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Abstract

This cumulative thesis is devoted to the efficient simulation of compressible chem-
ically reactive flows with multiple species and reactions being involved. In addition,
the mass-fraction based reactive Euler equations with multiple species can be used to
describe two-phase flows with multiple ’components’ (corresponding to ’species’) in a
diffuse-interface manner, with suitable equations of state or thermodynamical mod-
els being employed. Three numerical methods towards computational high-efficiency
solution of the above equation system are proposed:

1. A new operator splitting method is proposed for capturing stiff and nonstiff
detonation waves, balancing numerical accuracy and computational efficiency.

2. For the computationally expensive temporal integration of ordinary differen-
tial equation (ODE) system of chemical kinetics with detailed mechanisms, a
species-clustered operator-splitting scheme is developed by using the idea of
optimal partitioning.

3. The remaining flow convective terms are considered by using a partial character-
istic decomposition scheme to overcome the numerical challenge of quadratically
increasing dimensionality of the convective flux eigensystem as the number of
species grows in the classical high-order finite difference (FD) framework.

To solve the multi-species Euler equations with chemical reaction source terms,
lots of efforts have been placed upon using less grid points and larger timesteps to
achieve higher efficiency with little loss of accuracy, which usually works well for non-
reactive flow simulations. For chemically reactive flows, however, especially when the
chemical kinetics is stiff compared with the fluid dynamics, under-resolution in both
space and time would lead to the spurious propagating speed of reacting fronts. This
well-known numerical phenomenon arises for classical shock-capturing schemes either
in the FD or finite volume (FV) framework, and can be ascribed into the inevitable
introduction of numerical dissipation or viscosity. In the first part of this thesis, we
are trying to make correct use of the inherent numerical dissipation by (i) appealing to
the idea of random activation or deactivation of reaction source terms in combination
with (ii) operator splitting upon chemical reaction channels/pathways. As a result,
we develop a split random time-stepping method for chemically reacting flows with
general nonequilibrium chemistry in a unified manner, regardless of stiff or nonstiff
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source terms and under- or well-resolved conditions in space and time. Extensive
numerical experiments demonstrate the effectiveness and robustness of our method.
For nonstiff problems, the proposed random method recovers the accuracy of general
operator splitting methods by adding a drift term.

Considering the form of reactive Euler equations, operator splitting is usually
used to decouple flow convection from the chemical reaction process, with each part
being solved separately and step by step. The computational cost of solving the ODE
system of chemical kinetics often exceeds a lot that of calculating the cell-face or half-
point convective fluxes, and the former overwhelmingly dominates the overall CPU
time in general situations. The CPU time for solving these ODEs will drastically
grow as the number of species in the kinetic mechanism increases. In particular,
when the popular implicit ODE solver such as the variable-coefficient ODE solver
(VODE) is used, its CPU time scales with the number of species as O(N2) to O(N3)

with extensive dense matrix operations. As the second part of work in this thesis, a
species-clustered integrator based on operator splitting is thus proposed to improve
the computational efficiency. The ODE system of large-scale chemical kinetics is
split into clusters of species by using graph partition methods. Definition of the
weight (similarity) matrix in graph partition methods is application-dependent and
follows from chemical kinetics. Each species cluster is integrated by VODE. The
theoretically expected speedup in computational efficiency is reproduced by numerical
experiments on three zero-dimensional (0D) auto-ignition problems at varying scales
from 53 species with 325 reactions of methane to 2115 species with 8157 reactions of
n-hexadecane.

For the calculation of the remaining convective terms, FD schemes outperform
FV schemes from the aspect of high-order spatial accuracy such that many high-
order low-dissipation FD schemes employing characteristic decomposition are widely
used. A challenge for the computational efficiency of such schemes is the quadrati-
cally increasing dimensionality of the convective flux eigensystem as the number of
species increases. In the third part of this thesis, we present a remedy by splitting
the eigensystem into two parts. One is the gas mixture part, which is subjected to
the established characteristic decomposition schemes for single-fluid Euler equations.
The other part corresponds to the species partial mass equations, which can be solved
directly in the physical space as the decoupled sub-eigensystem for the species part
is composed of two diagonal identity matrices. This property relies on the fact that
species are advected with the same convective velocity. In this way, only the gas
mixture part requires a characteristic decomposition, resulting in a much higher ef-
ficiency for the convective-flux calculation. Besides, to cure the inconsistency due
to splitting, a consistent update of species mass fractions is proposed. Non-reactive
and reactive test cases demonstrate that the proposed scheme, without deteriorating
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high-order accuracy, successes in reducing the computational cost.





xi

Acknowledgements

First and foremost, I would like to express my deep and sincere gratitude to Prof.
Nikolaus A. Adams and PD Dr. Xiangyu Hu for their concurrent supervision and
consistent encouragement during my PhD study. Xiangyu is always available to ap-
peal to once I have questions. I am very grateful to his advising this work thoroughly,
inspiring me with new ideas and encouraging me when I was frustrated. I am glad
that our discussions on a broad range of research topics finally lead to some scien-
tific publications. I greatly appreciate Prof. Adams for providing feedback to any
research progress through weekly group meetings and email exchanges, for carefully
revising my papers and allowing me to conduct researches fulfilling my personal in-
terests. Their great visions over various disciplines, in-depth understanding of fluid
mechanics & physics, strong passions into scientific research benefit me in this work
I have done and surely the future career I will embark on. I also would like to thank
Prof. Oskar J. Haidn for taking over the chair of my doctoral examination, and
Dr. Chaouki Habchi from IFPEN for advising and reviewing my work as a thesis
committee member.

It is always a pleasure to work with my collaborators in the Chair of Aerody-
namics & Fluid Mechanics (AER), Department of Mechanical Engineering, Technical
University of Munich (TUM), including Luhui Han, Shucheng Pan, Chi Zhang, Fu
Lin, Xiuxiu Lyu, Zhe Ji, and also Dr. Stefan Adami and the outstanding ”Nanoshock”
group members (Jakob Kaiser, Aleksandr Lunkov, Vladimir Bogdanov, Nils Hoppe,
etc). My research vision has been greatly broadened and friendship among us has
been built up tightly through all the collaboration.

In addition, I truly enjoyed my time as a PhD candidate in AER, interacting with
talented and friendly colleagues here. I wish to extend my gratitude to other members
of our chair for their helpful discussions on the research and accompany during the
study: Yujie Zhu, Zheng Fang, Zhaoguang Wang, Dr.Bian Xin, Dr. Rongzhong
Huang, and many others. Particularly, I would like to thank the previous and current
staff members in this chair, Amely Schwörer, Li Su, Angela Grygier, Dr. Christian
Stemmer, Liu Hua and many others, for providing necessary equipments, maintaining
computer systems, managing documents, and other services.



xii

I feel deeply indebted to the European Union Marie Skłodowska-Curie Innova-
tive Training Networks (ITN-ETN) project for the financial support of my research
in TUM. Getting involved in extensive international exchanges and meetings with
other IPPAD project members, my knowledge was refreshed from many automobile
industry partners, concerning the development of next-generation Diesel engines, and
my understandings into experimental fluid mechanics and computational fluid dy-
namics are also deepened. A lot of thanks should go to our coordinator Prof. Manolis
Gavaises, School of Mathematics, CITY University of London, and the project man-
ager Nikolas Chatziarsenis, for their inspiration, consideration and assistance all the
way to date. Colleagues in the IPPAD project such as Aaron Rowane in Afton Chem-
ical, Vikrant Mahesh in FAU, Carlos Rodriguez in CITY, Songzhi Yang in IFPEN
and Xinda Zhu in Lund University and many others are also acknowledged.

My gratitude also goes to many other friends in Europe and China. I would like
to give special mention to Deyu Huang, an interesting and nice friend from Taiwan
and majoring in Opera and Vocal Performance in Italy, Louis Zhao and Jerry Zhang,
two true friends and also TUM PhD candidates at different departments, and Yuanze
Chen who obtained his master degree in TUM but is digging data & gold back in
China. Dr. Jilin Hu, one of my earlier graduate schoolmates in SJTU and lifted his
doctorate title in Denmark early this year, came to see me in the first Easter of my
residence in Germany to relieve my initial homesickness, and he is currently working
in the mid-east. Dr. Yang Li, one of my best high-school-mates, sharing with me his
struggles as well as happiness in Shanghai and HUAWEI, continuously cares about
my overseas life and career prospects. All the best to all of them.

An extremely special love is stressed here upon my precious girlfriend, Menglu
Li (Laura Lee). From the very beginning of my flying to Munich from Shanghai via
Doha where we met each other in the airport to this very moment of organizing my
countless thanks, she is the unique one by my side daily and nightly. I cannot wait
having a converging happy life together with her in the upcoming future.

Last but not the least, I am writing down my unreserved and complete gratitude
to my parents, to whom I dedicate this dissertation. Without their endless love,
priceless supports and great expectation throughout my growing-up and study, this
thesis would never have been accomplished. 最后要毫无保留地谢谢我的父母，此文
也正是献给他们。没有他们一如既往的爱、支持和期待，本文无法完成如此。



xiii

Contents

Declaration of Authorship iii

Abstract vii

Acknowledgements xi

1 Introduction 1
1.1 Multi-component flow system . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Previous numerical methods . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2.1 Numerical methods for spatial discretization . . . . . . . . . . . 2
Finite volume formulation . . . . . . . . . . . . . . . . . . . . . 2
Finite difference formulation . . . . . . . . . . . . . . . . . . . 2

1.2.2 Solvers for ordinary differential equations of chemical kinetics . 3
1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Governing Equations 7
2.1 Multi-species reactive Euler equations . . . . . . . . . . . . . . . . . . 7

3 Numerical Methodology 9
3.1 Convection operator – calculation of flux terms . . . . . . . . . . . . . 9
3.2 Reaction operator – temporal integration of chemical ODE system . . 14

3.2.1 A species-clustered splitting scheme with the implicit solver
VODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Operator splitting by species . . . . . . . . . . . . . . . . . . . 15
Graph-based species clustering . . . . . . . . . . . . . . . . . . 16

3.2.2 A split reaction-by-reaction explicit solver . . . . . . . . . . . . 21
Treatment for mass conservation . . . . . . . . . . . . . . . . . 23
Positivity-preserving treatment . . . . . . . . . . . . . . . . . . 23

3.3 Time discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24



xiv

4 Summaries of publications 25
4.1 A split random time-stepping method for stiffand nonstiff detonation

capturing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.1.1 Summary of the publication . . . . . . . . . . . . . . . . . . . . 25
4.1.2 Individual contributions of the candidate . . . . . . . . . . . . 26

4.2 A species-clustered splitting scheme for the integration of large-scale
chemical kinetics using detailed mechanisms . . . . . . . . . . . . . . . 26
4.2.1 Summary of the publication . . . . . . . . . . . . . . . . . . . . 26
4.2.2 Individual contributions of the candidate . . . . . . . . . . . . 27

4.3 Partial characteristic decomposition for multi-species Euler equations . 27
4.3.1 Summary of the publication . . . . . . . . . . . . . . . . . . . . 27
4.3.2 Individual contributions of the candidate . . . . . . . . . . . . 28

5 Discussion and outlooks 29
5.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.2 Outlooks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Bibliography 33

A List of publications 43
A.1 Peer-reviewed journal papers . . . . . . . . . . . . . . . . . . . . . . . 43
A.2 Conferences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

B Original journal papers 45
B.1 Paper I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
B.2 Paper II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
B.3 Paper III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83



xv

Dedicated to my parents & Menglu Li…
献给我的父母和李梦露…





1

Chapter 1

Introduction

1.1 Multi-component flow system

Flows in internal combustion engines, air-breathing propulsion systems and even
rocket engines, as shown in Fig. 1.1, inevitably involve multiple components or
species, considering the injection, mixing and reacting processes in which oxidizers
like air or pure oxygen interact with fuels such as the considerably complex diesel
or gasoline, much simpler ethylene or methane, and the simplest hydrogen. Even
the simplest case of hydrogen/oxygen (H2/O2) combustion would produce several
intermediate species such as OH, O, H and H2O, etc., leading to the number of
species Ns > 2. To accurately account for the above physical and chemical processes,
all the species produced and consumed dynamically need to be considered in com-
putational fluid dynamics (CFD) analyses of such flow scenarios, with appropriate
multi-component models.

1.2 Previous numerical methods

A wide range of numerical methods have been proposed to model multi-component
flow systems, especially aiming at the gaseous chemically reacting flows and vapor-
liquid two-phase flows. One consistent computational model is expressed utilizing
the mass fraction of each component or species, as long as the sum of all the mass
fractions equals unity such that their total mass conservation can be guaranteed. The
evolution of each component or species has a corresponding partial mass equation in
terms of the mass fraction. Physically, all the species are mixed up, constituting
the fluid mixture in a discrete local space, and advected at the same velocity. In
combination with the momentum equation of the fluid mixture as well as an energy
equation, the system of equations has a dimensionality of Ns + Nd + 1, where Nd

represents the spatial dimension number of the flow in consideration. Therefore, we
have the hyperbolic conservation laws of multi-species Euler equations with chemical
reaction source terms, neglecting the flow viscosity for simplicity.
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(a)

(b)

(c)

(d)

Figure 1.1: Schematics and examples of (a) internal combustion engines [1], (b) air-
breathing propulsion systems [2] and (c) (d) rocket engines [3].

1.2.1 Numerical methods for spatial discretization

Finite volume formulation

Finite volume (FV) formulation is popularly used to approximate the convective
fluxes at each cell face using both the left and right side states in a computational
domain of discrete finite-volume cells. Owing to the body-fitted feature and easiness
to implement for complex geometric configurations, the shock-capturing FV meth-
ods are usually very robust, together with a variety of upwind flux reconstruction
schemes and slope limiters [4, 5, 6, 7, 8, 9]. Relatively low computational cost is also
one big advantage of FV methods. The major disadvantage, however, lies in that
without special treatment of improving the integral precision by setting additional
Gauss points, the accuracy of FV methods is merely second order, resulting in the
poor capability of capturing discontinuities and other interesting small flow structures
unless very fine grids are employed.

Finite difference formulation

Unlike the FV formulation, finite difference (FD) methods are inherently exten-
sible to be of high-order accuracy, with multi-point stencil based high-order interpo-
lation schemes [10, 11, 12]. Before the costly multiple interpolation procedures, an
approximate decoupling step (quasi-linearizion) is usually required to transform the
coupled elements in the original vector space of conserved variables (or the physical
space) to their characteristic space so as to avoid unnecessary numerical oscillations
by direct interpolating coupled variables. The calculated flux vector in the charac-
teristic space after interpolation will then be projected back onto the physical space
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to form the desired physical flux at each mid-point of the grid. Several time oper-
ations of matrix-vector multiplication are involved, adding to the considerably high
computational costs of FD methods. However, in contrast with FV methods using
the same grid, the spatial resolution of FD methods upon discontinuities and other
interesting small flow structures is much higher, due to the high-order low-dissipation
shock-capturing nature.

1.2.2 Solvers for ordinary differential equations of chemical kinetics

Upon operator split from the spatial convection terms, the remaining source
terms of the multi-species reactive Euler equations lead to a system of ordinary dif-
ferential equations (ODEs) of chemical kinetics to solve. Temporal integrator for
such an ODE system can be generally categorized into two types: explicit solvers and
implicit solvers. Explicit solvers are usually Jacobian-free and thus relatively com-
putational efficient, such as CHEMEQ/CHEMEQ2 [13, 14], MTS/HMTS [15], and
ERENA [16], etc. However, they often encounter the severe challenge of numerical
stiffness due to the large difference in multiple timescales of chemical reactions and
the fact that the minimum characteristic time might be significantly smaller than the
timestep sizes in CFD analysis. Implicit solvers such as VODE [17], DASAC [18],
DASPK [19] and RADAU5 [20], etc., are specifically developed to treat numerical
stiffness and therefore widely used, since they allow for the robust use of reasonably
large timesteps. However, Jacobian evaluation and factorization in implicit solvers
make them tend to be computationally very costly, compared with the explicit solvers,
especially when the number of species Ns involved in the kinetic mechanism increases.

1.3 Objectives

The fundamental objective of the present work is to address some issues of the
combined high computational costs of FD schemes and implicit ODE solvers for multi-
species chemically reacting flow simulation, without loss of high-order accuracy. In
particular, two recently developed methods are focused on improving the computa-
tional efficiency from two aspects: i) calculating the multi-species convective flux in
the high-order FD formulation, and ii) integrating the ODE system resulted from
detailed kinetic mechanisms with a new operator-splitting scheme, respectively.

Before the two methods are presented, the first part of work is towards the cure to
a well-known spurious numerical problem [21, 22, 23, 24, 25, 26, 27], i.e. the incorrect
propagation of the stiff detonation wave using modern shock-capturing schemes in
under-resolved conditions of space and time. It comes to one’s mind naturally that
the most efficient simulation is based on possibly coarse grids and large timesteps with
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tremendously reduced computational workloads, if acceptable accuracy of prediction
can be guaranteed. This work is detailed in Paper I,

• JH Wang, S Pan, XY Hu, NA Adams, A split random time-stepping method
for stiff and nonstiff detonation capturing, Combustion and Flame, 204, 397–
413, 2019,

which has been attached in Section B.1.
In Paper II, attached in Section B.2,

• JH Wang, S Pan, XY Hu, NA Adams, A species-clustered splitting scheme
for the integration of large-scale chemical kinetics using detailed mechanisms,
Combustion and Flame, 205, 41-54, 2019,

we propose a species-clustered integrator for chemical kinetics with large-scale de-
tailed mechanisms based on operator-splitting. Optimal clustering weighing both pre-
diction accuracy and computational efficiency is determined, considering the typical
detailed hydrocarbon/air combustion mechanisms at varying scales, from 53 species
with 325 reactions of methane to 2115 species with 8157 reactions of n-hexadecane.

Paper III, see in Section B.3,

• JH Wang, S Pan, XY Hu, NA Adams, Partial characteristic decomposition for
multi-species Euler equations, Computers and Fluids, 181, 364–382, 2019,

presents a partial characteristic decomposition based FD scheme for the convection
part of multi-species Euler equations. The computational efficiency of previous FD
methods is limited by the quadratically increasing dimensionality of the convective
flux eigensystem as the number of species increases, while for our proposed scheme
the CPU time of calculating the convective flux can be reduced to linearly depend on
the number of species Ns.

1.4 Outline

This thesis is structured as follows. In Chapter 2, the author outlines the con-
cerned multi-species Euler equations with chemical reaction source terms, and intro-
duces some existing numerical methods used for solving different parts of the equation
system in a fractional step manner in the following Chapter 3. The main work of this
thesis is still focused on improving the computational efficiency of corresponding parts
step by step, with minimized sacrifice of high accuracy. As detailed in Chapter 4, an
extensively studied spurious numerical phenomenon of stiff detonation capturing is
dealt with using a new split random time-stepping method [28], a species-clustered
integrator [29] for chemical kinetics with large-scale detailed mechanisms based on
operator-splitting is aimed at solving the ODE system efficiently and accurately, and a



1.4. Outline 5

partial characteristic decomposition [30] for multi-species convective flux terms is de-
veloped to further reduce the CPU time of classical FD methods, with the presumed
high-order accuracy being preserved. Finally, in Chapter 5 the state of proposed
methods is concluded and potential applications in the future are discussed.
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Chapter 2

Governing Equations

2.1 Multi-species reactive Euler equations

Consider the 3D multi-species (or multi-component) Euler equations with chem-
ical reaction source terms, i.e.

Ut + F(U)x + G(U)y + H(U)z = S(U), (2.1)

where

U =
(

ρ, ρu, ρv, ρw, ρet, ρy1, ρy2, · · · , ρyNs−1

)T
,

F(U) =
(

ρu, ρu2 + p, ρvu, ρwu, (ρet + p)u, ρy1u, ρy2u, · · · , ρyNs−1u
)T

,

G(U) =
(

ρv, ρuv, ρv2 + p, ρwv, (ρet + p)v, ρy1v, ρy2v, · · · , ρyNs−1v
)T

,

H(U) =
(

ρw, ρuw, ρvw, ρw2 + p, (ρet + p)w, ρy1w, ρy2w, · · · , ρyNs−1w
)T

,

S(U) =
(

0, 0, 0, 0, 0, ω̇1, ω̇2, · · · , ˙ωNs−1

)T

(2.2)

are vectors of the conserved variables, convective flux in the x, y or z direction and
source terms, respectively, with ω̇i representing rate of change of the ith species
concentration in the reactive gas mixture due to chemical kinetics consisting of Ns

species. When the flow is inert without activating chemical reactions, source terms
are replaced by a zero vector. The specific total energy including the specific internal
energy e is et = e + 1

2 (u
2 + v2 + w2).

To close the system, an equation of state (EoS) of the form

p = ρ
Ns

∑
i=1

yi
Ru

Wi
T (2.3)

is used for the gas mixture, with yi and Wi denoting the mass fraction and molec-
ular weight of the ith species, respectively, and Ru being the universal gas constant
and p being the pressure. It is worthy of noting that the simple EoS can be also



8 Chapter 2. Governing Equations

replaced by any thermodynamical model to account for other fluids of different mate-
rial properties, e.g. a vapor-liquid equilibrium (VLE) model [31, 32] which describes
the vapor-liquid two-phase flow in the thermodynamical and mechanical equilibrium
state in a diffuse-interface manner. We focus our attention on the gaseous reactive
flow with the simple EoS here and afterwards.

The above conservation laws of mass, momentums and energy with source terms
are usually solved by operator splitting. The first step is flow convection

Sc : Ut + F(U)x + G(U)y + H(U)z = 0, (2.4)

assuming no chemical reactions and passive transport of all species.
The second step solves the system of ODEs of chemical kinetics

Sr :
dyi

dt
=

ω̇i

ρ
, i = 1, . . . , Ns, (2.5)

under adiabatic and constant-volume conditions with fixed total density ρ and con-
stant specific internal energy e.

The first-order accurate Lie-Trotter splitting scheme [33] or the second-order
Strang splitting [34] can be employed to approximate the solution from the discrete
time level n to n + 1 with a timestep ∆t, i.e.

Un+1 = S(∆t)
r ◦ S(∆t)

c Un or Un+1 = S( ∆t
2 )

c ◦ S(∆t)
r ◦ S( ∆t

2 )
c Un, (2.6)

with symbol ’◦’ to separate each operator and to indicate that an operator is applied
to the following arguments.

For the convection operator Sc, shock-capturing schemes are usually employed
based on either finite volume (FV) or finite difference (FD) formulation for spatial
discretization, in which high-order shock-capturing accuracy as well as high com-
putational efficiency are desired. Low-order FV schemes approximate the cell-face
flux function by upwind reconstruction using primitive or conserved variables, to-
gether with MUSCL interpolation schemes [35, 4] plus slope limiters and achieve
generally second-order accuracy. High-order shock-capturing schemes are realized
by characteristic-decomposition flux splitting (also referred as characteristic-wise flux
splitting) to assemble the half-point convective flux using high-order interpolation
schemes in FD methods.

For the reaction step Sr, an ODE solver such as VODE [17], CHEMEQ2 [14] and
MTS/HMTS [36] can be used with or without adaptive error control.
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Chapter 3

Numerical Methodology

In this chapter, the multi-species reactive Euler equations with source terms are
managed with the state-of-the-art numerical methods in parts.

3.1 Convection operator – calculation of flux terms

Low-dissipation, high-order shock-capturing schemes designed for discretizing
convection terms in the reactive Euler equations are crucial for accurate CFD analy-
sis. The shock-capturing scheme should be capable of preserving sharp discontinuities
without introducing spurious oscillations. For this purpose, a variety of high-order
interpolation schemes can be used in the characteristic decomposition based FD meth-
ods, together with a flux-splitting scheme, to approximate the upwind convective flux.

In the characteristic-wise flux-splitting schemes, the Jacobian of convective flux
in Eq. (2.4) is considered such as

A =
∂F
∂U

= LΛR. (3.1)

For a general formulation of the flux functions, F, G and H can be written as

F̃(U) =



ρM

ρuM + pn1

ρvM + pn2

ρwM + pn3

(ρet + p)M

ρy1M

ρy2M

· · ·
ρyNs−1M



, (3.2)

with the unit normal vector n = {n1, n2, n3} and the velocity M = n1u + n2v + n3w.
Thus, F is abbreviated for n = {1, 0, 0} and G is abbreviated for n = {0, 1, 0}. H
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corresponds to n = {0, 0, 1}. The eigensystem of left and right matrices is

L̃ = R̃−1 =

l̃1
l̃2
l̃3
l̃4
l̃5
l̃6
...

l̃Ns+4


=



b2+M/c+b3
2

−b1u−n1/c
2

−b1v−n2/c
2

−b1w−n3/c
2

b1
2

−b1z1
2 · · · −b1zNs−1

2

1 − b2 − b3 b1u b1v b1w −b1 b1z1 · · · b1zNs−1
Mn2−v

n1
−n2

1−n2
2

n1

−n2n3
n1

0 0 · · · 0
Mn3−w

n1
−n3

−n2n3
n1

1−n2
3

n1
0 0 · · · 0

b2−M/c+b3
2

−b1u+n1/c
2

−b1v+n2/c
2

−b1w+n3/c
2

b1
2

−b1z1
2 · · · −b1zNs−1

2

−y1 0 0 0 0 1 · · · 0
...

...
...

...
...

... . . . ...
−yNs−1 0 0 0 0 0 · · · 1


,

(3.3)
and

R̃ =
(

r̃1, r̃2, r̃3, r̃4, r̃5, r̃6, · · · , r̃Ns+4

)

=



1 1 0 0 1 0 · · · 0

u − cn1 u −n2 −n3 u + cn1 0 · · · 0

v − cn2 v n1 0 v + cn2 0 · · · 0

w − cn3 w 0 n1 w + cn3 0 · · · 0

H − cM H − 1
b1

vn1 − un2 wn1 − un3 H + cM z1 · · · zNs−1

y1 y1 0 0 y1 1 · · · 0
...

...
...

...
...

... . . . ...
yNs−1 yNs−1 0 0 yNs−1 0 · · · 1


,

(3.4)
where c represents the speed of sound and

H = e +
p
ρ
+

1
2

Q,

zi = −ρ
∂p

∂ρyi
/

∂p
∂e

, i = 1, 2, · · · , Ns − 1,

b1 =
1

ρc2
∂p
∂e

,

b2 = 1 + b1Q − b1H,

b3 = b1

Ns−1

∑
i=1

yizi,

(3.5)

by defining Q = u2 + v2 + w2. The pressure derivatives, ∂p
∂e , ∂p

∂ρyi
and ∂p

∂ρ , are obtained
by fixing other variables in the transformed EoS

p = p (ρ, e, ρy1, · · · , ρyNs−1) .
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If n1 = 0, which is the case for calculation of flux function G(U) or H(U), l3 and l4
in Eq. (3.3) are invalid and can be replaced by

l∗3 =
(

Mn1−u
n2

1−n2
1

n2
−n1

−n1n3
n2

0 0 · · · 0
)

,

l∗4 =
(

Mn3−w
n2

−n1n3
n2

−n3
1−n2

3
n2

0 0 · · · 0
)

,
(3.6)

if n2 ̸= 0. Correspondingly, r3 and r4 in Eq. (3.4) should be replaced by

r∗3 =
(

0 n2 −n1 0 un2 − vn1 0 · · · 0
)T

,

r∗4 =
(

0 0 −n3 n2 wn2 − vn3 0 · · · 0
)T

.
(3.7)

If n2 = 0 and n3 ̸= 0, l3,4 and r3,4 can be further replaced by

l∗∗3 =
(

Mn1−u
n3

1−n2
1

n3

−n1n2
n3

−n1 0 0 · · · 0
)

,

l∗∗4 =
(

Mn2−v
n3

−n1n2
n3

1−n2
2

n3
−n2 0 0 · · · 0

)
,

(3.8)

and
r∗∗3 =

(
0 n3 0 −n1 un3 − wn1 0 · · · 0

)T
,

r∗∗4 =
(

0 0 n3 −n2 vn3 − wn2 0 · · · 0
)T

.
(3.9)

Finally, eigenvalues in the diagonal characteristic matrix Λ in Eq. (3.1) are

M − c, M, M, M, M + c, M, · · · , M. (3.10)

Given the analytical expressions of left and right eigenvector as above, it is
important to note that both eigenvectors and eigenvalues are locally defined at half
points or cell faces such as Fi+ 1

2 ,j,k or Gi,j+ 1
2 ,k. Therefore, it is required to obtain proper

averaged state between two adjacent states UL and UR at grid points or neighboring
cell centers. Following the Roe average [37, 38, 39] for ideal gas and its extension
to multi-component non-equilibrium reactive flows [40], the U-property accounting
for the jump conditions of two adjacent states can be satisfied by Roe-average the
following variables

ρ̃ =
√

ρLρR,

f̃ = µ( f ) =
√

ρL fL +
√

ρR fR√
ρL +

√
ρR

, f = u, v, w, H, e, y1, · · · , yNs−1.
(3.11)

Left to be satisfied is the pressure jump condition

∆p =

(̃
∂p
∂ρ

)
∆ρ +

(̃
∂p
∂e

)
∆e +

Ns−1

∑
i=1

(̃
∂p

∂ρyi

)
∆ (ρyi) , (3.12)
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where ∆(·) = (·)R − (·)L. Note that definitions for the averaged pressure derivatives
are not unique, and Eq. (3.12) defines a hyperplane as

αx + βy +
Ns−1

∑
i=1

γizi = 1 (3.13)

with
α ≡ ∆ρ

∆p
ϕ, β ≡ ∆e

∆p
ψ, γi ≡

∆ (ρyi)

∆p
ηi,

x ≡
(̃

∂p
∂ρ

)
/ϕ, y ≡

(̃
∂p
∂e

)
/ψ, zi ≡

(̃
∂p

∂ρyi

)
/ηi,

(3.14)

where ϕ, ψ, ηi are the scaling factors [40].
Given all partial derivatives of pressure at the left and right states, we can first

introduce Roe-averaged derivatives of pressure by imposing f̃ = µ( f ) in Eq. (3.11),
i.e. (

∂p
∂ρ

)
= µ

(
∂p
∂ρ

)
,(

∂p
∂e

)
= µ

(
∂p
∂e

)
,(

∂p
∂ρyi

)
= µ

(
∂p

∂ρyi

)
, i = 1, · · · , Ns − 1.

