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Abstract

Zusammenfassung auf Deutsch
Diese Arbeit stellt Sampling-Methoden zur Generierung von Stichproben für die Bathymetrie in
Anwendung mit Tsunami-Simulationen vor. Das Verfahren nimmt hierbei ein gröberes Raster
der Bathymetrie über das die statistische Abweichung angewandt wird. Dieses Raster wird
anschließend interpoliert und auf die gemessenen Bathymetriedaten addiert. Zur Bewertung
der Ergebnisse nehmen wir vorhandene Daten des Tohoku Tsunamis aus dem Jahr 2011 und
vergleichen die mit verschiedenen Parametern simulierten Monte Carlo Ergebnisse mit dem
Resultat, welches ohne Unsicherheit gerechnet wurde.

Summary in english
This thesis presents sampling methods for the sample generation of bathymatry in application
with tsunami simulation. The method samples a deviation with dependent variance over a
coarser grid, i.e every nth data point, of the measured bathymatry and adds the deviation,
where the missing points are interpolated, on the original bathymatry. We use available data of
the Tohoku tsunami in 2011 to compare the Monte Carlo estimate of this method with different
parameters to the estimate computed without a uncertainty.

Keywords — sampling methods, bathymetry, tsunami, simulation, Monte Carlo, uncertainty
quantification, PDE, Shallow water equations
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Notation

The following list covers a part of the notation used within this thesis.

General

χA(x) :=

{
1 if x ∈ A

0 if x /∈ A
. The indicator function.

Partial differential equations

∇ :=


∂

∂x1...
∂

∂x1

. The gradient operator.

Dku(x) := {Dαu(x) | |α| = k}. The set of all partial derivatives of order k.

uxi := ∂u
∂xi

.

Probability theory and statistics

N (µ, σ2) Prob. density: 1√
2πσ2

e−
(x−µ)2

2σ2 Normal dist. with mean µ and variance σ2.
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Chapter 1

Introduction

People have always attempted to predict the outcome of events and processes in nature, particu-
larly those who have an impact on the daily life of millions of people. The best known example is
the weather forecast. Although affecting nearly everyone’s life the impact is considerably small
nowadays. Other more impactful events like disasters and catastrophes, in our example an earth
quake and the resulting tsunami, bear much greater consequences. The accurate estimation and
prediction of such events is crucial for millions of lives. We came up with very accurate models
for these events, but many of them are so complex that it would be unfeasible to use them on
a larger scale, for instance larger coastal regions. In this case we use simplified methods. The
simulation of tsunamis could be modelled with the three-dimensional Navier-Stokes equations
but regarding the size of the computational domain, we will use a simplified derivation - the
shallow water equations (SWE). Of course even the Navier-Stokes equations are only strong
simplifications of the real process but for the right use case even the SWE computes surprisingly
good results, given the right input parameters. For the SWE we have the initial water height,
averaged water velocities and the ’topology of the sea ground’, bathymetry, as input parame-
ters. The data of the bathymetry consists hereby of measurements of the sea ground, using for
instance the single beam method or the advanced multi beam method. Naturally, like all mea-
surements, they are not perfect and we would expect a statistical deviation from the real value.
Running the simulation with a measurement, slightly different from the real value, could give us
a result which differs greatly from the real event. To avoid this, one would run the simulation on
many measurement samples and compute with the results a confidence interval where we expect
to find the real value with a given probability. But this would be obviously practically unfea-
sible. We cannot measure large areas like the east coast of Japan fifty times. Instead we take
the one measurement we have and afflict it with an uncertainty. The method of generating the
sample of the bathymatry plays an important role. The naive method, where we deviate every
data point of our bathymetry, gives a poor result because the number of parameters which are
introduced to the uncertainty is equal of the 7 million data points of the bathymatry. The pro-
posed sampling method in this thesis uses in contrast a coarser discretisation of the domain and
so reduces the number of uncertainty parameters to a moderate amount while keeping the finer
structures, like steep hills and valleys. Compared to the naive approach this method leads to a
better estimate and is considerably better than the result of the simulation without uncertainty.

2



Chapter 2

Preliminaries

This chapter gives a short overview of concepts used in the theory of partial differential equations,
measure and probability theory as well as statistics.

2.1 Partial differential equations
This section follows the introductory part of [15].

Definition 2.1.1 (Partial differential equation, PDE). Let U be an open subset of R and fix an
integer k ≥ 1. An expression of the form

F (Dku(x), Dk−1u(x), . . . , Du(x), u(x), x) = 0 (x ∈ U) (2.1)

is called a kth-order partial differential equation (PDE), where

F : Rnk × Rnk−1 × · · · × Rn × R× U → R

is given and u : U → R is the unknown.

Definition 2.1.2. An expression of the form

F(Dku(x), Dk−1u(x), . . . , Du(x),u(x), x) = 0 (x ∈ U) (2.2)

is called a kth-order system of partial differential equations, where

F : Rmnk × Rmnk−1 × · · · × Rmn × Rm × U → R

is given and u : U → Rm, u = (u1, . . . , um) is the unknown.

Remark 2.1.1. The term PDE is also used for a system of partial differential equations.

Definition 2.1.3. A PDE (2.1) is called linear if it has the following form∑
|α|≤k

aα(x)D
αu = f(x) (2.3)

for given functions aα and f . The linear PDE is homogeneous if f ≡ 0. See the examples below
and note that the Maxwell’s equations form a system of partial differential equations.

3



CHAPTER 2. PRELIMINARIES 4

Linear PDEs

∆u =
n∑

i=1

uxixi = 0. ut −∆u = 0.


Et = ∇×B

Bt = −∇×E

∇ ·B = ∇ ·E = 0.

Laplace’s equation Heat equation Maxwell’s equations

Non-linear PDEs

ut −∇2u = f(u)

{
ut + u ·Du−∇2u = −Dp

∇ · u = 0.

