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Abstract

This cumulative thesis is devoted to the efficient simulation of compressible chem-
ically reactive flows with multiple species and reactions being involved. In addition,
the mass-fraction based reactive Euler equations with multiple species can be used to
describe two-phase flows with multiple ’components’ (corresponding to ’species’) in a
diffuse-interface manner, with suitable equations of state or thermodynamical mod-
els being employed. Three numerical methods towards computational high-efficiency

solution of the above equation system are proposed:

1. A new operator splitting method is proposed for capturing stiff and nonstiff

detonation waves, balancing numerical accuracy and computational efficiency.

2. For the computationally expensive temporal integration of ordinary differen-
tial equation (ODE) system of chemical kinetics with detailed mechanisms, a
species-clustered operator-splitting scheme is developed by using the idea of

optimal partitioning.

3. The remaining flow convective terms are considered by using a partial character-
istic decomposition scheme to overcome the numerical challenge of quadratically
increasing dimensionality of the convective flux eigensystem as the number of

species grows in the classical high-order finite difference (FD) framework.

To solve the multi-species Euler equations with chemical reaction source terms,
lots of efforts have been placed upon using less grid points and larger timesteps to
achieve higher efficiency with little loss of accuracy, which usually works well for non-
reactive flow simulations. For chemically reactive flows, however, especially when the
chemical kinetics is stiff compared with the fluid dynamics, under-resolution in both
space and time would lead to the spurious propagating speed of reacting fronts. This
well-known numerical phenomenon arises for classical shock-capturing schemes either
in the FD or finite volume (FV) framework, and can be ascribed into the inevitable
introduction of numerical dissipation or viscosity. In the first part of this thesis, we
are trying to make correct use of the inherent numerical dissipation by (i) appealing to
the idea of random activation or deactivation of reaction source terms in combination
with (ii) operator splitting upon chemical reaction channels/pathways. As a result,
we develop a split random time-stepping method for chemically reacting flows with

general nonequilibrium chemistry in a unified manner, regardless of stiff or nonstiff



viii

source terms and under- or well-resolved conditions in space and time. Extensive
numerical experiments demonstrate the effectiveness and robustness of our method.
For nonstiff problems, the proposed random method recovers the accuracy of general
operator splitting methods by adding a drift term.

Considering the form of reactive Euler equations, operator splitting is usually
used to decouple flow convection from the chemical reaction process, with each part
being solved separately and step by step. The computational cost of solving the ODE
system of chemical kinetics often exceeds a lot that of calculating the cell-face or half-
point convective fluxes, and the former overwhelmingly dominates the overall CPU
time in general situations. The CPU time for solving these ODEs will drastically
grow as the number of species in the kinetic mechanism increases. In particular,
when the popular implicit ODE solver such as the variable-coefficient ODE solver
(VODE) is used, its CPU time scales with the number of species as O(N?) to O(N?)
with extensive dense matrix operations. As the second part of work in this thesis, a
species-clustered integrator based on operator splitting is thus proposed to improve
the computational efficiency. The ODE system of large-scale chemical kinetics is
split into clusters of species by using graph partition methods. Definition of the
weight (similarity) matrix in graph partition methods is application-dependent and
follows from chemical kinetics. Each species cluster is integrated by VODE. The
theoretically expected speedup in computational efficiency is reproduced by numerical
experiments on three zero-dimensional (0D) auto-ignition problems at varying scales
from 53 species with 325 reactions of methane to 2115 species with 8157 reactions of
n-hexadecane.

For the calculation of the remaining convective terms, FD schemes outperform
FV schemes from the aspect of high-order spatial accuracy such that many high-
order low-dissipation FD schemes employing characteristic decomposition are widely
used. A challenge for the computational efficiency of such schemes is the quadrati-
cally increasing dimensionality of the convective flux eigensystem as the number of
species increases. In the third part of this thesis, we present a remedy by splitting
the eigensystem into two parts. One is the gas mixture part, which is subjected to
the established characteristic decomposition schemes for single-fluid Euler equations.
The other part corresponds to the species partial mass equations, which can be solved
directly in the physical space as the decoupled sub-eigensystem for the species part
is composed of two diagonal identity matrices. This property relies on the fact that
species are advected with the same convective velocity. In this way, only the gas
mixture part requires a characteristic decomposition, resulting in a much higher ef-
ficiency for the convective-flux calculation. Besides, to cure the inconsistency due
to splitting, a consistent update of species mass fractions is proposed. Non-reactive

and reactive test cases demonstrate that the proposed scheme, without deteriorating



high-order accuracy, successes in reducing the computational cost.
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Chapter 1

Introduction

1.1 Multi-component flow system

Flows in internal combustion engines, air-breathing propulsion systems and even
rocket engines, as shown in Fig. 1.1, inevitably involve multiple components or
species, considering the injection, mixing and reacting processes in which oxidizers
like air or pure oxygen interact with fuels such as the considerably complex diesel
or gasoline, much simpler ethylene or methane, and the simplest hydrogen. Even
the simplest case of hydrogen/oxygen (Hp/O;) combustion would produce several
intermediate species such as OH, O, H and H,O, etc., leading to the number of
species Ny > 2. To accurately account for the above physical and chemical processes,
all the species produced and consumed dynamically need to be considered in com-
putational fluid dynamics (CFD) analyses of such flow scenarios, with appropriate

multi-component models.

1.2 Previous numerical methods

A wide range of numerical methods have been proposed to model multi-component
flow systems, especially aiming at the gaseous chemically reacting flows and vapor-
liquid two-phase flows. One consistent computational model is expressed utilizing
the mass fraction of each component or species, as long as the sum of all the mass
fractions equals unity such that their total mass conservation can be guaranteed. The
evolution of each component or species has a corresponding partial mass equation in
terms of the mass fraction. Physically, all the species are mixed up, constituting
the fluid mixture in a discrete local space, and advected at the same velocity. In
combination with the momentum equation of the fluid mixture as well as an energy
equation, the system of equations has a dimensionality of Ny + N;j + 1, where Ny
represents the spatial dimension number of the flow in consideration. Therefore, we
have the hyperbolic conservation laws of multi-species Euler equations with chemical

reaction source terms, neglecting the flow viscosity for simplicity.
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FIGURE 1.1: Schematics and examples of (a) internal combustion engines [1], (b) air-
breathing propulsion systems [2] and (c) (d) rocket engines [3].

1.2.1 Numerical methods for spatial discretization
Finite volume formulation

Finite volume (FV) formulation is popularly used to approximate the convective
fluxes at each cell face using both the left and right side states in a computational
domain of discrete finite-volume cells. Owing to the body-fitted feature and easiness
to implement for complex geometric configurations, the shock-capturing FV meth-
ods are usually very robust, together with a variety of upwind flux reconstruction
schemes and slope limiters [4, 5, 6, 7, 8, 9]. Relatively low computational cost is also
one big advantage of FV methods. The major disadvantage, however, lies in that
without special treatment of improving the integral precision by setting additional
Gauss points, the accuracy of FV methods is merely second order, resulting in the
poor capability of capturing discontinuities and other interesting small flow structures

unless very fine grids are employed.

Finite difference formulation

Unlike the FV formulation, finite difference (FD) methods are inherently exten-
sible to be of high-order accuracy, with multi-point stencil based high-order interpo-
lation schemes [10, 11, 12]. Before the costly multiple interpolation procedures, an
approximate decoupling step (quasi-linearizion) is usually required to transform the
coupled elements in the original vector space of conserved variables (or the physical
space) to their characteristic space so as to avoid unnecessary numerical oscillations
by direct interpolating coupled variables. The calculated flux vector in the charac-

teristic space after interpolation will then be projected back onto the physical space
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to form the desired physical flux at each mid-point of the grid. Several time oper-
ations of matrix-vector multiplication are involved, adding to the considerably high
computational costs of FD methods. However, in contrast with FV methods using
the same grid, the spatial resolution of FD methods upon discontinuities and other
interesting small flow structures is much higher, due to the high-order low-dissipation

shock-capturing nature.

1.2.2 Solvers for ordinary differential equations of chemical kinetics

Upon operator split from the spatial convection terms, the remaining source
terms of the multi-species reactive Euler equations lead to a system of ordinary dif-
ferential equations (ODEs) of chemical kinetics to solve. Temporal integrator for
such an ODE system can be generally categorized into two types: explicit solvers and
implicit solvers. Explicit solvers are usually Jacobian-free and thus relatively com-
putational efficient, such as CHEMEQ/CHEMEQ2 [13, 14], MTS/HMTS [15], and
ERENA [16], etc. However, they often encounter the severe challenge of numerical
stiffness due to the large difference in multiple timescales of chemical reactions and
the fact that the minimum characteristic time might be significantly smaller than the
timestep sizes in CFD analysis. Implicit solvers such as VODE [17], DASAC [18],
DASPK [19] and RADAUS5 [20], etc., are specifically developed to treat numerical
stiffness and therefore widely used, since they allow for the robust use of reasonably
large timesteps. However, Jacobian evaluation and factorization in implicit solvers
make them tend to be computationally very costly, compared with the explicit solvers,

especially when the number of species Ns involved in the kinetic mechanism increases.

1.3 Objectives

The fundamental objective of the present work is to address some issues of the
combined high computational costs of FD schemes and implicit ODE solvers for multi-
species chemically reacting flow simulation, without loss of high-order accuracy. In
particular, two recently developed methods are focused on improving the computa-
tional efficiency from two aspects: i) calculating the multi-species convective flux in
the high-order FD formulation, and ii) integrating the ODE system resulted from
detailed kinetic mechanisms with a new operator-splitting scheme, respectively.

Before the two methods are presented, the first part of work is towards the cure to
a well-known spurious numerical problem [21, 22, 23, 24, 25, 26, 27], i.e. the incorrect
propagation of the stiff detonation wave using modern shock-capturing schemes in
under-resolved conditions of space and time. It comes to one’s mind naturally that

the most efficient simulation is based on possibly coarse grids and large timesteps with
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tremendously reduced computational workloads, if acceptable accuracy of prediction

can be guaranteed. This work is detailed in Paper 1T,

e JH Wang, S Pan, XY Hu, NA Adams, A split random time-stepping method
for stiff and nonstiff detonation capturing, Combustion and Flame, 204, 397~
413, 2019,

which has been attached in Section B.1.
In Paper II, attached in Section B.2,

e JH Wang, S Pan, XY Hu, NA Adams, A species-clustered splitting scheme
for the integration of large-scale chemical kinetics using detailed mechanisms,
Combustion and Flame, 205, 41-54, 2019,

we propose a species-clustered integrator for chemical kinetics with large-scale de-
tailed mechanisms based on operator-splitting. Optimal clustering weighing both pre-
diction accuracy and computational efficiency is determined, considering the typical
detailed hydrocarbon/air combustion mechanisms at varying scales, from 53 species
with 325 reactions of methane to 2115 species with 8157 reactions of n-hexadecane.

Paper II1, see in Section B.3,

e« JH Wang, S Pan, XY Hu, NA Adams, Partial characteristic decomposition for
multi-species Euler equations, Computers and Fluids, 181, 364-382, 2019,

presents a partial characteristic decomposition based FD scheme for the convection
part of multi-species Euler equations. The computational efficiency of previous FD
methods is limited by the quadratically increasing dimensionality of the convective
flux eigensystem as the number of species increases, while for our proposed scheme
the CPU time of calculating the convective flux can be reduced to linearly depend on

the number of species Ns.

1.4 Outline

This thesis is structured as follows. In Chapter 2, the author outlines the con-
cerned multi-species Euler equations with chemical reaction source terms, and intro-
duces some existing numerical methods used for solving different parts of the equation
system in a fractional step manner in the following Chapter 3. The main work of this
thesis is still focused on improving the computational efficiency of corresponding parts
step by step, with minimized sacrifice of high accuracy. As detailed in Chapter 4, an
extensively studied spurious numerical phenomenon of stiff detonation capturing is
dealt with using a new split random time-stepping method [28], a species-clustered
integrator [29] for chemical kinetics with large-scale detailed mechanisms based on

operator-splitting is aimed at solving the ODE system efficiently and accurately, and a
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partial characteristic decomposition [30] for multi-species convective flux terms is de-
veloped to further reduce the CPU time of classical FD methods, with the presumed
high-order accuracy being preserved. Finally, in Chapter 5 the state of proposed

methods is concluded and potential applications in the future are discussed.






Chapter 2

Governing Equations

2.1 Multi-species reactive Euler equations

Consider the 3D multi-species (or multi-component) Euler equations with chem-

ical reaction source terms, i.e.
U, + F(U), + G(U), + H(U), = S(U), (2.1)
where

T
u= 0,pPU, pY, pw,pet, PY1,PY2, - - * zPystl> ’

T
F(U) = (pu, o1 + p, pou, prow, (pes + p)u, pyatt, oyt -, pyn, 114)
T
(Pvfpuv, pv* + p, pwv, (pe; + p)v, PY10, PY20, - - - /P}/erv) ’ (22)

T
H(U) = (pw, puww, pow, puw? + p, (pe: + p)ew, pyrv, o2, -+, oy, 1)

s(u) = (0,0,0,0,0,w1,w2,- . ,wNS,1)T

are vectors of the conserved variables, convective flux in the x, y or z direction and
source terms, respectively, with «; representing rate of change of the " species
concentration in the reactive gas mixture due to chemical kinetics consisting of Nj
species. When the flow is inert without activating chemical reactions, source terms
are replaced by a zero vector. The specific total energy including the specific internal
energy e is ¢; = e + 5 (u? + v* + w?).

To close the system, an equation of state (EoS) of the form

N; R
u
p=p) Vi T (2:3)
-1 Wi
is used for the gas mixture, with y; and W; denoting the mass fraction and molec-
ular weight of the i species, respectively, and R, being the universal gas constant

and p being the pressure. It is worthy of noting that the simple EoS can be also
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replaced by any thermodynamical model to account for other fluids of different mate-
rial properties, e.g. a vapor-liquid equilibrium (VLE) model [31, 32] which describes
the vapor-liquid two-phase flow in the thermodynamical and mechanical equilibrium
state in a diffuse-interface manner. We focus our attention on the gaseous reactive
flow with the simple EoS here and afterwards.

The above conservation laws of mass, momentums and energy with source terms

are usually solved by operator splitting. The first step is flow convection
Se: Wi+ FU)+G(U),+H(U), =0, (2.4)

assuming no chemical reactions and passive transport of all species.

The second step solves the system of ODEs of chemical kinetics

dyi 601' .

Sy: —=—, i=1,...,N;, 2.5

r dt ,0 s ( )

under adiabatic and constant-volume conditions with fixed total density p and con-
stant specific internal energy e.

The first-order accurate Lie-Trotter splitting scheme [33] or the second-order

Strang splitting [34] can be employed to approximate the solution from the discrete

time level n to n 4+ 1 with a timestep Af, i.e.
Ul — SﬁAt) o SgAt)un or Ul — Sg%) o sﬁAt) o SE%)U”, (2.6)

with symbol ’o’ to separate each operator and to indicate that an operator is applied
to the following arguments.

For the convection operator S., shock-capturing schemes are usually employed
based on either finite volume (FV) or finite difference (FD) formulation for spatial
discretization, in which high-order shock-capturing accuracy as well as high com-
putational efficiency are desired. Low-order FV schemes approximate the cell-face
flux function by upwind reconstruction using primitive or conserved variables, to-
gether with MUSCL interpolation schemes [35, 4] plus slope limiters and achieve
generally second-order accuracy. High-order shock-capturing schemes are realized
by characteristic-decomposition flux splitting (also referred as characteristic-wise flux
splitting) to assemble the half-point convective flux using high-order interpolation
schemes in FD methods.

For the reaction step S;, an ODE solver such as VODE [17], CHEMEQ?2 [14] and
MTS/HMTS [36] can be used with or without adaptive error control.



Chapter 3
Numerical Methodology

In this chapter, the multi-species reactive Euler equations with source terms are

managed with the state-of-the-art numerical methods in parts.