(3.15)

Then starting from point S

(xs, ys, z1s, · · · , zNs−1s) =

((
∂p
∂ρ

)
/ϕ,

(
∂p
∂e

)
/ψ,

(
∂p

∂ρy1

)
/η1, · · · ,

(
∂p

∂ρyNs−1

)
/ηNs−1

)
,

its projection P

(
xp, yp, z1 p, · · · , zNs−1 p

)
=

((̃
∂p
∂ρ

)
/ϕ,

(̃
∂p
∂e

)
/ψ,

˜( ∂p
∂ρy1

)
/η1, · · · ,

˜(
∂p

∂ρyNs−1

)
/ηNs−1

)

onto the hyperplane defined by Eqs. (3.13)(3.14) can be determined by

xp = xs + αΩ,

yp = ys + βΩ,

zi p = zis + γiΩ, i = 1, · · · , Ns − 1,

(3.16)

where

Ω =
1 − αxs − βys − ∑Ns−1

i=1 γizis

α2 + β2 + ∑Ns−1
i=1 γ2

i

. (3.17)

State P on the plane naturally satisfies the pressure jump condition and might
give a suitable set of derivatives which will be further employed in calculating averaged
cell-face eigenvalues and eigenvectors in Eqs. (3.3) (3.4) and (3.10), together with
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simple Roe-averaged values in Eq. (3.11). The consistent averaged speed of sound
should be a positive real number and can be obtained by

c̃2 =

(̃
∂p
∂ρ

)
+

p̃
ρ̃2

(̃
∂p
∂e

)
+

Ns−1

∑
i=1

ỹi

(̃
∂p

∂ρyi

)
(3.18)

with
p̃ = ρ̃

(
H̃ − ẽ − ũ2 + ṽ2 + w̃2

2

)
, (3.19)

as in [38].
We now have obtained the approximate eigensystem located at the cell face be-

tween two cell-centered adjacent states. Decomposition of the multi-species Euler
equations in the physical space can be done by projecting them onto the charac-
teristic space with the left matrix L̃, where high-order interpolation schemes, e.g.
WENO5 [41], can be used in combination with local Lax-Friedrich splitting for ex-
ample. Finally, physical flux vectors are obtained by inverse transform of the system
onto physical space with matrix R̃. E.g. for a cell face at {i + 1

2 , j, k}, stencils of six
points/states are needed next to the cell face, i.e. {i

′
, j, k} with i

′
= i − 2, · · · , i + 3,

such that we have

fi′ = L̃i+ 1
2
Fi′ ,

qi′ = L̃i+ 1
2
Ui′ ,

f±
i′

=
1
2
( f ± λq)i′ ,

f̃+
i+ 1

2
= WENO5{ f+

i′
, i

′
= i − 2, · · · , i + 3},

f̃−
i+ 1

2
= WENO5{ f−

i′′
, i

′′
= i + 3, · · · , i − 2},

F̃i+ 1
2
= R̃i+ 1

2

(
f̃+
i+ 1

2
+ f̃−

i+ 1
2

)
(3.20)

and F̃i+ 1
2

is the expected convective flux in the physical space. Note that each λ is
the maximum eigenvalue in Eq. (3.10) over stencils, and left and right matrices with
tilde are defined in Eqs. from (3.3) to (3.9).

Several matrix multiplications with vectors have to be performed in the above
process of calculating a cell-face flux such as L̃i+ 1

2
Fi′ , L̃i+ 1

2
Ui′ and R̃i+ 1

2
f̃±
i+ 1

2
. In ad-

dition to the element-by-element interpolation by WENO5, operations upon matrix
products are computationally very expensive. As the number of species increases,
dimensionality of the eigensystem, Ns + 4, increases quadratically, such that the com-
putational cost for these operations will be dramatically raised.
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3.2 Reaction operator – temporal integration of chemical
ODE system

For common nonequilibrium chemical kinetics, chemical production rates in Eq.
(2.5) are derived from a reaction mechanism that consists of Ns species and Nr reac-
tions

Ns

∑
i=1

ν
f
jiXi ⇐⇒

Ns

∑
i=1

νb
jiXi, j = 1, . . . , Nr, (3.21)

where ν
f
ji and νb

ji are the stoichiometric coefficients of species i with description Xi

appearing as a reactant and as a product in reaction j. The total production rate of
species i in Eqs. (2.2) and (2.5) is the sum of the production rate from each single
elementary reaction as

ω̇i = Wi

Nr

∑
j=1

(νb
ji − ν

f
ji)

k f
j

Ns

∏
l=1

[
ρl

Wl

]ν
f
jl

− kb
j

Ns

∏
l=1

[
ρl

Wl

]νb
jl

 , (3.22)

with k f
j and kb

j denoting the forward and backward reaction rates of each chemical
reaction, and ρl = ylρ.

The temperature-dependent reaction rates are practically calculated using the
Arrhenius law

kr = ATBexp(−Tign/T), (3.23)

where the subscript r is f for forward reactions or b for backward reactions and T

is the temperature. Parameters A, B and Tign for the forward rate of each reaction
are often given in the mechanism. Backward rates often need to be calculated from
the equilibrium constant Keq and k f by assuming the corresponding reaction to be in
chemical equilibrium, i.e. Keq = k f /kb [42]. The third-body effect is accounted for
by the summation of third-body collision efficiencies times the corresponding molar
densities of species. Pressure-dependent reaction rates are also possible, referring to
[43].

For the reaction step Sr, any ODE solver, explicit or implicit, can be adopted
to integrate the state vector {y1, . . . , yNs} from time tn to tn+1, so that the complete
thermodynamical state is determined. We need to update the latest temperature T

implicitly using the thermodynamic relation

h(y1, . . . , yNs , T)− e =
p(y1, . . . , yNs , T)

ρ
, (3.24)

where the mixture enthalpy h is iteratively calculated using the empirical polynomial
approximations [44] and pressure p can be substituted by the EoS of ideal gas mixtures
in Eq. 2.3, with the internal energy e fixed to be constant during the timestep interval.
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3.2.1 A species-clustered splitting scheme with the implicit solver
VODE

To overcome severe numerical stiffness due to the large difference in multiple
timescales of chemical reactions, implicit solvers such as VODE are usually preferred,
due to its allowing for the robust use of reasonably large timesteps.

Operator splitting by species

The solution vector Φ = {y1, · · · , yNs}T at time level n is integrated through
the above ODE system for one timestep of ∆t with the implicit solver VODE [17] to
obtain

Φn+1 = R∆t(Φn). (3.25)

The operator R represents the time integration by VODE. Upon operator splitting
by species, we obtain

Φn+1 = R∆t(Φn
1) ◦ R∆t(Φn

2) · · · ◦ R∆t(Φn
N), (3.26)

corresponding to the Lie-Trotter splitting scheme [33], where Φk denotes the mass
fractions of the species clustered in subset Sk out of N subsets in total. Clustering of
species in each subset obeys

Φ = {Φ1, · · · , ΦN}T,

S = ∪N
k=1Sk, Si ∩ Sj = ∅ if i ̸= j.

(3.27)

Each subset of species cluster should have no overlap with others, and an almost equal
number of species in each subset is assumed varying by at most one species, which
requests a balanced partition/clustering algorithm [45]. The extension to higher-
order splitting of Strang [34] is straightforward but inevitably more time consuming.
Recalling that the scaling of computational cost to the number of species or the size
of the kinetic mechanism involved using an implicit solver such as VODE is [46]

tCPU ∼ O
(

N2
s
)

to O
(

N3
s
)

, (3.28)

the total cost after species splitting can be reduced to

t
′
CPU ∼ O

(
N2

s
N

)
to O

(
N3

s
N2

)
, (3.29)

assuming equal computational consumption for each subsystem after species-splitting.
A large mechanism consisting of ten thousand species, e.g., split the system into ten
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clusters with the Lie-Trotter scheme, results in a computational speedup of ten to a
hundred times, without the need for additional sparse matrix techniques [47, 48, 49].

The essence of operator splitting by species for chemical kinetics lies in clustering
species into subsets, each corresponding to a sub-ODE-system to be integrated by
VODE or other implicit solvers. The merits of operator splitting by species are
improved speedup of computational efficiency without changing the implicit solver,
fast convergence and numerical stability [50].

Graph-based species clustering

A chemical reaction system with multiple species and reactions can be translated
to a bi-partite graph [51], in which two sets of nodes represent the chemical species
and reactions. Herein, we simply consider a finite graph consisting of the chemical
species only and the non-linear coupling between pairs of species through reactions
is abstracted as undirected edges linking every two nodes of species. For the sake
of illustration, we consider Ns = 6 six species, {A, B, C, D, E, F}, and six first-order
one-way reactions, i.e.

A
k1−→ C, B k2−→ C, C

k3−→ B,

D
k4−→ C, E

k5−→ D, F
k6−→ D,

(3.30)

where k1, · · · , k6 are constant reaction rates. The exact solution for this problem can
be easily obtained using symbolic computations of MATLAB® [52].

First we construct the graph of species, Fig. 3.1(a). We may have two different
clusterings I and II with two subsets (N = 2). Clustering I in Fig. 3.1(b) is obtained
by cutting off the link between species C and D. The strong couplings within clusters
{A, B, C} and {D, E, F} are preserved. Upon clustering loosely coupled {A, E, F}
together and leave the rest to compose the other cluster, we obtain Clustering II. The
distance in the graph between (A, E) or (A, F) is remote as they are separated by
two other species. The difference of the two clusterings also reflects in the rearranged
Jacobian matrices by the order of splitting and clustering as shown in Figs. 3.1(c)
and (d). We can see that for Clustering I, when solving the cluster of {A, B, C} first,
only the effect of species D is considered as constant since k4 is not within the sub-
Jacobian matrix. When solving the other cluster {D, E, F} subsequently, species A,
B and C have no effect due to the corresponding zero entries. In total, the splitting
error is attributed to only one element in the Jacobian, i.e. the k4 block (red color)
in Fig. 3.1(c). For Clustering II, the solution of the first cluster {A, E, F} introduces
no splitting error, whereas errors will occur when solving the cluster {B, C, D}, due
to first-order approximation of k1yA for the production of species C and k5yE + k6yF

for the production of species D.
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B

A

C

D

E F

(a) (b)

Clustering I:
{A,B,C}, {D,E,F}

Clustering II:
{A,E,F}, {B,C,D}

B

A

C

D

E F

(c)

Clustering I:
{A,B,C}, {D,E,F}

A B C D E F

-k1 A

-k2 k3 B

k1 k2 -k3 k4 C

-k4 k5 k6 D

-k5 E

-k6 F

Clustering II:
{A,E,F}, {B,C,D}

A E F B C D

-k1 A

-k5 E

-k6 F

-k2 k3 B

k1 k2 -k3 k4 C

k5 k6 -k4 D

(d)

Figure 3.1: Reaction system example for species clustering. (a) Each node represents
one species in {A, B, C, D, E, F}, and the edge, e.g. e(A, C), indicates that linked two
species participate in at least one reaction as reactant or product; (b) two equal-sized
clusterings are easily obtained as ({A, B, C}, {D, E, F}) and ({A, E, F}, {B, C, D}) by
cutting off corresponding edges; (c) rearranged Jacobian matrix in the order of Clustering
I; (d) rearranged Jacobian matrix in the order of Clustering II.
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Figure 3.2: Numerical integration results with two clusterings by Lie-Trotter and
Strang splittings, compared with the exact solution. Reaction rates are k1 = 1, k2 =
10, k3 = 100, k4 = 1, k5 = 10, k6 = 20, and the initial condition is yA = 0.6, yE =
0.2, yF = 0.2 with zero mass fractions of B, C, D. The base timestep size is ∆t = 0.02.
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Numerical tests, in Fig. 3.2, show that Clustering I agrees quite well with the
exact solution, while Clustering II underestimates both the mass fractions of species C

and D. This observation is in agreement with the previous discussion about operator
splitting.

Given a prescribed number of clusters N, there are many possible clustering
combinations. One simple strategy is to cluster the species according to species
indices appearing in the mechanism. Another very promising strategy is to cluster all
’close’ nodes in the graph into a subset, corresponding to having species with strong
interactions in the same cluster. In this paper, we introduce diffusion maps [53, 54,
55] as a non-linear technique for dimensionality reduction, data set parameterization
and clustering, to serve the purpose.

Let G = (Ω, W) be a finite graph of n nodes, where the weight matrix W =

{w(x, y)}x,y∈Ω is symmetric and component-wise positive [55]. The definition of
weight matrix needs to reflect the degree of affinity of nodes x and y. Diffusion maps
start with a user-defined weight matrix and utilize the idea of Markov random walk to
describe the connectivity of nodes through a diffusion process. For technical details
of diffusion maps, we refer to [53, 54, 55].

For the above reaction system, we define, with the help of species graph in Fig.
3.1(a), the weight matrix W by

w(x, y) =

max(k j), if x and y both participate in reaction j,

ϵ, otherwise,
(3.31)

where ϵ takes a small positive value to avoid zero entries, e.g. ϵ = 10−12. The
diagonal elements in the weight matrix, w(x, x), can be defined as

w(x, x) = max(w(x, y)y ̸=x). (3.32)

In combination with the reaction rates given in Fig. 3.2, the weight matrix obtained
by the above definition is shown in Fig. 3.3. Using diffusion maps to analyze the graph
based on our defined weight matrix, we can project the set of species into a diffusion
space with at most n dimensions, where the pairwise distance reveals the connectivity
between two species. In Fig. 3.3, it is shown that the species are projected onto a
x1x2 plane using the first two dimensions of the diffusion space. We can see that
species A, B and C almost collapse into one point and locations of species D, E and F

in the x1 direction (which is also the first and dominant dimension) are also very close
to each other. Their coordinates in the second dimension separate the three species.
However, the centroids of subset {A, B, C} and subset {D, E, F} are far from each
other. Accordingly, a straightforward clustering using the k-means algorithm (setting
k ≡ N = 2) can be easily obtained, i.e. ({A, B, C}, {D, E, F}). This clustering from
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Figure 3.3: Weight matrix of diffusion maps for the reaction system (left); embedding
and clustering of species in 2D diffusion space (right)

diffusion maps is the same as the previous Clustering I, indicating that it is the optimal
case of two clusters for the reaction system above with minimum splitting errors. In
Fig. 3.2, we can also observe that exact mass conservation is violated by operator
splitting with first-order convergence rate using the Lie-Trotter scheme. However, the
optimal Clustering I has a significantly lower mass conservation error than Clustering
II. An additional treatment for the correction of mass-conservation errors as in [16]
can be applied. In this illustrative example, it should be noted that the underlying
fact of k4 = 1 being quite small benefits Clustering I through the weight matrix W in
Eq. (3.31). If k4 becomes larger, both the previous manual clustering and the current
diffusion maps based clustering would be different, with the coupling between species
C and D to be preserved and both being clustered into the same subset.

For much more complicated realistic chemical kinetics especially involving fuel
combustion mechanisms, reaction rates are not always constant but depend on tem-
perature or even pressure of the mixture. This normally can be expressed by the
finite-rate Arrhenius model [14, 56] and thus the weight matrix as above should also
take into account the varying reaction rates with temperature. Rather than sampling
at a single temperature, e.g. the initial temperature of an auto-ignition problem of
combustible gas mixtures, we take many temperature samples in order to construct
a representative weight matrix. The derived clustering by diffusion maps based on
such a weight matrix can be stored and used for other conditions as long as the same
mechanism is involved. In such way, the determination of the weight matrix as well
as the clustering procedure can be treated as a preprocessing step instead of costly
on-the-fly clustering. Since multiple scales of the absolute reaction rates exist, usually
spanning several orders of magnitude, logarithmic scaling of the reaction rates can be
performed to avoid underestimating the slow reactions. Also, normalization in each
row of the matrix relative to the diagonal species is carried out as

w(x, y) =
w(x, y)
w(x, x)

, (3.33)
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and
w(x, y) = max(w(x, y), w(y, x)) (3.34)

for all species pairs is further checked to guarantee the symmetry of weight matrix in
the diffusion maps.

3.2.2 A split reaction-by-reaction explicit solver

In addition to the above implicit scheme, we also introduce and develop an ex-
plicit ODE solver by utilizing operator splitting upon the nonequilibrium chemical
kinetics so that a multi-reaction system can be decoupled into a series of single reac-
tion steps.

By operator splitting [57, 50], we can decouple the multi-reaction system, e.g.
by Lie-Trotter splitting, as

Sr : R(∆t)
1st = R(∆t)

Nr
◦ R(∆t)

Nr−1 ◦ · · · ◦ R(∆t)
2 ◦ R(∆t)

1 , (3.35)

where the operator Rj corresponds to a single reaction j and is independent of all
other reactions. The reaction-by-reaction idea resembles a meso-scale model of mi-
croscopic kinetics where one molecule/atom can only experience one reaction at a time
instance. This is also the case with stochastic simulation of chemical kinetics [58]. At
macroscopic scale, reactions involving large numbers of species molecules/atoms are
considered as simultaneously occurring processes. In [57] the second-order accurate
Strang splitting is adopted, starting with the fastest reaction and ending with the
slowest for half a timestep and then backwards for another half timestep. In our
approach we simply take the traversal order not according to reaction rates but to
the reaction-mechanism index sequence

Sr : R(∆t)
2nd = R( ∆t

2 )
1 ◦ R( ∆t

2 )
2 ◦ · · · ◦ R( ∆t

2 )
Nr

◦ R( ∆t
2 )

Nr
◦ R( ∆t

2 )
Nr−1 ◦ · · · ◦ R( ∆t

2 )
1

= R( ∆t
2 )

1st ◦ R( ∆t
2 )

1st ,
(3.36)

where R1st is the reverse operator of R1st. Accordingly, for each Rj, we have

Rj :
Ns

∑
i=1

ν
f
jiXi ⇐⇒

Ns

∑
i=1

νb
jiXi,

dyi

dt
=

ω̇i
j

ρ
, i = 1, . . . , Ns,

ω̇i
j = Wi(ν

b
ji − ν

f
ji)

k f
j

Ns

∏
l=1

[
ρl

Wl

]ν
f
jl

− kb
j

Ns

∏
l=1

[
ρl

Wl

]νb
jl

 .

(3.37)

We now rewrite the ODE in Eq. (3.37) in the following form [14]

dyi

dt
= qj

i − pj
iyi, i = 1, . . . , Ns, (3.38)
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where qj
i ≥ 0 is the production rate and pj

iyi ≥ 0 is the loss rate for the ith species
through reaction j.

Following the operator splitting of reactions, we continue to split each reaction j

into a forward reaction and a backward reaction (for an irreversible reaction, it can
be interpreted as a reversible reaction with zero backward reaction rate)

R(∆t)
j = R(∆t)

j,b ◦ R(∆t)
j, f (3.39)

such that the species involved will either gain mass or lose mass through the one-way
forward/backward reaction from Eq. (3.38), i.e.

mass gain : qj
i ≥ 0, pj

iyi = 0 or mass loss : qj
i = 0, pj

iyi ≥ 0, (3.40)

with the simplified

qj, f
i =

Wi

ρ
νb

ji

k f
j

Ns

∏
l=1

[
ρl

Wl

]ν
f
jl

 , pj, f
i yi = 0 for product species,

qj, f
i = 0, pj, f

i yi =
Wi

ρ
ν

f
ji

k f
j

Ns

∏
l=1

[
ρl

Wl

]ν
f
jl

 for reactant species

(3.41)

for the forward reaction of Eq. (3.37). The backward reaction can be determined
accordingly upon exchanging its reactants and products.

Since each elementary reaction is decoupled from the others and each reaction
again is split into two opposite unidirectional reactions, finally only a single reaction
equation of the type

aA + bB + · · · −→ xX + yY + · · · (3.42)

is considered in each operation. Mass conservation and positivity of mass fractions
can be properly treated.

For the simple cases of Eq. (3.42), one may find analytical solutions. However,
for the general form of Eq. (3.42) whose analytical solution is not explicitly known
or difficult to derive, a more convenient alternative is to use quasi-steady-state (QSS)
methods to obtain the approximate exact solution. QSS methods are based on the
exact solution of Eq. (3.38) for constant pj

i and qj
i [59, 60], i.e.

yn+1
i = yn

i e−pj
i ∆t +

qj
i

pj
i

(1 − e−pj
i ∆t), for all νb

ji − ν
f
ji ̸= 0. (3.43)

As generally pj
i and qj

i depend on {y1, . . . , yNs} in Eq. (3.40) or (3.41), Eq. (3.43)
provides a linear approximation. For the QSS-based SPRANTS method, the stable
timestep size is not limited to the characteristic time scales of the chemical species



3.2. Reaction operator – temporal integration of chemical ODE system 23

and thus a larger timestep implying less computational efforts is possible [57].

Treatment for mass conservation

Employing QSS in Eq. (3.43) for all the species participating in reaction j (with
νb

ji − ν
f
ji ̸= 0),

∑
i

yn+1
i = ∑

i

(
yn

i e−pj
i ∆t +

qj
i

pj
i

(1 − e−pj
i ∆t)

)
(3.44)

may not necessarily be unity so that mass may be not exactly conserved. To cure this
problem, one may only advance yn

k to yn+1
k of a reactant k by Eq. (3.43) and update

all other {yi,i=1,··· ,Ns,i ̸=k}n+1 by mass conservation of a single reaction equation in Eq.
(3.37). This merit of knowing the exact net gain or loss of mass of other species
originates from the fact that each reaction in Eq. (3.37) is decoupled from others.
Therefore, for the reactant k, combining Eqs. (3.43) and (3.41) we have

yn+1
k = yn

k e−pj
k∆t (3.45)

and for the other species i ̸= k, including other reactants and all the products in
reaction j, the change of mass fraction ∆yi = yn+1

i − yn
i should obey

∆yi/Wi

νb
ji − ν

f
ji

=
∆yk/Wk

νb
jk − ν

f
jk

, (3.46)

giving the update

yn+1
i = yn

i + ∆yi = yn
i +

νb
ji − ν

f
ji

νb
jk − ν

f
jk

Wi

Wk
∆yk. (3.47)

It is easy to see that ∑Ns
i=1 ∆yi = 0, which is equivalent to ∑Ns

i=1 yi = 1 for mass
conservation.

Positivity-preserving treatment

Without loss of generality, we consider the forward reaction j and assume that
reactant species k has νb

jk = 0 in Eq. (3.45), as ν
f
jk > 0 is prescribed for reactants.

Similarly assuming that another reactant species i also has ν
f
ji > 0 and νb

ji = 0, we
combine Eqs. (3.45) and (3.47) to obtain

yn+1
i = yn

i −
ν

f
ji

ν
f
jk

Wi

Wk
yn

k +
ν

f
ji

ν
f
jk

Wi

Wk
yn

k e−pj
k∆t. (3.48)
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Recalling Eq. (3.41) for reactants i and k, we have

pj
iyi

pj
kyk

=
ν

f
ji

ν
f
jk

Wi

Wk
. (3.49)

Upon rearranging Eq. (3.49) and substitution into Eq. (3.48) we obtain

yn+1
i = yn

i
pj

k − pj
i

pj
k

+
ν

f
ji

ν
f
jk

Wi

Wk
yn

k e−pj
k∆t. (3.50)

With the aid of Eq. (3.50), it is readily seen that positivity of yn+1
i , i.e. yn+1

i ≥ 0,
is achieved when pj

k ≥ pj
i since the third term is always non-negative. Therefore, in

order to preserve the positivity of species mass fractions, reactant species k using the
QSS approximation should satisfy

pj
k = max{pj

i} for all the reactant species in reaction j. (3.51)

Regarding the positivity for the choosen reactant k, according to Eq. (3.45), it is
inherently satisfied through positivity of the exponential function. Eq. (3.45) implies
that 0 ≤ yn+1

k < 1 due to the negative exponent such that mass fractions of all species
through reaction j are bounded within [0,1] as a result of mass conservation.

3.3 Time discretization

To improve the overall accuracy in time, the strong stability-preserving (SSP)
Runge-Kutta schemes [61] are usually employed. Considering the 3rd-order SSP
Runge-Kutta scheme, the generalized ODE dϕ

dt = L(ϕ) is updated from tn to tn+1

by

ϕ̃n+1 = ϕn + ∆tL(ϕn),

ϕ̄n+1 =
3
4

ϕn +
1
4

ϕ̃n+1 +
1
4

∆tL(ϕ̃n+1),

ϕn+1 =
1
3

ϕn +
2
3

ϕ̄n+1 +
2
3

∆tL(ϕ̄n+1).

3.4 Boundary conditions

Boundary conditions (such as inflow/outflow, periodic, symmetric, etc.) are
easily imposed using ghost cells outside the domain immediately after the primitive
and conserved variables at corresponding internal cells are updated.
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Chapter 4

Summaries of publications

In this chapter, the relevant publications of this thesis are briefly summarized.

4.1 A split random time-stepping method for stiffand
nonstiff detonation capturing

One of the main challenges for numerical computation of chemically reacting
flows are widely varying time scales of chemical kinetics, which may be orders of
magnitude faster than the fluid flow time scale [21, 22, 23]. Such cases exhibit nu-
merical stiffness due to the source terms representing chemical reactions [24]. When
the chemical scales are not resolved numerically in time and space, a spurious solution
may occur exhibiting incorrect propagation of discontinuities and nonphysical states.
Here a new operator splitting method for not only stiff but also nonstiff detonation
capturing in a unified manner in Paper I [28] is summarized.

4.1.1 Summary of the publication

We develop a split random time-stepping method for chemically reacting flows
with general nonequilibrium chemistry in a unified manner, regardless of stiff or non-
stiff source terms and under- or well-resolved conditions in space and time. Unlike
Bao & Jin’s random projection method, the activation and deactivation of chemical
reactions in the reaction step is not projected onto two prescribed equilibrium states,
but onto two time-dependent states corresponding to advancing the reaction by one
timestep forward and interrupting the reaction, respectively. The criterion to acti-
vate a reaction follows from comparison of the local computed temperature with a
randomized temperature depending on the states of the forward step and its adjoint.
To randomize each reaction process, the multi-reaction system is split reaction by
reaction [57, 50]. In this way, the multi-reaction system of the nonequilibrium chem-
ical kinetics can be decoupled into a series of single reaction steps. Similarly, each
reaction can be further split into a forward reaction and a backward reaction (for an
irreversible reaction, it can be interpreted as a reversible reaction with zero backward
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reaction rate). By adding a drift term into the random temperature sampling, the
proposed method recovers the solution of a deterministic fractional step method in
nonstiff cases with increasing resolution.

4.1.2 Individual contributions of the candidate

My contribution to this work was the development of the method and the cor-
responding computer code for its implementation. I have performed simulations,
analyzed the results, and written the manuscript for publication.

4.2 A species-clustered splitting scheme for the integra-
tion of large-scale chemical kinetics using detailed
mechanisms

Gasoline, diesel and jet fuels, particularly those derived from petroleum sources,
are composed of hundreds of components [75]. As the number of hydrocarbon species
grows, so does the dimensionality of kinetic mechanism to model hydrocarbon oxi-
dation. For example, the detailed mechanism for methyl decanoate, a biomass fuel
surrogate, consists of 3036 species and 8555 reactions [76, 77]. A species-clustered
integrator for chemical kinetics with large detailed mechanisms based on operator-
splitting, presented in Paper II, is discussed in this section, with a brief review on
related works in the literature that inspired our ideas.

4.2.1 Summary of the publication

The quadric/cubic scaling of CPU time to mechanism size using implicit ODE
solvers implies that the computational cost of solving a sequence of smaller sub-
systems ought to be much less than that of solving the entire system in one step.
Therefore, unlike the above use of operator splitting in decoupling two or more phys-
ical processes, we start with splitting the large-scale chemical kinetics in terms of the
involved species. Once the participating species of the large mechanism have been
clustered into subsets of a smaller and equal size, an implicit solver can be applied to
each group with significantly reduced matrix dimension. To minimize the splitting
error, diffusion maps [54, 55, 53] are utilized to analyze the pairwise interaction re-
lations of species by constructing a weight or similarity matrix of chemical kinetics,
such that strongly interacting and mutually dependent species can be clustered into
the same group. To partition the species into equal clusters, a balanced k-means
algorithm [45] is employed.
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4.2.2 Individual contributions of the candidate

My contribution to this work was the development of the method and the cor-
responding computer code for its implementation. I have performed simulations,
analyzed the results, and written the manuscript for the publication.

4.3 Partial characteristic decomposition for multi-species
Euler equations

With high-order spatial accuracy, characteristic decomposition based FD schemes
are widely used for simulating compressible gas flows with multiple species. However,
a challenge for the computational efficiency of such schemes is the quadratically in-
creasing dimensionality of the convective flux eigensystem as the number of species
increases. The numerical scheme which overcomes this challenge in Paper III is briefly
summarized in this section, along with relevant literature review.

4.3.1 Summary of the publication

In our study of multi-species flows, we propose to reduce dimensionality of the
eigensystem. Feasibility is based on the fact that the eigenmatrices composed of left
and right eigenvectors, respectively, are sparse and non-zero entries in both matrices
are mainly distributed along the diagonal. Moreover, the diagonal elements in the
right-bottom part of both matrices, which accounts for the species mass convection,
are unity. These conveniences can be ascribed to the fact that in the homogeneous
multi-species gas mixture, all species are passively transported at a joint mixture
velocity, independent of each other.

We take advantages of the structure of the eigenmatrices and propose a partial
characteristic decomposition scheme for multi-species Euler equations. We split the
eigensystem into two parts along the diagonal of eigenmatrix: one is the gas mixture
part and the other part accounts for all the species. Correspondingly, the conserved
vector of the total mixture mass, momenta and energy as well as species partial densi-
ties is divided into a gas mixture part and the remaining species partial density part.
All the species follow a series of independent advection equations in a conservative
form. Compared with classical characteristic decomposition schemes, the proposed
split scheme utilizes characteristic decomposition for single-fluid Euler equations [37,
11] to handle the first gas mixture part. It allows to avoid the characteristic decompo-
sition of the species part. Therefore, computational effort can be reduced significantly
as no species transformation from physical space to characteristic space and back is
needed. To cope with the inconsistency issue after decoupling the partial densities of
species from the mixture total density, a species mass fraction correction is proposed.
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4.3.2 Individual contributions of the candidate

My contribution to this work was the development of the method and the cor-
responding computer code for its implementation. I have performed simulations,
analyzed the results, and written the manuscript for the publication.
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Chapter 5

Discussion and outlooks

In this thesis, a series of numerical methods have been proposed to improve
the computational efficiency of simulating compressible, chemically reacting flows
with multiple species and nonequilibrium kinetics. Targeted at different parts of the
reactive multi-species Euler equations, we have the following:

• A new operator splitting method is proposed for capturing stiff and nonstiff
detonation waves, balancing numerical accuracy and computational efficiency.