Reaction-diffusion system Navier-Stokes equations for incompressible, viscous flow

2.1.1 Hyperbolic systems of first-order equations
Given a system of linear first-order partial differential equations having the form

∂u

∂t
+

d∑
i=1

Bi
∂u

∂xi
= f (2.4)

with u : Rd × [0,∞) → Rm, u = (u1, . . . , um) as the unknown,
and given functions Bi : R × [0,∞) → Mm×m, f : R × [0,∞) → Rm.

Definition 2.1.4. The system (2.4) is called hyperbolic if the matrix B(x, t; y) :=
d∑

i=1

yiBi(x, t)

is diagonalizable for each x, y ∈ Rd, t ≥ 0.

2.2 Measure and probability theory
For a complete overview regarding measure and probability theory please see [14].

2.2.1 Probability space
Definition 2.2.1. A probability space is a triple (Ω,F ,P), where

• Ω: the sample space; set of all possible outcomes

• F : σ-algebra; set of events

• P : F → [0, 1] probability measure that satisfies:

1. P(∅) = 0

2. P(Ω) = 1

3. if A1, . . . ∈ F with Ai ∩ Aj = ∅, then

P

( ∞∪
i=1

Ai

)
=

∞∑
i=1

P(Ai)

Definition 2.2.2. A random variable is a real-valued function X : Ω → R defined on Ω if it
holds that for every Borel set B ⊂ R that X−1(B) = {ω : X(ω) ∈ B } ∈ F .
Definition 2.2.3. A random field is a collection of random variables {Xt : t ∈ T } indexed by
t ∈ T , T being a topological space.
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2.2.2 Expectation
Let (Ω,F ,F) be a probability space.

Definition 2.2.4. Let X : Ω → R be a random variable. The expected value or expectation of
X is defined as

E [X] :=

∫
Ω
X(ω)P(ω) dω, (2.5)

provided the integral exists. Further if X has a density function f(x) then the expectation of X
is constituted by

E [X] =

∫
R
xf(x) dx (2.6)

Remark 2.2.1. Often X just has a finite set of outcomes x1, x2, . . . , xn and so (2.5) becomes
the more commonly seen

E [X] =

n∑
i=1

xiP(X = xi) (2.7)

Definition 2.2.5. Let X be a random variable with density f and E [X] exists. The variance
of X is defined as

Var(X) = E
[
(X − E [X])2

]
(2.8)

2.2.3 Strong Law of Large Numbers
Theorem 2.2.1 (Strong Law of Large Numbers). Let X1, X2, . . . be independent, identically
distributed and E [|Xi|] < ∞ with Xn := 1

n

∑n
i=1Xi. Then one has

P
(
Xn −−−→

n→∞
E [X1]

)
= 1, (2.9)

with P(Xn → E [X1]) = P({ω | limn→∞Xn(ω) = E [X1]}).

Proof. [14, Chapter 2.4]

2.3 Monte Carlo integration

Let g : U ⊂ R → R be a function and suppose we want to compute the integral
∫ b
a g(x) dx (pro-

vided the integral exists). Trying to solve it analytically is often very difficult, if not impossible,
so other options are the numerical integration [7] and the Monte Carlo integration.

Lemma 2.3.1. Let X be a random variable with density f(x) and let g : R → R be a measurable
function. Then the expectation of Y = g(X) is

E [g(X)] =

∫ ∞

−∞
g(x)f(x) dx. (2.10)

Given a random sample X1, X2, . . . , Xn from X, an unbiased estimator of E [g(X)] is the sample
mean 1

n

∑n
i=1 xi.

Proof. [14, Chapter 1.6.3]
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Example 2.3.1. Consider the initial problem of estimating θ =
∫ b
a g(x) dx. Let X1, X2, . . . , Xn

be a sample with Xi ∼ U(a, b) uniformly distributed between a and b with density f(x) =
1

b−aχ[a,b](x) for 1 ≤ i ≤ n. It follows

θ =

∫ b

a
g(x) dx =

b− a

1

∫ ∞

−∞
g(x)f(x) dx = (b− a)E [g(X)] (2.11)

So a unbiased estimator θ̂ for θ = E [g(X)] is

θ̂ =
b− a

n

n∑
i=1

g(Xi). (2.12)

We know by the Strong Law of Large Numbers 2.2.1 that (2.12) converges to E [g(X)] = θ with
probability 1 as n → ∞.

The variance of the estimator θ̂ is given by

Var(θ̂) =
(b− a)2

n2
Var

(
n∑

i=1

g(Xi)

)
=

(b− a)2

n
Var (g(X)) . (2.13)



Chapter 3

The physical model

3.1 Fluid dynamics
A common way of describing a fluid flow is by expressing its velocity u at any point x ∈ D ⊂ Rd

and at any time t ∈ I ⊂ R.
u = u(x, t) (3.1)

If we know the starting position x0 ∈ D of an element within the fluid at time t0 ∈ I, we can
compute its position at any other time t̂ ∈ I. If we take the Cartesian coordinates x = (x, y, z)
then u denotes the three directional velocities u, v and w and (3.1) is the shorthand notation
for

u = u(x, y, z, t), v = v(x, y, z, t), w = w(x, y, z, t).

It’s important to note that u changes in both x and t, i.e if we fix a point in space its velocity
will change over time. A special case is the steady flow which has the property

∂u

∂t
= 0, (3.2)

so u is independent of t and the velocity and direction of the flow is constant in every point in
space over time.

Let f : D × I ⊂ R3 × R → R be a scalar function which describes some quantity of the fluid,
for example the temperature T , the density ρ or the velocity in one direction. Whereas ∂f/∂t
is the derivative of f at a fixed point x, df/dt stands for the total derivative of f :

df

dt
=

∂

∂t
f [x(t), y(t), z(t), t] (3.3)

where the change in time of x, y and z is given through u:

dx/dt = u, dy/dt = v, dz/dt = w.

