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1. INTRODUCTION

The transfer of the moment matching reduction concept
from linear to nonlinear systems has been pioneered over
the last years by Astolfi [2010a]. In this and further publi-
cations, the focus lies on the extension of input Krylov sub-
space-based moment matching to the nonlinear case. The
generalization is based on the steady-state interpretation
of moment matching and involves the difficult solution of
a nonlinear partial differential equation (PDE).
Moreover, the time-domain interpretation of output Krylov
subspace-based moment matching has been also investi-
gated for linear systems (Astolfi [2010b], Ionescu [2016])
using the dual Sylvester equation, and transferred to the
nonlinear case in Ionescu and Astolfi [2013, 2016].

The aim of this short contribution is (i) to comprehen-
sively explain the steady-state perception of output Krylov
moment matching given by Ionescu [2016]. Another goal
is (ii) to state our progress concerning a practicable, pro-
jective output Krylov subspace-based nonlinear moment
matching method, so that this and further topics can be
discussed at the conference.

2. LINEAR MOMENT MATCHING

Consider a large-scale, linear time-invariant (LTI), asymp-
totically stable, state-space model of the form

E ẋ(t) = Ax(t) +Bu(t), y(t) = C x(t), (1)

where det(E) 6= 0 and x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rp

denote the state, inputs and outputs of the system. The
goal of model order reduction is to approximate the full
order model (FOM) (1) by a reduced order model (ROM)

Er ẋr(t) = Ar xr(t) +Br u(t), yr(t) = Cr xr(t), (2)

of much lower dimension r � n with Er = W TEV ,
Ar = W TAV , Br = W TB and Cr = CV , such that
y(t)≈yr(t). The main task in this projection-based setting
consists in finding suitable (orthogonal) reduction matrices
V ,W ∈ Rn×r that span appropriate subspaces.

2.1 Frequency-domain perception of moment matching

The transfer function of (1) is G(s) = C(sE −A)−1B.

Definition 1. The moments mi(σ) of G(s) at a complex
expansion point σ ∈ C are given by

mi(σ) = (−1)iC
(
(σE −A)−1E

)i
(σE −A)−1B ∈ Rp×m.

If W is chosen as basis of an output Krylov subspace

span
{

(µ1E−A)−TCTl1, . . . , (µrE−A)−TCTlr

}
⊆ ran(W ), (3)

then left tangential multipoint interpolation is achieved:

lTi G(µi) = lTi Gr(µi) ⇔ lTi m0(µi) = lTi mr,0(µi). (4)

Hereby, the 0-th tangential output moments are defined as
mT

0 (µi, li) := lTi m0(µi)=wT
i B withwT

i = lTi C(µiE−A)−1.

Suitable shifts µi∈C\λ(E−1A) and left tangential direc-
tions li∈Cp should be chosen for a good approximation.

Any basis of an output Krylov subspace can be interpreted
as the solution W of the following Sylvester equation:

ETW ST
w −A

TW = CTL, (5)

where Sw =diag(µ1, . . . , µr) ∈ Cr×r and L=[l1, . . . , lr] ∈
Cp×r, such that the pair (Sw,L

T) is controllable.

2.2 Time-domain perception of moment matching

Theorem 1. Consider the signal generator

ẋw
r (t) = Sw x

w
r (t)−LT y(t), xw

r (0) = xw
r,0, (6a)

d(t) = xw
r (t)−W TE x(t). (6b)

Consider the interconnection between (1) and (6) as in
Fig. 1. Let W be the unique solution of (5) and V

such that det(W TEV ) 6= 0. Furthermore, let xw
r,0 = 0.

Then, the steady-state response of d(t) and ε(t) match,
i.e. dss(t)=εss(t) (see Fig. 1).

Lemma 1. For an asymptotically stable FOM, u(t) = 0,
x0 6= 0 arbitrary and xw

r,0 = 0, the steady-state response

(t → ∞) of xw
r (t) is given by xw

r,ss(t) = −eSwtW TE x0,

where wT
i = lTi C(µiE−A)−1. Due to (6b) and x(t) =

eE
−1Atx0

t→∞→ 0, the steady-state of d(t) is dss(t)=xw
r,ss(t).

Further note that the interconnected system ((1) and (6))
is equivalent to the system (cf. Fig. 1)

ḋ(t)=Sw

(
xw
r (t)−W TEx(t)

)︸ ︷︷ ︸
d(t)

−W TBu(t), d(0)=−W TEx0.

E ẋ(t) = Ax(t) +Bu(t)

y(t) = C x(t)

W TEV ẋr(t) = W TAV xr(t) +W TBu(t)

yr(t) = CV xr(t)

ẋw
r (t) = Sw x

w
r (t)−LTy(t)

d(t) = xw
r (t)−W TE x(t)

ẋw
r (t) = Sw x

w
r (t)−LTyr(t)

ε(t) = xw
r (t)− xr(t)

u(t) = 0
y(t)

x(t)
d(t)

yr(t)

xr(t)
ε(t)

0

xw
r,0 = 0x0 6= 0

xr,0 6= 0 xw
r,0 = 0

linear signal generator

linear signal generator

FOM

ROM

−

ḋ(t) = Swd(t)−W TBu(t)

ε̇(t) = Swε(t)−W TBu(t)

Fig. 1. Time-domain interpretation of W -sided moment matching
for linear systems (“FOM/ROM drives the signal generator”).