• For the computationally expensive temporal integration of ordinary differen-
tial equation (ODE) system of chemical kinetics with detailed mechanisms, a
species-clustered operator-splitting scheme is developed by using the idea of
optimal partitioning.

• The remaining flow convective terms are considered by using a partial character-
istic decomposition scheme to overcome the numerical challenge of quadratically
increasing dimensionality of the convective flux eigensystem as the number of
species grows in the classical high-order finite difference (FD) framework.

5.1 Discussion

Firstly, a new operator splitting method for simulating chemically reacting flows,
especially for capturing stiff detonation waves in under-resolved conditions, has been
developed. Two procedures based on operator splitting are included: for the con-
vection step, any shock-capturing scheme can be used; for the reaction step, the
multi-species multi-reaction ODE system in the source terms is further split in a
reaction-by-reaction manner. Each reaction either proceeds a timestep forward or is
interrupted according to a local random temperature rather than being a determinis-
tic process with growing error accumulation. A wide range of numerical experiments
including not only simple model kinetics but also realistic nonequilibrium chemistry
such as the temperature-dependent finite-rate hydrogen-air combustion are consid-
ered in 1D and 2D flows, demonstrating the following properties:



30 Chapter 5. Discussion and outlooks

• Mass conservation and positivity of species concentration can be guaranteed by
the reaction-split ODE solver, which is almost unconditionally stable due to its
using either analytical or approximate exact solutions.

• The proposed SPRANTS method can effectively predict the correct propagation
of discontinuities as well as the overall flowfield information in under-resolved
conditions, for both model kinetics and realistic finite-rate nonequilibrium ki-
netics.

• Compared with the deterministic method using CHEMEQ2, the present SPRANTS
method exhibits better computational efficiency as it can correctly capture the
detonation wave with a larger timestep on coarse grids for nonequilibrium re-
active flows.

• By adding a drift term into the random temperature sampling, SPRANTS can
recover the deterministic solution as the resolution improves with decreasing
stiffness.

• The dimension-independent algorithm for the source terms makes further 3D
extension of the proposed method straightforward.

Secondly, for large-scale chemical kinetics involving many species and reactions,
computational efforts needed for time integration usually exceeds linear scaling with
the dimension of the kinetic mechanism, especially when implicit ODE solvers are
used. To achieve a higher computational efficiency, we have proposed operator split-
ting to integrate the large system in separate yet consecutive subsystems of the same
and smaller dimension. Each subsystem includes a cluster of species decoupled from
the other species of the full mechanism and is solved separately, e.g. implicitly by
VODE. In order to reduce the inevitable splitting error, diffusion maps are applied
to analyze the species graph and to cluster strongly coupled species into the same
subsystem, by defining an appropriate weight matrix for chemical kinetics. Three
hydrocarbon fuel/air ignition problems with an increasing dimension of the mech-
anism, up to 2115 species and 8157 reactions, are taken into consideration under
varying initial conditions. Computational efficiency and accuracy can be improved
by choosing a proper number of clusters to split the large system. For the n-heptane
mechanism, partition by 4 clusters of species leads to about 8 times speedup compared
to the non-split VODE solver and 10 ∼ 20 times speedup versus the explicit solver
CHEMEQ2. For the n-hexadecane mechanism, partition by 8 clusters of species re-
sults in a speedup factor of around 40. Clustering by diffusion maps based on a given
weight matrix outperforms the simple clustering according to species’ index in the
mechanism, in terms of predicting the correct ignition delay time and post-ignition
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equilibrium state. It implies that an optimal clustering for a certain mechanism is
preferable not only for computational acceleration but also for higher accuracy.

Finally, we have presented a partial characteristic decomposition scheme for the
solution of multi-species Euler equations with high-order finite difference schemes.
Since the eigensystem of the multi-species convective flux Jacobian is sparse and non-
zero entries in its matrices are mainly distributed along the diagonal, it is feasible to
split the eigensystem into two parts: one is the gas mixture part, which is subject
to traditional characteristic decomposition schemes for single-fluid Euler equations,
and the other part corresponds to a series of species partial mass equations. Since
the species part has a sub-eigensystem of which the left and right sub-eigenmatrices
are diagonal identity matrices, transforming the species variables from physical space
onto characteristic space and back is no longer necessary, so that massive operations
on matrix multiplication that is computationally very expensive can be avoided. With
extensive numerical examples, the proposed scheme manages to significantly reduce
the computational cost for calculating the multi-species convective flux in the follow-
ing two aspects:

• Computational cost of the full characteristic decomposition schemes depends
super-linearly (quadratically even cubically) on the number of species involved.

• Similarly with the 2nd-order AUSM plus MUSCL scheme in the finite volume
formulation, the linear scaling of the computational cost with different numbers
of species is realized by the proposed decoupled scheme.

Despite the splitting error, since each decoupled part is still discretized by high-
order schemes, the proposed scheme is verified to preserve the high-order accuracy
of the underlying discretization scheme. The inconsistency issue in the update of
species mass fractions has been resolved by summing up all the newly computed
partial densities to reproduce a consistent nominal total density to be the base of
renormalization. In contrast, using the straightforward update of mass fractions as
the fully coupled scheme leads to spurious oscillations around discontinuities with
large species gradients.

5.2 Outlooks

The main part of this thesis focuses on developing efficient numerical methods for
the computation of multi-species reactive Euler equations with source terms, which
are directly related with the compressible chemically reacting flows.

• Realistic flow simulation in gasdynamics. Diffusion process or viscosity can
be straightforwardly added to the present system, discretized with classical
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central-difference schemes. Given the complete system of Navier-Stokes equa-
tion, realistic gasdynamics with/without chemical reactions and multiple species
can be solved in a consistent manner. Applications like reentry problems with
boundary layers and air dissociation in a high-temperature condition, in addi-
tion to many internal flows with fuel/oxidizer combustion as in air-breathing
propulsion systems [91, 92], can be considered.

• Operator splitting for large-scale complex nonlinear processes. It is readily to
see that the core idea of operator splitting goes through my entire work of this
thesis. One great advantage of the idea of operator splitting lies in that it
can overcome the numerical difficulties of conventional methods encountered
in large-scale systems such as numerical instability, negative solutions, and
convergence issue [50]. It thus implies many potential applications involving
large-scale dynamic processes encountered in physics, chemistry and biology.
Noticeably, the two ODE solvers utilizing this idea in Paper I & II might be
used for general ODE integrations including but not limited to nonequilibrium
chemistry in combustion, reaction-diffusion in biological systems [93, 94], etc.

• Vapor-liquid two-phase flows. As previously mentioned, the current compu-
tational model with multiple species can be easily translated into a multi-
component two-phase model, if corresponding thermodynamical model is cou-
pled instead of the current EoS of ideal gas mixtures. The vapor-liquid equilib-
rium (VLE) model [31, 32] can serve this purpose. As a result, the fuel injection
process as well as its cavitation, atomization, evaporation and combustion in
either liquid or gas state can be modeled and simulated in a unified frame-
work. However, there still exists a fundamental issue with the computational
efficiency and numerical stability of solving local VLE problems over a wide
range of states of pressure, temperature and component compositions [95, 96,
97].
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a b s t r a c t 

In this paper, a new operator splitting method is proposed for capturing stiff and nonstiff detonation 

waves. In stiff cases, an incorrect propagation of discontinuities might be observed for general shock- 

capturing methods due to under-resolution in space and time. Previous random projection methods have 

been applied successfully for stiff detonation capturing at under-resolved conditions. Not relying on ran- 

dom projection of the intermediate state onto two presumed equilibrium states (completely burnt or 

unburnt) as with the random projection method, the present approach randomly advances or interrupts 

the reaction process. Each one-way reaction is decoupled from the multi-reaction kinetics by operator 

splitting. The local temperature is compared with a random temperature within a temperature interval 

to control the random reaction. Random activation or deactivation in the reaction step serves to reduce 

the accumulated error of discontinuity propagation. Extensive numerical experiments demonstrate the ef- 

fectiveness and robustness of the method. For nonstiff problems, the proposed random method recovers 

the accuracy of general operator splitting methods by adding a drift term. 

© 2019 The Combustion Institute. Published by Elsevier Inc. All rights reserved. 

1. Introduction 

One of the main challenges for numerical computation of chem- 

ically reacting flows are widely varying time scales of chemical 

kinetics, which may be orders of magnitude faster than the fluid 

flow time scale [1–3] . Such cases exhibit numerical stiffness due 

to the source terms representing chemical reactions [4] . When the 

chemical scales are not resolved numerically in time and space, 

a spurious solution may occur exhibiting incorrect propagation of 

discontinuities and nonphysical states. 

This problem is well-known and has been an active area of 

research during the past three decades. It was first observed by 

Colella et al. [5] and by analysis of a scalar problem. LeVeque 

and Yee [6] found that the propagation error is mainly due to 

numerical dissipation contained in the scheme, which smears 

the discontinuity front and activates the source term in a non- 

physical manner. To overcome this difficulty, one may reduce 

numerical dissipation [3,7,8] or use a sufficiently fine mesh. 

Front-tracking approaches [9–11] or local grid/timestep refinement 

[12,13] may obtain the correct propagation of the reactive front. 

However, generally full resolution of all fine scales cannot always 

be afforded. Since numerical dissipation is practically inevitable, 

∗ Corresponding authors. 

E-mail addresses: jianhang.wang@tum.de (J.-H. Wang), shucheng.pan@tum.de (S. 

Pan), xiangyu.hu@tum.de (X.Y. Hu), nikolaus.adams@tum.de (N.A. Adams). 

another approach focuses on establishing corrected tempera- 

tures from the artificially diffused solution [14–16] . Tosatto and 

Vigevano [17] proposed a threshold method based on a vari- 

able reconstruction within bounds determined from the local 

cell neighbors. Difficulties with such methods are encountered 

in the extension to either spatially high-dimensional or multi- 

species/multi-reaction kinetics based reacting flows. Wang et al. 

[18,19] proposed a high-order finite-difference method utilizing 

the Harten ENO subcell resolution method for stiff source terms. 

In [4] , many different methods with or without operator split- 

ting/subcell resolution/nonlinear filters are tested, showing that 

the degree of propagation speed mismatch of discontinuities 

is highly dependent on the accuracy of the numerical method, 

time step and grid spacing. Kotov et al. [20] further presented a 

realistic hypersonic non-equilibrium flow that mimics the spuri- 

ous behavior and some important numerical challenges affecting 

the accuracy in such simulations. Zhang et al. [7] proposed the 

equilibrium state method where the cell average is replaced by a 

local two-equilibrium-state reconstruction, making its extension to 

high dimensions straightforward. They also extended the method 

to multi-reaction systems by treating the two one-way reactions 

independently. Methods applicable for realistic nonequilibrium 

chemical kinetics with multiple finite-rate reversible reactions, to 

our best knowledge, have not been reported in literature so far. 

Bao and Jin [1–3] introduced a random projection method for 

the reaction step by replacing the ignition temperature with a 

https://doi.org/10.1016/j.combustflame.2019.03.034 
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uniformly distributed random variable. Although the random pro- 

jection method cannot avoid the introduction of numerical dissi- 

pation by shock-capturing schemes, it can eliminate its effect. The 

method was established for scalar problems and successfully ap- 

plied to model problems of 1D/2D reactive Euler equations. With 

the presumption of two time-independent equilibrium states of to- 

tally burnt and unburnt gases (regardless of the detailed reaction 

process), the method is only suitable for under-resolved stiff cases. 

In this paper, we develop a split random time-stepping method 

for chemically reacting flows with general nonequilibrium chem- 

istry in a unified manner, regardless of stiff or nonstiff source 

terms and under- or well-resolved conditions in space and time. 

Unlike Bao and Jin’s random projection method, the activation and 

deactivation of chemical reactions in the reaction step is not pro- 

jected onto two prescribed equilibrium states, but onto two time- 

dependent states corresponding to advancing the reaction by one 

timestep forward and interrupting the reaction, respectively. The 

criterion to activate a reaction follows from comparison of the local 

computed temperature with a randomized temperature depending 

on the states of the forward step and its adjoint. To randomize 

each reaction process, the multi-reaction system is split reaction 

by reaction [21,22] . By adding a drift term into the random tem- 

perature sampling, the proposed method recovers the solution of a 

deterministic fractional step method in nonstiff cases with increas- 

ing resolution. 

The paper is organized as follows. In Section 2 , we introduce 

the reactive Euler equations with chemical reaction source terms. 

A standard fractional step method is outlined by operator splitting 

into the convection step and reaction step. In the reaction step, a 

reaction-split ODE solver is developed to approximate the exact so- 

lution for general chemical kinetics, based on which random time- 

stepping of each reaction is performed. In Section 3 , we examine 

the pure ODE solver and the split random time-stepping method 

by extensive model examples and realistic reacting flows in both 

1D and 2D. Conclusions are drawn in the last section. More infor- 

mation about the ODE solver are provided in the appendix. 

2. Formulation 

Assuming the flow is compressible, inviscid and in two dimen- 

sions for simplicity, the multi-species Euler equations coupled with 

reaction source terms take the form 

U t + F (U) x + G (U ) y = S(U ) , (1) 

where 

U = 

(
ρ, ρu, ρv , ρe t , ρy 1 , ρy 2 , . . . , ρy N s −1 

)T 
, 

F (U) = 

(
ρu, ρu 

2 + p, ρu v , (ρe t + p) u, ρuy 1 , ρuy 2 , . . . , ρuy N s −1 

)T 
, 

G (U) = 

(
ρv , ρu v , ρv 2 + p, (ρe t + p) v , ρv y 1 , ρv y 2 , . . . , ρv y N s −1 

)T 
, 

S(U) = 

(
0 , 0 , 0 , 0 , ˙ ω 1 , ˙ ω 2 , . . . , ˙ ω N s −1 

T 
)

(2) 

are vectors of the conserved variables, convective flux in the x - 

or y -direction and source terms, respectively, with ˙ ω i representing 

rate of change of the i th species concentration in the reactive gas 

mixture due to the chemical kinetics consisting of N r reactions and 

N s species. Furthermore, e t = e + 

1 
2 (u 2 + v 2 ) is the specific total en- 

ergy including the specific internal energy e . To close the system, 

an equation of state (EoS) of the form 

p = ρ
N s ∑ 

i =1 

y i 
R u 

W i 

T (3) 

is used, with y i and W i denoting the mass fraction and molecular 

weight of the i th species, respectively, and R u being the universal 

gas constant. 

The above conservation laws of mass, momentums and energy 

with source terms are usually solved by operator splitting. The first 

step is flow convection 

S c : U t + F (U) x + G (U) y = 0 (4) 

assuming no chemical reactions and passive transport of all 

species. The second step solves the system of ODEs of chemical 

kinetics 

S r : 
dy i 
dt 

= 

˙ ω i 

ρ
, i = 1 , . . . , N s , (5) 

under adiabatic and constant-volume conditions with fixed total 

density and constant specific internal energy. The first-order ac- 

curate Lie–Trotter splitting scheme [23] or the second-order Strang 

splitting [24] can be employed to approximate the solution from 

the discrete time level n to n + 1 with a timestep �t , i.e. 

U 

n +1 = S (�t) 
r ◦ S (�t) 

c U 

n or U 

n +1 = S 
( �t 

2 ) 
c ◦ S (�t) 

r ◦ S 
( �t 

2 ) 
c U 

n , (6) 

with symbol ‘ ◦’ to separate each operator and to indicate that an 

operator is applied to the following arguments. For the convection 

operator S c , a shock-capturing scheme [25–28] can be adopted. For 

the reaction step S r , an ODE solver such as VODE [29] , CHEMEQ2 

[30] and MTS/HMTS [31] can be used with or without adaptive er- 

ror control. 

We first utilize operator splitting upon the nonequilibrium 

chemical kinetics so that a multi-reaction system can be decou- 

pled into a series of single reaction steps. Then we introduce the 

established concept of random projection into the ODE solver in 

order to realize random ignition of reactions. Each reaction pro- 

cess is randomly advanced one timestep forward (activation) or 

interrupted (deactivation) instead of being projected onto two pre- 

scribed equilibrium states. In the following, we term the random- 

ized and reaction-by-reaction ODE solver for nonequilibrium chem- 

istry as Split Random Time-Stepping method (SPRANTS). 

2.1. Split reaction-by-reaction ODE solver for chemical kinetics 

For common nonequilibrium chemical kinetics, chemical pro- 

duction rates in Eq. (5) are derived from a reaction mechanism that 

consists of N s species and N r reactions 

N s ∑ 

i =1 

ν f 
ji 
X i ⇐⇒ 

N s ∑ 

i =1 

νb 
ji X i , j = 1 , . . . , N r , (7) 

where ν f 
ji 

and νb 
ji 

are the stoichiometric coefficients of species i 

with description X i appearing as a reactant and as a product in 

reaction j . The total production rate of species i in Eqs. (2) and 

(5) is the sum of the production rate from each single elementary 

reaction as 

˙ ω i = W i 

N r ∑ 

j=1 

(
νb 

ji − ν f 
ji 

)[ 

k f 
j 

N s ∏ 

l=1 

[ 
ρl 

W l 

] ν f 

jl − k b j 

N s ∏ 

l=1 

[ 
ρl 

W l 

] νb 
jl 

] 

, (8) 

with k 
f 
j 

and k b 
j 

denoting the forward and backward reaction rates 

of each chemical reaction, and ρl = y l ρ . 

By operator splitting [21,22] , we can decouple the multi- 

reaction system, e.g., by Lie–Trotter splitting, as 

S r : R 

(�t) 
1 st 

= R 

(�t) 
N r 

◦ R 

(�t) 
N r −1 

◦ · · · ◦ R 

(�t) 
2 

◦ R 

(�t) 
1 

, (9) 

where the operator R j corresponds to a single reaction j and is 

independent of all other reactions. The reaction-by-reaction idea 

resembles a meso-scale model of microscopic kinetics where one 

molecule/atom can only experience one reaction at a time instance. 

This is also the case with stochastic simulation of chemical kinet- 

ics [32] . At macroscopic scale, reactions involving large numbers of 
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species molecules/atoms are considered as simultaneously occur- 

ring processes. In [21] the second-order accurate Strang splitting 

is adopted, starting with the fastest reaction and ending with the 

slowest for half a timestep and then backwards for another half 

timestep. In our approach we simply take the traversal order not 

according to reaction rates but to the reaction-mechanism index 

sequence 

S r : R 

(�t) 
2 nd 

= R 

( �t 
2 ) 

1 
◦ R 

( �t 
2 ) 

2 
◦ · · · ◦ R 

( �t 
2 ) 

N r 
◦ R 

( �t 
2 ) 

N r 
◦ R 

( �t 
2 ) 

N r −1 
◦ · · · ◦ R 

( �t 
2 ) 

1 

= R 

( �t 
2 ) 

1 st 
◦ R 

( �t 
2 ) 

1 st 
, 

(10) 

where R 1 st is the reverse operator of R 1 st . Accordingly, for each R j , 

we have 

R j : 

N s ∑ 

i =1 

ν f 
ji 
X i ⇐⇒ 

N s ∑ 

i =1 

νb 
ji X i , 

dy i 
dt 

= 

˙ ω i 
j 

ρ
, i = 1 , . . . , N s , 

˙ ω i 
j = W i 

(
νb 

ji − ν f 
ji 

)[ 

k f 
j 

N s ∏ 

l=1 

[ 
ρl 

W l 

] ν f 

jl − k b j 

N s ∏ 

l=1 

[ 
ρl 

W l 

] νb 
jl 

] 

. 

(11) 

We now rewrite the ODE in Eq. (11) in the following form [30] 

dy i 
dt 

= q j 
i 
− p j 

i 
y i , i = 1 , . . . , N s , (12) 

where q 
j 
i 

≥ 0 is the production rate and p 
j 
i 
y i ≥ 0 is the loss rate for 

the i th species through reaction j . 

Following the operator splitting of reactions, we continue to 

split each reaction j into a forward reaction and a backward re- 

action (for an irreversible reaction, it can be interpreted as a re- 

versible reaction with zero backward reaction rate) 

R 

(�t) 
j 

= R 

(�t) 
j,b 

◦ R 

(�t) 
j, f 

(13) 

such that the species involved will either gain mass or lose mass 

through the one-way forward/backward reaction from Eq. (12) , i.e. 

mass gain : q j 
i 
≥ 0 , p j 

i 
y i = 0 or mass loss : q j 

i 
= 0 , p j 

i 
y i ≥ 0 , 

(14) 

with the simplified 

q j, f 
i 

= 

W i 

ρ
νb 

ji 

[ 

k f 
j 

N s ∏ 

l=1 

[ 
ρl 

W l 

] ν f 

jl 

] 

, p j, f 
i 

y i = 0 for product species , 

q j, f 
i 

= 0 , p j, f 
i 

y i = 

W i 

ρ
ν f 

ji 

[ 

k f 
j 

N s ∏ 

l=1 

[ 
ρl 

W l 

] ν f 

jl 

] 

for reactant species 

(15) 

for the forward reaction of Eq. (11) . The backward reaction can 

be determined accordingly upon exchanging its reactants and 

products. 

Since each elementary reaction is decoupled from the others 

and each reaction again is split into two opposite unidirectional 

reactions, finally only a single reaction equation of the type 

aA + bB + · · · −→ xX + yY + · · · (16) 

is considered in each operation. Mass conservation and positivity 

of mass fractions can be properly treated. 

For the simple cases of Eq. (16) , one may find analytical so- 

lutions, see Appendix A . However, for the general form of Eq. 

(16) whose analytical solution is not explicitly known or difficult 

to derive, a more convenient alternative is to use quasi-steady- 

state (QSS) methods to obtain the approximate exact solution. QSS 

methods are based on the exact solution of Eq. (12) for constant p 
j 
i 

and q 
j 
i 

[33,34] , i.e. 

y n +1 
i 

= y n i e 
−p j 

i 
�t + 

q j 
i 

p j 
i 

(1 − e −p j 
i 
�t ) , for all νb 

ji − ν f 
ji 

� = 0 . (17) 

As generally p 
j 
i 

and q 
j 
i 

depend on { y 1 , . . . , y N s } in Eq. (14) or 

(15) , Eq. (17) provides a linear approximation. For the QSS-based 

SPRANTS method, the stable timestep size is not limited to the 

characteristic time scales of the chemical species and thus a larger 

timestep implying less computational efforts is possible [21] . 

Remark 1. The QSS approximation adopted here in SPRANTS is 

first-order accurate. For application to reacting flows the achiev- 

ably absolute error magnitude generally is sufficient [30] . 

2.1.1. Treatment for mass conservation 

Employing QSS in Eq. (17) for all the species participating in 

reaction j (with νb 
ji 

− ν f 
ji 

� = 0 ), 

∑ 

i 

y n +1 
i 

= 

∑ 

i 

(
y n i e 

−p j 
i 
�t + 

q j 
i 

p j 
i 

(
1 − e −p j 

i 
�t 

))
(18) 

may not necessarily be unity so that mass may be not exactly con- 

served. To cure this problem, one may only advance y n 
k 

to y n +1 
k 

of a reactant k by Eq. (17) and update all other { y i,i =1 , ... ,N s ,i � = k } n +1 

by mass conservation of a single reaction equation in Eq. (11) . 

This merit of knowing the exact net gain or loss of mass of other 

species originates from the fact that each reaction in Eq. (11) is 

decoupled from others. Therefore, for the reactant k , combining 

Eqs. (17) and (15) we have 

y n +1 
k 

= y n k e 
−p j 

k 
�t (19) 

and for the other species i � = k , including other reactants and all the 

products in reaction j , the change of mass fraction �y i = y n +1 
i 

− y n 
i 

should obey 

�y i /W i 

νb 
ji 

− ν f 
ji 

= 

�y k /W k 

νb 
jk 

− ν f 

jk 

, (20) 

giving the update 

y n +1 
i 

= y n i + �y i = y n i + 

νb 
ji 

− ν f 
ji 

νb 
jk 

− ν f 

jk 

W i 

W k 

�y k . (21) 

It is easy to see that 
∑ N s 

i =1 
�y i = 0 , which is equivalent to 

∑ N s 
i =1 

y i = 

1 for mass conservation. 

2.1.2. Positivity-preserving treatment 

Without loss of generality, we consider the forward reaction 

j and assume that reactant species k has νb 
jk 

= 0 in Eq. (19) , as 

ν f 

jk 
> 0 is prescribed for reactants. Similarly assuming that an- 

other reactant species i also has ν f 
ji 

> 0 and νb 
ji 

= 0 , we combine 

Eqs. (19) and (21) to obtain 

y n +1 
i 

= y n i −
ν f 

ji 

ν f 

jk 

W i 

W k 

y n k + 

ν f 
ji 

ν f 

jk 

W i 

W k 

y n k e 
−p j 

k 
�t . (22) 

Recalling Eq. (15) for reactants i and k , we have 

p j 
i 
y i 

p j 
k 
y k 

= 

ν f 
ji 

ν f 

jk 

W i 

W k 

. (23) 

Upon rearranging Eq. (23) and substitution into Eq. (22) we obtain 

y n +1 
i 

= y n i 

p j 
k 
− p j 

i 

p j 
k 

+ 

ν f 
ji 

ν f 

jk 

W i 

W k 

y n k e 
−p j 

k 
�t . (24) 
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Table 1 

Convergence rates for S 1 and S 4 using Lie–Trotter and Strang splittings. 

S 1 S 4 

�t L 1 error Rate L ∞ error Rate L 1 error Rate L ∞ error Rate 

Lie–Trotter 6.25E −03 3.47E −15 – 5.01E −15 – 1.47E −12 – 2.27E −12 –

1.25E −02 7.30E −15 1.0709 1.05E −14 1.07166 2.94E −12 0.999772 4.53E −12 0.999815 

2.50E −02 1.60E −14 1.13228 2.32E −14 1.13699 5.89E −12 0.999544 9.07E −12 0.999631 

5.00E −02 3.76E −14 1.23291 5.51E −14 1.24985 1.18E −11 0.999088 1.81E −11 0.999261 

1.00E −01 9.76E −14 1.37647 1.47E −13 1.41746 2.35E −11 0.998174 3.62E −11 0.99852 

Strang 6.25E −03 3.14E −17 – 1.00E −16 – 5.25E −17 – 8.32E −17 –

1.25E −02 1.24E −16 1.97793 4.00E −16 1.99959 2.10E −16 1.99745 3.34E −16 2.00663 

2.50E −02 4.94E −16 1.99949 1.60E −15 2.0 0 01 8.39E −16 1.99996 1.34E −15 2.0 0 0 02 

5.00E −02 1.98E −15 2.0 0 021 6.40E −15 1.99999 3.36E −15 1.99999 5.35E −15 1.9999 

1.00E −01 7.91E −15 1.99997 2.56E −14 2 1.34E −14 1.99999 2.14E −14 2 

Fig. 1. Ignition delay times with different initial temperatures (left) and time histories of mass fractions of H and H 2 O with T 0 = 10 0 0 K (right). 

With the aid of Eq. (24) , it is readily seen that positivity of y n +1 
i 

, 

i.e. y n +1 
i 

≥ 0 , is achieved when p 
j 

k 
≥ p 

j 
i 

since the third term is al- 

ways non-negative. Therefore, in order to preserve the positivity of 

species mass fractions, reactant species k using the QSS approxi- 

mation should satisfy 

p j 
k 

= max { p j 
i 
} for all the reactant species in reaction j. (25) 

Regarding the positivity for the choosen reactant k , according to 

Eq. (19) , it is inherently satisfied through positivity of the exponen- 

tial function. Eq. (19) implies that 0 ≤ y n +1 
k 

< 1 due to the negative 

exponent such that mass fractions of all species through reaction j 

are bounded within [0,1] as a result of mass conservation. 

Remark 2. The present reaction-split method using analytical or 

approximate solutions can perform sufficiently well, as a stand- 

alone solver, for the ODE system in chemical kinetics. Its following 

randomization is not motivated for integrating the ODE accurately, 

but primarily aimed at alleviating the effect of numerical dissipa- 

tion introduced by S c through shock-capturing schemes into S r . 

2.2. Finite randomization of chemical reactions 

Bao and Jin [1–3] first proposed the idea of random projection 

into the ODE solver in place of the deterministic projection. They 

also proved that the random projection method gives first-order 

convergence for scalar problems. For scalar problems and Euler 

equations with stiff source terms, the random projection method 

shows excellent performance in obtaining correct shocks and react- 

ing fronts for under-resolved spatial and temporal discretizations. 

Through operation splitting of the ODE system in S r , we merely 

need to consider the randomization of a single one-way reaction 

from time t n to t n +1 . In Bao and Jin’s formulation, temperature 

is randomized and compared with a pre-set ignition temperature, 

T ign . Upper and lower temperature limits are needed, i.e. T u and 

T b (corresponding to the two equilibrium states of the initial com- 

bustible gas mixture being completely burnt and unburnt). 

Here we advance the current state vector { y 1 , . . . , y N s } through 

a single one-way reaction with subscript j , as in Eq. (16) , 

{ y 1 , . . . , y N s } + = R 

(�t) 
j 

{ y 1 , . . . , y N s } , (26) 

where { y 1 , . . . , y N s } + represents the advance in time by operation 

R j (for reversible reactions R 
f 
j 

or R b 
j 
). The change of mass fractions 

for the species involved in this reaction is 

{ �y 1 , . . . , �y N s } j = { y 1 , . . . , y N s } + − { y 1 , . . . , y N s } . (27) 

The reverse operation from time level n is 

{ y 1 , . . . , y N s } − = { y 1 , . . . , y N s } − { �y 1 , . . . , �y N s } j . (28) 

Since mass fractions of species involved are constrained in [0,1], 

all mass fractions have to be rescaled if necessary according to 

Eq. (20) . For the two states with superscripts + and −, two limit 

temperatures T + and T − can be implicitly obtained according to 

Eq. (3) with the thermodynamic relation 

h (y 1 , . . . , y N s , T ) − e = 

p(y 1 , . . . , y N s , T ) 

ρ
, (29) 

where ρ and e are fixed during a constant-volume adiabatic reac- 

tion and h represents the specific enthalpy. If we assume that the 

present reaction is exothermal, we have T − < T < T + . The converse 

applies to endothermal reactions. T + corresponds to T b in the orig- 

inal random projection method while T − corresponds to T u . Given 

the two limit temperatures, we can assemble a local random tem- 

perature by 

T ∗ = T − + θn (T + − T −) , (30) 

where θn is a uniformly distributed random real number be- 

tween 0 and 1, and T ∗ is the randomized local temperature with 

min { T −, T + } < T ∗ < max { T −, T + } and T ∗ � = T in general. Regarding 
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Fig. 2. CPU times with different initial temperatures. 

