
The RACE Project: An
Informatics-Driven Greenfield Approach
to Future E/E Architectures for Cars

Alois Knoll, Christian Buckl, Karl-Josef Kuhn, and Gernot Spiegelberg

Abstract As cars are turning more and more into “computers on wheels,” the
development foci for future generations of cars are shifting away from improved
driving characteristics toward features and functions that are implemented in
software. Classical decentralized electrical and electronic (E/E) architectures based
on a large number of electronic control units (ECUs) are becoming more and more
difficult to adapt to the extreme complexity that results from this trend. Moreover,
the innovation speed, which will be dictated by the computer industry’s dramati-
cally short product lifecycles, requires new architectural and software engineering
approaches if the car industry wants to rise to the resulting multidimensional
challenges. While classical evolutionary architectures mapped the set of functions
that constitute the driving behavior into a coherent set of communicating control
units, RACE (Reliable Control and Automation Environment) is an attempt to
redefine the architecture of future cars from an information processing point of view.
It implements a straightforward perception-control/cognition-action paradigm; it
is data centric, striking a balance between central and decentralized control. It
implements mechanisms for fault tolerance and features plug-and-play techniques
for smooth retrofitting of functions at any point in a car’s lifetime.

A. Knoll (�)
Technische Universität München (TUM) and fortiss GmbH, München, Germany
e-mail: knoll@in.tum.de

C. Buckl · K.-J. Kuhn · G. Spiegelberg
Siemens AG, CT RTC RACE, München, Germany

© Springer Nature Switzerland AG 2019
Y. Dajsuren, M. van den Brand (eds.), Automotive Systems and Software
Engineering, https://doi.org/10.1007/978-3-030-12157-0_8

171

Dajsuren, Y., & van, D. B. M. (Eds.). (2019). Automotive systems and software engineering : State of the art and future trends.
 Springer International Publishing AG.
Created from munchentech on 2022-07-27 11:00:22.

C
op

yr
ig

ht
 ©

 2
01

9.
 S

pr
in

ge
r

In
te

rn
at

io
na

l P
ub

lis
hi

ng
 A

G
. A

ll
rig

ht
s

re
se

rv
ed

.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12157-0_8&domain=pdf
mailto:knoll@in.tum.de
https://doi.org/10.1007/978-3-030-12157-0_8

172 A. Knoll et al.

1 Introduction1

Over the last decades of “vehicle electronification and digitalization,” it has become
clear that information and communication technology (ICT) will determine the
vehicle of the future. ICT is becoming the dominant factor and will drive vehicle
developments by itself—people will want their cars to be equipped with ICT
as powerful as it is in their offices and homes. For this reason, architectures
and technologies for vehicle ICT cannot be viewed merely as a framework for
gradual evolutionary innovations as they once were—they will determine the future
development of cars in terms of functionality, innovation speed, and value creation.
Architectures designed with these insights in mind will make new approaches
and functions possible—from greater autonomy in driving to a more complete
integration of the vehicle into the ICT infrastructure—and thus help significantly
to achieve socio-political goals like energy efficiency or lower accident rates.

Today’s automotive electronic/electric (E/E) architectures are a result of a long
evolutionary process. The number of electronic control units (ECUs) has risen
dramatically since their first large-series introduction into car technology in the
1970s. At present, the value added by ICT to the car is between 30% and 40%, but
80% of the innovations2—from entertainment systems by way of driver assistance
systems to advanced engine and chassis control—are due to ICT. While the first
antilock braking system (ABS) in 1978 had a small processor with a few hundred
lines of code, today’s luxury cars have millions of lines of code running on
high- performance processors and dedicated chips. Still, however, the potential of
modern ICT is far from being fully exploited by the car industry. For example,
the move to full “drive-by-wire” or even “drive-by-wireless,” although offering
numerous advantages, has not been made because the necessary fundamental
software structures are not deemed to be sufficient for this industry’s standards. The
development in areas like infotainment or telematics is also much faster, which has
now become a real threat to traditional car manufacturers. One of the reasons is that
customers want their car to keep pace with their rapidly changing ICT environment
over the lifetime of the car—which will increase rather than decrease as we move to
maintenance-free electric powertrains—and that static architectures will not be able
to meet the dynamic, and as of now unforeseeable needs that will arise in the future.

What can be foreseen, however, is that there will be an ever-increasing speed
of development in customer electronics, innovative applications (purely defined in
software), new business models based on “platforms,” and much more emphasis
on environmental protection and resource economy. These aspects can only be
taken care of if automotive original equipment manufacturers (OEMs) can keep
up with the pace of the development of processing power, storage capacity, and

1Note that parts of this section, including Figs. 1 and 2, are an updated extract from [1].
2http://aesin.org.uk/about/about-automotive-electronics/

Dajsuren, Y., & van, D. B. M. (Eds.). (2019). Automotive systems and software engineering : State of the art and future trends.
 Springer International Publishing AG.
Created from munchentech on 2022-07-27 11:00:22.

C
op

yr
ig

ht
 ©

 2
01

9.
 S

pr
in

ge
r

In
te

rn
at

io
na

l P
ub

lis
hi

ng
 A

G
. A

ll
rig

ht
s

re
se

rv
ed

.

http://aesin.org.uk/about/about-automotive-electronics

The RACE Project: An Informatics-Driven Greenfield Approach to Future E/E. . . 173

communication bandwidth—in other words, if they can rely on an architecture base
that can make practical use of these developments.

In summary, ICT architecture is increasingly becoming a barrier—or an
enabler!—to innovation.

2 A Brief History of ICT E/E Architectures for Cars

A look at the history of car electronics can be helpful to understand why the time
is now ripe to develop radically new architectures (see Fig. 1). In the evolution of
vehicle architectures, there is a trend for the architecture actually to accidentally
become much more complex than it is essential for the achieved increase in
overall functionality. Hence, new functions to be added become more and more
cumbersome and hard to integrate, and the innovation activities therefore tend to
lag behind. Only a substantial revision of the architecture enforced by a disruptive
technology leap can bring the accidental complexity back down to its essential level.

The only way of achieving this is to raise the level of functional abstraction
at which new functions can be integrated. This has already been observed in the
automotive industry. To reduce emissions and improve comfort, in the 1980s it
was necessary to expand the use of microcontrollers. Complexity relatively quickly

1955

First Million
VW Beetle
produced

Bosch ABS in
Mercedes S-Class

introduced in 1978

Age of cable
~40 yrs

Age of busses and ECUs
~26 yrs

Age of services
~17 yrs

Introduction of CAN as
a standard bus system in 1987

~10 ECUs,
Passat B5

(1996)

~40 ECUs,
Passat B6

(2005)

~70 ECUs
(2010)

Centralized
ICT architecture

Cloud-/Swarm-oriented
ICT architecture Accidental

Complexity

Essential
Complexity
(number of
functions)

1965 1975 1985 1995 2005 2015 2025 2035

C
o

m
p

le
xi

ty
 &

 N
o

. o
f f

u
n

ct
io

n
s

Time

Fig. 1 Qualitative past and expected future growth of essential complexity due to increasing
functionality to be supplied by electronic and software infrastructure, plotted against accidental
complexity introduced by suboptimal mapping of ICT technology to vehicle technology

Dajsuren, Y., & van, D. B. M. (Eds.). (2019). Automotive systems and software engineering : State of the art and future trends.
 Springer International Publishing AG.
Created from munchentech on 2022-07-27 11:00:22.

