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Abstract 

Expectation maximization clustering of received nonlinear spectral data from solitonic pulses is used to reduce bit error rates. 

Simulations over a 1800 km Raman amplified fiber link demonstrate the effectiveness of the method.

1 Introduction 

For state-of-the-art high-data-rate transmission over optical fi-

ber, nonlinearity limits the achievable rates in the high power 

regime [1]. With an ever growing demand for increasing data 

rates, the question arises whether the capacity decrease in the 

high power regime is something inherent to the fiber channel, 

or can be overcome by switching the domain in which the sig-

nal is modulated [2]. 

The nonlinear Fourier transform (NFT) [2, 3] was suggested 

as a promising tool to overcome these limitations, since it in-

corporates dispersion and nonlinearity into the transmission 

instead of treating them as impairments. The NFT was con-

ceived for the deterministic lossless nonlinear Schrödinger 

equation (NLSE), and the impact of fiber loss and distributed 

noise on the nonlinear Fourier domain is not yet very well 

quantified, though some results have been obtained using per-

turbation theory [4, 5]. In [6], a time-domain pulse with circu-

larly-symmetric additive white Gaussian noise is considered. 

It is shown that, in a first-order approximation, the noise in the 

nonlinear spectral domain stays Gaussian but it is not neces-

sarily circularly symmetric or white. 

This led us to the idea of using the expectation maximization 

(EM) algorithm [7] to obtain the statistics of the received sym-

bols in the nonlinear Fourier domain, improving the detection 

performance. A similar approach was presented in [8] to 

jointly mitigate impairments due to fiber nonlinearity, I/Q-im-

balance and laser linewidth in a linearly modulated 16-QAM 

dual polarization optical transmission setup. We adapt this ap-

proach for improved detection directly in the nonlinear Fourier 

domain. Similar to [8], our approach is blind and does not re-

quire pilot symbols to estimate the channel properties. 

In the following, we introduce the NFT, the principle of Ra-

man amplification, and the EM algorithm. We then present 

simulation results that validate our approach for an optical fi-

ber channel with non-ideal Raman amplification and distrib-

uted ASE noise. 

 

2 The Nonlinear Fourier Transform 

Consider the normalized nonlinear Schrödinger equation [2] 

 

∂𝑞(𝑡, 𝑧)

∂𝑧
= j

∂2𝑞(𝑡, 𝑧)

∂𝑡2
+ j2|𝑞(𝑡, 𝑧)|2𝑞(𝑡, 𝑧) (1) 

where 𝑞(𝑡, 𝑧), 𝑡 and 𝑧 are the normalized complex signal, nor-

malized time and normalized propagation distance respec-

tively, while j represents the imaginary unit. 

The NFT and its inverse (INFT) enable the modulation of data 

onto the nonlinear Fourier spectra [2]. Each time domain sig-

nal 𝑞(𝑡, 𝑧) can be represented by its two corresponding non-

linear spectra, which are obtained from the nonlinear Fourier 

coefficients 𝑎(𝜆) and 𝑏(𝜆) computed by the NFT. 

The continuous spectrum 𝑞c(𝜆) = 𝑏(𝜆) 𝑎(𝜆)⁄  is defined along 

the real line (𝜆 𝜖 ℝ) of the generalized frequency support 𝜆 𝜖 ℂ 

and can be seen as an analog to the linear frequency spectrum 

of the standard Fourier transform. The discrete spectrum, 

which is defined only for a finite number of eigenvalues with 

a positive imaginary part (𝜆𝑘  𝜖 ℂ+), has no analog in linear 

channels. These discrete generalized frequencies 𝜆𝑘, together 

with the corresponding complex nonlinear Fourier coefficients 

 𝑏𝑘 ≡ 𝑏( 𝜆𝑘), define the discrete spectrum, which corresponds 

to the solitonic part of the signal and is used in this paper ex-

clusively (𝑞c(𝜆) = 0). 

This representation of the signal has the benefit that even 

though the corresponding time domain signal 𝑞(𝑡, 𝑧) propa-

gates according to the NLSE in a complicated manner, the val-

ues 𝜆𝑘 do not change during propagation and the spectral am-

plitudes 𝑞c(𝜆) and 𝑏𝑘 are independent of each other for each 

generalized frequency. 