Fig. 3. Time histories of the sum of mass fractions with ‘10 0 0’: T 0 = 10 0 0 K and 

‘1200’: T 0 = 1200 K. 

the generation of random number θn , Bao and Jin suggested the 

van der Corput sampling scheme [35] . 

Given the random temperature T ∗, the unidirectional reaction j 

is performed as 

P (�t) 
j 

: { y 1 , . . . , y N s } j = 

{{ y 1 , . . . , y N s } + , if T > T ∗, 
{ y 1 , . . . , y N s } , otherwise . 

(31) 

The updated state solution { y 1 , . . . , y N s } j is taken as the initial state 

for the next reaction j + 1 . 

Remark 3. As the random temperature T ∗ is uniformly distributed 

between the two temperature limits, the mean propagation of the 

reaction front recovers the physically correct position [1] . With de- 

terministic ODE solvers, accumulation of errors may lead to non- 

physical reacting front propagation, see the detailed explanation in 

[7,36] . 

Inserting Eq. (31) into the split ODE solver in Eqs. (9) and (10) , 

the present SPRANTS method can be written as 

P (�t) 
1 st 

= P (�t) 
N r 

◦ P (�t) 
N r −1 

◦ · · · ◦ P (�t) 
2 

◦ P (�t) 
1 

(32) 

corresponding to the Lie–Trotter splitting or as 

P (�t) 
2 nd 

= P 
( �t 

2 ) 

1 
◦ P 

( �t 
2 ) 

2 
◦ · · · ◦ P 

( �t 
2 ) 

N r 
◦ P 

( �t 
2 ) 

N r 
◦ P 

( �t 
2 ) 

N r −1 
◦ · · · ◦ P 

( �t 
2 ) 

1 
(33) 

corresponding to Strang splitting. 

Remark 4. Not requiring either the flow information at each cell 

and its neighbors [17] or an additional procedure to locate the re- 

acting front in the computational domain [1] , the proposed method 

solves the source terms at each cell locally as a 0D problem, such 

that its extension to 3D reacting flows is straightforward. 

For nonstiff cases when the reaction zone is well-resolved in 

space and time, the present SPRANTS method gradually degener- 

ates to a deterministic ODE solver upon modification of the sam- 

pling interval in Eq. (30) as 

T ∗∗ = 

{
T ∗ − 1 

2 
(T + − T −) f, if f < 1 , 

T ∗, otherwise , 
(34) 

where 

f = N 

∣∣∣∣ T + − T −

T ++ − T −− + ε

∣∣∣∣. (35) 

T ++ is an estimated upper bound of the temperature after N time 

steps (e.g., N = 5 ) and T −− corresponding to its reverse state ac- 

cording to Eqs. (27) and (28) , and ε is a small positive number. 

Thus f represents a dynamic measure for the time resolution of the 

respective reaction. One can see that, when the resolution is fine 

and linear approximation applies to temperature evolution, f → 1 

and Eq. (34) gives 

lim 

f→ 1 
E(T ∗∗) = E(T ∗) − 1 

2 

(T + − T −) = T − < T (36) 

for a uniformly distributed θn in Eq. (30) . The random time- 

stepping of reactions therefore reduces to a deterministic process 

according to Eq. (31) in non-stiff cases. 

Fig. 4. Temperature histories using different timesteps (left) and L ∞ error norms of temperature and mass fraction y H 2 (right); T 0 = 10 0 0 K and dt 0 = 5 × 10 −8 s. 
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Fig. 5. Example 1 one reaction, CJ detonation at t = 1 . 5 . Purple square line: SPRANTS solution; red triangle line: deterministic solution with Arrhenius kinetics; black solid 

line: reference solution; left column: �x = 0 . 25 , �t = 0 . 01 ; right column: �x = 0 . 025 , �t = 0 . 001 . (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article.) 

Remark 5. Due to the reduced randomness between activation 

and deactivation, the proposed SPRANTS method can also cope 

with nonstiff problems while the original random projection 

method is suitable for under-resolved stiff cases [7] . 

3. Numerical results and discussion 

In this section, we consider three types of numerical experi- 

ments. The first serves to assess the split reaction-by-reaction ODE 

solver based on either analytical solutions or QSS approximation 
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Fig. 6. Example 1 SPRANTS results at t = 1 . 5 with varying resolutions. The timestep for the �x = 0 . 6 grid is equally scaled from �x = 0 . 25 , �t = 0 . 01 . 

Fig. 7. Example 1 temperature profiles at t = 1 . 5 by SPRANTS with or without the 

drift term using the resolved grid and timestep of �x = 0 . 0025 , �t = 0 . 0001 . Pur- 

ple line: SPRANTS solution without drift term; red circle line: SPRANTS solution 

with drift term; black cross line: reference solution. (For interpretation of the ref- 

erences to color in this figure legend, the reader is referred to the web version of 

this article.) 

for the zero-dimensional reaction operator, ignoring fluid transport. 

The following two types consider the coupled fluid dynamics with 

chemical kinetics by using simplified model kinetics and realistic 

finite-rate kinetics, respectively, in 1D or 2D. 

3.1. Reaction-split ODE solver for chemical kinetics 

3.1.1. Michaelis–Menten test 

The first case is the Michaelis–Menten system [37] , i.e. S 1 + 

S 2 
k 1 −→ S 3 , S 3 

k 2 −→ S 1 + S 2 , S 3 
k 3 −→ S 2 + S 4 , where the rate constants 

k 1 = 10 6 , k 2 = 10 −4 and k 3 = 10 −1 . The initial concentrations are 

5 × 10 −7 for S 1 and 2 × 10 −7 for S 2 with S 3 = 0 and S 4 = 0 [37,38] . 

For this case, analytical solutions are provided for each reaction, 

see Appendix A . Reactions are simulated until t = 50 . In Table 1 , 

the L 1 and L ∞ 

error norms of species S 1 and S 4 are detailed, show- 

ing the expected convergence rates, i.e. 1st order for Lie–Trotter 

splitting and 2nd order for Strang splitting. 

3.1.2. Hydrogen–air ignition delay test 

Hydrogen ignition in air considers not only temperature- 

dependent reversible reactions but also third-body reactions, mak- 

ing the approximate solution to each reaction is practically pre- 

ferred. The mechanism of H 2 –air combustion follows O’Conaire 

et al. [39] , consisting of 9 species (including the inert N 2 ) with 

23 reversible reactions (equivalent to 46 one-way reactions). This 

mechanism has exhibited good prediction for the ignition delay 

time in [40] . All temperature-dependent reaction rates are calcu- 

lated using the Arrhenius law 

k r = AT B exp (−T ign /T ) , (37) 

where the subscript r is f for forward reactions or b for backward 

reactions and T is the temperature. Parameters A, B and T ign for the 

forward rate of each reaction are often given in the mechanism. 

Backward rates often need to be calculated from the equilibrium 

constant K eq and k f by assuming the corresponding reaction to be 

in chemical equilibrium, i.e. K eq = k f /k b [41] . The third-body effect 

is accounted for by the summation of third-body collision efficien- 

cies times the corresponding molar densities of species. 

Initially the reactive H 2 -air mixture is at a pressure of 1 atm, 

and has molar ratio 2: 1: 3.76 for H 2 : O 2 : N 2 . Nitrogen is inert. All 

simulations end at t = 1 × 10 −3 s. First we vary the initial temper- 

ature T 0 from 950 K to 1400 K in steps of 50 K. A fixed timestep 

of 1 × 10 −8 s and Lie–Trotter splitting are applied. We compare the 

ignition delay times predicted by the present solver with the ex- 

perimental data and CHEMKIN [42] results from Ref. [40] (see its 

Fig. 3 ) in Fig. 1 (left). The present QSS-based reaction-split method 

(or abbreviated as QRS) exhibits good predictions for the ignition 

induction of hydrogen using the present mechanism, especially in 

the high initial temperature range. In Fig. 1 (right), we compare 

the computed mass fractions with CHEMEQ2 at an initial temper- 

ature of 10 0 0 K, and good agreement is achieved especially for the 

ignition time. For either QRS or CHEMEQ2, there is little differ- 

ence between CPU times with different initial temperatures. QRS, 

however, exhibits better efficiency than CHEMEQ2 for the 9-species 

23-reaction mechanism at a fixed timestep, as shown in Fig. 2 . By 

choosing the initial temperatures at 10 0 0 K and 1200 K, respec- 

tively, we consider the mass conservation of QRS and CHEMEQ2 in 

Fig. 3 . It is readily to see that QRS can always preserve the mass, 

whereas for the CHEMEQ2 results some total mass loss or gain oc- 

curs around the ignition time. 

We continue to consider the accuracy of QRS by adjusting the 

timestep from 5 × 10 −8 s to 8 × 10 −7 s with an amplifying factor of 

2. The initial temperature is fixed at 10 0 0 K. Figure 4 (left) shows 

that the temperature profiles converge with decreasing timesteps. 

By assessing the error norms of temperature and mass fraction of 

H in Fig. 4 (right), it can be seen that QRS is 1st-order convergent 

when Lie–Trotter splitting is applied. 

3.2. Reactive Euler equations with simplified model kinetics 

In this part, we consider reactive Euler equations coupled with 

simplified model kinetics in several stiff detonation problems. In 
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Fig. 8. Example 2 one reaction, strong detonation at t = 1 . Purple square line: SPRANTS solution; red triangle line: deterministic solution with Arrhenius kinetics; green 

cross line: deterministic solution with Heaviside kinetics; black solid line: reference solution; left column: �x = 0 . 25 , �t = 0 . 01 ; right column: �x = 0 . 025 , �t = 0 . 001 . (For 

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

such cases, the Arrhenius form of reaction rates in Eq. (37) also 

can be written as Heaviside form 

k r = 

{
AT B , T ≥ T ign , 

0 , T < T ign . 

The EoS in Eq. (3) for the model problems is simplified by 

p = (γ − 1) ( ρe − q 1 ρy 1 − q 2 ρy 2 − · · · − q N s ρy N s ) 

and T = p/ρ . Numerical experiments cover single reaction to 

multi-reaction system in 1D and 2D detonation problems. In our 

computation, the AUSM+ scheme [28] is employed together with 

MUSCL reconstruction using a TVD Minmod limiter [43] in the 
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Fig. 9. Example 3 two reactions, strong detonation at t = 3 . Purple square line: SPRANTS solution; red triangle line: deterministic solution with Arrhenius kinetics; green 

cross line: deterministic solution with Heaviside kinetics; black solid line: reference solution ( �x = 0 . 0025 , �t = 0 . 0001 ); left column: �x = 0 . 25 , �t = 0 . 01 ; right column: 

�x = 0 . 025 , �t = 0 . 001 . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

convection step. The reaction step adopts the proposed SPRANTS 

method or QRS as a deterministic method. 

Example 1 (Chapman–Jouguet (CJ) detonation) . The first case con- 

siders the simplest reacting model, which has been studied in [7] , 

with only one reaction and two mutually dependent species 

A −→ B, 

where A represents the fuel being burnt by the one-way reaction 

and mass fraction of the product can be given directly by y B = 1 −
y A . 



406 J.-H. Wang, S. Pan and X.Y. Hu et al. / Combustion and Flame 204 (2019) 397–413 

Fig. 10. Example 4 2D case, one infinite-rate reaction, CJ detonation. Left: deterministic solution; right: SPRANTS solution. Locations of the CJ detonation wave at three times 

are marked by y A = 0 . 5 with black solid line (low resolution) and white dashed line (high resolution). 

Parameters for the reaction model and species properties are 

( γ , q A , q B ) = ( 1 . 4 , 25 , 0 ) , (
A, B, T ign 

)
= ( 16418 , 0 . 1 , 15 ) . 

(38) 

Note that the ignition temperature T ign is only used by the deter- 

ministic method. The initial condition to generate the detonation 

wave consists of two parts in only one spatial dimension, with 

piecewise constants given by 

( p, T , u, y A , y B ) = 

{
( 21 . 435 , 12 . 75134 , 2 . 899 , 0 , 1 ) , x < 10 , 

( 1 , 1 , 0 , 1 , 0 ) , x ≥ 10 . 

The left part gas is at the burnt equilibrium state and moves at a 

speed u CJ relative to the stationary unburnt gas of the right part. 

The initial CJ state on the left can be obtained in theory [1,4,7] . 

This problem is solved on the interval [0, 30]. The left-end bound- 

ary condition is the inflow condition with fixed identical constants 

as the initial data on the left. Boundary condition for the right end 

is extrapolation from the mirror image points inside the domain. 

The exact solution is simply a CJ detonation wave moving to 

the right and we obtain the reference ‘exact’ solution by the de- 

terministic method (QRS) using a well-resolved grid ( �x = 0 . 0025 ) 

and a timestep of �t = 0 . 0 0 01 . We compare the under-resolved 

results by SPRANTS and QRS, respectively, using two sets of grid 

( �x = 0 . 25 , 0 . 025 ) and timestep ( �t = 0 . 01 , 0 . 001 ) with the same 

kinetics. Figure 5 shows the computed pressure, density, temper- 

ature and mass fraction. The proposed random method can cap- 

ture the correct propagation of the detonation wave with both 

coarse and fine grids, while the deterministic method produces 

the spurious solutions in the same under-resolved conditions, i.e. a 

weak detonation wave propagates faster than the theoretical deto- 

nation speed of D CJ = 7 . 124 in this case. Since a coarser grid with 

a larger timestep renders the stiffness more severe, the determin- 

istic method produces far more nonphysical weak detonation wave 

compared to the SPRANTS or the reference solution. The location 

of the reacting front on the coarse grid may be shifted from the 

exact location due to randomization, but the shift amplitude does 

not grow in time [1] , whereas the error accumulates with the de- 

terministic method. 

In Fig. 6 , the SPRANTS result based on a very coarse grid ( �x = 

0 . 6 corresponding to 50 grid points) is compared with the afore- 

mentioned under-resolved solutions by SPRANTS in terms of pres- 

sure and temperature at t = 1 . 5 . Correct location of the detonation 

wave is captured despite the smeared discontinuity. Convergence 

of pressure and temperature profiles with an increasing resolution 

can be seen towards the reference solution, demonstrating the ac- 

curacy of the proposed SPRANTS method in capturing the correct 

propagation speed of discontinuities at under-resolved conditions. 

We also notice that a grid of 300 nodes is employed to obtain the 

correct wave propagation in [7] and 50 grid points are used by 

a high-order finite difference scheme (WENO5/SR) in [18] for this 

case. 

In Fig. 7 , we demonstrate that with the drift term the SPRANTS 

solution captures not only the correct location of reacting front but 

also the resolved reaction zone, in good agreement with the refer- 

ence solution obtained by the deterministic method. Without the 

drift term, although the random method can still give the correct 

shock propagation, it fails to capture details of the resolved post- 

shock reaction zone by overshooting the temperature magnitude. 

Example 2 (Strong detonation) . This example considers a reacting 

model, which has been studied in [7] , with one reaction and three 
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Fig. 11. Example 5 2D case, two reactions, strong detonation at t = 0 . 1 . Top: reference solution; middle: deterministic solution with Arrhenius kinetics; bottom: SPRANTS 

solution; in the mass fraction contour, locations of the detonation front at t = 0 . 1 , 0 . 2 , 0 . 3 are additionally marked by setting y O 2 = 0 . 5 in white solid lines. 

species 

2 H 2 + O 2 −→ 2 H 2 O . 

Parameters for the reaction kinetics and species properties are (
γ , q H 2 , q O 2 , q H 2 O , W H 2 , W O 2 , W H 2 O 

)
= ( 1 . 4 , 300 , 0 , 0 , 2 , 32 , 18 ) , (

A, B, T ign 

)
= 

(
10 

6 , 0 , 2 

)
. 

The initial condition of piecewise constants is given by 

(
p, T , u, y H 2 , y O 2 , y H 2 O 

)
= 

{ 

( 20 , 10 , 8 , 0 , 0 , 1 ) , x < 2 . 5 , (
1 , 1 , 0 , 1 

9 
, 8 

9 
, 0 

)
, x ≥ 2 . 5 . 

The left part gas is at the burnt equilibrium state and it is moving 

at a speed larger than u CJ relative to the stationary unburnt gas of 

the right part so that a strong detonation wave is to occur. This 

problem is solved on the interval [0, 50]. 

The exact solution consists of a detonation wave, followed by a 

contact discontinuity and a shock, all moving to the right. Again, 

we obtain the reference solution by QRS using a resolved grid 

( �x = 0 . 0025 ) and a very small timestep ( �t = 0 . 0001 ). We com- 

pare the results by SPRANTS and the deterministic method using a 

coarse grid and a finer grid with stable timesteps, as explained in 

Fig. 8 . Note that in the deterministic method, we adopt both the 

Arrhenius model and the Heaviside model for the chemical kinet- 

ics. The proposed SPRANTS method can capture all discontinuities 

effectively, while the deterministic method produces spurious so- 

lutions at the same under-resolved conditions. In particular, using 

the Heaviside model, the deterministic method produces a less ac- 

curate solution due to the stronger stiffness compared to the Ar- 

rhenius model (see the right column of Fig. 8 ). 

Example 3 (Strong detonation) . This case considers a multi-step 

reaction mechanism with two one-way reactions and five species 

1) H 2 + O 2 −→ 2 OH , 

2) 2 OH + H 2 −→ 2 H 2 O , 
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Fig. 12. Example 6 hydrogen–air CJ detonation at t = 1 . 2 × 10 −3 s. Purple square line: SPRANTS solution; red triangle line: deterministic solution by CHEMEQ2; black solid 

line: reference solution; left column: �x = 0 . 08 m , �t = 1 × 10 −6 s ; right column: �x = 0 . 02 m , �t = 2 . 5 × 10 −7 s . (For interpretation of the references to color in this 

figure legend, the reader is referred to the web version of this article.) 

Table 2 

Initial condition for hydrogen–air CJ detonation in 

Example 6. 

Post-shock gas Pre-shock gas 

Pressure (Pa) 1481999.362037 101,325 

Temperature (K) 2941.677242 298 

Velocity (m/s) 800 ( ≈ u CJ ) 0 

Mass fraction 

y H 0.0 0 0247 0 

y O 0.001617 0 

y H 2 O 0.225404 0 

y OH 0.014915 0 

y O 2 0.013336 0.226362 

y H 2 0.002429 2.852103E −2 

y H 2 O 2 2.601600E −6 0 

y HO 2 1.857550E −5 0 

y N 2 0.742031 0.745117 

with N 2 as a dilute catalyst. Similar examples have been studied in 

Example 5.4 [3] . 

Parameters for the reaction model and species properties are (
γ , q H 2 , q O 2 , q OH , q H 2 O , q N 2 

)
= ( 1 . 4 , 0 , 0 , −20 , −100 , 0 ) , (

W H 2 , W O 2 , W OH , W H 2 O , W N 2 

)
= ( 2 , 32 , 17 , 18 , 28 ) , (

A 

1 , B 

1 , T 1 ign 

)
= 

(
10 

5 , 0 , 2 

)
, (

A 

2 , B 

2 , T 2 ign 

)
= 

(
2 × 10 

4 , 0 , 10 

)
. 

The initial condition of piecewise constants is given by (
p, T , u, y H 2 , y O 2 , y OH , y H 2 O , y N 2 

)
= 

{
( 40 , 20 , 10 , 0 , 0 , 0 . 17 , 0 . 63 , 0 . 2 ) , x < 2 . 5 , 

( 1 , 1 , 0 , 0 . 08 , 0 . 72 , 0 , 0 , 0 . 2 ) , x ≥ 2 . 5 . 

This problem is solved on the interval [0, 50]. 

Fig. 13. Example 6 hydrogen–air CJ detonation at t = 0 . 4 , 0 . 8 , 1 . 2 × 10 −3 s. Pur- 

ple square line: SPRANTS solution; red triangle line: deterministic solution by 

CHEMEQ2; black solid line: reference solution; both solutions use �x = 0 . 02 m , 

�t = 2 . 5 × 10 −7 s . (For interpretation of the references to color in this figure leg- 

end, the reader is referred to the web version of this article.) 

Figure 9 presents different computational conditions and re- 

sults obtained accordingly. All waves are captured with the cor- 

rect speeds by the SPRANTS method, in good agreement with the 

reference solution. However, the deterministic method obviously 

cannot handle the Heaviside model with the same under-resolved 

grids and timesteps. Although the slower propagation of the re- 

acting front is captured by the Arrhenius model, the determinis- 

tic method still results in spurious weak detonation, refer to the 

transit points around x ≈ 40 especially in the profiles at the right 

column of Fig. 9 . 
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Fig. 14. Example 6 hydrogen–air CJ detonation at t = 1 . 2 × 10 −3 s by the deterministic method with CHEMEQ2 using different grids (left) and CPU times (s) compared to 

SPRANTS on two coarser grids (right). 

Example 4 (CJ detonation in 2D) . This 2D case extends EXAM- 

PLE 1 to a radially symmetric point-source explosion, where A in 

Eq. (38) is amplified by a factor of 10 , 0 0 0 to approximate the in- 

finitely fast reaction with extreme stiffness. Similar tests have been 

studied in [3,16] . 

A quarter domain is considered exploiting sectorial symme- 

try on [0, 50] × [0, 50]. The hot-spot area of the initial high- 

temperature high-pressure burnt gas is a circle with radius 10 and 

the reactive unburnt gas takes the outside. Initial condition is the 

same as in Example 1 except the initial velocity of the circle area 

is adjusted to along the radial direction, i.e. 

( u, v ) = 

{
( 2 . 899 x/r, 2 . 899 y/r ) , r < 10 , 

( 0 , 0 ) , r ≥ 10 , 

where r = 

√ 

x 2 + y 2 . 

In our computations, a coarse grid (200 × 200) and a finer grid 

(20 0 0 × 20 0 0) are employed referring to Example 1. Corresponding 

timesteps are �t = 1 × 10 −2 and 1 × 10 −3 , respectively. With the 

finer grid, the deterministic method still produces a spurious solu- 

tion at t = 1 . 5 , see the left column of Fig. 10 , in that a nonphysical 

weak detonation wave is generated and the reacting front is no 

more circular. In contrast, the SPRANTS method can capture shape 

and location of the CJ detonation front accurately, see the right col- 

umn of the figure, by observing the radial velocity vector in the 

pressure contour even in the low resolution and the self-similarly 

circular outwards-developing detonation fronts in black/white lines 

of two resolutions at different times. The line-marked locations 

calculated by the random method in two resolutions agree excel- 

lently with each other and thus a grid convergence to the exact so- 

lution is reasonable to expect for the proposed SPRANTS method. 

With negligible curvature effects [44,45] and the under-resolved 

reaction zone being infinitesimal, the calculated speed of the det- 

onation front approaches the 1D theoretical speed of D CJ = 7 . 1247 

as in Example 1. 

Example 5 (Strong detonation in 2D) . The present case considers 

the same multi-step reaction mechanism as in Example 3 except 

that q OH in Eq. (38) changes into −50 . This is a 2D case used to 

prove the dimension-independent nature of the proposed method, 

unlike the original random projection method which requires a 

dimension-by-dimension scanning for local projection. Geometry 

and initial condition of piecewise constants in the 2D domain can 

be referred to [7] . 

A uniformly distributed coarse grid (300 × 100) and a refined 

grid (30 0 0 × 10 0 0) are employed. Corresponding timesteps are 

�t = 5 × 10 −4 and 5 × 10 −5 , respectively. The reference solution is 

obtained by the deterministic method using the fine grid and tiny 

Table 3 

CPU times (s) by SPRANTS and the deterministic method with CHEMEQ2 

in Example 6. 

N c 50 200 3200 6400 10 0 0 0 

� � 

SPRANTS 418.523 3235.12 

✕ ✕ � � � 

CHEMEQ2 52.9419 214.142 6788.82 13592.8 21356.0 

N c represents the number of grid points and symbol � or ✕ indicates 

the correct or incorrect wave propagation being captured. 

timestep. The comparison of the SPRANTS method and determin- 

istic method on capturing stiff detonation waves is based on the 

under-resolved grid and timestep. In Fig. 11 , at t = 0 . 1 the spurious 

solution given by the deterministic method on the coarse grid con- 

tains a too fast weak detonation wave, which has passed half of the 

domain. However, the correct detonation waves from the SPRANTS 

method on the same resolution and the deterministic method on a 

fine grid agree with each other excellently. Good agreement of the 

self-similar propagation of the detonation wave from t = 0 . 1 to 0.3 

also can be seen in the mass fraction contour given by the ref- 

erence solution and the under-resolved SPRANTS solution, respec- 

tively. The slight difference between the two solutions lies in some 

small near-shock statistical fluctuations due to the random nature 

of the method [1] . 

3.3. Reactive Euler equations with realistic nonequilibrium kinetics 

In this subsection, we validate the SPRANTS method for captur- 

ing stiff detonation waves governed by the reactive Euler equations 

coupled with realistic chemical nonequilibrium kinetics which in- 

troduces multiple temperature-dependent reactions with distinct 

timescales. To our knowledge, both the two test cases below 

are reported for the first time, taking into account the detailed 

hydrogen–air combustion mechanism as in Section 3.1.2 . Two dif- 

ferent scenarios with a CJ detonation and strong detonation wave, 

respectively, are simulated in 1D or 2D domain. The convection op- 

erator adopts an ordinary shock capturing scheme as in the for- 

mer subsection, and the reaction step is solved by the proposed 

SPRANTS method and CHEMEQ2 as the deterministic method to 

make a comparison. Reaction splitting in the SPRANTS method em- 

ploys the 2nd-order Strang scheme to reduce splitting errors. 

Example 6 (Realistic CJ detonation) . The setup consists of two 

parts divided by a shock moving to the right in a 1D domain of 

length L = 4 m, as in Table 2 . The theoretical CJ detonation states 

for the unburnt gas can be generated using the NASA Chemical 
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Fig. 15. Example 7 the density distribution and the detonation front location at different times. Left: reference solution; middle: deterministic solution by CHEMEQ2; right: 

SPRANTS solution; the location of the reacting front is marked by the white solid line with y H 2 O = 0 . 1 . 
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Equilibrium Analysis (CEA) program [46] , and according to the CJ 

condition [1,4,7] , i.e. 

D CJ = u CJ + (γ p b /ρb ) 
1 / 2 , 

we adopt u b = 800 m/s ≈ u CJ for the initial velocity of the burnt 

gas, to generate a CJ detonation wave sweeping the stationary un- 

burnt gas. The shock is initially located at x = 0 . 4 m. Boundary 

condition for the left/right end is simply extrapolation from the 

mirror image points inside the domain. All simulations are termi- 

nated at t = 1 . 2 × 10 −3 s and use the same mechanism [39] . 

The exact solution is a steady self-similar CJ detonation wave 

traveling from left to right. We obtain the reference exact so- 

lution by the deterministic method using a very fine grid with 

10,0 0 0 points and a fixed tiny timestep of �t = 5 × 10 −8 s. 

Two sets of under-resolved grid and timestep are considered, i.e. 

�x = 0 . 08 m , �t = 1 × 10 −6 s and �x = 0 . 02 m , �t = 2 . 5 × 10 −7 s , 

respectively. 

In Fig. 12 at the given time: although the resolution of the 

grid and timestep is far lower than the resolved solution, the 

SPRANTS method predicts the properties of the flowfield in quite 

good agreement with the reference solution, including the location 

of the detonation wave and profiles of the mixture pressure and 

density. The obtained profiles tend to converge to the reference so- 

lution with increasing resolution (and decreasing stiffness). In con- 

trast, using the same under-resolved grid and timestep, the deter- 

ministic method yields the spurious nonphysical weak detonation 

ahead of the shock and the flowfield profiles are totally changed 

in an incorrect way. In Fig. 13 , wave propagation at different times 

is presented by looking into the pressure distribution. Despite the 

deviation by few grid points, SPRANTS can always capture the cor- 

rect wave location while the error in the location of reaction front 

by the deterministic method deteriorates by showing a too fast 

weak detonation wave. Note that the von Neumann spike inside 

the reaction zone of the reference solution can be calculated only 

by very fine resolution both in space and time. 

In Fig. 14 (left), we additionally obtain several solutions by 

the deterministic method with CHEMEQ2 using N c = 40 0 , 80 0 up 

to 6400 grids with linearly decreasing global timesteps (lower to 

�t = 5 × 10 −8 s as the reference solution with N c = 10 , 0 0 0 ). It can 

be seen that the pressure profiles converge to the reference solu- 

tion (with 10,0 0 0 grid points) including the spurious weak detona- 

tion waves with N c = 400 to 1600. When the number of grid points 

increases to 3200 or more, the weak detonation wave disappears 

and the correct location of the reacting front is captured. We com- 

pare the CPU times for the reaction step of two methods based on 

different grids, listed in Table 3 and plotted in Fig. 14 (right), as 

the computational cost of integrating the ODE system dominates 

in reacting flow simulations. With the same mechanism, SPRANTS 

consumes more CPU time in the reaction step than the determinis- 

tic method using the same resolution, since each random reaction 

needs to assume a forward state or backward state to determine 

the random temperature, invoking a costly iterative root-finding 

operation. The deterministic method requires a much higher res- 

olution in both space and time to reach the same prediction ac- 

curacy so that its overall computational efficiency dramatically 

decreases. 

Example 7 (Realistic strong detonation in 2D) . The setup consists 

of two parts divided by a shock traveling to the right in a rectan- 

gular domain of [0 , 3] m × [0 , 1] m . The post-shock burnt gas part 

is given by 

{| y − 0 . 5 | > 0 . 25 , x < 0 . 5 } ∪ {| y − 0 . 5 | ≤ 0 . 25 , x − 0 . 25 < y < 1 . 25 − x } , 
and the unburnt gas occupies the remaining domain in front of 

the initial shock. Initial states are identical with those in Ex- 

ample 6 except for the x -velocity of the post-shock part being 

increased to u b = 20 0 0 m/s > u CJ , to create a strong detonation 

wave. The boundary condition for the left/right end is simply ex- 

trapolation from the mirror image points inside the domain and 

the top/bottom boundary is considered as a slip wall. All simula- 

tions are finished at t = 1 × 10 −3 s and still use the 9-species 23- 

reaction mechanism [39] . 