3.1 Convection operator — calculation of flux terms

Low-dissipation, high-order shock-capturing schemes designed for discretizing
convection terms in the reactive Euler equations are crucial for accurate CFD analy-
sis. The shock-capturing scheme should be capable of preserving sharp discontinuities
without introducing spurious oscillations. For this purpose, a variety of high-order
interpolation schemes can be used in the characteristic decomposition based FD meth-
ods, together with a flux-splitting scheme, to approximate the upwind convective flux.

In the characteristic-wise flux-splitting schemes, the Jacobian of convective flux
in Eq. (2.4) is considered such as

__OF

A= o5 =LAR. (3.1)

For a general formulation of the flux functions, F, G and H can be written as

oM
puM + pnq
poM + pny
pwM + pn3
FU) = | (oer +p)M |, (3.2)
py1M
py2M

pyN,—1M

with the unit normal vector n = {ny,n,n3} and the velocity M = nju + npv + nzw.
Thus, F is abbreviated for n = {1,0,0} and G is abbreviated for n = {0,1,0}. H
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corresponds to n = {0,0,1}. The eigensystem of left and right matrices is

IL=R1=
7 by+M/c+bs —bhu—ni/c —bv—ny/c —byw—nz/c by —b1z1 —b1zng 1
h 2 2 2 2 2 T
l~2 1-— bz — b3 blu blT) blw —bl b121 cee b12N5,1
A Mo —ny L S0 0 0
Iy B L”ns;w —n3 T % 0 0o .- 0
i5 - bz—MZ/C+b3 —bluzﬂh /c —b]’();ﬂz/C —blw;—n3/c 17271 —b1z1 . _blzst—l
Is —y 0 0 0 0o 1 0
IN,+4 —YN, -1 0 0 0 0 0 - 1
(3.3)
and
R= (71,72,73,74,75,76,' = ,7N5+4>
1 1 0 0 1 0 0
U —cm u —ny —n3 u+cny 0 0
v — CNy v ny 0 v4+cny, 0 0
w — cn3 w 0 ni w+cny 0 0
" |H-cM H—% ony —uny whny —ung H+cM z1 - zn-1 ’
VAt n 0 0 n 1 s 0
YN—1  YNi—1 0 0 yno-1 0 - 1
(3.4)
where ¢ represents the speed of sound and
p 1
H = 4=
et o +3Q
dp dp .
L= =, =12,---,N,—1,
# papy,- / g’ s
1 dp
b = ——, 3.5
by =1+b0Q—bH,
Ni—1
bs="b1 Y vz,

i=1

by defining Q = u? + v? 4+ w?. The pressure derivatives, 3—’5, % and g—z, are obtained

by fixing other variables in the transformed EoS

p=rp(p.epyL, ", PYN-1)-




3.1. Convection operator — calculation of flux terms 11

If n; = 0, which is the case for calculation of flux function G(U) or H(U), I3 and I4
in Eq. (3.3) are invalid and can be replaced by

* _  Mny— 1-n? —
= (Moow LH_pcmmogog oL o), )
2 :
ZZ _ (Mnﬁo,;w 7111112113 —113 1n2”3 o0 --- 0) ,
if ny # 0. Correspondingly, r3 and 74 in Eq. (3.4) should be replaced by
T
ry = <0 ny —my 0 unp—ong 0 --- 0) ,
) T (3.7)
ry = (0 0 —n3 ny wnp—onz 0 --- O) .
If np =0 and n3 # 0, I34 and r34 can be further replaced by
l;* _ (Mm—u 1-nf  —mny -ns 0 0 --- 0)
ns ns ns 1 ’ (3 8)
[ = (M=o —mny 1-n3 1, 00 --- 0
4 ns ns ns 2 ’
and
T
r3t = (O ng 0 —ny ung—wny 0 --- O) ,
T (3.9)
1= <O 0 n3 —np ong—wny 0 --- 0) i
Finally, eigenvalues in the diagonal characteristic matrix A in Eq. (3.1) are
M—c, M M,M,M+c¢c,M,---,M. (3.10)

Given the analytical expressions of left and right eigenvector as above, it is
important to note that both eigenvectors and eigenvalues are locally defined at half

points or cell faces such as F; 1 ik OF G; i, 14 Therefore, it is required to obtain proper
27)r ’

ij+3
averaged state between two adjacent s‘éatzes Ur and Ug at grid points or neighboring
cell centers. Following the Roe average [37, 38, 39] for ideal gas and its extension
to multi-component non-equilibrium reactive flows [40], the U-property accounting
for the jump conditions of two adjacent states can be satisfied by Roe-average the

following variables

5= JPIPR,

:,u - s f:u/v/le/e/yll"'/yNs—]‘

VoL /PR

Left to be satisfied is the pressure jump condition

Ap = <ap>Ap+ <3’Z)Ae+N§_:l < ap)A(pyi), (3.12)

N
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where A(+) = (-)r — (+)r. Note that definitions for the averaged pressure derivatives

are not unique, and Eq. (3.12) defines a hyperplane as

Ng—1
ax + By + Z vizi =1 (3.13)
i=1
with A (oy)
_ _ Qe = 8\pyi)
= Apcpl - Apllj’ ,)/l - AP 171/ (3 14)

_(9p _(9p _ (9P ,
v=(ap) 0 v=(3) 10 == (o)

where ¢, ¢, 17; are the scaling factors [40].
Given all partial derivatives of pressure at the left and right states, we can first
introduce Roe-averaged derivatives of pressure by imposing f = u(f) in Eq. (3.11),

ie.

(3;2> . (3;;7)1 (3.15)
>:H<3P’)’ i=1,---,N,—1.

Then starting from point S

- (@ T
(Xs, Vs, Z1ss " "+ 1 ZNy—1;) <<8p /P, /Y, S0yt /N, 3oUN /MN—1 ],

its projection P

—~——

ap
(xp,yp,zlp,...,st_lp) = << >/<P ( )/1,0 <8py >/771, (apyNsl>/77Ns—1>

onto the hyperplane defined by Eqgs. (3.13)(3.14) can be determined by

Xp = X5+ af),
Yp = ys + QY (3.16)
Zip:Zis+r)/iQ/ i:]~/"'/NS_1/

where

1—axs — Bys — ’)’zzls
w? 4 B2 + Z

State P on the plane naturally satisfies the pressure jump condition and might

Q=

(3.17)

give a suitable set of derivatives which will be further employed in calculating averaged

cell-face eigenvalues and eigenvectors in Egs. (3.3) (3.4) and (3.10), together with
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simple Roe-averaged values in Eq. (3.11). The consistent averaged speed of sound

should be a positive real number and can be obtained by

) ) Nzl 79
2_ (P P [ 7.( P 3.18
7= (3) 2 (E) ol 619
with P
ﬁZﬁ(H—é—u H;HU), (3.19)
as in [38].

We now have obtained the approximate eigensystem located at the cell face be-
tween two cell-centered adjacent states. Decomposition of the multi-species Euler
equations in the physical space can be done by projecting them onto the charac-
teristic space with the left matrix L, where high-order interpolation schemes, e.g.
WENO5 [41], can be used in combination with local Lax-Friedrich splitting for ex-
ample. Finally, physical flux vectors are obtained by inverse transform of the system
onto physical space with matrix R. E.g. for a cell face at {i + %, j, k}, stencils of six
points/states are needed next to the cell face, i.e. {i/,]',k} with i =i — 2,143,

such that we have

fi/ :LH_%FZ./,
qi/ = i‘i+%ui’/
1

fz:’t - 2 (fi/\Q)i’ ’

Fr v : (3.20)
i+3 :WENO5{fi/ g =i—2,--,i+3},

:L% :WENOE){fl;,i =i43,---,i—2},
- S - a
By =Ry (Fr+700)

and Fi +1 is the expected convective flux in the physical space. Note that each A is
the maximum eigenvalue in Eq. (3.10) over stencils, and left and right matrices with
tilde are defined in Egs. from (3.3) to (3.9).

Several matrix multiplications with vectors have to be performed in the above
process of calculating a cell-face flux such as I:l- +1 Fi, I:Z- 41 U, and RZ. 1 fi : In ad-
dition to the element-by-element interpolation by WENOS, operations upon matrix
products are computationally very expensive. As the number of species increases,
dimensionality of the eigensystem, N; + 4, increases quadratically, such that the com-

putational cost for these operations will be dramatically raised.
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3.2 Reaction operator — temporal integration of chemical

ODE system

For common nonequilibrium chemical kinetics, chemical production rates in Eq.

(2.5) are derived from a reaction mechanism that consists of Ns species and N, reac-

tions
i &,
Zvjixi — ZvjiXi/ j=1...,N;, (3.21)
i=1 i=1

where 1/]]-; and U]l?i are the stoichiometric coefficients of species i with description X;

appearing as a reactant and as a product in reaction j. The total production rate of
species i in Egs. (2.2) and (2.5) is the sum of the production rate from each single

elementary reaction as

N il N, v N T, vh
Wi =W Y (% —oh) [T IEE ] =R 2L, 3.22
]'Z{(] i) JE[WI] ’E[Wz] (3.22)

with k{ and k? denoting the forward and backward reaction rates of each chemical
reaction, and p; = y;p.
The temperature-dependent reaction rates are practically calculated using the

Arrhenius law
ky = ATPexp(—Tigu/T), (3.23)

where the subscript 7 is f for forward reactions or b for backward reactions and T
is the temperature. Parameters A, B and Ty, for the forward rate of each reaction
are often given in the mechanism. Backward rates often need to be calculated from
the equilibrium constant K,y and ks by assuming the corresponding reaction to be in
chemical equilibrium, i.e. Ke; = kf/kp [42]. The third-body effect is accounted for
by the summation of third-body collision efficiencies times the corresponding molar
densities of species. Pressure-dependent reaction rates are also possible, referring to
[43].

For the reaction step S,, any ODE solver, explicit or implicit, can be adopted
to integrate the state vector {y1,...,yn,} from time t, to t,,1, so that the complete
thermodynamical state is determined. We need to update the latest temperature T

implicitly using the thermodynamic relation

h(yi,...,yn, T) —e= p(yl'”'p'yNs’T), (3.24)

where the mixture enthalpy h is iteratively calculated using the empirical polynomial
approximations [44] and pressure p can be substituted by the EoS of ideal gas mixtures

in Eq. 2.3, with the internal energy e fixed to be constant during the timestep interval.
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3.2.1 A species-clustered splitting scheme with the implicit solver
VODE

To overcome severe numerical stiffness due to the large difference in multiple
timescales of chemical reactions, implicit solvers such as VODE are usually preferred,

due to its allowing for the robust use of reasonably large timesteps.

Operator splitting by species

The solution vector ® = {y1,---,yn.}’ at time level n is integrated through
the above ODE system for one timestep of At with the implicit solver VODE [17] to
obtain

D" = Ry (D"). (3.25)

The operator R represents the time integration by VODE. Upon operator splitting

by species, we obtain
D" = Rpy(PF) 0 Ras(®4) - - - 0 R (DY), (3.26)

corresponding to the Lie-Trotter splitting scheme [33], where ®; denotes the mass
fractions of the species clustered in subset S; out of N subsets in total. Clustering of

species in each subset obeys

D = {®l/"' /q)N}T/

(3.27)
S=U Sk SiNS;=Qifi #].

Each subset of species cluster should have no overlap with others, and an almost equal
number of species in each subset is assumed varying by at most one species, which
requests a balanced partition/clustering algorithm [45]. The extension to higher-
order splitting of Strang [34] is straightforward but inevitably more time consuming,.
Recalling that the scaling of computational cost to the number of species or the size

of the kinetic mechanism involved using an implicit solver such as VODE is [46]
tepu ~ O (NZ) to O (N?), (3.28)
the total cost after species splitting can be reduced to
/ N? N7

assuming equal computational consumption for each subsystem after species-splitting.

A large mechanism consisting of ten thousand species, e.g., split the system into ten
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clusters with the Lie-Trotter scheme, results in a computational speedup of ten to a
hundred times, without the need for additional sparse matrix techniques [47, 48, 49].

The essence of operator splitting by species for chemical kinetics lies in clustering
species into subsets, each corresponding to a sub-ODE-system to be integrated by
VODE or other implicit solvers. The merits of operator splitting by species are
improved speedup of computational efficiency without changing the implicit solver,

fast convergence and numerical stability [50].

Graph-based species clustering

A chemical reaction system with multiple species and reactions can be translated
to a bi-partite graph [51], in which two sets of nodes represent the chemical species
and reactions. Herein, we simply consider a finite graph consisting of the chemical
species only and the non-linear coupling between pairs of species through reactions
is abstracted as undirected edges linking every two nodes of species. For the sake
of illustration, we consider Ny = 6 six species, {A,B,C,D, E,F}, and six first-order

one-way reactions, i.e.
AS e BB chp,
ke ke ke (3.30)
D—=C E—=D, F=>D,
where k1, - -+ , kg are constant reaction rates. The exact solution for this problem can
be easily obtained using symbolic computations of MATLAB® [52].

First we construct the graph of species, Fig. 3.1(a). We may have two different
clusterings I and IT with two subsets (N = 2). Clustering I in Fig. 3.1(b) is obtained
by cutting off the link between species C and D. The strong couplings within clusters
{A,B,C} and {D,E,F} are preserved. Upon clustering loosely coupled {A,E,F}
together and leave the rest to compose the other cluster, we obtain Clustering II. The
distance in the graph between (A,E) or (A, F) is remote as they are separated by
two other species. The difference of the two clusterings also reflects in the rearranged
Jacobian matrices by the order of splitting and clustering as shown in Figs. 3.1(c)
and (d). We can see that for Clustering I, when solving the cluster of {A, B, C} first,
only the effect of species D is considered as constant since kg is not within the sub-
Jacobian matrix. When solving the other cluster {D, E, F} subsequently, species A,
B and C have no effect due to the corresponding zero entries. In total, the splitting
error is attributed to only one element in the Jacobian, i.e. the kg block (red color)
in Fig. 3.1(c). For Clustering II, the solution of the first cluster {A, E, F} introduces
no splitting error, whereas errors will occur when solving the cluster {B,C, D}, due
to first-order approximation of k1y4 for the production of species C and ksyr + ksyr

for the production of species D.
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Clustering I:
{A,B,C}, {D,E,F}

Clustering II:

{AE,F}, {B,C,D} Clustering I:
A .

{Al B’C}l {Dl EIF}

(b)

.
.

.
.

g
g
........
-------------

(d)

Clustering Il:
{A,E,F}, {B,C,D}

FIGURE 3.1: Reaction system example for species clustering. (a) Each node represents
one species in {A,B,C,D,E,F}, and the edge, e.g. ¢(A,C), indicates that linked two
species participate in at least one reaction as reactant or product; (b) two equal-sized
clusterings are easily obtained as ({A,B,C},{D,E, F}) and ({A,E F},{B,C,D}) by
cutting off corresponding edges; (c) rearranged Jacobian matrix in the order of Clustering
I; (d) rearranged Jacobian matrix in the order of Clustering II.
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dt/0.02

FIiGURE 3.2: Numerical integration results with two clusterings by Lie-Trotter and
Strang splittings, compared with the exact solution. Reaction rates are ki = 1,kp
10,k3 = 100,ks = 1,ks = 10,ks = 20, and the initial condition is y4 = 0.6,y
0.2, yr = 0.2 with zero mass fractions of B,C, D. The base timestep size is At = 0.02.
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Numerical tests, in Fig. 3.2, show that Clustering I agrees quite well with the
exact solution, while Clustering IT underestimates both the mass fractions of species C
and D. This observation is in agreement with the previous discussion about operator
splitting.

Given a prescribed number of clusters N, there are many possible clustering
combinations. One simple strategy is to cluster the species according to species
indices appearing in the mechanism. Another very promising strategy is to cluster all
‘close’ nodes in the graph into a subset, corresponding to having species with strong
interactions in the same cluster. In this paper, we introduce diffusion maps [53, 54,
55] as a non-linear technique for dimensionality reduction, data set parameterization
and clustering, to serve the purpose.