C
op

yr
ig

ht
 ©

 2
01

9.
 S

pr
in

ge
r

In
te

rn
at

io
na

l P
ub

lis
hi

ng
 A

G
. A

ll
rig

ht
s

re
se

rv
ed

.

174 A. Knoll et al.

became a big problem because it was almost impossible to connect all these
electronics modules together in a big cable harness. The solution was an abstraction
of communication through shared media—buses like the CAN bus virtualized the
physical connection. It thus became significantly easier to introduce new functions
because integration no longer had to take place at the cable level, but at the
information level.

While CAN is a networking standard originating from the automotive industry,
the other important standard when it comes to architectures is Automotive Open
System Architecture (AUTOSAR).3 We are currently observing huge efforts in the
industry to completely revise this standard in view of the requirements emerging
from autonomous driving and an ever-increasing number of advanced driver
assistance systems. This will be called the Adaptive AUTOSAR Platform, but when
it will be published, it will be far from complete. Like AUTOSAR Classic, it will be
subject to many revisions, and its initial version will be limited in scope.

The differences between AUTOSAR classic and RACE are manifold, and will
become clear in the rest of this paper. Some differences are that the RACE RTE
is dynamic to allow for plug and play. RACE provides support for fault tolerance
and recovery, as well as a complete up-to-date software development environment,
including separation kernels, as an underlying operating system layer. Moreover,
the hardware structure based on central computers is a radical departure from the
current architectures.

Notwithstanding, today’s ICT architectures face problems because of the ever-
increasing number of control devices. A new, centralized electric/electronics archi-
tecture, with a base middleware, might drastically reduce accidental complexity.
New functions may then be integrated, not as physical electronic control devices but
as software. The third step, finally, would be a further virtualization of the necessary
total system of hardware and software (the hardware/software stack) into a service-
oriented architecture. The underlying execution platform, composed of control
devices and buses, would be entirely virtualized by middleware. The middleware
would also implement non-/extrafunctional features, such as fault tolerance or
communication delays. Then it would be possible to distribute functions as desired,
even outside the vehicle; the car would thus become quite naturally part of a larger
system.

At this point, a closer look at other sectors is in order. In the early 1980s,
solutions in industrial controls and PCs proved that modular hardware and standard
operating systems like MS-DOS and Unix can completely change entire industries.
Open standards have resulted in increased innovations in hardware and software
ever since. Economies of scale in production, with the associated cost reductions
in modular hardware, made PCs attractive to end users. In the 1990s, a new
architecture was introduced in aviation because of problems very similar to those
in the automotive sector today. The “Integrated Modular Avionics IMA” [2] showed

3See, for example: O. Scheid, AUTOSAR Compendium, CreateSpace Independent Publishing
Platform, August 2015.

Dajsuren, Y., & van, D. B. M. (Eds.). (2019). Automotive systems and software engineering : State of the art and future trends.
 Springer International Publishing AG.
Created from munchentech on 2022-07-27 11:00:22.

C
op

yr
ig

ht
 ©

 2
01

9.
 S

pr
in

ge
r

In
te

rn
at

io
na

l P
ub

lis
hi

ng
 A

G
. A

ll
rig

ht
s

re
se

rv
ed

.

The RACE Project: An Informatics-Driven Greenfield Approach to Future E/E. . . 175

that a new architecture can help reduce complexity and create a viable basis for
future developments. Important concepts like centralizing and virtualizing computer
architecture, local data concentrators, and “X by wire” can be adopted and adapted
to the needs of automotive design—today more than ever. Robotics may also be of
interest for a reorientation of ICT architecture in the automotive industry.

The logical architecture for controlling service robots, with its division into
environmental perception, planning, and action, can particularly serve as a model
for a logical architecture in the automotive industry. Important concepts from
middleware architectures in robotics may also be of interest for the automotive
sector, such as is being currently observed with the success of the Robot Operating
System (ROS) [3], which in turn can only be a first step on the way to a quality-
controlled industry-grade operating system for robots.

Let us now speculate briefly on how the future of ICT architectures would
look if we learn from what we have observed in the past. As Fig. 2 shows, ICT
architecture could thus develop in three steps. In an initial step, which is already
going on today, ICT modules are integrated and encapsulated at a high level. In
the second step, the ICT architecture could be reorganized with reference to all
functions relevant to the vehicle. And finally, a middleware that integrates both
the functions relevant to driving and the nonsafety-critical functions for comfort
and entertainment would make it possible to customize vehicles for their drivers
by integrating third-party software. Consequently, the automotive industry could
manage the upcoming changes in two phases:

• First Phase: Low Function/Low Cost. This scenario is the most suitable for
new market actors focusing on low-cost vehicles. The vehicle functionality
and customer expectations for comfort and reliability are relatively low. The
resulting requirement set is well suited for introducing a revised, simplified ICT
architecture that is based on a drive-by-wire approach; actuator components are
connected directly to the power electronics and the ICT. Actuators have a local
energy supply and can be controlled via software protocols, reducing the number
of cables and control devices.

• Second Phase: High Function/Low Cost. This assumes that ICT introduced in
phase 1 has been optimized over the years and is now very reliable so that even
customers with high expectations buy vehicles based on this architecture. This
trend is reinforced by the ability to integrate new functions easily into vehicles
and to customize them.

In summary, it is obvious that the necessary complexity of functions implemented
by electronics and software will rise significantly:

1. Automated and autonomous driving will become state of the art very shortly.
These functions are very complex and have high-performance requirements on
the ECU. But even more exacting is a new requirement on E/E architectures: the
system must become fail operational. While today it is state of the art to simply
shut down a function as soon as an error is detected, in the future, fall-back
functions must be provided to ensure that the vehicle can still be driven in a safe
state even if there is a partial or even complete breakdown.

Dajsuren, Y., & van, D. B. M. (Eds.). (2019). Automotive systems and software engineering : State of the art and future trends.
 Springer International Publishing AG.
Created from munchentech on 2022-07-27 11:00:22.

C
op

yr
ig

ht
 ©

 2
01

9.
 S

pr
in

ge
r

In
te

rn
at

io
na

l P
ub

lis
hi

ng
 A

G
. A

ll
rig

ht
s

re
se

rv
ed

.

176 A. Knoll et al.

M
id

dl
ew

ar
e

In
fo

ta
in

m
en

t

Radio

Application
Architecture

System
Architecture

Actuator Sensor
Architecture

Navigation

TV

Internet

...

E
vo

lu
tio

n

E
vo

lu
tio

n

R
ev

ol
ut

io
n

R
ev

ol
ut

io
n

E
le

ct
ric

al
 C

ar
S

m
ar

t E
le

ct
ric

al
 C

ar
S

m
ar

t I
nt

eg
ra

te
d

C
ar

(F
un

ct
io

n
re

vo
lu

tio
n

in
si

de
 c

ar
)

(A
ut

on
om

ou
s

dr
iv

in
g)

(H
ig

hl
y

in
te

gr
at

ed
 e

le
ct

ric
al

 M
od

ul
es

)

Info-Entertainment

S
en

so
rs

C
oc

kp
it

E
ne

rg
y

so
ur

ce

D
riv

et
ra

in

E-Motor

Breaks

Suspension

Control

Energy mgmt.