With the previous 1D example, it was shown that the deter- 

ministic solution based on a grid of 3200 points in the 4 m long 

domain recovers the correct shock position in Fig. 14 (left). There- 

fore, we generate a reference solution in 2D by the deterministic 

method using a fine grid with 30 0 0 × 10 0 0 points and a fixed tiny 

timestep of �t = 2 . 5 × 10 −8 s. A set of under-resolved uniform grid 

and timestep is also considered, i.e. 150 × 50 , �t = 2 . 5 × 10 −7 s. 

Figure 15 displays the density distributions along with locations 

of the detonation wave at different times in three solutions. In 

comparison with the reference solution, the SPRANTS method gives 

reasonable locations of the reacting front at all times. Due to the 

low resolution used in SPRANTS, detailed characteristics presented 

in the reference solution such as the triple points, slip lines, small 

vortices and peak values of density are diffused while the overall 

flowfield including the profile of reacting front has been correctly 

captured. For the deterministic method with the same resolution, a 

spurious weak detonation wave can be observed with a maximum 

error of nearly 10% of the domain length within only 1 ms. 

4. Conclusions 

A new operator splitting method for simulating chemically re- 

acting flows, especially for capturing stiff detonation waves in 

under-resolved conditions has been developed. Two procedures 

based on operator splitting are included: for the convection step, 

any shock-capturing scheme can be used; for the reaction step, 

the multi-species multi-reaction ODE system in the source terms 

is further split in a reaction-by-reaction manner. Each reaction ei- 

ther proceeds a timestep forward or is interrupted according to 

a local random temperature rather than a deterministic process 

with growing error accumulation. A wide range of numerical ex- 

periments including not only simple model kinetics but also real- 

istic nonequilibrium chemistry such as the temperature-dependent 

finite-rate hydrogen–air combustion are considered in 1D and 2D 

flows, demonstrating the following properties: 

1. Mass conservation and positivity of species concentration can 

be guaranteed by the reaction-split ODE solver, which is almost 

unconditionally stable due to its using either analytical or ap- 

proximate exact solutions. 

2. The proposed SPRANTS method can effectively predict the cor- 

rect propagation of discontinuities as well as the overall flow- 

field information in under-resolved conditions, for both model 

kinetics and realistic finite-rate nonequilibrium kinetics. 

3. Compared with the deterministic method using CHEMEQ2, the 

present SPRANTS method exhibits better computational effi- 

ciency as it can correctly capture the detonation wave with 

a larger timestep on coarse grids for nonequilibrium reactive 

flows. 

4. By adding a drift term into the random temperature sampling, 

SPRANTS can recover the deterministic solution as the resolu- 

tion improves with decreasing stiffness. 

5. The dimension-independent algorithm for the source terms 

makes further 3D extension of the proposed method straight- 

forward. 

Employing high-order low-dissipation schemes for the present 

method is a subject of future research. 
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Appendix A. Analytical solutions to some simple forms of a 

one-way reaction equation 

For the simplest form of a reaction such as A −→ products , 

we have an ODE for the molar concentration [ A ], as 
d [ A ] 
dt 

= −k [ A ] , 

with k being the rate constant and initial value of [ A ] 0 at t = t 0 . 

This ODE written in terms of molar concentration is equivalent to 

Eq. (11) using density and mass fraction since [ A ] = 

ρA 
W A 

= 

ρy A 
W A 

. Its 

solution by separation of variables is [ A ] = [ A ] 0 e 
−k (t−t 0 ) . 

For the reaction form 

A + B −→ products , (A.1) 

we have the ODE system as 

d [ A ] 

dt 
= 

d [ B ] 

dt 
= −k [ A ] [ B ] . (A.2) 

This means that d [ A ] = d [ B ] holds for any time interval dt and thus 

[ A ] − [ A ] 0 = [ B ] − [ B ] 0 . (A.3) 

Substituting relation (A.3) into Eq. (A.2) , we have 
d [ A ] 
dt 

= 

−k [ A ] ( [ A ] + �AB ) , where �AB = [ B ] 0 − [ A ] 0 , leading to the solution 

of [ A ] as 

[ A ] = 

{ �AB 
[ B ] 0 
[ A ] 0 

e �AB k (t−t 0 ) −1 
, if �AB � = 0 , 

1 

k (t−t 0 )+ 1 
[ A ] 0 

, otherwise . 

Reaction 2 A −→ products is a special case of reaction (A.1) and 

the solution is [ A ] = 

1 

k (t−t 0 )+ 1 
[ A ] 0 

. 

For a third-order reaction A + B + C −→ products , we also 

utilize the relations [ A ] − [ A ] 0 = [ B ] − [ B ] 0 = [ C ] − [ C ] 0 and per- 

form separation of variables to obtain an implicit solution for 

[ A ] 0 � = [ B ] 0 � = [ C ] 0 , i.e. (
[ A ] 

[ A ] + �AC 

[ C ] 0 
[ A ] 0 

) 1 
�CB �AC 

−
(

[ A ] 

[ A ] + �AB 

[ B ] 0 
[ A ] 0 

) 1 
�CB �AB 

= e −k (t−t 0 ) . 

Only for [ A ] 0 = [ B ] 0 = [ C ] 0 or for the special reaction 

3 A −→ products , an explicit analytical solution exists, i.e. 

[ A ] = 

√ 

1 
1 

[ A ] 2 
0 

+2 k (t−t 0 ) 
. 

After the determination of the new state of the reactant species 

[ A ], states of the remaining species including all the products and 

other reactants can be updated by mass conservation in Eq. (20) . 
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a b s t r a c t 

In this study, a species-clustered integrator for chemical kinetics with large detailed mechanisms based 

on operator-splitting is presented. The ordinary differential equation (ODE) system of large-scale chemical 

kinetics is split into clusters of species by using graph partition methods which have been intensely stud- 

ied in areas of model reduction, parameterization and coarse-graining, e.g., diffusion maps based on the 

concept of Markov random walk. The definition of the weight (similarity) matrix is application-dependent 

and follows from chemical kinetics. Each species cluster is integrated by the variable-coefficient ODE 

solver VODE. The theoretically expected speedup in computational efficiency is reproduced by numerical 

experiments on three zero-dimensional (0D) auto-ignition problems, considering detailed hydrocarbon/air 

combustion mechanisms at varying scales, from 53 species with 325 reactions of methane to 2115 species 

with 8157 reactions of n-hexadecane. Optimal clustering weighing both prediction accuracy (for ignition 

delay and equilibrium temperature) and computational efficiency is implied with the clustering number 

N = 2 for the 53-species methane mechanism, N = 4 for the 561-species n-heptane mechanism and N = 8 

for the 2115-species n-hexadecane mechanism. 

© 2019 Published by Elsevier Inc. on behalf of The Combustion Institute. 

1. Introduction 

Gasoline, diesel and jet fuels, particularly those derived from 

petroleum sources, are composed of hundreds of components [1] . 

As the number of hydrocarbon species grows, so does the di- 

mensionality of kinetic mechanism to model hydrocarbon oxida- 

tion. For example, the detailed mechanism for methyl decanoate, a 

biomass fuel surrogate, consists of 3036 species and 8555 reactions 

[2,3] . For the accurate prediction of combustion processes such as 

ignition, extinction and flame propagation, the efficient solution of 

large-scale detailed chemical kinetics is a key [4] , limited, however, 

by the current computing power. The above-mentioned mechanism 

is time consuming even for 0D simulations [3] , no matter whether 

using explicit or implicit solvers. This limitation therefore moti- 

vates to the development of mechanism reduction methods, e.g., 

directed relation graph (DRG) based methods [5–8] , etc. 

Moreover, numerical stiffness due to large differences of reac- 

tion timescales exists, so that the high-cost implicit ODE solvers, 

e.g., VODE [9] and DASAC [10] , requires robust use of reasonably 

large timesteps [4] . Since Jacobian evaluation and factorization in 

implicit solvers dominate the computational cost for compressible 

∗ Corresponding author. 

E-mail addresses: jianhang.wang@tum.de (J.-H. Wang), shucheng.pan@tum.de (S. 

Pan), xiangyu.hu@tum.de (X.Y. Hu), nikolaus.adams@tum.de (N.A. Adams). 

and reactive CFD [11] , the CPU time scales with the number of 

species in the mechanism as O(N 

2 ) to O(N 

3 ) with dense matrix 

operations [12,13] . 

For general multi-dimensional reactive flows, operator splitting 

has been widely used to separate chemistry integration from that 

of transport processes to reduce computational efforts [14–18] . Xu 

et al. [4] and Gao et al. [19] adaptively separate the dynamic sys- 

tem into a fast operator including only fast reactions and a slow 

operator including slow reactions and the transport process, with 

each part being imposed of an implicit solver and a more effi- 

cient explicit solver, respectively. For the chemical dynamics only, 

Nguyen et al. [20] aiming at preserving mass conservation and 

positivity solves each chemical reaction after splitting the multi- 

reaction system into decoupled processes. Pan et al. [21] introduce 

the graph/network partition into large-scale stochastic and mass 

concentration based chemical networks. 

The quadric/cubic scaling of CPU time to mechanism size us- 

ing implicit ODE solvers implies that the computational cost of 

solving a sequence of smaller subsystems ought to be much less 

than that of solving the entire system in one step. Therefore, un- 

like the above use of operator splitting in decoupling two or more 

physical processes, we start with splitting the large-scale chemical 

kinetics in terms of the involved species. Once the participating 

species of the large mechanism have been clustered into subsets 

of a smaller and equal size, an implicit solver can be applied to 

https://doi.org/10.1016/j.combustflame.2019.03.036 
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each group with significantly reduced matrix dimension. To mini- 

mize the splitting error, diffusion maps [22–24] are utilized to ana- 

lyze the pairwise interaction relations of species by constructing a 

weight or similarity matrix of chemical kinetics, such that strongly 

interacting and mutually dependent species can be clustered into 

the same group. To partition the species into equal clusters, a bal- 

anced k-means algorithm [25] is employed. 

The paper is organized as follows. In Section 2 , we introduce 

the ODE system of chemical kinetics and formulate the species- 

clustered solver illustrated by a simple model example. Results 

from the proposed method for three detailed mechanisms in vary- 

ing scales are presented and discussed in Section 3 , considering the 

0D auto-ignition problem at constant-volume and adiabatic condi- 

tions. Conclusions are drawn in Section 4 . 

2. Methodology 

2.1. Operator splitting by species for chemical kinetics 

The ODE system for chemical kinetics under adiabatic and 

constant-volume conditions can be expressed as 

d y i 
d t 

= 

˙ ω i 

ρ
, i = 1 , . . . , N s , (1) 

where y i and ˙ w i denote the mass fraction and the total produc- 

tion rate of species i , respectively, in a mechanism consisting of N s 

species and N r reactions. Each reaction can be written as 

N s ∑ 

i =1 

ν f 
ji 
X i ⇐⇒ 

N s ∑ 

i =1 

νb 
ji X i , j = 1 , . . . , N r , (2) 

where ν f 
ji 

and νb 
ji 

are the stoichiometric coefficients of species i 

appearing as a reactant and as a product in reaction j . The total 

production rate of species i in Eq. (1) is the sum of the production 

rate from each single elementary reaction 

˙ ω i = W i 

N r ∑ 

j=1 

(νb 
ji − ν f 

ji 
) 

[ 

k f 
j 

N s ∏ 

l=1 

[ 
ρl 

W l 

] ν f 

jl − k b j 

N s ∏ 

l=1 

[ 
ρl 

W l 

] νb 
jl 

] 

, (3) 

with k 
f 
j 

and k b 
j 

denoting the forward and backward reaction rates 

of each chemical reaction, and W i being the molecular weight of 

the i th species and the partial density ρl = y l ρ . With fixed total 

density and constant specific internal energy, the equation of state 

(EoS) for an ideal gas mixture can be used to determine the evolu- 

tion of mixture temperature and thus to close the system. 

The solution vector � = { y 1 , . . . , y N s } T at time level n is inte- 

grated through the above ODE system for one timestep of �t with 

the implicit solver VODE [9] to obtain 

�n +1 = R �t (�
n ) . (4) 

The operator R represents the time integration by VODE. Upon op- 

erator splitting by species, we obtain 

�n +1 = R �t (�
n 
1 ) ◦ R �t (�

n 
2 ) · · · ◦ R �t (�

n 
N ) , (5) 

corresponding to the Lie–Trotter splitting scheme [26] , where �k 

denotes the mass fractions of the species clustered in subset S k out 

of N subsets in total. Clustering of species in each subset obeys 

� = { �1 , . . . , �N } T , 
S = ∪ 

N 
k =1 S k , S i ∩ S j = ∅ if i 	 = j. 

(6) 

Each subset of species cluster should have no overlap with oth- 

ers, and an almost equal number of species in each subset is as- 

sumed varying by at most one species, which requests a balanced 

partition/clustering algorithm [25] . The extension to higher-order 

splitting of Strang [27] is straightforward but inevitably more time 

consuming. Recalling that the scaling of computational cost to the 

number of species or the size of the kinetic mechanism involved 

using an implicit solver such as VODE is [4] 

t CPU ∼ O 

(
N 

2 
s 

)
to O 

(
N 

3 
s 

)
, (7) 

the total cost after species splitting can be reduced to 

t 
′ 
CPU ∼ O 

(
N 

2 
s 

N 

)
to O 

(
N 

3 
s 

N 

2 

)
, (8) 

assuming equal computational consumption for each subsystem af- 

ter species-splitting. A large mechanism consisting of ten thousand 

species, e.g., split the system into ten clusters with the Lie–Trotter 

scheme, results in a computational speedup of ten to a hundred 

times, without the need for additional sparse matrix techniques 

[12,13,28] . 

The essence of operator splitting by species for chemical ki- 

netics lies in clustering species into subsets, each corresponding 

to a sub-ODE-system to be integrated by VODE or other implicit 

solvers. The merits of operator splitting by species are improved 

speedup of computational efficiency without changing the implicit 

solver, fast convergence and numerical stability [21] . 

2.2. Graph-based species clustering 

A chemical reaction system with multiple species and reactions 

can be translated to a bi-partite graph [29] , in which two sets of 

nodes represent the chemical species and reactions. Herein, we 

simply consider a finite graph consisting of the chemical species 

only and the non-linear coupling between pairs of species through 

reactions is abstracted as undirected edges linking every two nodes 

of species. For the sake of illustration, we consider N s = 6 six 

species, { A, B, C, D, E, F }, and six first-order one-way reactions, i.e. 

A 

k 1 −→ C, B 

k 2 −→ C, C 
k 3 −→ B, 

D 

k 4 −→ C, E 
k 5 −→ D, F 

k 6 −→ D, 

(9) 

where k 1 , . . . , k 6 are constant reaction rates. The exact solution for 

this problem can be easily obtained using symbolic computations 

of MATLAB 

® [30] . 

First we construct the graph of species, Fig. A.1 (a). We may have 

two different clusterings I and II with two subsets ( N = 2 ). Clus- 

tering I in Fig. A.1 (b) is obtained by cutting off the link between 

species C and D . The strong couplings within clusters { A, B, C } and 

{ D, E, F } are preserved. Upon clustering loosely coupled { A, E, F } 

together and leave the rest to compose the other cluster, we ob- 

tain Clustering II. The distance in the graph between ( A, E ) or ( A, 

F ) is remote as they are separated by two other species. The dif- 

ference of the two clusterings also reflects in the rearranged Jaco- 

bian matrices by the order of splitting and clustering as shown in 

Fig. A.1 (c) and (d). We can see that for Clustering I, when solving 

the cluster of { A, B, C } first, only the effect of species D is con- 

sidered as constant since k 4 is not within the sub-Jacobian matrix. 

When solving the other cluster { D, E, F } subsequently, species A, B 

and C have no effect due to the corresponding zero entries. In to- 

tal, the splitting error is attributed to only one element in the Jaco- 

bian, i.e. the k 4 block (red color) in Fig. A.1 (c). For Clustering II, the 

solution of the first cluster { A, E, F } introduces no splitting error, 

whereas errors will occur when solving the cluster { B, C, D }, due 

to first-order approximation of k 1 y A for the production of species 

C and k 5 y E + k 6 y F for the production of species D . 

Numerical tests, in Fig. A.2 , show that Clustering I agrees quite 

well with the exact solution, while Clustering II underestimates 

both the mass fractions of species C and D . This observation is in 

agreement with the previous discussion about operator splitting. 

Given a prescribed number of clusters N , there are many pos- 

sible clustering combinations. One simple strategy is to cluster the 
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Fig. A.1. Reaction system example for species clustering. (a) Each node represents one species in { A, B, C, D, E, F }, and the edge, e.g., e ( A, C ), indicates that linked two species 

participate in at least one reaction as reactant or product; (b) two equal-sized clusterings are easily obtained as ({ A, B, C }, { D, E, F }) and ({ A, E, F }, { B, C, D }) by cutting off

corresponding edges; (c) rearranged Jacobian matrix in the order of Clustering I; (d) rearranged Jacobian matrix in the order of Clustering II. 

species according to species indices appearing in the mechanism. 

Another very promising strategy is to cluster all ‘close’ nodes in the 

graph into a subset, corresponding to having species with strong 

interactions in the same cluster. In this paper, we introduce dif- 

fusion maps [22–24] as a non-linear technique for dimensionality 

reduction, data set parameterization and clustering, to serve the 

purpose. 

Let G = (�, W ) be a finite graph of n nodes, where the weight 

matrix W = { w (x, y ) } x,y ∈ � is symmetric and component-wise pos- 

itive [23] . The definition of weight matrix needs to reflect the de- 

gree of affinity of nodes x and y . Diffusion maps start with a user- 

defined weight matrix and utilize the idea of Markov random walk 

to describe the connectivity of nodes through a diffusion process. 

For technical details of diffusion maps, we refer to [22–24] . 

For the above reaction system, we define, with the help of 

species graph in Fig. A.1 (a), the weight matrix W by 

w (x, y ) = 

{
max (k j ) , if x and y both participate in reaction j, 
ε, otherwise , 

(10) 

where ε takes a small positive value to avoid zero entries, e.g., ε = 

10 −12 . The diagonal elements in the weight matrix, w ( x, x ), can be 

defined as 

w (x, x ) = max (w (x, y ) y 	 = x ) . (11) 

In combination with the reaction rates given in Fig. A.2 , the weight 

matrix obtained by the above definition is shown in Fig. A.3 . Using 

diffusion maps to analyze the graph based on our defined weight 

matrix, we can project the set of species into a diffusion space 

with at most n dimensions, where the pairwise distance reveals 

the connectivity between two species. In Fig. A.3 , it is shown that 

the species are projected onto a x 1 x 2 plane using the first two 

dimensions of the diffusion space. We can see that species A, B 

and C almost collapse into one point and locations of species D, 

E and F in the x 1 direction (which is also the first and domi- 

nant dimension) are also very close to each other. Their coordi- 

nates in the second dimension separate the three species. How- 

ever, the centroids of subset { A, B, C } and subset { D, E, F } are 

far from each other. Accordingly, a straightforward clustering us- 

ing the k-means algorithm (setting k ≡ N = 2 ) can be easily ob- 

tained, i.e. ({ A, B, C }, { D, E, F }). This clustering from diffusion maps 

is the same as the previous Clustering I, indicating that it is the 

optimal case of two clusters for the reaction system above with 

minimum splitting errors. In Fig. A.2 , we can also observe that ex- 

act mass conservation is violated by operator splitting with first- 

order convergence rate using the Lie–Trotter scheme. However, 

the optimal Clustering I has a significantly lower mass conserva- 

tion error than Clustering II. An additional treatment for the cor- 

rection of mass-conservation errors as in [11] can be applied. In 

this illustrative example, it should be noted that the underlying 

fact of k 4 = 1 being quite small benefits Clustering I through the 

weight matrix W in Eq. (10) . If k 4 becomes larger, both the previ- 

ous manual clustering and the current diffusion maps based clus- 

tering would be different, with the coupling between species C 
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Fig. A.2. Numerical integration results with two clusterings by Lie–Trotter and Strang splittings, compared with the exact solution. Reaction rates are k 1 = 1 , k 2 = 10 , k 3 = 

100 , k 4 = 1 , k 5 = 10 , k 6 = 20 , and the initial condition is y A = 0 . 6 , y E = 0 . 2 , y F = 0 . 2 with zero mass fractions of B, C, D . The base timestep size is �t = 0 . 02 . 

Fig. A.3. Weight matrix of diffusion maps for the reaction system (left); embedding and clustering of species in 2D diffusion space (right). 
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Fig. A.4. Calculated temperature and mass fraction histories for methane/air ignition delay problem in two initial conditions: left column (Case 1) and right column 

(Case 2). 

and D to be preserved and both being clustered into the same 

subset. 

For much more complicated realistic chemical kinetics espe- 

cially involving fuel combustion mechanisms, reaction rates are not 

always constant but depend on temperature or even pressure of 

the mixture. This normally can be expressed by the finite-rate Ar- 

rhenius model [31,32] and thus the weight matrix as above should 

also take into account the varying reaction rates with temperature. 

Rather than sampling at a single temperature, e.g., the initial tem- 

perature of an auto-ignition problem of combustible gas mixtures, 

we take many temperature samples in order to construct a repre- 

sentative weight matrix. The derived clustering by diffusion maps 

based on such a weight matrix can be stored and used for other 

conditions as long as the same mechanism is involved. In such 

way, the determination of the weight matrix as well as the clus- 

tering procedure can be treated as a preprocessing step instead 

of costly on-the-fly clustering. Since multiple scales of the abso- 

lute reaction rates exist, usually spanning several orders of mag- 

nitude, logarithmic scaling of the reaction rates can be performed 

to avoid underestimating the slow reactions. Also, normalization in 

each row of the matrix relative to the diagonal species is carried 

out as 

w (x, y ) = 

w (x, y ) 

w (x, x ) 
, (12) 

Table 1 

Numbers of species and reactions in detailed 

mechanisms. 

No. of species No. of reactions 

CH 4 53 325 

n-C 7 H 16 561 2539 

n-C 16 H 34 2115 8157 

and 

w (x, y ) = max (w (x, y ) , w (y, x )) (13) 

for all species pairs is further checked to guarantee the symmetry 

of weight matrix in the diffusion maps. 

3. Numerical results and discussion 

In this section with numerical experiments, we consider three 

detailed mechanisms for hydrocarbon fuel combustion: the GRI- 

Mech 3.0 mechanism for methane (CH 4 ) [33] , the n-heptane 

(n-C 7 H 16 ) mechanism (Version 2) [34,35] , and the n-hexadecane 

(n-C 16 H 34 ) mechanism [36] . The dimensions of three mechanisms 

are listed in Table 1 , exhibiting increasing numbers of species and 

reactions as well as growing computational complexity of time 

integration. Zero-dimensional auto-ignition of the fuel/air mixture 

under adiabatic and constant-volume conditions is taken into 

consideration. 
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Table 2 

Initial conditions for methane/air mixture. 

CH 4 –O 2 –Ar molar ratio Temperature (K) Pressure (atm) 

Case 1 9.1–18.2–72.7% 1500 1.8 

Case 2 1700 2.04 

3.1. Methane/air auto-igniton 

The first example considers the ignition delay problem of 

methane/air mixture. Two different initial conditions [37] are con- 

sidered as in Table 2 . For Case 1, the computation is carried out 

until t = 0 . 001 s and the timestep size is fixed at �t = 1 × 10 −7 s 

(this timestep size is also adopted for other cases and is compara- 

bly large for compressible and reactive CFD analysis). The compu- 

tation of Case 2 is until t = 2 × 10 −4 s. CHEMEQ2 [31] as a popular 

explicit ODE solver for chemical kinetics is also employed here for 

reference, together with the implicit solver VODE. In CHEMEQ2, 

the convergence parameter of the predictor–corrector method 

is 1 × 10 −4 . In VODE, the relative and absolute error thresholds 

(RTOL and ATOL) are 1 × 10 −5 and 1 × 10 −13 , respectively. Since 

the dimension of the methane mechanism is relatively small, we 

cluster the 53 species into two subsets, and each cluster of species 

is integrated by VODE by operator splitting as in Eq. (5) . Accuracy 

and convergence of the splitting method using species clustering 

are examined by this example. Benefits of computational efficiency 

from operator splitting by species clustering is to be tested by the 

following two mechanisms of much larger dimensions. As an im- 

portant parameter to measure the accuracy of mechanism and ODE 

solver, ignition delay times, t ign , for the two cases can be referred 

to [37] , i.e. t ign = 6 6 6 ms for Case 1 and t ign = 110 ms for Case 2. 

To validate operator splitting by species, the results obtained by 

CHEMEQ2 and VODE with/without species clustering are shown in 

Fig. A.4 , where VODE-1 is without species clustering (that is, all 

the species are solved in a single set and a single step) while both 

VODE-2 and VODE-2dm partition the species into two clusters for 

operator splitting by setting N = 2 . The difference of clustering is 

that VODE-2 simply clusters the species in accordance with the 

species’ index in the mechanism (e.g., species of odd or even in- 

dexing numbers are clustered in different subsets) while VODE- 

2dm utilizes diffusion maps for species clustering based on the 

weight matrix defined in Eqs. (10) –(13) , see Appendix A . In gen- 

eral, clustering based on the indices of species can be readily ob- 

tained by 

Species i ∈ 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

cluster 1 : if mod(i, N) = 1 , 

cluster 2 : if mod(i, N) = 2 , 

· · ·
cluster N − 1 : if mod(i, N) = N − 1 , 

cluster N : if mod(i, N) = 0 , 

(14) 

where i denotes the i th species in the mechanism and N is the 

number of clusters by partition. It can be seen that all four solu- 

tions give the correct ignition delay times in two cases. For Case 

1, VODE-2 overestimates the temperature slightly before it reaches 

an equilibrium state while VODE-2dm has nearly the same temper- 

ature with both CHEMEQ2 and VODE-1. The deficiency of VODE-2 

solution is larger in Case 2, which also occurs at the end of the 

ignition process. Different predictions by VODE-2 and VODE-2dm 

can be attributed to the splitting error: with diffusion maps, the er- 

ror in VODE-2dm is smaller than that in VODE-2. This can be illus- 

trated by embedding the clustered species into a diffusion space, 

as shown in Fig. A.5 . As the clustered species are projected into 

the 3D diffusion space, we can clearly see that the two clusters of 

species are separated from each other using diffusion maps, which 

indicates that each cluster is able to preserve the close interactions 

between coupling species. In particular, for the VODE-2dm cluster- 

Fig. A.5. Embedding with first three diffusion coordinates of species for methane 

mechanism. 

ing, the first species H and the last species CH 3 CHO are within the 

same cluster as the 13th species CH 3 , due to the high activity of H 

which is involved in composition or decomposition reactions with 

hydrocarbon species such as 

O + C 2 H 5 ⇐⇒ H + CH 3 CHO , 

H + CH 3 (+ M ) ⇐⇒ CH 4 (+ M ) . 

Also, playing a critical role in the mechanism (as it participates in 

a large number of reactions), H is located at the center of the diffu- 

sion map among all the species. On the other hand, species such as 

NO and NH are clustered into the other subset because they mainly 

participate in nitrogen-related reactions, with weaker interactions 

with hydrocarbon species. In contrast, H is clustered into the NH 

and NO group in the VODE-2 clustering by index. The obtained two 

clusters merge each other in the diffusion map, and some pairs of 

two species with short distances are divided into different clusters, 

leading to larger splitting error with VODE-2 than with VODE-2dm. 

We examine convergence of the splitting method by varying 

the fixed timestep adopted in Fig. A.6 . It can be seen that as the 

timestep decreases the evolution of temperature and mass frac- 

tions approach the corresponding profiles at the shortest timestep: 
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Fig. A.6. Calculated temperature and mass fraction histories for methane/air ignition delay problem by species clustering using varying timesteps in two initial conditions: 

left column (Case 1) and right column (Case 2). 

Table 3 

Initial conditions for n-heptane/air mixture. 

n-C 7 H 16 :O 2 :N 2 (mole) Temperature (K) Pressure (atm) 

Case 3 0.09091:1:3.76 1250 10 

Case 4 50 

spikes in the temperature profiles with large timesteps gradually 

disappear and the jumps of mass fraction, y CH , tend to sharpen due 

to sudden consumption during the ignition process. The timestep 

size of �t = 1 × 10 −7 s is verified to be sufficient for integrating 

the chemical kinetics correctly. 

3.2. n-Heptane/air auto-igniton case 

The second example considers the n-heptane/air combustion 

mechanism. Two different initial conditions [38] are considered 

as in Table 3 . For Case 3, the computation is carried out until 

t = 4 × 10 −4 s and the timestep size is fixed at �t = 1 × 10 −7 s. 

The computation for Case 4 is until t = 1 . 1 × 10 −4 s. Without a 

prior knowledge of the number of clusters which is most suitable 

and efficient for computing this large-scale mechanism, we choose 

to split the species by eight clusters using diffusion maps first. 

In Fig. A.7 , the species clustered VODE result using diffu- 

sion maps is compared with that of simple clustering using 

Eq. (14) by setting N = 2 , 4 and 8, respectively, and also the re- 

sults by CHEMEQ2 and non-split VODE. Calculated ignition de- 

lay times observed from the temperature histories of Case 3 and 

4 by CHEMEQ2, VODE-1 as well as VODE-8dm agree well with 

each other and also with the numerical results in Ref. [38] . Using 

the simple clustering algorithm instead of diffusion maps, VODE- 

2, VODE-4 and VODE-8 obtain the correct ignition delay time for 

Case 3 while they all severely over-predict the delay of ignition 

for Case 4. Although the ignition delay time is not very sensitive 

to the species clustering in Case 3, the post-ignition equilibrium 

state appears to depend strongly on the quality of the clustering, 

as we can see that both VODE-2 and VODE-4 overestimate the 

equilibrium temperature incorrectly and VODE-8 induces an incor- 

rect spike before the temperature reaches the equilibrium state, 

which is similar with the example of methane combustion. For 

Case 4, extremely high equilibrium temperatures nearly 40 0 0 K 

and higher are predicted by VODE-2 and VODE-4, and tempera- 

ture spike also can be seen for the VODE-8 solution. To explain 

the over/under-estimation of the equilibrium temperature as well 

as the delayed ignition times resulted from simple clusterings, 

we refer to the time-dependent total mass conservation errors in 

Fig. A.8 . As previously stated in Fig. A.2 for the illustrative ex- 

ample, species-clustered splitting might violate total mass conser- 

vation because it will inevitably cut off some pathways/channels 

within coupled species. It is observed that mass conservation 
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Fig. A.7. Calculated temperature histories for n-heptane/air ignition delay problem in two initial conditions: left column (Case 3) and right column (Case 4). 

