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Abstract

The computational burden of present-day computer simulations of complex phys-
ical systems particularly hampers their usage in many-query applications, such as
control problems, optimization/design, or forward/inverse uncertainty quantifica-
tion. Under such computational conditions, a viable approach is to replace the input-
to-output mapping of such expensive computer simulations by a cheap to evaluate,
but slightly inaccurate computational model called surrogate or metamodel. In the
context of stochastic partial differential equations (SPDEs) describing problems in
random heterogeneous media, the inputs to such simulations often correspond to
high-dimensional discretizations of short-scale random fields describing, e.g., mate-
rial properties, boundary conditions, or source terms — a regime where off-the-shelf
machine learning models such as Gaussian process (GP) regression or deep learning
approaches either fail due to the infamous curse of dimensionality or require a vast
amount of training data that are unavailable because of the large computational cost

of every forward simulation run.

In such Tall Data (high-dimensional, few samples) problems, it is essential to rely on
machine learning based surrogate models which are able to extract only the salient
features from the high-dimensional, stochastic inputs. At the same time, a maximum
amount of a priori information on the underlying physics of the problem should be
incorporated into the surrogate model to reduce the space of possible predictions by
exclusion of surrogate model outputs that violate basic physical principles.

The present thesis proposes a fully probabilistic machine learning framework for
surrogate modeling of flow problems in random heterogeneous media which is in
conformity with the above considerations. It consists of a three-component encoder-
decoder structure that first finds a low-dimensional, latent, effective representation
of the high-dimensional inputs (e.g., material properties) using a small set of feature
functions that are automatically selected by sparsity inducing prior models. The
low-dimensional representation then serves as the input to a computationally much
cheaper coarse-grained model (CGM) based on coarser spatial discretizations and
potentially simplified governing equations. Finally, the solution to the CGM is used
to reconstruct the original fine-grained model (FGM) response using a fully proba-
bilistic, parametric mapping. As a result, the model is capable of providing accurate,
probabilistic predictions for high input dimensions (d; 2 10 000) but only few data
(N < 100), even under extrapolative conditions, i.e., when tested on data that are
very different from the training set. Modern Stochastic Variational Inference (SVI)
techniques and state-of-the-art Monte Carlo (MC) methods are used during train-
ing and prediction stages. Moreover, a method for automatic adaption of surrogate
model complexity is proposed. The computational model complexity is analyzed

and the predictive performance is proven by elucidatory numerical examples.






Zusammenfassung

Der hohe Berechnungsaufwand heutiger Computersimulationen von komplexen
physikalischen Systemen limitiert deren Einsatz speziell in many-query Anwendun-
gen wie Steuerungsproblemen, Optimierung/Design, Fehlerfortpflanzung oder in-
versen Problemen. Ein brauchbarer Ansatz unter solchen Berechnungsbedingungen
ist, die Eingangsgrofie-zu-Ausgangsgrofie-Abbildung von solch aufwendigen Simu-
lationen durch ein einfach auszuwertendes, jedoch leicht ungenaues Berechnungs-
modell, genannt Ersatz- oder Metamodell, zu ersetzen. Im Rahmen von stochasti-
schen partiellen Differenzialgleichungen (SPDEs), die Probleme in zufélligen hete-
rogenen Materialien beschreiben, entsprechen die Eingangsgrofien zu solchen Si-
mulationen oft hochdimensionalen Diskretisierungen von kurzskaligen Zufallsfel-
dern, die beispielsweise Materialeigenschaften, Randbedingungen oder Quellterme
beschreiben — ein Regime, in dem gebrauchsfertige Machine Learning Modelle wie
Gauf3-Prozesse oder Deep-Learning Methoden durch den bertichtigten "Fluch der
Dimensionalitdt" entweder fehlschlagen oder eine gewaltige Menge an Daten beno-
tigen, die durch die hohen Berechnungskosten jeder Simulationsauswertung nicht
verfiigbar sind.

In solchen Tall Data Problemen (hochdimensional, wenige Datenpunkte) ist es uner-
lasslich, auf Machine Learning Modelle zu setzen, die dazu in der Lage sind, nur die
hervorstechenden Eigenschaften der hochdimensionalen, stochastischen Eingangs-
grofien zu extrahieren. Gleichzeitig sollte eine grofitmogliche Menge von a priori
Information tiber die zugurundeliegende Physik des Problems in das Ersatzmo-
dell integriert werden, um den Raum moglicher Vorhersagen durch Ausschluss von
Ersatzmodell-Ausgangsgrofsen, die grundlegende physikalische Prinzipien verlet-

zen, zu verkleinern.

Die vorliegende Dissertation proponiert ein voll probabilistisches Machine Lear-
ning Framework zur Ersatzmodellierung von Stromungsproblemen in zufdlligen
heterogenen Medien, das in Einklang mit den obigen Uberlegungen ist. Es besteht
aus einer dreikomponentigen Kodierer-Dekodierer-Struktur, die zundchst mittels
einer kleinen Menge von Eigenschaftsfunktionen, die automatisch durch sparsity-
erzeugende a priori Modelle ausgewéhlt werden, eine niedrigdimensionale, latente,
effektive Darstellung der hochdimensionalen Eingangsgrofien (z.B. Materialeigen-
schaften) findet. Die niedrigdimensionale Darstellung dient dann als Eingangsgrofie
fiir ein numerisch viel einfacheres, grobkorniges Modell (CGM) basierend auf grobe-
ren rdumlichen Diskretisierungen und moglicherweise vereinfachten Konstitutivge-
setzen. SchliefSlich wird die Losung des CGMs benutzt um die Losung des urspriing-
lichen, detailgenauen Modells (FGM) mithilfe einer voll probabilistischen, parame-
trischen Abbildung zu rekostruieren. Dadurch ist das Modell dazu fihig, genaue,
probabilistische Vorhersagen fiir hochdimensionale Eingangsgrofien (d, 2 10 000),
aber nur wenige Trainingsdaten (N < 100) selbst unter extrapolativen Bedingungen,
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d.h., wenn die Testdaten sehr verschieden zu den Trainingsdaten sind, zu liefern.
Moderne Stochastic Variational Inference (SVI) Techniken und neueste Monte Carlo
(MC) Methoden werden wiahrend der Trainings- und Vorhersagephasen verwen-
det. Auflierdem wird eine Methode fiir automatische Anpassung der Ersatzmodell-
Komplexitdt vorgeschlagen. Die Berechnungskomplexitidt des Modells wird analy-
siert und die Vorhersageleistung wird durch einleuchtende numerische Beispiele un-
ter Beweis gestellt.
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Chapter 1

Introduction

1.1 Motivation and related work

Thanks to the persistent advances in both cost efficiency and power of high-perfor-
mance computer hardware over the last decades, it is nowadays very common for
companies or research institutions to spend huge amounts of resources into the de-
velopment of highly elaborate computer simulations of complex physical or engi-
neering systems. Nevertheless, due to superlinear complexity scaling of most com-
puter codes with system size, resolution etc., there still are (and always will be) sim-
ulations which need weeks or even more to complete a single run. Doing tasks like
sensitivity analysis, (stochastic) optimization/design, uncertainty propagation, or
inverse problems, where such simulations need to be carried out a large number
of times, is then well-nigh impossible. Researchers and application engineers are
therefore eager to find a way to alleviate or circumvent this heavy computational
burden.

In the context of random heterogeneous media [1], many problems are defined by
stochastic partial differential equations (SPDEs) with, e.g., random coefficients, forc-
ing terms, boundary conditions, or geometry. The randomness in these quantities
can often be described by theoretically infinite-dimensional, spatio-temporally cor-
related random fields. Example problems include heat transfer, wave propagation,
mechanical deformation, reaction-diffusion systems — or fluid flow, which is the
paradigm of the present work. Closed-form solutions to any of the above problems
are hardly ever available and numerical approximations require discretizations that
are fine enough to sufficiently resolve all short-scale variabilities, which in turn re-
quires a high amount of computational power for every forward model evaluation.
Moreover, accurate discretization of the above mentioned random fields can lead to
very high-dimensional random vectors that play the role of uncertain input param-
eters to the expensive computer simulation defined by a fine scale numerical solver
of the PDE. Due to its fine scale nature, the expensive computer model that is to be
replaced by the surrogate is referred to as the fine grained model (FGM) for the rest of
this work. Given the uncertainties in the high-dimensional input parameters, one is



2 Chapter 1. Introduction

often interested in how these uncertainties translate to uncertainties in the FGM out-
put —a typical expression of the forward uncertainty quantification (UQ) or uncertainty
propagation (UP) problem.

UQ is a matter of particular interest not only in the research area of random hetero-
geneous media. In general, it is the quantitative reasoning that aims to estimate the
deviation of predictions of a model to the actual ground truth [2—4]. In more mathe-
matical terms, a model can be thought of as a function 4 : A — U, i.e., every input
A € A is mapped to an output u = #(A), u € U. The function #(A) is not necessar-
ily given in an analytical form, but pointwise evaluation is always possible by, for
example, carrying out a physical experiment or running a computer code just as the
expensive FGM simulations mentioned above. Uncertainties in # may either arise
due to the fact that the model is an inaccurate description of the underlying process
(model form uncertainty), or because the input parameters A are uncertain them-
selves (parametric uncertainty), either due to an inherent random process (aleatoric)
or due to lack of knowledge (epistemic). Formally, uncertain model inputs A are
associated with a probability space (A, S, p) where S is a set of events over A (o-
algebra) and p is a probability measure assigned to the events. Typical UQ problems
can roughly be assigned into two different classes: The forward UQ or UP problem
[5], or the inverse (UQ) problem [6, 7]. Inverse problems can most generally be de-
scribed as the task of finding the most plausible distribution of input parameters A

that leads to a certain set of response samples D,, = {u(”) }:j_l. Such problems typ-
ically arise in settings where the quantity of interest can not be measured directly,
but only estimated from observations of a different quantity. Fields where inverse
problems play an important role include geophysics [8], imaging [9], heat transfer
[10], source identification [11] or biomechanical applications [12, 13].

The goodness of solution to any forward and inverse UQ problem is sensitively de-
pendent on the number of data, i.e., the number of model evaluations u = #(A) that
are available. However, any forward model evaluation typically entails a certain
amount of hindering cost, such as CPU time or required memory. Under such con-
ditions, it is a popular approach to construct much cheaper, although less accurate
surrogate models based on usually only a small number of forward evaluations of
the original, expensive computer simulation. The surrogate model may then be used
to carry out any UQ or, in general, any other multi-query or performance critical task
at the expense of inaccuracies in the final results.

Surrogate models that are popular in the context of UQ and the solution of SPDEs
are, e.g., (generalized) Polynomial Chaos expansions (gPC) [14-16] (see Section 4.5.3)
which have a quite long-standing history [17] and were successfully applied to, e.g.,
sensitivity analysis [18, 19], uncertainty propagation [20, 21], or inverse problems

[22, 23]. However, despite substantial progress in (sparse grid) stochastic collocation
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methods [24-27], these methods typically fall short for problems where the stochas-
tic input dimension d, is large, since the gPC coefficients are computed using col-
location schemes of one-dimensional Gaussian quadrature points. The number of
coefficients/collocation points then naturally blows up exponentially due to tensor
product rules, and so does the number of required forward model evaluations to
find the respective coefficients. The most popular remedy to this issue in the context
of gPC is dimension reduction via truncated Karhunen-Loeve expansions/PCA of
the high-dimensional stochastic inputs [14, 28]. On the other side, the input parame-
ters of problems in random heterogeneous media are often very short-ranged, highly
heterogeneous random fields for which PCA variances decay slowly, in which case
the inputs remain considerably high-dimensional even after dimension reduction.
Apart from their poor scaling to high dimensions, standard gPC formulations are
non-Bayesian, i.e., they only yield non-probabilistic point estimates for their expan-
sion coefficients, thereby restraining the associated uncertainties due to limited data.

A further, widely used surrogate modeling technique very popular for the solution
of SPDEs is given by the reduced-basis (RB) method [29-32]. The reduced-basis
method (see Section 4.5.4) is traditionally separated into offline and online stages,
which is the community wording for data generation + model training (offline stage)
and prediction phases (online stage). In the offline phase, a set of FGM output vec-
tors, called snapshots, is generated and the principal output directions are found ei-
ther by the so-called greedy algorithm [33, 34] or a singular value decomposition
(SVD) [31, 32] of the snapshot matrix. Solutions are then sought in the space spanned
by the L principal output directions. The coefficients of the reduced solution are
found either by a Galerkin projection [35-38] or, as in very recent approaches, by
solving a regression problem with, e.g., Gaussian Processes [39] or deep learning
models [40, 41]. In the RB method, however, Galerkin projections often only offer
limited computational efficiency benefits and may suffer from numerical instabil-
ities [42, 43]. On the other side, regression-based approaches using standard ma-
chine learning models generally struggle with the high input dimensions given by
discretized short-scaled random fields. A further flaw is that the reduced basis and
the associated coefficients are learned separately in two distinct computations, but
should be found jointly as part of a single model as is done, e.g., in deep image-to-
image regression problems [44-46].

A more recent strategy is to view surrogate modeling of complex physical systems/
SPDEs directly as supervised machine learning tasks that can be solved by stan-
dard tools such as, e.g., Gaussian process (GP) regression [47, 48] (see Section 4.5.2).
Roughly speaking, Gaussian processes can be viewed as the generalization of finite-
dimensional multivariate normal distributions to the infinite-dimensional space of
continuous functions. Just as for Gaussian distributions, conditional densities can
be found in closed form and be used to predict unobserved variables from observed
data. Due to their analytical tractability and their built-in uncertainty quantification,
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GP regression models enjoy great popularity among engineers and applied mathe-
maticians and have been widely used as surrogates for problems in random media,
e.g., for porous medium flow [49], structural mechanics [50], source identification
[11], or other purely academic examples [51]. A further attractive feature of super-
vised learning with Gaussian processes is the possibility to seamlessly merge multi-
fidelity data by learning cross-correlations of the variable fidelity models [52-60].
Despite recent progress in automated dimension reduction [61] and leveraging un-
derlying physics directly in the GP covariance function [62], poor scaling behavior
with stochastic input dimension and their O(N?) complexity with training data N

are major drawbacks of GPs for regression of high-dimensional systems.

Particularly driven by the outstanding progress of deep learning methods [63, 64] in
computer vision [65-67] and generative modeling [68, 69] and the free availability
of sophisticated software packages [70, 71], artificial neural networks (ANNSs, see
Section 4.5.1) have found their way into surrogate modeling of complex physical
systems simulations [46, 72-76] as well. The most basic version of an ANN, the mul-
tilayer perceptron or feed-forward neural network [77, 78], is a mathematical function
of alternating linear combination and nonlinear activation of excitations of nodes
that are arranged in layers, constructed with the basic idea to imitate biological
neural networks. Over the last decades, many new kinds of different "layers" and
network architectures have been developed, such as convolutional layers [65] for
shift-invariant inputs (e.g., image data), recurrent layers/networks [79] with an in-
ternal state/memory for use with sequential inputs, or pooling and dropout layers
[80] for dimension reduction and regularization. The common characteristic of deep
learning models is their stacked structure of layers and activations. Their theoreti-
cally unlimited model complexity makes them particularly well suited for problems
with massive datasets, which is another reason for their increasing popularity. On
the other side, surrogate modeling is by definition a Small Data problem, a regime
where excessive model complexity of deep learning models can be hindering. A
very promising approach to alleviate the issue of small data and overly large model
complexity in surrogate modeling of PDE systems is to augment the loss/likelihood
function by the PDE residual, thereby obtaining what is called a "physics-informed"
or "physics constrained" neural network [62, 81-85]. In [73, 86], this approach is
taken to the extreme case of no supervised data at all, with a loss function that is
only based on the governing equations of the physical problem. Although these ap-
proaches are encouraging, there are still some unresolved issues for deep learning
methods in surrogate modeling of PDE-based problems. For physics-informed neu-
ral networks, much of the computational burden is transferred from data generation
to repeated evaluation of the PDE residual. For ANNs in general, model training can
become very intricate because the loss function is typically not a convex function of
the neural network parameters, and gradients easily run into the risk to become van-
ishingly small, which may severely slow down model training. Moreover, there is
still no automated method to find the optimal network architecture (i.e., number,
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size, type of layers, etc.) for a given learning problem.

In conclusion, all of the currently most popular surrogate modeling techniques have
their own troubles and drawbacks when applied in the Tall Data (high dimensions,
few data) regime prevailing in SPDE-based problems in random heterogeneous me-
dia. Some models are lacking fully probabilistic formulations (RB methods, gPC),
are often hard to train (ANNSs, GP regression), or may not offer a very large com-
putational benefit (RB methods). But most notably, however, is the fact that most of
the above models do not perform sufficiently well given high-dimensional stochastic
inputs (gPC, GP regression, vanilla ANNs). The main reason for this is that direct in-
tegration of available a priori knowledge about the underlying physical system into
these models is difficult or not even possible (except for physics-informed ANNSs).

The basic motivation behind this thesis is therefore to develop a machine learning
framework for surrogate modeling of numerical PDE solvers for problems in ran-
dom heterogeneous media that yields accurate predictions even when

e the input dimension is high, i.e., when we are faced with the "curse of dimen-
sionality" —in the problems of this work, we consider input data corresponding
to discretized material properties/microstructures of effective dimensionality
d) 2 10 000; and

e the number of training data N is small, i.e., the number of fine grained model
(FGM) input/output pairs that can virtually be afforded to train the machine

learning surrogate is not more than N < 100 samples.

To achieve optimal model performance even under this Tall Data setting, it is vi-
tal (a) to extract only a small number of microstructural features from the high-
dimensional, random inputs that contain a maximum amount of information about
the FGM response; and (b) to set up a surrogate model architecture that retains as
much structure as possible from the underlying FGM problem [87]. While point (a)
aims for effective reduction of the high stochastic input dimension, point (b) should
exclude surrogate model outputs that clash with fundamental laws of physics, there-
by reducing the space of possible surrogate model predictions to physically plausible

solutions only.

One way to incorporate information about the underlying physics of the FGM is to
make use of lower fidelity, reduced-order models (ROMSs) that approximate the orig-
inal, fine-grained system and are based on, e.g., coarser spatio-temporal discretiza-
tions. The standard approach to treat such multi-fidelity sources of information is
to generate additional data of input/output pairs of the cheap-to-evaluate, lower fi-
delity ROM(s) and to merge the information content of both high- and low-fidelity
data in a suitable machine learning model, as is done in, e.g., the multi-fidelity Gaus-
sian process[52-60]. Storing and manipulating large datasets of high-dimensional,

low-fidelity data may, however, become time and memory consuming as well — let
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alone the O(N?) complexity scaling of Gaussian processes for cases where the num-
ber of low-fidelity samples is large.

Rather than treating the information from low-fidelity models as additional training
data, another approach is to encase low-fidelity solvers directly into the machine
learning based surrogate model, learning a direct mapping between low- and high-
fidelity outputs (and potentially inputs as well). This approach is advocated in, e.g.,
[88, 89]. In this setting, it is of crucial importance that the low-fidelity model(s) are
cheap to evaluate, because they need to be called in the online stage every time a new
prediction is queried. To estimate the surrogate model uncertainty, the low-fidelity
model needs to be evaluated even multiple times to estimate the output statistics
given only a single original, high-fidelity input.

In the solution of PDEs with finite elements (FE, see Section 3.1), it is a well known
fact that solvers operating on coarser spatio-temporal discretizations provide ap-
proximate solutions at a lower computational cost — simply because the system of
algebraic equations to be solved is smaller. Since the numerical complexity of find-
ing the solution to a generic linear system of equations may scale with the num-
ber of equations as (’)(Ngqns), the computational effort to solve a much coarser dis-
cretized FE model is strikingly smaller. Moreover, it is not even necessary that the
low-fidelity model shows only small deviations from the high-fidelity solver — the
only necessity is a statistical dependence that can be learned by the machine learning

model.

Complementary to the computational simplification achieved by coarser spatio-tem-
poral discretizations, physical processes often exhibit less complex constitutive be-
havior when investigated on larger length and time scales. This can be exploited
to construct coarse-grained low-fidelity solvers of even higher computational effi-
ciency. On the other side, one needs to bear in mind that multi-fidelity codes based
on multi-scale considerations often require dissimilar descriptions of the respective
input parameters. In our use case of flow problems in random heterogeneous me-
dia, it is by no means clear how to describe the input material property random field
(permeability) on the coarse scale given a certain fine scale microstructure consisting
of a binary material with permeable fluid and impermeable solid spaces. In general,
no closed-form solutions to this coarse-graining problem exist and approximation
procedures are developed in the field of homogenization theory [1, 90-92]. More-
over, random media are typically described only up to a stochastic level. Also, the
(non-analytical) microstructure-to-effective property mapping is non-deterministic
by nature, requiring a fully probabilistic treatment of the problem. A data-driven,
numerical approach to the homogenization problem appears viable and can be seen
as a by-product of the surrogate modeling framework suggested in this thesis.
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1.2 Contribution

In consequence of the above considerations, the present work advocates a surrogate
modeling framework for problems in random heterogeneous media which at its core
unit uses a low-fidelity coarse-grained model (CGM) based on coarser spatial dis-
cretizations and potentially simplified governing equations. The CGM serves as a
stencil that retains the physical characteristics of the expensive fine-grained model
(FGM) and automatically excludes surrogate model predictions that are not in accor-
dance with the coarse-scale behavior of the FGM problem. In the numerical exam-
ples presented in this work, the FGM itself corresponds to a fine-scale finite element
simulation of fluid flow in random heterogeneous media. The parametric input to
the FGM is a high-dimensional, fine scale description of the microstructure of the
random medium. The output is given by the fine scale pressure field response.

The inputs to the CGM correspond to a coarse-grained, effective material property
field of much lower dimension than the initial, fine-scale description of the material
microstructure. The coarse-graining procedure is carried out in a fully probabilistic
way and consists of a Gaussian linear model with a large library of basis/feature
functions defined in or inspired by the rich literature on random heterogeneous me-
dia [1], enriched with quantities from image analysis [93], fluid dynamics [94-97]
and other physics [98], or autoencoder representations [99-101]. Sparsity prior mod-
els are applied to pick out only a small number of feature functions that appear most
predictive for reconstruction of the FGM output. As the effective material property
field is treated as a low-dimensional latent variable, these sparsity priors need to be

specifically adapted for application in such latent variable models.

The CGM equation system is assembled and solved efficiently by affine decomposi-
tions [31] and the application of a sparse banded solver [102]. Finally, the original
FGM response is predicted by a Gaussian linear projection that takes into account
the spatial nature of the problem defined by the fact that both CGM and FGM re-
sponses correspond to spatial fields. Predictions are fully probabilistic, that means
that the surrogate model is capable to quantify the uncertainty originating from both
limited training data as well as finite model complexity, i.e., information loss during

the coarse-graining process.

A fully Bayesian approach is pursued (Section 5.3.4) such that no hyperparameters
are left to be tuned by the user. Efficient training and prediction algorithms are de-
veloped that make use of modern Monte Carlo or Variational Inference techniques to
compute latent variable expected values. These are based on first order derivatives
of the CGM that are found by solving the adjoint problem. Both coarse-graining/
dimension reduction and surrogate modeling/reconstruction steps are trained in a
joint fashion, such that the encoded, low-dimensional, latent representation of the
stochastic fine-grained inputs contains a maximum amount of information for re-

construction of the FGM response, and not for reconstruction of the input itself, as is
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the case for classical dimension reduction methods.

The paradigmatic applications used in this work are flow problems in random het-
erogeneous media. One set of examples investigates Darcy flow FGM data in binary
random permeability fields drawn from a level-cut Gaussian process. Another set
of examples examines an FGM given by a Stokes flow FEM simulation in random
porous media, where the microstructure is described by a unit square domain perfo-
rated by polydisperse spherical exclusions. In all examples, the CGM is based on a
Darcy flow FEM simulation discretized on much coarser grids than the fine-grained
models, motivated by the limiting case of Stokes/Darcy equivalence for vanishing
characteristic length scales of the fine scale microstructure.

With the presented surrogate modeling approach, a speedup up to a factor of ~
15 000 is achieved with very high predictive accuracy (coefficient of determination
R? > 0.9) for considerably small FGM datasets of only N < 100. The homogeniza-
tion problem, i.e., finding effective material properties to a given microstructure, is
solved in a numerical way and (approximate) predictive posteriors are computed.
Moreover, it is possible to imprint information from boundary conditions or forcing
terms on the CGM. This makes the model much more apt than standard regres-
sion approaches (e.g., ANNs or GPs) under extrapolative conditions, i.e., when the
test data are very different to the training data due to variation of boundary condi-
tions/forcing terms. A refinement procedure is suggested to increase model com-

plexity in an optimal way.
The findings of this work have been published in
C. Grigo, P-S. Koutsourelakis:

"A physics-aware, probabilistic machine learning framework for coarse-graining high-di-
mensional systems in the Small Data regime",
Elsevier Journal of Computational Physics 2019, Volume 397, 108842

C. Grigo, P-S. Koutsourelakis:

"Bayesian Model and Dimension Reduction for Uncertainty Propagation: Applications in
Random Media",
SIAM/ASA Journal on Uncertainty Quantification 2019 7:1, 292-323

C. Grigo, P-S. Koutsourelakis:

"A data-driven model order reduction approach for Stokes flow through random porous
media",
Proc. Appl. Math. Mech. 2018, 18: e201800314

C. Grigo, P-5. Koutsourelakis:

"Probabilistic reduced-order modeling for stochastic partial differential equations”,
Eccomas Proceedia UNCECOMP (2017) 111-129


https://www.sciencedirect.com/science/article/pii/S0021999119305261?dgcid=coauthor
https://www.sciencedirect.com/science/article/pii/S0021999119305261?dgcid=coauthor
https://epubs.siam.org/doi/abs/10.1137/17M1155867
https://epubs.siam.org/doi/abs/10.1137/17M1155867
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https://onlinelibrary.wiley.com/doi/abs/10.1002/pamm.201800314
https://www.eccomasproceedia.org/conferences/thematic-conferences/uncecomp-2017/5356

1.3. Outline 9

1.3 OQOutline

This thesis starts with a recapitulation of all the theory and methods that are nec-
essary for the understanding of the proposed physics-aware surrogate modeling
framework and its application to the paradigmatic problem of flow through ran-
dom heterogeneous media. The governing equations that are most commonly used
to describe fluid flow through random media, namely Stokes and Darcy flow, are
introduced in Chapter 2 together with a description of how realistic random binary
microstructures can be generated /reconstructed by computer simulation.

Subsequently, Chapter 3 gives a short introduction to the notion of stochastic partial
differential equations (SPDEs) and the primary technique to the numerical solution of
partial differential equations, namely the finite element method (FEM).

Next, Chapter 4 contains a zero-base introduction to probability theory, machine
learning, and uncertainty quantification starting from linear regression and Bayes’
law. The chapter gives a thorough description of the all methods that are used in the
proposed physics-aware machine learning framework such as sparsity priors, effi-
cient Monte Carlo techniques, Variational Inference, and gradient-based stochastic
optimization. Moreover, a summary of the most important surrogate modeling ap-
proaches to the solution of SPDEs that are in direct competition with the proposed
method is given together with short analyses of the respective advantages and dis-
advantages.

Chapter 5 represents the core element of this thesis and contains an in-depth de-
scription of the suggested physics-aware machine learning framework for high-
dimensional systems. An outline of the model architecture is given, the prior mod-
els that have been used are derived and efficient training algorithms are presented.
Moreover, an algorithm to generate predictive samples is showcased, a numeri-
cal complexity analysis for both training and prediction stages is performed and

a method to automatic adjustment of model complexity is suggested.

The numerical experiments published in [87, 103, 104] are presented in Chapter 6.
These contain examples where the coarse-grained model (CGM) is based on both
identical (Section 6.1) and simplified (Section 6.2) governing equations compared to
the fine grained model (FGM) data. In particular, validation examples are carried
out to reproduce closed-form solutions, the predictive performance is evaluated in
dependence of the number of training data and the coarse-grained model complex-
ity, effective material parameters are showcased and extrapolative capabilities are
given proof by using data based on different boundary conditions. Moreover, a sim-
ple uncertainty propagation problem indicates the trivial coupling of the proposed
surrogate to any kind of multi-query applications.

Chapter 7 concludes this work with a review of the main achievements of this thesis
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and presents a list of extensions and research directions that are worth to be investi-
gated in the future.



11

Chapter 2

Flow through random
heterogeneous media

As noted in the previous chapter, the paradigmatic application for the proposed sur-
rogate modeling framework is given by flow problems in random heterogeneous
media. Ultimately, the method can be contemplated for many other problems as
well, such as, e.g., solving Maxwell’s equations in random permittivity fields [105],
the Helmholtz equation with stochastic source fields [106, 107], or deformation prob-
lems with random material elasticity [108]. However, flow problems in random
media, particularly those based on the Poisson equation describing Darcy flow, are
among the most popular choices for trying and testing new surrogate modeling or
uncertainty quantification methods (see, e.g., [20, 31, 46, 55, 72, 109]) and are there-
fore investigated also in this work. For comprehension of the proposed surrogate
modeling framework, the following two chapters are not absolutely mandatory to

understand.

Flow through random heterogeneous media describes the behavior of fluids when
passing through a body with highly varying material properties on short length
scales £y, as for example in a sponge, a porous rock, or a sandy soil. As depicted
in Figure 2.1, the substructure length scale ¢ ris much smaller than the size L = 1
of the domain Q) = [0, 1]> which is representative for the size of a typical engineer-
ing component. In random porous media, flow velocities V are slow so that viscous
forces are predominant compared to inertial forces, leading to low Reynolds num-
bers _
Re = M <1, (2.1)
H
defining the so-called creeping flow regime, where p denotes the fluid density, | V| the
volume averaged absolute fluid velocity and yu is the dynamic fluid viscosity.

Depending on the length scales, the exact material properties, the desired accuracy
and the available computational resources, flow through random media is modeled
using different constitutive assumptions which will be discussed in the subsequent
sections.
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Fint

FIGURE 2.1: Sample of a porous medium microstructure with non-

overlapping, randomly distributed spherical exclusions (black cir-

cles). Fluid flow happens in the pore space () (white area). The left

side depicts a whole microstructure on a unit square domain, whereas

the right side is zoomed in for clarity of notation. Picture taken from
[87].

The most general form for the equations of motion of an incompressible Newtonian
fluid are the famous Navier-Stokes equations

0 (aatv+ V. vxv> =~V P+ uViV +pf for x e Qy, (2.2a)

V- V=0 for x€Qy, (2.2b)

where () is the fluid domain (see Figure 2.1), P is the fluid pressure field and f is an
external weight force. Except for a few isolated cases, the nonlinear Navier-Stokes
equations are generally not solvable in closed form and numerical simulations can
become extremely cumbersome, especially for turbulent systems. It is thus impera-
tive to find suitable simplifications that enable the application of efficient numerical
solvers whilst accurately describing the physics of the simulated experiment. In the
creeping flow regime, such simplifications are given by Stokes and Darcy flow which

are introduced in the following.

2.1 Stokes flow

The equations of motion pertaining to Stokes flow, the so-called Stokes equations,
can be derived from the Navier-Stokes equations for an incompressible Newtonian
fluid given by Equation (2.2) assuming small Reynolds numbers Re < 1. To do so,

force
volume

observe that every term of Equation (2.2a) has the units of a body force, i.e.,

mass
length?-time?

problem but only depends on the Reynolds number Re, Equation (2.2a) is multiplied

. To obtain an equation that is independent of the physical scale of the
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L . . . .-
by pT'£2 and we introduce the dimensionless quantities

2
Vo P PG 0 e
V=g P=up F=wh w=va V==4Vx @9
to get
iV/+V/-V/V/:—iv’P’Jriv’ZVUrif’ for x€Q (2.4a)
ot’ x Re * Re * Re fr '

Ve -V =0 for x <€ Qy. (2.4b)

From Equation (2.4a) it is obvious that for Re < 1, the left hand side can be ne-
glected and, dropping the primes and multiplying by the Reynolds number Re, we
obtain the Stokes equations of momentum and mass conservation,

VP -V2V=Ff for x e Qy, (2.5a)
Vi V=0 for x € Qy, (2.5b)

which form an appropriate constitutive law for the creeping flow regime Re < 1.
Together with a proper set of boundary conditions

V =V for xeTly, (2.5¢)
t = (ViVye — P I)n for xeTp, (2.5d)

where t is a Cauchy traction vector and n the unit outward normal, Equation (2.5)
forms a linear boundary value problem which can be solved by a standard finite

element approach discussed in Section 3.1.2.

Stokes flow through random porous media is modeled assuming a porous domain
O = Q¢ U Qs composed of the two disjoint sets 0y N ()s = &, where ()¢ denotes the
pore or fluid space and (); defines the impermeable solid phase of the material. The
equations of motion given by Equation (2.5) are only defined on (3y which needs to
be topologically fully connected to yield a unique solution.

In 2D, a fully connected pore space ()¢ can be realized, for instance, by non-overlap-
ping polydisperse spherical exclusions (Section 2.4.2), as indicated by the black dots
in Figure 2.1. On the internal solid-fluid interface I';,;, boundary conditions need to
be specified. The most common choice is the no-slip condition

V=0 for x €T, (2.5e)

whereas the external boundary I'ext = 002 = 9} f\l"int is typically split into a part I'y
with essential boundary conditions where the fluid velocity is prescribed (see Equa-
tion (2.5¢)) and a natural part I'p = Text\I'v, T'v N Tp = @ where surface tractions

t are predefined (Equation (2.5d)). Samples for different random porous media and
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x10°

Pressure P

o

velocity norm ||V||

0

FIGURE 2.2: Pressure field P(x) and velocity norm ||V (x)|| for Stokes
flow through different random porous media with boundary condi-
tions t(x) = 0atx = 0 and Vi (x) = (1 1)T atoQ\{0}.

the boundary conditions #(x) = 0 atI'p = 0 and V,.(x) = (1) at I'v = 9Q\I'p are
depicted in Figure 2.2.

2.2 Darcy flow

Darcy’s law for fluid flow through porous media was first formulated by Henry
Darcy as an empirical law found by experiments that were carried out by Darcy in
the context of the creation of an irrigation system for the city of Dijon in 1856 [110].
It is virtually identical to Fourier’s law [111] of thermal conduction, Ohm’s law of
electrical resistance [112] and Fick’s law of particle diffusion [113].

Darcy’s law states that the flux density, i.e., the volumetric fluid flow per unit area

length
time

and time V (which has the units of a velocity ) is proportional to the negative

pressure gradient!

_ K _
V= —;VxP for x€Q (2.6a)

where K is a second order tensor called permeability. To ensure that fluid is always
flowing from high to low pressure regions, it is indispensable that K is positive defi-
nite and that Equation (2.6a) includes a minus sign. Additionally to Darcy’s law, the

incompressibility condition holds

Ve V=0 for x€Q (2.6b)

IThe bar over both quantities will become clear in the following subsection.
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and together with boundary conditions of the form

V-n=V,-n for xeTy, (2.60)
P = Py for xeTIp (2.6d)

defines an elliptic boundary value problem which is probably the most studied sys-
tem in the context of finite elements and stochastic partial differential equations
(SPDEs).

Darcy flow through random porous media is modeled assuming a location depen-
dent permeability tensor K = K(x) that can either be continuously varying over the
domain () (if some local homogenization of the material has been performed before)

or it can be binary of the form
K(x) = Ksls(x) + K¢l¢(x) (2.7)

where 1,11 are the indicator functions for the solid and fluid phases, respectively,
and K, Ky are the corresponding permeability tensors.

Modeling Darcy flow assuming a binary diffusivity field as defined above may be in-
accurate because, as was shown theoretically in [114], Darcy flow arises from Stokes
flow through porous media by homogenization over a suitably sized representative
volume element (RVE). If the size ¢ of the RVE, i.e., the homogenization radius, is
notably smaller than the size L = 1 of the domain ()/the engineering component,
then flow through porous media is accurately modeled by Darcy flow assuming a
continuous permeability field K(x) that is varying on a length scale ry.

Nevertheless, finding a viable surrogate model as presented in Section 5 for the ellip-
tic PDE defined by Equation (2.6) with highly varying, binary or continuous perme-
ability field K(x) may still be helpful: As mentioned at the beginning of this section,
exactly the same PDE forms the constitutive law for a variety of physical phenom-
ena, and for some of them (e.g., for thermal conduction) the description of a highly
varying, binary coefficient field K(x) is much closer to the true physical picture than

for flow through porous media.

2.3 The Stokes to Darcy limit’

Darcy’s law for flow through random porous media was found empirically in [110]
and it took more than a century to find a theoretical derivation from Navier-Stokes
equations by homogenization, first for stationary flow in periodic microstructures
[115, 116], connected 3D solid phase matrix [117], non-stationary flow [118] and
non-periodic random media [114].