Using the chain rule we get

df

dt
=

∂f

∂x

dx

dt
+

∂f

∂y

dy

dt
+

∂f

∂z

dz

dt
+

∂f

∂t

and with (3.1) we can simplify it to

df

dt
=

∂f

∂t
+ u

∂f

∂x
+ v

∂f

∂y
+ w

∂f

∂z
. (3.4)

7



CHAPTER 3. THE PHYSICAL MODEL 8

It is common to shorten (3.4) by using the gradient operator ∇:

df

dt
=

∂f

∂t
+ (u · ∇)f. (3.5)

If we insert u, v and w in (3.5) for f we get

du

dt
=

∂u

∂t
+ (u · ∇)u. (3.6)

3.2 Fluid models
If we want to model a fluid we need to understand its physical properties and laws. As an
illustrative example we will derive the equations of motion for an ideal fluid.

3.2.1 Equations of motion for an ideal fluid
We define an ideal fluid as one having the following properties:

1. It is incompressible, no part of the fluid can change its volume.

2. The density ρ = mass
volume is constant over all fluid elements and for all time t.

3. The force exerted across a surface element ν δS within the fluid is pν δS, where p is the
scalar function for pressure and ν the normal vector to the surface element δS.

For a volume V with surface S point (1.) implies that the net volume rate∫
S
⟨u(x), ν(x)⟩dx =

∫
V
∇ · u(x) dx (3.7)

at which the fluid is leaving V must be zero. The equality ensues from the divergence theorem
3.2.1.

Theorem 3.2.1 (The divergence theorem). Let Ω ⊂ R3 open and bounded by a piecewise smooth
closed surface S, and let n denote the outward unit normal vector on S. If f is continuously
differentiable in a domain containing Ω, then∫

Ω
∇ · f dΩ =

∫
S
f · n dS (3.8)

Proof. [5, p.283]

Since (3.7) must hold for every volume V we can conclude that

∇ · u = 0 (3.9)

must hold everywhere in the fluid. Further if we integrate over the force exerted by the sur-
rounding fluids on the volume V we get

−
∫
S
pν(x) dx = −

∫
V
∇p dx, (3.10)

by again using the divergence theorem (3.8). Given ∇p is continuous we will assume that ∇p is
constant over a volume δV . The net force on the volume due to the pressure of the surrounding
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fluid results then in −∇p δV . Taking the gravitational force into account the resulting total
force on a volume of the fluid is

(ρg −∇p)δV,

where g is the acceleration due to gravity. With Newton’s second law of motion F = ma this
must be equal to

ρδV
du

dt
.

We end up with these two partial differential equations

du

dt
= −1

ρ
∇p+ g

∇ · u = 0,

(3.11)

as the equations of motion for an ideal fluid. They are known as Euler’s equations [4].

3.3 Navier-Stokes equations
The PDE (3.11) models the flow of a fluid in its most basic form and neglects physical properties
like the viscosity of the fluid. We know from experience that water behaves different than
honey. Introducing a stress tensor due to the viscosity we get the Navier-Stokes equations for
incompressible fluids:

∂u

∂t
+ (u · ∇)u− ν∇2u = −1

ρ
∇p+ g, (3.12)

u : flow velocities
g : gravitational force

ν : kinematic viscosity
ρ : density

The effort for numerical solutions of (3.12) in two dimensions is manageable but for larger sim-
ulations especially in three dimensions the computational effort quickly exceeds the reasonable
amount of time per simulation - even when using super computers. Flow simulations of lakes,
the atmosphere or oceans near the shore are good examples. Fortunately the three of them
share the property that the vertical scale (depth) of the fluid is small compared to the horizontal
component. We can use this common feature to our advantage and average over the vertical
scale and so derive the two-dimensional shallow water equations.

3.4 Shallow water equations

∂h

∂t
+

∂hu

∂x
+

∂hv

∂y
= 0

∂hu

∂t
+

∂

∂x

(
hu2 +

1

2
gh2
)
+

∂huv

∂y
= −gh

∂b

∂x

∂hv

∂t
+

∂

∂y

(
hv2 +

1

2
gh2
)
+

∂huv

∂x
= −gh

∂b

∂y

(3.13)

h : height of the water column
(u, v) : horizontal flow velocities

g : gravity
b : bathymetry
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The Shallow water equations, also called Saint-Venant equations (after Adhémar Jean Claude
Barré de Saint-Venant [1]), are a system of PDEs describing the flow in shallow regions like
oceans, coastal regions, rivers and channels. A derivation can be found in [11].



Chapter 4

PDE solving

Due to the complexity of non-linear PDEs like (3.12) and (3.13) it is in general practically impos-
sible to obtain analytical solutions. A numerical solving schema is used to get an approximation
to the solution.

4.1 Discretization
Unlike analytic solutions, which are defined for every point in our domain, numerical solutions
are only defined on a finite set of points often called grid nodes. The domain is subdivided into a
set of non-overlapping cells (or elements) called mesh where the nodes are in general positioned
at the centre of each cell or at the vertices depending on the discretisation. [20]
Taking the two-dimensional domain D = I1 × I2 ⊂ R2 we will define the mesh as the pairwise
disjoint partition into the cells

Ci,j := C
(1)
i × C

(2)
j ⊂ I1 × I2 ⊂ R2 i ∈ X, j ∈ Y, (4.1)

where X and Y are index sets.

4.2 Numerical schemes
For demonstrative purposes we will consider the incompressible Navier-Stokes equations (3.12):

∂u

∂t
+ (u · ∇)u− ν∇2u = −1

ρ
∇p+ g. (4.2)

We would like to bring the equation into the following linearised matrix form:
Mu = B (4.3)

where M is matrix of coefficients, u the unknown velocity vector for every cell in our mesh and
B a right-hand side term. Given this we can use a variety of different linear equation solvers.
There are many methods to bring equation (4.2) into the form (4.3). A very popular and often
implemented method is the finite volume method.

