0.2 us difference, when looking to which
headers are being modified. For example, we can observe
that the latency is almost the same in cases C1, C2, and C3
where only a single header is modified, i.e. Ethernet, or IPv4
or UDP header. The same holds in cases C4, C5, and C6
when two headers are modified. This is an expected result
keeping in mind that P4 is designed to be protocol independent
where headers are defined and treated as a string of bits. As
an exception, the result of the implicit case in C6 shows a
slight increase in latency compared to C4 and C5 although
the number of modified headers is the same in these three
cases; a behavior which needs further investigation.

Implicit versus Explicit Actions: In all cases when header

modification is applied, we can observe that explicit actions
lead to more latency compared to implicit actions. This is
interpreted as an effect of target-specific optimizations, such
as the flow tracker described in [20].

Based on the observations presented in this subsection, we
can infer that the packet latency of a P4 pipeline depends on
both the number of parsed headers and the number of mod-
ified headers. Table II summarizes the results of the average
measured latency, for both explicit and implicit actions, as a
function of the number of parsed and modified headers.

TABLE 1II: Average measured latency as a function of the
number of parsed and modified headers.

Headers Parsed 1 2 3
Headers Modified 1 1 2 1 2 3
LEgplicic(in ps) 79 [89 99190 101 109
Limplicit(in ps) 76 | 78 82 | 78 86 103

D. Impact of Tables Scaling

® Measured Avg. Latency
—— Fitted Curve

[e2]
o
o
o

a
o
o
o

IN nanosec

4000
3000
2000

1000

Additional Latency

o

5 10
Number of Tables

o

Fig. 6: Additional latency due to tables.

Fig. 6 shows the average and standard deviation of the
measured extra latency when additional tables are added into
the P4 pipeline. Adding tables into the P4 pipeline increases
the latency as more matching takes place before a packet
can leave the pipeline. The latency cost of adding 10 tables
reaches more than 5us. Additionally, the standard deviation
of measured packet latency also increases as a function of
the added tables, which can be a result of packets contention
on accessing the SmartNIC’s memory where tables’ data are
stored. We fit a curve for the measured latency cost to capture
the increasing trend. The curve can be formulated as a second-
order polynomial with the following equation:

f(y)=2244-4%+311.6-4 for y=0,..,10 (1)

where f(.) is the additional latency in ns, which varies as a
function of -, the number of added tables.
E. Estimation Method and Validation

In this subsection, we propose a method for estimating
the packet latency of P4 pipelines that are built using the

previously investigated P4 constructs. Then, we validate the
accuracy of the proposed estimation method using two realistic
network functions.

According to the previously presented results in Subsections
V-C and V-D, the estimation method depends on the following
parameters: (/) The number of parsed headers, o, (2) The
number of modified headers, 5, and (3) Number of tables
minus one, . Note that 7 counts the number of added tables
to the basic P4 pipeline which already contains a single
forwarding table. The number of fields modified within a
header and the number of arithmetic and binary operations
can be ignored based on the results presented in Subsections
V-A and V-B.

Given a P4 program, after extracting the parameters «, /3,
and ~, the estimated average packet latency, denoted as L, can
be computed as the summation of two components:

1) The latency component that depends on parsing and
header modification which can be read from Table II
based on the values of « and S.

2) The latency component that depends on the number of
tables in the P4 pipeline which can be evaluated using
Eq. 1 based on the value of ~.

Validation: For validation, we use the proposed method to
evaluate the performance of two realistic network functions:
(i) L3_forwarding, and (ii) L3_forwarding + Firewall. Then,
we compare the estimated latency to the real measured one to
evaluate the accuracy of the proposed method.

L3 _forwarding: The P4 program of this network func-
tion includes: (I.) Parsing Ethernet and IPv4 headers, (2.)
Matching on IPv4 destination address in a single table, and
(3.) Modifying Ethernet header (MAC source and destination
addresses) and IPv4 header (time to live) in case of matching.
Extracting the relevant parameters of this P4 program gives:
a = 2, 8 = 2, and v = 0, where actions are applied
implicitly. Accordingly, the average latency is estimated as
follows: L = 8200 + £(0) = 8200 ns.

L3_forwarding + Firewall: In this case, we add a UDP-
based Firewall to the previously described P4 pipeline. In ad-
dition to the previously described P4 elements, the P4 pipeline
will also include parsing of UDP header, and one additional
table matching on a UDP port. No extra additional actions
are applied in this case. Extracting the relevant parameters
of this P4 program gives: « = 3, f = 2, and v = 1, where
actions are applied implicitly. Accordingly, the average latency
is estimated as follows: L = 8600 + f(1) = 8957 ns.

The measured and estimated average latency of the eval-
uated network functions are reported in Table III. The small
error in the latency estimation of two examples reflects the
precision and validity of our proposed method.

TABLE III: Validation results of the proposed method.

Network Function | Meas. Avg. L Est. Avg. L AL
L3 _Fwd 8387 ns 8200 ns 187 ns
L3_Fwd+Firewall 9022 ns 8957 ns 65 ns

VI. CONCLUSION & FUTURE WORK

As P4 programming language is becoming more mature, it
is important to understand the impact of different P4 constructs
on the packet processing performance. We start by looking into
the impact of a basic set of P4 constructs on packet latency
when running on Netronome SmartNICs. After identifying the
number of parsed headers, the number of modified headers,
and the number of tables to be the influential parameters,
we propose a method for estimating the latency of network
functions implemented using the surveyed P4 constructs. We
also validate the accuracy of the proposed method and show
that it can estimate the packet latency of realistic network
functions with high precision. This work is considered a
first step towards modeling the latency of P4 programs. As
a continuation of the current work, we plan to extend the
evaluation to cover the following: (i) Studying the impact
of other P4 constructs such as adding/removing headers,
registers, checksum update, etc. (ii) Further investigating the
concurrency model of different P4 stages. (iii) Performing
measurements on other P4 targets such as software switch,
NetFPGA, and TOFINO switch.