Let G = (Q),W) be a finite graph of n nodes, where the weight matrix W =
{w(x,y)}xyeq is symmetric and component-wise positive [55]. The definition of
weight matrix needs to reflect the degree of affinity of nodes x and y. Diffusion maps
start with a user-defined weight matrix and utilize the idea of Markov random walk to
describe the connectivity of nodes through a diffusion process. For technical details
of diffusion maps, we refer to [53, 54, 55].

For the above reaction system, we define, with the help of species graph in Fig.

3.1(a), the weight matrix W by

max(k;), if x and y both participate in reaction j,

€, otherwise,
where € takes a small positive value to avoid zero entries, e.g. € = 10712, The
diagonal elements in the weight matrix, w(x, x), can be defined as
w(x,x) = max(w(x,y)y+x)- (3.32)

In combination with the reaction rates given in Fig. 3.2, the weight matrix obtained
by the above definition is shown in Fig. 3.3. Using diffusion maps to analyze the graph
based on our defined weight matrix, we can project the set of species into a diffusion
space with at most n dimensions, where the pairwise distance reveals the connectivity
between two species. In Fig. 3.3, it is shown that the species are projected onto a
X1x2 plane using the first two dimensions of the diffusion space. We can see that
species A, B and C almost collapse into one point and locations of species D, E and F
in the x; direction (which is also the first and dominant dimension) are also very close
to each other. Their coordinates in the second dimension separate the three species.
However, the centroids of subset {A, B,C} and subset {D,E, F} are far from each
other. Accordingly, a straightforward clustering using the k-means algorithm (setting
k = N = 2) can be easily obtained, i.e. ({A,B,C},{D,E, F}). This clustering from
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A+
| B O
_ A B C D E F - ! C %
b o cluster2
k1 0 k1 0 0 0 A N E =m
F 2
0 K Kk 0 0 0 B ki=1
k2=10 «~ o1
< oF &
kI k3 k3 k4 0 0 ¢ k3=100 0.05 -
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0 0 ki k6 ki ko D (510 2 Clustert 0 e X
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6 . . . .
-100 -50 0 50 100 150 200
X1

FIGURE 3.3: Weight matrix of diffusion maps for the reaction system (left); embedding
and clustering of species in 2D diffusion space (right)

diffusion maps is the same as the previous Clustering I, indicating that it is the optimal
case of two clusters for the reaction system above with minimum splitting errors. In
Fig. 3.2, we can also observe that exact mass conservation is violated by operator
splitting with first-order convergence rate using the Lie-Trotter scheme. However, the
optimal Clustering I has a significantly lower mass conservation error than Clustering
II. An additional treatment for the correction of mass-conservation errors as in [16]
can be applied. In this illustrative example, it should be noted that the underlying
fact of kg = 1 being quite small benefits Clustering I through the weight matrix W in
Eq. (3.31). If k4 becomes larger, both the previous manual clustering and the current
diffusion maps based clustering would be different, with the coupling between species
C and D to be preserved and both being clustered into the same subset.

For much more complicated realistic chemical kinetics especially involving fuel
combustion mechanisms, reaction rates are not always constant but depend on tem-
perature or even pressure of the mixture. This normally can be expressed by the
finite-rate Arrhenius model [14, 56] and thus the weight matrix as above should also
take into account the varying reaction rates with temperature. Rather than sampling
at a single temperature, e.g. the initial temperature of an auto-ignition problem of
combustible gas mixtures, we take many temperature samples in order to construct
a representative weight matrix. The derived clustering by diffusion maps based on
such a weight matrix can be stored and used for other conditions as long as the same
mechanism is involved. In such way, the determination of the weight matrix as well
as the clustering procedure can be treated as a preprocessing step instead of costly
on-the-fly clustering. Since multiple scales of the absolute reaction rates exist, usually
spanning several orders of magnitude, logarithmic scaling of the reaction rates can be
performed to avoid underestimating the slow reactions. Also, normalization in each

row of the matrix relative to the diagonal species is carried out as

w(x,y) = (3.33)
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and

w(x,y) = max(w(x,y),w(y, x)) (3.34)

for all species pairs is further checked to guarantee the symmetry of weight matrix in

the diffusion maps.

3.2.2 A split reaction-by-reaction explicit solver

In addition to the above implicit scheme, we also introduce and develop an ex-
plicit ODE solver by utilizing operator splitting upon the nonequilibrium chemical
kinetics so that a multi-reaction system can be decoupled into a series of single reac-
tion steps.

By operator splitting [57, 50|, we can decouple the multi-reaction system, e.g.
by Lie-Trotter splitting, as

S,: RN — RO G RBD R;At) o R

1st N, N,—1 1 (3.35)

where the operator R; corresponds to a single reaction j and is independent of all
other reactions. The reaction-by-reaction idea resembles a meso-scale model of mi-
croscopic kinetics where one molecule/atom can only experience one reaction at a time
instance. This is also the case with stochastic simulation of chemical kinetics [58]. At
macroscopic scale, reactions involving large numbers of species molecules/atoms are
considered as simultaneously occurring processes. In [57] the second-order accurate
Strang splitting is adopted, starting with the fastest reaction and ending with the
slowest for half a timestep and then backwards for another half timestep. In our
approach we simply take the traversal order not according to reaction rates but to

the reaction-mechanism index sequence

At At At At At At
S: R =RFoRP o oRF o REoRE) 0. 0R(P

K A (3.36)
_ R(%) ° R(%)
T Vst 1st 7/
where Ry is the reverse operator of Rqs. Accordingly, for each R;, we have
Ns N L
s s d . w]
. b Yi _ P
Rj: YoviXie= Y viXi, —i="F i=1..N,
i=1 i=1 P
N ) ijl N, ) o (3.37)
00 — Wi — D) |k PLL7 b rr
wij WZ(V]l 1/jz') k]' 111 [Wl:| k] 111 |:Wl:|
We now rewrite the ODE in Eq. (3.37) in the following form [14]
dv: . . ’
% =q —ply, i=1,...,N, (3.38)
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where q{: > 0 is the production rate and PZ]/:‘ > 0 is the loss rate for the i*" species
through reaction j.

Following the operator splitting of reactions, we continue to split each reaction j
into a forward reaction and a backward reaction (for an irreversible reaction, it can
be interpreted as a reversible reaction with zero backward reaction rate)

(At) _ p(AY) (At)
Rj = leb o R].,f (3.39)
such that the species involved will either gain mass or lose mass through the one-way

forward /backward reaction from Eq. (3.38), i.e.
mass gain : qg >0, pgyi = 0 or mass loss : q{ =0, ngi >0, (3.40)
with the simplified

. W N p V}'i .
qz’f = —ZV;’Z- k{H [l] , p;’fyi =0 for product species,
P =1 LWi

(3.41)
L g W L[]

b _ JoS, T Ll i

g7 =0,p"y; = o Vii k]. E [Wl] for reactant species
for the forward reaction of Eq. (3.37). The backward reaction can be determined
accordingly upon exchanging its reactants and products.

Since each elementary reaction is decoupled from the others and each reaction

again is split into two opposite unidirectional reactions, finally only a single reaction
equation of the type

aA+bB+ - — xX+yY +--- (3.42)

is considered in each operation. Mass conservation and positivity of mass fractions
can be properly treated.

For the simple cases of Eq. (3.42), one may find analytical solutions. However,
for the general form of Eq. (3.42) whose analytical solution is not explicitly known
or difficult to derive, a more convenient alternative is to use quasi-steady-state (QSS)
methods to obtain the approximate exact solution. QSS methods are based on the

exact solution of Eq. (3.38) for constant p{: and q{ [59, 60], i.e.

, j .
yitt = y?e*pfm + q—l](l - e”’gAt), for all 1/]17i - 1/}; # 0. (3.43)
pi
As generally p{: and q{: depend on {y1,...,yn,} in Eq. (3.40) or (3.41), Eq. (3.43)
provides a linear approximation. For the QSS-based SPRANTS method, the stable

timestep size is not limited to the characteristic time scales of the chemical species
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and thus a larger timestep implying less computational efforts is possible [57].

Treatment for mass conservation

Employing QSS in Eq. (3.43) for all the species participating in reaction j (with

1/ —1/ - #0),
Zy”“ )y ( nePI y 11%(1 — e—PfAf)> (3.44)

i Pi

may not necessarily be unity so that mass may be not exactly conserved. To cure this
problem, one may only advance y} to y”“ of a reactant k by Eq. (3.43) and update
all other {y;—1,... n,izk}" " by mass conservation of a single reaction equation in Eq.
(3.37). This merit of knowing the exact net gain or loss of mass of other species
originates from the fact that each reaction in Eq. (3.37) is decoupled from others.

Therefore, for the reactant k, combining Eqs. (3.43) and (3.41) we have
vt = ype (3.45)

and for the other species i # k, including other reactants and all the products in

reaction j, the change of mass fraction Ay; = yl”'H

v} should obey

Ayi /Wi Ayr/ Wi

3.46)
b_ o f o (
Vi = Vi Vik ™ Vi
giving the update
b f W,
i
A Y e s W, A (347)
v]k — 1/ k

It is easy to see that ZINZ‘H Ay; = 0, which is equivalent to Zf\’:“l yi = 1 for mass

conservation.

Positivity-preserving treatment

Without loss of generality, we consider the forward reaction j and assume that

reactant species k has Vk 0 in Eq. (3.45), as 1/]].; > 0 is prescribed for reactants.
f

Similarly assuming that another reactant species i also has Vi
combine Eqgs. (3.45) and (3.47) to obtain

>Oandv}’i:0,we

o f
n w i Wio Vi Wi np—
yitt =yl - *]fkak + f W, Vke Pt (3.48)

]k
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Recalling Eq. (3.41) for reactants i and k, we have

j )
pivi _ Ui Wi (3.49)
ploe vl W
Upon rearranging Eq. (3.49) and substitution into Eq. (3.48) we obtain
W' .
vt =y St %W’yze"’i“. (3:50)
L Vig Tk

. . o . e . n+1 . n+1
With the aid of Eq (3.50), it is readily seen that positivity of y;""", i.e. ¥ >0,
is achieved when p;{ > pé since the third term is always non-negative. Therefore, in
order to preserve the positivity of species mass fractions, reactant species k using the

QSS approximation should satisfy
p{{ = max{p{:} for all the reactant species in reaction j. (3.51)

Regarding the positivity for the choosen reactant k, according to Eq. (3.45), it is
inherently satisfied through positivity of the exponential function. Eq. (3.45) implies
that 0 < y”+1 < 1 due to the negative exponent such that mass fractions of all species

through reaction j are bounded within [0,1] as a result of mass conservation.

3.3 Time discretization

To improve the overall accuracy in time, the strong stability-preserving (SSP)
Runge-Kutta schemes [61] are usually employed. Considering the 3rd-order SSP
Runge-Kutta scheme, the generalized ODE % = L(¢) is updated from #* to t"*!
by

4371-&-1 — ¢n+AtL(4)n),

- 3 1. 1 -

Pn+1 1 Pn 1PnJrl 1“L(Pn+1)r
1 2 _ 2 -

4)n+1 gq)n g(PnJrl g A tL(¢n+1).

3.4 Boundary conditions

Boundary conditions (such as inflow/outflow, periodic, symmetric, etc.) are
easily imposed using ghost cells outside the domain immediately after the primitive

and conserved variables at corresponding internal cells are updated.
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Chapter 4

Summaries of publications

In this chapter, the relevant publications of this thesis are briefly summarized.

4.1 A split random time-stepping method for stiffand

nonstiff detonation capturing

One of the main challenges for numerical computation of chemically reacting
flows are widely varying time scales of chemical kinetics, which may be orders of
magnitude faster than the fluid flow time scale [21, 22, 23]. Such cases exhibit nu-
merical stiffness due to the source terms representing chemical reactions [24]. When
the chemical scales are not resolved numerically in time and space, a spurious solution
may occur exhibiting incorrect propagation of discontinuities and nonphysical states.
Here a new operator splitting method for not only stiff but also nonstiff detonation

capturing in a unified manner in Paper I [28] is summarized.

4.1.1 Summary of the publication

We develop a split random time-stepping method for chemically reacting flows
with general nonequilibrium chemistry in a unified manner, regardless of stiff or non-
stiff source terms and under- or well-resolved conditions in space and time. Unlike
Bao & Jin’s random projection method, the activation and deactivation of chemical
reactions in the reaction step is not projected onto two prescribed equilibrium states,
but onto two time-dependent states corresponding to advancing the reaction by one
timestep forward and interrupting the reaction, respectively. The criterion to acti-
vate a reaction follows from comparison of the local computed temperature with a
randomized temperature depending on the states of the forward step and its adjoint.
To randomize each reaction process, the multi-reaction system is split reaction by
reaction [57, 50]. In this way, the multi-reaction system of the nonequilibrium chem-
ical kinetics can be decoupled into a series of single reaction steps. Similarly, each
reaction can be further split into a forward reaction and a backward reaction (for an

irreversible reaction, it can be interpreted as a reversible reaction with zero backward
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reaction rate). By adding a drift term into the random temperature sampling, the
proposed method recovers the solution of a deterministic fractional step method in

nonstiff cases with increasing resolution.

4.1.2 Individual contributions of the candidate

My contribution to this work was the development of the method and the cor-
responding computer code for its implementation. I have performed simulations,

analyzed the results, and written the manuscript for publication.

4.2 A species-clustered splitting scheme for the integra-
tion of large-scale chemical kinetics using detailed

mechanisms

Gasoline, diesel and jet fuels, particularly those derived from petroleum sources,
are composed of hundreds of components [75]. As the number of hydrocarbon species
grows, so does the dimensionality of kinetic mechanism to model hydrocarbon oxi-
dation. For example, the detailed mechanism for methyl decanoate, a biomass fuel
surrogate, consists of 3036 species and 8555 reactions [76, 77]. A species-clustered
integrator for chemical kinetics with large detailed mechanisms based on operator-
splitting, presented in Paper II, is discussed in this section, with a brief review on

related works in the literature that inspired our ideas.

4.2.1 Summary of the publication

The quadric/cubic scaling of CPU time to mechanism size using implicit ODE
solvers implies that the computational cost of solving a sequence of smaller sub-
systems ought to be much less than that of solving the entire system in one step.
Therefore, unlike the above use of operator splitting in decoupling two or more phys-
ical processes, we start with splitting the large-scale chemical kinetics in terms of the
involved species. Once the participating species of the large mechanism have been
clustered into subsets of a smaller and equal size, an implicit solver can be applied to
each group with significantly reduced matrix dimension. To minimize the splitting
error, diffusion maps [54, 55, 53] are utilized to analyze the pairwise interaction re-
lations of species by constructing a weight or similarity matrix of chemical kinetics,
such that strongly interacting and mutually dependent species can be clustered into
the same group. To partition the species into equal clusters, a balanced k-means

algorithm [45] is employed.
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4.2.2 Individual contributions of the candidate

My contribution to this work was the development of the method and the cor-
responding computer code for its implementation. I have performed simulations,

analyzed the results, and written the manuscript for the publication.

4.3 Partial characteristic decomposition for multi-species

Euler equations

With high-order spatial accuracy, characteristic decomposition based FD schemes
are widely used for simulating compressible gas flows with multiple species. However,
a challenge for the computational efficiency of such schemes is the quadratically in-
creasing dimensionality of the convective flux eigensystem as the number of species
increases. The numerical scheme which overcomes this challenge in Paper I1I is briefly

summarized in this section, along with relevant literature review.

4.3.1 Summary of the publication

In our study of multi-species flows, we propose to reduce dimensionality of the
eigensystem. Feasibility is based on the fact that the eigenmatrices composed of left
and right eigenvectors, respectively, are sparse and non-zero entries in both matrices
are mainly distributed along the diagonal. Moreover, the diagonal elements in the
right-bottom part of both matrices, which accounts for the species mass convection,
are unity. These conveniences can be ascribed to the fact that in the homogeneous
multi-species gas mixture, all species are passively transported at a joint mixture
velocity, independent of each other.