The influence of signal propagation along the fiber in the non-

linear Fourier domain is given by 

 
𝑞c(𝜆, 𝑧)

𝑞c(𝜆, 0)
= e4j𝜆2𝑧,

𝑏𝑘(𝑧)

𝑏𝑘(0)
= e4j𝜆𝑘

2𝑧 . (2) 

  

3 Transmission over Raman-Amplified Fiber 

The channel model used in this paper is the non-ideal Raman 

amplified single-mode fiber [9] with one co- and one counter-

propagating pump laser per span: 
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𝜕𝐴

𝜕𝑍
=

1

2
[−𝛼 + 𝑔R𝑃p(𝑍)]𝐴 − j

𝛽2

2

𝜕2𝐴

𝜕𝑇2
 

+j𝛾[|𝐴|2 + (2 − 𝑓R)𝑃p(𝑍)]𝐴 + 𝑁(𝑍, 𝑇)  

 

(3) 

where 

𝑃p(𝑍) = 𝑃p0(e−𝛼p𝑍 + e−𝛼p(ℒs−𝑍)) (4) 

 

is the distance-dependent pump power. 𝐴, 𝑍 and 𝑇 are the (un-

normalized) complex signal, transmission distance and time 

respectively. 𝑁(𝑍, 𝑇) is the distributed noise, whose statistics 

is provided in [9]. The parameters 𝛼, 𝛽2 and 𝛾 are the signal 

attenuation, chromatic dispersion and nonlinearity coeffi-

cients, respectively. The attenuation at the wavelength of the 

pump laser is given by 𝛼p, and ℒs is the length of one fiber 

span. The Raman gain coefficient 𝑔R is frequency-dependent 

and was computed according to [10]. The factor 𝑓R stems from 

the delayed Raman response of the fiber and is set to the value 

of 0.18 for standard single mode fibers [9]. 

Realistic Raman amplification not only incorporates distrib-

uted noise into the simulation, but it also models partial resid-

ual fiber loss and over-amplification along one fiber span. The 

pump powers of the lasers were both set to  

 

𝑃p0 =
1

2

𝛼𝛼pℒs

𝑔R(1 − e−𝛼pℒs )
 (5) 

 

such that the attenuation of the signal due to fiber loss is com-

pensated at the end of each span. In Fig. 1, the effective Raman 

gain and the resulting signal power are shown for ℒs = 25km. 

Further parameters are given in Table 1. 

 

4 Clustering by Expectation Maximization 

Consider an NFT communications system that transmits 𝑁 

symbols of information on the spectral amplitudes 𝑏𝑘 of a sol-

itonic pulse with 𝐾 eigenvalues. Assuming that each 𝑏𝑘 is 

taken from a constellation of 𝑄 points, there are 𝑀 = 𝑄𝐾  pos-

sible transmit symbols, or constellation points 

𝒃𝑚 = (ℜ𝑏1[𝑚], … , ℜ𝑏𝐾[𝑚], ℑ𝑏1[𝑚], … , ℑ𝑏𝐾[𝑚])T 

for 𝑚 ∈ {1, … , 𝑀},where  𝒂T denotes the transpose of 𝒂. At 

each time index 𝑛 ∈ {1, … , 𝑁}, one constellation point 𝒃𝑚 is 

chosen, and the symbol 

𝒙𝑛 = 𝒃𝑚  
= (ℜ𝑥1[𝑛], … , ℜ𝑥𝐾[𝑛], ℑ𝑥1[𝑛], … , ℑ𝑥𝐾[𝑛])T 

(6) 

 

is transmitted, where ℜ and ℑ denote real and imaginary parts 

respectively.  