Drive train

Energy source

Sensors

Info-Entertainment

Optimized cost

Optimized ride

Fleet management

A
ut

on
om

ou
s

dr
iv

in
g

F
ul

ly
 in

te
gr

at
ed

 M
id

dl
ew

ar
e

op
en

 to
 th

ird
 p

ar
tie

s

M
id

dl
ew

ar
e

Drive train

Energy source

Cockpit

Sensors

A
ut

on
om

ou
s

dr
iv

in
g

R
ev

ol
ut

io
n

Cockpit

-

-

F
ig
.2

L
ay

er
s

of
IC

T
ar

ch
it

ec
tu

re
s

an
d

a
po

ss
ib

le
de

ve
lo

pm
en

ti
n

ev
ol

ut
io

na
ry

st
ep

s,
as

w
el

la
s

re
vo

lu
ti

on
ar

y
“d

is
ru

pt
iv

e”
st

ep
s.

W
e

ex
pe

ct
th

e
in

it
ia

lr
ev

ol
ut

io
n

at
th

e
le

ve
l

of
th

e
ac

tu
at

or
-s

en
so

r
ar

ch
it

ec
tu

re
(a

nd
th

en
ev

ol
ut

io
na

ry
st

ep
s

af
te

r
th

at
).

L
ik

ew
is

e,
a

di
sr

up
tiv

e
de

ve
lo

pm
en

t
m

ay
ta

ke
pl

ac
e

at
th

e
sy

st
em

le
ve

l
an

d
th

en
fin

al
ly

at
th

e
ap

pl
ic

at
io

n
le

ve
l

Dajsuren, Y., & van, D. B. M. (Eds.). (2019). Automotive systems and software engineering : State of the art and future trends.
 Springer International Publishing AG.
Created from munchentech on 2022-07-27 11:00:22.

C
op

yr
ig

ht
 ©

 2
01

9.
 S

pr
in

ge
r

In
te

rn
at

io
na

l P
ub

lis
hi

ng
 A

G
. A

ll
rig

ht
s

re
se

rv
ed

.

The RACE Project: An Informatics-Driven Greenfield Approach to Future E/E. . . 177

2. Connected mobility is another massive trend that will require an increasing
interaction of the car with its infrastructure and with other IT-driven domains.
This will not result in an increase in system complexity but generates another
big challenge: security. While in the past cars were isolated systems, the growing
openness of the E/E platform requires treating security as a key design criterion.

In summary, besides meeting additional functional requirements, future E/E
architectures will have to provide additional extrafunctional properties, like a
fail-operational system and security. Moreover, highly integrated mechatronic com-
ponents are reinforcing the trend toward X-by-wire control or even X-by-wireless
one. Through the introduction of middleware architectures and by encapsulating
and abstracting from those mechatronic modules, integration can take place at a
much higher logical level. Components to merge sensor data will become important
elements of middleware architectures, along with mechanisms that ensure that
safety-critical functions are separated from noncritical ones. They can be performed
on a single computer without interfering with one another. This in turn will result in
the centralization of all the computers in the car, similarly to server technology.

We will now look at the requirements in more detail. For an overview of the
initial concepts at the time of the project’s start, see [4].

3 A Set of Requirements for a New Architecture

In recognition of these trends, RACE4 was started to establish a technology
addressing the upcoming challenges. The main intention of RACE is to provide
OEMs with an example of a platform technology that enables them to redesign
their E/E architectures. By providing generic hardware components, a related run-
time environment (RTE), and system engineering tools, OEMs can introduce new
functions in most cases as software rather than the way it is today—as an ECU. This
way, OEMs can benefit from faster innovation cycles of software. In the following
subsections, the project goals will be listed in more detail.

3.1 Integration of New Functions in Software to Achieve
Faster Development Times

The core platform will speed up the development of new automotive functions
particularly related to:

• Integration of new functions as software: the core platform should be able
to execute hardware-independent applications from all automotive domains;
this includes but is not limited to body/comfort, driver assistance systems,

4For a short introduction, see http://w3.siemens.com/topics/global/en/electromobility/pages/race.
aspx

Dajsuren, Y., & van, D. B. M. (Eds.). (2019). Automotive systems and software engineering : State of the art and future trends.
 Springer International Publishing AG.
Created from munchentech on 2022-07-27 11:00:22.

C
op

yr
ig

ht
 ©

 2
01

9.
 S

pr
in

ge
r

In
te

rn
at

io
na

l P
ub

lis
hi

ng
 A

G
. A

ll
rig

ht
s

re
se

rv
ed

.

http://w3.siemens.com/topics/global/en/electromobility/pages/race.aspx
http://w3.siemens.com/topics/global/en/electromobility/pages/race.aspx

178 A. Knoll et al.

power train, chassis control, and occupant and pedestrian safety. Hardware-
independent applications are all those applications that do not require specific
hardware components (e.g., actuators with power electronics). By integrating
these functions on one single platform, RACE also addresses the trend that the
functions of different domains are increasingly interacting with each other and
the domain barriers vanish.

• Software updates in the field: users require continual updates to increase
the functionality of their cars. Therefore, frequent software updates in the
field of both of the platform and functions are an essential requirement. Agile
development methods are to be supported.

• Scalability and reuse: the RACE core platform shall support the scalability to
different platform variants. Reuse of applications must be supported.

This is accomplished by number of different concepts, most importantly a rigidly
implemented publish/subscribe mechanism, along with a data-centric structure that
not only ensures the necessary decoupling but also guarantees data consistency and
sparsity—data are produced and stored at only one place across the whole system.
Wherever possible, these concepts are supported by formal checks. For example,
checks are made to determine whether a complete and unambiguous data flow
graph can be obtained from the collection of application software components and
modules. Moreover, if there is a subscriber with several potential (publishers in the
computed data flow graph), then the RTE is checked to see if it has the appropriate
data fusion methods available (used, for example, for redundant sensors). If this is
not the case, the configuration will be aborted, and a corresponding message of the
reason is generated.

However, it was beyond the scope of the RACE project to produce a complete
guarantee of the overall behavior and timing of a RACE application architecture.
To check whether each component is supplied with data is certainly not sufficient
to ultimately ensure the functional integrity of the application architecture. This,
however, is an interesting subject for follow-up research.

3.2 Enabling New Business Models by Software Updates
and Opening Function Development to Third Parties

In order to meet the requirements arising from the OEMs’ desire to permanently
develop new business models around their cars in order to be able to react to
changing market needs, the core platform shall support the integration of functions
even in after-sales market. There should be no need to integrate these functions
during the original design phase of the car. Moreover, the architecture should be
open to the integration of third-party applications. This integration should not be
restricted only to applications from today’s Tier-1 suppliers but support the creation
of new ecosystems (see Sect. 7).

Dajsuren, Y., & van, D. B. M. (Eds.). (2019). Automotive systems and software engineering : State of the art and future trends.
 Springer International Publishing AG.
Created from munchentech on 2022-07-27 11:00:22.