Table 4 

CPU times (s) for clusters at different clustering number N for Case 4. 

N Total Max. Min. Ave. 

1 283.407527 283.407527 283.407527 283.407527 

2 77.981967 24.689422 53.052336 53.052336 24.689422 38.870879 

4 43.336673 11.065684 18.228123 6.475912 7.314687 18.228123 6.475912 10.7711015 

8 62.65253 6.059054 5.854662 9.995675 5.960626 5.253225 7.319861 7.693178 14.218079 14.218079 5.253225 7.794295 

Fig. A.8. Total mass conservation error ( | ∑ 

y i − 1 | ) histories for n-heptane/air ignition delay problem in two initial conditions: left column (Case 3) and right column (Case 

4). 

errors are very small before ignition, and as ignition triggers 

them to increase, mass conservation errors reach a relatively high 

plateau after ignition. We also observe that VODE-8dm yields 

obviously less conservation errors compared with other simple 

clusterings, corresponding to less splitting errors. In comparison, 

CHEMEQ2 produces orders of magnitude smaller errors than the 

present VODE-8dm and VODE-1 preserves the mass conservation 

up to roundoff errors (not shown in the figure). Therefore, although 

the proposed VODE-8dm outperforms other simple clusterings by 

largely reducing the splitting errors, there is room for further 

improvement. 

In Fig. A.9 , we present the species embedding with the first 

three coordinates, leading to eight clusters of species being scat- 

tered but compact in the diffusion space. In comparison, the sim- 

ple clustering by indices produces disorder species in the diffusion 

space. The quality of such a simple clustering is therefore expected 

to be poor, as shown in Fig. A.7 . Since the weight matrix is kept 

unchanged for the same mechanism, the diffusion space contain- 

ing all the species is also the same and independent of the number 

of clusters one wants to partition. It is straightforward to further 

combine the close subsets (every two or four) into a larger cluster 

so that clustering by N = 4 and N = 2 can be obtained. 

Next, we compare the results denoted by VODE-2dm and 

VODE-4dm in Fig. A.10 . It can be seen that for both cases, the 

diffusion-map based results all capture the correct ignition delay 

time and the equilibrium temperature. In particular, the VODE- 

2dm result performs better than the CHEMEQ2 result, being closer 

to the non-split VODE-1 result. As the number of partition/splitting 

decreases, the split VODE results consistently approach the non- 

split solution, with reduced splitting errors. 



J.-H. Wang, S. Pan and X.Y. Hu et al. / Combustion and Flame 205 (2019) 41–54 49 

Fig. A.9. Species distribution in the diffusion space with first three diffusion coor- 

dinates of species for n-heptane mechanism. 

In Fig. A.11 (left), we investigate the computational efficiency 

of different solvers. All the results are normalized based on the 

CPU time of VODE-1. It is to be noted that in these two cases, the 

non-split VODE solver is faster than CHEMEQ2. For the split VODE 

solver using diffusion maps, we can see the reduced CPU times 

with the increasing number of clusters up to N = 4 falls within 

the region bounded by two theoretical scalings according to Eq. 

(8) . When the number of clusters increases to N = 8 , the CPU time 

meets a turning point and the computational efficiency no longer 

monotonically decreases. Regarding the decay in computational ef- 

ficiency, two facts should be noted: 

• For the decoupled subsystems at a specific number of clus- 

ters N , although they share the equal number of species as in 

Eq. (6) , species and their reactions/interactions within each 

subset are quite different such that Jacobian evaluation and LU 

factorization as well as the Newton iteration in the VODE solver 

for each subsystem consume different CPU times. As shown 

in Fig. A.11 (right) and Table 4 , CPU times for subsystems at 

a given partition number exhibit very large diversity, leading 

to an imbalance of computational costs among clusters after 

species-splitting. The non-balanced computational costs contra- 

dict the ‘ideal’ balanced theoretical scaling in Eq. (8) ; 

• When the number of clusters N is large and the dimension of 

each subsystem is small, CPU time of dense LU factorization ( ∝ 

N 

3 
s ) no longer dominates the total CPU time. Instead, CPU times 

of Jacobian evaluation and Newton iteration (both ∝ N s ) begin to 

exceed that of dense LU factorization; see in [12,19] . The ‘ideal’ 

theoretical scaling in Eq. (8) is no longer valid for large clus- 

tering numbers. Therefore, the averaged computational cost of 

a cluster in Fig. A.11 (right) exhibits high-order decrease rates 

( ∝ 1/ N 

2 to 1/ N 

3 ) for small N and then it linearly decreases with 

the decreasing number of species within each subsystem 

N s 
N or 

the inverse of the clustering number N for larger N . 

From Fig. A.11 , N = 4 may be an optimal clustering number 

which weighs efficiency and accuracy for the n-heptane ignition 

problem. With VODE-4dm, we further investigate the ignition de- 

lay times of n-heptane oxidation based on a series of varying initial 

temperatures at 10 and 50 atm, respectively, in Fig. A.12 . The nega- 

tive temperature coefficient (NTC) behavior has been accurately re- 

produced, in excellent agreement with the results in Fig. 2 of [38] . 

Fig. A.10. Calculated temperature histories for n-heptane/air ignition delay problem by species clustering setting N = 2 , 4 , 8 in two initial conditions: left column (Case 3) 

and right column (Case 4). 
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Fig. A.11. Left: normalized CPU time and speedup factor by species clustered VODE with N = 1 , 2 , 4 , 8 ; CPU time is normalized by t / t vode 1 and speedup factors use hollow 

symbols. Right: CPU time of each cluster by species clustered VODE with N = 1 , 2 , 4 , 8 for Case 4. 

Table 5 

Initial conditions for n-hexadecane/air mixture. 

n-C 16 H 34 :O 2 :N 2 (mole) Temperature (K) Pressure (bar) 

Case 5 0.04082:1:3.76 1111.11 13.5 

Case 6 1250 

3.3. n-Hexadecane/air auto-igniton case 

The third example considers the n-hexadecane/air combustion 

mechanism with the largest dimension. Two initial conditions 

[39] are considered as in Table 5 . For Case 5, the computation is 

carried out until t = 1 . 1 × 10 −3 s while it is interrupted for Case 4 

at t = 2 . 2 × 10 −4 s with 2200 equal timesteps. We also choose to 

split the species by eight clusters using diffusion maps. 

In Fig. A.13 , the species clustered VODE result using diffu- 

sion maps is compared with that of simple clustering using 

Eq. (14) by setting N = 2 , 4 and 8, respectively, and also with the 

results by CHEMEQ2 and non-split VODE. Calculated ignition de- 

lay times observed from the temperature histories of Case 5 and 6 

by CHEMEQ2, VODE-1 as well as VODE-8dm agree well with each 

other and also numerical results of Ref. [39] . Using simple clus- 

tering algorithm instead of diffusion maps, VODE-2, VODE-4 and 

Fig. A.12. Ignition delay times based on different initial temperatures for the stoi- 

chiometric n-heptane/air mixture predicted by VODE-4dm. 

VODE-8 obtain three increasing ignition delay times for Case 3 

and 4. VODE-8 computes the most delayed ignition time, and both 

Fig. A.13. Calculated temperature histories for n-hexadecane/air ignition delay problem in two initial conditions: left column (Case 5) and right column (Case 6). 
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Fig. A.14. Species distribution in the diffusion space with first three diffusion coor- 

dinates of species for n-hexadecane mechanism. 

VODE-2 and VODE-4 overestimate the equilibrium temperature af- 

ter ignition incorrectly. In contrast, the VODE-8dm result is com- 

parable with the CHEMEQ2 result in both the ignition and post- 

ignition process. 

In Fig. A.14 , we present the species embedding with the first 

three coordinates, leading to eight/four/two clusters of species be- 

ing scattered in the diffusion space. It can be seen that the clus- 

tering with less number of clusters basically combines the close 

subsets of species into a larger cluster, as it is manually realized 

in the n-heptane example. By comparing the five results with dif- 

ferent number of clusters up to N = 16 based on diffusion maps in 

Fig. A.15 , it is demonstrated that for both cases, the diffusion maps 

based results all capture the relatively correct ignition delay time 

and the equilibrium temperature. In particular, the VODE-2dm re- 

sult performs the best, even better than the CHEMEQ2 result, be- 

ing closest to the non-split VODE-1 result. The VODE-16dm result 

slightly overestimates the equilibrium temperature and the igni- 

tion time predicted by VODE-8dm is later than that of VODE-4dm 

by 1 × 10 −5 s roughly. Though, as the number of partition/splitting 

decreases, the split VODE results consistently approach the non- 

split solution, with reduced splitting errors. 

In Fig. A.16 (left), we investigate again the computational effi- 

ciency of different solvers. CHEMEQ2 is more efficient than VODE 

in the first case while in the second case the non-split VODE solver 

is faster than CHEMEQ2, both solvers with the same order of mag- 

nitude of CPU time. Focused on the split VODE solver using diffu- 

sion maps, we can see the reduced CPU times as the number of 

clusters increases up to N = 8 . The performance in terms of com- 

putation efficiency for the clustered VODE solvers when N = 2 or 4 

even exceeds the theoretical expectation. It can be also explained 

by the large deviation of computational costs for single subsys- 

tems when N = 2 or 4. As shown in Fig. A.16 (right) and Table 6 , 

at a given clustering number, the maximum CPU time for a clus- 

ter is larger than the minimum CPU time by nearly one order of 

magnitude in this n-hexadecane case. As a result, the total CPU 

time mainly depends on the maximum CPU time for a cluster: for 

the N = 2 clustering, its maximum CPU time for one cluster is ap- 

proximately proportional to 1 
N 3 

, and it is between 

1 
N 2 

and 

1 
N 3 

if 

the maximum CPU time for one cluster in VODE-4dm is scaled in 

comparison to that of the non-split VODE-1. When N = 8 or 16, 

the deviation of CPU times for different clusters of equal size be- 

comes smaller and thus its total CPU time, as a sum of CPU times 

for 8 or 16 clusters, falls into the theoretical zone, which also im- 

plies that N = 8 or 16 is a reasonable clustering number for the 

n-hexadecane mechanism. 

When the number of clusters increases to N = 16 , the CPU time 

no longer decreases, indicating N = 8 may be an optimal clustering 

number from the aspect of efficiency for the n-hexadecane ignition 

problem. A total speedup factor of around 40 is realized by VODE- 

8dm for Cases 5 and 6. It is about 50 times faster than CHEMEQ2 

for the computation of Case 6. 

4. Conclusions 

For large-scale chemical kinetics involving many species and re- 

actions, computational efforts needed for time integration usually 

exceeds linear scaling with the dimension of the kinetic mecha- 

nism, especially when implicit ODE solvers are used. To achieve a 

higher computational efficiency, we have proposed operator split- 

ting to integrate the large system in separate yet consecutive sub- 

systems of the same and smaller dimension. Each subsystem in- 

cludes a cluster of species decoupled from the other species of the 

full mechanism and is solved separately, e.g., implicitly by VODE. 

In order to reduce the inevitable splitting error, diffusion maps are 

applied to analyze the species graph and to cluster strongly cou- 

pled species into the same subsystem, by defining an appropriate 
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Fig. A.15. Calculated temperature histories for n-hexadecane/air ignition delay problem by species clustering setting N = 2 , 4 , 8 , 16 in two initial conditions: left column 

(Case 5) and right column (Case 6). 

Fig. A.16. Left: normalized CPU time and speedup factor by species clustered VODE with N = 1 , 2 , 4 , 8 , 16 ; CPU time is normalized by t / t vode 1 and speedup factors use hollow 

symbols. Right: CPU time of each cluster by species clustered VODE with N = 1 , 2 , 4 , 8 , 16 for Case 6. 

Table 6 

CPU times (s) for clusters at different clustering number N for Case 6. 

N Total Max. Min. Ave. 

1 35658.79841 

2 4627.708055 4199.952252 421.175725 4199.952252 421.175725 2310.563989 

4 14 4 4.509509 881.356017 205.015734 186.602952 165.190546 881.356017 165.190546 359.5413123 

8 1229.048646 95.69621 152.021022 223.654529 112.994413 101.913815 127.773558 115.278783 293.349254 293.349254 95.69621 152.835198 

16 1426.498538 68.988243 69.019327 82.548198 89.518775 100.960711 88.552028 110.131483 70.334471 110.131483 68.988243 85.0066545 

80.029979 72.147735 71.572883 151.654559 103.434 94 9 84.679633 98.248576 78.258389 

Table 7 

Optimal clustering number N for mechanisms of different sizes (num- 

bers of species). 

Mechanism size O ( 10 ) O 

(
10 2 

)
O 

(
10 3 

)
Optimal clustering number, N 2 4–8 8–16 

weight matrix for chemical kinetics. Three hydrocarbon fuel/air ig- 

nition problems with an increasing dimension of the mechanism, 

up to 2115 species and 8157 reactions, are taken into consideration 

under varying initial conditions. 

Computational efficiency and accuracy can be improved by 

choosing a proper number of clusters to split the large system. For 

the n-heptane mechanism, partition by 4 clusters of species leads 

to about 8 times speedup compared to the non-split VODE solver 

and 10 –20 times speedup versus the explicit solver CHEMEQ2. For 

the n-hexadecane mechanism, partition by 8 clusters of species 

results in a speedup factor of around 40. Clustering by diffusion 

maps based on a given weight matrix outperforms the simple clus- 

tering according to species’ index in the mechanism, in terms of 

predicting the correct ignition delay time and post-ignition equi- 

librium state. It implies that an optimal clustering for a certain 

mechanism is preferable not only for computational acceleration 

but also for higher accuracy. An optimal choice of clustering num- 

ber N is suggested in Table 7 in relation with the dimension of the 

mechanism to consider. 
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With a specific clustering number, there is still room to improve 

the present species-clustered splitting scheme to further reduce 

splitting errors, e.g., the total mass conservation error at the igni- 

tion instant. Either a new definition of weight matrix or other op- 

timal partition techniques in addition to diffusion maps are worth 

of further investigation. Taking advantage of the fast convergence 

of operator-splitting methods, it is also possible to use adaptive 

sub-cycling or time-stepping to achieve better accuracy. The above 

splitting so far considers the first-order Lie–Trotter scheme or the 

second-order Strang scheme, and extension to higher-order split- 

ting schemes is straightforward. Adaptive variable clustering num- 

ber might be another option. Also, a combination of the species- 

clustered splitting scheme and sparse matrix techniques to obtain 

additional efficiency gain is possible. 
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Appendix A. Clustering of species for the three involved 

mechanisms based on diffusion maps 

For the GRI-Mech 3.0 mechanism of methane (CH 4 ), by setting 

N = 2 , we have the diffusion maps based clustering as 

C 2 = { c 1 , c 2 , . . . , c 52 , c 53 } = 

{ 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 1 , 1 , 1 , 1 , 1 , 1 , 2 , 2 , 2 , 2 , 1 , 1 , 2 , 2 , 2 , 
1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 2 , 1 , 1 , 2 , 2 , 2 , 1 , 1 , 2 , 1 , 1 , 1 , 1 } , 

(A.1) 

where c i = 1 or 2 means the i th species is clustered into subset 1 

or 2. 

For the n-heptane (n-C 7 H 16 ) mechanism, by setting N = 8 , we 

have 

C 8 = { c 1 , c 2 , . . . , c 560 , c 561 } = 

{ 5 , 5 , 5 , 5 , 5 , 5 , 5 , 5 , 5 , 1 , 5 , 5 , 5 , 5 , 5 , 1 , 1 , 5 , 1 , 1 , 1 , 6 , 6 , 1 , 1 , 6 , 5 , 6 , 1 , 6 , 
6 , 5 , 5 , 5 , 1 , 5 , 5 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 5 , 1 , 1 , 1 , 1 , 1 , 1 , 5 , 5 , 5 , 5 , 5 , 5 , 6 , 8 , 

8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 1 , 5 , 8 , 8 , 1 , 1 , 1 , 5 , 1 , 5 , 1 , 6 , 6 , 6 , 6 , 4 , 1 , 6 , 6 , 1 , 1 , 4 , 

4 , 4 , 4 , 4 , 4 , 1 , 1 , 1 , 1 , 1 , 1 , 6 , 6 , 5 , 4 , 1 , 1 , 7 , 8 , 7 , 3 , 2 , 4 , 2 , 4 , 4 , 4 , 2 , 4 , 4 , 

2 , 4 , 2 , 4 , 2 , 4 , 4 , 4 , 4 , 6 , 6 , 6 , 6 , 6 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 8 , 8 , 3 , 3 , 

6 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 4 , 2 , 4 , 2 , 4 , 2 , 4 , 4 , 2 , 2 , 2 , 2 , 2 , 4 , 2 , 4 , 2 , 

2 , 2 , 2 , 4 , 4 , 2 , 2 , 4 , 2 , 1 , 6 , 7 , 7 , 6 , 6 , 6 , 5 , 5 , 5 , 3 , 3 , 3 , 5 , 5 , 5 , 2 , 4 , 2 , 2 , 2 , 

2 , 4 , 2 , 2 , 4 , 2 , 4 , 2 , 2 , 4 , 2 , 4 , 2 , 4 , 4 , 1 , 7 , 7 , 6 , 1 , 7 , 8 , 3 , 8 , 8 , 4 , 6 , 1 , 5 , 5 , 

6 , 6 , 6 , 8 , 5 , 3 , 1 , 7 , 7 , 7 , 7 , 7 , 7 , 7 , 7 , 7 , 7 , 6 , 8 , 7 , 7 , 7 , 7 , 7 , 7 , 7 , 7 , 7 , 7 , 3 , 

6 , 7 , 3 , 3 , 7 , 3 , 7 , 7 , 3 , 6 , 7 , 4 , 5 , 5 , 6 , 5 , 6 , 5 , 5 , 1 , 5 , 6 , 6 , 6 , 4 , 6 , 8 , 3 , 8 , 3 , 

8 , 4 , 4 , 6 , 6 , 5 , 5 , 5 , 5 , 6 , 8 , 5 , 8 , 8 , 5 , 5 , 5 , 6 , 7 , 1 , 5 , 6 , 6 , 3 , 6 , 5 , 6 , 6 , 6 , 5 , 

6 , 5 , 8 , 5 , 6 , 3 , 6 , 6 , 3 , 5 , 7 , 7 , 3 , 3 , 8 , 3 , 3 , 6 , 5 , 3 , 3 , 3 , 3 , 3 , 5 , 3 , 3 , 3 , 3 , 8 , 

3 , 3 , 5 , 3 , 3 , 3 , 5 , 6 , 6 , 6 , 6 , 3 , 3 , 3 , 3 , 6 , 3 , 6 , 6 , 6 , 1 , 8 , 8 , 8 , 1 , 6 , 6 , 6 , 1 , 7 , 

7 , 7 , 1 , 7 , 6 , 6 , 8 , 8 , 8 , 5 , 8 , 8 , 2 , 4 , 2 , 2 , 2 , 2 , 4 , 2 , 2 , 4 , 2 , 2 , 4 , 2 , 2 , 4 , 2 , 2 , 

4 , 4 , 4 , 2 , 2 , 4 , 4 , 4 , 4 , 2 , 3 , 7 , 7 , 7 , 7 , 7 , 7 , 7 , 3 , 7 , 7 , 7 , 7 , 7 , 8 , 8 , 8 , 8 , 8 , 8 , 

8 , 8 , 1 , 1 , 1 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 2 , 4 , 2 , 2 , 2 , 2 , 4 , 4 , 2 , 4 , 2 , 2 , 

4 , 2 , 2 , 2 , 4 , 2 , 2 , 4 , 2 , 2 , 2 , 2 , 4 , 4 , 2 , 4 , 4 , 4 , 4 , 2 , 2 , 2 , 4 , 4 , 1 , 6 , 7 , 7 , 1 , 7 , 

7 , 7 , 1 , 6 , 3 , 7 , 7 , 7 , 3 , 7 , 7 , 7 , 7 , 3 , 7 , 7 , 7 , 7 , 3 , 3 , 7 , 7 , 5 , 6 , 3 , 3 , 3 , 3 , 3 , 5 , 

3 , 3 , 3 , 5 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 8 , 7 , 5 } . (A.2) 

For the n-hexadecane (n-C 16 H 34 ) mechanism, by setting N = 8 , 

we have 

C 8 = { c 1 , c 2 , . . . , c 2114 , c 2115 } 
= { 3773373111111111118111111111111111111117115575 

7533337311117771133555536563555775377767773535 

3577777755777777557757577777775777555777777187 

7735335333777777777775556122661221661228882288 

8822881414111111111155535333533355557777555566 

6266652166612116244822488822488842777777777714 

4411414111111141557777757775577771117111711753 

3333333333333333333333333555555555555555555555 

5355555355555355553333333333333333333333555575 

5377775377753777537353333333333333333333333333 

3555555555555555555555555555555555333333333333 

3333333333355555555555555555555555555555555533 

3333333333333333333335555555555555555555777777 

7777777766886668866668886666888866668888666688 

8866668888666688662266622666622266662222666622 

2266662222666622226666226662266662226666222266 

6622226666222266662266886668866668886666888866 

6688886666888866662266622666622216662222666622 

2266662266226662266662226666222266662222666122 

6612216612221661222216612261226612216612221661 

2222166122661221661222166122888888888888888888 

8888888888888888888888888888888888882222222222 

2222222222222222242222222422222224222242222822 

2282222882222488822224888842248888422888888888 

88888888888888888888888888888888888822882228822 

24888822488884224888842248822882248882248888224 

88884224888842288822488822488842248888422888288 

82248882248884224888842288822488822488842288877 

76776777767766776677667767777677777776776677667 

76676777677677766776677667767777677667766776677 

66767776776677667766776777767766776677667677767 

76677767767777677777776767776776777671114111141 

11144111144411114444114144441444444444444444114 

41111411114411144441111444411444444144444444444 

11441114411144411144441111444411444444144444441 

14411444111444111444411144444114444444444144411 

44411144411144441114444441444444144411444111444 

11144441444444444441444114441114441414444444444 

44144411444111444141444444441444114441114141414 

44433555555533555555575555555617555555511155555 

5333355377333333333 } , (A.3) 

leaving out the delimiter. 
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a b s t r a c t 

High-order finite difference schemes employing characteristic decomposition are widely used for the sim- 

ulation of compressible gas flows with multiple species. A challenge for the computational efficiency of 

such schemes is the quadratically increasing dimensionality of the convective flux eigensystem as the 

number of species increases. Considering the sparsity of the multi-species eigensystem, a remedy is pro- 

posed to split the eigensystem into two parts. One is the gas mixture part, which is subjected to the 

established characteristic decomposition schemes for single-fluid Euler equations. The other part corre- 

sponds to the species partial mass equations, which can be solved directly in physical space as the de- 

coupled sub-eigensystem for the species part is composed of two diagonal identity matrices. This prop- 

erty relies on the fact that species are advected with the same convective velocity. In this way, only 

the gas mixture part requires a characteristic decomposition, resulting in a much higher efficiency for 

the convective-flux calculation. To cure the inconsistency due to splitting, a consistent update of species 

mass fractions is proposed. Non-reactive and reactive test cases demonstrate that the proposed scheme 

reduces the computational cost without deteriorating high-order accuracy. 

© 2019 Elsevier Ltd. All rights reserved. 

1. Introduction 

Compressible reactive gas flows of multiple species arise in a 

variety of combustion problems, ranging from scramjet engines 

to the incineration of waste. Accurate numerical simulation of 

such flows relies on low-dissipation, high-order shock-capturing 

schemes designed for discretizing convection terms in the reac- 

tive Navier–Stokes or Euler equations. The shock-capturing scheme 

should be capable of preserving sharp discontinuities without in- 

troducing spurious oscillations. For this purpose, a variety of high- 

order interpolation schemes can be used in the characteristic de- 

composition based finite difference formulation, together with a 

flux-splitting scheme, to approximate the upwind convective flux. 

A classical example of such schemes is the WENO-LLF scheme 

[3,24] . Extension to multi-dimensional flows can be straightfor- 

wardly realized in a dimension-by-dimension manner [25] . 

However, as an essential ingredient of high-order finite differ- 

ence schemes, characteristic decomposition may constrain compu- 

tational efficiency when multiple species are involved. The multi- 

species Euler equations involve multiple partial mass equations of 

∗ Corresponding author. 

E-mail addresses: jianhang.wang@tum.de (J.-H. Wang), shucheng.pan@tum.de 

(S. Pan), xiangyu.hu@tum.de , xiangyu.hu@aer.mw.tum.de (X.Y. Hu), 

nikolaus.adams@tum.de (N.A. Adams). 

species to be solved in association with mass, momentum and en- 

ergy equations of the total mixture. The eigensystem of the lin- 

earized convective flux matrix, established e.g. by Roe [22] , Glais- 

ter [10] and Shuen [26] , can have very large dimensionality as 

the number of species increases. As a result, the computational 

effort s f or matrix operations obeying the characteristic decom- 

position scheme inevitably grow. High-order interpolation which 

applies such matrix operations several times for each cell-face 

convective flux calculation renders classical high-order finite dif- 

ference schemes for multi-species Euler equations [2,8,9,32] com- 

putationally very expensive for large numbers of species. 

In the current study of multi-species flows, we propose to re- 

duce dimensionality of the eigensystem. Feasibility is based on the 

fact that the eigenmatrices composed of left and right eigenvectors, 

respectively, are sparse and non-zero entries in both matrices are 

mainly distributed along the diagonal. Moreover, the diagonal ele- 

ments in the right-bottom part of both matrices, which accounts 

for the species mass convection, are unity. 

In this paper, we take advantage of the structure of the 

eigenmatrices and propose a partial characteristic decomposition 

scheme for multi-species Euler equations. We split the eigensys- 

tem into two parts along the diagonal of eigenmatrix: one is the 

gas mixture part and the other part accounts for all the species. 

Correspondingly, the conserved vector of the total mixture mass, 

momenta and energy as well as species partial densities is divided 

https://doi.org/10.1016/j.compfluid.2019.01.023 

0045-7930/© 2019 Elsevier Ltd. All rights reserved. 
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into a gas mixture part and the remaining species partial density 

part. All the species follow a series of independent advection equa- 

tions in a conservative form. Compared with classical characteristic 

decomposition schemes, the proposed split scheme utilizes char- 

acteristic decomposition for single-fluid Euler equations [22,24] to 

handle the first gas mixture part. It allows to avoid the characteris- 

tic decomposition of the species part. Therefore, computational ef- 

fort can be reduced significantly as no species transformation from 

physical space to characteristic space and back is needed. To cope 

with the inconsistency issue after decoupling the partial densities 

of species from the mixture total density, a species mass fraction 

correction is proposed. 

The paper is organized as follows. In Section 2 , we introduce 

the 3D multi-species Euler equations and the classical character- 

istic decomposition scheme used to compute high-order convec- 

tive fluxes in the finite difference formulation. The proposed partial 

characteristic decomposition scheme is then formulated, followed 

by a consistent update for mass fractions of species. Section 3 con- 

tains numerical experiments to make a comparison of our pro- 

posed decoupled scheme with the fully coupled scheme, including 

several 1D and 2D, non-reactive and reactive cases with different 

numbers of species. Conclusions are drawn in Section 4 . 

2. Methodology 

Consider the 3D multi-species (or multi-component) Euler 

equations with chemical reaction source terms, i.e. 

U t + F (U) x + G (U) y + H(U ) z = S(U ) , (1) 

where 

U = ( ρ, ρu, ρv , ρw, ρe t , ρy 1 , ρy 2 , · · · , ρy N s −1 ) 
T 
, 

F (U) = 

(
ρu, ρu 

2 + p, ρv u, ρwu, (ρe t + p) u, ρy 1 u, ρy 2 u, · · · , 

ρy N s −1 u ) 
T 
, 

G (U) = 

(
ρv , ρu v , ρv 2 + p, ρw v , (ρe t + p) v , ρy 1 v , ρy 2 v , · · · , 

ρy N s −1 v ) T , 
H(U) = 

(
ρw, ρuw, ρv w, ρw 

2 + p, (ρe t + p) w, ρy 1 w, ρy 2 w, · · · , 

ρy N s −1 w ) 
T 
, 

S(U) = ( 0 , 0 , 0 , 0 , 0 , ˙ ω 1 , ˙ ω 2 , · · · , ˙ ω N s −1 ) 
T 

(2) 

are vectors of the conserved variables, convective flux in the x, y 

or z direction and source terms, respectively, with ˙ ω i representing 

rate of change of the i th species concentration in the reactive gas 

mixture due to chemical kinetics consisting of N s species. When 

the flow is inert without activating chemical reactions, source 

terms are replaced by a zero vector. The specific total energy in- 

cluding the specific internal energy e is e t = e + 

1 
2 (u 2 + v 2 + w 

2 ) . 

To close the system, an equation of state (EoS) of the form 

p = ρ
N s ∑ 

i =1 

y i 
R u 

W i 

T (3) 

is used for the gas mixture, with y i and W i denoting the mass 

fraction and molecular weight of the i th species, respectively, and 

R u being the universal gas constant and p being the pressure. 

The above conservation laws of mass, momentums and energy 

with source terms are usually solved numerically using operator 

splitting. For the flow convection part, 

U t + F (U) x + G (U) y + H(U) z = 0 , (4) 

shock-capturing schemes are usually employed based on either 

finite volume (FV) or finite difference (FD) formulation for spa- 

tial discretization, in which high-order shock-capturing accuracy 

as well as high computational efficiency are desired. Low-order 

FV schemes approximate the cell-face flux function by upwind re- 

construction using primitive or conserved variables, together with 

MUSCL interpolation schemes plus slope limiters and achieve gen- 

erally second-order accuracy. High-order shock-capturing schemes 

are realized by characteristic-decomposition flux splitting (also re- 

ferred as characteristic-wise flux splitting) to assemble the half- 

point convective flux using high-order interpolation schemes in FD 

approaches. 