2This section is based on [87], Section 2.2.
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Permeability K

Pressure P

0

FIGURE 2.3: Binary, isotropic permeability field K(x) = (1 -1s(x) +

5001¢(x))I (top row) and pressure field P(x) with boundary condi-

tions Py, = 0 at Tp = {0} and Vj, = (800 —2000x 1200 — 2000y) at
I['y =00\{0}.

In homogenization theory, a boundary value problem is found on an RVE [119-121]
of linear size ¢ sufficiently larger than the microstrucutral length scale £;. Moreover,
the volume-averaged quantities, i.e., intrinsic phase averages

p— 1/ P(x)dV, V= 1/ V(x)dV (2.8)
|Qf,RVE| Qf RVE ‘Qf,RVE’ Qf RrvE

with Q¢ rve| the volume of the fluid part of the RVE, should exhibit sufficient varia-
tion over the domain (2, which means that the linear domain size L needs to be large
compared to the RVE size ry. To sum up, Stokes flow through random porous media
can be described by the Darcy constitutive equations Equation (2.6) in the limit of

Ef Lrg KL (2.9)

which can be relaxed, according to [114], to the weaker conditions

1o 2 >
(f) <1, 19254 (2.10)

for correct assumption of Darcy’s equations of motion.

Although the Stokes/Darcy equivalence is theoretically proven in the case of infi-
nite scale separation as defined by Equation (2.9), determining an accurate, effective
permeability field K(x) that goes beyond the scope of rough approximation formu-
las [95, 96] continues to be a substantial computational task usually approached by
solving an RVE subscale problem [119].

It is noted that, even when the scale separation limit Equation (2.9) does not hold,
the Darcy equations of motion may still be used as a stencil of a machine learning
model as an accurate surrogate for fine-scale Stokes flow simulations. As shown in
the experiments of Section 6.2, a potential mismatch in background physics of such
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a stencil to the data can be compensated to a certain extent by parametric model
adaptivity. Moreover, a fully probabilistic surrogate, as developed in this work, will
directly indicate an inexpedient model by excessively broad /uninformative predic-

tive distributions.

2.4 Reconstruction of random microstructures

The reconstruction of microstructural samples from limited material information
such as lower-order correlation functions is a field of ongoing research (see, e.g.,
[122-124]) and is therefore only discussed up to the parts necessary for the numeri-
cal experiments presented in Section 6. A central technique is the generation of 2D
Gaussian random field realizations, i.e., random fields with prescribed second order
correlation function.

2.4.1 Generation of 2D Gaussian random field realizations*

For the generation of approximate 2D Gaussian process samples [125] (see also Sec-
tion 4.5.2 for an introduction to Gaussian process regression) with stationary covari-
ance functions, i.e., covariance functions of the form k(x,x') = k(x — x’) = k(r), we

use

Theorem 1 (S. Bochner, 1959 [126], quoted from [127]) “A complex-valued function k
on R? is the covariance function of a weakly stationary mean square continuous complex-
valued random process on RY if and only if it can be represented as

k(r) = /R s (w)da, 2.11)

where s(w)dw is a positive finite measure.”

which has been proven in [128]. This means that the covariance function of every
stationary Gaussian process can be written as the spectral decomposition given by
Equation (2.11), where

plew) = s(w) =~ [ kr)ear (2.12)
is a valid probability density with & = [ s(w)dw. This can be written as

k(x—x')=a <e_in(x_xl)>p(w) =a <cos(wT(x — x’))> (2.13)

p(w)

“This section is based on [104], Appendix A.



18 Chapter 2. Flow through random heterogeneous media

Kernel function k(r) o Spectral density p(w) Comments
—v 1 v — +l
12_1(1/) ‘/%'7” VIV \/%T/r % (%47‘[2102 (v2) Matérn kernel
sin(2rr/1) U(w| —27t/1,27/1)
in(2mr /1) 2 - wl Loy Jx+1x<0,
(sm e ) trl(g’—ﬂ) tI'l(X) = {_x t1x=>0
cos(2mr/1) F((w—1"Y +6(w+171))
2 24+r2/1 LT, st
h( TN/ +13 ) U ( 2 —|—Z()2|0,27'[/l> 2D; J;: 1 SESgssel func.
2/l 1 2 of 18t kind

TABLE 2.1: Spectral densities for some 2D covariance functions
k(r). The Matérn kernel contains the Ornstein-Uhlenbeck process

(k(r) o« e~I"l/ly for v = 1/2 and the squared exponential kernel
(k(r) o e /1y for v — 0.

where it was used that both k(x — x") and p(w) are real functions. We can write that

kix —x') =« <cos(wa +b—wly — b)>
plwb) (2.14)

= <cos(wa +b) cos(wTx’ 4 b) + sin(w’x + b) sin(w ¥’ + b)>
p(wb)

which, assuming that p(w, b) = p(w)p(b) and p(b) = U(b|0,27), simplifies to

k(x —x') = 2u <cos(wa +b) cos(w’x' + b)>
p(w,b)

_ ; T ; T,/

=2 <sm(w x+Db)sin(w’ x' + b)>p(w,b) .

(2.15)

Writing the expected value as a Monte Carlo estimate®

N

M=

114

k(x —x') =~ = cos(wlx + by,,) cos(wlx' + by, Wy, by ~ p(w,b), (2.16)
M m m p

m=1

it can be observed that this is exactly the same covariance function as for the Gaus-
sian linear model

M
g(x) =V2a/M Y yycos(whx+by),  ym~N(O1), (2.17)

m=1

i.e., approximate realizations of a Gaussian process with stationary kernel k(x — x’)
are given by Equation (2.17), where v, ~ N(0,1), by, ~ U(0,27), wy, ~ p(w). To
find p(w) = 1s(w), one needs to know the spectral density

s(w) = (2711)‘1 /k(r)ein’dr. (2.18)

The spectral densities for some popular stationary covariance kernels are summa-
rized in Table 2.1. Note that for k(r) = k;, (r1)ks,(r2), it holds that p(w) = pu, (w1) -

5The cosines can just as well be replaced by sines, see Equation (2.15).
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kj(T) ~ Ji (27r\/r'f+r§/l)

ri4ri/l
Ve Y%

k(r) o< cos(2mr/l)

—

FIGURE 2.4: Microstructural samples with expected volume fractions

|Qf| = |Qs| = 0.5 based on different covariance functions k(r). For

the first five samples, the applied length scales are /; = 0.04 in x—and

I, = 0.02 in y—direction. The last sample is isotropic with I = I} =
0.04.

Pw,(w2), which can be used to generate higher-dimensional samples from factoriz-
ing kernel functions.

To generate binary microstructures from a Gaussian process, a cutoff c.,: needs to be
defined such that

1 if g(x) > ceuts 1 if g(x) < ceuts
14(x) = ! 1s(x) = ! (2.19)

0 else, 0 else.

Given the Gaussian process variance (7; = k(0), one can relate the cutoff parameter

Ceut to the expected volume fractions ||, [Qf| =1 — |OQs] as
Ceut = UgF_1<|Qs|)/ (2.20)

where F~1(-) is the quantile function (inverse CDF) to the standard normal distri-
bution. Figure 2.4 shows microstructural samples for different covariance functions
k(r) with expected volume fractions |Q)¢| = [Qs| = 0.5.

2.4.2 Generation of microstructures with fully connected pore space ()¢

In the Stokes flow experiments that are presented in Chapter 6, it is important that
the contemplated microstructural data exhibit fully connected pore/fluid spaces ()¢
because otherwise the pressure response P(x) of the PDE Equation (2.5) may not be
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FIGURE 2.5: Typical microstructures of polydisperse spherical exclu-

sions (black, solid phase Qg”)) generated by the scheme described in

Section 2.4.2. Figure taken from [87].

unique. We therefore use microstructures with non-overlapping spherical exclusions
on the unit square domain Q) = [0, 1]2.

Needless to say, microstructures based on spherical exclusions can at most be ap-
proximations to real-world microstructural data and as such, there is no natural pro-
cess one could simulate to generate such kind of random media. The generation
process for random binary media as used in the examples in Chapter 6 is therefore
purely based on heuristics described in the following.

The simulation starts with the unit square domain Q) = [0, 1]? and successively sub-
stracts spherical subsets (i.e., exclusions) as long as they are not overlapping with
previously substracted exclusions. The first number that needs to be drawn is thus

(n)

the total number of exclusions Ny’ of microstructure n which is considered to be
random as

N ~ round [Lognormal(piex, 07)] - (2.21)

We then run over the exclusion indexi =1 : Ne(f ) of microstructure 7 and draw an

exclusion center xg:)i and radius rg:)i according to
1
R Rl pill(x) ~ S(GP(O k(¥ —))),  (222)
P n
riz,)i ~ Lognormal(yﬁn) (x), Urz), (2.23)

where %pi’jﬁ (x) is a density drawn from a Gaussian process with stationary co-

variance ky(x — x’) warped by a logistic sigmoid S(z) = 1/(1 + ¢~"?) of length scale
Isand N, = S p,(felx) (x)x is the normalization constant. The location dependent ex-

. . n . .
pected exclusion radius ;15 )(x) is also drawn from a Gaussian process

" (x) ~ GP(0,ky(x — x')) (2.24)

with stationary covariance k,(x — x’).
(n)
ex,i
with a previously inserted exclusion j < i. If no exclusion j is overlapping with

and radius r

. . n
Given an exclusion center x (X)

o i- it is checked if the exclusion i overlaps

exclusion i, exclusion i is inserted and appended to the list of exclusions A}"). If
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an overlapping exclusion is found, a new exclusion center/radius pair xéﬁ?i, rgz,)i is
drawn until the insertion is successful®. Additionally, to avoid vigorous spikes in the
Stokes flow pressure and velocity fields P(x) and V(x) due to boundary conditions,
exclusions are also rejected if they are on or too close to the domain boundary 9().
Some typical microstructures generated according to the above scheme are depicted

in Figure 2.5.

®0f course, the described rejection procedure distorts the exclusion distribution from the distribu-
tion defined by Equation (2.22)—(2.24).
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Chapter 3

Stochastic partial differential
equations and the finite element
method — numerical solution of
Stokes and Darcy flow

The main purpose of this work is the development of cheap surrogates for numer-
ical solvers of partial differential equations (PDEs) oneying uncertain input parame-
ters such as PDE coefficients, boundary conditions or domain geometry —leading to
what is known as stochastic partial differential equations (SPDEs), which are introduced

in the sequel.

Let (A, S, P) a probability space with sample space A, o-algebra S and probability
measure P : S ~ [0,1]. Let QO C RY be a d-dimensional bounded domain with
boundary d). A linear stochastic partial differential equation can generally be writ-
ten as

A(x, Mu(x,A) =s(x,A) for xeQ(A),

3.1)
B(u(x,A),A) =0 for xe€0Q(A),

where A is a linear stochastic differential operator, x € QQ(A), A € A are elements of
the physical and stochastic space, u(x,A) € H is the solution field out of a Hilbert
space ‘H defined over the domain ()(A), s(x, A) is a source term and B(u(x,A), A)
is a boundary condition operator. While the physical space (2 is assumed to have a
finite number of dimensions, i.e., dim(x) = d < oo, the stochastic input A € A may

in principle consist of infinite-dimensional random fields.

As apparent from Equation (3.1), uncertainty modeled by the stochastic input A may
be present in the differential operator A (e.g., as a random coefficient), in the source
term s, in the boundary conditions B or even in the domain geometry () leading to a
stochastic PDE response field u(x, A). For instance, in the context of Darcy-type flow
problems (see Section 2.2), a random coefficient in the differential operator A could
model a random permeability field K(x, A), a random right hand side s(x, A) would
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model a stochastic source field and random boundary conditions B(u(x, A), A) could
model randomness in the in- and outflow to the domain (). Moreover, as discussed

in Section 2.1, uncertainty may even be present in the geometry of the domain ()(A).

Solving an SPDE means being capable to do inference w.r.t. the response statistics,
i.e., to compute expected values

W) g = [ FEP@@) ) = [ FuG)sw@) - u(A)p)ir — (2)

for any generic function f(u(x)). Obviously, Equation (3.2) can be resolved to ar-

bitrary accuracy using Monte Carlo methods as introduced in Section 4.3.3, mak-
ing it the reference method for the solution of SPDEs. However, more often than
not, the (deterministic) PDE solution u(x,A) is not accessible in closed form and
numerical methods need to be applied in order to get at least approximate solutions
if(x,A) = u(x,A). One of the most prominent approaches is the finite element method
(FEM), which is introduced in Section 3.1.

The biggest brake shoe in using numerical solvers combined with Monte Carlo to
solve SPDE:s is that these solvers typically require a high amount of computational
resources for a single evaluation 7 f(x, Al ), whereas at the same time, Monte Carlo

requires many such forward solves in order to produce convergent statistics.

This is the main incentive why in the last decades, many methods have been de-
veloped to solve Equation (3.2) with as few as possible forward iterations ﬁ}”) (x) =
ir(x, A1) but simultaneously providing maximally accurate estimates of {f (1)) p(uy-
Many of these methods are based on replacing the expensive numerical simula-
tion #i¢(x, A) by a cheaper, yet inaccurate model i.(x, A) that allows to reconstruct
fir(x, \) and therefore to approximate Equation (3.2) at a fraction of the original cost.
This framework is known as surrogate- or metamodeling and some of the most impor-
tant surrogate modeling approaches that have been used for the solution of SPDEs

are presented in Section 4.5.

3.1 Numerical solution of PDEs: the finite element method

The finite element method (FEM) [129-131] is a numerical method to find approxi-
mate solutions to boundary value problems of PDEs. After recasting the PDE into a
weak or variational form, the approximate solution is searched in a finite-dimensional
Hilbert space Vrg = span <lp1(x), e PN, (x)) spanned by Ny, localized shape
functions Py (x). The result is a (typically large) set of algebraic equations which can
be solved given sufficient computational resources.

The FEM approach is discussed paradigmatically in the following for stationary
Stokes and Darcy flow, the only two PDEs that occur in this work.
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3.1.1 Darcy flow simulation

The constitutive law for Darcy flow defined by Equation (2.6) can be rephrased into
the linear elliptic PDE

V- (KVyP) = for x€Q, (3.3a)
— (KVyP) - n=Vy-n for x €Ty, (3.3b)
P =Py, for x € Tp, (3.3¢)

which is called the strong form of the boundary value problem with solution P € V
out of the solution space V.

Equivalently, one may write Equation (3.3a) and (3.3b) as

/Q w(x) (V- (KVyP))dQ = 0 Yw e W, (3.4a)

/ w(x) (KVP + Vye) - ndTy = 0 Yw € W, (3.4b)
I'y

where w € W is an arbitrary weight function out of the variation space W. Equation
(3.4) is called the weak form that corresponds to the strong form Equation (3.3) in
the sense that if P is a solution to Equation (3.3), it is also a solution to Equation
(3.4) and vice versa. However, the weak form sets less strong conditions on the
smoothness of the solution function P(x) and gives a foundation for the construction

of approximate solutions.

It is generally desirable to have the order of derivatives as low as possible in the
weak form, which is why we integrate Equation (3.4a) by parts to obtain

/a _0(x)(KVP) - ndl - /Q Vi(w(x)) - KV (P)dQ = 0. (3.5)

The finite element method discretizes the above equation by the introduction of
finite-dimensional function spaces Vrg C V and Wrg C W for both the solution P
and the weight function w.

In the Bubnov-Galerkin method, these function spaces are chosen such that
Pre(x) = u(x) 4 Poc(x), (3.6)

where Prr is the approximate finite element solution, u(x), w(x) € Wrg and Py, is
a function that satisfies the essential boundary condition Equation (3.3c) on I'p. The
crucial point of Equation (3.6) is that u(x) and w(x) are composed of the same basis
functions. Note that for the essential boundary condition to hold, it is imperative
that u(x) = 0 for x € I'p, which we enforce by choosing the function space Wrg =
span (l/;l(x), e PN (x)) s.t. this condition is fulfilled for all w € Wprg. This is
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achieved by requiring that for all shape functions ;, it is claimed that
Pi(x) =0 for xeTIp (3.7)

which changes the integration domain of the first term in Equation (3.5) to give

- /r () Vig(x) -l /Q Vi (w(x)) - KVx(P)dQ = 0. (3.8)

Plugging in the expansions

Naos Naof
u(x) = Z Milpi(x), ZU(.‘X') = Z witpi(x). (39)
i=1 i=1

of both the solution and weight functions u, w € Wrg yields an equation with Ny, f
u;’s and w;’s, respectively. Given that the weak form Equation (3.4) needs to hold
for any choice of weight function w, it must also hold for all possible choices of
w;’s. This property can be used to equate coefficients in the w;’s, resulting in Ny,
equations of Ny, ¢ solution coefficients u;. In cases where the solution function P(x)
(or equivalently, u(x)) appears only linearly in the PDE (which is the case in Darcy

flow), the equation system is linear and can be written in matrix form as
Au=F, (3.10)

where A is called the stiffness matrix, u the solution vector and F the right hand side or
force vector. The assembly of A and F requires the solution of the integrals in Equa-
tion (3.8) which may be performed by efficient numerical schemes such as Gaussian
quadrature.

Typically, the shape functions ;(x) are chosen to be localized, i.e.,
Pi(x) #0 for x € Q, Pi(x) =0 else, (3.11)

where

Nel
Q=JQ QN0 =0 Ve#l (3.12)
e=1

which generally leads to sparse stiffness matrices A and is therefore computationally
beneficial.

For the examples discussed in Chapter 6, we use square elements (), and bilinear
shape functions of the form
Pi(x) = afo) +aVx +aPx, + afu)xle (3.13)

i i

EO), al(l), al(z), aflz) are chosen such that ¢;(x;) = ¢;; with grid

vertex x;. In such a way, it is ensured that Prg(x;) = u;.

where the coefficients a
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Assuming binary materials K(x) = K1s(x) + K¢l¢(x) as defined in Equation (2.7)
where the spatial shape of the (complementary) indicator functions 1¢(x) = 1¢(x; A),
15(x) = 15(x; A) is controlled by a random parameter A, the Darcy flow equations of
motion Equation (3.3) turn into a stochastic PDE and the numerical solution vector

u(A) =AYA)FA) (3.14)

is dependent on the stochastic input vector A. A major component of this work is
to replace the above equation by a cheap to evaluate surrogate in Chapter 5 for the
purpose of uncertainty propagation [103, 104].

Gradients with respect to the random parameters A

It is often the case that one is not only interested in the (discretized) solution u(A),
but also in a quantity of interest G(u(A)) and its gradient V,G(u(A)). This can be
achieved by adding a 0 like

G(u(A)) = G(u(A)) — & (Ayuj — F) (3.15)

where ¢ is an arbitrary constant vector. The derivative w.r.t. A; then becomes

26 _ 960 o (o OR
a/\k N au] 8/\k ! g 8)\k E)Ak 316
(6. au] (%, R (3.16)
N au]- ! ! a/\k a)\k '
If ¢ is chosen such that the first term vanishes, i.e., if
I=A"1Tv,G, (3.17)
then 3G oF 9A
—_ = T -
¢ <8Ak A ”) ’ (3.18)

which allows to efficiently compute the gradient V,G. Equation (3.17) is called the
adjoint problem and its solution is of similar cost as a forward solve u = A~'F.

3.1.2 Stokes flow simulation
Given the equations of motion for Stokes flow (see Equation (2.5))

ViP - ViV =f for x€Qy,
Vi V=0 for x € Qy,
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we can establish the weak form
[ u-(vep-VEV)do, = [ u- faoy VU € WY, (3.19)
oF oF

/ (Vi V)wdQy =0 Yw € WP, (3.20)
Qy

where U and w are arbitrary weight functions out of the weight function spaces
WY, W® and dim(U) = dim(V). Again, to reduce the order of derivatives, one
may integrate the first equation by parts to get

PI —[V,V)U) - ndl Vel : [ViV] = (Vy-U)PdQs = u- fdQy, (3.21
f, (PI= VSV -dl - [ [V,U) 3 [9:V) = (V- )P0y = [ U iy, (21)
where we use the definition that [V, V];; = g—g. From Equation (3.21), it is apparent

that as boundary conditions on I' = d()¢, one either needs to specify V = Vj,. (where
the weight function is chosen to be U = 0) or the surface tractions t = (V,V — PI).

Again, the Bubnov-Galerkin approach is followed and the functions U,V € WY,
and P,w € WpE" are approximated by elements of identical finite-dimensional
Hilbert spaces WY, W%.. However, not all choices of shape functions spanning the
mixed finite element space WY. x W% are possible: the Ladyzhenskaya — Babuska-
-Brezzi compatibility condition (see, e.g., [132]) needs to be satisfied to ensure stabil-
ity. Popular methods are, e.g., the Crouzeix-Raviart element [133], the MINI element
[134], or the Taylor - Hood method [135] which is applied in this work to carry out

stationary Stokes flow simulations.

The Taylor-Hood approach ensures stability by choosing the basis functions of WY,
to be piecewise differentiable polynomials C? of order g and the basis functions of
WY to be piecewise differentiable polynomials C° of order g — 1, where we use
g = 2. Clearly, the shape functions are again localized and the discretization of
Q)f is done with an irregular triangular mesh found using Delaunay triangulation
[136]. Both mesh generation and the solution of the linear finite element system
of equations are performed using the FEniCS finite element software package [137,
138].



29

Chapter 4

Elements of probability theory and
uncertainty quantification

The purpose of this work is to develop a cheap-to-evaluate, yet sufficiently accurate
class of surrogate models for the solution of stochastic partial differential equations.
Although the proposed framework is widely applicable, we focus on the solution of

flow through random porous media problems (Chapter 2) as the primary example.

By experiment, the detailed topology of such media, described by the vector A, can
typically not be resolved in full detail. Moreover, in many engineering problems,
it is not even required to know the exact solutions (i.e., pressure and velocity fields

ul = ( 58 )) for a certain set of microstructures {A(”) }:]71, but the distribution of
solutions p(u) = p(P, V) given a probabilistic description of microstructures p(A).
This is known as the uncertainty propagation (UP) problem presented in Section 4.1. As
we will see in the experiments in Chapter 6, UP problems can be greatly accelerated

assuming fast, but slightly inaccurate predictive models ppreq(#|A, D) based on a

dataset {A(”), um }:]_1 approximating the true forward model #(A) without large
deviations from the true posterior density p(u).

The construction of surrogate models is typically a data-driven problem, where the
model architecture is given as a stencil and model parameters are adapted such that
the given data look most plausible. This is, in a manner of speaking, a (supervised)
machine learning problem, which is what we introduce in Section 4.2 including all
techniques that are needed for the model proposed in Chapter 5. Also, all the ap-
proximate inference methods required for understanding of Chapter 5 are presented
in Section 4.3.

Machine learning models are trained by optimization of the model parameters. A
popular class of optimization algorithms in machine learning is stochastic gradient
ascent (SGA), which is used later in this work and therefore introduced in Section
4.4.

Finally, Section 4.5 introduces some common types of surrogate models that have
been applied to stochastic PDEs and are therefore competing with the proposed
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framework. Pros and cons of each method are mentioned as a further motivation
for the model introduced in Chapter 5.

4.1 The uncertainty propagation problem

Computer codes, for example the numerical solution of Stokes or Darcy flow in
Equations (2.5), (2.6) by the methods discussed in Section 3.1 can be viewed as a
function

a:A— U, 4.1)

i.e., supplying an input A € A to the model will yield the response # = #(A),u €
U. In general, the function #(A) is not given in closed form but can be evaluated
pointwise by running the corresponding computer code.

Uncertainty propagation (UP) addresses the question of how the model output u is
distributed given a distribution of inputs A. This can formally be written as

p) = [ plA)p(A)dA = [ 6(u—a(d)p(2)dr. (42)

Solving the UP problem in closed form is seldom possible, but also often unneces-
sary: in many cases, it is sufficient to know expected values only, such as, for example,
the mean

() = / wp(u)du = / ud(u — a(A)) p(A)dAdu = / AAM)p(A)dA  (43)
which may be estimated with, e.g., Monte Carlo (MC, see Section 4.3.3) as

N

1
() ~ a(AM), AW~ pat), (4.4)
=1

n

It is well known that the MC error diminishes as 1/+v/N — this means that to obtain
one digit higher accuracy in (u), the number of samples N need to be increased by a
factor of 100.

However, many computer simulations of practical interest require runtimes from
hours up to several weeks to finish, so that only a few tens or hundreds of samples
A, 4(A(")) can be produced, which may be insufficient for accurate MC estimates

even if direct sampling from p(A) is possible. It is thus of primary interest to squeeze

N
as much information as possible from the dataset D = {/\(”), ﬁ(A(”))}

n=1
A vital concept for this is surrogate- or meta-modeling. Based on the data D, a surro-
gate model attempts to emulate the response surface of the forward model 7i(A), ata
typically much lower cost than evaluating 7(A) at the expense of accuracy. A prob-
abilistic surrogate in the form of a conditional density ppred(uM, ) is even capable to
quantify the loss of accuracy. In UP, it can be directly plugged in to Equation (4.2) to
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give
p) = [ Pora(ulA)p(A)id, @5)

so that the computation of expected values under p(u) does not require to solve the
forward model #(A) anymore.

The construction of a probabilistic surrogate pyreq(#|A, ) can be seen as a supervised
learning problem, which is why we give an introduction to Bayesian statistics and
machine learning in the subsequent section.

4.2 Machine learning and Bayesian statistics — an introduc-

tion

Machine learning is the science of statistical models and computer algorithms that can
be used to solve a specific problem based on prior experience rather than hard-coded
instructions. An incisive definition is given by T. M. Mitchell in [139]:

“A computer program is said to learn from experience E with respect to some
class of tasks T and performance measure P, if its performance at tasks in T, as
measured by P, improves with experience E.”

(Tom M. Mitchell, 1990)

A classic example is object recognition [64] in computer vision: The task T is to de-
cide, based on pixel values of the digitized image, if a scenery contains objects like
a cat, a car, an airplane, etc. Instead of explicitly programming decision rules (in the
sense of, e.g., "a car has four wheels", "an airplane has two wings", etc.), a machine
learning program uses a large set of previously analyzed images that have been la-

beled with, e.g., "contains a cat", "contains a car", etc. This set of previously analyzed
images, the training data, is what is meant with experience E in the above definition.

The machine learning program for the above task can be seen as a mathematical
function fp : A — u that maps the input A, i.e., the pixel values of an image, to the
output #, which is the class an image may belong to (e.g. "cat", "car", ...). In the stage
of the analysis of the training data, called the model training, some free parameters
0 of the machine learning model fp are adjusted such that a loss function, e.g., the

missclassification rate of fg on the training data, is minimized.

The performance measure P of the above definition could be the missclassification rate
of fg on a separate set of images not contained in the training data, the so-called test
dataset. As stated above, on average, P should improve with increasing number of
images in the training data.

The mathematical framework of machine learning is given by statistics and proba-
bility theory. In statistics, frequentist and Bayesian viewpoints to probability (see, e.g.,
[140]) differ in the way probability of a random parameter 6 is interpreted. While
frequentists view the probability of an event as its relative frequency in the limit
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FIGURE 4.1: Linear regression example. The true function (green line)
is f(A) = sin(A). The data points (orange dots) are generated by
adding Gaussian noise with a standard deviation of ¢ = 0.3. The lin-
ear regression model (blue line) is the maximum likelihood (ML) so-
4™ order polynomial model f (A, 0%) = Yi_ 07, A,

lution based on a
of infinite trials, Bayesians interpret it as a subjective degree of belief that reflects the
knowledge about the uncertain parameter 6. The difference in both interpretations
may seem quite subtle and can create more confusion rather than being helpful for
a deeper understanding. Nevertheless, concepts like prior and posterior probabili-
ties appear more natural from a Bayesian perspective, which is thus the viewpoint

adopted in this work.

4.2.1 Linear regression and maximum likelihood

Linear regression is one of the simplest possible tasks in the field of machine learn-
ing. It is therefore used here to explain some basic ideas and notions that will fre-

quently reoccur in the rest of this thesis.

Figure 4.1 shows some data points (orange dots) D = {A,, u,})_; generated from a

random process
uy = sin(Ay,) +0Zy, Zy ~N(0,1). (4.6)

Without knowing the underlying process given by Equation (4.6), the goal is to find
a function or, better yet, a probability distribution ppreq(u|A) that allows to predict

the outcome u of the above process given a particular input A.

Assuming Gaussian noise and that the data points are independent and identically
distributed (i.i.d.), the likelihood function is

N
L(D|o,o lj (tta] f(An, 0),07) (4.7)

where f(A,8) is the model function depending on some parameters 0 and &2 is the
model variance. The likelihood function gives the probability density to observe the
data D given the model parameters 6 = {9, ?72}. On the other hand, the likelihood
function £(D|0) can be viewed as a function of the model parameters 0 after some
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data D have been recorded. Given D, it is a reasonable strategy to maximize the
(log) likelihood function log £(D|0) w.r.t. the parameters 0

0%, 6% = argmax log £(D|6,5?)

0,02
N 1 N X X (4.8)
= argmax | —— logd* — ¢ 2 Y (un — f(An, 0))?
@,[72 2 2 =1

in order to learn of the underlying process Equation (4.6) and being able to recon-
struct it with a predictive distribution

Pprea (u|A, 0%,6%%) = N (ul (A, 0),6%). (4.9)

Assuming a linear model of the form

K
f(A,0) =Y bepr(A) (4.10)
k=1

and setting the gradients of log £ w.r.t. the model parameters 6, 5 to zero yields the
ML! solution

1, , & O
0=V, (—210g02 - 50 2n;l(un —f(An,G))2>
=V <— logff2 — %?772(11 - ‘I’é)T(” - cpé)) ’ @10

Uy
with the design matrix ®, O, = ¢(A,) and the solution vector u = < : ) . Figure
UN

4.1 depicts the ground truth sin(A) (green line) and the ML solution (blue line) of a
model f(A,8) = Y}_, k1" to the data (orange dots) given by Equation (4.6). The
grey shaded areas represent the predictive uncertainty +0-.

4.2.2 Bayesian regression and sparsity enforcing priors

Bayes’ law

As already mentioned in the previous subsection, the likelihood function £(D|6) is
a valid probability distribution (i.e., it is strictly positive and normalized) w.r.t. the
data D. It is thus possible to apply Bayes” law[141]

L(D|0)po(6) = p(6]D)p(D) = p(6,D) (4.12)

IIn the frequentist statistics literature, the maximum likelihood solution for a linear model with
Gaussian noise is often called the least squares solution, as it minimizes the squared distance of f to the
data.
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which is a direct consequence of the product rule of probabilities and the definition
of conditional distributions. In Equation (4.12), po(0) is a prior distribution, p(0|D) is
the posterior distribution and p(D) is called the evidence.

It is worth to hold on for a moment and think about what Equation (4.12) really
means: Instead of searching for a point estimate 8* that maximizes the likelihood
function, an a priori probability distribution py(0) is assigned over the model pa-
rameters 0, so that Bayes’ law can be used to find a posterior distribution

L(D|6)po(6)

pop) = =200

o L(D]0)po (6) (4.13)
that balances the a priori information encoded in py(0) and the information from
the data in £(D|0) to reflect all the knowledge we have about the parameters 6
after the data D were seen. As the model evidence p(D) does not depend on the
parameters 0, it only plays the role of a normalization constant in Equation (4.13),
but will become important in model selection tasks, see Section 4.2.3 and Section
6.2.10.

Given a model f(A, ) like, e.g., the one defined in Equation (4.10), the only thing left
to specify is the prior po(6). The prior distribution po(6) should reflect all assump-
tions that can be made on 6 before any data have been recorded. For example, it is
often possible to know a priori that certain parameters 6; are strictly positive, 6; > 0,
or limited to a certain interval, 6; € [a,b]. Both can be realized by constructing a
prior with po(68) = 0 for 6; < 0 or 6; ¢ [a, ], respectively. Another possibility is to
know a priori that, out of all parameters 6;, only a few assume nonzero values. This
can be achieved with sparsity-enforcing priors. The most popular ones are introduced

in the following subsections.

Finally, given the posterior distribution p(8|D), the predictive distribution can be
constructed as

Porea(ul) = [ p(ul, 8)p(61D)do (4.14)

with p(u|A,0) = N (u|f(A,8),5?) in the above example. Compared to the ML ver-
sion in Equation (4.9), the above predictive distribution tends to be more accurate
(dependent on the choice of the prior py, of course) as it also reflects uncertainties
within the model parameters 0.

The Gaussian prior

Gaussian priors are actually not sparsity enforcing priors as they do not drive pa-
rameters to 0 exactly. However, it is the simplest possible prior in linear models with
Gaussian noise and forms the basis of a couple of other priors discussed in later sub-
sections. In the literature, this method is also known as Ly- or Tikhonov regularization
[142], ridge regression[143] (statistics), weight decay [64] (deep learning) and several

other names.
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FIGURE 4.2: Comparison of ML linear regression (top) and a linear
regression with a zero-mean Gaussian prior with precision v = 1 on
the model parameters 8. The 11 data points (orange dots) are gen-
erated from the true function f(A) = sin(A) (green line) by adding
Gaussian noise with standard deviation o = 0.5. The model f is a 9th
order polynomial f(A) = Y7 _, 0; HAk, i.e., the ML regression passes
the data exactly, but misses to fit the underlying function. One can ob-
serve that the regularizing effect of the Gaussian prior is an effective
way to avoid overfitting. The likelihood variance 6 for the Gaussian
prior model was set to the variance of the data, & = ¢ = 0.5. and the
erTor 0preq (see Equation (4.20)) is represented with the grey shaded
areas.

Assuming a Gaussian prior is equivalent to’
po(6) = N(6]0,77'I) (4.15)

where I is the identity matrix and < a precision parameter to be defined by the user.
The log posterior log p(8|D, 62, v) for a linear model as defined by Equation (4.10)
then becomes

A A A 1 Ara
log p(0|D, 8?2, 7) o 2 0)T(u— 08) — ~v070. (4.16)

Similarly to the ML approach discussed in Section 4.2.1, a reasonable strategy is to
maximize the log posterior w.r.t. 8 to find the maximum a posteriori (MAP) estimate
0*. The log-posterior log p(8|D, 62, v) is quadratic in 8 and therefore a Gaussian as

well. The posterior mean is thus unique and identical to the posterior mode
0" = (®T® +6%q1) ' u (4.17)
and the posterior covariance L is

;= (620T® +4I)7". (4.18)

20bviously also Gaussians with non-zero mean can be applied as a prior distribution.
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FIGURE 4.3: Comparison of a regression problem using a Gaussian

(top) and a Laplacian prior (bottom) with precision parameter v = 10

on the model parameters 6. 51 data points (orange dots) are gener-

ated from the function f(A) = sin(A) (green line) by adding Gaussian

noise with ¢ = 0.2. The model function is f(A) = YX_ 6;x*. The bar

plots on the right show the posterior maximum #*. It can be observed
that * is much sparser for the Laplacian prior.

Compared to the ML approach, the Gaussian prior favours smaller euclidean norms
of 0 and is therefore regularizing the problem, i.e., it reduces model complexity and
therefore avoids overfitting. Its effect can be observed in Figure 4.2.

The predictive distribution can be found by marginalizing the model parameters 0

over the posterior

plA, D,6%7) = [ p(u]2,6,62)p(BID,6%,7)d0 = N (uljtprea (1), Torea (), (4:19)

po(A)
with the model basis functions ¢(A) = ( : ) and

¢KtA)

2 _ A2 T
Tpred(A) = 07 + @ (M) Zgp(A), (4.20)
ypred(/\) = qu(/\)é* (421)

Apart from the question how to find a suitable estimate for the likelihood variance ¢
(it depends on 6* which itself depends on §), it is nontrivial to find a suitable value
for the prior precision <. This will question be answered in the discussion of other
prior models in a later part of this section.

The Laplacian prior

Naturally, the effect of a Gaussian prior is parameter shrinkage, i.e., model parameters
0 are shifted towards zero compared to only data-based (i.e., ML) estimates. As
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the regularization term —17076 = —17(/0|> = —19 Y 0% is quadratic in 6, the
shrinkage is strong for large §; and vanishes to 1% order for §; — 0. To promote
sparsity, i.e., fx = 0 for irrelevant predictors ¢ (1), this is counter-productive: there
should be non-vanishing shrinkage for small components §; < 1 to push them to
exactly 0. On the other side, important components (i.e., f; large) should undergo
smaller shrinkage to minimize bias introduced by the prior distribution.

One approach is to generalize to priors that lead to regularization terms of the form
A 1oag 1 & 50
log po() o< —57[16llg = =57 3 16k, (4.22)
2 2 =

A A 1/ A
where ||8]|; = (Zzlf:o |9k’q)( 7 is the standard /,-norm of 0. Indeed, the smaller the

generalized norm® parameter g, the stronger the prior penalty for §; < 1 and the
weaker for 0 > 1.