∆x

Figure 4.1: Uniform axiparallel quadrilateral meshes with different mesh sizes

11



CHAPTER 4. PDE SOLVING 12

4.2.1 Finite volume method
We will use the discretisation mentioned just above in chapter 4.1. In the second order finite
volume method, the flow variables vary linearly across the cell. If we look at the owner cell with
cell centroid P we call the adjacent cells neighbours with cell centroid N. The values of all cells
are computed at the centre and they are connected over the so called cell faces.

U P P N

We integrate the equation across the cell P∫
V

[
∂u

∂t
+ (u · ∇)u− ν∇2u+

1

ρ
∇p− g

]
dV = 0. (4.4)

Integration and summation are commutative thus we split up the integral into separate terms∫
V

[
∂u

∂t

]
dV +

∫
V
[(u · ∇)u] dV︸ ︷︷ ︸
Convection

=

∫
V

[
ν∇2u

]
dV︸ ︷︷ ︸

Diffusion

+

∫
V

[
−1

ρ
∇p

]
dV +

∫
V
g dV (4.5)

where each term will be treated individually. Starting with the constant source term (like
gravity): ∫

V
g dV = gVp (4.6)

where Vp is the volume of the owner cell P. We see that the constant source term doesn’t
depend on the velocity at all and will only contribute to the right-hand side of the matrix form
equation (4.3). For source terms g∗ = su which depend linearly on the velocity u we would get∫

V
[su] dV = sp

∫
V
udV = sp

∫
V
[up + (x− xp)∇up] dV

= spup

∫
V

dV +∇up

∫
V
(x− xp) dV︸ ︷︷ ︸

=0

= spupVp
(4.7)

with sp being a scalar of the source term and up the velocities of cell P. The second equality
arises from the linearity of the velocity and the fifth integral is zero because of the definition of
P being the centre. This yields either to a contribution of spVp to the matrix M of Mu = B
(implicit treatment) or to a contribution of spupVp to B (explicit treatment).

M =


−s1V1 0 · · · 0

0 −s2V2 · · · 0
...

... . . . ...
0 0 · · · −smVm

 , B =


s1u1V1

s2u2V2
...

smumVm


Now we will look at the more sophisticated Convection and Diffusion terms. Using the divergence
theorem 3.2.1 we get for the Convection term∫

V
[∇ · (uu)] dV =

∫
S
[u(u · ν)] dS (4.8)
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where S is the surface of the cell and ν the unit normal vector. We can further split up the
integral over the four faces of the cell∫

S
[u(u · ν)] dS =

4∑
i=1

∫
Si

ui(ui · νi) dSi (4.9)

and approximate the integral over each face by the value at the face centre f

4∑
i=1

∫
Si

ui(ui · νi) dSi ≈
4∑

i=1

uf,i(uf,i · νi)Si. (4.10)

We have to interpolate the velocity at the face centre uf. For this we can choose out of a variety
of face interpolation schemes (Upwind, Central Differencing,...). The resulting sum over the
four faces of every cell will contribute to the coefficient matrix M in a way that represents the
connectivity of the cells. The diffusion term is treated in a similar manner and will not be
discussed here. Please see [6] for a more detailed and complete insight as well as a proof of
equation (4.10).
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Figure 4.2: Cell fluxes of the finite volume scheme.

4.3 ExaHyPE - A hyperbolic PDE solver
The Exahype engine offers ingredients to solve first-order hyperbolic PDEs in the following
form [26]:

P
∂Q

∂t
+∇ · F(Q) +

d∑
i=1

Bi(Q)
∂Q

∂xi
= S(Q) +

∑
δi (4.11)

P : material matrix
F : conserved flux vector
Q : state vector

S : algebraic source terms∑
Bi(Q) ∂Q∂xi

: non-conservative flux∑
δi : source terms

We can bring the shallow-water equations (SWE) into the respective form

∂

∂t


h
hu
hv
b

+
∂

∂x


hu

hu2 + 1
2gh

2

huv
0

+
∂

∂y


hv
huv

hv2 + 1
2gh

2

0

+


0

hgbx
hgby
0

 = 0. (4.12)
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The Exahype engine uses either the Finite Volume scheme or a Arbitrary High-Order Dis-
continuous Galerkin (ADER-DG) method proposed in [12]. ADER-DG is a more sophisticated
method where the flow inside a cell is interpolated by a polynomial of arbitrary order. So even
on a coarser mesh it can consider finer characteristics of the flow - given the flow is continuous.
Unfortunately the SWE develops discontinuities in the coastal flood plains, called wetting and
drying zones. In these zones water inundates and recedes as it is driven by tides and waves
which results in moving boundary conditions for the SWE because they are only defined for wet
areas, i.e water column height greater than zero. Problems of moving boundary conditions for
the shallow water equations are often referred as wetting and drying problems. To cope with
this a limiting method is proposed. The method first produces a candidate solution with the
ADER-DG method. Then a set of detection criteria is applied to every cell of the solution. If a
cell violates a condition then the last time step is recomputed using a more robust finite volume
scheme on a smaller grid to ensure accuracy. This method combines the high-order accuracy of
the ADER-DG scheme with the shock-capturing capabilities of the Finite Volume schemes. [21,
13]



Chapter 5

Uncertainty Quantification

“UQ studies all sources of error and uncertainty, including the following: system-
atic and stochastic measurement error; ignorance; limitations of theoretical models;
limitations of numerical representations of those models; limitations of the accuracy
and reliability of computations, approximations, and algorithms; and human error.
A more precise definition is UQ is the end-to-end study of the reliability of scientific
inferences.”