2.1. Fully coupled characteristic-wise flux splitting 

In the characteristic-wise flux-splitting schemes, the Jacobian of 

convective flux in Eq. (4) is considered such as 

A = 

∂F 

∂U 

= L �R. (5) 

For a general formulation of the flux functions, F, G and H can be 

written as 

˜ F (U) = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

ρM 

ρuM + pn 1 

ρv M + pn 2 

ρwM + pn 3 

(ρe t + p) M 

ρy 1 M 

ρy 2 M 

· · ·
ρy N s −1 M 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, (6) 

with the unit normal vector n = { n 1 , n 2 , n 3 } and the velocity M = 

n 1 u + n 2 v + n 3 w . Thus, F is abbreviated for n = { 1 , 0 , 0 } and G is 

abbreviated for n = { 0 , 1 , 0 } . H corresponds to n = { 0 , 0 , 1 } . The 

eigensystem of left and right matrices is 

˜ L = 

˜ R 

−1 = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

˜ l 1 
˜ l 2 
˜ l 3 
˜ l 4 
˜ l 5 
˜ l 6 
. . . 

˜ l N s +4 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

= 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

b 2 + M/c+ b 3 
2 

−b 1 u −n 1 /c 
2 

−b 1 v −n 2 /c 
2 

−b 1 w −n 3 /c 
2 

b 1 
2 

−b 1 z 1 
2 

· · · −b 1 z N s −1 

2 

1 − b 2 − b 3 b 1 u b 1 v b 1 w −b 1 b 1 z 1 · · · b 1 z N s −1 

Mn 2 −v 
n 1 

−n 2 
1 −n 2 2 

n 1 

−n 2 n 3 
n 1 

0 0 · · · 0 

Mn 3 −w 

n 1 
−n 3 

−n 2 n 3 
n 1 

1 −n 2 3 

n 1 
0 0 · · · 0 

b 2 −M/c+ b 3 
2 

−b 1 u + n 1 /c 
2 

−b 1 v + n 2 /c 
2 

−b 1 w + n 3 /c 
2 

b 1 
2 

−b 1 z 1 
2 

· · · −b 1 z N s −1 

2 

−y 1 0 0 0 0 1 · · · 0 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

−y N s −1 0 0 0 0 0 · · · 1 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, (7) 

and 
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˜ R = 

(
˜ r 1 , ̃  r 2 , ̃  r 3 , ̃  r 4 , ̃  r 5 , ̃  r 6 , · · · , ̃  r N s +4 

)

= 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

1 1 0 0 1 0 · · · 0 

u − cn 1 u −n 2 −n 3 u + cn 1 0 · · · 0 

v − cn 2 v n 1 0 v + cn 2 0 · · · 0 

w − cn 3 w 0 n 1 w + cn 3 0 · · · 0 

H − cM H − 1 
b 1 

v n 1 − un 2 wn 1 − un 3 H + cM z 1 · · · z N s −1 

y 1 y 1 0 0 y 1 1 · · · 0 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

y N s −1 y N s −1 0 0 y N s −1 0 · · · 1 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, 
(8) 

where c represents the speed of sound and 

H = e + 

p 

ρ
+ 

1 

2 

Q, 

z i = −ρ
∂ p 

∂ρy i 
/ 
∂ p 

∂e 
, i = 1 , 2 , · · · , N s − 1 , 

b 1 = 

1 

ρc 2 
∂ p 

∂e 
, 

b 2 = 1 + b 1 Q − b 1 H, 

b 3 = b 1 

N s −1 ∑ 

i =1 

y i z i , (9) 

by defining Q = u 2 + v 2 + w 

2 . The pressure derivatives, ∂ p 
∂e 

, 
∂ p 

∂ρy i 

and 

∂ p 
∂ρ

, are obtained by fixing other variables in the transformed 

EoS 

p = p ( ρ, e, ρy 1 , · · · , ρy N s −1 ) . 

If n 1 = 0 , which is the case for calculation of flux function G ( U ) or 

H ( U ), l 3 and l 4 in Eq. (7) are invalid and can be replaced by 

l ∗3 = 

(
Mn 1 −u 

n 2 

1 −n 2 1 

n 2 
−n 1 

−n 1 n 3 
n 2 

0 0 · · · 0 

)
, 

l ∗4 = 

(
Mn 3 −w 

n 2 

−n 1 n 3 
n 2 

−n 3 
1 −n 2 3 

n 2 
0 0 · · · 0 

)
, (10) 

if n 2 � = 0. Correspondingly, r 3 and r 4 in Eq. (8) should be replaced 

by 

r ∗3 = 

(
0 n 2 −n 1 0 un 2 − v n 1 0 · · · 0 

)T 
, 

r ∗4 = 

(
0 0 −n 3 n 2 wn 2 − v n 3 0 · · · 0 

)T 
. (11) 

If n 2 = 0 and n 3 � = 0, l 3,4 and r 3,4 can be further replaced by 

l ∗∗
3 = 

(
Mn 1 −u 

n 3 

1 −n 2 1 

n 3 

−n 1 n 2 
n 3 

−n 1 0 0 · · · 0 

)
, 

l ∗∗
4 = 

(
Mn 2 −v 

n 3 

−n 1 n 2 
n 3 

1 −n 2 2 

n 3 
−n 2 0 0 · · · 0 

)
, (12) 

and 

r ∗∗
3 = 

(
0 n 3 0 −n 1 un 3 − wn 1 0 · · · 0 

)T 
, 

r ∗∗
4 = 

(
0 0 n 3 −n 2 v n 3 − wn 2 0 · · · 0 

)T 
. (13) 

Finally, eigenvalues in the diagonal characteristic matrix � in 

Eq. (5) are 

M − c, M, M, M, M + c, M, · · · , M. (14) 

Given the analytical expressions of left and right eigenvector as 

above, it is important to note that both eigenvectors and eigenval- 

ues are locally defined at half points or cell faces such as F 
i + 1 

2 
, j,k 

or G 

i, j+ 1 
2 

,k 
. Therefore, it is required to obtain proper averaged state 

between two adjacent states U L and U R at grid points or neigh- 

boring cell centers. Following the Roe average [10,11,22] for ideal 

gas and its extension to multi-component non-equilibrium reactive 

flows [26] , the U-property accounting for the jump conditions of 

two adjacent states can be satisfied by Roe-average the following 

variables 

˜ ρ = 

√ 

ρL ρR , 

˜ f = μ( f ) = 

√ 

ρL f L + 

√ 

ρR f R √ 

ρL + 

√ 

ρR 

, f = u, v , w, H, e, y 1 , · · · , y N s −1 . 

(15) 

Left to be satisfied is the pressure jump condition 

�p = 

˜ 

(
∂ p 

∂ρ

)
�ρ + 

˜ 

(
∂ p 

∂e 

)
�e + 

N s −1 ∑ 

i =1 

˜ 

(
∂ p 

∂ρy i 

)
�( ρy i ) , (16) 

where �(·) = (·) R − (·) L . Note that definitions for the averaged 

pressure derivatives are not unique, and Eq. (16) defines a hyper- 

plane as 

αx + βy + 

N s −1 ∑ 

i =1 

γi z i = 1 (17) 

with 

α ≡ �ρ

�p 
φ, β ≡ �e 

�p 
ψ, γi ≡

�( ρy i ) 

�p 
ηi , 

x ≡
˜ 

(
∂ p 

∂ρ

)
/φ, y ≡

˜ 

(
∂ p 

∂e 

)
/ψ, z i ≡

˜ 

(
∂ p 

∂ρy i 

)
/ηi , (18) 

where φ, ψ , ηi are the scaling factors [26] . 

Given all partial derivatives of pressure at the left and right 

states, we can first introduce Roe-averaged derivatives of pressure 

by imposing ˜ f = μ( f ) in Eq. (15) , i.e. (
∂ p 

∂ρ

)
= μ

(
∂ p 

∂ρ

)
, (

∂ p 

∂e 

)
= μ

(
∂ p 

∂e 

)
, (

∂ p 

∂ρy i 

)
= μ

(
∂ p 

∂ρy i 

)
, i = 1 , · · · , N s − 1 . (19) 

Then starting from point S (
x s , y s , z 1 s , · · · , z N s −1 s 

)
= 

( (
∂ p 

∂ρ

)
/φ, 

(
∂ p 

∂e 

)
/ψ, 

(
∂ p 

∂ρy 1 

)
/ η1 , · · · , 

(
∂ p 

∂ρy N s −1 

)
/ ηN s −1 

) 

, 

its projection P (
x p , y p , z 1 p , · · · , z N s −1 p 

)
= 

( 

˜ 

(
∂ p 

∂ρ

)
/φ, 

˜ 

(
∂ p 

∂e 

)
/ψ, 

˜ 

(
∂ p 

∂ρy 1 

)
/η1 , · · · , 

˜ 

(
∂ p 

∂ρy N s −1 

)
/ηN s −1 

) 
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onto the hyperplane defined by Eqs. (17) , (18) can be determined 

by 

x p = x s + α
, 

y p = y s + β
, 

z i p = z i s + γi 
, i = 1 , · · · , N s − 1 , 

(20) 

where 


 = 

1 − αx s − βy s −
∑ N s −1 

i =1 
γi z i s 

α2 + β2 + 

∑ N s −1 
i =1 

γ 2 
i 

. (21) 

State P on the plane naturally satisfies the pressure jump con- 

dition and might give a suitable set of derivatives which will be 

further employed in calculating averaged cell-face eigenvalues and 

eigenvectors in Eqs. (7) , (8) and (14) , together with simple Roe- 

averaged values in Eq. (15) . The consistent averaged speed of sound 

should be a positive real number and can be obtained by 

˜ c 2 = 

˜ 

(
∂ p 
∂ρ

)
+ 

˜ p 
˜ ρ2 

˜ 

(
∂ p 
∂e 

)
+ 

∑ N s −1 
i =1 

˜ y i 
˜ 

(
∂ p 

∂ρy i 

)
(22) 

with 

˜ p = ˜ ρ

(
˜ H − ˜ e − ˜ u 

2 + ̃

 v 2 + 

˜ w 

2 

2 

)
, (23) 

as in [10] . 

We now have obtained the approximate eigensystem located at 

the cell face between two cell-centered adjacent states. Decompo- 

sition of the multi-species Euler equations in the physical space 

can be done by projecting them onto the characteristic space with 

the left matrix ˜ L , where high-order interpolation schemes, e.g. 

WENO5 [12] , can be used in combination with local Lax–Friedrich 

splitting for example. Finally, physical flux vectors are obtained by 

inverse transform of the system onto physical space with matrix 
˜ R . E.g. for a cell face at { i + 

1 
2 , j, k } , stencils of six points/states are 

needed next to the cell face, i.e. { i ′ , j, k } with i 
′ = i − 2 , · · · , i + 3 , 

such that we have 

f i ′ = 

˜ L i + 1 2 
F i ′ , 

q i ′ = 

˜ L i + 1 2 
U i ′ , 

f ±
i ′ = 

1 

2 

( f ± λq ) i ′ , 

˜ f + 
i + 1 2 

= WENO5 { f + 
i ′ , i 

′ = i − 2 , · · · , i + 3 } , 
˜ f −
i + 1 2 

= WENO5 { f −
i ′′ , i 

′′ = i + 3 , · · · , i − 2 } , 
˜ F i + 1 2 

= 

˜ R i + 1 2 

(
˜ f + 
i + 1 2 

+ 

˜ f −
i + 1 2 

)
(24) 

and 

˜ F 
i + 1 

2 
is the expected convective flux in the physical space. Note 

that each λ is the maximum eigenvalue in Eq. (14) over stencils, 

and left and right matrices with tilde are defined in Eqs. from (7) –

(13) . 

Several matrix multiplications with vectors have to be per- 

formed in the above process of calculating a cell-face flux such 

as ˜ L 
i + 1 

2 
F 

i 
′ , ˜ L 

i + 1 
2 

U 

i 
′ and 

˜ R 
i + 1 

2 

˜ f ±
i + 1 

2 

. In addition to the element-by- 

element interpolation by WENO5, operations upon matrix prod- 

ucts are computationally very expensive. As the number of species 

increases, dimensionality of the eigensystem, N s + 4 , increases 

quadratically, such that the computational cost for these operations 

will be dramatically raised. 

2.2. Partial characteristic-wise flux splitting 

From the structure of left and right matrices, it is easy to see 

that except for the first five eigenvectors, i.e. { l 1 , ���, l 5 } as well as 

{ r 1 , ���, r 5 } corresponding to eigenvalues of { M − c, M, M, M, M + c} , 
respectively, species-related elements are mostly zero. Moreover, 

the diagonal identity sub-matrix in the right-bottom part of L and 

R , respectively, conforms to the fact that all species share the same 

convective velocity M . 

As a result, it is convenient to split the eigenmatrices into two 

parts along the diagonal, by ignoring the coupling relations be- 

tween the species and mixture total variables such as ρ , u and 

e , etc, which are represented by the non-zero off-diagonal entries. 

In this way, the conserved variable vector of multi-species Euler 

equations is decomposed into an ‘ideal gas’ part, { ρ , ρu, ρv, ρu, 

ρe t } 
T , and the other part consisting of species partial densities, 

{ ρy 1 , · · · , ρy N s −1 } T . Accordingly, the fully coupled eigensystem in 

Eqs. (7) and (8) can be decomposed into 

˜ L 1 = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

b 2 + M/c+ b 3 
2 

−b 1 u −n 1 /c 
2 

−b 1 v −n 2 /c 
2 

−b 1 w −n 3 /c 
2 

b 1 
2 

1 − b 2 − b 3 b 1 u b 1 v b 1 w −b 1 
Mn 2 −v 

n 1 
−n 2 

1 −n 2 2 

n 1 

−n 2 n 3 
n 1 

0 

Mn 3 −w 

n 1 
−n 3 

−n 2 n 3 
n 1 

1 −n 2 3 

n 1 
0 

b 2 −M/c+ b 3 
2 

−b 1 u + n 1 /c 
2 

−b 1 v + n 2 /c 
2 

−b 1 w + n 3 /c 
2 

b 1 
2 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

, 

˜ L 2 = 

⎛ 

⎝ 

1 · · · 0 

. . . 
. . . 

. . . 
0 · · · 1 

⎞ 

⎠ 

N s −1 ,N s −1 

, (25) 

and correspondingly 

˜ R 1 = 

⎛ 

⎜ ⎜ ⎜ ⎝ 

1 1 0 0 1 

u − cn 1 u −n 2 −n 3 u + cn 1 

v − cn 2 v n 1 0 v + cn 2 

w − cn 3 w 0 n 1 w + cn 3 

H − cM H − 1 
b 1 

v n 1 − un 2 wn 1 − un 3 H + cM 

⎞ 

⎟ ⎟ ⎟ ⎠ 

, 

˜ R 2 = 

⎛ 

⎝ 

1 · · · 0 

. . . 
. . . 

. . . 
0 · · · 1 

⎞ 

⎠ 

N s −1 ,N s −1 

. (26) 

As mentioned previously, since ˜ L 2 and 

˜ R 2 both are identity ma- 

trices, the advection equations of species partial densities are in- 

herently independent of each other in physical space, with the 

same convective velocity. Transforming them onto the character- 

istic space is unnecessary and costly matrix multiplication opera- 

tions can be avoided. The remaining sub-eigensystem, ˜ L 1 and 

˜ R 1 , 

which accounts for the gas mixture transport of total density, mo- 

menta and energy, recovers that of the ideal gas single-fluid Euler 

equations. It is still subject to characteristic-wise flux splitting and 

high-order interpolation to calculate the cell-face fluxes. However, 

the remaining matrix-multiplication operations have been largely 

reduced to a low dimensionality of 5 for 3D flows. It is to be noted 

that in order to meet the requirement of characteristic decomposi- 

tion, i.e. ˜ L 1 = 

˜ R −1 
1 

, we have to enforce 

b 3 = 0 

in Eqs. (25) and (26) . All other elements including the interface 

speed of sound are obtained in the same way as the fully coupled 

flux-splitting scheme in last subsection. 

2.2.1. Analysis of numerical convective fluxes 
Similarly with [13,19] , we first divide the WENO flux given by 

Eq. (24) into a central and numerical dissipation parts as 

˜ F i + 1 2 
= 

˜ R i + 1 2 

(
˜ f + 
i + 1 2 

+ 

˜ f −
i + 1 2 

)
= 

N s +4 ∑ 

s =1 

˜ r s 
i + 1 2 

f + ,s 
i + 1 2 

+ 

N s +4 ∑ 

s =1 

˜ r s 
i + 1 2 

f −,s 

i + 1 2 

= 

1 

60 
( F i −2 − 8 F i −1 + 37 F i + 37 F i +1 − 8 F i +2 + F i +3 ) ︸ ︷︷ ︸ 

central part 
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− 1 

60 

N s +4 ∑ 

s =1 

˜ r s 
i + 1 2 

{(
20 ω 

+ 
1 − 1 

)
˜ f + ,s 
i, 1 

−
(
10 

(
ω 

+ 
1 + ω 

+ 
2 

)
− 5 

)
˜ f + ,s 
i, 2 

+ 

˜ f + ,s 
i, 3 

}
︸ ︷︷ ︸ 

dissipation part by positive upwind flux 

+ 

1 

60 

N s +4 ∑ 

s =1 

˜ r s 
i + 1 2 

{(
20 ω 

−
1 − 1 

)
˜ f −,s 
i, 1 

−
(
10 

(
ω 

−
1 + ω 

−
2 

)
− 5 

)
˜ f −,s 
i, 2 

+ 

˜ f −,s 
i, 3 

}
︸ ︷︷ ︸ 

dissipation part by positive upwind flux 

, 

(27) 

where 

˜ f + ,s 
i,k +1 

= f s, + 
i + k −2 

− 3 f s, + 
i + k −1 

+ 3 f s, + 
i + k − f s, + 

i + k +1 
, k = 0 , 1 , 2 , 

˜ f −,s 
i, 3 −k 

= f s, −
i + k −2 

− 3 f s, −
i + k −1 

+ 3 f s, −
i + k − f s, −

i + k +1 
, k = 2 , 1 , 0 , (28) 

and ω 

+ / − are nonlinear weights in the WENO5 scheme. 
In smooth regions the WENO5 scheme reduces to the explicit 

5th-order linear upwind scheme, and Eq. (27) can be simplified 

as 

˜ F i + 1 2 
= 

1 

60 
( F i −2 − 8 F i −1 + 37 F i + 37 F i +1 − 8 F i +2 + F i +3 ) 

+ 

1 

60 
˜ R i + 1 2 

�˜ L i + 1 2 
( U i −2 − 5 U i −1 + 10 U i − 10 U i +1 + 5 U i +2 − U i +3 ) ︸ ︷︷ ︸ 

dissipation part 

, 

(29) 

where ˜ L and 

˜ R correspond to the eigensystem of Eqs. (7) and 

(8) for the fully coupled scheme, while the proposed decoupled 

scheme has the eigensystem 

˜ L d = 

(
˜ L 1 

˜ L 2 

)
= 

(
˜ L 1 

I 

)
and 

˜ R d = 

(
˜ R 1 

˜ R 2 

)
= 

(
˜ R 1 

I 

)
(30) 

by combining Eqs. (25) and (26) . Using a different eigensystem 

merely affects the dissipation part which is O(�x 5 ) . 

To discuss the convergence of the proposed decoupled scheme, 

without loss of generality, we consider the flow in 1D with three 

species. Assuming that the flow is advected with constant velocity 

and pressure, the multi-species Euler equations in Eq. (1) can be 

linearized with 

U = 

(
ρ, ρu, ρe t , ρy 1 , ρy 2 

)T 
. 

By denoting the 5th-order dissipation term as 

δU = 

(
δρ, uδρ, δρe t , δρy 1 , δρy 2 

)T ∼ O(�x 5 ) 

and using different eigensystems for the fully coupled scheme and 

the decoupled scheme, respectively, we can see that the difference 
between the two derived convective fluxes is bounded as 

|| ̃ F d 
i + 1 

2 

− ˜ F 
i + 1 

2 
|| 2 = || 1 

60 

(
˜ R d 

i + 1 
2 

�˜ L d 
i + 1 

2 

− ˜ R 
i + 1 

2 
�˜ L 

i + 1 
2 

)
δU || 2 

= || 1 

60 

⎛ 

⎜ ⎜ ⎜ ⎝ 

0 0 0 0 0 

−b 1 c 
2 y 1 z 1 0 0 b 1 c 

2 z 1 b 1 c 
2 z 2 

−b 1 c 
2 uy 1 z 1 + uy 2 z 2 0 0 b 1 c 

2 uz 1 b 1 c 
2 uz 2 

uy 1 −y 1 0 0 0 

uy 2 −y 2 0 0 0 

⎞ 

⎟ ⎟ ⎟ ⎠ 

δU || 2 

≤ 1 

60 
|| 

⎛ 

⎜ ⎜ ⎜ ⎝ 

0 0 0 0 0 

−b 1 c 
2 y 1 z 1 0 0 b 1 c 

2 z 1 b 1 c 
2 z 2 

−b 1 c 
2 uy 1 z 1 + uy 2 z 2 0 0 b 1 c 

2 uz 1 b 1 c 
2 uz 2 

uy 1 −y 1 0 0 0 

uy 2 −y 2 0 0 0 

⎞ 

⎟ ⎟ ⎟ ⎠ 

|||| δU || 2 

∼ O(�x 5 ) . (31) 

Through the detailed flux difference 

˜ F d 
i + 1 2 

− ˜ F i + 1 2 
= 

1 

60 

⎛ 

⎜ ⎜ ⎝ 

0 

b 1 c 
2 ( δρy 1 z 1 + δρy 2 z 2 ) − b 1 c 

2 y 1 z 1 δρ
b 1 c 

2 u ( δρy 1 z 1 + δρy 2 z 2 ) − b 1 c 
2 uy 1 z 1 δρ + uy 2 z 2 δρ

0 

0 

⎞ 

⎟ ⎟ ⎠ 

, 

(32) 

we can see that the decoupled scheme introduces the same 

numerical dissipation for total density and partial density terms 

as the fully coupled scheme. Relating these properties to the 

component-wise FD scheme [24] with eigensystem L = R = I , in 

which WENO interpolation is performed directly for each compo- 

nent of U in the physical space, we obtain 

˜ F c 
i + 1 2 

− ˜ F d 
i + 1 2 

= 

1 
60 

⎛ 

⎜ ⎜ ⎝ 

−cδρ
(Hb 1 − 1) c 2 δρ − b 1 c 

2 δρe t 
u ((Hb 1 − 1) c 2 δρ − b 1 c 

2 δρe t ) + cδρe t 
0 

0 

⎞ 

⎟ ⎟ ⎠ 

, 

(33) 

such that an additional dissipation error of −cδρ is introduced to 

the total density term as compared to the decoupled scheme and 

the fully coupled characteristic-wise scheme. 

Therefore, for the proposed decoupled scheme, we observe: 

• Consistency. The derived numerical flux not only approaches 

that of the fully coupled scheme but also the physical flux F ( U ) 

as δU vanishes when �x → 0, according to Eq. (31) . 
• Stability. Stability is ensured based on the upwind reconstruc- 

tion with the local lax-Friedrichs splitting in Eq. (27) under the 

CFL condition [24] . 
• Convergence. Since the order of the dissipation error O(�x 5 ) 

does not change, the high-order accuracy of WENO5 scheme in 

the present context is preserved. 

A numerical example of advection flow testing the convergence 

rate of the decoupled scheme will be given in the following sec- 

tion. 

2.2.2. Consistent update of species mass fractions 

Assuming that we have updated the total variables of gas mix- 

ture according to the above partial characteristic scheme from time 

level n to n + 1 , i.e. 

{ ρ, ρu, · · · , ρe t } n → { ρ, ρu, · · · , ρe t } n +1 , (34) 

we now advance { ρy 1 , · · · , ρy N s −1 } n to { ρy 1 , · · · , ρy N s −1 } n +1 . As 

the total density has already been computed separately from the 

partial densities of species, a consistency error arises due to oper- 

ator splitting, such that ρ in (ρy i ) 
n +1 at the new time level is not 

necessarily equal to ρn +1 of Eq. (34) , i.e. 

y n +1 
i 

� = 

(ρy i ) 
n +1 

(ρ) n +1 
, i = 1 , · · · , N s − 1 . (35) 

This inconsistency may introduce errors in computing species mass 

fractions, leading to oscillations around discontinuities such as 

contacts or shock waves. 

It is known that all species are synchronously advected at ve- 

locity M across the cell face and transported into the same gas 

mixture ρ . Thus species information can be updated to reproduce 

a nominal total density to avoid the inconsistent ρn +1 by 

y n +1 
i 

= 

(ρy i ) 
n +1 ∑ N s 

i =1 
(ρy i ) n +1 

. (36) 

A total number of N s species mass equations needs to be solved 

by adding a mass equation for the N s th species. Another advantage 
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Table 1 

Numbers of species in the kinetic mechanisms 

used. 

Main species No. of species References 

H 2 
a 9 [20] 

CH 4 53 [27] 

n-C 7 H 16 561 [4,5] 

n-C 16 H 34 2115 [30] 

a The inert species is either N 2 or Ar as the 9th 

species. For the rest three mechanisms, both N 2 

and Ar have been included. 

of this treatment is that total mass can be conserved by enforcing ∑ N s 
i =1 

y n +1 
i 

= 1 in the denominator. 

In two situations often encountered in practice, no extra effort 

is needed to deal with the N s th species’ mass equation: 

• Some inert species such as N 2 or Ar is involved in the gas mix- 

ture and the index number of one inert species is set as N s . The 

mass fraction of the inert species y N s should be constant in the 

entire flowfield at any time. This is the case when we consider 

a free stream of premixed fuel/air mixture including N 2 flows 

over structures, e.g. wedges, cylinders and blunt bodies, etc. In 

such cases, Eq. (36) can be replaced by 

y n +1 
i 

= 

(ρy i ) 
n +1 ∑ N s 

i =1 
(ρy i ) n +1 

, 

= 

(ρy i ) 
n +1 ∑ N s −1 

i =1 
(ρy i ) n +1 / (1 −y N s ) 

. 
(37) 

• Regarding some mechanisms that involve many species, inert 

species exist but not with index N s and the mass fraction of 

the N s th species can be assumed to be zero, i.e. y N s ≡ 0 . For ex- 

ample, if we only consider hydrogen/air combustion using the 

GRI-Mech 3.0 mechanism [27] , which is designed for detailed 

CH 4 /air chemistry but also quite popular for hydrogen/air com- 

bustion simulations, all carbon-related species should be set to 

zero including the N s th species CH 3 CHO. Thus, Eq. (37) is also 

valid simply by setting y N s = 0 . 

Having updated the mass fractions of species involved, combi- 

nation of ρn +1 and { y 1 , · · · , y N s −1 } n +1 is performed to correct the 

inconsistent conserved variables by 

(ρy i ) 
n +1 = ρn +1 y n +1 

i 
, i = 1 , · · · , N s − 1 . (38) 

Both the above two special cases as well as a general situation 

which requires transporting all N s species will be given illustrative 

examples in the following section. 

3. Numerical results and discussion 

In this section, we present numerical examples to illustrate 

the comparison of fully coupled characteristic-wise flux-splitting 

scheme (denoted as ‘coupled’ in the following figures and tables) 

and its partially decoupled counterpart (denoted as ‘decoupled’) in 

addition to a 2nd-order AUSMPW+ scheme [14] plus MUSCL inter- 

polation (denoted as ‘AUSM+MUSCL’) based on the FV formulation, 

in which the Minmod limiter is used. In the characteristic decom- 

position based FD formulation, the fifth-order WENO-LLF scheme 

is implemented as previously described. Temporal integration uti- 

lizes the explicit second-order Runge–Kutta algorithm (RK2) with 

a fixed timestep given in each numerical experiment correspond- 

ing to the CFL number around 0.5–0.75. Both inert and reactive 

multi-species problems are taken into consideration, in 1D or 2D. 

Also, several kinetic mechanisms consisting of different numbers 

of species, listed in Table 1 , are employed to describe species ther- 

modynamics and transport properties if needed as well as chemi- 

cal kinetics if reactions are switched on. It is to be noted that, for 

simplicity and without loss of generality, only hydrogen/air com- 

bustion is taken into consideration even though the detailed mech- 

anisms are able to describe more than hydrogen-related reactions. 

The simple and efficient first-order Lie-Trotter operator-splitting 

scheme [17] is exploited for separating the source and convection 

terms. VODE [1] or CHEMEQ2 [18] has been implemented for inte- 

grating the ODE system of chemical source terms. All simulations 

are performed on a Intel Xeon E5-2620 v3 workstation using the 

MPI library for parallelization. 

3.1. 1D and 2D vortex advection 

The first test case aims to verify quantitatively the spatial ac- 

curacy of the partially characteristic-wise flux-splitting scheme for 

the convection term discretization. It is expected that our proposed 

scheme may lead to larger errors due to operator splitting than the 

fully characteristic decomposition scheme. The relative error norms 

should reproduce high-order convergence rate as each part of the 

decoupled scheme is discretized by high-order WENO schemes. 

The present example comes from the similar isentropic vortex 

case [6,9,31] . In the first Case 1a, we simplify the 2D vortex into 

a 1D advection flow of gas mixture composed of H 2 , O 2 and N 2 , 

with Gaussian profiles on the initial temperature and species mass 

fractions, i.e. 

T = T 0 − (γ0 − 1)�2 

8 γ0 π
exp 

(
1 − r 2 

2 

)
, 

y H 2 = y H 2 , 0 −
2 πa 1 
γ0 �

exp 

(
1 − r 2 

2 

)
, 

y O 2 = y O 2 , 0 −
2 πa 2 
γ0 �

exp 

(
1 − r 2 

2 

)
, 

y N 2 = 1 − y H 2 − y O 2 , (39) 

where T 0 = 300 K, � = 50 , γ0 = 1 . 4 , y H 2 , 0 = 0 . 01277 , y O 2 , 0 = 0 . 101 , 

a 1 = 0 . 005 , a 2 = 0 . 03 and r = 

√ 

(x − x 0 ) 2 + (y − y 0 ) 2 in 2D or r = 

x − x 0 in 1D. In the first 1D case, the domain length L = 10 m and 

x 0 = 5 m. The uniform initial pressure and velocity is 101325 Pa 

and 100 m/s, respectively. At the domain boundaries, we apply pe- 

riodic boundary condition, so that each cycle of the steady advec- 

tion flow takes 0.1 s to recover its initial position periodically. 