For the extremal case, g = 0, the prior penalty — 1 YK o 16¢|° would equal the num-
ber of nonzero components in #*. Finding a MAP estimate §* under a prior leading
to /o regularization is the so-called best-subset selection problem. The fy-norm is not
convex and finding @ is therefore a combinatorially hard optimization problem [144].
In general, all /;-norms for g < 1 are non-convex functions, as can be seen, e.g., for

the #; /,-norm in the 3™ column of Figure 4.4.

In a linear model with Gaussian noise, the log-likelihood log £(D|8, 9?) is a concave
function in 8, see Equation (4.11). The ML estimate for 8 is therefore unique and can
be found analytically. As the (nonnegative) sum of two concave functions is a con-
cave function, the log posterior is concave if a concave prior is applied. It therefore
makes sense to search for the concave log prior that has the best shrinking properties
in the sense discussed above. This is exactly the ¢/; regularization corresponding to
a Laplacian prior

po(6) = 7 exp{—v16i}. (4.23)

As the log posterior log p(8|D) is concave, there is a unique MAP estimate * and
finding it is a concave optimization problem. In statistics literature, ¢;-regularization

is commonly known as Lasso regression [145].

A persisting intricacy using a Laplacian prior (i.e., /1-regularization) is that this prior
and hence the posterior is not a differentiable function, s.t. traditional (stochastic)
gradient ascent methods are not convergent because gradients do not vanish at the
optimum. However, several other model training methods exist, e.g., based on co-
ordinate descent [146], expectation-maximization [147] (see Section 4.3.1), or least
angle regression [148].

3For g < 1, the £4-norm does not fulfill the triangle inequality and therefore only defines a quasi-
norm.
“Under the definition that 0° = 0.
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Gaussian, {5 Laplacian, ¢, £ jp-regularization Student-t
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—

FIGURE 4.4: Top row: Different concave (Gaussian, Laplacian) and
non-concave priors ({1, Student-t).
Bottom row: The corresponding posteriors assuming a Gaussian like-
lihood of the form log £(D|6) « —3||6 — (—1, —1)T||2. The Student-
t prior is constructed via po(fy) = I N (810, v )T (vk|ao, bo)dye
where T(x|ag, by) is a Gamma distribution and ag = 0,by = 107°. Tt
can be observed in the bottom row that non-concave log priors gen-
erate local optima in the posterior.

The Student-t prior

Although several heuristics exist [149], a central question in both Gaussian and
Laplacian priors is how to assign reasonable values to the hyperparameter vy a priori.
One strategy to accommodate the uncertainty in the hyperparameter <y is to consider
it as a random variable and average w.r.t. another layer of prior distribution (i.e., a
hyperprior). In order to retain analytical tractability, a conjugate Gamma hyperprior is

applied,
bgO ,-)/(l() -1 e—bo’y

r<ﬂ0)

where T'(ap) is the gamma function® and ag, by > 0 are distribution parameters. Be-

I'(y|ao, bo) = (4.24)

ing able to get rid of the hyperprior 1, it is possible to generalize to the automatic
relevance determination (ARD) prior [150, 151] and assign distinct hyperparameters
v« for different parameters 0,

K
p(8ly) = TTN(Gkl0, 7). (4.25)
k=0

5Note that the symbol T'(ag) = fooo x"0~1e~*dx with a single argument denotes the gamma function;
the symbol I'(vy|ag, by) denotes the Gamma distribution over v with parameters ay, by.
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FIGURE 4.5: Regression problem using the Student-t prior with a9 =

by = 10719 initialized at & ~ [Ty N (6|p = 0,02 = 0.01) (top) and

6= 1,..., 1)T using the same data as in Figure 4.3. Different MAP

estimates 0* are observed for different initializations — a symptom of
multimodality.

Averaging over 7, a Student-t type prior po(8) = [T, po(f;) with

Ao\ —(a0+73)

R R biT (ag + 3) 62 2
ez/Neo,*lr Jbo)dy = 0" 27 [ py 4 K 4.26
po(6k) (k10 v )T (vk|ao, bo)dy V2T (a0) 0+ 5 (4.26)

is obtained. At first glance, it looks like the problem of specifying 7, has been re-
placed by the problem of finding good parameter values for ag, by. Looking at Equa-
tion (4.24) more closely, it can be observed that for ag, by — 0, T'(yx|ao, bo) is equal to
the noninformative Jeffreys prior [152]

1

p(7k) o T (4.27)

It is called noninformative because it is scale invariant, p(7;) « % for v} = ¢y with
k
an arbitrary positive constant c. Moreover, it is flat in log space,

S — L for 0<¢ <y <cy,
p(log ) = E)"gc”_l‘)gc’ if p(ye) = gk | PSS G0 08y
else.

Although this kind of prior looks appealing from a theoretical point of view, it is of-
ten unexpedient in practical settings because, apart from the fact that it is an improper
prior, its log is non-concave and it therefore promotes multimodality in the posterior
distribution p(8|D) [153]. This can be seen assuming a single-parameter model with
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Gaussian likelihood of the form

A 1 4
log L(0|D) « —272(9 —umr)? (4.29)
The log posterior is
R 1 5 1 62
log p(6|D) o —ﬁ(e —pmL)” — | a0+ 5 log | bo + > (4.30)
and its first derivative is
d A 1 4 1 62 - A
% log p(6|D) = —2(9 — UML) — (ﬂo + 2) bo+— ] 6 (4.31)

i.e., there are up to three roots/two potential maxima. The log Student-t prior and
the posterior using a likelihood of the form £(D|f) « —3|6 — (~1)||? are plotted
for the case of two model parameters § = (S:T ) in the fourth column of Figure 4.4.
It can be observed that local optima are induced along the coordinate axes.

Figure 4.5 shows the same regression problem as in the previous subsection, but
using a Student-t prior distribution with a9 = by = 107!0 instead of a Laplacian
prior. The posterior maximization is performed using the EM algorithm (see Section
4.3.1) as described in [147].

The relevance vector machine

Instead of putting another prior on the hyperparameters y; and average, another vi-
able strategy is to integrate over the model parameters 8 to get the marginal likelihood
or evidence

p(Dly, 02 /LDw p(0]7)d0 4.32)

and find the optimal values for 7 and the likelihood variance 62 by performing type-
II maximum likelihood or evidence approximation [154, 155]

v*, 0% = arg r{ylgl;( log p(D|y,5%). (4.33)

This is the central principle of the relevance vector machine (RVM) [153, 156, 157].

One way to solve Equation (4.33) is to apply the EM algorithm, see Section 4.3.1 for
a general introduction. Using Jensen’s inequality [158], the log evidence in Equation
(4.32) can be lower bounded as

log p(Dly,0) = log | L(DI8,#%)p(8|7)d0
(
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FIGURE 4.6: Regression problem using the relevance vector machine
and the same model f (A, 8) and data as in Figure 4.3. The right part
of the figure shows the posterior mode p4 and clearly reveals sparsity.

where (8) is an arbitrary probability distribution. The strategy of EM is to itera-
tively maximize the lower bound F in the auxiliary distribution g(#) and the param-
eters 62, . The q() that maximizes F given some parameter estimates ¢>(*), y() is

71 (0) o« L(D]8,5>)p(8]7"M)) because the inequality becomes an equality in that
case. For linear models as defined by Equation (4.10) and Gaussian noise, 4*) is a

Gaussian
99(0) = N (Bl ) (4.35)
where
-1
ry) = (a;w oTo + diag('y(t))> (4.36)
uy) = &Zl(t)zU)cpTu (4.37)

up

with the output data vector u = < : ) . In the next step, the lower bound in Equa-
UN

tion (4.34) is maximized in &2, ¢ given q(*) as above. Only keeping terms dependent

on v, the lower bound f(q(t); 7v,02) is
2 A 1¢ A2
F(q;7,0%) o (log p(017) o = 5 1 (logme =m0 ) . 438)
k=0

Setting the derivative w.r.t. 7, to zero yields the update equation

(t+1) 1

Similarly, we obtain the update equation for 62,

(b+1) _ [|u — q’}l(t) >+ Tr(CIDTZ(t)cb)

A2
o
N

(4.40)

The update equations (4.36)—(4.40) are iteratively evaluated until convergence is

A

reached. The posterior p(8|D,5%*,y*) is given by the final value of Equation (4.35)
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FIGURE 4.7: Regression problem (top) using the variational relevance

vector machine (VRVM) and the same model f(A,8) and data as in

Figure 4.3. The right part of the figure shows the posterior mode ;.

Again, the model exhibits sparsity. The bottom plot shows the evi-

dence lower bound (ELBO) F over training iterations. It can be used
to monitor convergence.

and the predictive distribution
P(“ |)\, D, ’)’*/ 6'2'*) = N(” ’Vpred ()‘)/ U;red(/\)) (4.41)

is equivalent to the findings in Equation (4.19)—(4.21).

A regression example together with the posterior mode p; is shown in Figure 4.6. It
is clearly visible that the posterior mode is sparse, i.e., that most of its components
are pruned from the model. The sparsity pattern is proven and thoroughly analyzed
in [159, 160].

The variational relevance vector machine

Instead of maximizing the evidence w.r.t. the hyperparameters v to get the point
estimate y*, the variational relevance vector machine [161, 162] (VRVM) puts a Gamma
prior on v and performs a variational mean-field approximation (see Section 4.3.4) to
find an approximate posterior g, (7).

To be precise, the prior distributions that are used in the VRVM are

p(Blre) = N (Bclo, v ), (4.42)
p(rk) = I'(7klao, bo), (4.43)
p(t) = T(t|co,do), (4.44)

where I' denotes the Gamma distribution as defined in Equation (4.24) and 7 is the

noise precision defined as T = 02
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The posterior p(8, v, T|D) is thus
A A K A
p(8,7,7ID) & L(DI8,7) [T (N (Ol0, v )T (elao, bo) ) T(xleo o). (4:45)
k=0

The variational mean field approximation attempts to find an approximate distribu-
tion q(8, v, T) to p(8, v, T|D) of the factorial form

N

q9(6,7,7) = 45(8)g5 (7)q (7). (4.46)

This is achieved by minimization of the Kullback-Leibler (KL) divergence [163, 164]

R ) R 0, )
D (q(0,%,7) || p(6,7,7D)) = [ 4(8,7,7) log Md@d'ydr. (4.47)

In Section 4.3.4, it is derived that the distribution g, (6;) that minimizes this KL-
divergence holding all other g¢,(6;),j # k fixed is

exp {(log p(6,7, 7, D)) izk}
[exp {{logp(6,7,T,D))isk } A6k

q0,(0) = (4.48)

where ( - );.; denotes expectation w.r.t. [T, g, (6x) and 6y stands for any of the
parameters 0, v, T. It is noted that gq, (6;) implicitly depends on all other q6;(0;), so
that all 4’s need to be iteratively updated until convergence.

Due to the choice of conjugate Gamma priors for the precision parameters v, T, the
approximate distributions g4(8), g, (7), 4-(7) are given in closed form (see [161]),

qé = N(é“’lé’ Zé)’ qu (rYk) = r('7k|ﬁ/ Ek)/ %(T) = F(T‘f, d)l (449)

with
T, = (<r><1>Tq> + diag((’y))) = <T>ZA<I)Tu (4.50)
i=ag+ % B = bo+ - <9k> (4.51)
c~:c0+g, J:do+%<(u—¢é)T(u—¢é)>. (4.52)

(6) = mg, (00") = X4 + mony, (4.53)
i ¢
(1) = 5 (1) = = (4.54)

After convergence, the posterior can be approximated with

p(8,7|D) ~ q4(0)q.(7) (4.55)
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so that the predictive distribution becomes
plr, D) = [ N(ulg" (\)g T )ag(8)g:(r)dbtr. (4.56)

Simultaneous integration over 8 and T is analytically intractable. However, the vari-
ance (t2) — (1)? = d% ~ O(N™1!) for large N [161], so that it is valid to approximate
g-(7) = §(T — (7)) for sufficiently large N. Thus, the predictive distribution can be
approximated as

pulA, D) = [ N (ulgp" (A)pg, () )gy(6)d6

(4.57)
= N(“|Vpred(A)lagred(A))r
with
Mpred = @' (M) ptg, (4.58)
Trred(A) = (1)1 + 9" (1) Zgp(A). (4.59)

Figure 4.7 shows a regression example using the same data and model f(A,8) as
before. Again, the model parameters 8 exhibit sparsity. Moreover, the VRVM al-
lows to compute the evidence lower bound (ELBO) which is an approximation to the
model evidence and allows to monitor convergence of the training process as well
as to compare how well different kinds of models (e.g., with a different number of
basis functions @;(A)) can represent the data D. The basic principle behind that are

explained in the next subsection.

4.2.3 Bayesian model comparison

In the context of Bayes’ law in Section 4.2.2, the model evidence p(D) is introduced as
the normalization constant to the posterior

L(D[0)po(6)
p(D)

This normalization constant is found by integrating the nominator £(D|6)po(0) over

p(6]D) = (4.60)

the parameters

p(D) = [ £(DI6)po(6)de. (4.61)

Apart from being a normalization constant, the model evidence p(D) can be viewed
as the expected likelihood under the prior

p(D) = [ L(DI6)p(6)d8 = (L(DI6))y 0 462

Seen from this perspective, p(D) can be interpreted as being a measure of how well
the model (encoded in the likelihood function £(D|0)) fits the data D if parameters
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0 were sampled randomly from the prior po(6). However, more often than not, the
model evidence p(D) is not computable in closed form.

In variational approximations (see Section 4.2.2, Section 4.3.4), the objective is to find
a distribution ¢*(0) out of a family of distributions g(0) that best approximates the
posterior p(8|D) in the sense of minimum KL divergence,

9°(6) = argmin D (9(0)|[p(8|D))

= argrrbin/q(ﬂ) log (%) de.

(4.63)

One can make the observation that
log p(D) = [ 4(6)log p(D)do
= /q(ﬂ) [log(p(6|D)p(D)) —log p(8|D) +log q(0) —log ()] d6

= oo [os (%7 ) o (o )|
= F[q(0),p(6,D)] + Dxvr(q||p(6|D))

(4.64)

with the evidence lower bound (ELBO)

0,D
Fig(©),p(6,D)] = [ g(e)1og (77 ) o 4.65)
For the KL divergence, it is known that Dy, (g(0)||p(6|D)) > 0 so that the ELBO
F represents a rigorous lower bound to the evidence p(D). As in variational ap-
proximations, the target is to minimize Dy, (9(0)||p(6|D)) (which is equivalent to
maximization of the ELBO F), after convergence, one can make the approximation

Dxw(q(0)[|p(6]D)) ~ 0 or
log p(D) ~ Flq(6), p(6,D)]. (4.66)

The ELBO F can thus not only be used to monitor training convergence, but also
to directly compare different kinds of models, e.g., with different numbers of basis
functions dim(¢g(A)).

4.3 Approximate inference

Within the literature, there is no consistent definition of the notion of statistical infer-
ence [165-167]. From the writer’s point of view, statistical inference is the unification
of all methods that enable to draw conclusions on the underlying mechanisms that
gave rise to some observed data [168]. As such, it can be segmented into the stages
of parameter estimation/model training, model selection and prediction [169].
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In all three of the above stages of statistical inference, it is common that expected
values, i.e., integrals of the form

(f) = [ FMp)ar (4.67)

where f(A) is an arbitrary function of the random variable A, do not have closed

form analytical solutions, meaning that exact inference is infeasible.

A multitude of approximate integration schemes have been developed over the last
decades to solve Equation (4.67), all varying in accuracy and computational com-
plexity. This section is devoted to give an overview over some important approxi-
mate inference techniques, most of which have found a use in the model presented in
Chapter 5 of this work.

4.3.1 Point-based estimates

Point-based estimates to Equation (4.67) are described in many statistics and ma-
chine learning text books (e.g., [155, 169, 170]), most commonly in the context of
maximum likelihood or maximum a posteriori estimation. The approximation consists of
replacing the distribution p(A) by a é-distribution centered at its mode, i.e.

p(A) = 6(A —AF), (4.68)

where
A" = arg max p(A). (4.69)

The approximation to Equation (4.67) then becomes

(FA) = [ FA)SA = A)ar = FA7), (4.70)

If, after observation of some data D, p(A) plays the role of a likelihood function, i.e.,
if p(A) &< L(DJA), Equation (4.69) is known as maximum likelihood (ML) estimation.
If p(A|D) < L(D|A)po(A) is a posterior distribution (with an arbitrary prior py), the
framework is called maximum a posteriori (MAP) estimation.

Point estimates tend to be inaccurate particularly when p(A) is spread out, and p(A)
and/or f(A) are of high complexity. A major drawback is that no error estimates for
Equation (4.70) are given.

The optimization problem in Equation (4.69) can be solved by a suitable optimiza-
tion algorithm [171-173]. A broadly applicable and robust method to find MAP
estimates in latent variable models is given by the expectation-maximization (EM) al-
gorithm [174, 175] which is introduced in the next subsection.
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Expectation-maximization algorithm

The expectation-maximization algorithm [174, 175] is an efficient way to find ML/
MAP estimates of latent variable models by iteratively estimating expected values
under an auxiliary distribution g(z) over the latent variables z and subsequently

performing a maximization step given the current expected values under g(z).

Assume the joint distribution p(A, z) over some observed and latent variables A and
z, respectively. The marginal distribution over the observed variables is

p) = [ p(A,2)dz .71)
and the objective is to find the mode A* of p(A), i.e.,
Af = arg max p(A) = argmfx/p(/\,z)dz. (4.72)

Such problems typically arise in MAP estimations of latent variable models, i.e.,

problems of the form
A= arg max p(A|D) = argmfx/E(D]/\,z)po(/\,z)dz (4.73)

where £(D|A, z) is the likelihood function and po(A, z) is a prior on the observed

and latent parameters A, z.

Using Jensen’s inequality [158], the (log-)marginal log p(A) can be bounded from

below as

> /q(z) log <P((17(L;)Z)) dz (4.74)
= (logp(A, z))q — (logq(z))g = F(g; 1)

where F(g; A) denotes the lower bound functional and ( - ), means expectation w.r.t.
g(z). The basic strategy of the EM algorithm is to repeat the following two steps until

convergence:

E-step: Given the current best estimate A(!) to the MAP value A*, find the optimal
distribution q()(z) that maximizes the lower bound F(g;A()). Compute the
expected value (p(A, z)) .-

M-step: Given the current estimate q(*)(z) for the distribution g (and the corresponding
expected values), find the parameters A1) that maximize the lower bound

F(q(t);)\).
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Algorithm 1 : The expectation-maximization algorithm

Input: A + A(0); // Initialization
t<0
while (not converged) do
E-step: Compute
9\ (z) & p(A), 2);
and estimate
(log p(A, ) 00;
with, e.g., Monte Carlo
M-step: Maximize
A = arg max, (log p(A, 2)) g
with a suitable stochastic optimization algorithm
t—t+1;
end
return A*; // Optimizer to Equation (4.72)

It can readily be observed that the g(*)(z) maximizing the lower bound F(g; A(")) is
given by
g (z) « p(AWY, 2), (4.75)

as the lower bound becomes tight, i.e., the inequality in Equation (4.74) becomes
an equality in that case. Expected values w.r.t. g are generally not given in closed
form and need to be estimated with, e.g., Monte Carlo (see Section 4.3.3). Also, the
(sub)optimal distribution g*)(z) may be searched within a family of distributions
q(z|&) parametrized by a finite number of parameters ¢, leading to a potentially non-
zero lower bound F after the E-step. This strategy is closely related to variational
inference which will be discussed in Section 4.3.4.

Given an estimate g(*) (z), the M-step consists of the optimization problem
A — arg max F(g";1) = arg mAax<log P(A,z)) 0 (4.76)

which can be solved using standard stochastic optimization algorithms [171-173],
see also Section 4.4. Both E- and M-step are run alternately until convergence of A. It
is noted that neither the E- nor the M-step need to be driven to convergence in every
single iteration t. Rather, it is sufficient to improve in every iteration in the sense that
log p(AH+1D)) > log p(A1). The EM-algorithm is summarized in Algorithm 1.

4.3.2 Laplace approximation

The Laplace approximation [176] pra(A) to p(A) is given by a Gaussian centered
around a mode of p(A):

pra(A) = N(Alpra, Zra), (4.77)
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where the mean p 4 is found by
Vap(V)y,, =0 (4.78)
and the covariance I 4 is
Zia =—VaValogp(A), (4.79)

such that py4(A) has the same curvature as p(A) at the mode A = uy 4. Next, the
integral in Equation (4.67) is approximated as

()~ [ FM)pra)ar (480

which is often analytically solvable since the moments of a Gaussian are given in
closed form [177]. For non-analytical quantities of interest f(A), Equation (4.80) can
efficiently be approximated by direct sampling from the Gaussian py4(A).

A disadvantage of the Laplace approximation is that it only makes use of local in-
formation at a mode of the original distribution p(A) and is therefore not capable to
capture global characteristics. Furthermore, if A is very high dimensional, computa-
tion and storage of the Hessian can be prohibitive, in which case it could be assumed
to be diagonal. As for point estimates, approximation errors are hard to quantitfy.

4.3.3 The Monte Carlo method

Thanks to its versatility, ease of use, and robustness particularly in high stochastic
dimensions, the Monte Carlo method [178, 179] is one of the principal workhorses
in computational physics and engineering. Moreover, it provides rigorous error es-
timates and is unbiased in the sense that given unlimited computational resources,
integrals can be approximated at arbitrary precision. On the other side, Monte
Carlo simulations are generally inhibited by their extensive computational costs.
The present section gives a brief introduction to the most important Monte Carlo
techniques for UQ.

Simple sampling and statistical error

Using simple sampling Monte Carlo, the integral in Equation (4.67) can be estimated

as6

(f(A)) =

—~—

f(A)p(A)da
(4.81)
)

%f@(’“) =f A" ~p@).
n=1

~
~

z| =

®In this subsection, it is assumed that f is a scalar quantity for ease of notation.
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The mean squared approximation error (Af)? can be computed according to

(A2 = ((F= FON)®) = (P = (12, (482)

where

T
sy
N
~
Il

1 N N
<N2 L Zf<A<’")>f<A<">>>
m=1n=1
- <Z§ YA+ Y T f<A<m>)f<A<”>>> (453
n=1 m=1n#m
= U+ D R
Plugging the result in to Equation (4.82) gives
2
(AFF = ) - P = 5 (@89

where 02 denotes the variance of f(A) under p(A), which is approximated by the
unbiased sample variance

1 ¥ .
P rst = —= Y (fF(AM) - )% (4.85)
N-14~
This leads to the well-known Monte Carlo error for uncorrelated samples

Af = (4.86)

g
VN’
Importance sampling

Importance sampling allows to estimate the integral given in Equation (4.67) using
samples from a different distribution g(A) # p(A). There are essentially three use
cases for importance sampling:

a) It is difficult or impossible to draw samples from p(A) directly, but samples
from g(A) are readily available;

b) The sample variance s2 can be reduced, i.e., the same Monte Carlo error can be
achieved with potentially much less samples and therefore less computational
effort;

c) Only samples of f(A) under the distribution g(A) are given — samples can be
‘reweighed’ to estimate statistics under p(A).

The key idea of importance sampling is to rewrite Equation (4.67) as

() = [ fapiar = [ F0Leain, 487)
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where g(A) is a valid probability distribution easy to sample from. The importance
sampling estimate for (f) is

1 Y A1)
TEVESS SOE : W; ,AD ~g(A), (4.89)
Clearly, no samples of p(A) are needed (s. point a)). If it is possible to find and use
a distribution g(A) s.t. the quantity f(A) % shows only small variation, i.e., small
sample variance under g(A), the Monte Carlo error given in Equation (4.86) can be
reduced considerably compared to simple sampling (s. point b)). If only a set of

samples
D={A", fAMEL, AW ~q(), (4.89)

under distribution q are given, samples can be reweighed by the factor % and the
expected value (f(A)) under p can be computed using Equation (4.88) (point c)).

Markov chain Monte Carlo

In importance sampling, it is of paramount interest to find a distribution g(A) that
leads to low variance of f(A) % under g, i.e., g(A) should be as ‘similar’ as possible
to f(A)p(A). Particularly in high stochastic dimensions dim(A) > 1, it is difficult to
find such distributions which at the same time need to be straightforward to sample
from. In the common case where p(A) cannot be sampled from in a non-iterative
way (e.g., thermal distributions of complex physical systems or the posterior on the

parameters of a neural network), even simple sampling (s. Section 4.3.3) is infeasible.

Markov chain Monte Carlo (MCMC) [180-182] fills this gap in providing a univer-
sally usable method to draw samples from any probability distribution p (given er-
godicity of the constructed Markov chain). MCMC can be seen as a simulation of
a stochastic process that produces a sequence of samples A1), ..., A(), A+ at
discrete times t generated by a transition kernel w obeying the Markov property

WADIA0 A0 = At A0 (4.90)

that defines the transition probability to go from sample/state A() to A1), This
transition process is designed in such a way that the samples A(*) are asymptotically
distributed according to the stationary distribution p(A) (but not i.i.d.). The most
popular class of MCMC samplers is based on the Metropolis-Hastings (MH) algorithm
[183, 184], which is explained in the sequel.

Metropolis-Hastings algorithm The derivation of the Metropolis-Hastings algo-

rithm starts with the reversibility or detailed balance assumption

p(MwA'[A) = p(A)w(A|A) (4.91)
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Algorithm 2 : The Metropolis-Hastings algorithm

Input: A < A(0); // Initialization
fort <~ Oto N do

Sample A ~ Prop(A|A1);

Sample r ~ U(0,1);

if r < Acc(A,AD); // Equation (4.94)
then

‘ /\(t+l) — A

else

‘ Al A,

end

end

return A(O),...,A(t),...,/\(N) ; // Sequence of samples from p(A)

which is a sufficient (but not necessary) condition for the Markov process to have
a unique stationary distribution, here denoted by p(A). To construct a transition
kernel w that complies with Equation (4.91) and that allows to easily simulate the
Markov chain, w is split into a proposition and acceptance step,

w(A'|A) = Prop(A|A)Acc(A, M), (4.92)

i.e., being in state A, a new state A’ is proposed (i.e., sampled) according to the
predefined probability distribution Prop(A’|A) and then accepted with probability
Acc(A, A) to ensure Equation (4.91). Plugging that in yields

p(A)Prop(A|A)Acc(A, A) = p(A)Prop(A|A") Acc(A, A). (4.93)
Using the A <» A/ symmetry, it is easy to verify that Equation (4.93) is fulfilled for

) e p(A) Prop(A[A)
Acc(A',A) = min <1, () Prop(A’]/\)) . (4.94)

The Metropolis-Hastings algorithm is summarized in Algorithm 2. Note that only
relative densities % are required, i.e., there is no need to compute the normaliza-
tion constant of the stationary distribution p(A). It is obvious that according to Al-
gorithm 2, the sequence of samples A Al AN g correlated, particularly
when Prop(A|A") is centered around A ().

Due to this correlation, the effective sample size Neg [181, 185] is smaller than the num-
ber of Markov chain iterations N. To see this, we recompute the Monte Carlo error
Af as in Section 4.3.3, this time accounting for non-zero correlations between f(A(")
and f(A(+41)), Combining Equation (4.82) and Equation (4.83) yields
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where

) A AEHAD Y 2
Af=1 v
is the integrated autocorrelation time [185, 186]. Le., estimating the quantity f with

N correlated MCMC samples leads to the same MC error as using

N N (4.97)

int

Negs =

uncorrelated samples. It is therefore of primary interest to construct the transi-
tion kernel w(A*+D|A()) in such a way that consecutive samples A(*), A(+1) (and
therefore also f) are as weakly correlated as possible. This is achieved by keep-
ing the acceptance ratio Acc(A+1), A()) high while doing as large as possible steps
AA = (A — A1) Expected values can be computed according to Equation (4.81),

but only retaining every 7 sample of the Markov chain. Also, the Markov chain
needs to thermalize, i.e., convergence from the initial configuration A(%) to a state

A(®) representative for p(A) needs to be waited for.

Metropolis-adjusted Langevin algorithm One way to keep acceptance ratios high
and simultaneously do large steps AA is to make use of gradient information of
the stationary distribution p(A). There are two major algorithms belonging to that
class: The Hamiltonian or hybrid Monte Carlo (HMC) method [180, 187-189] and the
Metropolis-adjusted Langevin algorithm (MALA) [189-191], which shall briefly be pre-
sented below.

MALA is based on discrete Langevin diffusion dynamics [189, 191] and performs
proposals according to

A=A+ %esz logp(A) +€¢, E~N(,I), (4.98)
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i.e., the proposal density Prop(A'|A) = N (A |usara(A, €),€%I) is an isotropic not-
mal distribution with mean ppar4(A, €) = 362V, log p(A). The parameter € needs
to be prespecified and allows to control the step size of the MALA MCMC algorithm.
As the MALA proposal density favors steps along the gradient of log p(A), it is more
likely that p(A’) Z p(A), i.e., bigger steps can be performed compared to a pure
Metropolis random walk leading to shorter integrated autocorrelation times Ty It
has been shown that the optimal acceptance ratio for MALA MCMC is 0.574 and
the numerical complexity is O(dim'/3(A)) as compared to O(dim(A)) for random
walk MH [192], which makes the algorithm particularly useful when the number of

stochastic dimensions dim(A) is high.

MCMC methods typically suffer from multimodality in the target distribution p(A)
[193], since the Markov chain needs to pass low probability regions in order to ex-
plore new modes. Techniques like wormhole HMC [194], parallel tempering [195-
197], and sequential Monte Carlo (SMC) [188, 198-200] have been developed to over-
come this issue.

Sequential Monte Carlo By combining the advantages of importance sampling
and MCMC techniques, sequential Monte Carlo methods represent a particularly
efficient way to perform inference even under multimodal probability distributions.
Instead of sampling from p(A) directly, SMC draws samples from a sequence of
distributions po(A), ..., pt(A),...,pr(A) = p(A) that are easier to handle, e.g., that
have shorter mode mixing times. In practice, this can be realized by associating
different inverse temperatures B; to the different distributions like p;(A) « pft(A),
with0 < Bo < ... < B < Biy1 < ... < Br = 1. The more intermediate distributions
are used, the higher the MC accuracy, at the prize of higher computational cost [201].

N

Given a set of samples {/\,(f)} Y the intermediate distributions are approximated
n=

as

N
pr(A) & Zlm'(f)%”(“' (4.99)
n=
where {m,(f) N | is a set of unnormalized, non-negative weights. Expected values

are given according to
AR t
(FAN),, = [ FQIp)dr = Y MY FALY), (4100)
n=1

where M,(f) = mgf) / ZnN=1 mg) are the weights after normalization. Starting from
a set of samples {A,SO)}Q’:l from the initial distribution po(A) and uniform weights
M,(ZO) = 1/N, the samples are repeatedly reweighed, resampled, and rejuvenated until

the samples are distributed according to p(A).

(t+1)

The reweighing step is assigning new weights my ,(f)

to correct

the difference between p;(A) and p;+1(A) via importance sampling, i.e., mD =

to the particles A
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Algorithm 3 : The sequential Monte Carlo algorithm

Input: f <0, M,(qo) =%,

and {/\,(10) N | according to po(A) ; // Initialization
fort < Oto T do
) t+1 t AP
Reweigh: m,(1 ) = mg)ip;z/(\w));
(t+1)
Normalize: M,(fﬂ) = %)
n=1""*n
Nep = —L——;
eff ZnN:1 (MﬁlHl))z
if Negr < Nireshold ; // Ness drops below threshold
then

Resample: (NV(IHZ)) = NM{TY;

Rejuvenate: perturb ALY =AY via Prop(A’ |/\,(f)) and accept
with Equation (4.94)

end
return A0, A AN . // Samples from p(A)

(t)
m}(f) Pt+1 (/(\t’; ) .
pr(An’)

It is straightforward to show that with N samples and non-uniform weights M,(f),

one would have the same MC error as in Equation (4.86) with an effective sample
size of Ngf) =1/ 25:1(M,(f) )2, which is N if all M = % and reduces to 1 if all
M,(f#) = 0 except for one M,(f) = 1. Therefore, if the effective sample size N

drops below a certain threshold, e.g., Neg < %, then the particles are resampled.

In the resampling step, each particle is copied N,gt) times s.t. YN N,(lt) = N and

(N,g”) =N M,(f) [200]. That means that particles with high weights are copied several
times, and on the other side, particles of low weight are likely to be discarded. After
resampling, every single copy of a sample is assigned the uniform weight M,(fﬂ) =

1/N.

Finally, the rejuvenation step perturbs the samples {/\Sf) NV, using an MCMC transi-
tion kernel as discussed in the previous subsections, i.e., new locations are proposed
using a suitable proposal density Prop(A, |A,(f)) and accepted according to Equation
(4.94), assuming the new p;.1(A) for the stationary Markov density. The algorithm
is summarized in 3.

4.3.4 Variational inference

Just as in the Laplace approximation method discussed in Section 4.3.2, the purpose
of variational inference (VI) (also called variational Bayes or, in physics literature, vari-
ational free energy minimization) [202-204] is to find an analytically better tractable
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approximate probability distribution py(A) to the original density p(A). With "bet-
ter tractable" it is meant that expected values can be computed in closed form and/or
direct sampling methods exist (i.e., no MCMC is needed to do Monte Carlo).

Variational inference has its roots in variational mean field theory [205, 206], a popu-
lar method to study the physics of quantum and classical many-body systems [207].
To the best of the author’s knowledge, mean field theory first found its way into
machine learning with [208] and was generalized in [209, 210] to modern variational
Bayesian methods.

The basic rationale behind VI is to minimize the Kullback-Leibler (KL) divergence [163,
164]

Dxw(pvillp) = / pvi(A)log (P;’éf\;;)> dA (4.101)

between the original distribution p(A) and a variational approximation py;(A) out of
a family of tractable distributions like, e.g., a set of distributions py;(A|¢) controlled
by some parameters ¢. The KL divergence can be viewed as a non-symmetric (i.e.,
Dxw(pvillp) # Dxr(p||pvi)) distance measure between the probability distributions
pyr and p. It can be shown that Dxy.(py;||p) > 0[155], with Dy (pvi||p) = 0 if and
only if the two distributions are identical, py;(A) = p(A).

Mean-field approximation

The variational mean field approximation is obtained by imposing the independence
assumption

pvi(A H pry (A, (4.102)

where Al ... AM are subcomponents of A with Al Al = @ for i # j and
Uf-\il Al = A and then minimizing the functional Dk (pvi||p) w.r.t. p@l under the
normalization constraints

/ pll (A)aAll = 1. (4.103)

To do so, Equation (4.102) is plugged in to Equation (4.101) and the normalization
constraints Equation (4.103) are added via Lagrange multipliers {; to yield the objec-
tive functional

H]Ml P@I( i)

Tlpviig /Hp[&, (A1 1) Jirs Zék </ P (A 1)

*Z/ P log iy (A1) / pr AlT) log p(A)dA (4.104)

+Z€k</l’ F)aal — )
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[i]

which is to be minimized w.r.t. py,;. A necessary condition is that the first order

[i]

variations 67 w.r.t. py/; need to vanish, i.e.
0= 67 (Al gy =

i) (i i (Al ] (Al g (4109
—/5p (Al (10g pll (2 /Hp Ay log p(A)dA = 4 gl — 1) dal
i

where dAl=1] = [TjsidA U. As this must hold for arbitrary variations & p%,

log py; (Al) /HP (AN log p(A)dal=1 4 gl —1 =0, (4.106)
j#i
or
log py; (A1) = (log p(2)); ., — ¢ +1 (4.107)

where (. ), denotes expectations w.r.t. []; p@l(/\m). The normalization con-

straints Equation (4.103) are recovered using the condition that V;7 < 0 and is
fixing the additive constant { il —1in Equation (4.107). Finally, taking the exponen-
tial on both sides, it is found that

exp (log p(A)),
J exp (logp(A )>j7éid/\m.

il (Al = (4.108)

It is noted that Equation (4.108) only gives an implicit solution for p“ (All), since
(log p(A)),.; depends on all other p% (All). To get an explicit solution, it is therefore

mandatory to repeatedly cycle over all j until convergence.

Stochastic variational inference

In stochastic variational inference [211-213], the approximate variational distribution
pvi(A) is assumed to be the member of a parametric family of distributions py(A) =
pvi(A|§) parametrized by . A classic example would be the family of multivariate
normal distributions with unknown mean py; and covariance Xyj, i.e.,, § = (g‘;ﬁ )

Again, the objective is to minimize the KL divergence Dky(pyi||p) as given in

Equation (4.101),

. . pvi(A|T)
& = argmin / pyi(A[E) log (p(A)) dA, (4.109)

and then use py;(A|¢*) as an easily tractable approximation to the original distribu-
tion p(A).