- U.S. Department of Energy, 2009, p. 135

In most modelling situations we want to simulate and predict a processes in nature, whether
it is the weather, an earth quake or a tsunami. We have already seen in 3 that the models
take often many simplification into account and thus can only give approximations of the real
event. In addition to it these modelling errors they are also depended on the initial state - the
input parameters. In the case of the shallow-water equations (3.13) these are the water height
h and averaged velocities (u, v) and the bathymetry b, see 5.1.2. Some measurement methods
return more precise results but we can never expect that the measurements will be exact. Every
measurement is afflicted by a uncertainty. These uncertain parameters are than used to run the
model which propagates the uncertainty to solution or the desired quantity of the event. If we
can make statements about the uncertainties of the input parameter, for instance if it follows
a statistical distribution, we would like to know the distribution of the solution and expected
value. Based on this we can compute a confidence interval that covers the real event or quantity
with a certain probability. This would enable us to include the variability of our input into our
results.

5.1 Uncertainties and errors
We will talk about the different sources of uncertainties which arise in the modelling and simu-
lation of processes in nature. [18]

5.1.1 Model errors
“Essentially, all models are wrong, but some are useful.” - George E. P. Box, [3]

One must understand that every model is just an approximation or imprecise representation
of the underlying process. The number of possible dependencies with other objects and input
parameters is too high to keep track of or even to incorporate into a model.

15
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p Q(M(p))

samples modelling

Figure 5.1: Parameter uncertainty propagation

We have seen that the Euler’s equations (3.11) in 3.2 can be made more precisely by taking
the viscosity of the fluid into account. One might have already noted the fact that the kinetic
viscosity (3.12) although dependent on temperature was introduced as a constant over the whole
fluid. This is again a simplification because the temperature can vary strongly in larger models,
like simulations of oceans, lakes or the atmosphere. The choice of the right model plays a crucial
role in the simulation or prediction of natural processes. Simpler models are often chosen ahead
of sophisticated and more accurate models due to limited computational power, like in our case
where we chose the Shallow water equations and not the Navier-Stokes Equations to get rid of
one dimension and decrease the computational effort by a significant amount. Although very
important we will not further discuss the uncertainty arising from modelling errors but rather
concentrate on the uncertainty from input parameters.

5.1.2 Input uncertainties
Keeping in mind the approximative nature of models we still find many of them useful and
their results are often close enough to real observations. But even if we would have a perfect
model for a process we would have uncertain input parameters. These parameters - which
determine the initial condition of our model - are often measured from nature and inherit a
certain uncertainty. Given we have an input parameter p, which we know follows a certain
distribution P. We would draw samples p1, p2, . . . , pn ∼ P from that distribution and run the
simulation on each of them, getting the results M(p1),M(p2), . . . ,M(pn). In most cases we
are only interested in one quantity of the result, denoted by the output of the function Q. If
we examine the quantities Q(M(p1)), Q(M(p2)), . . . , Q(M(pn)) we see that they follow another
distribution. The uncertainty of our initial parameter got propagated through the model. This
approach, where we allow our parameters to follow a probability distribution, gives us the ability
to predict the intervals where we expect our quantity to be found in the real world with a certain
probability.
The following section will give a short introduction of one of the input parameters of the Shallow
water equations - the bathymetry.

Bathymetry measurements

Bathymetry describes the measurement of water depth in oceans, seas and lakes analogous to
topography for land surfaces. A commonly known method is the single beam method using a
echo sounder. An echo sounder measures the time it takes for a pulse of sound to travel from
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the source at the measuring platform to the sea bottom and return. The single beam method is
prone to disturbances and errors through marine life forms, noise interference, absorption and
unwanted reflections [2]. More advanced techniques like the multi-beam echo sounder achieve
depth accuracies of less than 1% of the water depth, i.e the measurements are normally dis-
tributed around the estimated mean with standard deviation of 1% of the water depth. [9,
8]



Chapter 6

Monte Carlo methods

6.1 Monte Carlo methods for the Shallow water equations
Given the model M of the shallow-water equations (3.13) we need two input parameters:

• Q0: the starting water height and averaged velocities. We will not threat them as uncertain
but rather fix them for all samples.

• b: the bathymetry. This is our uncertainty parameter.

With these two parameters Q0, b we can compute the respective solution Mτ (Q0, b) = Qτ (b),
whereas τ stands for the specification and discretisation of the used schema, i.e used mesh-size
and order. Let π(Qτ (b)) = π denote a specific quantity of interest of our solution, for instance,
the water height at a fixed position x. With (2.10) it follows that the expectation of π is defined
as

E [π] =

∫
Ω
π(Qτ (ω))P(ω) dω, (6.1)

where Ω is the set containing all possible realisations of the bathymatry. The problem is that in
practice we cannot compute the general solution Qτ but rather solve it numerically for specific
input parameters. To get an estimate of the expectation of π we use the Monte Carlo methods.

6.1.1 Simple Monte Carlo estimate
The main idea of the Monte Carlo method is to sample initial conditions and compute the
corresponding solutions for each of them. The desired estimate is then computed by the average
over the solutions.

Algorithm 1: Monte Carlo estimate (MC)
1 Generate M independent, identically distributed (iid.) input parameters

β1, β2, . . . βM ∼ B;
2 Compute the corresponding outputs π(Qh(βi)) = π(Q

(i)
h ), i = 1, 2, . . . ,M ;

3 Approximate the expectation by the sample mean

π̂MC =
1

M

M∑
i=1

π(Q
(i)
h )

18
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Figure 6.1: Initial water height h(x, y) and bathymetry b(x, y) for a sample of example 6.1.1

The variance of the MC estimate is

Var(π̂MC) =
Var(π(Qh))

M
(6.2)

Example 6.1.1. In this example we want to test the simple Monte Carlo method for the Shallow
water equations and look at its convergence rate. Let D = [0, 10] × [0, 10] be the domain and
T = [0, 1] the computational time interval. The initial water height is a centred bell-shaped
curve in the x dimension, i.e h(x, y) = 1+exp

{
−(x− 5)2

}
(Figure 6.1). The averaged velocities

hu and hv are set to zero. We set the “real” bathymetry b0(x, y) = 0 for all points in D and
discretize it for the uncertainty quantification on a grid with 11 × 11 = 121 uniformly spread
nodes. Following 5.1.2 we will afflict every node with a normal distributed uncertainty with
mean µ = 0 and standard deviation σ = 0.1. All points between the nodes are then interpolated
linearly. In this first run we use the ADERDG-schema of the Exahype solver with order 1
computed on a mesh with 75 × 75 cells and corresponding mesh-size ∆x = 10

75 ≈ 0.134 at the
time steps { ti = 0.01 · i | ti ∈ T}. The quantity of interest will be the water height h(x, y, t) at
the point (x, y) = (7.5, 5).