C
op

yr
ig

ht
 ©

 2
01

9.
 S

pr
in

ge
r

In
te

rn
at

io
na

l P
ub

lis
hi

ng
 A

G
. A

ll
rig

ht
s

re
se

rv
ed

.

The RACE Project: An Informatics-Driven Greenfield Approach to Future E/E. . . 179

3.3 Built-In Safety and Security

The core should be designed such that it provides the necessary safety and security
for accommodating functions of the highest criticality level. It should support the
development of dependable systems covering:

• Availability: readiness for correct service up to fail-operational quality
• Reliability: guaranteeing correct service
• Safety: absence of unreasonable risk up to Automotive Safety Integrity Level D

(ASIL-D)
• Integrity: mechanisms to inhibit improper system alteration
• Maintainability: ability to undergo modifications and repairs
• Testability: simplifying verification strategies and analyzing misbehavior
• Security: protecting automotive software systems from unauthorized access, use,

disclosure, disruption, modification, perusal, inspection, recording, or destruction

Furthermore, the core should provide the basis for functions with fail-operational
requirements. The RACE core platform should support the execution of applications
in fail-operational mode. Even in case of a subsystem failure, the core platform
would guarantee the correct execution of the application.

The current software version of RACE runs under the PikeOS5 hypervisor
real-time operating system. This allows for third-party software to work “in isola-
tion” and to prevent system crashes due to programming errors. While according
to the above list of requirements there was some work undertaken to design
a hardware security module for authentication, the implementation of security
measures resulting from the integration of potentially dangerous and malignant
software was not in the focus of the development work. However, it was made
sure that no design decisions were taken that would prevent security measures to
be implemented. By the same token, we expect this spatial and temporal separation
to be a key component in meeting safety requirements: a hypervisor like PikeOS is
used in many mixed-criticality environments and has stood the test of large-scale
deployment and can, therefore, be expected to also meet the safety and software
integrity needs in future cars.

3.4 Simplifying Migration from Other Platforms

Clearly, the core platform should support all applicable international automotive
standards and state-of-the-art technologies. Furthermore, the core platform will
support the collaboration between various partners by standardized data exchange

5https://www.sysgo.com/products/pikeos-hypervisor/

Dajsuren, Y., & van, D. B. M. (Eds.). (2019). Automotive systems and software engineering : State of the art and future trends.
 Springer International Publishing AG.
Created from munchentech on 2022-07-27 11:00:22.

C
op

yr
ig

ht
 ©

 2
01

9.
 S

pr
in

ge
r

In
te

rn
at

io
na

l P
ub

lis
hi

ng
 A

G
. A

ll
rig

ht
s

re
se

rv
ed

.

https://www.sysgo.com/products/pikeos-hypervisor

180 A. Knoll et al.

formats and support the integration of application software from various partners on
a single ECU via a run-time environment and across the entire vehicle network.

Despite its superior functionality, production costs for a customer system
platform based on the RACE core should not exceed the costs of a traditional E/E
architecture. Moreover, the nonrecurring costs should be driven down to a minimum.
Since these costs are hard to measure, it is important that production costs by
themselves be equivalent or even lower.

4 RACE Architecture Concepts

To meet the requirements listed above, a completely new architecture has been
developed, implemented as an advanced prototype, and integrated into a number
of demonstrator cars (Fig. 3). The leitmotiv has been to design an architecture that
fits the needs of information processing (“future cars will be computers on wheels”),
capitalizes on the rich experience in Computer Science and Informatics in the design
of mission-critical distributed systems, and makes it possible to keep pace with the
rapid progress in methodology and tools for software design.

The central concept is that of a platform, centered about functions that are
integrated very easily. The set of functions can hence change very easily and—
taken as a whole—constitutes the complete functionality of the car controller
across all domains. But not only that: since our focus is on communications and

Fig. 3 Overview of the RACE architecture. The complete system consists of the controllers
(GPRCs), the run-time environment (RTE) running on centralized hardware, and the IO expanders
and interfaces. An integral part of the system is the engineering system, which provides all the
software tools for programming the components in a certifiable way. The goal here is to abstract as
much as possible from the hardware and to provide a “single system illusion” to the programmer

Dajsuren, Y., & van, D. B. M. (Eds.). (2019). Automotive systems and software engineering : State of the art and future trends.
 Springer International Publishing AG.
Created from munchentech on 2022-07-27 11:00:22.

C
op

yr
ig

ht
 ©

 2
01

9.
 S

pr
in

ge
r

In
te

rn
at

io
na

l P
ub

lis
hi

ng
 A

G
. A

ll
rig

ht
s

re
se

rv
ed

.

The RACE Project: An Informatics-Driven Greenfield Approach to Future E/E. . . 181

the communication protocols used within the car and those used outside the car
are mostly identical, there is no longer a fixed barrier between the car and the
infrastructure—this border becomes irrelevant.

4.1 General Structure and Communications

RACE is based on an execution platform consisting of General Purpose RACE
Controllers (GPRCs), implemented as so-called Duplex Control Computers (DCCs)
(see the following section), and a real-time run-time environment (RTE); see [5].
On top of this platform, OEMs can integrate their functions purely as software
components. The architecture is designed to be scalable; if further processing power
or resources, such as more memory, are required, additional RACE controllers can
easily be added. The GPRCs communicate via a high-bandwidth, real-time Ethernet
using the upcoming IEEE 802.1-TSN [6] standard.

Sensors and actuators can be integrated via common interfaces (CAN, local
interconnect network (LIN), Ethernet, digital/analog input/output (IO)). If more
IOs are required than what is offered by the GPRCs, IO expanders (IOXPs) can
be attached to the GPRCs. An IOXP provides a number of IO interfaces, but in
contrast to a GPRC it does not offer enough processing power to execute complex
software functions. Its main purpose is to interface with sensors and actuators,
which can provide any degree of local intelligence and/or data compression and/or
preprocessing capabilities. In any case, the main benefit of using such a hierarchical
system of data sources and data concentrators—as supported by our architecture—
will substantially cut back on the cable harness, which may significantly reduce
costs and failure probabilities.

Another concept that leads to significant cost and development time reduction is
reusability. Software functions communicate via OEM-defined interfaces with each
other and with the sensors and actuators. As a result, these functions can be reused
across different vehicles. If an OEM so chooses, these interfaces can be shared
throughout the industry (or collaboration partners), and reuse may even take place
across the industry.

The system engineering tool chain includes a test system and a continuous
integration solution. The tool chain is optimized for agile development. New
software components can be tested seamlessly at all levels, from software in
the loop, by way of hardware in the loop up to vehicle in the loop. The test
system enables fault injection to test different scenarios, such as rare and typically
irreproducible component errors. A configuration tool simplifies the integration and
building of new vehicles, automating many steps that in the past had to be done by
system integrators and were very cumbersome.

Altogether, the scalable platform, reusability of functions, and system engineer-
ing environment and tool chain offer a fast and flexible way to bring new functions
or changes to future cars. We will now look at specific safety and security aspects in
a little more detail.

Dajsuren, Y., & van, D. B. M. (Eds.). (2019). Automotive systems and software engineering : State of the art and future trends.
 Springer International Publishing AG.
Created from munchentech on 2022-07-27 11:00:22.