To efficiently optimize Equation (4.109), gradients w.r.t. the variational parameters ¢
should be used. Using Vg[py1(A[§)] = pvi(A|§)Ve[log pyi(A]§)] and
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[ Velpvi(A[g)]dA = 0, it is found that

Ve[Dxa(pvillp)] = / Velpvi(A|Z)] log (W) dA

+ / pvi(AlE)Vellog pyi(A|&)]dA (4.110)
= (Ve[log pvi(A[Z)] (log pvi(A|&) —log p(A)))

pvi”

Depending on the specific form of py; and p, some terms in Equation (4.110) may
be computed analytically. In general, Equation (4.110) can be estimated via Monte
Carlo as

N
VelDxw(pvillp)] = % Y. Vellog pyi(A"[8)] (log pyi(A™[8) ~log p(A™) ), (4.111)
n=1

where A ~ py;(A|&). Unfortunately, this gradient estimator tends to have very
high variance [100, 211], i.e., many potentially expensive samples are needed to ob-

tain decent estimates.

A prominent strategy to reduce Monte Carlo noise in Equation (4.111) is to apply the
reparametrization trick [100, 214]. We define a differentiable transformation g

A=g(e ) (4.112)

with an auxiliary noise variable € ~ p(e). Since pyi(A[¢)[T;dAi = p(e) 1, de;,
Dxr(pvil|p) can be rewritten as

Dxw(pvillp) = (log pvi(g(e,£)18)) ey — (log p(g(€,8))) p(e) (4.113)

and the gradient

VelDiw(pvilIp)] = (Vellog pui(ge D)) o) ~ (Vslog plsle,2))]- Vels) o) 4119

which exhibits considerably lower Monte Carlo noise compared to Equation (4.111)
since it is incorporating gradient information V¢p(g(e,¢)) of the original distribu-
tion p(A). The gradient Vg[Dky (pvi||p)] is then passed to a suitable gradient-based
stochastic optimization algorithm [171-173], see Section 4.4. It is noted though that
the computation of such gradients can be computationally expensive or even im-
possible which is the case, e.g., when p(A) is a posterior that contains a likelihood
function involving a complex computer simulation.

Finally, given the approximation py;(A|§*) ~ p(A), the expectation value from

Equation (4.67) can be approximated as

() = [ FMpvnar, (4.115)
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which, given a smart choice of the parametric family of distributions py(A|¢), can
be solved in closed form or approximated via direct Monte Carlo.
4.4 Stochastic gradient ascent

Stochastic gradient ascent [215-217] (SGA, also called stochastic gradient descent (SGD)
in minimization problems) algorithms are among the most popular stochastic op-
timization algorithms and their recent progressions are a central building block of
the present-day success of machine learning and artificial intelligence methods’ in
various fields of science and industry. SGA is a method to maximize an objective
function 7 () that is only known by noisy estimates of the gradient V7 (),

. 1Y .
VeI (@)= Vi [ T@ApMAAx 1 Y Ve T@AM), A~ p(A). (3116)
n=1
For ease of notation, we will denote the mean gradient estimate
0 — Ly g, 7@ 0 Am
8=y Zlvgj(ﬁ AM) = (Ve T (2)) (4.117)

in the following. The basic principle of SGA is to update the parameters ¢ by steps
along a preferred direction m*) = m(*) (g, ..., ¢()) which is, in general, a function

of previous gradient evaluations g(o), s, g(t). In more mathematical terms,
D = 2 4 50 o () (4.118)

where o denotes element-wise multiplication, #*) is the learning rate and &©) needs
to be set for initialization. The recursion relation defined by Equation (4.118) is re-
peatedly evaluated until a suitable convergence criterion is fulfilled, e.g., if [g(*)|> <

2, with a user-specified threshold /.

441 The Robbins-Monro algorithm

The Robbins-Monro algorithm [215] uses
mt) = g (4.119)

and is guaranteed to converge to a local maximum if for the learning rate

"2 <o, 7" >o0. (4.120)

e
=
B
8
e

=1 t=1

’See, e.g., the documentation of the deep learning libraries TensorFlow and PyTorch on neural
network training.


https://www.tensorflow.org/api_docs/python/tf/train
https://pytorch.org/docs/stable/optim.html?highlight=optim#module-torch.optim
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(£)

Typical choices for #;’ can be constructed using the Riemann {-function {(s) =

Y.i2; t~° which is convergent for Re(s) > 1 [218]. Thus, one may set

M _ &

(4.121)

with some adjustable parameters a;, B; > 0 and 7; € (%,

1].
Although convergence to a local optimum is ensured, there are a few shortcomings
using the above algorithm which directly affect its computational efficiency. First,
choosing proper learning rate parameters «, 8,y can be difficult, especially in high
dimensions dim(¢). Using shared values a; = «,B; = B,7; = 7 for all dimen-
sions is possible, but leads to slow convergence especially if the dimensions have
very different length scales. Moreover, valuable information from previous gradient
evaluations g(tfl), el g(o) is discarded, which could be used to reduce estimation
errors on the true gradient V7 (&) or to incorporate curvature information to the
update equation.

4.4.2 AdaGrad

The AdaGrad algorithm [219] adjusts the learning rate # automatically according to
the different length scales of the inputs ¢;. It does so by modifying the learning rate
to be

=R, (4122)
Gi(t) +e
where t
Gl@ — Z(gi(f’)){ (4.123)
t'=0

i.e., the learning rate 7 is divided by square root of the sum of squared derivatives
(gl(tl))2 up to iteration t (¢ > 0 is a regularity parameter that avoids division by 0).
This is guided by the following intuition: if the sum of squared gradient in a certain
direction ¢; is much higher than the others, one can assume that the objective func-
tion J (&) is strongly oscillating along ¢; and it would be reasonable to do smaller
steps in that direction. Otherwise, if the sum of squared gradients along ¢; is low,

the objective function 7 (¢) is rather smooth and it is safe to do larger update steps.

As for the Robbins-Monro algorithm in Section 4.4.1, the update equation Equation
(4.118) holds and m(") = g(*) is used.

4.4.3 RMSprop

As the AdaGrad algorithm is dividing the learning rate 779 summing up all squared
derivatives up to the current iteration ¢, the step sizes are dropping overly quickly
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and the optimization may stall before the maximum ¢* is reached. RMSprop® fixes
this issue by not taking the sum over all the gradients up to iteration ¢, but using a

moving average of the form
GV = g6V + (1-p) (s> (4.124)

Avalue of B = 0.9is suggested by the inventor G. Hinton. The learning rate becomes

; .
t
VG +e

Apart from that, RMSprop is identical to the Robbins-Monro and AdaDelta algo-

rithmes.

(4.125)

444 ADAM

The currently probably most popular stochastic gradient ascent algorithm is adaptive

moment estimation (ADAM) [220]. ADAM not only estimates the second moment
(t)

of the gradient GZ-(t) as in Equation (4.124), but also the mean of the gradient M;
(first moment), thus the name of the method. The exponentially decaying moment

estimates read

(4.126)

The quantity Ml.(t)

transfers knowledge of the gradient from previous iterations to the
current iteration t and can therefore be understood as a measure for ‘momentum’ in

the optimization process.

As both moment estimates are initialized as Mftzo) =0, Gl-(t:O) = 0, the moving
averages Equation (4.126) are biased towards smaller values in magnitude. This

bias is counteracted in the original paper [220] by setting’

oo - MY
! 1—at’
®) (4.127)
G — G
i 1— IBt'

Finally, ADAM uses the update Equation (4.118) with step direction m) = M*) and

the learning rate
(t

i )= 10 :
\/éi(t)%—e

8unpublished, see this lecture by G. Hinton:
http:/ /www.cs.toronto.edu/ hinton/coursera/lecture6/lec6.pdf
91t is noted that «f, ,Bt means ‘«, B to the power of t, i.e.,  is not to be confused with an index here.

(4.128)
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For the parameters o, f € [0,1), 7o and e the authors suggest the default parameters
[220] « = 0.9, =0.999, € = 108 and 1o = 0.001.

4.5 Surrogate modeling

Many-query applications of complex computer codes such as inverse problems, de-
sign/optimization or general uncertainty propagation problems typically require a
good many of forward model evaluations to explore the parameter space. Many
computer simulations of scientific or engineering problems take up to several days
of runtime even on modern hardware, which is prohibitive for many of the above
problems. Given a limited computational budget, it is thus of paramount interest
to extract as much information as possible from a limited dataset of forward model

runs D = {/\(”),uf/\(”))}:]:l

A common approach is to construct, based on the set D of forward evaluations, a
potentially much cheaper surrogate model at the expense of model accuracy. This
accuracy typically improves with the size of the dataset D, but convergence to the
true forward model is usually not given. The task of finding a good surrogate based
on limited data D is very similar to a supervised learning problem. Off-the-shelf
machine learning algorithms such as neural networks (Section 4.5.1) or Gaussian
processes (Section 4.5.2) have been applied also in the context of SPDEs, see e.g. [46,
49, 55, 72]. With the (generalized) polynomial chaos expansion and the reduced basis
method, two SPDE-specific classes of surrogate models are presented in Section 4.5.3
and Section 4.5.4.

However, in the field of random heterogeneous media, the number of parameters
dim(A) needed to accurately describe the exact topology of a sample microstructure
is typically very high. As we want to conduct numerical experiments under random
variation of microstructures, it is that very A which plays the role of the input that,
when plugged in to the surrogate model, should give an estimate of the true model
response #¢(A). The high dimension of A is seriously impeding the task of finding
an accurate surrogate model — a symptom of the curse of dimensionality [155], a term
introduced by Richard Bellman in 1957 [221]. It states that the average distance
of sample points increases exponentially with dimension which exacerbates high-
dimensional regression.

This is a central motivation for the development of the physics-aware surrogate pre-
sented in Chapter 5 which, by exclusion of a myriad of potential model outputs vio-
lating essential physical principles, generally scales much better with the stochastic
input dimension dim(A) than the models mentioned above.
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FIGURE 4.8: Schematic representation of a feed-forward neural net-
work with two hidden layers. The model function f(A, ) consists of
successive linear combinations of the nodal values a(™) = W(m)z(m>,
and subsequently passing them through a nonlinear activation func-

tion, z](.mH) = h(a§m+1)).

M
{W(’”) } __(‘weights’, depicted by the connections between the neu-

Gradients w.r.t. the parameters § =

rons) can Efﬁciently be computed using the chain rule (called back-
propagation or backprop, see [78, 223, 224]).

4.5.1 Artificial neural networks

The linear models that were discussed in Section 4.2 to introduce different kinds of
prior models proved to be valuable in that many computational steps in training and
prediction were doable in closed form. However, their regression quality is strongly
dependent on a good choice of basis/feature functions ¢(A). This is a desirable
property in settings where expressive features for the prediction of the regression
targets u are known a priori.

Regularly, such features are not given beforehand and one is better of with more
generic, of-the-shelf models f(A,8) that do not rely on a priori information about
the data. The perhaps most popular class of such models in modern-day machine
learning are artificial or deep neural networks (ANNs/DNNSs) [63, 64, 222], which shall
be introduced in this subsection.

The most basic form of an ANN is the feed-forward network or multilayer perceptron
(MLP) which is depicted schematically in Figure 4.8. The original intention behind
using a neural network model architecture was to mimic the functionality of the
human brain and dates back to [225]. An ANN consists of several layerslo: the input
layer which is identical to an input data sample /\(”), some hidden layers H (’”), and

101f there is more than one hidden layer, ANNs are commonly referred to as ‘deep’, i.e. deep neural
networks (DNNSs) [222, 226].
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FIGURE 4.9: Some popular activation functions (a).

the output layer corresponding to the network prediction # = f£(A("),0). The
layers themselves consist of different numbers of neurons z(") which are linearly
combined by the network weights W™ and passed through an activation function
h(-) to yield the neuron values z("*1) of the subsequent layer. Hence, the model

function 2 = f(A, @) of a feed-forward network can be summarized as

=k (W)

2" = h (w.(.’")z(’”)) (4.129)

. M
where summation over repeated indices is implied and the weights 8 = {W(m) } )
m=

are model parameters to be found by training. Some common activation functions
h(-) are shown in Figure 4.9. In principle, /() can be an arbitrary function and can
differ from neuron to neuron. However, there are some desirable properties, e.g., it
should be nonlinear [227], differentiable, and monotonic [228].

ANN:s are trained by minimization of a suitable loss function. For regression prob-

lems, the most common is the ¢, error

N

6* = argmin ) _ |u™ — F(A™M),6)|2 (4.130)
-

which can be minimized using a (stochastic) gradient ascent algorithm (see Section

4.4). For performance reasons, usually only a small subset of terms in the sum of

Equation (4.130) are sampled to get stochastic gradient estimates w.r.t. the parame-

ters  (mini-batch gradient descent).
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(M—m)

For a single term 7, the gradient w.r.t. the weights W is given as

i afll
amen — f(A, )2 = §< fn)ame)
=Y~ fi)H(a Z W (aM Y Zwlif w My @AsD)

(M m+1)h( (M—m))Z(M m)'

i
(4.132)
A](M ‘rl’l ZA M m+1) (] )h/( (M*WZ)) for m 2 1’
the above derivative can be written as
%Hu(”) — FAW,)|2 = AN IR (M) M) (4.133)
aij
It is noted that to compute A](.Mfm“), it is necessary to start at the output layer and

(M)

evaluate A J M-1)

, then successively compute to Al ,A(MQ),... up to A](Mfmﬂ).

] ]
This process starts with the error term A](M) at the output end of the network and
propagates errors backwards to the layer (M — m + 1) and is therefore called error

backpropagation or backprop (BP) for short [78, 223, 224]). With the current parameter

n M
estimates 0 = {W(’”)} o the input A can be forward propagated through the
m=

network to precompute all neuron states agm) and activations ZSMH)

()

. Thereupon,
they can be used to compute all A;" according to Equation (4.132) and finally eval-
uate the gradient w.r.t. W™~ making use of Equation (4.133). The possibility to
efficiently compute gradients w.r.t. the model parameters 8 using backpropagation
is one of the main reasons of the popularity of ANN models in modern day machine

learning.

Although a large variety of regularization techniques for ANNSs exist [229-232], be-
cause of the large number of free parameters dim (), they are typically used in prob-
lems where big datasets are available. A popular, regularized generalization of the
multilayer perceptron that takes advantage of 2D input data as given in, e.g., com-
puter vision is the convolutional neural network (CNN) [65, 67]. In addition to the fully
connected layers of the MLP discussed above, a CNN can also comprise network
layers that perform different operations such as convolutions, pooling operations,
batch normalization, or activation operations.

In a convolutional layer, convolutions of the output of the previous layer w.r.t. sev-
eral fixed-size convolutional kernels that are learned from the data are carried out.
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FIGURE 4.10: Schematic representation of the architecture of a con-

volutional neural network (CNN) for a regression task from 64 x 64

images A to a 1 x 16-dimensional output vector u. Apart from fully

connected layers, layers performing different operations, such as con-
volutions or pooling, can be applied.

Convolutions on a 2D input image A are capable to extract features like edges or
simple shapes.

The main purpose of a pooling layer is down-sampling to reduce the number of
free parameters of the network. For instance, a max-pooling layer divides the out-
put of the previous layer in non-overlapping rectangular windows and passes the

maximum pixel value of each window as an output.

A batch normalization layer shifts and scales the output of the previous layer with
shift and scale parameters learned from the data.

A ReLU layer passes all output pixel values from the previous layer through the
ReLU activation function, see the right part of Figure 4.9.

The architecture of a simple CNN is represented exemplary in Figure 4.10'".

4.5.2 Gaussian process regression

A Gaussian process [47, 48] (GP) can be viewed as a distribution over functions
F(A) ~ GP(m(A),k(A,A)) (4.134)
with mean and covariance (or kernel) function m(A), k(A, A’) such that
(fa)) =mn),
) . / / (4.135)
((fA) =m@)) (F) =m@A") ) = kA, 1),

A simple example for a Gaussian Process is the parametric linear model given by
Equation (4.10) discussed earlier: Given a normal prior po(0) = N (8|py Z4), the
above expected values are

m(A) = ppp(A),  k(AA) =" (A)Zyp(A)). (4.136)

Generated with http://alexlenail.me/NN-SVG/LeNet.html


http://alexlenail.me/NN-SVG/LeNet.html
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Independent from the specific form of the model function f(A), Equation (4.135)
implies that, given a set of inputs D, — {A(”) }:]:1, the model outputs f, f, = f(A(M),
are jointly Gaussian with

p(fIDr) = N(flm, C), (4.137)

where m, = m(A"),Cpy = k(AU A(M). This in turn suggests that, instead of
using a parametric model of the form f(A) = 87¢g(A), one could directly come up a
parametric form for the mean and covariance functions m(A) = m(A, 0,,),k(A,A') =
k(A, A/, 0), and then find the optimal parameters 0,,, 6y by maximizing

0;,0; = arg max log NV (u|m(0,,), C(6k)). (4.138)
O, k
where u is the vector of output data. For simplicity, it is common to use a zero-mean
Gaussian process prior and set m(A) = 0. The above log (marginal) likelihood then
becomes , 1
log N (u|m(8,,), C(6;)) 5 log |C(0)] — EuTc(ek)u (4.139)

and the training process consists of

0; = arg max (—;log |C(6y)| — ;uTC(Bk)u> . (4.140)
k

Just like for finite-dimensional, multivariate normal distributions, the kernel func-
tion of a Gaussian process needs to be positive semidefinite, i.e. it needs to fulfill the
inequality

/ FAOKLA, 8 F(A)dAdA >0 Vf e Ly (4.141)

which directly implies that also the data covariance matrix C(6y) is positive semi-
definite. Popular covariance functions are e.g.:

e Squared exponential: ksg(A,A") = exp (_7 » (A A/) )/
i / A=Al
e Ornstein-Uhlenbeck: ko (A, A') = exp ( Y . )’

<\/721 [A i)\’ ) <\/721 [A; 1/\|)

where ¢; > 0 is a length scale parameter for dimension A;, v > 0 is a smoothness

e Matérn: kyfatern (A, )V) =

parameter and I, is the modified Bessel function (of second kind) of order v. Samples
from a zero-mean Gaussian process prior with the above covariance functions are

shown in the top row of Figure 4.11.

Given the evidence as in Equation (4.137) (with m = 0) and the optimal kernel func-
tion parameters 6, found by Equation (4.140), predictive estimates u, at A, are ob-
tained by expanding

p(( ) 1Da20) =N (] ) o, C(67)), (4.142)
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FIGURE 4.11: Top row: samples from a zero-mean Gaussian process
using a squared exponential kernel (¢ = 0.2), an Ornstein-Uhlenbeck
kernel (¢ = 0.2) and a Matérn kernel (¢ = 0.2,v = 2.5). Bottom row:
GP regression on noise-free data from f(A) = sin(27A) using the
above kernel functions. The hyperparameters ¢, v were hand-picked.

with

o [C(8)) k
C(Bk)—< K kA, 972)) (4.143)

where k denotes a vector with components k, = k(A("), Ag, 607). The predictive dis-

tribution p(u4| Dy, f, Ag) is a conditional Gaussian,

P(”ﬂDArﬁ Ag) = N(”ﬂﬂpred(/\q)rO]Ered(Aq))r

_ 1. T—~—1 2 . Tl (4144)
,upred—k C 'y, Upred(/\ﬁl) —k(/\q,Aq) k'C k.

A noise parameter can be added by adding a term +626(A — A’) to the covariance
function k(A,A') and learn 62 from the data according to Equation (4.140). Regres-
sion examples using different kernel functions with hand-picked hyperparameters
0 are shown in Figure 4.11.

It has to be noted that the gradient of the log (marginal) likelihood

log N (u|m(8,,), C(6;)) = e (c—l oC + Lyt o€ c—1u> (4.145)

36 2 6y | 2 36

involves inverting C, which is a O(N?) operation. Although several workarounds
exist [233-235], Gaussian processes are typically inapplicable in big data problems
where N 2 10, 000.

Moreover, many popular and easy to handle kernel functions are stationary, k(A, A")
= k(A — A'). If, however, a GP regression is based on a similarity measure which
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Distribution p(A) Support gPC basis polynomials {¥;};,
Gaussian (—00,00) Hermite
Uniform [—1,1] Legendre
Gamma [0, 00) Laguerre
Beta [—1,1] Jacobi

TABLE 4.1: Popular probability density metrics and the correspond-
ing family of orthogonal polynomials [15].

itself is only based on relative distances A — A’ in the input space, it is by default
prone to the curse of dimensionality. Thus, in high input dimensions, care has to be
taken about the design of the kernel functions [236]. Other authors suggest built-in
dimensionality reduction techniques [61, 237] or multi-fidelity information fusion
[52, 56, 60] to overcome the problem.

4.5.3 Spectral methods

A popular class of surrogate models in the context of stochastic partial differential
equations (SPDEs, see Section 3) are (generalized) polynomial chaos (gPC) expansions
[14, 15, 17, 238], which replace the expensive, univariate forward model #(A) by an

expansion in orthogonal polynomials ¥, (A),

) P
u(d) =Y 6,¥,(A) = Y 6,%,(7), (4.146)
p=0 p=0
with the orthonormality relation
(¥ ¥, = [HQEWp(N)dr = 5, (4.147)

ie, {¥, };ozo forms an orthonormal basis of the Hilbert space H =

o]

= span ({‘I’p()\) }p:O) with the inner product

(v, W), = / oM w(A)p(A)dA (4.148)

where p(A) > 0 is a weight function usually assumed to be a valid probability den-
sity, i.e. [p(A)dA = 1. Clearly, the particular form of orthogonal polynomials de-
pends on the distribution that is assumed for p(A). The most common densities used
in gPC and the corresponding polynomials are summarized in Table 4.1.

In practice, the infinite sum in Equation (4.146) needs to be truncated at a finite

number P of terms,

P
F0) =Y 6,%,(1), (4.149)
p=0

where typically only the P lowest order polynomials are kept. Besides finding good
choices for the distribution/gPC basis pair from Table 4.1 and a suitable cutoff value
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P, the central question is how to efficiently find the expansion coefficients ..

The methods for finding ép are commonly classified into intrusive and non-intrusive
approaches (see e.g. [3, 4]). In intrusive gPC approaches, the expensive computer
code u(A) that is to be replaced by the surrogate f needs to be modified, which is
often impossible if commercial software for the model u(A) is used. On the other

N
side, non-intrusive approaches only require sample evaluations {u(/\(”) ) } ) of the
n=
computer code u(A) s.t. it can be treated as a black box.

Non-intrusive methods

One way to get the coefficients 6; is by direct projection onto the basis function ¥y.
From Equation (4.146), we get

(u, ¥y = ) 0p (¥p, ¥i), = bc. (4.150)
p=0

This however requires explicit evaluation of the integral

(%), = / w(AYEL(A)p(A)dA, (4.151)

which is generally not given in closed form. Moreover, the forward model u(A)
is assumed to be expensive to evaluate s.t. numerical approximations to Equation
(4.151) like Monte Carlo or Gauss quadrature quickly become infeasible.

In stochastic collocation (SC) [24, 25, 239], a finite set of collocation points {)\(”) }nN—1
are specified and the polynomial expansion coefficients are sought s.t. they exactly
match the expensive forward model u(A) at the collocation points,

u(Ay = f(AM; §) = i 0,%,(AM). (4.152)

B k
L) =TT s mr LA = 6w, (4.153)

the coefficients 6, would simply be the solution of the forward model u at the collo-
cation point A(P), ép = u(AP)). For a general set of P + 1 linearly independent basis
polynomials {¥, }5:0, N = P + 1 collocation points lead to the solution

N
b, = ;ep;,}u(w)), (4.154)
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where ®,, = ‘Fp(/\(”)) is called the Vandermonde matrix [16] in this context. It
can be shown [16] that the interpolation error depends on the number of collocation
points N and the stochastic dimension d = dim(A) as

u(A) — f(A)] o« N~/ (4.155)

i.e., to keep the error constant with increasing stochastic dimension d, the total num-
ber of collocation points N needs to grow exponentially — the method therefore
strongly suffers from the curse of dimensionality. Sparse grid stochastic collocation
[26, 27, 240] alleviates the issue, but only extends the range from ~ 5 to a few tens of
stochastic input dimensions that are feasible with SC.

Another issue is that, as implied in Equation (4.154), SC uses as many collocation
(or data) points N as there are free parameters 9p in the model which makes it is
prone to overfitting. Another way to find the expansion coefficients @p is therefore
to perform a least-squares regression

N
0 = argmin )_ lu(AM) — £(2;0) |2 (4.156)
0 =1

with N 2 5(P + 1) [241]. As this is nothing but a maximum likelihood approach to a
Gaussian linear model with polynomial basis functions, the solution for #* is given
in Equation (4.11). Also, L;-regularization can be employed [242, 243] to generate
sparse solutions, as discussed in Section 4.2.2.

Intrusive methods

Intrusive polynomial chaos or Galerkin projection is a surrogate modeling approach
that is specific to the solution of SPDEs (see Section 3). For instance, consider a SPDE
of the form

A(x, K(x, Mu(x,A))
B(u) =0 for x€9Q,

s(x) for xe€Q,
(4.157)

where A is a stochastic differential operator defined over the physical domain O3, B
specifies the boundary conditions on 0Q2 and K(x, A) is a random field (e.g., a PDE
coefficient) depending on some uncertain parameter A € A. The standard approach
is to use the same truncated polynomial chaos expansion for the solution field u(x, A)
and the random field K(x, A)'?,

P P
u(x, \) = Z%]ap(x)llfpu), K(x,A) = Y Ky(x)¥p(A). (4.158)
p= p=0

120ften, also the source term s(x) and the boundary conditions B(u) are assumed to be random, i.e.,
s(x) = s(x,A), B(u) = B(u,A). For the sake of simplicity, we confine ourselves to deterministic right
hand sides s(x) and boundary conditions B(u) though.



72 Chapter 4. Elements of probability theory and uncertainty quantification

The above approximations are plugged into the PDE Equation (4.157) and a Galerkin
projection onto the component ¥y is performed

<A (x,Zﬁp(x)‘I’p(/\);Zﬁp(x)‘I’p(A)> ,‘I’k(A)> = <s(x),‘I’k)p,
’ ’ : (4.159)

<l’>’ <Zﬁp(x)‘lfp(/\)> ,‘Yk(A)> =0
P P

to yield a system of P + 1 coupled deterministic PDEs for the components i, (x). Itis
noted that for the deterministic fields s and B, (s(x), ¥o) = s(x), (B(u), ¥o) = B(u)
and (s(x),¥x) =0, (B(u),¥x) = 0 for all k > 1. Efficient iterative solution schemes
for the coupled system of elliptic PDEs have been proposed in [244, 245].

One major drawback of gPC methods is that, in their standard form, they are treated
in a non-Bayesian way and therefore yield only point estimates instead of full pre-
dictive distributions. What is even worse is the scaling with the stochastic dimension
d) = dim(A): the number of expansion components Ny, i.e., the number of coupled
PDEs in stochastic Galerkin as well as the minimum number of collocation points
for the stochastic collocation approach grow quickly according to

_ P+d, _(P+d,\)!
NY_< : )— ) (4160)

where P is the polynomial expansion order. This makes gPC methods particularly
inefficient when d, is high.

4.54 The reduced basis method

Another class of approaches that can be viewed as surrogate models specifically
designed for the solution of PDEs are reduced basis (RB) methods [29, 31, 32]. RB
methods search for approximate solution fields ugg(x, A) in a reduced solution space
Vrp spanned by a reduced basis'?

WRB = Span (¢RB,1 (x), N ,IIJRB,L(x)) . (4.161)

The RB functions ¢rp1(x), ..., Prpr(x) are extracted from a set of forward model
evaluations, called snapshots, either by the greedy algorithm [33, 34] or by using a
proper orthogonal decomposition (POD) [31, 32], which is described in the follow-

mng.

13Note that the Prp,k’s and ¥’s discussed here have nothing to do with the ¥;’s from the previous
section.
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It is assumed that the expensive full-order model (FOM) u(x, A) is the solution to a
fine scale finite element analysis,

Nuof

(e, A) = Y ai(A)pi(x), (4.162)
i=1

where #(A) is a collection of the degrees of freedom (dof’s) called the solution vector
and ¢;(x) are the fine scale finite element shape functions. In the RB literature, data
accumulation and model training are called the offline stage, whereas performing
predictions is called the online stage.

N
In the offline stage, data D = {/\(”),ﬁ(/\(”))} ) are collected and assembled to a

n=
snapshot matrix § € RNw*N,

s=(a(A®), ..., a(AM)), (4.163)

where generally the number of snapshots N is much smaller than the number of
dof’s, N < Ng,f. The column space col(S) spans an N-dimensional subspace of
RNiwos . The objective of the RB method using POD is to find the L-dimensional, or-
thogonal subspace col(V), with L < N, that best approximates the N-dimensional
subspace col(S) in the sense that the square projection error is minimized,

N N
YA~ VVTa(AM)|P = min Y [a(A®) ~ VITaA)|?,  @4164)
n=1 Voa=1

under the orthonormality condition VIV = I;. According to the Schmidt-Eckardt-
Young theorem [32, 246],

N N
Y lla(A) —vvTa@a)z = Y s, (4.165)
n=1

where

2V, = (SST)V,, (4.166)

i.e., to get the optimal subspace col(V), it is necessary to solve the above eigenvalue
problem. Since the matrix SST € RNaws*Niof is typically large, it is helpful to multiply
Equation (4.166) by ST from the left to get

s2(STV) = (STS)(ST V), (4.167)

which is an eigenvalue problem to the usually much smaller matrix STS € RN*N,
To obtain the eigenvectors V., multiply Equation (4.167) by S from the left to get
Vi =

1
= S—ZS(STVn). (4.168)
n
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The reduced dimension L may either be predefined or chosen as the minimum inte-
ger fulfilling
Zrz;lzu-l Sh
IR

2 . . (e . .
where 650 is a specified projection error.

< &op, (4.169)

As discussed in Section 3.1, a PDE of the form as, e.g., given in Equation (4.157) may
be solved numerically by the finite element method leading to a system of linear'*

algebraic equations which may be written, in the original basis, as
A(M)i =F(A), (4.170)

where 1 is the vector of dof’s as defined by Equation (4.162), A(A) is called the stiff-
ness matrix and F(A) the right hand side or force vector. Similar to a standard change of
basis, the system given in Equation (4.170) can be projected onto the reduced space
by

Arg(A) = VIK(A)V,  Frg(A) = VTF(A) (4.171)

which yields the reduced system
ARp(A)dirp = Frp(A) (4.172)

of only L instead of Ny, equations. The approximate solution f(A) can be recon-
structed by solving the reduced system and back-projecting to the original space,

arp(A) = Agg(MFrs(),  @(A) = f(A) = Viigg(A). (4.173)

As the reduced system contains only L instead of Ny s linear equations, it scales as
(worst case) O(L%) < O(N3, f) only. However, the projection VT A(A)V scales as
(’)(Nﬁo f) and needs to be evaluated online, i.e., for every new input A.

To overcome this restraint, many FEM systems allow to apply the affine decomposi-

tion
Ny

) Nr .
Ars(A) = Y a(M)AY),  Fe(A) = Y Bi(A)EY, (4.174)
i=1 i=1

where «;(A),Bi(A) are some coefficients and the A%’S, Flgif);’s are independent of
the input parameters A and can therefore be precomputed offline. This way, the
numerical cost of the online stage is independent of Nj,s. Details can be found in
[31, 32]. Although rigorous error bounds exist [247], a fully probabilistic treatment

of the basis reduction, PDE solution and reconstruction is still missing.

4FEM discretization may lead to a nonlinear system of equations. We confine ourselves to a discus-
sion of the RB method in linear problems only.
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Chapter 5

A physics-aware machine learning
framework for high-dimensional
systems in the Small Data regime

This chapter is based on the findings published in

C. Grigo, P-S. Koutsourelakis:

"A physics-aware, probabilistic machine learning framework for coarse-graining high-di-
mensional systems in the Small Data regime",
Elsevier Journal of Computational Physics 2019, Volume 397, 108842

C. Grigo, P-S. Koutsourelakis:

"Bayesian Model and Dimension Reduction for Uncertainty Propagation: Applications in
Random Media",
SIAM/ASA Journal on Uncertainty Quantification 2019 7:1, 292-323

C. Grigo, P-S. Koutsourelakis:

"Probabilistic reduced-order modeling for stochastic partial differential equations”,
Eccomas Proceedia UNCECOMP (2017) 111-129

As discussed in Section 4.5, surrogate modeling of complex computer codes using
standard machine learning algorithms such as artificial neural networks (Section
4.5.1) or Gaussian process regression (Section 4.5.2) is strongly aggravated in high-
dimensional input/output settings due to the curse of dimensionality. Moreover,
because of the large numerical cost, often only a few hundreds or even less for-
ward model runs can practically be performed for data acquisition. Even rather
SPDE-specific approaches such as (intrusive) gPC (Section 4.5.3) or the reduced ba-
sis method (Section 4.5.4) typically struggle with the "high dimension, small data"
setting.


https://www.sciencedirect.com/science/article/pii/S0021999119305261?dgcid=coauthor
https://www.sciencedirect.com/science/article/pii/S0021999119305261?dgcid=coauthor
https://epubs.siam.org/doi/abs/10.1137/17M1155867
https://epubs.siam.org/doi/abs/10.1137/17M1155867
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In such situations, it is of primary interest to design surrogate models that incor-
porate as much as possible a priori information of the underlying physical process
directly into their model structure. Such methods have become very popular only re-
cently under the catchwords "physics-informed", "physics-constrained" or "physics-
aware" machine learning, primarily constrained to ANN [81-85] or GP models [62,
248], where the basic principle is to enrich the training process by minimization of
the residuals to the governing equations, potentially making classic forward model
evaluation data unnecessary at the expense of transferring much of the numerical
cost to the repeated residual evaluation [73, 86].

However, machine learning models that integrate physical principles directly by
model construction, i.e., without any additional cost during training or prediction
stages, are still underexplored. The approach presented in this chapter takes a step
in this direction by outlining a model that, as a central unit, contains a stencil solver

based on simplified constitutive physics as well as lower spatio-temporal resolution.

For the paradigmatic problems of Stokes and Darcy flow through random hetero-
geneous media discussed in this work, the model is capable to yield accurate prob-
abilistic predictions in a high-dimensional (> 10%), small data (N < 100) regime
even under explorative conditions far away from the training data. To achieve this,
it is indispensable that (a) the machine learning surrogate is able to extract only the
properties from the porous microstructure that are most relevant for the reconstruc-
tion of the fine-grained model (FGM) output (i.e., pressure and velocity fields P, V,
see Chapter 2), and (b) only allows for predictive responses that are in accordance
with basic physical principles. Whilst (a) is essentially equivalent to a dimension
reduction of the high-dimensional description of the random microstructures, (b)
excludes a wide variety of possible predictions that are implausible with regard to
the governing equations of the problem.

5.1 Notation and preliminary remarks

The objective is to design a surrogate model for both Darcy and Stokes flow through
random media, see Chapters 2 and 3 for the governing equations and numerical
solutions. We denote by u, the quantity of interest that is to be predicted by the
surrogate. Typically, u; corresponds to the pressure response of the FGM evaluated
on a regular fine scale grid GY), e, up; = P(x;),x; € GU).

For the moment, we assume that boundary conditions are fixed so that the only vary-
ing input to the FGM is the porous microstructure described by the high-dimensional
input vector A . The random microstructure A can either be described as a digitized
image of pixels (or voxels) being either black for solid or white for fluid spaces (as
depicted in Figure 2.4), in which case Ay is given by a binary list of pixel values.
Although we only consider binary materials here, it is noted that for Darcy flow, the

permeability field can vary continuously, resulting in a non-binary vector A;. Or,
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minimize minimize mput computatm)r\\al model output
reconstruction reconstruction )‘f uf f) uf
error error

/\ /\ dimension reductlon reconstructlon
P(AclAf, 0 c)

.0.) Pef(uguc(A

—
\/ \_/ reduced input surrogate
Ae uc(Ac)

FIGURE 5.1: Left: Schematic representation of the traditional, sep-
arated dimension-reduction/surrogate modeling approach where
both steps are disconnected and the reduced representation A. is
searched to minimize the reconstruction error to Ay and then used
as the input to a surrogate denoted by u.. Right: Connected approach
— the reduced representation A, is searched such that it is maximally
informative for the reconstruction of the response #uy, not the input
Af.

considering microstructures with random non-overlapping spherical exclusions as,
e.g., shown in Figure 2.5, the microstructure can be fully described by a list of radii
and center coordinates of the corresponding circular exclusions. In that case, we
have that dim(A f) = 3Nexcl, Where N, is the number of spherical exclusions of the
porous domain. If N is assumed to be random, it is obvious that dim(A) will
not be constant which, as will become clear later, is by no means necessary. In any
case, Ay may always be transformed to a digitized image with constant dim(A) if
desired.

Given this notation, the FGM is written down as the mapping
uf()tf) ZAf = Uy, (5.1)

and the dataset D the surrogate will be trained on is given by N FGM evaluations,

N
D= {A}n),uf(/\j(fn))}nzl,where A}n) ~ pas(Ag).