We take advantages of the structure of the eigenmatrices and propose a partial
characteristic decomposition scheme for multi-species Euler equations. We split the
eigensystem into two parts along the diagonal of eigenmatrix: one is the gas mixture
part and the other part accounts for all the species. Correspondingly, the conserved
vector of the total mixture mass, momenta and energy as well as species partial densi-
ties is divided into a gas mixture part and the remaining species partial density part.
All the species follow a series of independent advection equations in a conservative
form. Compared with classical characteristic decomposition schemes, the proposed
split scheme utilizes characteristic decomposition for single-fluid Euler equations [37,
11] to handle the first gas mixture part. It allows to avoid the characteristic decompo-
sition of the species part. Therefore, computational effort can be reduced significantly
as no species transformation from physical space to characteristic space and back is
needed. To cope with the inconsistency issue after decoupling the partial densities of

species from the mixture total density, a species mass fraction correction is proposed.
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4.3.2 Individual contributions of the candidate

My contribution to this work was the development of the method and the cor-
responding computer code for its implementation. I have performed simulations,

analyzed the results, and written the manuscript for the publication.
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Discussion and outlooks

In this thesis, a series of numerical methods have been proposed to improve
the computational efficiency of simulating compressible, chemically reacting flows
with multiple species and nonequilibrium kinetics. Targeted at different parts of the

reactive multi-species Euler equations, we have the following:

o A new operator splitting method is proposed for capturing stiff and nonstiff

detonation waves, balancing numerical accuracy and computational efficiency.

e For the computationally expensive temporal integration of ordinary differen-
tial equation (ODE) system of chemical kinetics with detailed mechanisms, a
species-clustered operator-splitting scheme is developed by using the idea of

optimal partitioning.

e The remaining flow convective terms are considered by using a partial character-
istic decomposition scheme to overcome the numerical challenge of quadratically
increasing dimensionality of the convective flux eigensystem as the number of

species grows in the classical high-order finite difference (FD) framework.

5.1 Discussion

Firstly, a new operator splitting method for simulating chemically reacting flows,
especially for capturing stiff detonation waves in under-resolved conditions, has been
developed. Two procedures based on operator splitting are included: for the con-
vection step, any shock-capturing scheme can be used; for the reaction step, the
multi-species multi-reaction ODE system in the source terms is further split in a
reaction-by-reaction manner. Each reaction either proceeds a timestep forward or is
interrupted according to a local random temperature rather than being a determinis-
tic process with growing error accumulation. A wide range of numerical experiments
including not only simple model kinetics but also realistic nonequilibrium chemistry
such as the temperature-dependent finite-rate hydrogen-air combustion are consid-

ered in 1D and 2D flows, demonstrating the following properties:



30 Chapter 5. Discussion and outlooks

o Mass conservation and positivity of species concentration can be guaranteed by
the reaction-split ODE solver, which is almost unconditionally stable due to its

using either analytical or approximate exact solutions.

e The proposed SPRANTS method can effectively predict the correct propagation
of discontinuities as well as the overall flowfield information in under-resolved
conditions, for both model kinetics and realistic finite-rate nonequilibrium ki-

netics.

e Compared with the deterministic method using CHEMEQ?2, the present SPRANTS
method exhibits better computational efficiency as it can correctly capture the
detonation wave with a larger timestep on coarse grids for nonequilibrium re-

active flows.

¢ By adding a drift term into the random temperature sampling, SPRANTS can
recover the deterministic solution as the resolution improves with decreasing

stiffness.

e The dimension-independent algorithm for the source terms makes further 3D

extension of the proposed method straightforward.

Secondly, for large-scale chemical kinetics involving many species and reactions,
computational efforts needed for time integration usually exceeds linear scaling with
the dimension of the kinetic mechanism, especially when implicit ODE solvers are
used. To achieve a higher computational efficiency, we have proposed operator split-
ting to integrate the large system in separate yet consecutive subsystems of the same
and smaller dimension. Each subsystem includes a cluster of species decoupled from
the other species of the full mechanism and is solved separately, e.g. implicitly by
VODE. In order to reduce the inevitable splitting error, diffusion maps are applied
to analyze the species graph and to cluster strongly coupled species into the same
subsystem, by defining an appropriate weight matrix for chemical kinetics. Three
hydrocarbon fuel/air ignition problems with an increasing dimension of the mech-
anism, up to 2115 species and 8157 reactions, are taken into consideration under
varying initial conditions. Computational efficiency and accuracy can be improved
by choosing a proper number of clusters to split the large system. For the n-heptane
mechanism, partition by 4 clusters of species leads to about 8 times speedup compared
to the non-split VODE solver and 10 ~ 20 times speedup versus the explicit solver
CHEMEQ?2. For the n-hexadecane mechanism, partition by 8 clusters of species re-
sults in a speedup factor of around 40. Clustering by diffusion maps based on a given
weight matrix outperforms the simple clustering according to species’ index in the

mechanism, in terms of predicting the correct ignition delay time and post-ignition
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equilibrium state. It implies that an optimal clustering for a certain mechanism is
preferable not only for computational acceleration but also for higher accuracy.
Finally, we have presented a partial characteristic decomposition scheme for the
solution of multi-species Euler equations with high-order finite difference schemes.
Since the eigensystem of the multi-species convective flux Jacobian is sparse and non-
zero entries in its matrices are mainly distributed along the diagonal, it is feasible to
split the eigensystem into two parts: one is the gas mixture part, which is subject
to traditional characteristic decomposition schemes for single-fluid Euler equations,
and the other part corresponds to a series of species partial mass equations. Since
the species part has a sub-eigensystem of which the left and right sub-eigenmatrices
are diagonal identity matrices, transforming the species variables from physical space
onto characteristic space and back is no longer necessary, so that massive operations
on matrix multiplication that is computationally very expensive can be avoided. With
extensive numerical examples, the proposed scheme manages to significantly reduce
the computational cost for calculating the multi-species convective flux in the follow-

ing two aspects:

e Computational cost of the full characteristic decomposition schemes depends

super-linearly (quadratically even cubically) on the number of species involved.

e Similarly with the 2nd-order AUSM plus MUSCL scheme in the finite volume
formulation, the linear scaling of the computational cost with different numbers

of species is realized by the proposed decoupled scheme.

Despite the splitting error, since each decoupled part is still discretized by high-
order schemes, the proposed scheme is verified to preserve the high-order accuracy
of the underlying discretization scheme. The inconsistency issue in the update of
species mass fractions has been resolved by summing up all the newly computed
partial densities to reproduce a consistent nominal total density to be the base of
renormalization. In contrast, using the straightforward update of mass fractions as
the fully coupled scheme leads to spurious oscillations around discontinuities with

large species gradients.

5.2 Outlooks

The main part of this thesis focuses on developing efficient numerical methods for
the computation of multi-species reactive Euler equations with source terms, which

are directly related with the compressible chemically reacting flows.

e Realistic flow simulation in gasdynamics. Diffusion process or viscosity can

be straightforwardly added to the present system, discretized with classical
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central-difference schemes. Given the complete system of Navier-Stokes equa-
tion, realistic gasdynamics with /without chemical reactions and multiple species
can be solved in a consistent manner. Applications like reentry problems with
boundary layers and air dissociation in a high-temperature condition, in addi-
tion to many internal flows with fuel/oxidizer combustion as in air-breathing

propulsion systems [91, 92], can be considered.

Operator splitting for large-scale complex nonlinear processes. It is readily to
see that the core idea of operator splitting goes through my entire work of this
thesis. One great advantage of the idea of operator splitting lies in that it
can overcome the numerical difficulties of conventional methods encountered
in large-scale systems such as numerical instability, negative solutions, and
convergence issue [50]. It thus implies many potential applications involving
large-scale dynamic processes encountered in physics, chemistry and biology.
Noticeably, the two ODE solvers utilizing this idea in Paper I & II might be
used for general ODE integrations including but not limited to nonequilibrium

chemistry in combustion, reaction-diffusion in biological systems [93, 94], etc.

Vapor-liquid two-phase flows. As previously mentioned, the current compu-
tational model with multiple species can be easily translated into a multi-
component two-phase model, if corresponding thermodynamical model is cou-
pled instead of the current EoS of ideal gas mixtures. The vapor-liquid equilib-
rium (VLE) model [31, 32] can serve this purpose. As a result, the fuel injection
process as well as its cavitation, atomization, evaporation and combustion in
either liquid or gas state can be modeled and simulated in a unified frame-
work. However, there still exists a fundamental issue with the computational
efficiency and numerical stability of solving local VLE problems over a wide
range of states of pressure, temperature and component compositions [95, 96,
97].
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In this paper, a new operator splitting method is proposed for capturing stiff and nonstiff detonation
waves. In stiff cases, an incorrect propagation of discontinuities might be observed for general shock-
capturing methods due to under-resolution in space and time. Previous random projection methods have
been applied successfully for stiff detonation capturing at under-resolved conditions. Not relying on ran-
dom projection of the intermediate state onto two presumed equilibrium states (completely burnt or
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splitting. The local temperature is compared with a random temperature within a temperature interval
to control the random reaction. Random activation or deactivation in the reaction step serves to reduce
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fectiveness and robustness of the method. For nonstiff problems, the proposed random method recovers
the accuracy of general operator splitting methods by adding a drift term.
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1. Introduction

One of the main challenges for numerical computation of chem-
ically reacting flows are widely varying time scales of chemical
kinetics, which may be orders of magnitude faster than the fluid
flow time scale [1-3]. Such cases exhibit numerical stiffness due
to the source terms representing chemical reactions [4]. When the
chemical scales are not resolved numerically in time and space,
a spurious solution may occur exhibiting incorrect propagation of
discontinuities and nonphysical states.

This problem is well-known and has been an active area of
research during the past three decades. It was first observed by
Colella et al. [5] and by analysis of a scalar problem. LeVeque
and Yee [6] found that the propagation error is mainly due to
numerical dissipation contained in the scheme, which smears
the discontinuity front and activates the source term in a non-
physical manner. To overcome this difficulty, one may reduce
numerical dissipation [3,7,8] or use a sufficiently fine mesh.
Front-tracking approaches [9-11] or local grid/timestep refinement
[12,13] may obtain the correct propagation of the reactive front.
However, generally full resolution of all fine scales cannot always
be afforded. Since numerical dissipation is practically inevitable,

* Corresponding authors.
E-mail addresses: jianhang.wang@tum.de (J.-H. Wang), shucheng.pan@tum.de (S.
Pan), xiangyu.hu@tum.de (X.Y. Hu), nikolaus.adams@tum.de (N.A. Adams).

https://doi.org/10.1016/j.combustflame.2019.03.034

another approach focuses on establishing corrected tempera-
tures from the artificially diffused solution [14-16]. Tosatto and
Vigevano [17] proposed a threshold method based on a vari-
able reconstruction within bounds determined from the local
cell neighbors. Difficulties with such methods are encountered
in the extension to either spatially high-dimensional or multi-
species/multi-reaction kinetics based reacting flows. Wang et al.
[18,19] proposed a high-order finite-difference method utilizing
the Harten ENO subcell resolution method for stiff source terms.
In [4], many different methods with or without operator split-
ting/subcell resolution/nonlinear filters are tested, showing that
the degree of propagation speed mismatch of discontinuities
is highly dependent on the accuracy of the numerical method,
time step and grid spacing. Kotov et al. [20] further presented a
realistic hypersonic non-equilibrium flow that mimics the spuri-
ous behavior and some important numerical challenges affecting
the accuracy in such simulations. Zhang et al. [7] proposed the
equilibrium state method where the cell average is replaced by a
local two-equilibrium-state reconstruction, making its extension to
high dimensions straightforward. They also extended the method
to multi-reaction systems by treating the two one-way reactions
independently. Methods applicable for realistic nonequilibrium
chemical kinetics with multiple finite-rate reversible reactions, to
our best knowledge, have not been reported in literature so far.
Bao and Jin [1-3] introduced a random projection method for
the reaction step by replacing the ignition temperature with a

0010-2180/© 2019 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
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uniformly distributed random variable. Although the random pro-
jection method cannot avoid the introduction of numerical dissi-
pation by shock-capturing schemes, it can eliminate its effect. The
method was established for scalar problems and successfully ap-
plied to model problems of 1D/2D reactive Euler equations. With
the presumption of two time-independent equilibrium states of to-
tally burnt and unburnt gases (regardless of the detailed reaction
process), the method is only suitable for under-resolved stiff cases.

In this paper, we develop a split random time-stepping method
for chemically reacting flows with general nonequilibrium chem-
istry in a unified manner, regardless of stiff or nonstiff source
terms and under- or well-resolved conditions in space and time.
Unlike Bao and Jin’s random projection method, the activation and
deactivation of chemical reactions in the reaction step is not pro-
jected onto two prescribed equilibrium states, but onto two time-
dependent states corresponding to advancing the reaction by one
timestep forward and interrupting the reaction, respectively. The
criterion to activate a reaction follows from comparison of the local
computed temperature with a randomized temperature depending
on the states of the forward step and its adjoint. To randomize
each reaction process, the multi-reaction system is split reaction
by reaction [21,22]. By adding a drift term into the random tem-
perature sampling, the proposed method recovers the solution of a
deterministic fractional step method in nonstiff cases with increas-
ing resolution.

The paper is organized as follows. In Section 2, we introduce
the reactive Euler equations with chemical reaction source terms.
A standard fractional step method is outlined by operator splitting
into the convection step and reaction step. In the reaction step, a
reaction-split ODE solver is developed to approximate the exact so-
lution for general chemical kinetics, based on which random time-
stepping of each reaction is performed. In Section 3, we examine
the pure ODE solver and the split random time-stepping method
by extensive model examples and realistic reacting flows in both
1D and 2D. Conclusions are drawn in the last section. More infor-
mation about the ODE solver are provided in the appendix.

2. Formulation

Assuming the flow is compressible, inviscid and in two dimen-
sions for simplicity, the multi-species Euler equations coupled with
reaction source terms take the form

U +FU)x+GU)y =SU), (1)
where
T
U = (p. pu, pv, pec, py1. PYa, ... PYN-1) -
FU)=(
T
G(U) = (pv. puv, pv> + p. (pec + P)V. PLY1. PVY2. ... PUYN-1) -
S(U)=(0,0,0,0, 1, &y, ..., on,_1") (2)

are vectors of the conserved variables, convective flux in the x-
or y-direction and source terms, respectively, with «; representing
rate of change of the ith species concentration in the reactive gas
mixture due to the chemical kinetics consisting of N; reactions and
Ns species. Furthermore, e; = e + %(u2 +12) is the specific total en-
ergy including the specific internal energy e. To close the system,
an equation of state (EoS) of the form

T
pu, pu? + p, puv, (pe; + p)u, puyy, PUYa. ..., PUYN1) -

MR
p=p) Vi T 3)
i=1 !

is used, with y; and W; denoting the mass fraction and molecular
weight of the ith species, respectively, and R, being the universal
gas constant.

The above conservation laws of mass, momentums and energy
with source terms are usually solved by operator splitting. The first
step is flow convection

Se: U+FU)x+GU),=0 (4)

assuming no chemical reactions and passive transport of all
species. The second step solves the system of ODEs of chemical
kinetics
dy;  w;

St === i=1,...,Ns 5

il s (5)
under adiabatic and constant-volume conditions with fixed total
density and constant specific internal energy. The first-order ac-
curate Lie-Trotter splitting scheme [23] or the second-order Strang
splitting [24] can be employed to approximate the solution from
the discrete time level n to n+ 1 with a timestep At, i.e.

At At
U™t = 5D oS0y or UM =52 o580 o 5P yn, (6)

with symbol ‘o’ to separate each operator and to indicate that an
operator is applied to the following arguments. For the convection
operator S¢, a shock-capturing scheme [25-28] can be adopted. For
the reaction step S;, an ODE solver such as VODE [29], CHEMEQ2
[30] and MTS/HMTS [31] can be used with or without adaptive er-
ror control.