C
op

yr
ig

ht
 ©

 2
01

9.
 S

pr
in

ge
r

In
te

rn
at

io
na

l P
ub

lis
hi

ng
 A

G
. A

ll
rig

ht
s

re
se

rv
ed

.

182 A. Knoll et al.

4.2 Built-In Safety and Security

RACE implements a “Safety-Element-out-of-Context” approach as defined in ISO
26262. The run-time environment (RTE) offers a separation of all software functions
to eliminate any unintended interactions between software components. As a
consequence, the RACE platform can execute functions with mixed criticality on
the same controller (see Fig. 4).

4.2.1 Separation Concept

To further simplify the development of safety-critical systems, there are several
built-in safety mechanism patterns for different safety levels. GPRCs are currently
designed with two-channel controllers, where each channel or “lane” has its own
processing unit. For functions with no safety requirements (quality management),
the function can be deployed on any channel. If the function has safety requirements
but can be shut down in case of a failure, the function can be deployed to both
channels of a GPRC. The replication can be realized as homogeneous replication
(duplication the function) or diverse replication (two diverse implementations or a
“productive function” and a “plausibility function/watchdog”); see Fig. 5.

The run-time environment monitors the consistence of the results on both
channels and can shut down the function in case of an unwanted deviation. Functions
with fail-operational requirements (meaning a function must still be operational
even in case of component failures) are also available. These are implemented as
a master-slave mechanism provided by the run-time environment. This mechanism
allows the deployment of a function on two GPRCs to ensure the correct execution
even if one GPRC fails. Depending on the required fail-over times, the system can
be configured for cold or hot-standby mode.

4.2.2 Scalable Safety

All these safety patterns are based on an indication-based health-monitoring system
built into the RTE. The RTE permanently monitors the data flow and execution
of components. In case of a deviation from normal behavior, the RTE raises an
error indication. A health monitoring component collects all these indications and
determines the health status of the different fault-containment regions on application
component, hardware, and network level. Several mechanisms are available to react
to the failures of a component, ranging from fault masking if redundant results are
available to the actual shut down and separation of the faulty component.

Besides these safety mechanisms, RACE also incorporates a configurable secu-
rity mechanism, such as secure boot, authentication, authorization, and encryption.
Several mechanisms of the RTE contribute to safety and security at the same time.

Dajsuren, Y., & van, D. B. M. (Eds.). (2019). Automotive systems and software engineering : State of the art and future trends.
 Springer International Publishing AG.
Created from munchentech on 2022-07-27 11:00:22.

C
op

yr
ig

ht
 ©

 2
01

9.
 S

pr
in

ge
r

In
te

rn
at

io
na

l P
ub

lis
hi

ng
 A

G
. A

ll
rig

ht
s

re
se

rv
ed

.

The RACE Project: An Informatics-Driven Greenfield Approach to Future E/E. . . 183

F
ig
.4

R
A

C
E

fo
ll

ow
s

st
ri

ct
se

pa
ra

ti
on

pr
in

ci
pl

es
in

sp
ac

e
an

d
ti

m
e

to
en

su
re

th
at

ap
pl

ic
at

io
ns

ca
n

ru
n

in
de

pe
nd

en
tl

y—
ou

r
ap

pr
oa

ch
to

ha
nd

li
ng

m
ix

ed
cr

iti
ca

lit
y

on
on

e
ha

rd
w

ar
e

pl
at

fo
rm

.C
ur

re
nt

ly
,t

he
un

de
rl

yi
ng

se
pa

ra
tio

n
ke

rn
el

is
im

pl
em

en
te

d
in

th
e

Pi
ke

O
S

op
er

at
in

g
sy

st
em

,b
ut

ot
he

r
sy

st
em

s
ca

n
be

us
ed

as
w

el
l

Dajsuren, Y., & van, D. B. M. (Eds.). (2019). Automotive systems and software engineering : State of the art and future trends.
 Springer International Publishing AG.
Created from munchentech on 2022-07-27 11:00:22.

C
op

yr
ig

ht
 ©

 2
01

9.
 S

pr
in

ge
r

In
te

rn
at

io
na

l P
ub

lis
hi

ng
 A

G
. A

ll
rig

ht
s

re
se

rv
ed

.

184 A. Knoll et al.

Fig. 5 Illustration of the scalable safety concept. Depending on system configuration, applications
can be run that are noncritical or applications with fail-silent/operational behavior—all in mixed
mode on the same physical controllers

5 Implementation and Tooling

We believe that the most important aspect when a disruptive architecture is to be
introduced is the compatibility with the current state of software engineering.

This will not only result in potential cost savings and a dramatic increase
in productivity, but it will also enable the OEM to keep pace with the rapid
developments in the consumer electronics world. Nevertheless, it is also of utmost
importance to keep abreast and keep in sync with the developments in the field of
mission critical systems in general and in autonomous systems in particular.

5.1 Information Flow

Figure 6 illustrates the information flow, which implements a “perception—
cognition—action” cycle. This makes it not only possible to adapt paradigms
from cognitive system theory and practice, but it also results in very logical layering
of the processing functions at an easily comprehensible level of abstraction. At
the lowest level, the data from (smart) sensors are generated and are routed into
the system through a communication layer (middleware). Likewise, through this
communication layer, the signals needed for behavior generation, i.e., the data for
the (smart) actuators, are also distributed.

Dajsuren, Y., & van, D. B. M. (Eds.). (2019). Automotive systems and software engineering : State of the art and future trends.
 Springer International Publishing AG.
Created from munchentech on 2022-07-27 11:00:22.

C
op

yr
ig

ht
 ©

 2
01

9.
 S

pr
in

ge
r

In
te

rn
at

io
na

l P
ub

lis
hi

ng
 A

G
. A

ll
rig

ht
s

re
se

rv
ed

.

The RACE Project: An Informatics-Driven Greenfield Approach to Future E/E. . . 185

Fig. 6 Illustration of the basic implementation of a concrete car with four central Duplex Control
Computers (DCCs). The general structure supports the construction of a “perception—cognition—
action” architecture

The middleware subsystem used in RACE is based on CHROMOSOME [7]. In
principle, other middleware systems could also be used, such as Data Distribution
Service (DDS) [8]. One layer above the communication middleware is the layer
of centralized processing through the control computers; these are the dual-lane
processing elements described above. Depending on the processing power that is
needed, there can be an indefinite number of DCCs.

The execution layer (run-time environment (RTE)) is responsible for the (virtual)
connections between sensors and actuators. These connections can be dynamically
generated, using the central data model of the vehicle, i.e., the abstraction of
sensors and actuators. The RTE also provides the fail-operational services, as well
as the “Plug & Play” management of all entities. The “Apps” correspond to the
(retrofittable) automotive applications shown in Fig. 3.

Figure 7 shows an example of how this general architecture may be mapped to
a topology in a real car: there are two DCCs, one for the drivetrain and energy
source control, the other one for braking and steering. Hardware redundancy on the
communication level is achieved by double ring structure: an inner ring for the direct
DCC communications and an outer ring for sensors and actuators. Both rings are
doubled so that the physical failure of one ring does not lead to a complete system
failure. The communication protocol is a partial implementation of [6]; the DCCs
can run mixed-criticality applications. There are also provisions for ingress/egress
rate limiting to isolate faulty components, and there is hardware support for the
precision time protocol (PTP).