Due to the high dimensionality of A and in order for the surrogate model to gener-
alize well, it is imperative that a dimension reduction step is contained in the model
to find a reduced representation A. of A¢ with dim(A;) < dim(As). A common
approach is to perform the dimension reduction using only information from the
model inputs, see the left part of Figure 5.1, with, e.g., a principal component anal-
ysis. This is suboptimal since it discounts the actual purpose of the dimension re-
duction, which is the extraction of all relevant information in order to reconstruct
the FGM output us, not the input Ay itself. The approach we follow here is depicted
in the right part of Figure 5.1: dimension reduction and surrogate modeling need
to be connected and trained in a single model in order to find the joint optimum of a

reduced representation A, and a reconstruction to u £
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Expensive FGM U ¢ (A f )

Decoding -
Reconstruction

Encoding - Dimension reduction
De(Ae|Af, 0¢) cheap CGM pef(uyruc(Ac), Ocy)
model U, (A.) —

FIGURE 5.2: Graphical representation of the proposed three-
component model. Instead of solving the expensive FGM us(A)
directly (orange arrow), we first find an effective, low-dimensional
representation A of the high-dimensional microstructure A via the
conditional distribution pc(Ac|Af, 0c). Next, a coarse-grained model
(CGM) uc(A,) is solved using much coarser discretizations and pos-
sibly simplified governing equations. ~ Finally, the CGM out-
put u is reconstructed via p.f(usluc, 8.f) to yield a predictive
distribution over the FGM response u - Picture taken from [87].

5.2 Model architecture

Due to the aforementioned desiderata, we propose a fully probabilistic three-com-
ponent machine learning model that is constituted of the following key elements [87,
103, 104]:

¢ Encoding/dimension reduction: a probabilistic mapping from the high-di-
mensional stochastic input A ftoa much lower-dimensional, encoded repre-
sentation A.. This mapping shall retain as much as possible information from
Ay for the reconstruction of the true response us(A¢). It is mediated by the
conditional density p.(Ac|Af, 6.) controlled by the parameters 6.;

e Coarse-grained solver: A coarse-grained model (CGM) operating on larger
length scales and possibly simplified constitutive equations is the central com-
ponent of the model. For a general, probabilistic CGMs, we denote the associ-
ated input/output mapping by pcom(uc|Ac);

e Decoding/reconstruction: A probabilistic mapping from the CGM output u. to
the true FGM response u; mediated by a probabilistic mapping p.f(uf|uc, 0.¢)
controlled by the parameters 6.r. The decoder mapping p ¢ should take into
account the smoothness/spatial character of the FGM response.
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FIGURE 5.3: Graphical representation of the three-component
Bayesian network implied by p(us|Af, 6.5, 8) in Equation (5.2). The
internal vertices A, u. are latent variables. Picture taken from [104].

A graphical illustration of the suggested model can be viewed in Figure 5.2.

The connection of the above densities gives

P(uf‘/\f/ec/ecf) = /pcf(uf‘uc;ecf)PCGM(uc|/\c)Pc(/\c‘/\f;ec)duchc- (5.2)

Although a model based on a probabilistic CGM pcgm(#c|A¢) is conceivable, we as-
sume a deterministic CGM u, = u.(A.) for the rest of this work such that pcgm (uc|Ac) =
d(uc — uc(Ac)) and the above equation simplifies to

p(uglAs, 0., 0,) = /pcf(uf|uc(/\c),ecf)pc(/\cmf,ec)d;\c. (5.3)

This equation can be viewed as the likelihood of a single FGM data pair {As,u;} and
is thus the crucial ingredient of the proposed model. The probabilistic graphical
model [249] defined by Equation (5.2) is depicted schematically in Figure 5.3.

It is noted that the three components are modular in the sense that they can easily
be adapted to various kinds of FGM data. For example, similar model architectures
have been used in other studies, e.g., for time dependent problems [250] or atomistic
modeling of materials [251, 252]. Moreover, the specific probabilistic models (e.g.,
ANNSs, GPs, linear models. ..) for p., p s are not determined by the above structure
providing enough freedom to adapt the model to the FGM data under investigation.

The latent variables A, can be seen as a compressed, encoded version of the FGM
input A which are, at low computational cost, transformed to u, by a simplified
physics model u:(A) which is finally decoded to the FGM output u; by the proba-
bilistic coarse-to-fine mapping p.r. It is again emphasized that for accurate predic-
tions of p(u¢|Af, 0., 8.¢), it is unimportant if A, is a high-fidelity encoder in the sense
of low reconstruction error of the FGM input As. Instead, A must be a high-quality
encoder of the FGM output uy. In that sense, A. can be very different from a pure
(linear or nonlinear) dimension reduction of As. A detailed description of the en-
coding density p. (Ac|A fr 0.) as used in the numerical examples of Chapter 6 is given
in Section 5.2.1.
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It is important to note that the coarse-graining procedure Ay — A, comes with an un-
avoidable amount of information loss (unless redundancies are present in A) since
for dim(A.) < dim(As) the mutual information I(A;, As) is bounded from above,
I(A, A f) < Ip [253]. This means that, even in the limit of infinite training data
N — oo, there will still be a residual amount of predictive uncertainty which is to be
captured in the above densities. As for any probabilistic model of finite complexity,
one may therefore discern between uncertainties due to (a) finite data and (b) model

inadequacy.

The decoding step u. — uy, mediated by the decoding density p , can be seen as
a generative process for the FGM output. As dim(u.) < dim(uy), the proposed
framework will tend to smooth out predictions of u¢ because of its incapability to
fully resolve responses of higher dimension as u.. Because of the spatial structure
us; = P(x;), x; € G'f), it appears most natural to adopt a model for pcs that plays
the role of an interpolant, i.e., the CGM response components u.; = P:(xj), xj €
G, with G a coarse grid corresponding to the discretization of u.(A.), should
be more important the smaller the distance ||x; — x;|| between fine- and coarse-scale
evaluation locations x;, x; is. A detailed presentation of the decoding density p s as
applied in Chapter 6 is given in Section 5.2.2.

The central component of the model is the CGM solver u.(A.) which also determines
the physical interpretation of A and its relation to A . Apart from the constraint that
the CGM u.(A.) needs to be much cheaper to evaluate than the FGM u(A¢), several
choices are possible. The most direct approach is to use a CGM that corresponds to
a numerical solver to the same PDE as in the FGM, but with a much coarser spatio-
temporal discretization. Other possibilities are given by different physics models,
i.e., different governing equations for CGM and FGM, or fully stochastic models
pcaem(uc|Ac) based on, e.g., the residuals of an iterative FEM solver. In this work, we
confine ourselves to deterministic CGMs u.(A.) based on coarser discretizations and
possibly different governing equations, namely Stokes and Darcy flow, see Chapter
2. The exact specifics are given in the corresponding experiments of Chapter 6.

5.2.1 The encoder distribution p,

The encoder distribution p(A¢|A £ 0.) constitutes the probabilistic mapping from
the high-dimensional, fine-scale description of the microstructure A to the much
lower-dimensional, effective representation A. and can assume many different forms.
It should be capable to extract as good as possible the microstructural features from
Ay that are most predictive for the FGM output. One possible choice is to make use
of the expressivity of artificial neural networks (ANNSs) or, given the spatial nature
of the random input A #, to use convolutional neural networks (CNNs) [65, 67, 254].

However, given the rich literature on random heterogeneous media (see, e.g., [1]

and references therein), using an ANN would be tantamount to a waste of a sizable
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amount of given a priori information about microstructure/property connections:
for many material properties such as electrical or thermal conductivity, diffusion
coefficients or elastic moduli, there exists a wide range of identified relevant topo-
logical features [255-257], effective property approximation formulas [258-260], or
rigorous bounds [261] that could/should be hard-coded to the model to enrich it
with the available amount of background knowledge.

For the encoding distribution p., we thus suggest a Gaussian linear model of physi-
cally motivated feature functions ¢;,(As) presented in detail in Section 5.2.1 which

formally takes the form

(m)

features -
A=Y, Ocim@im(Af) +Ton'*Zn  Zmw ~N(0,1), (5.4)
=1

where 6. = {6, 7, '} are modeling parameters to be learned from the data'. Easily
graspable feature functions are, for instance, solid /fluid-phase volume fractions or

expected 2-point correlations of the given microstructure A. In principle, different
P1m(Af)

sets of feature functions @,,(As) = : can be applied for the different
o

latent space components m. Moreover, the coefficients 6, are generally different

for different components m, i.e., éc,jm # gc,]-m/ for m # m’, although a tied version

Ocjm = écl]-m/ may be a reasonable strategy if model complexity needs to be reduced.

The linear combination of feature functions is augmented by uncorrelated Gaussian

white noise of variance 1, for the component m such that the distribution p, is

dim(A,)
pC(Ac,/\fr O, Tc_l) = H N()\c,mwcT,m(PM(/\f)rchn%) (5.5)

m=1

with the feature function vector ¢, (A f) for component A, and 0., the correspond-
ing coefficients.

One may argue that a model of the type given in Equation (5.5) with hand-crafted
feature functions @;,,(A¢) requires a lot of trial-and-error experiments/experience

iifl(m that leads to ac-

curate predictions of the overall surrogate p(u¢|Af, 6.5, 6.) — as opposed to generic

from the analyst to find a set of feature functions {¢,,(Af)}

models like ANNs or GPs which do not require any a priori model selection. As
will become clear in Section 4.2.2, this is invalid because sparsity enforcing prior
models will be applied that automatically detect the most relevant feature functions
out of a large library of features while pruning irrelevant ones by setting the corre-
sponding coefficients éc,]-m = 0. The size of the feature library will only affect the

-1
Tc,l

: ), M = dim(A;) wherever it is more

21
TC,M

IWe use the notation £, = diag(7!) with 771 = (

convenient



8 Chapter 5. A physics-aware machine learning framework for high-dimensional
systems in the Small Data regime

training time, but is irrelevant for prediction because the features corresponding to
éc,jm = 0 not necessarily need to be considered. On the other side, also the network
architecture of an ANN (number, size and type of layers, regularization, etc.) or the
covariance function of a GP need to be pre-specified and hard-coded by the user,

which is equivalent to model selection by feature engineering.

From microstructure encoding to effective material properties

As discussed above, the low-dimensional, encoded representation A, of a micro-
structure A serves as the input to a coarse-grained, effective solver u.(A.) which is
based on coarser spatio-temporal discretizations and possibly simplified governing
equations. Therefore, there needs to be a valid translation of the encoded repre-
sentation A, to effective material parameters K the coarse-grained solver can work
with.

A key issue of the A, to K translation is that material parameters K such as thermal
or electric conductivity, magnetic/fluid permeability, dielectric constants or elastic
moduli often need to comply with constraints of the form K;;, > 0 or K, < K;; < Kj;
for scalar quantities K, or K;, = pos. def. for second order tensor material proper-
ties. This can be achieved using a link functions x (A ) of the form

K = x(Aem) = ehem for - Kin >0,
e/\c,m

1 + g)\c,m

1 112 2 AL 0 AL AL2
/ ,m / —
K = X(Acor AcmAem) = | 15 1m0 ¢ 5 for K, = pos.def.,
/\c,m /\C,m 0 /\c,m

Ky = X(/\c,m) = K, + (Khi — Klo) for K, < Ky < Ky, (5.6)

where the last one corresponds to a Cholesky factorization K = L,Ll.ForK,, L, €
R?*4, this would correspond to a 1(d + 1)d times higher latent space dimension

dim(A.) compared to the case of scalar/isotropic quantities Ky,.

In the experiments carried out in Chapter 6, u.(A.) corresponds to a finite element
solver for Darcy flow as given in Equation (2.6), where the effective material prop-
erty modeled by A, is the permeability field K = K(x, A;). The problem domain Q) is
subdivided into Neps = dim(A.) of non-overlapping subregions {Qm}iiflw)
that UZ‘:”{‘ Q= Qand Q,, NQyy = @ for m # m'. In every subregion Q,, C Q,

the permeability tensor is modeled to be constant, i.e.,

such

Ncells,c
K(x,A) = ) =1q,(x)Kn(A.), (5.7)

m=1
where 1, (x) denotes the indicator function for x to be in subregion (,,. To obtain
physically meaningful solutions to Darcy flow Equation (2.6), it needs to be ensured
that K(x,A;) = pos.def. which is accomplished by the assumption of an isotropic
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material such that K,,(A.) can be written as
Kn(A) = Kn(Aew) = eI = Ky 1, (5.8)

having the convenient property that one component A, controls the effective per-
meability tensor K,, for every subregion (). In Chapter 6, the subregions (), are
modeled as squares. It is noted that the effective permeability field discretization
implied by Equation (5.7) not necessarily needs to coincide with the finite element
discretization used to solve the CGM problem. Obviously, many other choices of
representations of K(x, A.) are possible, e.g., an expansion in appropriate basis func-

tions, as long as they ensure positive definiteness of K(x, A.).

Microstructural feature functions

It is clear that the expressivity of the encoder distribution p. hinges on the library
dim(A,)
m=1

feature functions as affordable (typically the limiting factor is increasing training

of feature functions {¢,,(Af)} . A reasonable strategy is thus to use as many

time) that can be found in the literature.

In the numerical experiments of Chapter 6, we use topological descriptors such as
n-point correlation functions [257], surface area and pore size density [255], chord-
length densities [262] or lineal path functions [256]. As we are investigating flow
problems through random porous media, another class of feature functions is given
by well-known quantities from fluid dynamics such as the Poiseuille law [94] or
the Kozeny-Carman equation [95-97]. Also, effective medium approximations from
other physics, such as Maxwell’s approximation [259], Archie’s law [98, 263] from
classical electrodynamics or the Bruggeman formula [260, 264, 265] may be applied.
Other features are based on image recognition tools [93] or auto-encoder latent space
representations [99, 226]. As they play a pivotal role in the surrogate modeling
framework presented in this work, we dedicate ourselves to a short presentation of
the most important feature functions that were used during this study and partially

found their way into the examples of Chapter 6.

Unless otherwise noted, the feature functions ¢;,,(Af) are evaluated only on the sub-
region (), of the corresponding effective material property field discretization, i.e.,
@jm(Af) = @jm(Asm) where Ag , is the part of A that determines the microstructure
in subregion ().

New feature functions can be constructed straightforwardly by composition with
linearly independent” functions such as log(¢;(Af)),

2[f there are linear dependent features in a linear model, the maximum likelihood estimate for 0,
would be non-unique. Obviously, this degeneracy is lifted by introduction of a prior on the param-
eters .. Nevertheless, linearly dependent feature functions should be avoided because they contain
redundant information.
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Constant term It is advisable to include a feature function ¢;,,(As) that models a
constant offset which is independent of the underlying microstructure A, i.e.,

Pim(As) = 1. (5.9)

Using such a feature function exclusively would assign the same effective material
property in any subregion (), of any training sample n.

Volume fraction A simple, but quite expressive class of feature functions ¢ is
based on the volume fractions |Qs |/ [Quml, [Qfm|/ Q| =1~ |Qsm|/|Qum| of solid
(or weakly permeable) and fluid (or highly permeable) phases in subregion .

Effective medium approximations For many problems in random heterogeneous
media, there exist approximation formulas for effective material properties based on
the topology of the microstructure A¢.

One example is the Maxwell-Garnett approximation (MGA) [259] for the effective
electrical conductivity Aeg in a two-phase random medium with spherical inclusions
of conductivity Ainc in a matrix of conductivity Amat. In 2D, the approximation for-

mula is given by [1]

Qinc‘

)\inc + )\mat + W ()\inc - )\mat)
Aeff = /\mat [Oinc] , (510)
)\inc + )\mat - |(l)n|c (Ainc - )\mat)

|Qinc‘
[8]
as a feature function of the form ¢;,,(As) = Aeg or used in a composition with any

where is the volume fraction of the inclusion phase. This can be directly used

other nonlinear function®.

Another example is the self-consistent approximation (SCA) or Bruggeman formula
[260]

1
)\eff = 5 (0‘ + o2 + 4)\mat/\inc>

5.11)
- |Qmat| |Qinc| (
D‘—Amat (2 |Q| 1 +)\1nc 2 |Q| 1 s

‘Qmat| — 1 _ |Qinc‘

where =
] [¢]]

is the matrix phase volume fraction.

Moreover, there is the differential effective medium approximation which is given
in 2D by the solution of [1]

( Ainc - )\eff > <Amat)1/2 _ |Qmat| (5 12)
/\inc - /\mat /\eff |Q| ’ '

3For instance, log(Aefr) can be employed to compensate for transformations of the form given by
Equation (5.8).
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which can be solved using a suitable numerical algorithm.

In the case of an FGM model based on Stokes flow, there is no quantity in the govern-
ing equations such as conductivity or permeability. Nevertheless, both the Maxwell-
Garnett and self-consistent approximations can still be applied since one may con-
sider the infinite contrast limit AAlT“; — 0 which leads to finite quantities in both cases.
For the MGA, it is found that

(5.13)

and equivalently for the SCA

Qin
Aeff = Amat <1 - 2‘ |Q‘C‘) (5.14)
where obviously the question arises which value to put for Apma: If the above approx-
imations in the limit of fully insulating spherical inclusions are applied as feature
functions of the form Pim (A f), it is irrelevant which value to put for A, because its
value will be absorbed in the corresponding model parameter coefficient gc,]-m.

Generalized means For Darcy flow through binary random media in 1D, it is a
well-known result [1] that the effective permeability A.¢ has the closed form solution

-1

pixels
Aetf = M- </\f plxels ( Z /\fl> (5.15)

where A is constructed such that A ; is the permeability at pixel i of a discretized
(one-dimensional) image of the microstructure. The function M_1(Af) is known
as the harmonic mean. Moreover, in 2-dimensional Darcy flow problems through

random binary media it has been shown [261] that

N

1 pixels
M_1(Af) < Aegt < My(Af) = Norat Y. Asi (5.16)
pixels ;—1

where M;(Af) > M_1(A¢) corresponds to the arithmetic mean.

Both the harmonic and arithmetic means are members of a parametric family of
functions, namely the generalized mean

1 Npixels /e
M (Af) = <N y Afr,i> . (5.17)

pixels ;—1
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FIGURE 5.4: Graphical representation of certain families of feature
functions. The blue line with the red dots in the upper left corner il-
lustrates the chord length density, which is the density of the lengths of
line segments that lie completely in the solid /fluid phase (separated
by the red dots). The red and gray circles in the upper right corner
visualize the pore size density, which is the density of distances to the
closest solid/fluid interface from a random point in the pore space.
The green lines in the lower right corner represent both the lineal-

path and the two-point correlation functions L) (r, Ag), Séi) (r,Af):

LE=0)(r = 1y, A f) gives the probability that a random line segment

of length rg lies wholly in phase iy, whereas Sgi:iw) (r =719, As) mea-

sures the probability that both end-points of a line segment of length
rg lie in phase ig. The orange lines in the lower left corner represent
center-to-center mutual exclusion distances. The right picture shows
an Euclidean distance transform of the left microstructure can be used
as a basis to construct feature functions. Picture taken from [87].

Also, the well-known geometric mean

(5.18)

Npixels ) 1/ Npisels

Mo(Af) = ( 11 Af,i

is a member of that family of functions, namely for { = 0. It is noted that M, (A f) >
My(Af) for a > b. It is thus reasonable to include generalized means M; for —1 <
¢ < 1as feature functions to the model. Also, generalized means for different values
of { can be applied, which may turn out to be predictive for the effective material
property in conjunction with different feature functions applied. Generalized means
can also be evaluated on subregions Qg,, C (), €.g., un straight lines in x- or y-
direction from edge to edge, as visualized by the green lines in Figure 5.5.

Two-point correlation function The two-point correlation function (also called au-
tocorrelation function) Séi) (r,A f) measures the probability to find two points x1, x2
with distance r = ||x; — x2|| both in phase i € {s, f}, which can easily be measured
either by Monte Carlo or by counting all pixels that are at a distance r apart and
both in phase i. Feature functions can be constructed by fixing the phase i = iy and
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distance r = rg such that ¢;,,(A¢) = Sgi:iO)(r = 10, Af). The two-point correlation is
represented graphically by the green lines in Figure 5.4.

Specific surface The specific surface s measures the interface area between solid
and fluid phases per unit volume. There are several ways to measure the specific
surface: on a pixel-based image of the microstructure A £, One can count the interface
pixel edges. Given microstructures with non-overlapping spherical exclusions (see
Section 2.4.2), one may simply sum up the circumference of all exclusions. Moreover,

@)
it was shown in [266] that in 2D, the specific surface s is given by s = —ndsér .

Kozeny-Carman equation The Kozeny-Carman equation [95-97, 267] gives an es-
timate for the permeability of a porous microstructure according to

a0l
= 511y 1/10]

(5.19)

where s is the specific surface. Care must be taken for microstructures where [Q¢| ~
|Q)] since in that case the denominator tends to zero and A.g blows up.

Lineal-path function The lineal-path function L) (r, A ) [256] measures the prob-
ability that a randomly dropped line segment of length r lies wholly in phase i.
This can be measured either by Monte Carlo or by looping over all pixels of dis-
tance r and counting the instances where the above condition is fulfilled. Feature
functions can be constructed by fixing the phase i = iy and distance r = ry such
that @ (As) = LU=0)(r = ry,As). Moreover, for spherical exclusions, it can be
shown [1] that L) takes the form (in the limit of infinitely large microstructures)
LO(r,A f) = %eﬁ ¢, Another feature function can be constructed by estimating
the length scale /, e.g., by a least squares fit of an exponential decay function to sev-
eral lineal-path evaluations at different distances. A visualization of the lineal-path

function is given by the green lines in Figure 5.4.

Chord length density The chord length density can be understood as follows:
given an infinitely long straight line going through an infinitely large random bi-
nary microstructure Ay, the chord length density pggor 4(r|Af) gives the density of
lengths of line segments that go from phase boundary to phase boundary within
phase i, see the blue line in Figure 5.4 for a graphical illustration. Feature functions
can be constructed, e.g., by computing the mean or other moments of the distribu-
tion pgfor 4(7|A¢). In discretized images of isotropic random media, the chord length
density can be estimated by counting connected pixels in phase i on all possible
straight lines going in up/down or left/right direction. For the matrix (fluid) phase
of spherical exclusion systems, analytical solutions based on the expected exclusion

radii and the volume fractions are available [1].
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Pore size density The pore size density p}(){))re(rM ) gives the probability density
that a randomly chosen point x in the pore (fluid) space ()¢ is at a distance r from
the nearest solid/fluid interface. In a discretized image, this can be evaluated by
sampling a random point x € () and computing the distances of x to all pixels
of the image. The distance to the closest pixel in phase () gives the radius of the
pore space. The pore size density can be approximated by a histogram of the found
pore space radii. Approximate analytical expressions exist for microstructures with
spherical exclusions [1]. The pore size density is visualized via the red and gray
circles in Figure 5.4.

Statistics of exclusion radii For microstructures based on random polydisperse
spherical exclusions, features can be constructed from the statistics (e.g., mean, stan-

dard deviation, minimum, maximum) of the exclusion radii.

Statistics of mutual exclusion distances In microstructures with random spherical
exclusions, feature functions can be designed from the statistics of mutual exclusion
distances, measured from edge to edge or center to center. Center-to-center mutual
distances are visualized by orange lines in Figure 5.4.

Nearest-neighbor functions For microstructures based on spherical exclusions,
the nearest-neighbor density functions [1] Hy(r|As), Hp(r|Af) can be defined.
Hy(r|As), Hp(r|Af) give the probability density that at an arbitrary point in the mi-
crostructure (for Hy)/at an arbitrary spherical exclusion center (for Hp) the center
of the nearest neighbor particle is at a distance r. One can define the same functions
hy, hp considering the nearest neighbor surface instead of the nearest neighbor cen-
ter. Approximate analytical expressions exist based on the volume fractions and the
average mutual distances of spherical exclusions.

Exclusion probability functions For microstructures with spherical exclusions,
the exclusion probability functions Ey(r|Af), Ep(r|As) [1] give the probability of
tinding a spherical cavity of radius r around an arbitrary point (for Ey)/an arbitrary
exclusion center (for Ep) in the microstructure As. It can be shown that Hy (r|A¢) =

—W, Hp(r|Af) = _BEpngMf ) [1]. Accordingly, there exist closed form approxi-

mations just as for the nearest neighbor functions Hy, Hp.

Distance transforms Given the binary microstructure as a discretized image of
pixels, one can compute the distance transform. The distance transform computes
for every pixel in phase i the distance to the closest pixel of phase —i and assigns
the value to the corresponding pixel of the distance-transformed image, see Figure
5.4. A feature function ¢ can for instance be based on any statistic of the distance-

transformed image, e.g., the mean, standard deviation, maximum, etc.
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FIGURE 5.5: Visualization of a blob convex area (blue line) and its

maximal extension in x- and y-direction. The green lines show possi-

ble paths along which generalized means can be taken. The right part

of the figure shows a Euclidean distance transform of the microstruc-
ture on the left. Picture taken from [103].

Image properties By making use of pre-implemented image analysis functions
[268] on the binary random field defining the microstructure A, one can construct
features such as the average size/number/convex area /extent in x- or y-direction
of connected phase blobs and any statistics of those quantities. The blob convex area

and maximum extension in x-/y-direction is visualized in Figure 5.5.

Many-body potentials For microstructures with spherical exclusions, one may use
many-body potentials V(d) as features like

pim(Ap) = ), V(d)), (5.20)

exclusion

pairsin As
where d; is the center-to-center distance of exclusion pair j. Different kinds of poten-
tials like square wells or the Lennard-Jones potential can be applied.

Ising energy Given a discretized image of the microstructure, one may use the
energy of a 2D Ising spin system, where the solid phase corresponds to ‘spin up’
and the fluid phase to ‘spin down’. The feature function has the form

Pim(Af) = Y., Apids, (5.21)
(i,j)in/\f

where (i, j) in A denotes nearest neighbor pixels in A . The interaction constant can
be dropped as it can be absorbed into the corresponding model parameter éc,jrrr

Shortest path from left to right/up to down Estimating an effective material prop-
erty for a binary material in a square subregion (), C (), one could compute the
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FIGURE 5.6: Visualization of what is called the "Gaussian linear filter"

in [104]. The feature function output ¢;,,(Af) is the inner product

of the above Gaussians with the binary microstructure in the square
subregion (),.

smallest distance of a path in the fluid phase in left/right up/down direction from
square edge to edge®. If no connected path through the fluid phase exists, the feature
may return the maximum possible distance in the cell, i.e., the square diagonal.

"Gaussian linear filter" To model that pixels close to the center of a square sub-
region (), should be more important than pixels near the boundary, one can apply
what is called a "Gaussian linear filter" in [104], see Figure 5.6. The feature function
is given by the inner product of the discretized image of the microstructure with the
linear filter.

Autoencoder representations A class of feature functions that can be constructed
via semi-supervised learning is given by autoencoder representations [156, 226],
which also include PCA loadings. The principle is as follows: based on a large
unsupervised set of microstructures A £ train an autoencoder/do a PCA to find a
low-dimensional representation &,dim(&) < dim(Ay) that is optimal in the sense
that it allows to reconstruct Ay with minimal reconstruction error. The components

¢; may be used as features ¢.

5.2.2 The decoder distribution p.s

The coarse-to-fine mapping u, — uy that is mediated by the decoder distribution
pef(uclus, 0.¢) should take into consideration the spatial properties of the problem:
as mentioned before, the component uy; of the FGM response vector is associated
with a point x; € Q) by the fact that it corresponds to the FGM response field at
that point. In both Stokes and Darcy paradigms, this is the pressure field P(x) such
that us; = P(x;) where x; € G) and GU) is a regular square grid in Q) where P is
interpolated on from the FGM solution field.

Similarly, u. is associated with spatial locations via Uej = P(x]-), xj € G, where P is
the pressure response of the CGM Darcy model (see Section 2.2) and G(°) is a square
grid in Q) of much coarser shape than Gf).

“4This is done with the Matlab built-in bwdistgeodesic function, see [93].
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Given this spatial structure of the problem, it is reasonable to construct p.f in the
form of an interpolator in the sense that components u ; associated with x; should
contribute more to components 1 ; associated with x; the smaller the distance ||x; —
xj||. Given that the Darcy-type CGM finite element solution is of the form (see Sec-
tion 3.1.1)

dim(u)

u.(x) = P(x) Z ue,iipi(x), (5.22)

j=1
it appears natural to adopt a model of the form

up = P(xi) = uc(x;) + 1% Zi Z; ~N(0,1)

dim(u.) s s (5.23)
= Z ”c,jl/)j(xi) + ch,i Zi=Wu,+ Tf,i Zi,
1

c

where W plays the role of an interpolation matrix from G(©) to G'f) with the compo-
nents Wi; = ¢;(x;), where ¢; are the CGM shape functions and 7.y,; is the precision of
component uy,;. Alternatively to fixing W;; = 1;(x;), it is possible to treat W as a free
parameter to be learned from the data. It is noted though that W € R (#)xdim(uc),
i.e., the high number of free parameters in W need to be reduced by either introduc-
ing further constraints or strong priors need to be applied in order to avoid overfit-
ting. Finally, the decoder distribution p, is given by

pes(usluc(c),0cp) = N (ug|[Wu)e(Ac), diag(z ;) (5.24)

with model parameters 6.7 = { W, 7y }

An interesting alternative for modeling the decoder p,y is given by Bayesian non-
parametric models such as Gaussian process (GP) regression [47, 155] from u.; =
P(x;) touy; = P(x;). GP regression can exploit the spatial structure of the problem
by employing a stationary covariance kernel of the form

cov(uc,j,us;) = cov(P(x;), P(x;)) = cov(xj,x;) = cov(xj — x;).

5.3 Sparsity prior models and model training

It is clear from the discussion in Section 5.2.1 that the number of feature functions
applied in the encoder distribution p. is practically only limited by computational
resources, see Section 5.5. As it is typically unknown a priori which microstructural
features are important/unimportant for a certain effective material property, one
strategy can be to sequentially add features from a predefined [148, 269, 270] or
parametric [201, 271] family. The strategy advocated in this work is to include a
large, wide-ranging library of feature functions ¢;,(Af) from the beginning and let
a sparsity prior filter out the most relevant features based on the training data.
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It is clear that the more feature functions ¢;,,(As) are included, the more free model
parameters 6;,, are to be learned from the data. As p, is specified as a Gaussian linear
model, finding a maximum-likelihood estimate’ for the encoder parameters 0, is
possible but would end up in severe overfitting due to excessive model complexity.
A common remedy in the Bayesian framework is the use of prior distributions to
regularize overly complex models.

In particular, it is desirable to use priors that enforce sparsity, i.e., priors that prune
all but a handful 8. j,,"s which correspond to feature functions that, based on the
training data, appear to be most predictive for the sought effective material prop-
erty. During the development of this work, several different types of sparsity priors
have been applied /designed for the latent variable model defined by Equation (5.3),
such as Student-t type priors [147, 150, 154] (see Section 4.2.2), Laplacian priors (or
LASSO regression [145, 272], see Section 4.2.2, published in [103]), the relevance
vector machine [153, 156] (see Section 4.2.2, published in [104]) and the variational
relevance vector machine [161, 162] (see Section 4.2.2, published in [87]).

Not only will the application of one of the above sparsity priors prevent the model
from overfitting, but as well allow for physical interpretation as it extracts the mi-
crostructural features that are most significant for prediction of effective material
properties. Additionally and more importantly, sparseness in §.-space leads to com-
putational benefits in the prediction stage as pruned features are not required to be
evaluated anymore.

5.3.1 The maximum likelihood approach

In this subsection, we describe the model training by maximizing the likelihood

function E(Dlecf, 0., T;) for the training data D = {/\} ),uj(( )}N v Obviously, as
explained in the previous paragraph, a pure maximum likelihood approach would
be incompatible with the discussed desiderata of including as many microstructural
feature functions ¢;,,(A¢) (and therefore parameters éjm) as possible. This subsection
can thus be seen as purely academic with the intention to set the basis and clarify
the notation for the subsequent discussion of sparsity enforcing models.

According to Equation (5.3) and assuming independent and identically distributed
samples, the likelihood function for the training data D is given by

’:]z

(D|6Cf16(1/ TC - |A}n)/6CfIéC/TC)
(5.25)

N
H /PCf |”c )>r96f)PC(/\£n)|Aj(fn)rec/ TC)dAgn)-
n=1

5For given decoder parameters 6, f
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Model training

The latent variable model defined by Equation (5.3) can be trained efficiently by the
Expectation-Maximization (EM) algorithm [174], see Section 4.3.1. In order to do so,

we apply Jensen’s inequality to find the lower bound

. A (). /() ()5 (1) 7 (n)
log £(D|8., 8, 7.) = Z/pcf(uf (A7), 0c) pe (ALY ALY, 6, )AL
n=1

pcf(uj(fn) |uc(A£n))/ ch)Pc(Agn) |A}n)/ 0., )
gy (A

N il}—(n) ({%gw}j_l;ﬂcf, ., Tc> =F <{4A£n>}nN_1;9Cf, 0., TC>

where the g 40 can be arbitrary probability densities. As discussed in Section 4.3.1,

> [ 4,0 () og A" (526)

the EM-algorithm iteratively computes expected values and maximizes the lower

N
bound F w.rt. the auxiliary distributions {q A(")} . (E-step), and subsequently

~ n=
maximizes F w.r.t. the model parameters 6, £, 0c, e (M-step). It is easily seen that

the auxiliary distribution g, ) that maximizes the lower bound F () for a given set

of parameters Bgt), éE”, C(t) is given by

By (ALY o per o e (AL, 7 ype (AL 1A, 6, ) (5.27)

because this is the equality limit of the inequality in Equation (5.26).

To maximize F w.r.t. the parameters 6. fr 0., T, for fixed auxiliary distributions as
given by Equation (5.27), it is necessary to compute gradients w.r.t. the parameters,

S ) (), (A"
0 BZ ngcf(”f luc(Ac )/ch) xo

n=1 NC)

‘ (5.28)

+ <log pe(A LY |;\J([n), 0., Tc)>q(,) )
A1)

(4
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where 0 denotes an arbitrary model parameter. Elementary mathematics and the
previous definitions for p, p s yield the equations

VwF ") = diag(zs) (u;%z (g = WAl <A£”)>>q<;<>m) : (5:29)
Ve, F) = 21_141 _ % (Wf‘lﬂ))Z . 2uj(jji) (W (u:(AM)) (;3@] i+ (W ( Aén})]lz>q;?,,>> , (5.30)
Vo F " = Tem (<A£f2> qugn)rp(/i) - (¢53)(¢53))T)9c,m) , (5.31)

Ae
VenF® =50 — 2 (<<A£%>2>qm —200) 0 (@) e + <<¢%’>>Téc,m>2) , 632)
cm NO) NO)
with (pgﬁ) = (pm(A}")). To find the maximum likelihood parameter estimates, the

above gradients can be fed to any gradient-based (stochastic) optimizer or, as all
model parameters only appear up to linear order, closed-form update equations
can be obtained by setting the gradients to 0, given estimates of the involved ex-

pected values. It is readily seen that the matrix YN, q)gff) ((p%))T is rank deficient if

dim((pgf)) = dim(f.,;) < N. In such a case, there would exist an infinite number

of solutions é;ﬁm which all perfectly reconstruct the latent /\Eg’s — a signal of severe
overfitting.
The expected values (/\E",%) o <()\£”n)1)2> o <uclk(A£n))> ® <uf,k(A£n))>q(t> w.r.t.

KU T T e
q(;g)n) involve the CGM solver u, (Aﬁ”) ) such that they are not given in closed form and
need to be estimated using one of the approximate inference methods presented in
Section 4.3. As gradients V) u.(A.) are available (see Section 3.1.1), it is suggested
to use a gradient-based MCMC kernel (as, e.g., presented in Section 11) or stochastic

variational inference with reparametrization trick (see Section 4.3.4).

5.3.2 The Laplacian prior model

In the work published in [103], a Laplacian prior of the form

» dim(/\c) Nfeatures,m 5
p(6:|B) = \éﬁexp {_\/B Z Z ‘Qc,jm‘} (5.33)
m=1

j=1

is adopted on a surrogate model for Darcy flow simulation which is calibrated by
finding MAP estimates of the model parameters. As discussed in Section 4.2.2, a
Laplacian prior leads to sparse MAP estimates for 8, where the degree of sparsity
is controlled by the hyperparameter B. Appropriate values for B can be estimated,
e.g., via cross-validation [155, 273], the Akaike information criterion [274, 275], or by
minimization of Stein’s unbiased risk estimate [149, 276].
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FIGURE 5.7: Graphical representation of the Bayesian network de-
fined by the posterior given in Equation (5.37). The part with the teal
background corresponds to the likelihood and is repeated N-times.