Let 𝒚𝑛 be the received symbol at time index 𝑛. It can be mod-

eled as a random variable (r.v.) 𝒚 whose probability density 

function (PDF) is a mixture of Gaussians (MOG) 

𝑝𝒚(𝒚) = ∑ 𝑃𝑚(𝑚)

𝑀

𝑚=1

N(𝒚|𝝁𝑚, 𝚺𝑚) (7) 
 

 

where 𝑃𝑚(𝑚) is the probability that the 𝑚-th constellation 

point 𝒃𝑚 has been sent, equal to 1 𝑀⁄  for uniformly distributed 

constellation points. The vector 𝝁𝑚 = 𝔼[𝒚|𝒙 = 𝒃𝑚] is the ex-

pectation of the received symbol given that the constellation 

point 𝒃𝑚 was sent, and 𝚺𝑚 is the corresponding covariance 

matrix. Further, N(𝒚|𝝁𝑚, 𝚺𝑚) is the multivariate Gaussian 

PDF with mean 𝝁𝑚 and covariance matrix 𝚺𝑚. 

If a sufficient amount of received constellation points is avail-

able, the parameters of the MOG model can be estimated by 

the EM algorithm. EM [7] is an iterative algorithm to find a set 

of parameters Ξopt = (𝝁𝑚, 𝚺𝑚) (which contains all the 𝝁𝑚 and 

𝚺𝑚 for 𝑚 = {1, … , 𝑀}) that maximizes the probability of the 

received signal 𝒀 = (𝒚1, … , 𝒚𝑁). Thus, the estimation problem 

is 

 

Ξsol = argmax(𝑝(𝒀|Ξ)) 

Ξ 
(8) 

with Ξ being the set of parameters over which we maximize. 

The 𝑙-th iteration of EM is comprised of an expectation step 

and a maximization step. 

4.1 Expectation Step 

For each received constellation point  𝒚𝑛, the expectation step 

computes the a posteriori probabilities 

 

𝛾𝑛𝑚
(𝑙)

≡ 𝑝(𝒙𝑛 = 𝒃𝑚|𝒚𝑛) 

=
𝑃𝑚

(𝑙−1)
(𝑚)N(𝒚𝑚|𝝁𝑚

(𝑙−1)
, 𝚺𝑚

(𝑙−1)
)

∑ 𝑃𝑚
(𝑙−1)

(𝑚′)N(𝒚𝑛|𝝁
𝑚′
(𝑙−1)

, 𝚺
𝑚′
(𝑙−1)

)𝑀
𝑚′=1

 

 

(9) 

which are often called responsibilities [8]. The superscript 𝑎(𝑙) 

denotes the value of 𝑎 at the 𝑙-th iteration. 

4.2 Maximization Step 

In the subsequent maximization step, the parameters Ξ(𝑙) are 

updated for all 𝑚 according to 

𝑁𝑚
(𝑙)

= ∑ 𝛾𝑛𝑚
(𝑙)

𝑁

𝑛=1

 (10) 

𝑃𝑚
(𝑙)(𝑚) =

𝑁𝑚
(𝑙)

𝑁
 (11) 

𝝁𝑚
(𝑙)

=
1

𝑁𝑚
(𝑙)

∑ 𝛾𝑛𝑚
(𝑙)

𝒚𝑛

𝑁

𝑛=1

 (12) 

𝚺𝑚
(𝑙)

=
1

𝑁𝑚
(𝑙) ∑ 𝛾𝑛𝑚

(𝑙)
(𝒚𝑛 − 𝝁𝑚

(𝑙)
)(𝒚𝑛 − 𝝁𝑚

(𝑙)
)T𝑁

𝑛=1 . (13) 

The parameters computed in the maximization step are then 

fed back to the next expectation step during iteration 𝑙 + 1. 

Note that the algorithm also estimates the input distribution 

𝑃𝑚(𝑚), and is therefore also useful for non-uniform input dis-

tributions. The algorithm terminates if either an appropriate 

difference measure between subsequently computed parame-

ter sets is smaller than some threshold value or after a maxi-

mum number of iterations has been reached. The EM algo-

rithm is guaranteed to converge to a (local) maximum [8].  