We first utilize operator splitting upon the nonequilibrium
chemical kinetics so that a multi-reaction system can be decou-
pled into a series of single reaction steps. Then we introduce the
established concept of random projection into the ODE solver in
order to realize random ignition of reactions. Each reaction pro-
cess is randomly advanced one timestep forward (activation) or
interrupted (deactivation) instead of being projected onto two pre-
scribed equilibrium states. In the following, we term the random-
ized and reaction-by-reaction ODE solver for nonequilibrium chem-
istry as Split Random Time-Stepping method (SPRANTS).

2.1. Split reaction-by-reaction ODE solver for chemical kinetics

For common nonequilibrium chemical kinetics, chemical pro-
duction rates in Eq. (5) are derived from a reaction mechanism that
consists of Ns species and N, reactions

N N
Zvjfixl‘:’ZVJbiXi, j=1,....N;, (7)
i=1

i=1

where v]fi and vj?i are the stoichiometric coefficients of species i
with description X; appearing as a reactant and as a product in
reaction j. The total production rate of species i in Egs. (2) and
(5) is the sum of the production rate from each single elementary
reaction as

~ N - T T R
@i =Wy (vi-vy) "jH[Wl] _kJ'H[W,] : (8)
j=1 I=1 I=1

with k}c and k? denoting the forward and backward reaction rates
of each chemical reaction, and p; = y;p.

By operator splitting [21,22], we can decouple the multi-
reaction system, e.g., by Lie-Trotter splitting, as

S0 RO 2 RAD RN o RIAD o RIAD. (9)

where the operator R; corresponds to a single reaction j and is
independent of all other reactions. The reaction-by-reaction idea
resembles a meso-scale model of microscopic kinetics where one
molecule/atom can only experience one reaction at a time instance.
This is also the case with stochastic simulation of chemical kinet-
ics [32]. At macroscopic scale, reactions involving large numbers of
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species molecules/atoms are considered as simultaneously occur-
ring processes. In [21] the second-order accurate Strang splitting
is adopted, starting with the fastest reaction and ending with the
slowest for half a timestep and then backwards for another half
timestep. In our approach we simply take the traversal order not
according to reaction rates but to the reaction-mechanism index
sequence

At)

At At At
oR oR\ oR(T) o oR(E

A A
R(Tt) oR;Tt) o 1

Sro RAD =R

2nd
(10)

where Ry is the reverse operator of Rys. Accordingly, for each R;,
we have

ZvX:»Zv @—%] i=1,...,N;

d)ij=Wi(V?i_vjj';) ka[ ]{l bn[pl]

We now rewrite the ODE in Eq. (11) in the following form [30]

dy;

dar =q/ - ply. i=1...N; (12)

where q{ > 0 is the production rate and p{ yi > 0 is the loss rate for
the ith species through reaction j.

Following the operator splitting of reactions, we continue to
split each reaction j into a forward reaction and a backward re-
action (for an irreversible reaction, it can be interpreted as a re-
versible reaction with zero backward reaction rate)

&

such that the species involved will either gain mass or lose mass
through the one-way forward/backward reaction from Eq. (12), i.e.

mass gain : q{ >0, p{yi = 0 or mass loss : q,j =0, p{Yi >0,

(14)
with the simplified

qurk
i fl—[[Pl]

Jf _ b

q; Vji , p{’fy,- =0 for product species,

g’ =0, plly = for reactant species

(15)

for the forward reaction of Eq. (11). The backward reaction can
be determined accordingly upon exchanging its reactants and
products.

Since each elementary reaction is decoupled from the others
and each reaction again is split into two opposite unidirectional
reactions, finally only a single reaction equation of the type

GA+bB+ - — XX +yY +--- (16)

is considered in each operation. Mass conservation and positivity
of mass fractions can be properly treated.

For the simple cases of Eq. (16), one may find analytical so-
lutions, see Appendix A. However, for the general form of Eq.
(16) whose analytical solution is not explicitly known or difficult
to derive, a more convenient alternative is to use quasi-steady-
state (QSS) methods to obtain the approximate exact solution. QSS

methods are based on the exact solution of Eq. (12) for constant p{
and q{ [33,34], i.e.

. J v

Yyl = ylePiAt q—’j(l — e PiAYy - for all vh— v]fi #0. (17)
p;

As generally p{ and q{ depend on {y,..., Yng} in Eq. (14) or

(15), Eq. (17) provides a linear approximation. For the QSS-based

SPRANTS method, the stable timestep size is not limited to the

characteristic time scales of the chemical species and thus a larger

timestep implying less computational efforts is possible [21].

Remark 1. The QSS approximation adopted here in SPRANTS is
first-order accurate. For application to reacting flows the achiev-
ably absolute error magnitude generally is sufficient [30].

2.1.1. Treatment for mass conservation
Employing QSS in Eq. (17) for all the species participating in
reaction j (with v}’i - v].fi #£0),

pj (1 - eP’%Af)) (18)

Yyt=¥% (y?epf’“ +

i i i
may not necessarily be unity so that mass may be not exactly con-
served. To cure this problem, one may only advance y} to y;* 1
of a reactant k by Eq. (17) and update all other {y;;_;, Ns,,;ﬁk}"+l
by mass conservation of a single reaction equation in Eq. (11).
This merit of knowing the exact net gain or loss of mass of other
species originates from the fact that each reaction in Eq. (11) is
decoupled from others. Therefore, for the reactant k, combining
Egs. (17) and (15) we have

Vit = ype P (19)

and for the other species i # k, including other reactants and all the
products in reaction j, the change of mass fraction Ay; = y"+l -yt
should obey

b I = b f’
vjl vji U]k - V]k
giving the update
ve— vl W
Y=V Ay =y S M (21)
vh = v Wk

It is easy to see that Z Ay; = 0, which is equivalent to Z S Yi=
1 for mass conservation

2.1.2. Positivity-preserving treatment
Without loss of generality, we consider the forward reaction
j and assume that reactant species k has vb =0 in Eq. (19), as

vjfk > 0 is prescribed for reactants. Slmllarly assuming that an-

other reactant species i also has v] >0 and vb 0, we combine

Egs. (19) and (21) to obtain
f f
v W Vi W ;
ntl _yn U TFyn o JE TH yng—pr AL
Vi Y v/ kak * v/ kake (22)
Jjk jk
Recalling Eq. (15) for reactants i and k, we have
j )
pj{yl 3 ; Vv‘\//, (23)
Py Yy Tk

Upon rearranging Eq. (23) and substitution into Eq. (22) we obtain

W;
vt =y L +—}‘W’y”e e, (24)
pk Vi
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Table 1
Convergence rates for S; and S4 using Lie-Trotter and Strang splittings.
N Sa
At Ly error Rate L., error Rate L, error Rate L., error Rate
Lie-Trotter ~ 6.25E-03 3.47E-15 - 5.01E-15 - 1.47E-12 - 2.27E-12 -
1.25E-02 7.30E-15 1.0709 1.05E-14 1.07166 2.94E-12  0.999772 4.53E-12  0.999815
2.50E-02 1.60E-14 113228 2.32E-14 113699 5.89E-12  0.999544  9.07E-12 0.999631
5.00E-02  3.76E-14 1.23291 5.51E-14 1.24985 1.18E-11 0.999088 1.81E-11 0.999261
1.00E-01 9.76E-14 1.37647 1.47E-13 1.41746 2.35E-11 0.998174 3.62E-11 0.99852
Strang 6.25E-03 3.14E-17 - 1.00E-16 - 5.25E-17 - 8.32E-17 -
1.25E-02 1.24E-16 1.97793 4.00E-16  1.99959 2.10E-16 1.99745 3.34E-16  2.00663
2.50E-02  4.94E-16 1.99949 1.60E-15 2.0001 8.39E-16 1.99996 1.34E-15 2.00002
5.00E-02 1.98E-15 2.00021 6.40E—15 1.99999 3.36E-15 1.99999 5.35E-15 1.9999
1.00E-01 7.91E-15 1.99997 2.56E-14 2 1.34E-14 1.99999 2.14E-14 2
0.25
A
w
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Fig. 1. Ignition delay times with different initial temperatures (left) and time histories of mass fractions of H and H,0 with Ty = 1000 K (right).

With the aid of Eq. (24), it is readily seen that positivity of y?”,
ie. yI*1 > 0, is achieved when p; > p! since the third term is al-
ways non-negative. Therefore, in order to preserve the positivity of
species mass fractions, reactant species k using the QSS approxi-
mation should satisfy

p) = max{p!} for all the reactant species in reaction j. (25)

Regarding the positivity for the choosen reactant k, according to
Eq. (19), it is inherently satisfied through positivity of the exponen-
tial function. Eq. (19) implies that 0 < y,’:“ < 1 due to the negative
exponent such that mass fractions of all species through reaction j
are bounded within [0,1] as a result of mass conservation.

Remark 2. The present reaction-split method using analytical or
approximate solutions can perform sufficiently well, as a stand-
alone solver, for the ODE system in chemical kinetics. Its following
randomization is not motivated for integrating the ODE accurately,
but primarily aimed at alleviating the effect of numerical dissipa-
tion introduced by S¢ through shock-capturing schemes into S;.

2.2. Finite randomization of chemical reactions

Bao and Jin [1-3] first proposed the idea of random projection
into the ODE solver in place of the deterministic projection. They
also proved that the random projection method gives first-order
convergence for scalar problems. For scalar problems and Euler
equations with stiff source terms, the random projection method
shows excellent performance in obtaining correct shocks and react-
ing fronts for under-resolved spatial and temporal discretizations.

Through operation splitting of the ODE system in S;, we merely
need to consider the randomization of a single one-way reaction
from time t; to t,.1. In Bao and Jin’s formulation, temperature
is randomized and compared with a pre-set ignition temperature,

Tign. Upper and lower temperature limits are needed, i.e. T, and

T, (corresponding to the two equilibrium states of the initial com-
bustible gas mixture being completely burnt and unburnt).

Here we advance the current state vector {y,...,yn,} through
a single one-way reaction with subscript j, as in Eq. (16),

. .on )T = R;At){}’LU.J’Ns},

where {y;,...,yn,}* represents the advance in time by operation
R; (for reversible reactions R/ or R’J?). The change of mass fractions
for the species involved in this reaction is

(26)

{A)’l, L) Any}] = {y17 "'vyNs}+ - {y11 "'7yNs}' (27)
The reverse operation from time level n is
it =g = {Ayn Ay (28)

Since mass fractions of species involved are constrained in [0,1],
all mass fractions have to be rescaled if necessary according to
Eq. (20). For the two states with superscripts + and —, two limit
temperatures T+ and T~ can be implicitly obtained according to
Eq. (3) with the thermodynamic relation

voes YN T
h(ys, .. p(y1 pYNs )’

where p and e are fixed during a constant-volume adiabatic reac-
tion and h represents the specific enthalpy. If we assume that the
present reaction is exothermal, we have T~ < T < T*. The converse
applies to endothermal reactions. T* corresponds to Tj, in the orig-
inal random projection method while T~ corresponds to T,. Given
the two limit temperatures, we can assemble a local random tem-
perature by

T* =T +60,(TT = T"), (30)

where 6, is a uniformly distributed random real number be-
tween 0 and 1, and T* is the randomized local temperature with
min{T—, Tt} < T* < max{T—,T*} and T*#T in general. Regarding

YN, T)—e= (29)
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the generation of random number 6;,, Bao and Jin suggested the
van der Corput sampling scheme [35].

Given the random temperature T*, the unidirectional reaction j
is performed as

if T > T~

otherwise. (31)

.
PAO . gy oy = J N
j Wreomdi= gy,

The updated state solution {y;, ...
for the next reaction j + 1.

. YN} j is taken as the initial state

Remark 3. As the random temperature T* is uniformly distributed
between the two temperature limits, the mean propagation of the
reaction front recovers the physically correct position [1]. With de-
terministic ODE solvers, accumulation of errors may lead to non-
physical reacting front propagation, see the detailed explanation in
[7,36].

Inserting Eq. (31) into the split ODE solver in Eqgs. (9) and (10),
the present SPRANTS method can be written as

Pt — P,gr“) o P,gfj; 0--- o P{A o pLAD (32)

corresponding to the Lie-Trotter splitting or as
At

At At At At At
Pz(nAdt) =Pl( ) OPZ( 3 O"'OPI\(J,Zt) OPI\(]rzt) OPqu) o-~~op1( 3) (33)

corresponding to Strang splitting.

At
2

Remark 4. Not requiring either the flow information at each cell
and its neighbors [17] or an additional procedure to locate the re-
acting front in the computational domain [1], the proposed method
solves the source terms at each cell locally as a OD problem, such
that its extension to 3D reacting flows is straightforward.

For nonstiff cases when the reaction zone is well-resolved in
space and time, the present SPRANTS method gradually degener-
ates to a deterministic ODE solver upon modification of the sam-
pling interval in Eq. (30) as

w T = 3T =Tf, iff<1,
= {T*, otherwise, (34)
where
T -T-
f=N T T Tl (35)

T*+ is an estimated upper bound of the temperature after N time
steps (e.g., N=5) and T~ corresponding to its reverse state ac-
cording to Egs. (27) and (28), and € is a small positive number.
Thus f represents a dynamic measure for the time resolution of the
respective reaction. One can see that, when the resolution is fine
and linear approximation applies to temperature evolution, f— 1
and Eq. (34) gives

i Y __ * 1 + _TY=T <
}er]lE(T)_E(T)—Z(T T)=T <T (36)

for a uniformly distributed 6, in Eq. (30). The random time-
stepping of reactions therefore reduces to a deterministic process
according to Eq. (31) in non-stiff cases.
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Remark 5. Due to the reduced randomness between activation 3. Numerical results and discussion

and deactivation, the proposed SPRANTS method can also cope

with nonstiff problems while the original random projection In this section, we consider three types of numerical experi-

method is suitable for under-resolved stiff cases [7]. ments. The first serves to assess the split reaction-by-reaction ODE
solver based on either analytical solutions or QSS approximation
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for the zero-dimensional reaction operator, ignoring fluid transport.
The following two types consider the coupled fluid dynamics with
chemical kinetics by using simplified model kinetics and realistic
finite-rate kinetics, respectively, in 1D or 2D.

3.1. Reaction-split ODE solver for chemical kinetics

3.1.1. Michaelis-Menten test

The first case is the Michaelis-Menten system [37], i.e. S +

I k k
S, A S3, S3->S5,4S;, S3—>S,+S4, where the rate constants

ki =108, ky = 10* and k3 = 10~!. The initial concentrations are
5x 1077 for S; and 2 x 10~7 for S, with S3 =0 and S; = 0 [37,38].
For this case, analytical solutions are provided for each reaction,
see Appendix A. Reactions are simulated until ¢ = 50. In Table 1,
the L; and Ly, error norms of species S; and S4 are detailed, show-
ing the expected convergence rates, i.e. 1st order for Lie-Trotter
splitting and 2nd order for Strang splitting.

3.1.2. Hydrogen-air ignition delay test

Hydrogen ignition in air considers not only temperature-
dependent reversible reactions but also third-body reactions, mak-
ing the approximate solution to each reaction is practically pre-
ferred. The mechanism of H,-air combustion follows O’Conaire
et al. [39], consisting of 9 species (including the inert N,) with

23 reversible reactions (equivalent to 46 one-way reactions). This
mechanism has exhibited good prediction for the ignition delay
time in [40]. All temperature-dependent reaction rates are calcu-
lated using the Arrhenius law

kr = ATBexp(~Tigy/T), (37)

where the subscript r is f for forward reactions or b for backward
reactions and T is the temperature. Parameters A, B and Ty, for the
forward rate of each reaction are often given in the mechanism.
Backward rates often need to be calculated from the equilibrium
constant Keq and k; by assuming the corresponding reaction to be
in chemical equilibrium, i.e. Keq = ks /k;, [41]. The third-body effect
is accounted for by the summation of third-body collision efficien-
cies times the corresponding molar densities of species.