The confidence interval (CI) to the confidence level 1 − α and sample size n is computed with
the following formula:

CIn =

[
µ̂− z

σ̂√
n
, µ̂+ z

σ̂√
n

]
(6.3)

where µ̂ is the Monte Carlo estimate, z the 1− α
2 quantile of the normal distribution, e.g. z =

Φ−1(1− α
2 ) where Φ is the cumulative distribution function of the standard normal distribution,

and σ̂ is the unbiased estimator for the standard deviation of the Monte Carlo sample.

Mean squared error

MSE(π̂MC) = E
[
(π(Q)− π̂MC)

2
]
= E [π(Q)− π(Qh)]︸ ︷︷ ︸

discret. error

+
Var(π(Qh))

M︸ ︷︷ ︸
MC error

(6.4)

The Mean squared error of the simple MC estimate consists of the discretisation error which
arises from the inaccuracy of the used numerical scheme with the given discretisation (mesh size,
order) and the MC error which is the variance of the method (cf. (6.2)). If we choose a more
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Figure 6.2: Monte Carlo estimate ĥMC(7.5, 5) for example 6.1.1

accurate discretisation we can reduce the discretisation error but the “cost” to compute each
Q

(i)
h will rise. This will result in fewer computations (smaller M) and consequently to a higher

MC error.

Complexity

Assume that the expected discretisation error |E [π(Q)− π̂MC]| is of order O(hα) with α ∈ R
and the variance of the outputs Var(π(Qh)) of constant order O(1). The cost for each Q

(i)
h will

be assumed as Ch = O(h−γ) with γ ∈ R. For a given tolerance tol of the error (π(Q)− π̂MC) it
follows from MSE = O(tol2) that h = O(tol

1
α ) and M = O(tol−2). It follows for computational

effort of the MC estimate:

Effort(π̂MC) = ChM ≲ tol−
γ
α tol−2. (6.5)

To improve the Monte Carlo estimate without using a different discretisation we have to compute
more samples. As long as the computation of each sample is rather cheap this is no problem but
in many applications one simulation can get very expensive . In this case one can use the concept
of control variates to reduce the variance and thus improve the estimate without increasing the
number of samples.

6.1.2 Control variates
Let π be a function where we want to estimate θ = E [π(X)]. Given a function f where
ϕ = E [f(x)] is known and π(X) and f(X) are correlated one can check that for any constant c

θ̂c = π(X) + c(f(X)− ϕ) (6.6)
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is an unbiased estimator of θ. The variance

Var(θ̂c) = Var(π(X)) + c2Var(f(X)) + 2cCov(π(X), f(X)) (6.7)

is a quadratic function of c and thus has a minimum. Let the minimum be at c∗. We get for
the minimum variance

Var(θ̂c∗) = Var(π(X))− Cov(π(X), f(X))2

Var(π(X))
. (6.8)

The reduction of variance is greater if π(X) and f(X) are strongly correlated. f(X) is called a
control variate for the estimator of π(X) [10].
From this basic idea we can derive the multi-level Monte Carlo method where we use finer
discretisations of our computational domain.

6.1.3 Multi-level Monte Carlo
In contrast to the (simple) Monte Carlo method we will now use solutions on different discreti-
sation. Let τ1, τ2, . . . , τL with τi = (hi, oi) denote a sequence of specifications for our schema,
where hi is the discretisation and oi the used order. [17]

Algorithm 2: Multi-level Monte Carlo algorithm (MLMC)
Data: Sequence with specifications τ1, τ2, . . . , τL with h1 > h2 > . . . > hL and fixed order

oi = o. Sequence with sample sizes {Mi} with M1 > M2 > . . . > ML.
1 for l ∈ {0, 1, . . . , L} do
2 Generate Ml independent, identically distributed (iid.) input parameters

βl,1, βl,2, . . . , βl,Ml
∼ B

3 Compute the corresponding outputs π(Qτl(βi)) = π(Q
(i)
τl ) and

π(Qτl−1
(βi)) = π(Q

(i)
τl−1), where π(Q

(i)
τ−1) = 0 i = 1, 2, . . . ,Ml

4 Approximate the expectation with the sum

π̂MLMC =
L∑
l=0

1

Ml

Ml∑
i=1

(
π(Q(i)

τl
)− π(Q(i)

τl−1
)
)

Note that the two outputs π(Q
(i)
τl ) and π(Q

(i)
τl−1) are computed with the same input parameters

(bathymetry) and thus are strongly correlated.

Example 6.1.2. We will again consider the setting of example 6.1.1. The specification of the
samples for the corresponding levels:

l cells ∆x Cost
0 21× 21 = 441 1

21 ≈ 0.0476 0.08
1 75× 75 = 5625 1

75 ≈ 0.0133 1.0
2 237× 237 = 56169 1

237 ≈ 0.0042 10.0

The average mean error plot in figure 6.3 was computed by increasing the number of samples
on each level level while keeping the ratio 9 : 3 : 1 of samples per level.
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Mean squared error

MSE(π̂MLMC) = E [π(Q)− π(QτL)]︸ ︷︷ ︸
discret. error level L

+
L∑
l=0

Var(π(Qτl)− π(Qτl−1
))

Ml︸ ︷︷ ︸
statistical error

(6.9)

The discretisation error has been decreased by the usage of a finer discretisations of the level L
samples.