The EM algorithm classifies the received symbols into 𝑀 clus-

ters, which correspond to the possible constellation points. The 

task of assigning the clusters to the constellation points is an 

instance of the assignment problem, and we solved it using the 

optimal Hungarian method [11]. This method finds an assign-

ment 𝑓: {1, … , 𝑀} → {1, … , 𝑀} that minimizes the sum of Eu-

clidean distances between the cluster means 𝝁𝑚 and their cor-

responding constellation point 𝒃𝑓(𝑚). 
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5 Numerical Results 

Table 1 Simulation parameters 

Parameter Value 

 
Dispersion coefficient 𝛽2 = −21.683 ps2 km⁄   

Nonlinear coefficient 𝛾 = 1.3174 W−1km−1  

Signal wavelength 𝜆 = 1550 nm  

Attenuation at 𝜆 𝛼 = 0.2 dB km⁄   

Pump wavelength 𝜆p = 1452.50 nm  

Attenuation at 𝜆p 𝛼p = 0.25 dB km⁄   

 

We simulated the NFT communications system depicted in 

Fig. 2 over a 1800 km link using non-ideal distributed Raman 

amplification with the parameters in Table 1. The simulated 

link had 60 spans of 25 km, with forward and backward Ra-

man pumps in each span (pump power 𝑃p0 = 18.095 dBm). 

The Raman gain and signal power profiles along the first span 

are plotted in Fig. 1. 

 
Fig. 1 Effective  gain (left) and signal power (right) along a 25 

km span with bi-directionally pumped Raman amplification. 

 

Fig. 2: Simulation setup. 

In our simulation, we used 2-soliton pulses (𝐾 = 2) with ei-

genvalues 𝜆1 = 1.5j and 𝜆2 = 1j. The information was modu-

lated on the spectral amplitudes 𝑏1 and 𝑏2 using Gray-mapped 

multi-ring constellations with 4 rings and 4 uniformly spaced 

phases per ring (0,
𝜋

2
, 𝜋,

3𝜋

2
). The ring amplitudes were heuris-

tically chosen to be in geometric progression with the values  

in Table 2. The maximum pulse duration (99.975% energy) 

was 8.0535 in normalized units.  The NLSE normalization 

factor was 𝑇 𝑡⁄ = 8.278 ∙ 10−11. The transmission rate was 

1.5 Gbaud, or 12 Gbps, and the bandwidth was 58.9 GHz. To 

account for the effects of inter-symbol interference (ISI), we 

simulated the propagation in blocks of 64 modulated pulses. 

Table 2 Ring amplitudes of the constellations on 𝑏1 and 𝑏2 

𝑏1 0.0163 0.2534 3.9462 61.4517 

𝑏2 0.0642 0.4004 2.4972 15.5724 

 At the receiver, after band-pass filtering a forward NFT was 

performed using forward-backward iterations with the trape-

zoidal rule [12] to compute the received spectral amplitudes 

𝑦𝑘[𝑛]. The 𝑦𝑘[𝑛] were mapped to the constellation points us-

ing (a) minimum Euclidean distance (MD) or (b) our EM al-

gorithm. For the EM algorithm, we used different training set 

sizes 𝑁 between 6912 and 25600 symbols (note that the 

method is blind and the ‘training’ set is used to transmit data). 

After training, the EM parameters Ξ were kept fixed and fur-

ther tested on new symbols. The total number of symbols 

(training plus testing) was 90112 in all cases. The bit error rate 

(BER) results are plotted in Fig. 3 as a function of link length 

(with span length of ℒ𝑠 = 25km). As expected, the perfor-

mance of EM depends on the size of the training set, 𝑁. We 

have observed that different symbols become unreliable at dif-

ferent distances. This often results in ‘staircase-like’ BER 

curves, which could explain the seemingly saturating BER 

curves in Fig. 3. At BER = 10−3, with a training set size of 

16128 symbols, the reach of EM is 30 km larger than that of 

MD. At about 20000 training symbols, the performance of EM 

saturates at 60 km larger reach than MD.  

 

Fig. 3: Bit error rate for minimum distance (dashed) and EM 

(solid) detection for different training set sizes. 

6 Conclusion 

We have shown that the transmission distance of an optical 

transmission system with signal modulation in the NFT do-

main over Raman amplified fiber can be increased by utilizing 

the EM-algorithm to cluster the received discrete spectral am-

plitudes. Even though the described system is not able to com-

pete with linearly modulated transmission regarding its spec-

tral efficiency, it can improve transmission via the NFT, which 

is seen as a promising candidate to overcome the nonlinearity 

limit in the high input power regime of state-of-the-art optical 

transmission systems. 
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