A characteristic pitfall of the Laplacian prior is that MAP estimates, despite being
unique®, can not be found in closed form/via gradient-based optimization since the
posterior is not differentiable for points where any component 6, = 0 such that
gradients typically do not vanish at the optimum. One valid approach to maximize
the posterior in 8, is given by the EM-algorithm [147] (see Section 4.3.1) which is

discussed in the sequel.

Model training

For efficiency and modeling purposes, it is assumed that the coarse-to-fine interpo-
lation matrix W is fixed to W;; = ¥;(x;) (as discussed in Section 5.2.2) such that
0.f = 7. We further assume a prior p(7.s, 0., T.) of the form

p(tes,0c, ) = p(Bc|B) - const., (5.34)

with p(0.|B) given by the Laplacian in Equation (5.33). The crucial idea in maximiz-
ing the posterior in §, via EM is to write the Laplacian prior as

p(Olp) =TT [ N (@ejnl0 ) 1l )3 (539
where p(ju|B) is
p(vjm|B) = geXP {—gwm} , Ym > 0. (5.36)
The posterior p(0., T., T, £ |D) is then given by
P(éc/ L ch]D) & E(D\ch, 0., TC)P(GCI.B)

a (). (5 () ()4 (1) 5 (n)
:/' |Pcf(uf uc(Ac ), Tef ) pe(Ac |/\f /0c, Te)dAc (5.37)
n=1

) HN(gC/jm ‘0, 'ij)p<’)’jm ’ﬁ)d'yjm
jm

6Assuming a Gaussian likelihood and fixed training data
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which defines a Bayesian graphical network depicted in Figure 5.7. Using Jensen'’s

inequality and the conditional independence of /\E”) and 7y, this can be lower

bounded as
peg i A", wep)pe (1AL B 7)o

n Cc
7,00 (AL")

N(écjm|0/7jm)p(7jm‘ﬁ)
+ A Yim) 1 -
%/ T (1) 108 = o)

:}-({q/\gn) }nNzl; 0c, T, ch) + ]:7({‘7%'7” }ij} 0c,).

N
log p(8c, T, 7ef|D) = ) / 7,0 (A") log
n=1 ¢

drij

(5.38)

(t)
/\£n)

is again given by Equation (5.27) whereas the optimal q%}ﬂ

Due to factorization, g
is

a5, (Fim) & N8 10, %) p (il B)- (5.39)

Gradients w.r.t. 75, T are identical to the ones given by Equations (5.30), (5.32) and
the closed-form updates are given by

n=1 T Al

(t1)y—1 _ o 02 o () () | ()2
(ch,i ) Z ((”f,z‘) 2up; (Wuc(Ac")) o Ji + ((Wuc(Ae )]z>q(t>n ) , (5.40)

(V-1 _ v (™2 oy ) g 5
(Tc,m )= 2 <(Ac,m) ) 2<)\c,m>q(f)>(Pm ec,m‘|‘((Pm Ocm)” |- (5.41)

n=1 qu’” al

Computing zeros of the gradient V5 (F + F,) yields the update equation for 8,

) N (diag(ym)) 0 \ T N, :
e£f$”=<2¢%ﬂ(fp%))T+(t)%”’> YA o G4
n=1 T

c,m
where elementary integration gives

At
f 'y]mN(OE,])MIO, 'Y]m)g exp {_gl)/]m} dr)/]m _ ﬁ
gt) ’ '

c,jm

(Vim) g = (5.43)

Tjm f/\/’(gglt])mm/ ')’jm)g exp {—g’)’jm} d’)’jm

In summary, the E-step is given by estimating/computing the expected val-

(n) (n)\2 (n) 2 (4 (1)
ues (Aca) o , (A o, (Uer(A n oo (U (A n ,and (Vim) «
(Ac, >q(A<>”> ((Aean) >q;()"> (uer(Ae )>‘i;<)n) { ,k( c )>q(A<)”> <')’] >li(w2,

equations (5?27), (5.39), (5.213) and a suitable approximate inference technique. The

M-step comprises the parameter updates for TC(tJl.rl), Tc(,t,:l), and éEt,j; YU as given by

via the

equations (5.40), (5.41), and (5.42). These steps are run iteratively until convergence
to the MAP estimate T T 6; which is sparse in 6} ,. The training procedure is
summarized in Algorithm 4.
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Algorithm 4 : The Laplacian prior model training, see [103, 147].

Input: Tc(](‘))' TC(O), ')/(0), B; // Initialization

Evaluate all feature functions ¢, ( AJ(:”) );

t«0
while (not converged) do

E-step: // Completely parallelizable in N

forn =1to N do
Update qf\;r)l)
Estimate (An) o/ (A0 o (ues(AE) o/ 2 (A) o
with a suitableAaflpproximate )iL;lference methoﬁ "
end

Compute <’)f]-m>q Y using equation (5.43)

via Equation (5.27)

M-step: "

Find TC(}H), TC(tH), éEtnt D using the update equations (5.40)—(5.42)
t—t+1;

end

return Tc*f/ 2, p(0|D) = N (Oc,m |7”36,m’ ch,m)

5.3.3 The relevance vector machine prior model

The work published in [104] suggests a prior model that is based on the relevance
vector machine (RVM) [153, 156, 157] adapted to the latent target variables AS”). A
central advantage of the RVM over the Laplacian prior discussed in the previous
subsection is that the RVM does not require any hyperparameter tuning. Moreover,
we obtain (approximate) posterior distributions instead of MAP estimates, enabling
the quantification and propagation of uncertainties in the model parameters due to

limited training data.

Similar to Equation (5.35), we assume a zero-mean Gaussian prior on the feature

coefficients 6 s
dim (Ac ) Nfeatures, m

p(éc, "Y) = H H N(éc,jm|of r)’jm)/ (5.44)

m=1 j=1

where the ;s are a set of non-negative hyperparameters describing the prior vari-
ance for écljm. The basic principle behind RVM is to compute the evidence/marginal
likelihood by integration over the model parameters 8., and subsequently maxi-
mize the evidence w.r.t. the hyperparameters <, a strategy which is found under the
names "type-II maximum likelihood" or "evidence approximation” in the literature.
Again, the precision parameters 7, £, Tc are found via ML, whereas W is fixed to be
the CGM shape function interpolant W;; = 9;(x;).
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FIGURE 5.8: Graphical representation of the Bayesian network de-
fined by the posterior given in Equation (5.45). The part with the teal
background corresponds to the likelihood and is repeated N-times.

Model training

Given the likelihood function in Equation (5.25), the marginal likelihood w.r.t. 8, is

a ()., (4 () ()5 (1) 3 () (A 1A
=TT [ Pt 1A, ) pe (ALY 1AL, B, )AL p(Bcl)
e (5.45)

where we drop the dependence of £ on the data D and the parameters 0, £ Te for
convenience. The corresponding Bayesian graphical model is depicted in Figure 5.8.
The value of the hyperparameters v is determined by

v* = argmax P (7). (5.46)
v

The latent variable optimization problem defined by Equation (5.46) can again be
optimized by the EM algorithm. To do so, we apply Jensen’s inequality to find the
log evidence lower bound

log P(7) = log [ £(8:)p(Bc|7)dd:
(5.47)

where g5 can again be any arbitrary probability distribution. The optimal qgﬂ) that

maximizes the lower bound G for a given estimate (*) is given by

g5 (8e) o L(8:)p(Bely ) (5.48)

C

as this is the equality limit for the inequality in Equation (5.47). To maximize the
(t+1)

expected value defined by Equation (5.47) w.r.t.  for a given q;

i it sufficient to

exclusively keep terms that depend directly on v,

dlm c) N features,m

G (qg.7) & ) Z Z <log'y]m + YVjm <9§]m>q M)> . (5.49)

0c
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(t+1)
jm

To find the update equation for v
52-G to find
Yjm

, we compute the zeroes of the derivatives

Yo = (02) - (5.50)

jm c,jm
bc

Assuming fixed parameter estimates 7, TC(}) and given the Gaussian linear model

for p. as defined in Equation (5.5), the optimal qgﬂ) as given in Equation (5.48) is a
Gaussian
(t+1) & dimde) (t+1) «(t+1)
g, (6c) = H N(ec,m|l/‘gcm /Egcm ) (5.51)
m=1 ’ ’
where the means ygj;l) are found by maximizing qgiﬂ) (0.) w.r.t. O,
y((;:l) = argmax qgfl)(éc) = arg max (log L(0.) +log p(éc|'y(t))> . (5.52)

This maximization problem can be solved jointly with the maximization w.r.t. 7, £, Te
with an inner loop EM procedure with the identical update equations as given in
Equation (5.40)—(5.42). It is noted that it is unnecessary to run this maximization to
full convergence — even only a single iteration is sufficient.

The covariance parameter =Y is determined by the negative inverse Hessian of

ec,m
logqy " (8c),

N
(B0 = =V, Ve, logay (8) = Tm 1 o (@) + (diag(a)) L. (5.59)

n=1

The update equation for 'y;tﬂ) is thus

(t+1) _ /72 _ ()2 (t+1)
'ij - <9c,jm>qgc) = (Véc/m,j) + Zéc/m,j]" (5'54)
After convergence of 7y, p ,Xg  toy*,py ,E; , the posterior on the model pa-

rameters éc,m is given by
p(Bcm|D) = N (Bemlps, 5, )- (5.55)

It has been proven in [153, 159] that many of the 7;,,’s converge to 0 such that the
corresponding feature function ¢j,, is effectively pruned and sparse estimates for 6,
are obtained. A summary of the presented training procedure is given in Algorithm
5.

Shared (hyper)parameters A slight modification of the model described above can
be beneficial in cases where all latent space components A, encode identical phys-
ical quantities, e.g., permeabilities in distinct subregions (). In such a case, it is
reasonable to assume that the same feature functions ¢;,(As) are activated in all
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Algorithm 5 : The RVM-based prior model training algorithm, see [104].

Input: T (f),'rc( ),pt( ) (0); // Initialization

(n)

Evaluate all feature functlons Pm(A f );

t<—0
while (not converged) do
E-step: // Completely parallelizable in N
forn =1to N do
Update q(tﬂ) via Equation (5.27)
Betmate (A (L), s ) L 62,080
NG NG T 1, m
As Ac A¢ A
with a suitable approximate inference method
end
M-step:
Find T(thl), TC(tH), ygc;]) using the update equations (5.40)—(5.42)
Find 'y(t“) using the update equations (5.53), (5.54)
t+—t+1;
end
return 7y, 77, p(6c|D) = N (Ocmlpy L5 )

subregions/cells m. This can be achieved by assuming that hyperparameters Yim
are identical across cells m, i.e., ¥ju = ;-

In such a model, the only modification concerns the update equation Equation (5.54)
which becomes

im(A
7](:;1) _ %(m) Z,; < C]m> (5.56)

d1m g 3c

It is pointed out that hyperparameters < should only be shared over equivalent
physical quantities — e.g., sharing hyperparameters over components A, that en-
code diagonal and off-diagonal entries of an anisotropic permeability tensor would
not be meaningful.

An even more restrictive model is given by postulating that éc,jm = 5C,]-, which means
that feature function coefficients are identical in all subregions (2. In this case, the
gradient w.r.t. 6. given by Equation (5.31) as well as the update equation for L,
given by Equation (5.53) imply summation over m.

5.3.4 The variational relevance vector machine prior model

In our recent work published in [87], we advocate a prior model which is based on
the variational relevance vector machine (VRVM) [161, 162], again adjusted to the unob-
served target variables AL ]ust as the RVM, the VRVM does not require any hyper-
parameters that need to be specified by the user. The crucial advantage of the VRVM
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over the RVM discussed in the previous subsection is that it is fully Bayesian, i.e.,
it puts priors also on the remaining model parameters 7., T. which allows to quan-
tify and propagate uncertainty related to those parameters. Moreover, it provides
a closed-form estimate for the model evidence (or better, a rigorous lower bound)
which can be used to supervise training convergence and, more importantly, allows
to directly compare different model architectures, e.g., different sets/numbers of fea-
ture functions or different CGM spatial discretization resolutions.

For the parameters 0., we again use the automatic relevance determination (ARD)
prior as specified in Equation (5.44),

dlm Ac) Nfeatures m

c:")’ H H N c]m‘o ')’]m
=1 ;

but instead of finding the 7;,’s by maximization of the marginal likelihood P (),
we employ a conjugate Gamma hyperprior on the precisions T, j;, = 'y]._ml of the form

p(TP,jm) = Gﬂmmﬂ(’fp,jm|ﬂ,b) =0t Z],,lz bT”’j'”/F(a) (5.57)

which is considered uninformative for values 4,b < 1. Additionally, similar unin-
formative’ conjugate Gamma hyperpriors are employed on the encoder and decoder

precisions 7. and 7, 'z

p(Tem) = Gamma(tem|c,d), (5.58)
p(Ter,i) = Gamma(tey,le, f). (5.59)

For efficiency and model complexity reasons, the coarse-to-fine mapping W is again
assumed to be the CGM shape function interpolant, W;; = 9;(x;).

Model training

The likelihood function is again given by Equation (5.25) such that, given the afore-
mentioned priors, the posterior over all observable model parameters is given by

im(Ac
p(6e, T, ch|D x H [/pcf us |uc ch H [Pc )\((:rinM Tc,m)] dAgn)}

[ p(@elm)p (o, b)dTyp(ele, d)plgle, f)

(5.60)

and the corresponding Bayesian graphical network is depicted in Figure 5.9. The
basic concept of the VRVM is to employ a variational mean field approximation
(see Section 4.3.4) on the posterior distribution over all observable and latent model

’In the numerical experiments of Chapter 6, weusea =b=c=d =¢ = f = 10~19, which is
considered to be uninformative but avoids division by 0 in the updating/model training process.
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(ep—{7)}—{6)

FIGURE 5.9: Graphical representation of the Bayesian network de-

fined by the posterior given in Equation (5.60). The part with the teal

background corresponds to the likelihood and is repeated N-times.
Picture taken from [87].

parameters, i.e., an approximation with a factorial distribution g(0) of the form

D)-

im(Ac) N
({ecm}d (<) Tc/ch/Tp/{/\gn)}n:l

1~ Ay o T )
p(D) H [pcf( |”C( )’TCf) H {PC(/\C,me ch,m)} ]P(BCW)P(')’)P(TC)
n= m=1
di (AC) Nfeatures,m N ) (561)
1_[ [chm Tem) H {%C,jm (GC]m)qT o, Tp]m } :| H { }
m=1 j=1 n=1
dim(A¢)
TT [9e )] = ac0),
i=1
where p(D) = [ p(6, D)d6 denotes the model evidence and 6 = { {ch}dlm ,

N
Tefs Tps {/\EH)} . } is the set of all parameters. The approximate distribution 4(8)
n=
is found by minimization of the Kullback-Leibler (KL) divergence of the mean field
variational distribution q(8) to the true posterior p(6|D) w.r.t. the factorial family as
denoted above, i.e.,

7 (6) = argminKL(g(0) [p(6])) = argmin (~ [ 4(0)1og "7 Pdo ). 562

It is noted that [277, 278]
log p(D) = log [ p(6,D)d6 = F(g) +KL(O)||p(6D)),  (5:63)

where F(q) is called the (log) evidence lower bound (ELBO)

log p(D) /q log )dG (5.64)

because KL(g(0)||p(6|D)) > 0. Since the left hand side of Equation (5.63) is indepen-
dent of the variational approximation g, minimizing the KL divergence is equivalent
to maximizing the ELBO F. After maximization of the ELBO/minimization of the
KL divergence, it can be assumed that KL(4(0)||p(68|D)) < F(g) such that F is an
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accurate approximation to the log evidence p(D). After training, the ELBO F may
therefore be used for Bayesian model comparison (see Section 4.2.3) which is what
we use in Sections 5.6 and 6.2.10 to adjust the CGM spatial discretization.

Setting to zero the first order variations of the ELBO F yields (see Section 4.3.4)

exp (log p(6, D)), 4
J exp (log p(6, D)), b

do, = (5.65)
where 6y is an arbitrary subset of all model parameters 6 (i.e., 8 practically denotes
any of the parameters 5C,]-m, Te,mr Tef ir Tp,jims AE")) and (- ), £ means expectation w.r.t.
all gq,’s except for gg,. Obviously, every variational distribution g, implicitly de-
pends on all other gq, | # k due to the above expectation values. It is therefore
necessary to self-consistently loop and update over all gg,’s using Equation (5.65)

until convergence is attained.

Since the encoder and decoder p¢, p.r are chosen to be linear models with Gaussian
noise and we are using conjugate Gamma priors on the noise precisions 7, T, £ as
well as on the éc—prior precision T,, many of the update equations following from
Equation (5.65) are given in closed form,

qu,jm(TP,]'m‘ﬁ'Ejm) Gamma(Tp]m| E m) (5.66)

—_
/\ Ql
o))
ﬁ I\)
\/

a — a —|— —/ ]m — b _|_
ch,m (Tcrm ’E’ d~ ) - Gummu(TC m ’E )/ (567)

N 8 1N

chf,i(ch,i|é/fl) - Gamma(chz|é )/ (568)
~ N ~ N (n) (n) 2
€:€+E, fZ:f+§; [”f _Wuc(/\c ):|i>,
qéc,jm (gc,]M) - N( C]m“’l@”m Gc]m), (569)
2 - (n)y2 -
Ugc,jm = <<Tc,m> Zl(gojm) + <Tp,jm>> ’
n=
2 SIRORNC ) /5
Véc/jm = O—éc,jm <TC,m> Zl gojm <<Ac,m> - I;:(Pkm <0c,km>> ’
n= i

where ( - ) denotes expectation w.r.t. full q(6) as defined by Equation (5.61). Addi-
tionally, many of the above expected values are given in closed form,

é (5.70)
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The only expected values and variational distributions that are not given in closed

(n)

form are the ones corresponding to the latent variables A, since they involve the

CGM simulator uc(/\é”)). According to Equation (5.65), 4, is given by

‘hgn)(/\(n)) <P6f(f |uc(A ch I_:I [PC cme rTcm)}> (5.71)

and the required expected values are </\£7;,)1>, <(/\£n,,)1)2>, <uc(/\£”) )>,

<uC(A£n))uCT(/\£n))>. In principle, any of the approximate inference methods pre-
sented in Section 4.3 can be applied to estimate the above expectations. For consis-
tency, we keep the variational nature of the model and assume variational distribu-
tions of the form

dim(A¢)
qun) (/\En) ’”Agn)l 0-/2\511)> = lj[l q)\y:% (Agn) |‘u/\§””)11 Uigg[)
"= (5.72)
dim(A, n) )
n
= N(Ac,mlmgn,g,q(m)f
m:1 ’ c,m

where the variational parameters u NOE 022\<”) are found via black-box stochastic vari-
ational inference [211, 212], i.e., by minimization of the KL divergence

y;y,),o':gn):arg min KL(q/\ (A En)|ﬂAE")’Ui§">) q)\gn)()tﬁ”))) 5.73)

”’A(n) UA(11)

between the diagonal Gaussian approximation §, ) and the true variational mean
field distribution ¢, ) determined by Equation (5.71).

To solve the above optimization problem, it is noted that

*

A (n)
Ha o T KL (330 A iy 0,030 [0 (7))

- , N YA A0)

= arg  min /%En)(ﬂg )\ﬂAgw w)log 2 A( dAl
F‘AE;«)I /\én) q)\(">(AC

: (5.74)

VAgn)/lTAgn)

= arg max (<logpcf(uj(f")|uc(/\§n)),‘rcf]1>

+d1m2 <logpc )\})r"cm'%m» +H<%(I1)(A£n))>>

q/\gn)
with H (q A (/\E”))) denoting the Shannon entropy of § A (/\En)). Gradients w.r.t.

the variational parameters y A7 T30

values that involve the CGM solver uc(/\gn)), which can only be estimated with

may readily be computed but contain expected
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Algorithm 6 : The VRVM-based prior model training algorithm, see [87].

Input : 5(21), d%n?), fi(o), yéo? , (Oéo? )2; // Initialization
c,jm c,jm

Evaluate all feature functions ¢, (A} )),
e

i+a+i c=c+f,  e=e+L;

3 while (not converged) do

10
11
12

13
14

forn <~ 0to N do

// Fully parallelizable in n
Update 7, ) (AE”) ] ;4;((5), 0‘)(\?)) using equations (5.71)—(5.78)
Compute AE”,% , (/\5"’1)1)2

.
Estimate <ucrk(/\((;n))>o7 , < ( )> via direct Monte Carlo

A ¢7A£n)

C

end

Update g5, (8cmlpg,,,, Zs,,,) according to (5.69) and (5.70);
Update g, (7jm|d, b]m) accordmg to (5.66) and (5.70);
Update gr., (Tem|¢, ) according to (5.67) and (5.70);
Update gr,,, (7cs,ile, f;) according to (5.68) and (5.70);

end
return Variational approximation q(6) to p(6|D)

Monte Carlo. The MC noise in these estimates can greatly be reduced by applica-
tion of the reparametrization trick [100] (see also Section 4.3.4). The corresponding
reparametrization for the diagonal Gaussian applied here takes the form

M=o +omen’,  en) ~N(0,1). (5.75)

,m

Using the fact that H (67 A (AE”))) (S anlm( <) log(T Equatlon (5.74) becomes

%  _ (n) (n)
Fawe Taim =48, 0% ) ( (log per (" (1t + 7300 0 €), 72p))

Ae Ae N(e(n) ‘0/1)

5.76
dim(A) ( )

dim(A¢)
+ Z <10gpc V}\ +0' n €m |AfzecmTcm)>

+ Z loga

N(eMo,I1)
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n "

where we use "o" to denote element-wise multiplication. Making use of the chain

rule, gradients of the above maximization problem are given by

d a)\g% auck 0 (n) (n)
: - - log per(u;’ |uc(As), T 5.77
I it <au§")i oAl gy O (p Juc(Ac™), Tey) o (5.77)
A" 9 o
+< “on S log p (A >,ec,m~cc,m)> ,
8,”/\ pi a/\cm N(e(”)|0,1)
A duyy 9 . )
n a (Ck> o, Og Pcf<”1(f Nue(AM), 72p) (5.78)
8(7 ol aUA 1a)\cm N(e(")‘()/[)
aAm 9 . i .
" < En; (n lo gpc(/\g,nlM}n)/ ec,mTc,m)> -+ ((T)(\:)l) 1,
8(7;\ za)Lcm A (et[o,1)
(n) (n)
where repeated indices are summed and aA“y = i, a/‘i%r — 67(11 ) ifi = m, and 0

ol Aci

else. The above gradients may then be supphed to any of the stochastic optimizers
discussed in Section 4.4. Fastest convergence is observed using the ADAM optimizer
[220].

It is noted that the above stochastic optimization needs to be carried out separately
for every data point n, but is fully parallelizable in n. Having found the approximate
variational Gaussian § A0 ( |;l Al 2.,)), the expected values <A£nn)1>, <(/\£”n)1)2>
are trivially given by correspondmg Varlatlonal mean and variance, whereas the
expected values <uC(A£"))>, <uc(/\£") )uCT(AE"))> can be estimated quickly using di-
rect Monte Carlo. Finally, the posterior p(., T, T.¢|D) can be approximated as
p(8c, T, Tef|D) = 45, (0c)qz.(Tc)qz., (Tef)- The full training algorithm is summarized
in Algorithm 6.

Shared hyperparameters 7, As in the RVM prior model discussed in the previous
subsection, the hyperparameters 7, = 'y]jﬂl may be shared among latent space
components A, i.e., Ty jim = Tp,j- In that case, the update equation (5.66) changes to

<§§,jm> (5.79)

5.4 Model predictions

Irrespective of the chosen prior model, a crucial advantage of the proposed frame-
work is that it is capable to propagate the uncertainty both due to limited model
complexity, in particular the information loss during the dimension reduction pro-
cess going from A rto A, and finite training data N < 100.
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Algorithm 7 : Generation of predictive samples.

Input: As, p(8|D); // Test microstr. As, (approx.) posterior p(0|D)

Evaluate all feature functions ¢, (A f) ;

Sample (-)Sf), GES) ~ p(Bc5,0:|D);

Sample AL ~ pe(Ac|As, 0.);

Solve CGM uES) = uc(/\gs));

Draw predictive sample uj(rs) ~ Pcf (u f |u£s), (-)Sf));

return Predictive sample uj(f) ~ Pprea(tf|As, D) ; // Equation (5.80)

Given the posterior distribution p(6|D) (where 8 is the set of all model parameters)
after model training, the predictive distribution ppreq(ts|As, D) for a new Af not
contained in the training data is

PorealiglA s, D) = [ plus|As, ) p(6]D)do
——
Equation (5.3) (580)

- / per(usluc(Ae), 0c) p(Ac|As, ) dA. p(Ber, 0.|D)do, s,

with the encoder and decoder distributions p., p. £ as discussed in Sections 5.2.1 and
5.2.2. The integrals in Equation (5.80) are generally not analytically tractable. How-

ever, predictive samples u](f) ~ ppred(u}s) |A¢, D) can be generated inexpensively by

) g

e drawing a parameter sample 8 = {6.,0.7} from the posterior, 6;, 6, y

p(6c,0.5|D);

e drawing a sample for the latent space representation A, from the encoder dis-
tribution pe, AL ~ pe(Ac|Ay, oL);

e solving the CGM to obtain ugs) = uc(/\gs) ); and

e drawing a predictive sample uj(f) ~ per(u f\ugs), 6&?)

which only involves a forward evaluation of the much cheaper CGM instead of the
FGM ug(As). The above procedure can be applied to any of the prior models pre-
sented in Section 5.3%.

It is noted though that, depending on the particular form of the (approximate) pos-
terior p(8|D) and the encoder/decoder distributions p. and p s, some of the integra-
tions for the computation of lower-order statistics can be evaluated in closed form.
In particular, under the assumption of Gaussian noise in the decoder p.r and that the
projection matrix W is fixed to the CGM shape function interpolation W;; = ¥;(x;),

8 Assuming 6’ ~ 5(6" — 0}, ,p) for every MAP-estimated parameter subset 6/ C 6.
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Training/offline stage Prediction/online stage

Average over parameters, Evaluate features Unseen
[ plug Ay, 0)p(6]D)de, [ ) H A }
eq. (5.80) jm 7 f f

Generate training data D

AP~ pa)

ujf) = Wugs)

Output: approximate
posterior Q(0) ~ p(6|D)

| wewo ] | 3
i D— {A(”) u(")}N L *{Sample /\£5> ~ pe(Ac|Ay, 65)} 1
: £ S ) :
| d | |
i Evaluate features F o !
1 E(ij (/\J((”) ), sec. 5.2.1} Ol Repeat and update u(%)olve coh !
: T bl Qol f (e-g #pred)s < :
| ! | 1 Nsamples (5) I
| ; 5. c ~ Yo u ‘
| [Tram surroiate, sec. 5 3] : | (f) Neamples ~—s5=1 f ( f ) Project back ‘

FIGURE 5.10: Full model workflow from data generation/model
training stage (left block) to prediction phase and estimation of quan-
tities of interest (Qol) f(uy). Picture adapted from [87, 104].

the predictive mean pipreq(Af) is

Ppred(Af) = /ufppred(ufo,D)duf

1 Nsamples (s) (5.81)
Y w uc(Ae’),
N, samples S; ‘ ( ‘ )

where the samples /\ES) are generated according to the first two points of the above

list. Similarly, the predictive variance ‘Tﬁre 4(Af) is given by

2
Tpred(Af) = / 4} Ppred (15| A, D)duy — ( / ufppred(”fo'D)duf)

_ / ((Wuc(}\c))2+ Tc}l) Pe(AclAs, 8)p(Tes, B D)dTesdbe — i g
1 Nsamples

o L (Wae M) e + (7).

(te.0c[D)
(5.82)

where the square/inverse of a vector denotes element-wise square/inverse and the

samples AES) are generated as described above. For the models assuming p(7.¢|D) =

d(T. = TefM Ap) (i-e., the maximum-likelihood approach Section 5.3.1, the Laplacian
prior Section 5.3.2 and the RVM-based prior Section 5.3.3), the expected value of the

decoder precision 7. is identical to its MAP estimate, <1—C—f1>p = Tcf MAP-

(Te,0cD)
Assuming the approximate posterior p(7.f,i|D) = qx,(Tcr,i)) = Gamma(tcs,|é, f) as
given by Equation (5.68) in the VRVM-based prior model Section 5.3.4, the expected

value is given in closed form as <TC}1Z> = E{—’l
! p(ch/i/95|D)
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FIGURE 5.11: Binary permeability field with Kj, = 1, Kj;; = 100 (left)
and the corresponding Darcy flow pressure response fields P with

zero flux on the top /bottom boundaries and Pl(elfz =0, Pl —1 (mid-

right
dle) and Pl(ezfz = 1000, P2 — 1001 (right) essential pressure bound-

right —

ary conditions. The sugggested surrogate model is aware of essential

boundary conditions, i.e., it fits the data perfectly at the left/right

side. It is clear that the error metric € defined by Equation (5.83) is

much lower for a dataset with boundary conditions as in the right

plot compared to the middle one. The metric € can therefore only be
used for comparison of data with identical boundary conditions.

The algorithm for the generation of predictive samples is summarized in Algorithm
7. The full model workflow, i.e., training data generation, model training, and pre-
diction stage is summarized graphically in the flowchart of Figure 5.10.

5.4.1 Model performance metrics

The quality of a surrogate model is determined by (a) its computational efficiency
and (b) its predictive accuracy, i.e., its proximity to the true FGM solution u¢(As) and
the correctness of predictive uncertainty measures such as opeq given by Equation
(5.82). During the development of this work, several performance metrics have been
applied to measure both proximity and the quality of predictive uncertainty.

A simple, yet very common error measure that is used in [104] is the relative L,
distance € defined by

1 N [ = prprea(A)|

_ (5.83)
Nest ity

€

which is normalized by the Ly-norm Huj([n) || of every test sample uj(fn). Although €
is a relative error measure, it does not allow for seamless comparison of datasets
Ntlest Y Huj(fn) ||. Assume, for instance,

two datasets of Darcy flow in porous media where on the left/right side of a unit

which have considerably different (|uy||) =

square domain the pressure is fixed to P, Pright and on the top /bottom sides a zero
flux boundary condition is applied, see the visualization in Figure 5.11. Assume

further that the first dataset has Plgfz =0, Pr(ig)ht = 1 whereas the second one has
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(2)
Pleft

datasets will exhibit considerably lower € on the second dataset because (||uy]|) is

= 1000, Pr(fg)ht = 1001°. It is obvious that a surrogate model trained on both
much higher but <||u}n) - ypred(/\j((n)) ||> is (at least approximately) the same as for
the first dataset.

Another drawback of the performance metric defined by € is that it does not take
into account the variance of the data. It is clear that it is much easier for a surrogate
to produce low Ly-errors when the output distribution p(uy) is narrow. A proximity
performance metric that allows the comparison of the quality of the surrogate on
various different datasets should therefore not be normalized by the Lo-norm |[[u ||,
but the variance of the data. The output data variance can be estimated by

1 Ntest B
var(u f,i) ~ N 21(14](};) — 4 f,i)2, (5.84)
n=

where iiy; = ﬁ Zf:jff uj(flzl.) is the sample mean of the test set for component i of the

FGM response vector. One such performance measure is introduced in [104] as

o New 1 S0 () — e (A)))2

)

i=1

e (5.85)

" Neest = dim(uy) var(uy,;)

The quantity e > 0 has the property to be e = 1 if the surrogate prediction is identical
to the mean of the (test) data, i.e., if ppred,i (/\j(f”) ) =1 fi for all test samples n. A
suitable surrogate should therefore provide values for e that are considerably smaller
than 1.

A closely related, but much more popular performance metric is the coefficient of
determination R? [279, 280] which is used in the work published in [87]. It is defined
by

ij:st u(”)_ e /\(”) 2
R2_1_ il f Hpred ( f il (5.86)

Eoe u — g2

and measures the proportion of variance of the test data that is explained by the

model prediction ypred(AJ((")). Assuming again that the model prediction is as poor

as the test data mean, i.e., pipreq (/\j((n)) = ily, the coefficient of determination is R = 0,

i.e., 0% of the variance of the test data are explained by the model prediction ppreq-
On the other side, if the surrogate can perfectly predict the FGM output, i.e., uj(fn) =
HPpred (Aj(fn) ), the coefficient of determination is R?> = 1.

A drawback of the coefficient of determination R? is that it is incapable to assess the
quality of the whole predictive distribution ppreq(#s|Af, D). Imagine for instance
that ppred(u}n)M}"),D) = 5(u(”) — ypred()\("))): even when ||u}”) — ,upred(AJ([”))Hz is

f f
very small (but nonzero) Vn and therefore R? ~ 1, the likelihood to observe A]((n), u}n)

9In arbitrary units.
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under the predictive distribution is in fact 0. It is therefore necessary to estimate the
likelihood of the test data under the predictive distribution. This is realized in [87]
by measuring the mean log likelihood (MLL, see also [46]) under the assumption that

Ppred is a diagonal Gaussian ppred(uf]/\f, D) = N(uf|ypred()tf), diag(trgred)),

1 Ntest
ML = it ity Nt iy 08 Pirea (1127 D)
. 2 (5.87)
Ntest dlm(uf) M(n') o ‘u(yll') i
_ _log(ZTC) _ - 1 Z 2 log Ugredi(/\](‘n)) - ( - p( e;i,>
2 Zdlm(uf)Ntest =1 i=1 ' U;red(Afn )

(n)

pred,i = Hpred, (/\J([n) ). Itis noted that in the case of a discrete predictive distri-

where
bution ppreq(#¢|Af, D), the highest possible value is MLL = 1 for perfect prediction
ppred(uf(/\f)\/\f,D) = 1,ppred(uf 75 uf(Af)]/\f,D) = 0 where uf()tf) is the true

FGM solution.

5.5 Numerical complexity analysis

In general, the workflow of any kind of surrogate model can be split up in an offline
stage where the model is set up and calibrated (model training), and an online stage
where the surrogate accomplishes its purpose by providing approximations to the
original simulation at a desirably much lower cost (model prediction), see Figure
5.10. Clearly, in a proper numerical complexity analysis, both stages need to be
distinguished and more attention has to be paid on the online (= prediction) stage as
it is critical for any surrogate to be computationally more efficient than the original
model/simulation that is to be replaced.

In the proposed model, the following quantities are identified to be potentially rele-
vant for the numerical complexity of the training and/or prediction stage: The num-
ber of training data N, the FGM input and output dimensions dim(A¢) and dim(uy),
the CGM input and output dimensions dim(A.), dim(u)c), and the number of fea-

ture functions per latent space variable dim (8, ).

As can be concluded from Algorithms 4-6, the training (offline) phase generally

scales linear with the number of training samples N because of the inner for-loop.

However, because of the factorization of the variational distributions

N (/\El), . .,AEN)) =1, NG (Ag )) inference w.r.t. NI (/\gl), e /\EN))
is fully parallelizable in N. After training, the optimal model parameters/variational

posterior distributions are passed to the prediction routine which is completely in-
dependent of the training data and therefore scales as O(1).

10Tn all experiments of Chapter 6, the same set of features is applied for every latent space component
m, i.e., dim(O ) is independent of m.
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Quantit . . . . N
Tsey N | dim(us) | dim(Af) | dim(wu) | dim(Ac) dim(6.,,)
training N | dim(uy) 1... dim(u.) | dim(A.) (gllﬂ((gcm))§3

(dim(Af))? e
prediction 1 | dim(uy) 1... dim(u.) | dim(A,) dim (0.,
(dim(Af))?

TABLE 5.1: Numerical complexity of training and prediction phases.
The scaling with dim(As) depends on the set of feature functions

@m(Ar) used and reaches from O(1) to O ((dim(Af))z). The scal-

ing w.r.t. dim(8,,) is linear in the VRVM model but cubic for the
Laplacian and RVM-based priors.

Assuming that the reconstruction in the decoder distribution p.s corresponds to the

-1/2

linear projection uy = Wu, + T, fioZ, both model training and prediction scale

linearly with dim (uy).

Also, A; is only involved via matrix-vector operations such that the scal-
ing is O(dim(A.)) for both stages.

The scaling with the fine scale microstructure resolution dim(Ay) is fully dependent
on the applied feature functions ¢;,, and ranges from O(1) for, e.g., the constant
feature, and O ((dim(Ay))?) for, e.g., features that involve mutual exclusion/pixel
interactions'!. It is noted that the microstructural features can be precomputed and

stored to be reused, e.g., for problems under different boundary conditions.

The scaling with the CGM resolution/degrees of freedom dim(u.) depends on the
applied constitutive laws and numerical solvers that are applied. If the CGM corre-
sponds to Darcy flow and a sufficiently regular PDE discretization is used, a sparse
banded solver [281] can be applied which scales linearly, O(dim(u.)). The worst
case for a linear PDE with dense stiffness matrix is O ((dim(u.))?) which is typi-
cally still much faster than an FGM solution because dim () < Ny, f,f» where Ny, ¢
are the degrees of freedom of the FGM.