Complexity

With Vl = Var(π(Qτl) − π(Qτl−1
)) being the variance of differences and Cl the cost of the

difference (π(Qτl) − π(Qτl−1
)) we would like to know the optimal sample sizes Ml. Minimising

the total work
∑L

l=0ClMl s.t. MSE ≃ tol2 [24]:

Ml =

⌈
tol−2

√
Vl

Cl

(
L∑
l=0

√
ClVl

)⌉
(6.10)

For hl = h0s
−l assume |E [π(Q)− π(Qτl)]| = O(hαl ), Vl = O(hβl ) and Cl = O(h−γ

l ) with 2α ≥
min{β, γ}. Choosing L = O(tol

1
α ) and Ml like in (6.10) we get

Effort(π̂MLMC) =
L∑
l=0

ClMl ≲


tol−2, β > γ

tol−2(log tol)2, β = γ

tol−2− γ−β
2 , β < γ

. (6.11)

So to improve the complexity of the MLMC estimate we need to determine the the optimal
maximum level L by estimating the error decay |E [π(Q)− π(Qτl)]| and determine the optimal
sample sizes {Ml}Ll=0 by estimating the variance decay Vl. These can be computed by a MC
estimate based on a pilot run. To avoid the high costs of the simulation on the finest level L
one could use a extrapolation based on the results of previous levels.

Note that these results were worked out for finite volume schemes and cannot be directly ap-
plied to our used ADER-DG scheme. Nevertheless we expect the complexity analysis using the
ADER-DG scheme to be analogical to that and just incorporate the order of the cell polyno-
mials. [19, Theorem. 2.5]

6.1.4 Conclusion
Samples which are computed on a finer discretisation require more computational effort and are
thus more costly. This also applies to higher order solutions. Considering the cost specification
from example 6.1.2 which reflects the number of cells of the computational grid we can roughly
compare the result of the MC estimate (MC 200) and the MLMC estimate (MLMC 2). We
see no noteworthy improvement of the MLMC method against the (simple) MC method. The
reason for this can be found firstly in a small improvement of the discretisation error. All of the
simulations are computed using the ADER-DG scheme with order 3, which is in our usecase
already very accurate. This means the discretisation error of the MC estimate (6.4) is small and
the improvement to the finer level L negligible. Secondly the Exahype solver uses a framework
for the discretisation where the refinement is done by splitting up every two dimensional cell
into 9 smaller cells. With such an aggressive refinement of order 3 in every dimension we cannot
compute a MLMC method with more than two or three levels, because higher levels would
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Figure 6.3: Multi-level Monte Carlo estimate ĥMLMC(7.5, 5) for example 6.1.2.

rapidly blow up in size. Unfortunately the MLMC estimate is most effective when using many
levels. We conclude that the efficiency improvement of the MLMC method is not decisive in our
setup and we will not use the MLMC estimate for further simulations.

We will now concentrate on the sampling of our initial uncertainty parameter in the context of
tsunami simulations.
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Tohoku 2011

The measurement of the water depth on our earth is in contrast to height measurements ashore
not nearly as complete and accurate. The measurement data points in bathymetry are much
more susceptible to uncertainties and many regions are only interpolated. For this reason one
must be careful when working with bathymetry data and keep in mind the uncertainty of the
data. One application were we need the underlying bathymetry is the simulation of tsunamis.
In this example we will simulate the tsunami resulting from the 2011 Tohoku earthquake in the
northeast region of Japan.

7.1 The Tohoku 2011 earthquake and tsunami
On the 11th March of 2011 at 2:46pm Japan standard time (JST) an earthquake of magnitude
9 erupted near the east coast of Tohoku, a region on the island Honshu. It was the strongest
earthquake in Japan recorded till now. The earthquake and the resulting tsunami cost many
people their life and led to serious damages at the Fukushima Nuclear Power Plant. [16]

Bathymetry

The used bathymetry data for the simulations of this region was provided by GEBCO [22]. The
dataset consists of 7 million data points which cover an area of 28 million km2 with a resolution
of 2000m (distance between data points). Figure 7.1 shows the bathymetry of the underlying
region. We will later on introduce a statistical deviation to the bathymetric data to perform an
uncertainty quantification.
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Figure 7.1: Tohoku bathymetry and displacement
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Displacement

The displacement of the land masses caused by the earthquake will be set as initial water
height, see Figure 7.1. As stated above the displacement will not play a role in the uncertainty
quantification and will be fix for all simulations.

Buoy data

Will will compare our results to the historical data of the buoy station 21418 located at
N38◦44′42′′ E148◦39′54′′ [25].

7.2 Simulation
7.2.1 Bathymetry sampling
The choice of the sampling of our input parameters - in our case the bathymetry - plays a
decisive role of the results of the uncertainty quantification. The goal is to reduce the sources of
uncertainties, namely the number of probability variables of one sample, to achieve convergence
with a feasible number of samples while also giving the samples enough impact on the result to
have a higher chance of covering the actual event. Our bathymetry data set is a two dimensional
grid B of size 3500× 2000 where each grid point has a value corresponding to his height above
sea level. We set B = (bij) ∈ R(3500,2000) as the matrix which holds the values. One can see
in Figure 7.1 that parts of B match land. In the following we will present methods to generate
samples from B with different uncertainties and discuss their usefulness.

Sampling method 1. With this first very naive method we generate the samples by indepen-
dently afflicting every grid point of B with a normal deviation. We have seen in 5.1.2 that the
accuracy of measurements is depending on the depth. In conclusion our samples are from the
random field 2.2.3

B1 ∼ N
(
B, (pB)2

)
(7.1)

where p is a scalar with whom we can adjust the variance of the normal deviation. The normal
deviation of a matrix will be defined as

N
(
B, (pB)2

)
:=
{
N
(
bij , (pbij)

2
)
| (i, j) ∈ {1, . . . , 3500} × {1, . . . , 2000}

}
.