Initially the reactive Hj-air mixture is at a pressure of 1 atm,
and has molar ratio 2: 1: 3.76 for Hy: O,: N,. Nitrogen is inert. All
simulations end at t =1 x 10~3 s. First we vary the initial temper-
ature Ty from 950 K to 1400 K in steps of 50 K. A fixed timestep
of 1 x 1078 s and Lie-Trotter splitting are applied. We compare the
ignition delay times predicted by the present solver with the ex-
perimental data and CHEMKIN [42] results from Ref. [40] (see its
Fig. 3) in Fig. 1 (left). The present QSS-based reaction-split method
(or abbreviated as QRS) exhibits good predictions for the ignition
induction of hydrogen using the present mechanism, especially in
the high initial temperature range. In Fig. 1 (right), we compare
the computed mass fractions with CHEMEQ2 at an initial temper-
ature of 1000 K, and good agreement is achieved especially for the
ignition time. For either QRS or CHEMEQ2, there is little differ-
ence between CPU times with different initial temperatures. QRS,
however, exhibits better efficiency than CHEMEQ2 for the 9-species
23-reaction mechanism at a fixed timestep, as shown in Fig. 2. By
choosing the initial temperatures at 1000 K and 1200 K, respec-
tively, we consider the mass conservation of QRS and CHEMEQ2 in
Fig. 3. It is readily to see that QRS can always preserve the mass,
whereas for the CHEMEQ2 results some total mass loss or gain oc-
curs around the ignition time.

We continue to consider the accuracy of QRS by adjusting the
timestep from 5 x 1078 s to 8 x 10~7 s with an amplifying factor of
2. The initial temperature is fixed at 1000 K. Figure 4 (left) shows
that the temperature profiles converge with decreasing timesteps.
By assessing the error norms of temperature and mass fraction of
H in Fig. 4 (right), it can be seen that QRS is 1st-order convergent
when Lie-Trotter splitting is applied.

3.2. Reactive Euler equations with simplified model kinetics

In this part, we consider reactive Euler equations coupled with
simplified model kinetics in several stiff detonation problems. In
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such cases, the Arrhenius form of reaction rates in Eq. (37) also The EoS in Eq. (3) for the model problems is simplified by
can be written as Heaviside form p=(y —1)(pe —q10Y1 — G20Y2 — - — Qn.PYN.)

and T = p/p. Numerical experiments cover single reaction to

ATE. T>T multi-reaction system in 1D and 2D detonation problems. In our

kr = 0 ’ T ;Tl ’ computation, the AUSM+ scheme [28] is employed together with
' a MUSCL reconstruction using a TVD Minmod limiter [43] in the
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convection step. The reaction step adopts the proposed SPRANTS with only one reaction and two mutually dependent species
method or QRS as a deterministic method. A—B

where A represents the fuel being burnt by the one-way reaction
Example 1 (Chapman-Jouguet (CJ]) detonation). The first case con- and mass fraction of the product can be given directly by yp =1 —
siders the simplest reacting model, which has been studied in [7], Ya.



406 J.-H. Wang, S. Pan and X.Y. Hu et al./Combustion and Flame 204 (2019) 397-413

pressure

mass fraction

50

40

30

20

10 20 30 40 50

%9

Fig. 10. Example 4 2D case, one infinite-rate reaction, C] detonation. Left: deterministic solution; right: SPRANTS solution. Locations of the CJ detonation wave at three times
are marked by y4 = 0.5 with black solid line (low resolution) and white dashed line (high resolution).

Parameters for the reaction model and species properties are

(v.4a.q8) = (1.4,25,0),
(A.B, Ty;) = (16418,0.1, 15).

Note that the ignition temperature Tjg, is only used by the deter-
ministic method. The initial condition to generate the detonation
wave consists of two parts in only one spatial dimension, with
piecewise constants given by

o [ (21.435,12.75134,2.899,0, 1),
(pv s ,YA,J/B)— (1’]’0,1’0)’

The left part gas is at the burnt equilibrium state and moves at a
speed ug relative to the stationary unburnt gas of the right part.
The initial CJ state on the left can be obtained in theory [1,4,7].
This problem is solved on the interval [0, 30]. The left-end bound-
ary condition is the inflow condition with fixed identical constants
as the initial data on the left. Boundary condition for the right end
is extrapolation from the mirror image points inside the domain.
The exact solution is simply a C] detonation wave moving to
the right and we obtain the reference ‘exact’ solution by the de-
terministic method (QRS) using a well-resolved grid (Ax = 0.0025)
and a timestep of At =0.0001. We compare the under-resolved
results by SPRANTS and QRS, respectively, using two sets of grid
(Ax =0.25,0.025) and timestep (At =0.01,0.001) with the same
kinetics. Figure 5 shows the computed pressure, density, temper-
ature and mass fraction. The proposed random method can cap-
ture the correct propagation of the detonation wave with both
coarse and fine grids, while the deterministic method produces
the spurious solutions in the same under-resolved conditions, i.e. a
weak detonation wave propagates faster than the theoretical deto-
nation speed of Dg; = 7.124 in this case. Since a coarser grid with

(38)

x < 10,
x > 10.

a larger timestep renders the stiffness more severe, the determin-
istic method produces far more nonphysical weak detonation wave
compared to the SPRANTS or the reference solution. The location
of the reacting front on the coarse grid may be shifted from the
exact location due to randomization, but the shift amplitude does
not grow in time [1], whereas the error accumulates with the de-
terministic method.

In Fig. 6, the SPRANTS result based on a very coarse grid (Ax =
0.6 corresponding to 50 grid points) is compared with the afore-
mentioned under-resolved solutions by SPRANTS in terms of pres-
sure and temperature at t = 1.5. Correct location of the detonation
wave is captured despite the smeared discontinuity. Convergence
of pressure and temperature profiles with an increasing resolution
can be seen towards the reference solution, demonstrating the ac-
curacy of the proposed SPRANTS method in capturing the correct
propagation speed of discontinuities at under-resolved conditions.
We also notice that a grid of 300 nodes is employed to obtain the
correct wave propagation in [7] and 50 grid points are used by
a high-order finite difference scheme (WENOS5/SR) in [18] for this
case.

In Fig. 7, we demonstrate that with the drift term the SPRANTS
solution captures not only the correct location of reacting front but
also the resolved reaction zone, in good agreement with the refer-
ence solution obtained by the deterministic method. Without the
drift term, although the random method can still give the correct
shock propagation, it fails to capture details of the resolved post-
shock reaction zone by overshooting the temperature magnitude.

Example 2 (Strong detonation). This example considers a reacting
model, which has been studied in [7], with one reaction and three
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solution; in the mass fraction contour, locations of the detonation front at t = 0.1,0.2, 0.3 are additionally marked by setting yo, = 0.5 in white solid lines.

species
2H, + 0, — 2H,0.
Parameters for the reaction kinetics and species properties are
(V- ah, 4o, Gr,0. Whi,. Wo,. Whi,0) = (1.4,300, 0,0, 2,32, 18),
(A, B, Tign) = (10°,0,2).

The initial condition of piecewise constants is given by

(20,10,8,0,0,1), x <2.5,
(P Tt Y. Yoy, Vo) = (1.1.0,4.8,0), x=25.

The left part gas is at the burnt equilibrium state and it is moving
at a speed larger than ug relative to the stationary unburnt gas of
the right part so that a strong detonation wave is to occur. This
problem is solved on the interval [0, 50].

The exact solution consists of a detonation wave, followed by a
contact discontinuity and a shock, all moving to the right. Again,

we obtain the reference solution by QRS using a resolved grid
(Ax =0.0025) and a very small timestep (At = 0.0001). We com-
pare the results by SPRANTS and the deterministic method using a
coarse grid and a finer grid with stable timesteps, as explained in
Fig. 8. Note that in the deterministic method, we adopt both the
Arrhenius model and the Heaviside model for the chemical kinet-
ics. The proposed SPRANTS method can capture all discontinuities
effectively, while the deterministic method produces spurious so-
lutions at the same under-resolved conditions. In particular, using
the Heaviside model, the deterministic method produces a less ac-
curate solution due to the stronger stiffness compared to the Ar-
rhenius model (see the right column of Fig. 8).

Example 3 (Strong detonation). This case considers a multi-step
reaction mechanism with two one-way reactions and five species

1)  Hp+0, — 20H,
2)  20H+H, — 2H,0,
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Table 2 2x106
Initial condition for hydrogen-air CJ detonation in
Example 6.
Post-shock gas Pre-shock gas
1.5x10°
Pressure (Pa) 1481999.362037 101,325 [
Temperature (K)  2941.677242 298 =
Velocity (m/s) 800 (~ugq) 0 a
Mass fraction @ o
YH 0.000247 0 2
Yo 0.001617 0 ]
Vi,0 0.225404 0 a
YoH 0.014915 0
Yo, 0.013336 0.226362 500000
YH, 0.002429 2.852103E-2
YH,0, 2.601600E—-6 0
Yho, 1.857550E—-5 0
N, 0.742031 0.745117 0

with N; as a dilute catalyst. Similar examples have been studied in ~ Fig- 13- Example 6 hydrogen-air CJ detonation at t=0.4.08,12x10% s. Pur-
Example 5.4 [3] ple square line: SPRANTS solution; red triangle line: deterministic solution by

. . i CHEMEQ2; black solid line: reference solution; both solutions use Ax =0.02 m,
Parameters for the reaction model and species properties are At =25 x 107 s. (For interpretation of the references to color in this figure leg-

(¥ au,. 9o, Gon. Giy0. A, ) = (1.4. 0,0, —20, ~100, 0),
(Wh,, Wo,, Won, Wi,o, Way, ) = (2, 32,17, 18,28),

(A".B'. Ty,) = (10°,0.2), Figure 9 presents different computational conditions and re-
2 02 T2 4 sults obtained accordingly. All waves are captured with the cor-
(A B ’Tigﬂ) = (2 x 10%,0, 10)' rect speeds by the SPRANTS method, in good agreement with the

end, the reader is referred to the web version of this article.)

The initial condition of piecewise constants is given by reference solution. However, the deterministic method obviously
cannot handle the Heaviside model with the same under-resolved

(p, T, u’sz’yoz’J’OH’YHzO?YNz) grids and timesteps. Although the slower propagation of the re-
(40,20, 10,0,0,0.17,0.63,0.2), x < 2.5, acting front is captured by the Arrhenius model, the determinis-

= {(1’ 1,0,0.08,0.72,0,0,02), x> 2.5, tic method still results in spurious weak detonation, refer to the

transit points around x~40 especially in the profiles at the right
This problem is solved on the interval [0, 50]. column of Fig. 9.
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Fig. 14. Example 6 hydrogen-air CJ detonation at t = 1.2 x 103 s by the deterministic method with CHEMEQ2 using different grids (left) and CPU times (s) compared to

SPRANTS on two coarser grids (right).

Example 4 (C] detonation in 2D). This 2D case extends EXAM-
PLE 1 to a radially symmetric point-source explosion, where A in
Eq. (38) is amplified by a factor of 10,000 to approximate the in-
finitely fast reaction with extreme stiffness. Similar tests have been
studied in [3,16].

A quarter domain is considered exploiting sectorial symme-
try on [0, 50] x [0, 50]. The hot-spot area of the initial high-
temperature high-pressure burnt gas is a circle with radius 10 and
the reactive unburnt gas takes the outside. Initial condition is the
same as in Example 1 except the initial velocity of the circle area
is adjusted to along the radial direction, i.e.

] (2.899x/r,2.899y/r), 1 <10,
= {(o, 0. r=10,

where r = /x2 + y2.

In our computations, a coarse grid (200 x 200) and a finer grid
(2000 x 2000) are employed referring to Example 1. Corresponding
timesteps are At =1 x 1072 and 1 x 103, respectively. With the
finer grid, the deterministic method still produces a spurious solu-
tion at t = 1.5, see the left column of Fig. 10, in that a nonphysical
weak detonation wave is generated and the reacting front is no
more circular. In contrast, the SPRANTS method can capture shape
and location of the CJ detonation front accurately, see the right col-
umn of the figure, by observing the radial velocity vector in the
pressure contour even in the low resolution and the self-similarly
circular outwards-developing detonation fronts in black/white lines
of two resolutions at different times. The line-marked locations
calculated by the random method in two resolutions agree excel-
lently with each other and thus a grid convergence to the exact so-
lution is reasonable to expect for the proposed SPRANTS method.
With negligible curvature effects [44,45] and the under-resolved
reaction zone being infinitesimal, the calculated speed of the det-
onation front approaches the 1D theoretical speed of D¢y = 7.1247
as in Example 1.

Example 5 (Strong detonation in 2D). The present case considers
the same multi-step reaction mechanism as in Example 3 except
that qoy in Eq. (38) changes into —50. This is a 2D case used to
prove the dimension-independent nature of the proposed method,
unlike the original random projection method which requires a
dimension-by-dimension scanning for local projection. Geometry
and initial condition of piecewise constants in the 2D domain can
be referred to [7].

A uniformly distributed coarse grid (300 x 100) and a refined
grid (3000 x 1000) are employed. Corresponding timesteps are
At =5 x 10% and 5 x 107, respectively. The reference solution is
obtained by the deterministic method using the fine grid and tiny

Table 3
CPU times (s) by SPRANTS and the deterministic method with CHEMEQ2
in Example 6.
N 50 200 3200 6400 10000
v v
SPRANTS 418.523 323512
X X v v v
CHEMEQ2 529419 214142 6788.82  13592.8  21356.0

N represents the number of grid points and symbol v or X indicates
the correct or incorrect wave propagation being captured.

timestep. The comparison of the SPRANTS method and determin-
istic method on capturing stiff detonation waves is based on the
under-resolved grid and timestep. In Fig. 11, at t = 0.1 the spurious
solution given by the deterministic method on the coarse grid con-
tains a too fast weak detonation wave, which has passed half of the
domain. However, the correct detonation waves from the SPRANTS
method on the same resolution and the deterministic method on a
fine grid agree with each other excellently. Good agreement of the
self-similar propagation of the detonation wave from t = 0.1 to 0.3
also can be seen in the mass fraction contour given by the ref-
erence solution and the under-resolved SPRANTS solution, respec-
tively. The slight difference between the two solutions lies in some
small near-shock statistical fluctuations due to the random nature
of the method [1].

3.3. Reactive Euler equations with realistic nonequilibrium kinetics

In this subsection, we validate the SPRANTS method for captur-
ing stiff detonation waves governed by the reactive Euler equations
coupled with realistic chemical nonequilibrium kinetics which in-
troduces multiple temperature-dependent reactions with distinct
timescales. To our knowledge, both the two test cases below
are reported for the first time, taking into account the detailed
hydrogen-air combustion mechanism as in Section 3.1.2. Two dif-
ferent scenarios with a (] detonation and strong detonation wave,
respectively, are simulated in 1D or 2D domain. The convection op-
erator adopts an ordinary shock capturing scheme as in the for-
mer subsection, and the reaction step is solved by the proposed
SPRANTS method and CHEMEQ2 as the deterministic method to
make a comparison. Reaction splitting in the SPRANTS method em-
ploys the 2nd-order Strang scheme to reduce splitting errors.

Example 6 (Realistic C] detonation). The setup consists of two
parts divided by a shock moving to the right in a 1D domain of
length L =4 m, as in Table 2. The theoretical CJ detonation states
for the unburnt gas can be generated using the NASA Chemical
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Fig. 15. Example 7 the density distribution and the detonation front location at different times. Left: reference solution; middle: deterministic solution by CHEMEQ2; right:
SPRANTS solution; the location of the reacting front is marked by the white solid line with yy,0 =0.1.
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Equilibrium Analysis (CEA) program [46], and according to the C]
condition [1,4,7], i.e.

Dg = ugy + (¥ pu/pp) "2,

we adopt u, =800m/s ~ ug; for the initial velocity of the burnt
gas, to generate a C] detonation wave sweeping the stationary un-
burnt gas. The shock is initially located at x = 0.4 m. Boundary
condition for the left/right end is simply extrapolation from the
mirror image points inside the domain. All simulations are termi-
nated at t = 1.2 x 10~3 s and use the same mechanism [39)].