The training phase scaling with the number of feature functions per latent space
component dim(6,,) depends on the model specifics. As can be seen on Equations
(5.42) and (5.53), (5.54), training scales as O ((dim(@,))?) for the Laplacian and
RVM prior model which is the main reason why not more than a few hundred fea-
tures are used in the experiments of Chapter 6. For the VRVM prior model though,
as correlations between éc,jm and éc,j’mr j # j are neglected, the scaling is linear,
O(dim(b,,m)). For predictions, all proposed prior models only involve matrix-vector

operations w.r.t. §C,m such that the scaling is linear.

1t is possible to include more expensive features — however, the surrogate would defeat the purpose
if feature function evaluation becomes more expensive than an FGM forward run.
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The scaling behavior in training and prediction stages w.r.t. all the mentioned quan-
tities is summarized in Table 5.1.

5.6 Automated coarse-grained model refinement

As presented in the model overview of Section 5.2, the coarse-grained model (CGM)
u:(A.) is given by a numerical solver operating on substantially larger length scales
and potentially simplified constitutive laws compared to the fine-grained model
(FGM) ug(A¢) that is to be replaced by the probabilistic surrogate. In particular,
both CGM and FGM solvers correspond to finite element simulations, where the
CGM is discretized on a considerably coarser scale than the FGM and is therefore
much more quickly solvable.

. . . _ [y N .
Given a set of fine scale training data D A Ly v it is an open question
e

what discretization for the CGM solver u.(A.) is optimal with respect to computa-
tional efficiency, but also with regard to model complexity. As the latent space of A.’s
constitutes the model bottleneck to which information contained in the microstruc-
ture Ay is squeezed, it plays a pivotal role in the model’s generalization capabili-
ties given a finite dataset D. Moreover, it is unclear which specific shape of PDE
discretization (i.e., vertex coordinates, element connectivity, etc.) performs best in
terms of predictive error under a given computational budget.

To address these questions, the model evidence p(D) = [ L(D|6)p(6)d6 can be con-
sidered as a quality metric of how well a model with a certain CGM discretization
fits the data D, see Section 4.2.3. Conveniently, the evidence lower bound (ELBO),
which is an approximation to the model evidence p(D), comes out as a by-product
in the training phase of the VRVM model discussed in Section 5.3.4. The naive ap-
proach to find a CGM discretization which is (sub)optimal under the constraint of a
fixed number of vertices/elements is to train all models of a certain class of meshes
that fulfill these requirements and to pick the model with highest ELBO afterwards.
This approach is fine from a theoretical point of view, but requires an exceedingly
large effort for model training because the number of possible discretizations (and
therefore the number of models to be trained) increases combinatorically with the
number of vertices/elements that are prescribed.

For that reason, an evidence-based refinement strategy is introduced in [87] which
finds a (sub)optimal effective material property random field discretization consist-
ing of square elements of different size as depicted in Figure 5.12. It is noted that the
discretization of the effective material property random field K (x,Ac) (see Equation
(5.7)) not necessarily coincides with the PDE discretization of the CGM. Rather, the
material property field discretization needs to be resolvable by the PDE discretiza-
tion, i.e., within a finite element, only constant material properties, i.e., constant
Darcy permeability, are allowed. Clearly, with regard to computational efficiency,
it is optimal if PDE and material property field discretizations coincide. However,
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FIGURE 5.12: Schematic representation of the refinement procedure.
Starting from a 2 x 2 square grid, a square cell is chosen according
to a scoring function (color scale) and split into four square subcells.
The number of cells, i.e., the latent space dimension dim(A.), which
represents the information bottleneck, increases by 3 with each split.

for pure investigation of the influence of effective material property field discretiza-
tion, it is important to suppress shamming influence of PDE discretization errors.
Therefore, it is advisable to compare CGMs with constant PDE- but altering mate-

rial property field discretizations only.

The basic idea behind the proposed refinement strategy is to start from a 2 x 2 square
grid!? for the discretization of the effective material property field K(x, A.) which is
of the form defined by Equation (5.7), (5.8). The model is trained to full convergence
and then, according to a heuristic scoring function, a subregion/cell m is chosen
where refinement seems to be most promising. The chosen square subregion/cell
m is then split by dividing the square into for equally sized sub-squares each of
constant material property, increasing the latent space dimension (and therefore the
size of the bottleneck) as dim(A.) < dim(A.) + 3. Next, the model is retrained to
convergence, with a parameter initialization deduced from the aforegoing optimum.

This process is repeated until the previously defined number of elements is attained.

To motivate the scoring function that chooses the subregion m that is to be refined,
we focus on the model ELBO. According to Equation (5.64), the ELBO in the VRVM
model of Section 5.3.4 is given by

F(q) = (log p(6,D) —4(60)), < p(D), (5.88)

where the joint and variational mean-field distribution p(6, D), q(0) are given by
Equation (5.61). Since the above expected value is w.r.t. the variational distributions
g, it can be evaluated explicitly and is given by

Q“l

_ m(A) N im(A,
Flg)=-e¢ . og fi + Z_: Zog%m_ Z_:

() dim(e) (5.89)

G ; og bjm + Z E log oy, -

m=

12We always work on a 2D square domain.
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As every latent space component A, encodes the permeability tensor K, = e*en I
of exactly one subregion m, we search the component m which we think can increase
F the most when split. Therefore, all terms that can directly be assigned to a com-
ponent m are regrouped into a function F,(q) which is

N 3 dim(Ty) _ dim(T,)
Fulg) = Y logo\" —clogd,—a Y loghju+ Y. log T4, (5.90)
n=1 ’ j=1 j=1 '

In the case of shared feature function precisions 1, ,, = T} ;, this reduces to

N ~ dim(7y)
Fum(q) = nleog Oﬁ’jil — Clogdy + 21 logag, .- (5.91)

= ]:
The heuristic we use consists of picking the subregion m for splitting which has least
Fn(q) and therefore seems to have most potential to increase the ELBO F. The above
scoring function suggests that the variational latent space variances 0)(":) should be

m

. s 2
small, whereas the decoder misfit d,, = d + 3 Y 4 < ()\Enm — BCT,m(pm(AJ(fn))> > (see
Equation (5.67)) should be large and there should be high certainty about the feature
coefficients éc,]-m, i.e., low variance g Clearly, this is nothing more than a heuristic

with no proof of an increased ELBO after splitting.

5.7 Chapter summary

The scope of this chapter is to propose a machine learning framework for surrogate
modeling of expensive numerical simulations of Stokes and Darcy flow through ran-
dom porous media, denoted as the fine grained model (FGM) us(As). An accurate, fine
scale description of random media typically requires a large number of descriptors
Ay, which correspond to the high-dimensional, stochastic input to the expensive
FGM simulation. The high input dimensionality together with the small number of
feasible FGM evaluations seriously hampers the construction of cheap and accurate

machine learning surrogates.

The proposed remedy is to construct the machine learning surrogate using a reduced
order simulator u.(A.) based on coarser spatial discretizations and possibly simpli-
fied governing equations, referred to as the coarse grained model or CGM. The CGM
requires as input a much lower dimensional, homogenized encoding A. of the high

dimensional microstructural description Ay.

This dimension reduction is carried out by the encoder distribution pc(A|Af, 8.).
Various choices of modeling p. are conceivable. To optimally exploit a priori knowl-
edge about the physics of the underlying problem (porous medium flow), we sug-
gest a Gaussian linear model with a large library of predefined feature/basis func-

tions @;,(Af) primarily inspired by the rich literature on random heterogeneous
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media (see [1] as a principal reference), but also by image recognition tools or au-
toencoder representations.

To avoid exuberant model complexity due to the large library of feature functions
applied in the encoder p., different types of sparsity enforcing prior models are
presented in Sections 5.3.2-5.3.4, together with efficient model training algorithms.
Moreover, a sparse set of activated feature functions allows (a) for model inter-
pretability and (b) to ignore pruned features in the prediction stage, which in turn
enables a computationally more efficient online phase of generating predictive sam-
ples.

The decoder density p.s(us|uc(Ac),0.f) is chosen to be a linear projection us; =
Wijue,j + TC}}/ 27, with Gaussian noise Z; ~ N (0,1). The projection matrix W is set
to the coarse model shape function interpolant, W;; = ¥;(x;), while the precision
parameter 7. is learned from the data. Again, many different models are conceiv-
able, e.g., Gaussian processes, (deep) neural networks, etc. However, following the
precept of maximal incorporation of a priori information, fixing W;; = ¢;(x;) is the

most obvious choice.

The chapter is completed by a detailed discussion of how the predictive accuracy
of the surrogate can be measured, how numerical complexity scales in training and
prediction stages, and a suggestion of how the CGM can adaptively be refined to
widen the information bottleneck given by the latent, low dimensional variables A..
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Chapter 6

Numerical experiments

This chapter is based on the findings published in

C. Grigo, P-S. Koutsourelakis:

"A physics-aware, probabilistic machine learning framework for coarse-graining high-di-
mensional systems in the Small Data regime",
Elsevier Journal of Computational Physics 2019, Volume 397, 108842

C. Grigo, P-S. Koutsourelakis:

"Bayesian Model and Dimension Reduction for Uncertainty Propagation: Applications in
Random Media",
SIAM/ASA Journal on Uncertainty Quantification 2019 7:1, 292-323

C. Grigo, P-S. Koutsourelakis:

"Probabilistic reduced-order modeling for stochastic partial differential equations”,
Eccomas Proceedia UNCECOMP (2017) 111-129

The numerical experiments performed in this work aim to answer the following

questions:

e Validation: Is the surrogate model proposed in Chapter 5 able to fully repro-
duce closed form solutions/solutions in the homogenization limit?

e Predictive performance: In terms of the performance metrics introduced in
Section 5.4.1, how well does the proposed model perform in dependence of
(a) the number of training data N and (b) the coarse model resolution/latent

space dimension dim(A.)?

o Effective material properties: Do effective permeabilities assume reasonable

values?

e Predictive uncertainty: How accurate is the predictive uncertainty Opred?


https://www.sciencedirect.com/science/article/pii/S0021999119305261?dgcid=coauthor
https://www.sciencedirect.com/science/article/pii/S0021999119305261?dgcid=coauthor
https://epubs.siam.org/doi/abs/10.1137/17M1155867
https://epubs.siam.org/doi/abs/10.1137/17M1155867
https://www.eccomasproceedia.org/conferences/thematic-conferences/uncecomp-2017/5356
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e Sparsity: Is the set of activated features really sparse? Does the number of
activated features change with N?

o Interpretability: Which feature functions are activated? Are different feature

functions activated for different fine scale data distributions A¢ ~ p(A¢)?

e Extrapolative capabilities: Is it possible to get accurate predictions even on
test data with different boundary conditions than used in the training data?

e Uncertainty propagation: How well does the model perform in the use case
of an uncertainty propagation (UP) problem?

o Adaptive refinement: Can the suggested adaptive refinement procedure out-
perform homogeneously discretized models of same complexity?

Most of the above questions are answered both for Stokes and Darcy FGM simula-
tions. Others are, however, only answered for either Stokes or Darcy flow. Moreover,
only some of the above questions are addressed for all three prior models suggested
in Sections 5.3.2-5.3.4. This is partially because some of the above points can only be
treated under a certain setting (e.g., the ELBO for model comparison required for the
adaptive refinement procedure is only given in the VRVM based model introduced
in Section 5.3.4). More importantly though, the prior models have been developed
at different times during the genesis of this work — just as the above questions did
not arise all at the same time. In all of the following experiments, we give a clear in-
dication of the model and data specifics that are used and strive to keep this section

as clear as possible.

6.1 Same physics: Darcy flow fine scale data

In this section, we exclusively use FGM data from a Darcy flow simulator, see Sec-
tions 2.2 and 3.1.1, which we denote by us(As) : Af +— us. The surrogate core unit,
i.e., the CGM solver u.(A;) : Ac — uc, is based on Darcy’s equations of motion as
well but solved on much coarser finite element discretizations. The results of the
different experiments have been published in [103, 104].

6.1.1 Validation: a one-dimensional example

To validate the suggested algorithm, we consider a one-dimensional example where
the FGM corresponds to a standard Galerkin finite element simulation of the one-
dimensional PDE given in Equation (3.3) with N,; s = 128 equally sized finite ele-
ments. A binary material of contrast 10 is used, i.e., the low and high phase per-
meabilities are set to Kj, = 1, Kj; = 10. The domain Q) is given by unit interval,
Q = [0,1], where the left end x = 0 is an essential pressure boundary, I'p = {0},
where P = 0. The right end x = 1 is a natural boundary, I'y = {1}, where
Vpe = —100 is specified. To each of the 128 finite elements, a permeability of either
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Kj, or Kj; is assigned according to a level-cut Gaussian process sample

g(x) ~ GP(0,k(x — x")) (6.1)

with kernel function k(x — x’) = exp {— (x_lzx Ui }, I = 0.01 and a binary discretiza-

tion related to the expected volume fractions |Q¢[, [Qs] = 1 — [Q| as given in
Equations(2.19), (2.20). The input microstructural description Ay is given by a 128-
dimensional binary vector containing the permeability of each element. The Gaus-
sian process cutoff parameter c.,: controlling the volume fraction is chosen such that
|Qf| ~ U(0,1).

Model specifications

The CGM is given by a standard finite element solver with N,;. = 8 elements, i.e.,
dim(A;) = 8 and 8 fine scale elements are contained in a coarse scale one. The
encoder model p. is given by Equation (5.4), with the restriction that identical feature
functions ¢;,,(As) = @;j(As) are employed in every coarse scale element and shared
coefficients 0. j,, = ; are used. As a prior, the RVM-based model presented in

Section 5.3.3 is chosen.
The decoder model p. is given by the shape function interpolation of the coarse
grained model, ug; = Wiju; + Tc}li/ 27;, where the interpolation matrix for linear

elements in 1D is given by

Xi—Xj1 . . .
Xj*i))((];] for X],l S X S X],
J— Xi—Xj+1
W1] - inxjjj_l fOI‘ X] S X S Xj+1/ (62)
0 else,

where x;, X; are the coordinates of the vertices of the fine and coarse model, respec-
tively. The precision parameters 7., are learned from the data and updated in closed
form by finding the roots of the gradient specified in Equation (5.30).

Validation purpose

In 1D Darcy flow, it is known [1] that the effective permeability is given in closed
form by the harmonic mean defined by Equation (5.15). Among 99 other feature
functions of the various types discussed in Section 5.2.1, the harmonic mean over
the 8 fine scale elements of each coarse element is therefore included as a feature
@(As) and it is expected that it is the only one being activated by the sparsity prior
model.

Results

The described model is trained with N = 16 training samples and the true, fine
scale solution u¢(As) for a test sample A that is distributed as described above is
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FIGURE 6.1: One-dimensional example. Left: True FGM solution
u f(A f) (blue line) for the 1D microstructure A depicted in the top
bar shown below. The black line + gray shaded areas show the surro-
gate mean prediction pipreq & two standard deviations opreq. The low-
ermost bar shows the mean effective permeability (A.) field. Right:
Convergence of feature function coefficients . over training itera-
tions t. It can nicely be observed that all features except for one are
pruned by the sparsity RVM based prior. The only nonzero 6~er corre-
sponds to the harmonic mean and converges to 1, as expected. Picture
taken from [104].

depicted in the left picture of Figure 6.1 (blue line) together with the predictive dis-
tribution (black line and grey shaded area) of the surrogate model. The microstruc-
ture K¢(x,Af) and the expected effective permeability (K(x,A)) are shown in the
colored bars below.

The right side of Figure 6.1 shows the convergence of the feature function coefficients
6. over training iterations t. As expected, all feature coefficients . ; go to 0 except
for the one corresponding to the harmonic mean feature function, which converges
to1.

The predictive performance for the model trained on N = 16 FGM runs is assessed
on a test set comprising Niest = 1024 samples. We obtain

e = 0.027(3) (6.3)

being approximately 30 times smaller than the reference value 1. It can be observed
that even with a perfect feature function such as the harmonic mean in 1D, there
will always be predictive errors/uncertainties due to the information loss taking
place during the coarse graining process.

6.1.2 Two-dimensional examples

All of the following experiments using Darcy flow FGM data are conducted in two
spatial dimensions where no closed form solution for the effective permeability field
encoded by A, is available. The FGM is given by a standard Galerkin finite element
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FIGURE 6.2: Two-dimensional Darcy flow examples. Microstructures

are generated as described in Section 6.1.2 with ¢ = II%’; = 100 and

boundary conditions are set according to a = (0, 800, 1200, fZOOO)T.
Picture taken from [104].

model for the PDE defined in Equation (3.3) discretized on a 256 x 256 square mesh
of bilinear finite elements. Each of the square finite elements (or pixels) is assigned a
constant, isotropic binary permeability Kj; or Kj,. The microstructural description A ¢
therefore consists of a list of all pixel values and the input dimension is dim(A¢) =
256 x 256 = 65536. The FGM output 1y is given by the vertex values' of the pressure
field, us; = P(x;), hence the output dimension is dim(us) = 257 x 257 = 66049.

Again, the microstructures are generated by sampling from a zero-mean Gaussian
process
g(x) ~ GP(0, k(x — %)) (6.9

_A\2 .
with stationary covariance function k(x — x’) = exp {— G - ) }, I = 0.01 in con-

junction with a cutoff parameter cy: controlling the volume fraction which is ran-
domized as [Q)¢| ~ U(0,1) as discussed in Section 2.4. The weakly permeable phase
is fixed to have permeability Kj, = 1 so that highly permeable phase permeability

Ky; = 2...1000 controls the contrast ratio ¢ = %U' Boundary conditions are set
according to
Pbc(x) =ap+axx1 + ayXx2 + AxyX1X2, xe€Tlp, (6.5)
Vbc(x) = _vprc(x)r xely (6~6)

since boundary conditions of this functional form imply minimal discretization error
given the bilinear FEM shape functions. Indicative FGM samples with contrast ¢ =
%’; = 100 and boundary conditions corresponding to a = (0, 800, 1200, —2000)”
and I'p = {0}, I'v = dQ\I'p can be seen in Figure 6.2. A single FGM evaluation
u f(A f) (i.e., matrix assembly and system solution) takes us 23(4)s on an Intel Xeon

E5-2650 2.00GHz CPU.

IThe vertex values are identical to the degrees of freedom in this finite element model.
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FIGURE 6.3: Predictive performance metrics ¢, € and MLL as defined

in Equations Section 5.4.1 in dependence of training data N and CGM

resolution dim(A.). A test set with Niest = 1024 samples drawn from

the same distribution as the training set is used, such that the indi-

cated error bars are solely due to randomization of training sets. Pic-
ture adapted from [104].

6.1.3 Modeling considerations

In the following experiments, a Darcy flow CGM with a regular square grid per-
meability field discretization of resolution 2 x 2, 4 x 4, and 8 x 8 is employed. The
PDE discretization is identical to the permeability field discretization and bilinear
shape functions ; are used. A single CGM evaluation u.(A.) (matrix assembly and
system solution) takes 0.13(6)ms, 0.22(5)ms, and 0.99(1)ms of computation time, de-
pending on the PDE discretization resolution. The coarse-to-fine projection matrix
W ¢ RAm(#p)xdim(ue) of the decoder distribution p, £ is set to the coarse model shape
function interpolant, i.e., Wi = gbj(xi), where x; are CGM vertex coordinates. All
other model parameters, i.e., 7.f, 7., and 0. are trained according to the RVM-based
prior model as described in Section 5.3.3 and the restriction éc,jm = 91,]‘ is employed.
The feature functions employed in this model are summarized in Appendix A.

6.1.4 Predictive performance

We compute the performance metrics ¢,e and MLL as discussed in Section 5.4.1
for models trained on N = 4 up to N = 128 FGM evaluations on a test set of
Niest = 1024. Monte Carlo errors on the performance error measures e, and MLL
can therefore be neglected. The FGM data (both for training and testing) is generated
as described in Section 6.1.2, with a contrast ratio ¢ = K},;/Kj, = 2 and boundary
conditions defined by a = (0, 800, 1200, —2000)” and I'p = {0}, ['y = 9Q\Tp.

The dependence of the model predictive quality on the training data N and on the
CGM resolution is depicted in Figure 6.3. It is observed that all three performance
measures reach their asymptotic values with N 2 32 training samples, irrespective
of the CGM discretization resolution. Coarser CGM models tend to be more stable
for few training data N < 10, but in the high data limit, finer discretized CGMs lead
to better performance. It is noted that the performance metrics also depend on the
particular training samples chosen. The model is therefore trained multiple times
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FIGURE 6.4: Predictive mean pipreq (blue) £0preq (transparent gray)

together with the true FGM response us(A¢) (colored) and the corre-

sponding permeability field K(x, A¢) (bottom surface) with c = %‘0’ =

2 and a CGM discretization of 8 x 8. The model is trained on N = 128
FGM evaluations. Picture taken from [104].

with varying training sets and averages of ¢, e and MLL together with their standard
Monte Carlo error are computed, which is indicated by the error bars in Figure 6.3.
Figure 6.4 shows three indicative predictions on test samples for c = Kj;/Kj, = 2,
N = 128 and a 8 x 8 CGM resolution (both PDE and permeability field). The true
solution (colored) is tightly enveloped by the predictive distribution visualized by

the predictive mean pipreq (blue surface) £0preq (transparent gray).

6.1.5 Effective CGM permeability field

Further physical insight is given by 6.5 where the effective permeability field K¢ of
the three test samples of 6.4 is depicted alongside with the true FGM permeability
field K(x,A¢). It can be observed that subregions (), with predominantly weakly
permeable pixels have low effective permeability and vice versa. Moreover, it is
observed that Kj, < K¢t < Kj;, as one would expect.

6.1.6 Activated feature functions

From a physical point of view, it may be interesting to see which feature functions
¢;(Af) are activated for different contrast values ¢ = Kj;/Kj,. To address this ques-
tion, a model with the identical 100 feature functions as before and a 4 x 4 CGM
solver is trained with data of contrast values c = 2,10,100, 500, 1000. As the primary
objective in this experiment is not optimal predictive performance under minimal
training data but interpretation of feature functions, a large training set of N = 1024
is used to suppress effects of finite training data. Furthermore, to suppress effects of
boundary conditions on the activated feature functions, the coefficients a of Equa-
tion (6.5) are randomized like a ~ N(0,diag(c2)) with o2 = (0, 10, 106, 10°)T.
The feature function coefficient MAP estimates 5c,jm = éc,j for the different contrast
values are shown in Figure 6.6 and clearly exhibit sparsity. It is observed that for
higher contrast values, the number and magnitude of activated coefficients éc,j in-
creases. Moreover, feature functions evaluated over the whole domain () instead of

single subregions (), become more prominent for increasing contrast values. Most
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A) Coarse-grained, effective permeablhty (Kot ) for the three test samples shown in Figure 6.4 with
=128, N, = 8 x 8.
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) Lower right corner macro-cells and mean effective permeabilities < off, m of the microstructures
shown in 6.5a.
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(C) Effective permeabilities of randomly chosen macro-cells of the microstructures shown in 6.5a.

FIGURE 6.5: Illustrations of the predictive posterior mean permeabil-
ity (Kegtm) = <e/\cf’”>. Pictures taken from [104].

relevant features are generalized means, effective medium approximations (differ-

ential effective medium, self-consistent approximation), the “Gaussian linear filter”
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FIGURE 6.6: MAP estimates of the feature function coefficients 0, for
different contrast values. Picture taken from [104].

and the first principal component (found on using 4096 samples of A(). For feature
function explanation, see Section 5.2.1.

6.1.7 Extrapolative capabilities: variation of boundary conditions

A convenient property of the proposed surrogate modeling framework is that it is
possible to deterministically imprint the boundary conditions of the FGM data on
the CGM model. Therefore, having trained the surrogate on FGM training data
which have, say, boundary conditions defined by the coefficient vector a, it is possi-
ble to carry out predictions under a modified set of boundary conditions, say @ # a,
without significant deterioration of predictive quality. This implies that the surro-
gate is capable to extrapolate well on data which are very different from the data seen
during training, showing that the surrogate correctly encodes the salient physical a
priori information given by boundary conditions. Such a property is typically not
implied by off-the-shelf machine learning algorithms which exclusively model the
input-output relation of the data [46, 72].

To show this feature of the proposed surrogate, a model based on a 4 x 4 CGM solver
is trained on N = 1024 FGM evaluations (to avoid effects of small data), once us-
ing boundary conditions defined by a = (0, 800, 1200, —ZOOO)T, and once using
a = (0, 500, —1500, ,1000)T. After training, we use both models for prediction on
two Niest = 1024 test sets (s.t. Monte Carlo error is negligible), one with boundary
conditions a, the other one with 4. Not only do we perform direct predictions, i.e.,
“train on a, (@), predict on a, (a)”, but also cross-over predictions like “train on a,
(@), predict on d, (a)”. The resulting measurements for the error metrics e and MLL
are displayed in Table 6.1. Only slight deterioration is observed when predictions
are carried out on boundary conditions different from the ones used in the training
set. One indicative prediction example for every boundary condition combination
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Error measure (e)
trained on T

— a = (10800 1200 —2000 ) T
prediction on

d = (0500 —1500 1000 )

a = (0800 1200 —2000 )T 0.00895 0.00963
a = (0500 —1500 1000 )" 0.0102 0.00950
Error measure (MLL)
tral.n e.d on a = (08001200 -2000)" | @ = (0500 -1500 1000 )"
prediction on
a = (08001200 —2000 )" —4.06 —4.31
@ = (0500 1500 1000 )" —3.90 —3.86

TABLE 6.1: Averaged predictive quality measures e and MLL as de-

fined in Equation (5.85) and Equation (5.87). Predictions are only

slightly worse when the model is used for predictions on boundary

conditions that are different from the ones used in the training data.
Table adapted from [104].

is shown in Figure 6.7a. Figure 6.7b shows predictions on boundary conditions ran-
domized as @ ~ N (0,diag(c2)), c2 = (0, 10, 10° 10°)T where the surrogate is
trained using boundary conditions as defined by a above. The true solutions of the

test samples are always well included in the predictive distributions.

6.2 Different physics: Stokes flow FGM data

This section contains numerical experiments where the FGM training and test data
are generated from a Stokes flow finite element simulation as described in Section
3.1.2. As outlined in Section 2.3, in the scale separation limit ¢ < <L, where
(s is the characteristic length scale of the microstructural pore space, ¢ the radius of
volume averaging and L the length scale of the domain, Stokes flow (Equation (2.5))
can accurately be described by Darcy’s equations of motion (Equation (2.6a)). It is
therefore possible to apply the surrogate model proposed in Chapter 5 to Stokes flow
problems as well, where the CGM unit remains a simplified Darcy flow solver op-
erating on very coarse discretizations. It is clear that full Stokes to Darcy transition
may only be observed in the infinite scale separation limit. Nevertheless, Darcy’s
equations can still be used as a stencil of a machine learning model for Stokes flow
FGM data very far from scale separation due to the model’s parametric adaptivity.
Moreover, under the worst-case assumption that a coarse-grained Darcy flow simu-
lation would lose all information of the underlying Stokes flow pressure and velocity
field, the surrogate is safeguarded to misuse because overly large predictive uncer-
tainty oppreq would directly signal low predictive quality. The experimental results
presented here are based on the VRVM prior model discussed in Section 5.3.4 and
have been published in [87].
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(A) Predictive mean ppreq (blue) £opeq (trans-  (B) Predictive mean ppreq (blue) £0peq (trans-
parent grey) and true response uy (colored). The  parent grey) and true response uy (colored). The
plots show indicative examples for predictions  modelis trained using boundary conditions fixed
with boundary conditions as specified on top of  to a. Predictions are carried out on a test set with
each subfigure randomized boundary conditions as described in

the text.

FIGURE 6.7: Prediction examples for N = 1024, N, = 4 x 4,1 =

0.01 and ¢ = 10 under variation of boundary conditions in the test

data. It is observed that the predictive quality does hardly deteriorate

when predicting on data with other boundary conditions as used in
the training set. Picture taken from [104].

6.2.1 Fine scale data and computational considerations

As presented in Section 2.1, the porous microstructure of a random medium is de-
scribed mathematically by a perforated domain, i.e., the domain where Stokes flow
is solved is the fluid or pore space ()¢, whereas the solid space denoted by Qs = O\Q)¢
does not correspond to the mathematical domain of the Stokes flow PDE. On the in-
terface of solid and fluid spaces, the no-slip boundary condition V = 0 is applied. To
obtain a unique solution for the pressure response field P(x), it is necessary that the
pore space () is fully connected, which we generate here using non-overlapping
polydisperse spherical exclusions as described in Section 2.4.2, see Figure 2.5 for

some examples.

The random center coordinates and radii of every exclusion of a microstructural
sample n are then passed to the FEniCS mshr module [137] and a triangular fi-
nite element mesh of approximately 256 x 256 = 65,536 vertices is constructed by
constructive solid geometry. Depending on the specific topology of the microstruc-
ture, in particular the number of exclusions Ne(f), the finite element mesh gener-
ation requires a significant amount of computation time. On a single Intel Xeon
E5-2620 (2.00 GHz) CPU, we require ~ 2 hours of computation for a mesh with
Ngf ) ~ 1,000 exclusions, whereas up to 10 days are needed for microstructures with
N ~ 20,000. The solution of the PDE itself is comparably cheap and requires
15125 4+ 5.7s on average on the same hardware.
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Similar to the previous examples where FGM and CGM solvers are based on the
same governing equations, we use boundary conditions of the form

Pye(x) =0, for xcIp=0, (6.7)

Vie(x) = <ax + anZ) , for x €Ty =00\0, (6.8)

compare Equation (6.5). The coefficients a may again assume different values and

are therefore specified later.

6.2.2 Modeling considerations

As already stated, the CGM is a finite element solver based on Darcy’s equations of
motion discretized on a 16 x 16 square mesh with bilinear shape functions ¥;(x) on
the unit square domain Q) = [0, 1]2. The number of degrees of freedom of the CGM is
therefore dim(u.) = 17-17 — 1 = 288 (-1 because of the essential boundary condition
at x = 0) and a single CGM evaluation takes (1.04 4-2) x 10~3s on a single Intel
Xeon E5-2620 (2.00 GHz) CPU. For a surrogate predictive distribution Ngamples ~
100 CGM evaluations are needed, which is to be compared to the FGM solution
+ mesh generation time stated above. In all of the following examples, the PDE
discretization is left unchanged, whereas the effective permeability field may exhibit
different discretizations specified later. Again, the CGM permeability field K(x, A)
is assumed to have the form defined by Equations (5.7), (5.8). We fix the coarse-to-
fine projection matrix W to be the CGM shape function interpolation, Wij = 1/Jj(xi),
where x; are CGM vertex coordinates. The remaining model parameters 7.y, T, 0,
are considered to be latent variables endowed with priors in the framework of the
VRVM model presented in Section 5.3.4, under the restriction that the precisions
Tp,jm pertaining to the feature function coefficients écljm are restricted as T, = Tp,;-
The set of feature functions employed in the following experiments is summarized
in Table B.1 of Appendix B.

6.2.3 Validation: Scale separation/homogenization limit

It was shown in [114] that in the limit of infinite scale separation ¢ << <L L,
Stokes” and Darcy’s equations of motion are equivalent. Moreover, the microstruc-
tural permeability can be assumed to be homogeneous over the averaging volume of
radius ro. It is therefore expected that, given microstructures of homogeneous per-
meability on the scale of discretization of the CGM, the predictions of the surrogate
model are extraordinarily good because the CGM itself is a very accurate description
of the flow problem. The example of this subsection therefore aims to generate FGM
samples that are in the scale separation/homogenization limit as much as compu-
tationally affordable, whilst showing large variability, e.g., by high values of ¢

2
exs 07 -

We therefore set the parameters of the distribution of microstructures p(Ay) to (see
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FIGURE 6.8: Predictive examples on FGM data in the homogeniza-
tion/scale separation limit as described in Section 6.2.3. The colored
surfaces represent the true FGM pressure field solution P(x), whereas
the blue one represents the predictive mean ppreq and the transparent
gray surfaces depict £0p,q- Note the high variation on the z-axis.

One can also observe that the higher the number of exclusions Ne(f )
is, the better the predictions are. This is because the pore space length

scale /¢ ris smaller for higher Ne(f ), so that we are further in the scale
separation limit. Picture taken from [87].

Section 2.4.2)
]’lex = 8‘351 O.EX - 0.6,
pr = —5.53, o, = 0.5, (6.9)
ls =15, ly=0.1,

and the boundary conditions are fixed to

ay=ay =1, ay, =0. (6.10)

The surrogate model performance is evaluated using three separate training sets
of N = 128 each. After training on a surrogate using a CGM with regular 4 x 4
permeability field discretization, the performance metrics R? and MLL as introduced
in Section 5.4.1 are evaluated on a test set of size Nist = 1024 and averaged over the
different training sets. We measure

R? = 0.995 4 0.004, MLL = —11.003 + 0.013, (6.11)

which means that the surrogate model predictions are very accurate, as expected in
the scale separation/homogenization limit. Predictions on four randomly chosen

test samples are depicted in Figure 6.8.

It has to be noted that in the limit of infinite scale separation and a homogeneous
permeability field over the whole unit square domain Q) = [0, 1]2, the pressure re-
sponse P(x) depicted in Figure 6.8 would correspond to a perfect plane defined by
the boundary conditions a, = a, = 1, ay, = 0 and the constant effective perme-
ability K(x) = K. In this extremal case, it becomes clear that the effective output
dimension is very low and a reduced-basis approach as presented in Section 4.5.4
may be more appropriate. The variance explained by the first few PCA components
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FIGURE 6.9: Variance explained by the most significant PCA compo-
nents of output data u; (top row) and input data A s (bottom) for the
FGM data of the examples presented in Sections 6.2.3 (left) and 6.2.4
(right). All plots are obtained by interpolating /discretizing on a regu-
lar 257 x 257/256 x 256 square grid (for u¢/ As) and then performing
PCA on 2048 FGM samples A](fn) , uj(,n) with microstructure distribution

p(Af) and boundary conditions a as described in the text. Picture
adapted from [87].

of the input and output data is plotted in the left half of Figure 6.9. It can be seen that

almost all variance of the output data is concentrated in a single PCA component.
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FIGURE 6.10: Performance metrics coefficient of determination R?
and mean log likelihood MLL as explained in Section 5.4.1 in depen-
dence of the number of training data N and the CGM permeability
field resolution dim(A.). Performance metrics are averaged over a
test set of Niest = 1024 samples. The error bars show the Monte Carlo
error due to randomization of training data. Picture taken from [87].

FIGURE 6.11: Predictive examples on the same FGM sample A Fouf
sampled as described in Section 6.2.4 using a 4 x 4 effective perme-
ability field discretization CGM and different number of training data
N. The colored surface is the true solution of the test sample, the blue
one shows the predictive mean pi,req and the transparent gray sur-
faces show +0peq. As expected, predictive quality improves with
increasing number of training data N. Picture taken from [87].

6.2.4 Predictive performance far from scale separation

In this subsection, we evaluate the predictive performance measures R> and MLL
introduced in Section 5.4.1 for the CGM effective permeability field discretizations
22,4 x4,and 8 x 8 (corresponding to dim(A.) = 4, dim(A.) = 16, and dim(A.) =
64) and different number of training data N drawn according to

Vex = 7~8/ Oex = 0.2,
]/lr - _5~23/ 0y = 03, (612)
ls =12, l, = 0.08,

with identical boundary conditions as in the previous example, i.e., ay = a, = 1,
axy — 0.

Figure 6.10 shows the expected performance metrics R> and MLL in dependence
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FIGURE 6.12: Predictive uncertainty opreq (top row) and absolute
Ly-error ||y — pipreq|| of the predictive mean to the true solution for
four different test samples. As expected, the predictive error measure

Opred 18 high in regions where the true L, error is high and vice versa.
Picture taken from [87].

of the number of training data N and the CGM resolution/latent space dimension
dim(A.). As in the example of Section 6.1.4, performance metrics are evaluated on a
large test set of Niest = 1024 FGM evaluations such that errors due to small test sets
can be neglected. The error bars shown are Monte Carlo errors due to randomiza-
tion of training data. It is observed that R? and MLL reach their asymptotic values
already at N ~ 32 training samples. Another interesting observation is that it is not
the surrogate with highest resolution CGM (8 x 8) but the 4 x 4 model which shows
best performance even in the high data limit. This might be due to the higher infor-
mation loss during the coarse-graining process for finer discretized CGM permeabil-
ity fields since most feature functions ¢;,,(A¢) are evaluated on the corresponding
subregion (), only. Predictive examples on a single microstructure A using a4 x 4
CGM and different training data N are shown in Figure 6.11.