Dajsuren, Y., & van, D. B. M. (Eds.). (2019). Automotive systems and software engineering : State of the art and future trends.
 Springer International Publishing AG.
Created from munchentech on 2022-07-27 11:00:22.

C
op

yr
ig

ht
 ©

 2
01

9.
 S

pr
in

ge
r

In
te

rn
at

io
na

l P
ub

lis
hi

ng
 A

G
. A

ll
rig

ht
s

re
se

rv
ed

.

186 A. Knoll et al.

Fig. 7 Example of a topology of in a car with two central Duplex Control Computers. Inner
glass-fiber ring (red) for DCC to DCC communication, outer ring (white) for sensor and actuator
communications

5.2 Software Design

As mentioned above, one of the primary goals of RACE is to create a structural
environment, i.e., the RTE, in which the latest developments in computer science,
software engineering methods and tools, as well as insights from research into
autonomous vehicles, can easily flow together. The resulting requirements on the
RTE based on these project objectives are:

• The complexity of the software system should be reduced to the absolute
essential minimum (see introductory section). This is realized by providing
a modular development environment based on the decoupling of application
modules that can establish dynamic communication links via virtual channels
with guaranteed quality-of-service levels.

• Introduction of new complex functions at run time should be supported. This is
realized by abstracting all automotive domain functions to the software level.
New functions can hence be introduced simply by adding software modules.
Clearly, this has not been done yet, but the foundations have been laid in
RACE. This can be compared to the developments in the smartphone domain:
they already combine a plethora of sensor modalities (vision, audition, touch,
inertia . . .) in one single device, and hardly any new function needs a hardware
accessory—it is all performed within the software. It is likely that at least in the
sensor/communication domain, customers will expect the same from their cars.

• Plug-and-play capabilities are also mandatory. Customers will want to add new
functions, or they want to attach new devices with added functionalities, such as
additional entertainment equipment. If new complex functions are added (e.g.,
more sophisticated assistance and/or autonomy functions), this may even require
the addition of one or more duplex control computers (DCCs), which means that
the RTE has to be highly scalable.

Dajsuren, Y., & van, D. B. M. (Eds.). (2019). Automotive systems and software engineering : State of the art and future trends.
 Springer International Publishing AG.
Created from munchentech on 2022-07-27 11:00:22.

C
op

yr
ig

ht
 ©

 2
01

9.
 S

pr
in

ge
r

In
te

rn
at

io
na

l P
ub

lis
hi

ng
 A

G
. A

ll
rig

ht
s

re
se

rv
ed

.

The RACE Project: An Informatics-Driven Greenfield Approach to Future E/E. . . 187

• Scalability with respect to functions and computation platform is also a must.
This is approached by providing automatic configuration tools and functions
wherever possible and therefore provide a maximum of scalability with respect
to functions and resources.

• Certifiability is of the utmost importance. We believe that in the future, formal
methods will have to be applied to ensure correct system behavior in all
circumstances. However, until the underlying theory is powerful enough, we
must provide all the generic mechanisms for safety and security, which will have
to comply with the present standards for mission-critical systems.

Finally, there should also be a clear migration path from today’s architectures to
an environment like RACE.

Looking at the current state of run-time environments, and starting from that
point, in RACE we have added the following features: (1) data-centric design, (2)
segregation in time and space for running mixed-criticality applications on cost-
effective hardware, (3) configurable safety and security mechanisms that enable
tailored fault detection and recovery, (4) testing environment that can inject faults
and trace them, and (5) automatic configuration functions at all levels.

It is beyond the scope of this article to elaborate on all of these topics.
However, we describe one aspect of the RACE implementation: the data-centric
communication design based on CHROMOSOME (see Fig. 8). The state of the
art is to explicitly “wire together” senders and receivers via messages over a bus
system. This results in strong coupling, an inflexible topology, and very often a
redundant data acquisition and processing. The basic concept for data exchange
is the decoupling of physical connections and logical communication relations.
Moreover, data types can be associated not only with a syntax but also with
semantics (why is it there? how is it used? etc.) and attributes (e.g., how precise
is it?). These properties are stored in a central “topic dictionary,” which lends itself
to automatic configuration because dependencies, contradictions, redundancies, etc.
can be checked automatically. All of these entities are supported by powerful tools,
typically adapted from open-source tools, like Eclipse, that underpin rapid access to
all system variables with all associated information, stored in one central repository.

Such automatic configuration—together with the modularity that enables the
“plugging together” of predefined parameterized components—can be of great help
in the system integration process. At the same time, the RTE registers and analyzes
different error indications, which are accessible to all the DCCs in the system (see
Fig. 9). There is a very fine-grained error handling available, with several reactions
possible as a result of an error/failure indication. Errors inside the RTE can be
handled by error masking (if there is redundant data). The application management
can decide on a graceful degradation of the application and an adjustment of perfor-
mance level, can change the master/slave role assignment, and/or activate/deactivate
masters and slaves. Finally, the overall platform management can deactivate DCCs,
and it can determine the whole platform mode, including an emergency shutdown
after driving the system into a safe state.

Dajsuren, Y., & van, D. B. M. (Eds.). (2019). Automotive systems and software engineering : State of the art and future trends.
 Springer International Publishing AG.
Created from munchentech on 2022-07-27 11:00:22.

C
op

yr
ig

ht
 ©

 2
01

9.
 S

pr
in

ge
r

In
te

rn
at

io
na

l P
ub

lis
hi

ng
 A

G
. A

ll
rig

ht
s

re
se

rv
ed

.

188 A. Knoll et al.

F
ig
.8

D
at

a-
ce

nt
ri

c
de

si
gn

in
R

A
C

E

Dajsuren, Y., & van, D. B. M. (Eds.). (2019). Automotive systems and software engineering : State of the art and future trends.
 Springer International Publishing AG.
Created from munchentech on 2022-07-27 11:00:22.

C
op

yr
ig

ht
 ©

 2
01

9.
 S

pr
in

ge
r

In
te

rn
at

io
na

l P
ub

lis
hi

ng
 A

G
. A

ll
rig

ht
s

re
se

rv
ed

.

The RACE Project: An Informatics-Driven Greenfield Approach to Future E/E. . . 189

Fig. 9 The RTE registers and analyzes different error indications and makes them accessible
system-wide

6 Realization on the Hardware Level

We briefly outline the design of the hardware that was developed for the prototypes.
We have realized a number of successively complex testing configurations, equipped
with prototypes of the hardware—starting from desktop “breadboards,” by way
of laboratory setups to complete cars. These cars (built by Roding GmbH, a
manufacturer of small-series sports cars) were tested on a specially designed test
rig (Fig. 10).

These cars have two wheel-hub motors and a steer-by-wire system without
mechanical fallback, and they are a carbon/aluminum lightweight construction with
a total car mass of 1250 kg. The braking system is a fully electric braking “future
brake system” from TRW; the steer-by-wire subsystem was provided by Paravan
GmbH. The E/E architecture is a redundant design based on RACE with an Ethernet
ring structure, as depicted in Fig. 10, which uses of IOXPs for connecting sensors,
actuators, and Human Machine Interface (HMI). The overall performance is 126 kW
(up to 330 kW for a limited period of time); the overall torque is 1000 Nm (up to
2500 Nm for a limited period of time). Power electronics operate at a voltage level
of 720 V; the battery capacity is 20 kWh.