The exact solution is a steady self-similar CJ detonation wave
traveling from left to right. We obtain the reference exact so-
lution by the deterministic method using a very fine grid with
10,000 points and a fixed tiny timestep of At=5x10"8% s.
Two sets of under-resolved grid and timestep are considered, i.e.
Ax=0.08 m At =1x10"% s and Ax=0.02 m, At =2.5 x 107 s,
respectively.

In Fig. 12 at the given time: although the resolution of the
grid and timestep is far lower than the resolved solution, the
SPRANTS method predicts the properties of the flowfield in quite
good agreement with the reference solution, including the location
of the detonation wave and profiles of the mixture pressure and
density. The obtained profiles tend to converge to the reference so-
lution with increasing resolution (and decreasing stiffness). In con-
trast, using the same under-resolved grid and timestep, the deter-
ministic method yields the spurious nonphysical weak detonation
ahead of the shock and the flowfield profiles are totally changed
in an incorrect way. In Fig. 13, wave propagation at different times
is presented by looking into the pressure distribution. Despite the
deviation by few grid points, SPRANTS can always capture the cor-
rect wave location while the error in the location of reaction front
by the deterministic method deteriorates by showing a too fast
weak detonation wave. Note that the von Neumann spike inside
the reaction zone of the reference solution can be calculated only
by very fine resolution both in space and time.

In Fig. 14 (left), we additionally obtain several solutions by
the deterministic method with CHEMEQ2 using N, = 400, 800 up
to 6400 grids with linearly decreasing global timesteps (lower to
At =5 x 1078 s as the reference solution with N, = 10, 000). It can
be seen that the pressure profiles converge to the reference solu-
tion (with 10,000 grid points) including the spurious weak detona-
tion waves with N = 400 to 1600. When the number of grid points
increases to 3200 or more, the weak detonation wave disappears
and the correct location of the reacting front is captured. We com-
pare the CPU times for the reaction step of two methods based on
different grids, listed in Table 3 and plotted in Fig. 14 (right), as
the computational cost of integrating the ODE system dominates
in reacting flow simulations. With the same mechanism, SPRANTS
consumes more CPU time in the reaction step than the determinis-
tic method using the same resolution, since each random reaction
needs to assume a forward state or backward state to determine
the random temperature, invoking a costly iterative root-finding
operation. The deterministic method requires a much higher res-
olution in both space and time to reach the same prediction ac-
curacy so that its overall computational efficiency dramatically
decreases.

Example 7 (Realistic strong detonation in 2D). The setup consists
of two parts divided by a shock traveling to the right in a rectan-
gular domain of [0,3] m x [0, 1] m. The post-shock burnt gas part
is given by

{ly —0.5] > 0.25,x < 0.5} U{|y — 0.5| <0.25,x — 0.25 <y < 1.25 — x},

and the unburnt gas occupies the remaining domain in front of
the initial shock. Initial states are identical with those in Ex-
ample 6 except for the x-velocity of the post-shock part being
increased to u, =2000 m/s > ug, to create a strong detonation

wave. The boundary condition for the left/right end is simply ex-
trapolation from the mirror image points inside the domain and
the top/bottom boundary is considered as a slip wall. All simula-
tions are finished at t =1 x 10~3 s and still use the 9-species 23-
reaction mechanism [39].

With the previous 1D example, it was shown that the deter-
ministic solution based on a grid of 3200 points in the 4 m long
domain recovers the correct shock position in Fig. 14 (left). There-
fore, we generate a reference solution in 2D by the deterministic
method using a fine grid with 3000 x 1000 points and a fixed tiny
timestep of At =2.5 x 1078 s. A set of under-resolved uniform grid
and timestep is also considered, i.e. 150 x 50, At =2.5 x 107 s.
Figure 15 displays the density distributions along with locations
of the detonation wave at different times in three solutions. In
comparison with the reference solution, the SPRANTS method gives
reasonable locations of the reacting front at all times. Due to the
low resolution used in SPRANTS, detailed characteristics presented
in the reference solution such as the triple points, slip lines, small
vortices and peak values of density are diffused while the overall
flowfield including the profile of reacting front has been correctly
captured. For the deterministic method with the same resolution, a
spurious weak detonation wave can be observed with a maximum
error of nearly 10% of the domain length within only 1 ms.

4. Conclusions

A new operator splitting method for simulating chemically re-
acting flows, especially for capturing stiff detonation waves in
under-resolved conditions has been developed. Two procedures
based on operator splitting are included: for the convection step,
any shock-capturing scheme can be used; for the reaction step,
the multi-species multi-reaction ODE system in the source terms
is further split in a reaction-by-reaction manner. Each reaction ei-
ther proceeds a timestep forward or is interrupted according to
a local random temperature rather than a deterministic process
with growing error accumulation. A wide range of numerical ex-
periments including not only simple model kinetics but also real-
istic nonequilibrium chemistry such as the temperature-dependent
finite-rate hydrogen-air combustion are considered in 1D and 2D
flows, demonstrating the following properties:

1. Mass conservation and positivity of species concentration can
be guaranteed by the reaction-split ODE solver, which is almost
unconditionally stable due to its using either analytical or ap-
proximate exact solutions.

2. The proposed SPRANTS method can effectively predict the cor-
rect propagation of discontinuities as well as the overall flow-
field information in under-resolved conditions, for both model
kinetics and realistic finite-rate nonequilibrium kinetics.

3. Compared with the deterministic method using CHEMEQ2, the
present SPRANTS method exhibits better computational effi-
ciency as it can correctly capture the detonation wave with
a larger timestep on coarse grids for nonequilibrium reactive
flows.

4, By adding a drift term into the random temperature sampling,
SPRANTS can recover the deterministic solution as the resolu-
tion improves with decreasing stiffness.

5. The dimension-independent algorithm for the source terms
makes further 3D extension of the proposed method straight-
forward.

Employing high-order low-dissipation schemes for the present
method is a subject of future research.
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Appendix A. Analytical solutions to some simple forms of a
one-way reaction equation

For the simplest form of a reaction such as A — products,
we have an ODE for the molar concentration [A], as % = —k[A],
with k being the rate constant and initial value of [A]y at t = tg.
This ODE written in terms of molar concentration is equivalent to

Eq. (11) using density and mass fraction since [A] = V"’,—: = A Its

A
solution by separation of variables is [A] = [A]pe (o).
For the reaction form

A+ B — products, (A1)

we have the ODE system as

d[A] _ d[B]

=2 = 222 = —k[A][B]. A2
i i k[A][B] (A2)

This means that d[A] = d[B] holds for any time interval dt and thus

[A] = [Alo = [B] - [Blo- (A3)

Substituting relation (A.3) into Eq. (A.2), we have % =

—k[A]([A] + App), where Aup = [B]g — [A]p, leading to the solution
of [A] as

A .
e L
= 0 .

W, otherwise.
Reaction 2A — products is a special case of reaction (A.1) and
the solution is [A] = —————.
e solution is [A] k(f—fo)-*—ﬁ
For a third-order reaction A+ B+ C — products, we also
utilize the relations [A]— [A], = [B]—[B]o =[C]-[C], and per-
form separation of variables to obtain an implicit solution for

[Alo #[Blo #[Clo, i.e.

AL GO\ TE (AL B )T e
[A] + Axc [Aly [A]+ Aas [A]y ’

Only for [A]y=[B]p=[C], or for the special reaction
3A — products, an explicit analytical solution exists, i.e.

A= | —2A—.
(Al ﬁ+2k(t—t0)
o

After the determination of the new state of the reactant species
[A], states of the remaining species including all the products and
other reactants can be updated by mass conservation in Eq. (20).
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In this study, a species-clustered integrator for chemical kinetics with large detailed mechanisms based
on operator-splitting is presented. The ordinary differential equation (ODE) system of large-scale chemical
kinetics is split into clusters of species by using graph partition methods which have been intensely stud-
ied in areas of model reduction, parameterization and coarse-graining, e.g., diffusion maps based on the
concept of Markov random walk. The definition of the weight (similarity) matrix is application-dependent
and follows from chemical kinetics. Each species cluster is integrated by the variable-coefficient ODE
solver VODE. The theoretically expected speedup in computational efficiency is reproduced by numerical
experiments on three zero-dimensional (0D) auto-ignition problems, considering detailed hydrocarbon/air
combustion mechanisms at varying scales, from 53 species with 325 reactions of methane to 2115 species
with 8157 reactions of n-hexadecane. Optimal clustering weighing both prediction accuracy (for ignition
delay and equilibrium temperature) and computational efficiency is implied with the clustering number
N = 2 for the 53-species methane mechanism, N = 4 for the 561-species n-heptane mechanism and N = 8

for the 2115-species n-hexadecane mechanism.

© 2019 Published by Elsevier Inc. on behalf of The Combustion Institute.

1. Introduction

Gasoline, diesel and jet fuels, particularly those derived from
petroleum sources, are composed of hundreds of components [1].
As the number of hydrocarbon species grows, so does the di-
mensionality of kinetic mechanism to model hydrocarbon oxida-
tion. For example, the detailed mechanism for methyl decanoate, a
biomass fuel surrogate, consists of 3036 species and 8555 reactions
[2,3]. For the accurate prediction of combustion processes such as
ignition, extinction and flame propagation, the efficient solution of
large-scale detailed chemical kinetics is a key [4], limited, however,
by the current computing power. The above-mentioned mechanism
is time consuming even for 0D simulations [3], no matter whether
using explicit or implicit solvers. This limitation therefore moti-
vates to the development of mechanism reduction methods, e.g.,
directed relation graph (DRG) based methods [5-8], etc.

Moreover, numerical stiffness due to large differences of reac-
tion timescales exists, so that the high-cost implicit ODE solvers,
e.g., VODE [9] and DASAC [10], requires robust use of reasonably
large timesteps [4]. Since Jacobian evaluation and factorization in
implicit solvers dominate the computational cost for compressible

* Corresponding author.
E-mail addresses: jianhang.wang@tum.de (J.-H. Wang), shucheng.pan@tum.de (S.
Pan), xiangyu.hu@tum.de (X.Y. Hu), nikolaus.adams@tum.de (N.A. Adams).

https://doi.org/10.1016/j.combustflame.2019.03.036
0010-2180/© 2019 Published by Elsevier Inc. on behalf of The Combustion Institute.

and reactive CFD [11], the CPU time scales with the number of
species in the mechanism as O(N2) to ©O(N3) with dense matrix
operations [12,13].

For general multi-dimensional reactive flows, operator splitting
has been widely used to separate chemistry integration from that
of transport processes to reduce computational efforts [14-18]. Xu
et al. [4] and Gao et al. [19] adaptively separate the dynamic sys-
tem into a fast operator including only fast reactions and a slow
operator including slow reactions and the transport process, with
each part being imposed of an implicit solver and a more effi-
cient explicit solver, respectively. For the chemical dynamics only,
Nguyen et al. [20] aiming at preserving mass conservation and
positivity solves each chemical reaction after splitting the multi-
reaction system into decoupled processes. Pan et al. [21] introduce
the graph/network partition into large-scale stochastic and mass
concentration based chemical networks.

The quadric/cubic scaling of CPU time to mechanism size us-
ing implicit ODE solvers implies that the computational cost of
solving a sequence of smaller subsystems ought to be much less
than that of solving the entire system in one step. Therefore, un-
like the above use of operator splitting in decoupling two or more
physical processes, we start with splitting the large-scale chemical
kinetics in terms of the involved species. Once the participating
species of the large mechanism have been clustered into subsets
of a smaller and equal size, an implicit solver can be applied to
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each group with significantly reduced matrix dimension. To mini-
mize the splitting error, diffusion maps [22-24] are utilized to ana-
lyze the pairwise interaction relations of species by constructing a
weight or similarity matrix of chemical kinetics, such that strongly
interacting and mutually dependent species can be clustered into
the same group. To partition the species into equal clusters, a bal-
anced k-means algorithm [25] is employed.

The paper is organized as follows. In Section 2, we introduce
the ODE system of chemical kinetics and formulate the species-
clustered solver illustrated by a simple model example. Results
from the proposed method for three detailed mechanisms in vary-
ing scales are presented and discussed in Section 3, considering the
0D auto-ignition problem at constant-volume and adiabatic condi-
tions. Conclusions are drawn in Section 4.

2. Methodology
2.1. Operator splitting by species for chemical kinetics

The ODE system for chemical kinetics under adiabatic and
constant-volume conditions can be expressed as
dy; ;.
i _ @1, N, (1)
dt P
where y; and w; denote the mass fraction and the total produc-
tion rate of species i, respectively, in a mechanism consisting of Ng
species and N; reactions. Each reaction can be written as

N Ny
YoviXie= Y X =1, N, 2)
i=1 i=1
where vjfi and vj?l. are the stoichiometric coefficients of species i
appearing as a reactant and as a product in reaction j. The total
production rate of species i in Eq. (1) is the sum of the production
rate from each single elementary reaction

: TN L Y R
b =W, Y (b — vl "JH[W,] —I<j]—[[Wl] , 3)
j=1 1=1 1=1

with k]f and k’j’. denoting the forward and backward reaction rates
of each chemical reaction, and W; being the molecular weight of
the ith species and the partial density p; = y;p. With fixed total
density and constant specific internal energy, the equation of state
(EoS) for an ideal gas mixture can be used to determine the evolu-
tion of mixture temperature and thus to close the system.

The solution vector ® = {yy,...,yn}7 at time level n is inte-
grated through the above ODE system for one timestep of At with
the implicit solver VODE [9] to obtain

O = R (D). (4)

The operator R represents the time integration by VODE. Upon op-
erator splitting by species, we obtain

Q" = Ror(P]) o Rac (D) -+ 0 Rar (PR). (5)

corresponding to the Lie-Trotter splitting scheme [26], where &,
denotes the mass fractions of the species clustered in subset S;, out
of N subsets in total. Clustering of species in each subset obeys

¢:{¢17-~~7¢N}T7

6
S=Ul S SinSj =0 if i+ j. (6)

Each subset of species cluster should have no overlap with oth-
ers, and an almost equal number of species in each subset is as-
sumed varying by at most one species, which requests a balanced
partition/clustering algorithm [25]. The extension to higher-order
splitting of Strang [27] is straightforward but inevitably more time

consuming. Recalling that the scaling of computational cost to the
number of species or the size of the kinetic mechanism involved
using an implicit solver such as VODE is [4]

tch ~ O(st) to O(Ns), (7)

the total cost after species splitting can be reduced to

2 3
tepy ~ 0(%) to O(ﬁi) (8)

assuming equal computational consumption for each subsystem af-
ter species-splitting. A large mechanism consisting of ten thousand
species, e.g., split the system into ten clusters with the Lie-Trotter
scheme, results in a computational speedup of ten to a hundred
times, without the need for additional sparse matrix techniques
[12,13,28].

The essence of operator splitting by species for chemical ki-
netics lies in clustering species into subsets, each corresponding
to a sub-ODE-system to be integrated by VODE or other implicit
solvers. The merits of operator splitting by species are improved
speedup of computational efficiency without changing the implicit
solver, fast convergence and numerical stability [21].

2.2. Graph-based species clustering

A chemical reaction system with multiple species and reactions
can be translated to a bi-partite graph [29], in which two sets of
nodes represent the chemical species and reactions. Herein, we
simply consider a finite graph consisting of the chemical species
only and the non-linear coupling between pairs of species through
reactions is abstracted as undirected edges linking every two nodes
of species. For the sake of illustration, we consider Ns =6 six
species, {A, B, C, D, E, F}, and six first-order one-way reactions, i.e.

I k k
ASC B3C C3B,
Ky ks ke ®)
D—-C E-=>D, F>D,
where kq, ..., ke are constant reaction rates. The exact solution for

this problem can be easily obtained using symbolic computations
of MATLAB® [30].