6.2.5 Predictive uncertainty: O%re 4 and true L-error

Additionally to the MLL performance metric, which measures how well the true
solution of a test sample is included in the predictive distribution, we have a look
at the predictive uncertainty opreq Over the domain () and compare it to the “true’
L, distance of the predictive point estimate pipreq to the true pressure field response
represented by u;. To evoke different average velocities in different regions of the
domain (and therefore different predictive errors), non-homogeneous flux boundary
conditions are imposed by setting a, = a, = 0,4y, = —1. Both opeq and the L
distance to the true solution are shown for four different samples in Figure 6.12. As
expected, it can be observed that ¢,eq is higher where the true L, error is higher.
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FIGURE 6.13: True porous microstructures encoded by Af (top row,
black = (), yellow = Q)¢) together with the corresponding mean ef-
fective permeability fields (K(x, Ac))q, (bottom) after training with

N = 128 FGM samples as described in Section 6.2.4. It is clearly vis-
ible that cells Q) of high pore fraction |Q,, ¢|/|Qum,s| have higher ef-
fective Darcy flow permeability, as expected. Picture taken from [87].

However, it is impossible to resolve predictive errors on a shorter length scale than
the one given by the CGM effective permeability field discretization.

6.2.6 Effective CGM permeability field

The coarse-graining process Af — Ay mediated by p. can be viewed as a process
of data-based, numerical homogenization. Further intuition can be obtained by in-
specting the mean effective permeability field (K(x,Ac))o, encoded by A, together
with the true microstructures encoded by As as shown in Figure 6.13. As expected,
the effective permeability is high in cells ), of high pore fraction |Q, ¢|/|Q,s| and

vice versa.

6.2.7 Activated feature functions

The left part ofFigure 6.14 depicts the average number of activated feature functions
@ in dependence of the size of the training data N, i.e., the number of nonzero prior
feature variances j,, = ;. With increasing training data, more and more feature
functions become activated because the importance of the likelihood increases com-

pared to the influence of the prior.

As can be seen in the right part of the figure, for identical FGM data as in Section
6.2.4, the activated features for a training run with N = 128 and a 4 x 4 CGM are a
constant bias term, the log self-consistent approximation (infinite contrast limit), the
square interface area, and some evaluations of the lineal path function of the pore

space ().
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FIGURE 6.14: Expected total number of activated feature functions
in dependence of the number of training data N (left). Error bars
are due to randomization of training sets. The expected number of
activated feature functions is monotonically increasing because the
likelihood function becomes more and more important with increas-
ing data compared to the prior. The right side of the figure shows the

feature function variances ;,, = v; = ’L'p_ jl as an indicator of feature

activity. A 4 x 4 CGM and FGM data as in Section 6.2.4 is used, with
N = 128 for the example on the right. Picture taken from [87].

6.2.8 Extrapolative capabilities: variation of boundary conditions

As already shown in Section 6.1.7 in the context of Darcy flow FGM data, it is possi-
ble to imprint the FGM data boundary conditions to the central CGM unit of the sur-
rogate model. It is thus possible to train the surrogate using FGM data with bound-
ary conditions determined by, say, the coefficient vector a (see Equation (6.8)) but
then using it for predictions on FGM data with different pressure and flow bound-
ary conditions determined by @ # a. This suggests that the surrogate is capable to
learn the salient microstructural features and use them for extrapolative predictions
on data that are very different from the training set.

As an example, boundary conditions of the form a = (ay =1 a, =1 a,, = O)T
(same as in Section 6.2.4) as well as @ = (dy =0 4y, =0 dy, = —1)T are used to
train a surrogate with a dim(A,) = 4 x 4 CGM permeability field and N = 128
FGM samples with identical microstructural distribution as in Section 6.2.4. The
measured performance metrics R? and MLL for all four training/prediction com-
binations of boundary conditions a, @ evaluated on Nist = 1024 test samples and
averaged over three different N = 128 training sets are summarized in Table 6.2.
Only slight deterioration in predictive quality is observed when predictions are car-
ried out on test samples with boundary conditions different from the ones of the
training data. Indicative test samples are shown in the left half of Figure 6.15.

One may even go one step further and fully randomize the boundary conditions?

in the training and test datasets. We generate test and training data with identical

%It is noted that, even if the boundary conditions are random, they are fully known to the surrogate
model.
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Error measure (R?)
trained on T | ~ _ _ _ T
= (ax=1 ay=1 a,,=0 = ((y=0 d,=0 dy,=—1
prediction on a=(a=to=lay=0)" | &= (#=08=02y="1)
a = (ax=1ay=1 a=0 )T 0.930+1.3-103 0.863 +1.1-1072
i = (8:=0 ay=0 dxy=-1 )T 0.887 +7.5-103 0.903+7.0-1073

Error measure (MLL)
trained on T | PN T
= XZl =1 X =0 = x:0 =0 XY =-1
prediction on a = (a=to=ley=0) &= (B0 7=02y )
= ((ax=1 ay=1 2,,=0 )T —111+76-1073 —11.84+93-1073
a= (ﬁ =0 dy=0 dxy=—1 )T —102+1.3-1072 —9.93+23-1072

TABLE 6.2: Predictive quality metrics R?> and MLL as defined in
Equation (5.86) and Equation (5.87) for predictions on the same and
on different boundary conditions as used in the training data. Predic-
tions are only slightly worse when boundary conditions are different
from the ones used in the training data. Table adapted from [87].

microstructures as used in Section 6.2.4 and boundary conditions randomized ac-
cording to a, ~ N(0,1), a, ~ N(0,1), and a,, ~ N(0,1). Using N = 128 FGM
input-output pairs for training, the performance metrics R? and MLL are evaluated
on a set of Niest = 1024 test samples and are found to be

R? = 0.9776 4 0.0027, MLL = —11.07 £ 0.089. (6.13)

Four random predictive samples are shown in the right part of Figure 6.15.

6.2.9 Uncertainty propagation problem

As a use case of the proposed surrogate modeling framework, a simple uncertainty
propagation (UP) problem is considered here. Uncertainty propagation addresses
the question of finding/estimating the distribution of a quantity of interest (Qol)
f(ug) given the distribution of model outputs p(uy),

p(uf) = /P(”fo)P(/\f)d/\f/ (6.14)

where p(ug|As) = 6(ur —us(As)) if the expensive FGM solver us(Af) : As > uy is
applied. From the above equation, it follows formally that

= [ 6(F = flup)plupduy = [ 6(F = Flup))plurldp(d)dAsduy  (6:15)

Needless to say, p(Af) and the corresponding integration are not given in closed
form and evaluation of the FGM s (A ) is costly such that Monte Carlo integration is
time-consuming or even impossible. However, sampling from p(A¢) is possible (see
Section 2.4) and the distribution p(u¢|Af) = 6(us — us(Af)) can be approximated
by the probabilistic surrogate as p(uf|Af) = pprea (#f|Af, D), where D is the training
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Randomized Boundary Conditions

FIGURE 6.15: Left half: Indicative predictive test samples with

boundary conditions a, 4. The model is trained on N = 128 training

samples on both boundary conditions a, @ and predictions are car-

ried out on all training / prediction boundary condition combinations.

The deterioration in predictive quality is only slightly visible. Picture
adapted from [87].

data and ppreq is defined in Section 5.4. The distribution p(f) can then approximated
by the posterior

p(f) = p(fID) = /5(f_f(”f))Ppred(”forD)p(Af)dAfd”ﬂ (6.16)

As the Qol, we use the FGM pressure response P(xp) at the upper right corner of
the domain Q, xp = (1 1)T. The result is shown in Figure 6.16, where the blue line
depicts a kernel density estimate of a Monte Carlo based histogram with 10* FGM
evaluations as an approximation to p(f). The black line shows p(f|D) as defined
in Equation (6.16), where an N = 32 training set and CGM with permeability field
discretization dim(A.) = 4 x 4 is used. The 90% credible intervals visualized by
the gray shaded areas are a consequence of parameter uncertainty due to limited
training data and are obtained by sampling model parameters éES) , C(s) and 7%

of from
their (approximate) posteriors Qg , Q, and Q- , to yield estimates of

p(f16%), <, <), D) = /5(fff(uf))ppred(uf|;tf, 8,7, 7Y, D)p(Ap)dAsduy. (6.17)
The mean and variance due to different model parameters 555), C(s) and TC(;) of every
bin of the histogram are then used to compute the 90% credible intervals depicted
in Figure 6.16. As can be seen in the figure, the true, Monte Carlo based estimate of

p(f) is contained in the credible intervals for its most part.
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FIGURE 6.16: Probability density function p(f) (blue) of the FGM
pressure P(xg) at xg = (1 1) obtained with a kernel density estimate
based on 10,000 Monte Carlo samples. The black line depicts p(f|D)
as defined by Equation (6.16) and is based on a surrogate with N = 32
training samples and a CGM with dim(A.) = 4 x 4 permeability
field discretization. The gray shaded uncertainty bounds are obtained

by first computing separate histograms for p(f| 6, 7, 'r(;), D), and

c
then using the variance of each bin to compute the 90% credible in-

tervals assuming a Gaussian distribution. Picture taken from [87].

6.2.10 Adaptive coarse model refinement

This section gives an experimental illustration of the adaptive CGM permeability
field refinement procedure suggested in Section 5.6. To show the potential of the pro-
posed scheme, the aim is to find, starting from a regular dim(A.) = 2 x 2 square grid
CGM permeability field and performing 4 cell splits, a dim(A,) = 16-dimensional
CGM permeability field discretization that has a higher log evidence lower bound
(ELBO) than one with a regular 4 x 4 square grid.

As the following example should only give a proof of concept, we design material
microstructures in such a way that refinement in a certain area of the domain ) is
encouraged. We do so in drawing the microstructures A from a distribution gener-
ating what we call “tiled” microstructures, which have constant density of circular
exclusions all over the unit square domain Q = [0, 1]2 except for the lower left quar-
ter QO = [0,0.5]%, where it is assumed that the density of exclusions is constant in
sub-cells of size 0.125 x 0.125, but different from sub-cell to sub-cell as depicted in
Figure 6.17. Due to this designed inhomogeneity of the material microstructures, it
is expected that it is beneficial for the CGM permeability field to be refined in the
lower left sub-cell Q;; = [0.5, 0.5]2. To reduce the influence of boundary conditions
on the cell splitting procedure, boundary conditions of the form a, = 1,4, = a,, =0
are applied such that the expected flow velocity is (V) = (1 0)7 all over the domain,
i.e., approximately the same fluxes in all cells of same size.
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FIGURE 6.17: Four representative samples of so-called "tiled" mi-
crostructures, where the density of spherical exclusions (black dots)
corresponding to impermeable solid material is distributed homoge-
neously over the unit square domain () except for the lower left quar-
ter () (indicated by the orange lines). There, the density of exclusions
is constant in sub-cells of 0.125 x 0.125 size, but varies from sub-cell
to sub-cell. Such microstructures enforce refinement in the lower left
quarter (). Picture taken from [87].
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FIGURE 6.18: Left: The negative cell-scoring function — ,511) right be-
fore each split i (brighter color stands for lower ;). Middle: log ev-
idence lower bound (ELBO) as given in Equation (5.89) for the adap-
tively refined model described in the text (blue line). The black line
indicates the ELBO of a model with 4 x 4 square grid CGM perme-
ability field discretization for comparison. Right: Final mesh after
four cell splits (blue lines) with a representative “tiled” microstruc-
ture underneath. Picture taken from [87].

The model training and adaptive refinement procedure is carried out onan N = 32
training dataset starting with a dim(A.) = 2 x 2 CGM. After training convergence,
the cell scoring function ]:,%1) established in Equation (5.91) is evaluated (see top left
of Figure 6.18). The cell with lowest ]:,511) (or highest —]-",511), as plotted) is chosen and
split into four equally sized sub-cells, i.e., the latent space dimension dim(A.) = 4
is increasing to dim(A.) = 4 — 1 +4 = 7. After splitting, the model training contin-
ues with the new CGM permeability field discretization and all model parameters
initialized to values deduced from the ones found before the cell was split. Training
is again run to convergence and the previously stalled ELBO depicted in the middle
plot of Figure 6.18 can increase further. After convergence, the next cell with lowest

Fi& s split and so on, until four cells are split and dim(A.) = 16.

As can be seen in the final mesh on the right part of Figure 6.18, it is indeed the
lower left quarter ();; which becomes refined by the cell-scoring function ;. The

trend of refinement close to the origin x = 0 in the lower left corner and along
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the lower boundary x, = 0 can be explained by the traction/pressure boundary
condition specified on I'p = {x = 0} only and the fact that circular solid phase
exclusions have a minimal distance of 0.003 to the domain boundary, i.e., there is
always a narrow “free channel” along the boundary where fluid can flow, and as the
boundary conditions are chosen such that the fluid is flowing from left to right, it is
beneficial to refine along the lower boundary.

The crucial result of the experiment is that the final value of the ELBO after four
splittings and a latent space dimension dim(A.) = 16 is higher than it is for a reg-
ular 4 x 4 CGM permeability field discretization. This means that the adaptive re-
finement leads to an improved final model compared to standard square grid dis-

cretization.

6.3 Chapter summary

The present chapter provides numerical evidence that the physics-aware surrogate
modeling framework for the solution of stochastic PDEs in the context of random
heterogeneous media as introduced in Chapter 5 yields cheap and accurate proba-

bilistic predictions to the underlying expensive FGM simulation.

Surrogate modeling frameworks based on CGMs with identical as well as simplified
constitutive laws compared to the FGM simulation data are tested in combination
with the different prior models suggested in Chapter 5. In particular, the proposed
coarse-graining surrogate models are validated (i.e., tested for correctness) by ap-
plication to fine scale microstructural data in a regime where either the effective
material property (i.e., the permeability field K) is given in closed form or the CGM
already represents an accurate description of the given flow problem (homogeniza-

tion limit).

After successful validation, the model predictive performance is evaluated in terms
of the performance metrics presented in 5.4.1 in dependence of the number of train-
ing data N and the CGM resolution/latent space dimension dim(A.). This is the
perhaps most significant experiment since apart from computational efficiency, the
predictive accuracy determines the utility of the proposed model as a surrogate in
multi-query applications. Also, not only the accuracy of point estimates (e.g., the
predictive mean pi,req) is evaluated, but also the correctness of the predictive uncer-
tainty by comparing the predictive standard deviation opeq to the true Ly-error on
a test set as well as performance metrics that evaluate the test data likelihood under

the predictive distribution.

Approximate posterior distributions g,, (/\E”)) over the latent variables /\E”) are com-

puted. These distributions directly encode the effective material permeability field
K(x, Ac). The mean effective permeability (K(x, Ac)),, is plotted and visually com-

pared to the material microstructure determined by A .
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The sparse pattern of activated feature functions ¢;,, is shown and it is observed that
the more training data N are used, the more feature functions ¢;,, are activated.

The proposed surrogate shows off its ability to encode salient physical information
and to extrapolate by providing accurate predictions even on test data that are very
different from the ones seen in the training phase.

The suggested adaptive CGM refinement scheme is shown with an illustrative ex-
ample and as a use case, a simple uncertainty propagation problem is carried out

and compared to plain Monte Carlo.
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Chapter 7

Conclusions and future work

7.1 Potential future research directions

7.1.1 Multi-query applications

Once trained, the physics-aware surrogate model that was developed in this thesis
can be used as a black box solver providing reliable, fully probabilistic estimates of
expensive fine-grained model (FGM) forward evaluations of SPDEs at a fraction of
their original computational cost. This black-box property makes coupling to any
multi-query application such as (stochastic) optimization, uncertainty propagation,
control-, design-, or inverse problems trivial such that a case study in any of those
fields should be straightforward to realize. Since predictions of the proposed sur-
rogate modeling technique are fully probabilistic, usage in a Bayesian optimization
setting [57, 282, 283] could be worthwhile (if the CGM itself requires considerable
computational resources) and provide further insight to design of experiment ques-
tions, i.e., for what inputs As to generate FGM training data in order to obtain an

optimally accurate surrogate.

7.1.2 Modeling improvements

Various model extensions can be thought of: the dimension reduction/ coarse-grai-
ning step going from the microstructural description As to the reduced represen-
tation A, could make use of recent advances in computer vision by application of
CNNs or deep Gaussian process models (see Section 4.5.1, 4.5.2), superseding the
need of hand-crafting microstructural feature functions. It is noted though that in
the "small data, high dimensions" regime of this work, such models lack of possibil-
ities to incorporate a priori physical knowledge (which was the original motivation
to use hand-crafted feature functions from the random media literature) and there
is the need of significant regularization to avoid overfitting. Similarly, more gen-
eral decoder models p.f can be contemplated that make use of the spatial nature of
the response u; by employing, e.g., a Gaussian process with distance dependent co-
variance function. Another idea is to construct the model such that information is

not only passed through (and perturbed by) the CGM, but also through ‘bypassing’
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components just as in highway networks [284, 285], thereby expanding the model in-
formation bottleneck and enabling more detailed reconstruction of fine scale output

variations.

7.1.3 Coarse-grained model corrections

A slightly more sophisticated model extension might be the use of CGM constitutive
laws that are more complex than Darcy’s law given in Equation (2.6), such as the

Forchheimer model [286, 287] (assuming unit viscosity y = 1)
V = —KV.P+|V|FV, (7.1)

where F is the second order tensor Forchheimer coefficient. Another example is the
Brinkman law [288],
V = —KV,P+ AV, (7.2)

where 7 is called effective viscosity. Moreover, the Darcy flow equation of motion
may be extended by a convective term Veony (x)

V = —KV,P + PVeony. (7.3)

Also, a source term s may be included such that, combining all of the above consti-

tutive law corrections, the CG model would be
Vi (—K(Ac)VP + |V|FV 4+ Ay V 4 PVeony) = s (7.4)

and the CGM output u, becomes a function of the PDE coefficients and source term,
ue = uc(Ac, F, 17, Veony, s). The correction term coefficients should be equipped with
a prior and be treated as latent variables such that the likelihood of a single FGM
data pair {As, us} is written as

P(uf|Af/ 0., ecf/ 6correct) = /pcf(uf’uc(Ac/ F, 1, Vconv/ 5)/ ecf)Pc(/\c|Af/ ec)
pcorrect(F/ 7’]1 VconVr S|6correct)dAc dP d77 chonv dS.

(7.5)

The prior over the correction coefficients peorrect(F, 17, Veonv, §|Ocorrect) should be spar-
sity enforcing, such that the model automatically picks the constitutive law that is
in best accordance with the data, while setting as many correction terms as possible
to zero. One may start off with spatially constant corrections and later generalize to
F = F(x),7 = 7(x), Veconv = Veonv(x) with constant values in every finite element.
Also, one could try to absorb microstructural variability in the correction terms by
including dependence on A¢, peorrect = Peorrect(F, 17, Veonv, S|A £+ Ocorrect) using, e.g., a
similar feature function based model as for the permeability K(x,A.). A surrogate
model using a CGM with correction terms as described above that are turned off and
on by a sparsity enforcing prior can be particularly interesting for FGM data given
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by "real-world snapshots", e.g., CT scans of microstructures and pressure field mea-
surements where the constitutive behavior of the FGM flow is unknown but could
be revealed by the surrogate model using sparsity priors on the correction terms as
described above.

7.1.4 Extension to semi-supervised training data

A frequent machine learning setting is where there are only few labeled training data

. . L oy Ly N
available, but many unlabeled input samples exist, i.e., Dsyp = D A Footy ,

n=1
(n) N+M
Dunsup = {/\f } =N+1’
ing samples (w1th usually M < N), respectively.

, where N, M are the number of labeled and unlabeled train-

To make use of the unsupervised data Dunsup as well, one may target a semi-super-
vised model [289-291] where both the fine scale microstructures Ay and their reduced
representations A, are generated from a low-dimensional latent space Z similar to
probabilistic PCA [292, 293] like

Aem = &m(2,0¢) + T *Cm En ~N(0,1) (7.6)
Api=hi(z,0f) + 1% Zi ~N(0,1) (7.7)

where z € Z, g(z,0.),h(z,0;) are arbitrary mapping functions parametrized by
0.0 Iz respectively and T, Ts are noise precision parameters. By convention, it is as-
sumed that the latent variables z are standard normal distributed, p(z) = N (z|0, I).
Moreover, it is noted that the reduced representation/effective material property en-
coding A, no longer explicitly depends on the microstructure A, but implicitly via
the latent variables z. Also observe that A;, A 5 are conditionally independent, i.e.,

p(Ac, /\f’z) = PC(AC|Z)Pf(/\f‘Z)'

To take into account the input microstructures A¢ for training, we first switch to

1

a generative form for the likelihood function for the supervised part of the data

»Csup(Dsupmcf/ 95/ Bf)/

N
ﬁsup(Dsup|6cfrec/9f H f / f |9cf/6c/6f)

- H/pt?f |uc )),Gcf)pc( |Z ec)d/\( n). (78)

'Pf( 120, 87)p(2")dz",

where 0, = {6y, T4} denotes the parameters of the input data generative process.

INote the difference to the discriminative form of the likelihood function as given in Equation (5.25).
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The likelihood for the unsupervised part of the data Dynsyp is readily deduced from
the generative process and is given by

N+M (n)
ﬁunsup(Dunsupwf) = H /pf(/\f |z(”),6f)p(z(”))dz("). (79)
n=N+1

The full data log likelihood is therefore
log £(Dsup,Dunsup|0cf,0c,0¢) =
= illog [per (A7), 00)pe (AL 2, 0)an "
A, 6 (e

N+M »
+ ). log/pf(Af |z(”),6f)p(z(”))dz(”).

n=N+1

(7.10)

Any of the model parameters 6., 0., 0y may again be equipped with any reasonable
prior as in Chapter 5 and the model can be trained by maximizing the likelihood
function/the posterior/the evidence as before.

Predictive samples can be generated using

p(uf’/\f,ecf,ﬂc,ef) = /pcf(uf|uc()tc),Bcf)pc(/\c|z,Bc)ditcp(sz)dz, (7.11)

where intricacies may arise since inference w.r.t.
p(z|Af) < N'(Ag|h(z,0f), diag(s) )N (2]0, 1) (7.12)

is typically not feasible in closed form for nonlinear mappings k(z, 0y).

7.2 Conclusions and summary

This thesis has successfully developed a new class of physics-aware, fully proba-
bilistic machine learning models for surrogate modeling of expensive finite element
simulations of stochastic partial differential equations in the context of flow prob-
lems through random heterogeneous media. By making use of an encoder-decoder
model architecture with an effective physics solver (called the coarse grained model
or CGM) based on much coarser spatial discretizations and potentially simplified
governing equations as the core unit, it was shown that accurate, fully probabilistic
predictions can be obtained using only N ~ 10...100 fine grained model (FGM)
evaluations as training samples, despite the high-dimensional input uncertainties
A¢,dim(Af) Z 10,000 describing the microstructure of the random medium. The
width of the predictive distributions obtained accurately quantified uncertainty due
to limited training data and information loss during the coarse-graining process (i.e.,
due to finite model complexity). A conspicuous feature of the proposed surrogate is
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the ability to deterministically assign boundary conditions, which enables accurate
predictions even under extrapolative conditions. A fully Bayesian framework free
of user-specified parameters was developed allowing for simple usage of the model.
As a by-product, the model evidence can be estimated and used for model com-
parison. We presented a method using the evidence to adaptively refine the CGM,
thereby increasing model complexity.

Chapter 2 gave an introduction to the physics of fluid flow through random porous
media which is the sample application of the surrogate modeling framework that
was developed in this work. Starting from Navier-Stokes equations, the governing
equations of Stokes flow (also known as creeping flow) were derived under the as-
sumption of low Reynolds numbers Re < 1 which is the common scenario for fluid
flow through random porous media. Furthermore, the phenomenological law of
Darcy flow was presented and its equivalence to Stokes flow in the homogenization
limit was outlined, the central building block for the construction of a CGM based
on simplified constitutive equations. Moreover, it was shown how to generate real-
istic random microstructures with specific lower order statistics that can be used for

numerical experiments.

Chapter 3 briefly discussed the notion of stochastic partial differential equations
(SPDEs), their solution with vanilla Monte Carlo and how surrogate models can be
used to accelerate and improve inference. Moreover, the numerical solution of PDEs
with the finite element method (FEM) was presented using the example of Stokes
and Darcy flow.

In Chapter 4, a broad introduction to relevant topics of uncertainty quantification
(UQ), machine learning, and surrogate modeling was given. After stating the un-
certainty propagation problem in Section 4.1, the concept of (supervised) machine
learning was introduced in Section 4.2 starting from Bayes’ law and linear regres-
sion. Sparsity enforcing priors that were used in different setups of the proposed
physics-aware surrogate modeling framework were introduced and their benefits
and disadvantages were pointed out. The model evidence was presented as a means
to compare models of different architecture and complexity, which was needed in
a later section in the context of adaptive CGM refinement. All approximate infer-
ence techniques that were used during this work were presented in Section 4.3, from
crude Laplace approximation to modern stochastic variational inference (SVI) meth-
ods. A presentation of some of the most popular stochastic gradient ascent (SGA)
algorithms needed for SVI was given in Section 4.4. The chapter concluded with
a summary of the most popular surrogate modeling techniques for the solution of
SPDEs in 4.5, compared their benefits and disadvantages and thereby motivated the
need for a physics-aware surrogate that can handle high dimensional stochastic in-
puts even with small training data.

The development of such a surrogate model is the main contribution of this thesis
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and its constructive form was outlined in full detail in Chapter 5. We suggested a
three-component model where the first part consists of a coarse-graining distribu-
tion p. that is capable to extract the salient microstructural features that contain a
maximum amount of information required to reconstruct the PDE response denoted
by us. This information is decoded and compressed by a large library of microstruc-
tural feature functions into a low-dimensional, latent representation A, which is in
one-to-one correspondence to an effective material property field (here: permeabil-
ity) K(x, A;). The effective material property field K then serves as the input to a
much coarser discretized CGM based on Darcy’s equation of motion which forms
the second model component. Thirdly and finally, The output u. of the CGM, the
Darcy flow pressure field, is probabilistically reconstructed to its fine scale counter-
part u; using a decoder distribution pf. Different sparsity-enforcing prior models
were developed for the latent variable model based on well-established machine
learning techniques and efficient training algorithms were presented in Section 5.3.
An efficient algorithm to generate predictive samples and to compute low order
predictive statistical moments was outlined and valuable predictive performance
measures were presented in Section 5.4. The full numerical scaling behavior of both
training and prediction stages was discussed in Section 5.5. A method for automated
adaptive refinement of the CGM core unit was presented in Section 5.6.

Various numerical tests of the proposed surrogate model were conducted and de-
scribed in Chapter 6. After successful realization of validation experiments, the
predictive performance was tested in dependence of the number of training data
N and the CGM resolution/bottleneck dimension dim(A.). Effective material prop-
erty fields were visualized and compared to the true porous microstructure. The
sparse set of activated microstructural features that the model identified to be most
relevant for reconstruction of the FGM response was shown and interpreted for dif-
ferent classes of microstructures. The extrapolative capabilities of the model have
been proven by using test data of significantly different (or even random) boundary
conditions than in the training set. As a use case of the developed model, a simple
uncertainty propagation problem was carried out and model predictions were com-
pared to plain Monte Carlo results. Finally, an indicative example gave a proof of
concept for the suggested adaptive CGM refinement strategy.



Appendix A

Feature functions used for the 2D

Darcy FGM data experiments of

Section 6.1.2

Feature functions ¢

147

Index j Function ¢; Comment
T constant 9 =1
at /a2 +4Ap0
o g = I = Ay (201 — 1) + My (204 = 1)
34 Maxwell-Garnett 9 = 1?3},:;
5-6 | Differential Effective-Medium e 0 ) (dmar ) g,
erential Effective-Mediu Tine—Amat 7 = inc
7-12 Lineal path Lineal path function for certain phase/distance
13-16 Lin. path parameters a,b parameters of a - ¢~ fit to lineal path
17-18 Number of distinct high/Tow conducting blobs
19-22 Number of high/Tow conducting pixels to cross from Ieft to right/up to down
23-26 | Max. extent of high/Tow conducting blob in x /y—direction
. 0 N\177
27-31 Generalized mean (% ):,[;le (/\'[f']m)‘7>
32-37 | Max./mean/variance of convex area of high/Tow conducting blobs
3841 Inv. distance of connected path through high/Tow cond. phase in x/y-direction, 0 if no connected path existent
4243 Specific surface —4 BBTi S(d)|4—q, with 2-point correlation S, (r)
compute w; = N (x;[picenter, aI) where picenter is the macro-element center
44-48 “Gaussian linear filter” ) . T4 [K
and x; are fine-scale element locations. Compute ¢; = w" A

49 Standard deviation @i =((Ari— </\f',‘>)z>

50 Log standard deviation @j =log(((Ag;i—(Asi 12Y)

51 Ising energy Energy of a 2d Ising system with coupling | = T and no external field

N
52-63 Two-point correlations 9j = [1 ):i:ei'f 10(/\[fk],' - ABZC], )
NL‘/, k] ! 4
64-81 Distance transformations Mean /variance/maximum of distance transforms under different distance metrics
82-88 Local PCA loadings Perform PCA using every macro-cell A;". Compute projections onto loadings ¢; = wT/\;k]
89-92 Max. extent of high/Tow conducting blob in x/y—direction of whole microstructure A ¢
93-97 SCA, Maxwell-Garnett, Differential Effective Medium on whole microstructure A f
98-100 Global PCA loadings ‘ Perform PCA using whole microstructures A s. Compute projections onto loadings ¢; = wT/\f

TABLE A.1: Set of 100 feature functions ¢ applied in the 2D Darcy

flow examples of Section 6.1.2. Table taken from [104].

Table A.1 shows a list of the 100 feature functions used in the 2d numerical examples

input, features 89-100 use the whole vector A.

[m]

of Section 6.1.2. Features 1-88 take the subset A f

belonging to subregion (,, as
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Appendix B

Feature functions used for the
Stokes FGM data experiments of
Section 6.2

Table A.1 shows a list of the 150 feature functions used in the numerical examples of

Section 6.2. Features 1-55 take the whole microstructure A ras input, features 56-150

(m)

use the subset A f pertaining to subdomain/cell (), for which K, (x, A.) = eten].



Appendix B. Feature functions used for the Stokes FGM data experiments of
Section 6.2

150

Feature functions ¢

Index j Function ¢;, Comment
1 constant gi=1
2 pore fraction in () pore fraction evaluated on full domain ()
3 log pore fraction in O
4-7 (pore fraction)?>-03-Z5 in ()
8 | exp(pore fraction)
9 | Tog SCAin Q) log self-consist. approximation [1], sec. 18.1.2, inf. contrast limit
10 Maxwell-Approximation in () inf. contrast limit, see [1], sec. 18.2.1
11 log Maxwell-Approximation
12-17 | Tog chord Iength density in Q, d = 0.05...0 see [1] sec. 6.2.4
18 interface area in O
19 log interface area in ()
20-27 | |log interface area[>/2>1/21/31/4175234 in ()
28-31 (interface area)!/31/41/52 in O
32 mean distance edge in () measured from excl. edge to edge
33 Tog mean distance edge in Q) measured from excl. edge to edge
34 log2 mean distance edge in () measured from excl. edge to edge
35 log3 mean distance edge in () measured from excl. edge to edge
36 mean distance center in O measured from exc]. center to center
37 min. distance center in O measured from exc|. center to center
38 log min. distance center in () measured from excl. center to center
39 logZ min. distance center in Q measured from excl. center to center
40-43 Tineal path in () for 4 = 0.025,0.01,0.005, 0.002 see [1], sec. 2.4
44-47 log Tineal path in () for 4 = 0.025, 0.0, 0.005, 0.002
48 void nearest-neighbor pdf, 4 = 0,in O see [1], sec. 2.8
49 | Tog void nearest-neighbor pdf, d = 0,in O see [1]. sec. 2.8
50 pore size density, d = 0, in O see [1], sec. 2.6
51 log pore size density, d = 0,in Q see [1], sec. 2.6
52 mean chord Tength in O see [1], sec. 2.5
53 | Tog mean chord Iength in () see [1], sec. 2.5
54 exp mean chord length in O see [1], sec. 2.5
55 | (mean chord length)’® in O see [1], sec. 2.5
56-58 <r3;2/0'5/1> in Q) expected exclusion radii moments
59-61 log <1’8j3’0'5’1> in Oy log expected exclusion radii moments
62 pore fraction in O,
63 log pore fraction in O,
64 exp pore fraction in (3,
65-68 (pore fraction)?>15225 in (),
69 log self-consistent approximation (inf. contrast) in 0,
70 Maxwell Approximation in O,
71 Tog Maxwell Approximation in (3,
7278 Tog chord Tength dens. in ),
d = (50,25,12.5,6.25,3,1.5,0) - 10~*
79 interface area in (),
80-88 | |[log interface area|/12234517217317/% in O,
89-93 | interface area|l/21731721752 iy O,
94 | mean distance edge in (), measured from excl. edge to edge
95 | log mean distance edge in ), measured from excl. edge to edge
96 | max distance edge in O, measured from excl. edge to edge
97 | Tog max distance edge in O, measured from excl. edge to edge
98 std distance edge in (), measured from excl. edge to edge
99 Tog std distance edge in (), measured from excl. edge to edge
100-104 square well potential, width = (1,2,3,4,5) - 10 Zin Q,,
105 logZ mean distance in (), measured from excl. edge to edge
106 log3 mean distance in (), measured from excl. edge to edge
107 mean distance center in (), measured from excl. center to center
108 min. distance center in O, measured from excl. center to center
109 log min. distance center in (), measured from excl. center to center
110 log2 min. distance center in (), measured from excl. center to center
TT1-1T4 | Tineal path in (3,, for 4 = 0.025,0.0T,0.005,0.002
115-118 log Tineal path in 0}, for d = 0.025,0.01,0.005, 0.002
119 void nearest-neighbor pdf, d = 0,in O, see [1], sec. 2.8
120 log void nearest-neighbor pdf, d = 0, in O, see [1]. sec. 2.8
121 pore size density, d = 0, in Oy, see [1], sec. 2.6
122 log pore size density, d = 0,in Q, see [1], sec. 2.6
123 mean chord length in O, see [1], sec. 2.5
124 Tog mean chord length in O, see [1], sec. 2.5
125 exp mean chord length in (O, see [1], sec. 2.5
126 (mean chord length)o'5 in Q) see [1], sec. 2.5
127-129 <r?'x2/0'5’1> in Q) expected exclusion radii moments
130-132 log <r?}2/0'5/1> in Q, log expected exclusion radii moments
133 length scale of exp. approx. to lin. path in O,
134 mean of euclidean dist. transform in O, see [93
135 variance of euclidean dist. transform in (), see [93
136 max. of euclidean dist. transform in O, see [93
137 mean of chessboard dist. transform in (), see [93
138 variance of chessboard dist. transform in 3,, see [93
139 max. of chessboard dist. transform in (), see [93
140 mean of cityblock dist. transform in (), see |93
141 variance of cityblock dist. transform in O, see [93
142 max. of cityblock dist. transform in 0, see [93
143-145 Gauss lin. filt. d = 2,5, 10 pixels in O, see [104
146 Ising energy in O,
147 shortest connected path, x-dir., Euclidean, in (,, see [93
148 | shortest connected path, y-dir., Euclidean, in O, see [93
149 shortest connected path, x-dir., cityblock, in (), see [93
150 shortest connected path, y-dir., cityblock, in O, see [93

TABLE B.1: Set of 150 feature functions ¢ applied in the numerical
examples of Section 6.2.



List of abbreviations

ADAM
ANN
ARD
BP
DNN
ELBO
EM
FE
FEM
FGM
FOM
GP
gPC
HMC
ii.d.
KL
MALA
MAP
MCMC
MGA
MH
ML
MLL
MLP
PDE
POD
RB
ROM
RVM
SC
SCA
SGA
SMC
SPDE
s.t.

ADAptive Moment estimation (SGA algorithm)
Artificial Neural Network

Automatic Relevance Determination
(Error) BackPrpoagation

Deep Neural Network

Evidence Lower BOund

Expectation Maximization (algorithm)
Finite Elements

Finite Element Method

Fine Grained Model

Full Order Model

Gaussian Process

generalized Polynomial Chaos
Hamiltonian (or Hybrid) Monte Carlo
independent and identically distributed (random variable)
Kullback-Leibler (divergence)
Metropolis-Adjusted Langevin Algorithm
Maximum a posteriori

Markov chain Monte Carlo

Maxwell Garnett Approximation
Metropolis Hastings (algorithm)
Maximum likelihood

Mean Log Likelihood

MultiLayer Perceptron

Partial Differential Equation

Proper Orthogonal Decomposition
Reduced Basis (method)

Reduced Order Model

Representative Volume Element
Stochastic Collocation

Self - Consistent Approximation (Bruggeman formula)
Stochastic Gradient Ascent

Sequential Monte Carlo

Stochastic Partial Differential Equation
such that
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SVD
SVI
8
uQ

\%!
VRVM

w.r.t.

Singular Value Decomposition
Stochastic Variational Inference
Uncertainty Propagation

Uncertainty Quantification
Variational Inference

Variational Relevance Vector Machine
with respect to
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