We can see in Figure 7.2 a 1-dimensional extract of samples with two different parameters p of
this method compared to the actual bathymetry. Both are not very satisfactory. The samples
are either to close to the reference data (for small variance, p ≪ 1) or degenerate to a zigzag
line with large jumps between adjacent points (for high variance, (p ≈ 1)). For p ≪ 1 this
would introduce nearly no uncertainty into our model and for (p ≈ 1) it would result into a high
variance of our samples. With every data point introducing a uncertainty parameter which leads
to approximately 6.8 million sources of uncertainty we would need a impossible large number
of samples. Beside the computational unfeasibility we would like to have samples which mimic
possible real sea grounds. This is in Figure 7.2 obviously not the case.
In the next method we try to reduce the number of uncertainty parameters to a moderate
amount by sampling over a coarser realisation of B.
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Figure 7.2: Naive sampling by afflicting every grid point independently, sampling method 1.

Sampling method 2. In the first step we choose a coarser grid Bn of B with matrix Bn where
n is the cell size of the new grid. Now we afflict every point of Bn with a uncertainty similar to
1. The missing points are then interpolated. We sample from

B2 ∼ Ln

(
N
(
Bn, (pBn)

2
))

. (7.2)

where
Ln : R(k,l) → R(3500,2000), k =

⌊
3500− 1

n

⌋
+ 1, l =

⌊
2000− 1

n

⌋
+ 1 (7.3)

denotes the interpolating operator. For the interpolation it is essential that the boundary points
of B are included in Bn because we can only interpolate points inside the convex hull of Bn.

B
→

B
B2 →

B
B2

L2(B2)\B2

The idea here is to get rid of the direct independence of adjacent points and the resulting
fluctuations in the sampling method 1. Through the coarser grid and the linear interpolation one
parameter (the height of one grid point) is affecting the points in his neighbourhood. Thru that
we greatly decreased the number of parameters of the uncertainty and therefor need less samples
for the estimate. It is noticeable, though, that the samples are highly influenced by the choice
of the cell size n. Depending where the grid points of Bn are positioned some characteristics of
the ground, like hills and indentations, are completely lost (cf. Figure 7.3).

Sampling method 3. We take the basic idea of sampling method 2 and add the finer structures
to the interpolation. We choose a coarser grid Bn and sample on that a normal deviation with
dependent variance but mean µ = 0 for all points. We interpolate the missing points over these
uncertainties and add them to the original bathymetry matrix B. Concluding we get for the
random field

B3 ∼ B + Ln

(
N
(
0, (α+ pBn)

2
))

(7.4)
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Figure 7.3: Coarser sampling with linear interpolation, sampling method 2.

We have added the parameter α ∈ R to ensure if necessary a sufficient variability even in very
shallow regions.

The results of this third sampling method are now satisfactory. While keeping the advantages of
the second sampling method with linear interpolation we were able to add the finer structures
of the ground. We have reduced the sampling space to samples with an arbitrary number
of parameters and variance - by choosing n, α and p - while still keeping the features and
characteristics of a real sea ground. We will use this last method for the following simulations.

Further modifications

• Often the bathymetric data set contains a additional matrix which holds the uncertainties
of the measurements. If available one would use these values to determine the variance of
the sampling.

• Many regions of the bathymatry are not measured directly but are just interpolated from
the surrounding measurements. We would like to distinguish these regions and apply a
higher variance there, depending on the distance to the nearest measured point. Given
we have no further data to distinguish the interpolated areas we could use a machine
learning ansatz in a preprocessing step to label the areas accordingly. A good indicator for
interpolated areas is the “smoothness” of the data. The official GEBCO website states:
“[...] there will be some areas that seem to show a much higher detail, and other areas
that are relatively ’smooth’. Generally speaking, it is the smoother areas that are predicted
whereas the areas of greatest detail are usually well-constrained by data.” (cf. Figure 7.5)
[23].

• The third sampling method could be modified to a multi-level method, where low levels
sample on a coarser grid and influence the samples on a large scale while high levels with
finer grids determine the finer structures of the samples. This method would have a greater
control over the sample characteristics.
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Figure 7.4: Coarser sampling while keeping the finer structures, sampling method 3.

Figure 7.5: “[...] a section of the Reykjanes Ridge to the southeast of Iceland, note the appar-
ent ’sharpness’ of detail in the region running NE-SW, (which shows sub-sampled multibeam
bathymetry data) compared to the much smoother areas to the southeast. There are a few thin
’stripes’ or lines over this southeastern area and they represent single-beam echo-sounding lines
that were used to constrain the satellite-predicted bathymetry.” [23]
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7.2.2 Estimate of the Buoy data
The following simulations are computed using the ADER-DG scheme with order 3. Using the
third proposed sampling method we get the following results:

-1

0

1

2

05:45 06:00 06:15 06:30 06:45
Time

h
+
b

Buoy 21418
MC
w/o uncertainty

95% CI

Method # samples n α p

MC 100 125 400 10%

Figure 7.6: Comparison of the MC estimate using sampling method 3 to the result without
(w/o) uncertainty.

With n = 125 we have 479 sources of uncertainty. We see that our MC result is estimating the
measured data of the buoy especially at 6:30 more precisely than the result with the measured
bathymetry. It is surprising how big the difference is. One explanation could be that the
measured data may be in fact very imprecise, containing bigger measurement errors or larger
interpolated areas that are very incorrect.

7.2.3 Conclusion
The big difference of the two estimates in Figure 7.6 suggests that the bathymatry data may
contain many data points who are imprecise. It is advisable to detect these in a preprocessing
step - already mentioned in “Further modifications” - and treat them individually. It became
obvious that the right choice of the sampling method can both affect the necessary sample size
and such the computational effort. It use further proposed to use in future work a wavelet
compression of ground to further reduce the parameters of the uncertainty sampling.
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