Figure 11 shows the topology of the connections of the DCCs with all the units
in the car, including the HMI and the steering wheel (an example of a redundant
connection). The cars were built and programmed by a small project team. Several
mission-critical functions were implemented and tested successfully. A complete
set of functions, which would have enabled the cars to drive on a test site, was

Dajsuren, Y., & van, D. B. M. (Eds.). (2019). Automotive systems and software engineering : State of the art and future trends.
 Springer International Publishing AG.
Created from munchentech on 2022-07-27 11:00:22.

C
op

yr
ig

ht
 ©

 2
01

9.
 S

pr
in

ge
r

In
te

rn
at

io
na

l P
ub

lis
hi

ng
 A

G
. A

ll
rig

ht
s

re
se

rv
ed

.

190 A. Knoll et al.

Fig. 10 The cars equipped with the RACE architecture. Top: physical appearance, bottom: car
on test rig with direct coupling (all four wheels) to external electric motors that can induce very
realistic driving dynamics scenarios

not implemented in RACE. As a project continuation, a parcel delivery vehicle
was equipped for road testing by Siemens AG after the end of the RACE project
(Fig. 12).

Dajsuren, Y., & van, D. B. M. (Eds.). (2019). Automotive systems and software engineering : State of the art and future trends.
 Springer International Publishing AG.
Created from munchentech on 2022-07-27 11:00:22.

C
op

yr
ig

ht
 ©

 2
01

9.
 S

pr
in

ge
r

In
te

rn
at

io
na

l P
ub

lis
hi

ng
 A

G
. A

ll
rig

ht
s

re
se

rv
ed

.

The RACE Project: An Informatics-Driven Greenfield Approach to Future E/E. . . 191

Fig. 11 The topology of the sensors, DCCs, and actuators in the prototype cars

Fig. 12 The physical realization of the DCC (left) and the IOXP (right). The DCC has two ARM
A9 CPUs and four RACE Ethernet connectors, as well as two test Ethernet. The IOXP features
one CPU and several I/Os: CAN, LIN, digital, and analog. It also has two RACE Ethernet and one
Test-Ethernet connector

7 Deployment and Business Opportunities

There has been an ongoing discussion about the commercial viability of alternative
architectures, as outlined in the introductory section of this article. Clearly there
are lots of arguments in favor of evolutionary approaches and certainly just as
many arguments for disruptive changes. The problem for decision makers is that the
question in general is virtually undecidable because there are so many factors that
influence the decision. These range from nonrecurring costs by way of integration
cost for every specialty of a car series, to the cost and risks resulting from customer

Dajsuren, Y., & van, D. B. M. (Eds.). (2019). Automotive systems and software engineering : State of the art and future trends.
 Springer International Publishing AG.
Created from munchentech on 2022-07-27 11:00:22.

C
op

yr
ig

ht
 ©

 2
01

9.
 S

pr
in

ge
r

In
te

rn
at

io
na

l P
ub

lis
hi

ng
 A

G
. A

ll
rig

ht
s

re
se

rv
ed

.

192 A. Knoll et al.

desires for functional update over the lifetime, to the maintenance costs of (reusable)
software, and to the replacement strategies of obsolete hardware.

The major challenge of automotive OEMs is the complexity of the E/E architec-
ture conflicting with the required faster innovation cycles in the age of digitalization.
This issue can be addressed with an approach like RACE because it reduces
the number of controllers, minimizes the heterogeneity of network technologies,
and offers several generic services that need to be covered during application
development. Another complexity issue addressed by our approach is the undesired
redundancy of data signals. With each new generation of cars, the number of data
signals increases significantly.6 The reason is mainly the difficult access to data
across the different domains, controllers, and network technologies. A centralized
approach offers a solution to this issue, and RACE alleviates this problem further by
its data-centric design and the homogeneous hardware platform. Even if RACE is
not used down to the implementation and hardware level, some of its concepts may
still be used as a basis to redesign the function architecture with modularity and data
centricity and be reused at the application level only.

Altogether, the approach pursued here enables OEMs to build up a common
architecture across the different car platforms produced by the manufacturer,
including the possibility to reuse the functions across the different cars. New and
innovative suppliers can enter the automotive market and readily integrate their
functions. While in the past new suppliers had to provide an integrated electronic
control unit (ECU) with their function (software), which made it difficult for them
to enter the market, they can now deliver just the software as a safety element out
of context. This makes it also possible for the OEMs to reduce their dependency
on tier-one suppliers. In addition, this approach also simplifies the in-sourcing of
differentiating “brand-defining” functions by the OEM.

Finally, the approach using generic hardware and a high-integration platform
offers the possibility to switch from a “bill of material” business model to a “revenue
over lifetime” business model. Today, the electronics are individually optimized for
concrete functions, which come with their own ECU. It is hard for developers to
request additional resources to prepare for later software updates—or even new
functions—because these resources would need to be stretched over a very high
number (typically over 100) of ECUs. With the drastically reduced number of
controllers that implement application-level functions, the software deployment,
support, and update mechanisms can be changed in such a way that after-sales can
be significantly increased. Therefore, a modular approach like this architecture lends
itself to business developments along several lines:

• The RTE is the core offering, including a configuration tool.
• The full system is offered as a modular toolbox to be used (i.e., integrated and

configured) by OEMs with focus on safety up to ASIL-D and fail-operational

6Some OEMs assume that the instantaneous speed of a car (i.e., one unambiguous variable) is
identified by more than 20 different functions inside the car, e.g., by direct measurement, derivation
from other sensor signals, or an estimation.

Dajsuren, Y., & van, D. B. M. (Eds.). (2019). Automotive systems and software engineering : State of the art and future trends.
 Springer International Publishing AG.
Created from munchentech on 2022-07-27 11:00:22.

C
op

yr
ig

ht
 ©

 2
01

9.
 S

pr
in

ge
r

In
te

rn
at

io
na

l P
ub

lis
hi

ng
 A

G
. A

ll
rig

ht
s

re
se

rv
ed

.

The RACE Project: An Informatics-Driven Greenfield Approach to Future E/E. . . 193

mode; it includes an operating system from a preferred supplier, communication
system, and hardware development support.

• The application software development is delegated to a partner network. While
RACE can be used as a “neutral” and open platform, third parties can integrate
their functionality easily. It offers application engineering support up to Refer-
ence implementations.

• Fully integrated RACE controllers or support in HW design and manufacturing
services can be provided.

• Integration services are not within the focus today, but customers can profit from
the experience and expertise/Know-How in the RACE team.

The complete substitution of a proven architecture basis in large-volume car
series without changing the structures of the producers’ organizations is clearly
infeasible. We therefore suggest collecting experience from the producers of smaller
series, e.g., of special-purpose vehicles with low production volume (∼3000 cars
per year), which are individualized for specific customers. An interesting example
is StreetScooter,7 a company producing specialized parcel delivery vehicles. Due to
the low volume of the market, this domain is not relevant for big OEMs and smaller
companies can enter the market, testing the viability of their ideas. The major
challenge of these manufacturers is exactly this low volume. It is not profitable to
design specialized controllers for these cars, and therefore the manufacturers depend
on already existing controllers from first-tier suppliers. However, due to the low
volumes, required modifications are not given very high priority.