At t = 0.1 s (1 cycle) and at t = 1 s (10 cycles), the relative er- 

rors (compared with the initial conditions used as the exact solu- 

tion) and the order of accuracy are evaluated for different num- 

bers of grid points N = 20 , 40 , 80 and 100, respectively, in Fig. 1 . 

For this purpose, a very small timestep, �t = 1 × 10 −6 s, is used 

for all grids to minimize temporal errors so that the resulted rel- 

ative errors can be ascribed to using different spatial convection 

schemes. It can be found in Fig. 1 that 

• As expected, both the coupled and decoupled schemes possess 

high-order accuracy in the L 1 and L ∞ 

error norms (5th order in 

black solid line) compared with the AUSM+MUSCL scheme (2nd 

order in red dash line). 
• Error norms, using the same grid, of cycle 10 are about one 

order of magnitude larger than those of cycle 1, and the 

decoupled scheme produces insignificantly larger errors than 

the fully coupled scheme. In contrast, errors of the 2nd-order 

AUSM+MUSCL scheme are much larger than for the two high- 

order schemes based on the same grid. 
• Mass fraction errors of species are much smaller than those in 

density by about two orders of magnitude. It seems that the de- 

coupled scheme has more side effects upon calculating density 

than species mass fractions. Thus, their consistent update as 

proposed in the second special item due to y N s ≡ 0 is proved ef- 

fective, without introducing large errors in calculating the mass 

fractions of species. 
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Fig. 1. Case 1a L 1 and L ∞ error norms of density and H 2 mass fraction. Gradient symbol: coupled scheme at t = 0 . 1 ; delta symbol: decoupled scheme at t = 0 . 1 ; diamond 

symbol: AUSM+MUSCL scheme at t = 0 . 1 ; cube: coupled scheme at t = 1 ; circle: decoupled scheme at t = 1 ; right triangle symbol: AUSM+MUSCL scheme at t = 1 ; black 

solid line indicates the 5th-order convergence rate and red dot line is 2nd-order. (For interpretation of the references to color in this figure legend, the reader is referred to 

the web version of this article.) 

Table 2 

Case 1a unit (step-averaged) CPU times for flux calculation (FC), primitive variable update (PU) and the total loop (TL) in one timestep with different number of species. 

Normalized CPU times are listed in every second line after the absolute CPU times based on the 9-species case. 

TL FC PU 

No. of species Coupled Decoupled AUSM + MUSCL Coupled Decoupled AUSM + MUSCL Coupled Decoupled AUSM + MUSCL 

9 0.0 010 01428 0.0 0 0691545 0.0 0 0322301 0.0 0 0816926 0.0 0 0472868 0.0 0 0104714 0.0 0 0162475 0.0 0 0191890 0.0 0 0191411 

1 0.690558901 0.321841484 1 0.578838754 0.128180542 1 1.181042831 1.178089954 

53 0.005822255 0.002325356 0.0 0 0923330 0.005230315 0.001698632 0.0 0 0320141 0.0 0 0521771 0.0 0 0555966 0.0 0 0531520 

5.813953891 2.322041139 0.922013207 6.402436594 2.079298214 0.391884692 3.211382682 3.421844301 3.271386220 

561 0.393229030 0.021078206 0.007802374 0.387916709 0.016213795 0.002842758 0.0 047570 07 0.004356738 0.004 4 41574 

392.6683900 21.04815371 7.791249747 474.8494311 19.84733116 3.479824585 29.27832062 26.81474859 27.33689988 

2115 19.84175359 0.084508152 0.032452066 19.81976696 0.062745469 0.011209302 0.019376990 0.019574005 0.018975126 

19813.46452 84.38766582 32.40579797 24261.40678 76.80682372 13.72132357 119.2610550 120.4736384 116.7876716 

Having verified the high-order spatial accuracy of the proposed 

scheme, we also present the comparison of CPU time costs in 

terms of different numbers of species from 9 up to 2115 species, 

as listed in Table 2 and plotted in Fig. 2 , from the aspect of com- 

putational efficiency. In the table, the total CPU time cost per one 

averaged timestep (TL) is listed firstly, followed by the time costs 

for flux calculation (FC) and primitive variable update (PU), re- 

spectively. In the figure, only TL and FC of three spatial schemes 

are shown in relation with the number of species, in logarithmic 

scales. For the current non-reactive case, 

• As seen in the table, TL is basically the sum of FC and PU. 

PU costs almost the same CPU time between the three spa- 

tial schemes at a specific number of species. As the number of 

species increases, PU grows approximately linearly. 
• High-order schemes require obviously more time in FC. More 

importantly, increasing the number of species increases the CPU 

time used for FC faster than PU. Thus, TL mainly depends on 

the contribution of FC for both high-order schemes and larger 

numbers of species. 
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Fig. 2. Case 1a unit (step-averaged) CPU-times using 9, 53, 561 and up to 2115 

species ( N s ), respectively. All computations run until t = 0 . 1 for 10 0,0 0 0 uniform 

steps with 100 grid points. Red cube: TL by coupled scheme; red solid right tri- 

angle: FC by coupled scheme; green delta: TL by decoupled scheme; green solid 

diamond: FC by decoupled scheme; blue gradient symbol: TL by AUSM+MUSCL 

scheme; blue solid circle: FC by AUSM+MUSCL scheme. Solid black line: O ( N s ); dash 

black line: O (N 2 s ) ; dot dash black line: O (N 3 s ) . (For interpretation of the references 

to color in this figure legend, the reader is referred to the web version of this arti- 

cle.) 

• For both TL and FC the coupled scheme depends super-linearly 

on the number of species. The decoupled scheme is linearly re- 

lated to the number of species as is the AUSM+MUSCL scheme. 

The linear scaling between the CPU time and the number of 

species renders the present decoupled scheme more efficient. 

Next, Case 1b continues to consider the 2D isentropic vortex 

advection in a squared domain of 10 m-long sides. This 2D case is 

more difficult than Case 1a since the vortex flow is not at rest in 

the vertical direction. At t = 0 s, an inviscid vortex of radius r = 5 

is placed at the domain center by 

u = u 0 − �

2 π
exp 

(
1 − r 2 

2 

)
( y − y 0 ) , 

v = v 0 + 

�

2 π
exp 

(
1 − r 2 

2 

)
( x − x 0 ) , (40) 

where u 0 = 100 , v 0 = 0 and x 0 = y 0 = 5 . Other parameters for the 

initial 2D flowfield is also provided by Eq. (39) . Two sets of grids, 

100 × 100 and 200 × 200, are employed. At t = 0 . 1 s (1 cycle), the 

isolines of density, vertical velocity and mass fraction of H 2 are 

plotted in Fig. 3 . We can see that both the decoupled and cou- 

pled schemes can capture accurately isolines of all three variables. 

Due to its high numerical dissipation, results of the AUSM+MUSCL 

scheme are not shown in the figure. 

3.2. Sod’s shock tube 

The popular Riemann (Sod) shock tube problem is one of the 

most standard numerical benchmarks designed for compressible 

flow solvers [9,28] . It is mostly studied by implementing the 

single-species ideal gas model with a fixed γ = 1 . 4 . Herein we test 

the multi-species solver by considering air to be the gas mixture 

of 21% O 2 and 79% N 2 . Setup of the 1D flowfield is well-known, 

initially divided by two dimensionless states at the middle point, 

i.e. 

(ρ, u, p) L = (1 , 0 , 1) , if x ≤ 0 . 5 , 

(ρ, u, p) R = (0 . 125 , 0 , 0 . 1) , otherwise . (41) 

We design the following dimensional quantities to mimic the clas- 

sical shock tube, that is 

(T , p) L = (375 K , 101 , 325 Pa ) , if x ≤ 0 . 5 m , 

(T , p) R = (300 K , 10132 . 5 Pa ) , otherwise , (42) 

giving ρL = 0 . 937561 kg/m 

3 and u 0 = 

√ 

p L / ρL for the normaliza- 

tion of velocity. The domain is discretized by 400 grid points and 

timestep is fixed at �t = 1 × 10 −6 s, corresponding to the CFL 

number of about 0.5. Computation runs until t = 6 × 10 −4 s, such 

that the result can be comparable with that at t = 0 . 2 in the di- 

mensionless case of [9] . Two mechanisms of 9 and 53 species, re- 

spectively, are considered with all mass fractions except O 2 and N 2 

are set to zero. For the 9-species mechanism, due to y N s = y N 2 ≡
0 . 767 , update of species mass fractions utilizes Eq. (37) in the first 

special item. For the 53-species mechanism, it follows the second 

special item due to y N s = y CH 3 CHO ≡ 0 . 

Fig. 4 shows the normalized variable profiles which agrees with 

[9] . With the same grid, both high-order low-dissipation schemes 

capture much sharper discontinuities than the AUSM+MUSCL 

scheme, where the decoupled scheme results match well with the 

coupled scheme. Both results of 9-species case and 53-species case 

exhibit identical profiles, which validates the proposed consistent 

update of species mass fractions. 

3.3. Inert gas mixture shock tube 

This modified version of the popular Sod’s shock tube has been 

studied in [8] to verify the convection scheme together with the 

thermodynamics of a multi-species gas mixture. The 1D domain 

of length L = 10 cm is filled with H 2 /O 2 /Ar mixture with a molar 

ratio of 2/1/7. The initial conditions correspond to the following 

Riemann problem: 

(T , p) L = (40 0 K , 80 0 0 Pa ) , 
(T , p) R = (1200 K , 80 , 000 Pa ) . 

(43) 

400 grid points are used to discretize the domain and timestep 

here is fixed at �t = 1 × 10 −7 s, corresponding to the CFL num- 

ber of about 0.75. The computation runs for 400 steps until t = 

40 μs. We also adopt two mechanisms with corresponding update 

of species mass fraction as in the Sod’s shock tube example. To 

make clear the necessity of the present consistent mass fraction 

update method for the decoupled scheme, we additionally test the 

traditional way of updating the species mass as in Eq. (35) . 

Fig. 5 shows excellently agreement with [9] between three con- 

vection schemes, where the decoupled scheme utilizes the consis- 

tent update of mass fractions according to the mechanism used. 

However, for the species-dependent specific heat ratio, γ , in Fig. 6 , 

oscillations are visible around the shock as a result of the incon- 

sistent mass-fraction update in the decoupled scheme. This is also 

observed in the profile of y H 2 , which is supposed to be constant 

throughout the tube. This property is also presented for the fully 

coupled scheme and AUSM+MUSCL scheme. Using the proposed 

consistent update, the decoupled scheme successfully avoids the 

occurrence of any spurious oscillations. 

3.4. Reactive gas mixture shock tube 

This case was investigated previously by Oran et al. [21] and 

serves to evaluate the performance of multi-species compressible 

chemically reacting flow solvers in [7–9] . A reactive gas mixture 

is placed in a closed tube, in which a shock hits the left-side 
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Fig. 3. Case 1b sampled contour lines of coupled and decoupled schemes regarding density, y-velocity and H 2 mass fraction. Left side: 100 × 10 0 cells; right side: 20 0 × 200 

cells. Red circle: coupled scheme at t = 0 . 1 ; solid green delta symbol: decoupled scheme at t = 0 . 1 . Black solid line: exact solution. (For interpretation of the references to 

color in this figure legend, the reader is referred to the web version of this article.) 

solid wall boundary and reflects off. A reaction wave occurs at the 

boundary after a delay of induction, then catches up and merges 

with the right-moving shock wave to develop a detonation wave. 

The reactive mixture is considered to be characterized by a 

2/1/7 molar ratio of H 2 /O 2 /Ar. Initial conditions are 

(ρ, u, p) L = (0 . 072 kg / m 

3 , 0 m / s , 7173 Pa ) , 

(ρ, u, p) R = (0 . 18075 kg / m 

3 , −487 . 34 m / s , 35 , 594 Pa ) , (44) 

with the left and right states being separated in the middle of a 

12 cm-long domain discretized with 400 grid points. Wall bound- 

ary condition is applied for the left end of tube while the right 

end uses outflow condition. In all runs, the timestep is fixed at 

�t = 1 × 10 −7 s, corresponding to a CFL number of about 0.75. 

Also, both 9-species and 53-species mechanisms are considered 

with reactions switched on. VODE as the integrator of ODE system 

of chemical reactions is used here without excessive computational 
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Fig. 4. Case 2 Sod’s shock tube of 21% H 2 + 79% N 2 gas mixture. Left: 9 species case; right: 53 species case. Black solid line: coupled scheme; red circle line: decoupled 

scheme; blue cube line: AUSM+MUSCL scheme. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 5. Case 3 inert shock tube of H 2 /O 2 /Ar gas mixture with initial ratio of 2: 1: 7 at t = 40 μs. Left: 9 species case; right: 53 species case. Black solid line: coupled scheme; 

red circle line: decoupled scheme; blue cube line: AUSM+MUSCL scheme. (For interpretation of the references to color in this figure legend, the reader is referred to the web 

version of this article.) 
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Fig. 6. Case 3 inert shock tube problem of H 2 /O 2 /Ar gas mixture with initial ratio of 2: 1: 7 at t = 40 μs. Black solid line: coupled scheme; red triangle line: decoupled 

scheme; blue cube line: AUSM+MUSCL scheme. The decoupled scheme here employs the inconsistent mass-fraction update, leading to oscillations in y H 2 and γ . (For inter- 

pretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Table 3 

Case 4 unit (step-averaged) CPU times for flux calculation (FC), ODE integration by VODE (vode) and the total loop (TL) in one timestep using two mechanisms 

TL FC vode 

No. of species Coupled Decoupled AUSM + MUSCL Coupled Decoupled AUSM + MUSCL Coupled Decoupled AUSM + MUSCL 

9 0.015763691 0.014487363 0.013004980 0.003222557 0.001953609 0.0 0 0460801 0.011083957 0.011044850 0.011098304 

1 0.919033694 0.824995851 1 0.606229377 0.142992312 1 0.996471712 1.001294389 

53 0.193266271 0.176292764 0.173204538 0.021329382 0.007134122 0.001529770 0.167723207 0.165103592 0.167614087 

1 0.912175535 0.896196409 1 0.334473932 0.071721254 1 0.984381324 0.999349407 

efforts in the 1D problem. Results are analyzed at t = 170 , 190 and 

230 μs, respectively. 

In Fig. 7 , we observe that for the reactive flow, different mech- 

anisms show different results in predicting the time-dependent 

flow variables. It is obvious that using the 9-species mechanism 

gives a faster reacting front than the 53-species case, and the lat- 

ter case matches very well with simulations in [8,9] . Especially at 

t = 170 μs, the reaction front in the 53-species case has not yet 

caught up with the moving shock wave while the reaction front in 

the 9-species case has almost merged with the shock wave and 

soon evolves into a detonation wave. For the same mechanism 

both high-order schemes are in good agreement with each other, 

although the AUSM+MUSCL scheme yields a slightly slower deto- 

nation wave than high-order schemes in the 9-species case. The 

slight oscillation in γ of the 53-species case at t = 230 μs is not 

due to inconsistency discussed in this study, which also can be ob- 

served in the Fig. 11 [9] . 

In Table 3 , the consumed CPU times per timestep by different 

spatial schemes and mechanisms are listed in parts and illustrated 

in Fig. 8 . It is readily to see that 

• TL is the sum of FC and vode, but the latter obviously takes a 

great part of TL. 
• Integrating the ODE system of chemical source terms with 

VODE takes almost the same CPU time between three schemes. 

The 53-species mechanism needs much more computational ef- 

forts than the 9-species mechanism. 
• The decoupled scheme can still reduce the CPU time in FC com- 

pared with the coupled scheme, agreeing with the observations 

in Case 1a. 

Since the chemical ODE part dominates the CPU time cost in 

a total loop (TL), the decoupled scheme exhibits the advantage of 

better accuracy at little sacrifice of computational efficiency, com- 

pared with the popular 2nd-order AUSM+MUSCL scheme. There- 

fore, for reactive flows, high-order convection schemes are a bet- 

ter choice weighing spatial accuracy and computational efficiency 

on a balanced scale. With the same high-order accuracy, the de- 

coupled scheme requires less CPU time than the coupled scheme 

by approximately 10% in both 9-species and 53-species cases from 

Table 3 . 

3.5. 2D steady oblique detonation wave 

This 2D case concerns the scenario that an oblique detonation 

wave (ODW) is induced by hypersonic reactive free-stream past a 

wedge. Regarded as a promising combustion mechanism for hyper- 

sonic vehicles, ODW has received considerable attention and ex- 

tensive numerical work [15,16,29] has been conducted. Our goal 

with this example here is not to analyze the specific mechanism 

behind, but to compare the high-order shock-capturing schemes, 

with full or partial characteristic decomposition. As the computa- 

tional efficiency has been greatly improved for discretizing convec- 

tion terms as proved in previous 1D examples (nonreactive or re- 

active), it is expected for the partial characteristic decomposition 

scheme to preserve accuracy in predicting the details of a reactive 

flowfield with complex structures including shock waves, detona- 

tion waves, reflected shock waves, expansion waves and slip lines, 

etc., with a certain kinetic mechanism. Fig. 9 displays a schematic 

of the corresponding ODW flowfield. 

The computational setup considers Mach 8 reactive inflow con- 

sisting of H 2 /air gas mixture of a stoichiometric molar ratio, and 

the acute angle between the inflow velocity direction and wedge 

is β = 23 ◦ [16] . The inflow temperature and pressure are 293 K 

and 101325 Pa, respectively. In the present simulations, the wedge 

is placed horizontally and the inflow hits it with a negative y- 

direction velocity v . Not applying a very fine grid as in [16] , we 

find that uniformly distributed 360 × 180 grid points with �x = 

�y = 0 . 2 mm (10 times the resolution of the moderate grid used 

in [16] ) are sufficient to reproduce most details of the flow struc- 

tures and illustrate the advantage in accuracy of both high-order 

schemes over the 2nd-order AUSM+MUSCL scheme. For this steady 

flow, the CFL number is set to be 0.75 and each computation runs 
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Fig. 7. Case 4 reactive shock tube of H 2 /O 2 /Ar gas mixture with initial ratio of 2: 1: 7. Left: 9 species case; right: 53 species case. Black solid line: coupled scheme; red circle 

line: decoupled scheme; blue cube line: AUSM+MUSCL scheme. (For interpretation of the references to color in this figure legend, the reader is referred to the web version 

of this article.) 
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Fig. 8. Case 4 unit (step-averaged) CPU times using 9 and 53 species, respectively. 

with variable timesteps until it develops a steady state. In this case 

we found that the 9-species mechanism fails to induce the oblique 

detonation wave behind the leading-edge oblique shock wave. Con- 

sequently, we use another reduced kinetic mechanism of Evans 

et al. [23] , with 7 species and 8 reactions, which leaves out H 2 O 2 

and HO 2 . 

Fig. 10 shows the steady ODW flowfields with three different 

convection schemes. Despite the similarity of three steady flow- 

fields, it can be seen that the upper two high-order schemes ex- 

hibit much sharper shock wave as well as the oblique detonation 

wave. In the meantime, expansion waves from the triple point and 

its reflection from the bottom boundary are captured by high-order 

schemes, being smeared by the 2nd-order AUSM+MUSCL scheme. 

In the temperature contours of high-order schemes, slip lines are 

also apparent and separate the temperature field into a upper 

post-detonation high-temperature zone and a post-expansion low- 

temperature zone free of combustion. It is reasonable that different 

induction length and angle of ODW are computed in the present 

simulations from the results of a similar case in [16] , which em- 

ploys a simple two-step chemistry. 

Fig. 11 shows two cross-sectional profiles of variables at- 

tached to and 6 mm away from the bottom boundary, respec- 

tively. From the pressure and temperature profiles, we can see 

that the AUSM+MUSCL scheme yields longer induction of combus- 

tion starting from the leading edge. Both high-order schemes give 

much higher pressure and temperature peaks than the 2nd-order 

scheme. Between the two high-order schemes, the proposed de- 

coupled scheme matches well with the fully coupled scheme, ex- 

Table 4 

Parameters of mixing layer/shock interaction in Case 6. 

Parameter Upper fuel Lower oxidizer Bottom boundary inflow 

a 

Pressure (Pa) 94232.25 94232.25 129951.0 

Temperature (K) 545.0 1475.0 1582.6 

U (m/s) 973.0 1634.0 1526.3 

V (m/s) 0.0 0.0 165.7 

Mass fraction – – –

H 2 0.05 0.0 0.0 

O 2 0.0 0.278 0.278 

H 2 O 0.0 0.17 0.17 

H 0.0 5.60 ×10 −7 5.60 ×10 −7 

O 0.0 1.55 ×10 −4 1.55 ×10 −4 

OH 0.0 1.83 ×10 −3 1.83 ×10 −3 

HO 2 0.0 5.10 ×10 −6 5.10 ×10 −6 

H 2 O 2 0.0 2.50 ×10 −7 2.50 ×10 −7 

a The bottom boundary inflow is injected to produce the incident oblique shock 

wave. 

cept for peaks of pressure and mass fraction of OH, due to the in- 

herent splitting error. Nevertheless, the splitting error is acceptable 

as it is smaller than the difference between AUSM+MUSCL scheme 

and the high-order schemes in general. 

3.6. 2D unsteady mixing layer/shock interaction 

Unlike the steady case in the former example, this 2D test case 

considers the time-dependent development of the mixing layer 

constrained between two incoming supersonic free-streams with 

different gas components and velocities. An additional difficulty 

for numerical simulation is introduced by creating an incident 

oblique shock from the bottom boundary, which interacts with 

the mixing layer, reflects at the upper boundary, and thus pro- 

duces a series of discontinuities across the flowdfield. High-order 

FD WENO schemes, which have been implemented in [2,9] , facil- 

itate numerical investigations of such a flow problem. We are in- 

terested in comparing the results of two high-order schemes and 

the AUSMPW+ plus MUSCL interpolation scheme with the same 

setup. The configuration of this example has an upper inlet stream 

associated with fuel injection and a lower inlet stream associated 

with oxidizer. Fig. 12 provides the sketch of 2D flowfield as well as 

boundary conditions, and Table 4 details the values of parameters 

for the flowfield setup. The upper and lower inflows are initialized 

with a hyperbolic tangent profile for the streamwise velocity com- 

ponent u , while the transverse velocity v is fixed at zero: 

u (x, y ) = 0 . 5 

[
(U F + U O ) + (U F − U O ) tanh 

(
2 y 
δ0 

)]
, v (x, y ) = 0 , (45) 

using the parameters for U F and U O in Table 4 and the velocity 

thickness δ0 = 1 . 44 × 10 −4 m. Based on the velocity thickness, the 

size of the 2D domain is 275 δ0 × 120 δ0 . Also, the inflow tempera- 

Fig. 9. Sketch of oblique detonation wave flowfield in Case 5. 
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Fig. 10. Case 5 oblique detonation wave (ODW) problem: steady fields of pressure gradient magnitude (left) and temperature (right). From top to bottom is the coupled, 

decoupled and AUSM+MUSCL solution, respectively. 

Table 5 

Case 6 unit CPU times for flux calculation (FC), ODE integration by CHEMEQ2 and the total loop (TL) in one timestep. 

TL FC chemeq2 

Coupled Decoupled AUSM + MUSCL Coupled Decoupled AUSM + MUSCL Coupled Decoupled AUSM + MUSCL 

Non-reactive 0.795574554 0.640063596 0.40 0 028087 0.496905570 0.335797850 0.085914843 – – –

1 0.804529999 0.502816593 1 0.675777995 0.172899739 – – –

Reactive 0.98550638 0.824708525 0.535306252 0.51252713 0.339152340 0.086027376 0.13886178 0.133302706 0.134831354 

1 0.836837327 0.543178880 1 0.661725635 0.167849409 1 0.959966851 0.970975264 

ture and mass fractions of species are set in a similar fashion, i.e. 

T (x, y ) = 0 . 5 

[ 
(T F + T O ) + (T F − T O ) tanh 

(
2 y 

δ0 

)] 
, 

y i (x, y ) = 0 . 5 

[ 
(y F,i + y O,i ) + (y F,i − y O,i ) tanh 

(
2 y 

δ0 

)] 
, 

i = 1 , · · · , N s − 1 , (46) 

with y N 2 = 1 − ∑ N s −1 
i =1 

y i for mass conservation. A total number of 

9 species are advected by the 9-species 21-reaction kinetic mech- 

anism. Inflow pressure is uniformly distributed alone the inlet. A 

perturbation is additionally imposed on the transverse velocity v 

as in [2] by 

v ′ = 

∑ 2 
k =1 a k cos 

(
2 πkt 

t 0 
+ φk 

)
exp 

(
−y 2 

b 

)
, (47) 

where the period t 0 = L x /u c and other parameters are given by 

b = 10 , a 1 = a 2 = 0 . 05 , φ1 = 0 and φ2 = π/ 2 . For all computations, 

a uniform grid of 800 × 350 points is used together with a fixed 

timestep of �t = 1 × 10 −8 s for accurate and stable integration of 

the chemical ODE system. 

First, we consider the non-reactive case: after 60,0 0 0 uniform 

timesteps using the full characteristic flux-splitting scheme, the 

flowfield including mixing layer and shock waves is fully estab- 

lished as shown in the top-middle figure of Fig. 13 , based on which 

we now continue three computations with different convection 

schemes for another 10,0 0 0 steps. At t = 50 and 100 μs, we ob- 

tain the corresponding flowfields in the rest figures of Fig. 13 . From 

the pressure gradient magnitude field, we can see obvious shock 

waves and pressure perturbations in the high-order scheme results. 
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Fig. 11. Case 5 oblique detonation wave (ODW) problem: cross sectional profiles at two y-direction locations. Red solid line: coupled solution; green dash line: decoupled 

solution; blue dash dot line: AUSM+MUSCL solution. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 

article.) 

Fig. 12. Sketch of mixing layer/shock interaction in Case 6. 

Vortex roll-up in the mixing layer is captured more precisely than 

in the AUSM+MUSCL results. In the bottom figures, the mixing 

layer is nearly smeared out by the 2nd-order scheme. Between the 

decoupled and coupled schemes, except some temperature spots 

inside the mixing layer, both unsteady flowfields are very similar. 

Next, also based on the same initial flowfield at t = 0 s, we con- 

tinue running three simulations by activating the chemical reac- 

tions for additional 10,0 0 0 steps. In order to diminish the compu- 

tational efforts for solving the ODE system of chemical reactions, 

an explicit integrator, CHEMEQ2, instead of VODE, is employed 

here for the 2D reactive case. Different from the non-reactive 

case, in Fig. 14 , the mass fraction of H 2 O 2 isocontours instead of 

temperature is super-imposed on the field of pressure gradient 

magnitude. Except for the shaper shock-wave series, both two 

high-order schemes can give more details of the unsteady flow 

including the reaction intermediates such as H 2 O 2 existing in the 
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Fig. 13. Case 6 non-reactive mixing layer/shock interaction problem: fields of the pressure gradient magnitude superimposed with isocontours of temperature at two different 

times. Left: t = 50 μs; right: 100 μs. The top-middle figure is a common established flowfield as the initial state at t = 0 s. From top to bottom is the coupled, decoupled and 

AUSM+MUSCL solution, respectively. 

mixing layer where vortex-enhanced combustion occurs. However, 

the 2nd-order AUSM+MUSCL scheme underestimates the distribu- 

tion of H 2 O 2 in a much narrower reacting area. Regarding the 

present unsteady time-dependent reactive flow, the proposed de- 

coupled scheme results yield slight differences from the coupled 

scheme for two possible reasons: one is due to errors of partial de- 

composition and the other lies in the 1st-order Lie-Trotter splitting 

errors together with the 2nd-order RK scheme for the convection 

part. 

In Table 5 , we list the averaged CPU time cost per timestep in 

each part for both non-reactive and reactive cases. The proposed 

decoupled scheme improves the time efficiency for FC by over 30%, 

compared with the fully coupled scheme, and for TL by nearly 20%. 

Since only 9 species are included, the efficiency gain of the de- 

coupled scheme is limited. Time consumption of the AUSM+MUSCL 

scheme is low, which is accomplished at a considerably lower spa- 

tial accuracy. 

4. Conclusions 

We have presented a partial characteristic decomposition 

scheme for the solution of multi-species Euler equations with 

high-order finite difference schemes. Since the eigensystem of the 

multi-species convective flux Jacobian is sparse and non-zero en- 

tries in its matrices are mainly distributed along the diagonal, it is 

feasible to split the eigensystem into two parts: one is the gas mix- 

ture part, which is subject to traditional characteristic decomposi- 

tion schemes for single-fluid Euler equations, and the other part 



J.-H. Wang, S. Pan and X.Y. Hu et al. / Computers and Fluids 181 (2019) 364–382 381 

Fig. 14. Case 6 reactive mixing layer/shock interaction problem: fields of the pressure gradient magnitude superimposed with isocontours of mass fraction, y H 2 O 2 ,at two 

different times. Left: t = 50 μs; right: 100 μs. From top to bottom is the coupled, decoupled and AUSM+MUSCL solution, respectively. 

corresponds to a series of species partial mass equations. Since 

the species part has a sub-eigensystem of which the left and right 

sub-eigenmatrices are diagonal identity matrices, transforming the 

species variables from physical space onto characteristic space and 

back is no longer necessary, so that massive operations on ma- 

trix multiplication that is computationally very expensive can be 

avoided. 

With extensive numerical examples, the proposed scheme man- 

ages to significantly reduce the computational cost for calculating 

the multi-species convective flux in the following two aspects: 

• Computational cost of the full characteristic decomposition 

schemes depends super-linearly (quadratically even cubically) 

on the number of species involved. 
• Similarly with the 2nd-order AUSM plus MUSCL scheme in the 

finite volume formulation, the linear scaling of the computa- 

tional cost with different numbers of species is realized by the 

proposed decoupled scheme. 

Despite the splitting error, since each decoupled part is still dis- 

cretized by high-order schemes, the proposed scheme is verified to 

preserve the high-order accuracy of the underlying discretization 

scheme. The inconsistency issue in the update of species mass frac- 

tions has been resolved by summing up all the newly computed 

partial densities to reproduce a consistent nominal total density to 

be the base of renormalization. In contrast, using the straightfor- 

ward update of mass fractions as the fully coupled scheme leads 

to spurious oscillations around discontinuities with large species 

gradients. 
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