First we construct the graph of species, Fig. A.1(a). We may have
two different clusterings I and II with two subsets (N = 2). Clus-
tering I in Fig. A.1(b) is obtained by cutting off the link between
species C and D. The strong couplings within clusters {A, B, C} and
{D, E, F} are preserved. Upon clustering loosely coupled {A, E, F}
together and leave the rest to compose the other cluster, we ob-
tain Clustering II. The distance in the graph between (A, E) or (A,
F) is remote as they are separated by two other species. The dif-
ference of the two clusterings also reflects in the rearranged Jaco-
bian matrices by the order of splitting and clustering as shown in
Fig. A.1(c) and (d). We can see that for Clustering I, when solving
the cluster of {A, B, C} first, only the effect of species D is con-
sidered as constant since k4 is not within the sub-Jacobian matrix.
When solving the other cluster {D, E, F} subsequently, species A, B
and C have no effect due to the corresponding zero entries. In to-
tal, the splitting error is attributed to only one element in the Jaco-
bian, i.e. the k4 block (red color) in Fig. A.1(c). For Clustering II, the
solution of the first cluster {A, E, F} introduces no splitting error,
whereas errors will occur when solving the cluster {B, C, D}, due
to first-order approximation of k;y, for the production of species
C and ksyg + kgyr for the production of species D.

Numerical tests, in Fig. A.2, show that Clustering I agrees quite
well with the exact solution, while Clustering II underestimates
both the mass fractions of species C and D. This observation is in
agreement with the previous discussion about operator splitting.

Given a prescribed number of clusters N, there are many pos-
sible clustering combinations. One simple strategy is to cluster the
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Fig. A.1. Reaction system example for species clustering. (a) Each node represents one species in {A, B, C, D, E, F}, and the edge, e.g., e(A, C), indicates that linked two species
participate in at least one reaction as reactant or product; (b) two equal-sized clusterings are easily obtained as ({A, B, C}, {D, E, F}) and ({A, E, F}, {B, C, D}) by cutting off
corresponding edges; (c) rearranged Jacobian matrix in the order of Clustering I; (d) rearranged Jacobian matrix in the order of Clustering II.

species according to species indices appearing in the mechanism.
Another very promising strategy is to cluster all ‘close’ nodes in the
graph into a subset, corresponding to having species with strong
interactions in the same cluster. In this paper, we introduce dif-
fusion maps [22-24] as a non-linear technique for dimensionality
reduction, data set parameterization and clustering, to serve the
purpose.

Let G = (2, W) be a finite graph of n nodes, where the weight
matrix W = {w(x, y)}x yeq is symmetric and component-wise pos-
itive [23]. The definition of weight matrix needs to reflect the de-
gree of affinity of nodes x and y. Diffusion maps start with a user-
defined weight matrix and utilize the idea of Markov random walk
to describe the connectivity of nodes through a diffusion process.
For technical details of diffusion maps, we refer to [22-24].

For the above reaction system, we define, with the help of
species graph in Fig. A.1(a), the weight matrix W by

max(k;), if x and y both participate in reaction j,
€, otherwise,

wx.y) = {
(10)

where € takes a small positive value to avoid zero entries, e.g., € =
10~'2, The diagonal elements in the weight matrix, w(x, x), can be
defined as

W(x, X) = Max(w(x, y)y.). (11)

In combination with the reaction rates given in Fig. A.2, the weight
matrix obtained by the above definition is shown in Fig. A.3. Using

diffusion maps to analyze the graph based on our defined weight
matrix, we can project the set of species into a diffusion space
with at most n dimensions, where the pairwise distance reveals
the connectivity between two species. In Fig. A.3, it is shown that
the species are projected onto a x;x, plane using the first two
dimensions of the diffusion space. We can see that species A, B
and C almost collapse into one point and locations of species D,
E and F in the x; direction (which is also the first and domi-
nant dimension) are also very close to each other. Their coordi-
nates in the second dimension separate the three species. How-
ever, the centroids of subset {A, B, C} and subset {D, E, F} are
far from each other. Accordingly, a straightforward clustering us-
ing the k-means algorithm (setting k = N = 2) can be easily ob-
tained, i.e. ({A, B, C}, {D, E, F}). This clustering from diffusion maps
is the same as the previous Clustering I, indicating that it is the
optimal case of two clusters for the reaction system above with
minimum splitting errors. In Fig. A.2, we can also observe that ex-
act mass conservation is violated by operator splitting with first-
order convergence rate using the Lie-Trotter scheme. However,
the optimal Clustering I has a significantly lower mass conserva-
tion error than Clustering II. An additional treatment for the cor-
rection of mass-conservation errors as in [11] can be applied. In
this illustrative example, it should be noted that the underlying
fact of k4 =1 being quite small benefits Clustering I through the
weight matrix W in Eq. (10). If k4 becomes larger, both the previ-
ous manual clustering and the current diffusion maps based clus-
tering would be different, with the coupling between species C
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Fig. A.3. Weight matrix of diffusion maps for the reaction system (left); embedding and clustering of species in 2D diffusion space (right).
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Fig. A.4. Calculated temperature and mass fraction histories for methane/air ignition delay problem in two initial conditions: left column (Case 1) and right column

(Case 2).

and D to be preserved and both being clustered into the same
subset.

For much more complicated realistic chemical kinetics espe-
cially involving fuel combustion mechanisms, reaction rates are not
always constant but depend on temperature or even pressure of
the mixture. This normally can be expressed by the finite-rate Ar-
rhenius model [31,32] and thus the weight matrix as above should
also take into account the varying reaction rates with temperature.
Rather than sampling at a single temperature, e.g., the initial tem-
perature of an auto-ignition problem of combustible gas mixtures,
we take many temperature samples in order to construct a repre-
sentative weight matrix. The derived clustering by diffusion maps
based on such a weight matrix can be stored and used for other
conditions as long as the same mechanism is involved. In such
way, the determination of the weight matrix as well as the clus-
tering procedure can be treated as a preprocessing step instead
of costly on-the-fly clustering. Since multiple scales of the abso-
lute reaction rates exist, usually spanning several orders of mag-
nitude, logarithmic scaling of the reaction rates can be performed
to avoid underestimating the slow reactions. Also, normalization in
each row of the matrix relative to the diagonal species is carried
out as

wX.y)

wixy) = SE,

Table 1
Numbers of species and reactions in detailed
mechanisms.
No. of species  No. of reactions
CH4 53 325
n-C;Hig 561 2539
n-CigHsa 2115 8157

and

w(x,y) = max(w(x,y), w(y. x)) (13)

for all species pairs is further checked to guarantee the symmetry
of weight matrix in the diffusion maps.

3. Numerical results and discussion

In this section with numerical experiments, we consider three
detailed mechanisms for hydrocarbon fuel combustion: the GRI-
Mech 3.0 mechanism for methane (CH4) [33], the n-heptane
(n-C;Hq6) mechanism (Version 2) [34,35], and the n-hexadecane
(n-C4gH34) mechanism [36]. The dimensions of three mechanisms
are listed in Table 1, exhibiting increasing numbers of species and
reactions as well as growing computational complexity of time
integration. Zero-dimensional auto-ignition of the fuel/air mixture
under adiabatic and constant-volume conditions is taken into
consideration.
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Table 2
Initial conditions for methane/air mixture.

CH4-0,-Ar molar ratio  Temperature (K) Pressure (atm)

Case 1 9.1-18.2-72.7% 1500 1.8
Case 2 1700 2.04

3.1. Methane/air auto-igniton

The first example considers the ignition delay problem of
methane/air mixture. Two different initial conditions [37] are con-
sidered as in Table 2. For Case 1, the computation is carried out
until t = 0.001 s and the timestep size is fixed at At =1x 107 s
(this timestep size is also adopted for other cases and is compara-
bly large for compressible and reactive CFD analysis). The compu-
tation of Case 2 is until t =2 x 10~4 s. CHEMEQ2 [31] as a popular
explicit ODE solver for chemical kinetics is also employed here for
reference, together with the implicit solver VODE. In CHEMEQ?2,
the convergence parameter of the predictor-corrector method
is 1 x 104, In VODE, the relative and absolute error thresholds
(RTOL and ATOL) are 1 x 107> and 1 x 1013, respectively. Since
the dimension of the methane mechanism is relatively small, we
cluster the 53 species into two subsets, and each cluster of species
is integrated by VODE by operator splitting as in Eq. (5). Accuracy
and convergence of the splitting method using species clustering
are examined by this example. Benefits of computational efficiency
from operator splitting by species clustering is to be tested by the
following two mechanisms of much larger dimensions. As an im-
portant parameter to measure the accuracy of mechanism and ODE
solver, ignition delay times, tg,, for the two cases can be referred
to [37], i.e. tjg; = 666 ms for Case 1 and tjy, = 110 ms for Case 2.

To validate operator splitting by species, the results obtained by
CHEMEQ2 and VODE with/without species clustering are shown in
Fig. A.4, where VODE-1 is without species clustering (that is, all
the species are solved in a single set and a single step) while both
VODE-2 and VODE-2dm partition the species into two clusters for
operator splitting by setting N = 2. The difference of clustering is
that VODE-2 simply clusters the species in accordance with the
species’ index in the mechanism (e.g., species of odd or even in-
dexing numbers are clustered in different subsets) while VODE-
2dm utilizes diffusion maps for species clustering based on the
weight matrix defined in Egs. (10)-(13), see Appendix A. In gen-
eral, clustering based on the indices of species can be readily ob-
tained by

cluster 1: if mod(i,N) =1,
cluster 2 : if mod(i,N) = 2,
Speciesie 4 --- (14)
cluster N—1: if mod(i,N)=N-1,
cluster N : if mod(i,N) =0,

where i denotes the ith species in the mechanism and N is the
number of clusters by partition. It can be seen that all four solu-
tions give the correct ignition delay times in two cases. For Case
1, VODE-2 overestimates the temperature slightly before it reaches
an equilibrium state while VODE-2dm has nearly the same temper-
ature with both CHEMEQ2 and VODE-1. The deficiency of VODE-2
solution is larger in Case 2, which also occurs at the end of the
ignition process. Different predictions by VODE-2 and VODE-2dm
can be attributed to the splitting error: with diffusion maps, the er-
ror in VODE-2dm is smaller than that in VODE-2. This can be illus-
trated by embedding the clustered species into a diffusion space,
as shown in Fig. A.5. As the clustered species are projected into
the 3D diffusion space, we can clearly see that the two clusters of
species are separated from each other using diffusion maps, which
indicates that each cluster is able to preserve the close interactions
between coupling species. In particular, for the VODE-2dm cluster-

clusterl e
cluster2 =

clustering by diffusion maps

clusterl e

Clustering by index ~ clusterz. =

Fig. A.5. Embedding with first three diffusion coordinates of species for methane
mechanism.

ing, the first species H and the last species CH3CHO are within the
same cluster as the 13th species CHs, due to the high activity of H
which is involved in composition or decomposition reactions with
hydrocarbon species such as

O + C;Hs < H + CH3CHO,
H + CH3(+M) <= CH4(+M).

Also, playing a critical role in the mechanism (as it participates in
a large number of reactions), H is located at the center of the diffu-
sion map among all the species. On the other hand, species such as
NO and NH are clustered into the other subset because they mainly
participate in nitrogen-related reactions, with weaker interactions
with hydrocarbon species. In contrast, H is clustered into the NH
and NO group in the VODE-2 clustering by index. The obtained two
clusters merge each other in the diffusion map, and some pairs of
two species with short distances are divided into different clusters,
leading to larger splitting error with VODE-2 than with VODE-2dm.

We examine convergence of the splitting method by varying
the fixed timestep adopted in Fig. A.6. It can be seen that as the
timestep decreases the evolution of temperature and mass frac-
tions approach the corresponding profiles at the shortest timestep:
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Fig. A.6. Calculated temperature and mass fraction histories for methane/air ignition delay problem by species clustering using varying timesteps in two initial conditions:

left column (Case 1) and right column (Case 2).

Table 3
Initial conditions for n-heptane/air mixture.

n-C7Hy6:0,2:N; (mole)  Temperature (K)

Case 3 0.09091:1:3.76 1250 10
Case 4 50

Pressure (atm)

spikes in the temperature profiles with large timesteps gradually
disappear and the jumps of mass fraction, ycy, tend to sharpen due
to sudden consumption during the ignition process. The timestep
size of At =1x 1077 s is verified to be sufficient for integrating
the chemical kinetics correctly.

3.2. n-Heptane/air auto-igniton case

The second example considers the n-heptane/air combustion
mechanism. Two different initial conditions [38] are considered
as in Table 3. For Case 3, the computation is carried out until
t=4x10"* s and the timestep size is fixed at At =1x 1077 s.
The computation for Case 4 is until t =1.1 x 104 s. Without a
prior knowledge of the number of clusters which is most suitable
and efficient for computing this large-scale mechanism, we choose
to split the species by eight clusters using diffusion maps first.

In Fig. A.7, the species clustered VODE result using diffu-
sion maps is compared with that of simple clustering using

Eq. (14) by setting N = 2,4 and 8, respectively, and also the re-
sults by CHEMEQ2 and non-split VODE. Calculated ignition de-
lay times observed from the temperature histories of Case 3 and
4 by CHEMEQ2, VODE-1 as well as VODE-8dm agree well with
each other and also with the numerical results in Ref. [38]. Using
the simple clustering algorithm instead of diffusion maps, VODE-
2, VODE-4 and VODE-8 obtain the correct ignition delay time for
Case 3 while they all severely over-predict the delay of ignition
for Case 4. Although the ignition delay time is not very sensitive
to the species clustering in Case 3, the post-ignition equilibrium
state appears to depend strongly on the quality of the clustering,
as we can see that both VODE-2 and VODE-4 overestimate the
equilibrium temperature incorrectly and VODE-8 induces an incor-
rect spike before the temperature reaches the equilibrium state,
which is similar with the example of methane combustion. For
Case 4, extremely high equilibrium temperatures nearly 4000 K
and higher are predicted by VODE-2 and VODE-4, and tempera-
ture spike also can be seen for the VODE-8 solution. To explain
the over/under-estimation of the equilibrium temperature as well
as the delayed ignition times resulted from simple clusterings,
we refer to the time-dependent total mass conservation errors in
Fig. A.8. As previously stated in Fig. A.2 for the illustrative ex-
ample, species-clustered splitting might violate total mass conser-
vation because it will inevitably cut off some pathways/channels
within coupled species. It is observed that mass conservation
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CPU times (s) for clusters at different clustering number N for Case 4.
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Fig. A.8. Total mass conservation error (| Y_y; — 1) histories for n-heptane/air ignition delay problem in two initial conditions: left column (Case 3) and right column (Case

4).

errors are very small before ignition, and as ignition triggers
them to increase, mass conservation errors reach a relatively high
plateau after ignition. We also observe that VODE-8dm yields
obviously less conservation errors compared with other simple
clusterings, corresponding to less splitting errors. In comparison,
CHEMEQ2 produces orders of magnitude smaller errors than the
present VODE-8dm and VODE-1 preserves the mass conservation
up to roundoff errors (not shown in the figure). Therefore, although
the proposed VODE-8dm outperforms other simple clusterings by
largely reducing the splitting errors, there is room for further
improvement.

In Fig. A.9, we present the species embedding with the first
three coordinates, leading to eight clusters of species being scat-
tered but compact in the diffusion space. In comparison, the sim-
ple clustering by indices produces disorder species in the diffusion

space. The quality of such a simple clustering is therefore expected
to be poor, as shown in Fig. A.7. Since the weight matrix is kept
unchanged for the same mechanism, the diffusion space contain-
ing all the species is also the same and independent of the number
of clusters one wants to partition. It is straightforward to further
combine the close subsets (every two or four) into a larger cluster
so that clustering by N =4 and N = 2 can be obtained.

Next, we compare the results denoted by VODE-2dm and
VODE-4dm in Fig. A.10. It can be seen that for both cases, the
diffusion-map based results all capture the correct ignition delay
time and the equilibrium temperature. In particular, the VODE-
2dm resu