8 Summary

RACE is designed to fully support the requirements of upcoming automotive
functions. With respect to automated driving, RACE offers a fail-operational
platform, allows the integration of functions with different criticality levels on one
controller, and offers high performance and safety simultaneously. Especially the
latter is of importance as today’s high-criticality solutions are based on processor
technologies with low performance. Connected mobility is addressed by a high-
bandwidth network based on [6], built-in interfaces to web services (prototype), and
built-in security mechanism. RACE has developed several unique properties that
will be required in the future:

• No tradeoff between performance and safety: while today’s solutions rely
typically on high-performance processors for functions with lower criticality
levels (up to ASIL B) and low-performance processors for functions with high
criticality levels, RACE has the potential to provide full processing power up to

7http://www.streetscooter.eu/

Dajsuren, Y., & van, D. B. M. (Eds.). (2019). Automotive systems and software engineering : State of the art and future trends.
 Springer International Publishing AG.
Created from munchentech on 2022-07-27 11:00:22.

C
op

yr
ig

ht
 ©

 2
01

9.
 S

pr
in

ge
r

In
te

rn
at

io
na

l P
ub

lis
hi

ng
 A

G
. A

ll
rig

ht
s

re
se

rv
ed

.

http://www.streetscooter.eu

194 A. Knoll et al.

the highest safety levels. It is also a complete solution for functions with fail-
operational requirements.

• Hardware designed for use in series production: standard suppliers optimize
the controllers based on customer requirements. This is, however, only feasible
for larger volumes. RACE provides controllers ready for application in car
production. The low volumes of each single application are compensated by the
general applicability across different cars.

• Solution optimized for in-house configuration and integration: today, integration
of functions is typically done by the supplier. This leads to high costs and delays
in development. RACE offers the possibility to configure the platform and to
integrate software components by the OEM, shortening the development times.
Configuration and integration tools automate many previously tedious tasks and
reduce the risk of introducing errors. With RACE, the OEM has the choice to
decide whether configuration and integration are done in-house or by a service
provider.

• Qualified tool chain and infrastructure for agile development: RACE will provide
a qualified tool chain and infrastructure for agile development, reducing the
development time. Similar to prototyping platforms, RACE will offer a seamless
integration of development tools. The result, however, will be serial code running
on serial hardware.

• Designed for testability: RACE RTE was designed with testability in mind.
All data flows can be monitored by a nonintrusive test system guaranteeing
exactly the same behavior with and without the test system. Furthermore, a fault-
injection infrastructure is available to provoke specific situations simplifying the
verification systems significantly. This is made possible through a dedicated and
fixed scheduling time slot for testing. This approach sacrifices some time and
computational power, but we consider the ease of testing that results from it a
good trade-off (see [9]).

• Designed for updates: RACE offers direct support for integrating new functions
or updating existing functions via updates over the air. Via this mechanism, auto-
motive functions become a freestanding product. The “Plug & Play capability”
allows for new business models for the aftermarket.

Acknowledgments The development of the RACE platform was supported by the German
Federal Ministry for Economic Affairs and Energy (http://bmwi.de/); see http://www.projekt-race.
de/en/.

The authors wish to express their gratitude to the whole team who made the development of the
concepts, tools, and the cars possible in record time. This project was only possible through a real
concerted team effort and a lot of passion on all sides. Clearly, an overview paper like this can only
describe results at a rather high level. The authors are happy to provide additional information on
request.

Dajsuren, Y., & van, D. B. M. (Eds.). (2019). Automotive systems and software engineering : State of the art and future trends.
 Springer International Publishing AG.
Created from munchentech on 2022-07-27 11:00:22.

C
op

yr
ig

ht
 ©

 2
01

9.
 S

pr
in

ge
r

In
te

rn
at

io
na

l P
ub

lis
hi

ng
 A

G
. A

ll
rig

ht
s

re
se

rv
ed

.

http://bmwi.de
http://www.projekt-race.de/en
http://www.projekt-race.de/en

The RACE Project: An Informatics-Driven Greenfield Approach to Future E/E. . . 195

References

1. Bernard M et al (2010) The software car: information and communication technology (ICT)
as an engine for the electromobility of the future. A study for the German Federal Ministry of
Economics and Technology. Published by fortiss GmbH. http://www.fortiss.org/ikt2030/

2. Watkins CB, Walter R (2007) Transitioning from federated avionics architectures to Integrated
Modular Avionics. In: 2007 IEEE/AIAA 26th digital avionics systems conference, pp 2.A.1-1–
2.A.1-10. https://doi.org/10.1109/DASC.2007.4391842

3. Quigley M, Gerkey B, Conley K, Faust J, Foote T, Leibs J, Berger E, Wheeler R, Ng A
(2009) ROS: an open-source Robot Operating System. In: IEEE-ICRA workshop on open source
software in robotics organized by Hirohisa Hirukawa and Alois Knoll, Kobe, Japan, May 2009

4. Sommer S, Camek A, Becker K, Buckl C, Zirkler A, Fiege L, Armbruster M, Spiegelberg
G, Knoll A (2013) Race: a centralized platform computer based architecture for automotive
applications. In: Vehicular electronics conference (VEC) and the international electric vehicle
conference (IEVC) (VEC/IEVC 2013), IEEE, October 2013

5. Becker K, Frtunikj J, Felser M, Fiege L, Buckl C, Rothbauer S, Zhang L, Klein C (2015) Race
RTE: a runtime environment for robust fault-tolerant vehicle functions. In: Proceedings of the
CARS workshop, 11th European dependable computing conference – dependability in practice,
2015

6. http://www.ieee802.org/1/pages/tsn.html
7. Buckl C, Geisinger M, Gulati D, Ruiz-Bertol F, Knoll A (2014) CHROMOSOME: a run-

time environment for plug&play-capable embedded real-time systems. In: Sixth international
workshop on adaptive and reconfigurable embedded systems (APRES 2014), ACM, April 2014

8. http://www.omg.org/spec/DDS/
9. Fröhlich J, Frtunikj J, Rothbauer S, Stückjürgen C (2016) Testing safety properties of cyber-

physical systems with non-intrusive fault injection – an industrial case study. Proceedings of
the workshop on dependable embedded and cyber-physical systems and systems-of-systems
(DECSoS). In: Skavhaug A et al (eds) Proceedings of the workshops international conference
on computer safety, reliability, and security (SAFECOMP), vol 9923, Springer, LNCS, pp 105–
107

Dajsuren, Y., & van, D. B. M. (Eds.). (2019). Automotive systems and software engineering : State of the art and future trends.
 Springer International Publishing AG.
Created from munchentech on 2022-07-27 11:00:22.

C
op

yr
ig

ht
 ©

 2
01

9.
 S

pr
in

ge
r

In
te

rn
at

io
na

l P
ub

lis
hi

ng
 A

G
. A

ll
rig

ht
s

re
se

rv
ed

.

http://www.fortiss.org/ikt2030/
http://dx.doi.org/10.1109/DASC.2007.4391842
http://www.ieee802.org/1/pages/tsn.html
http://www.omg.org/spec/DDS/