REFERENCES

[1] M. He, A. M. Alba, A. Basta, A. Blenk, and W. Kellerer, “Flexibility
in softwarized networks: Classifications and research challenges,” IEEE
Communications Surveys & Tutorials, 2019.

[2] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese et al., “P4: Pro-
gramming protocol-independent packet processors,” ACM SIGCOMM
Computer Communication Review (CCR), vol. 44, no. 3, pp. 87-95,
2014.

[3] N. Katta, M. Hira, C. Kim, A. Sivaraman, and J. Rexford, “Hula: Scal-
able load balancing using programmable data planes,” in Proceedings
of the Symposium on SDN Research (SOSR). ACM, 2016, p. 10.

[4] A. Gupta, R. Harrison, M. Canini, N. Feamster, J. Rexford, and
W. Willinger, “Sonata: Query-driven streaming network telemetry,” in
Proceedings of the 2018 Conference of the ACM Special Interest Group
on Data Communication (SIGCOMM). ACM, 2018, pp. 357-371.

[5] “Behavior model software switch,” https:/github.com/p4lang/
behavioral-model, accessed: 2019-07-04.

[6] “Netronome smartnic,” https://www.netronome.com/products/smartnic/
overview/, accessed: 2019-07-04.

[7] “Barefoot tofino,” https://www.barefootnetworks.com/technology, ac-
cessed: 2019-07-04.

[8] N. Zilberman, Y. Audzevich, G. A. Covington, and A. W. Moore,
“NetFPGA SUME: Toward 100 Gbps as research commodity,” IEEE
micro, vol. 34, no. 5, pp. 32-41, 2014.

[9] T. Begin, B. Baynat, G. A. Gallardo, and V. Jardin, “An accurate and
efficient modeling framework for the performance evaluation of dpdk-
based virtual switches,” IEEE Transactions on Network and Service
Management (TNSM), vol. 15, no. 4, pp. 1407-1421, 2018.

[10] J. Yao, Z. Wang, X. Yin, X. Shiyz, and J. Wu, “Formal modeling and
systematic black-box testing of sdn data plane,” in Proceedings of the
International Conference on Network Protocols (ICNP). 1EEE, 2014,
pp- 179-190.

[11] M. Jarschel, S. Oechsner, D. Schlosser, R. Pries, S. Goll, and P. Tran-Gia,
“Modeling and performance evaluation of an openflow architecture,” in
Proceedings of the 23rd International Teletraffic Congress (ITC), 2011,
pp. 1-7.

[12] K. He, J. Khalid, A. Gember-Jacobson, S. Das, C. Prakash, A. Akella,
L. E. Li, and M. Thottan, “Measuring control plane latency in sdn-
enabled switches,” in Proceedings of the Symposium on SDN Research
(SOSR). ACM, 2015, p. 25.

[13] L. Jose, L. Yan, G. Varghese, and N. McKeown, “Compiling packet pro-
grams to reconfigurable switches,” in Proceedings of the 12th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
15). USENIX Association, 2015, pp. 103-115.

[14] H. T. Dang, H. Wang, T. Jepsen, G. Brebner, C. Kim, J. Rexford,
R. Soulé, and H. Weatherspoon, “Whippersnapper: A P4 language
benchmark suite,” in Proceedings of the Symposium on SDN Research
(SOSR). ACM, 2017, pp. 95-101.

[15] H. Wang, R. Soulé, H. T. Dang, K. S. Lee, V. Shrivastav, N. Foster, and
H. Weatherspoon, “P4fpga: A rapid prototyping framework for p4,” in
Proceedings of the Symposium on SDN Research (SOSR). ACM, 2017,
pp. 122-135.

[16] P. Bendcek, V. Pu, and H. Kubétovd, “P4-to-vhdl: Automatic generation
of 100 gbps packet parsers,” in Proceedings of the International Sym-
posium on Field-Programmable Custom Computing Machines (FCCM).
IEEE, 2016, pp. 148-155.

[17] M. Shahbaz, S. Choi, B. Pfaff, C. Kim, N. Feamster, N. McKeown, and
J. Rexford, “Pisces: A programmable, protocol-independent software
switch,” in Proceedings of the 2016 Conference of the ACM Special
Interest Group on Data Communication (SIGCOMM). ACM, 2016,
pp. 525-538.

[18] M. He, A. Basta, A. Blenk, N. Deric, and W. Kellerer, “P4NFV: An NFV
architecture with flexible data plane Reconfiguration,” in Proceedings
of the International Conference on Network and Service Management
(CNSM). IEEE, 2018, pp. 90-98.

[19] “P4 language consortium,” https://p4.org, accessed: 2019-07-04.

[20] “Mapping p4 to smartnics,” https://p4.org/assets/p4_d2_2017_nfp_
architecture.pdf, accessed: 2019-07-04.

[21] P. Emmerich, S. Gallenmiiller, D. Raumer, F. Wohlfart, and G. Carle,
“Moongen: A scriptable high-speed packet generator,” in Proceedings of
the Internet Measurement Conference (IMC). ACM, 2015, pp. 275-287.