Thus, the solution for u(t)=0 is given by d(t)=eSwtd(0)=

−eSwtW TE x0, which corresponds to the solution before.
Moreover, for u(t)=0 and xw

r (t)=W TEx(t) it follows

ḋ(t)
∣∣∣
xw

r =W TEx,u=0
= 0 . (7)

The r×n Sylvester equation can be derived as follows. First
insert the linear approximation ansatz xr(t) =W TE x(t)

with xr(t)
!
=xw

r (t) in (6a). Then, the linear system (1) for
u(t)=0 and arbitrary x0 6=0 is plugged in, yielding

0 =
(
SwW

TE −W TA−LTC
)
· x(t). (8)

3. NONLINEAR MOMENT MATCHING

Consider now a large-scale, nonlinear time-invariant, in
xeq=0 exponentially stable, state-space model of the form

E ẋ(t) = f
(
x(t),u(t)

)
, x(0) = x0,

y(t) = h
(
x(t)

)
,

(9)

with smooth mappings f(x,u) : Rn × Rm → Rn and
h(x) : Rn → Rp. The reduction is performed by a
nonlinear Petrov-Galerkin projection using the mappings
x(t) ≈ ν(xr(t)) and ω(x(t)), together with their co-

rresponding Jacobians Ṽ (xr) = ∂ν(xr)/∂xr, W̃ (x)T =
(∂ω(x)/∂x)|x=ν(xr)

. This yields the nonlinear ROM

Ẽr ẋr(t) =
∂ω(x(t))

∂x(t)
f
(
x(t),u(t)

)∣∣∣∣
x(t)=ν(xr(t))

,

yr(t) = h
(
ν(xr(t))

)
,

(10)

with Ẽr = W̃ (x)TE Ṽ (xr) and the initial condition
xr(0)=arg min

xr,0

‖ν(xr,0)−x0‖22 (cf. lsqnonlin in Matlab).

3.1 Time-domain perception of W-sided moment matching

Theorem 2. Consider the interconnection of the nonlinear
system (9) with the nonlinear signal generator

ẋw
r (t) = sw

(
xw
r (t),y(t)

)
, xw

r (0) = xw
r,0, (11a)

d(t) = Ω
(
xw
r (t),x(t)

)
, (11b)

where sw
(
xw
r ,y

)
:Rr×Rp → Rr and Ω

(
xw
r ,x

)
:Rr×Rn →

Rr are smooth mappings such that sw(0,0)=0, Ω(0,0)=
0 and

(
∂Ω(xw

r ,x)/∂xw
r

)∣∣
(0,0)

is full rank. Further assume

that there exists a smooth mapping ω(x) : Rn → Rr

such that Ω(ω(x),x)=0, i.e. d restricted to the manifold
xw
r =ω(x) is zero. Then, the steady-state response of d(t)

and ε(t) match (see Fig. 2), where the mapping Ω(xw
r ,x)

is the unique solution of the following PDE

∂Ω(xw
r ,x)

∂x
f(x,0) = − ∂Ω(xw

r ,x)

∂xw
r

sw
(
xw
r ,h(x)

)∣∣∣∣
xw

r =ω(x)

.

3.2 Nonlinear input-affine case

Consider now a large-scale, nonlinear time-invariant sys-
tem (9) with f

(
x,u

)
= f̃(x)+G(x)u, where f̃(x) : Rn →

Rn and G(x) : Rn → Rn×m are smooth mappings.

Theorem 3. Consider the interconnection of a nonlinear
(input-affine) system with the input-affine generator

ẋw
r (t) =

sw

(
xw

r (t),y(t)
)︷ ︸︸ ︷

s̃w
(
xw
r (t)

)
−L

(
xw
r (t)

)
y(t), xw

r (0)=xw
r,0, (12a)

d(t) = xw
r (t)− ω

(
x(t)

)︸ ︷︷ ︸
Ω
(
xw

r (t),x(t)
) , (12b)

E ẋ(t) = f
(
x(t),u(t)

)
y(t) = h

(
x(t)

)

Ẽr ẋr(t) =
∂ω(x)

∂x

∣∣∣∣
x=ν(xr)

f
(
ν(xr(t)),u(t)

)
yr(t) = h

(
ν(xr(t))

)

ẋw
r (t) = sw

(
xw
r (t), y(t)

)
d(t) = Ω

(
xw
r (t), x(t)

)

ẋw
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(
xw
r (t), yr(t)

)
ε(t) = χ

(
xw
r (t), xr(t)

)
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Fig. 2. Time-domain interpretation of W -sided moment matching
for nonlinear systems (adapted from Ionescu [2016]).

where s̃w(xw
r ) : Rr → Rr, L(xw

r ) : Rr → Rr×p and
ω(x) : Rn → Rr. Then, the steady-state of d(t) and ε(t)
match, where ω(x) is the unique solution of the PDE

∂ω(x)

∂x
f(x,0) = s̃w(xw

r )−L(xw
r )h(x)

∣∣∣∣
xw

r =ω(x)

. (13)

The Sylvester-like PDE (13) can be derived as follows.
First, the nonlinear approximation ansatz xr(t)=ω(x(t))

with xr(t)
!
=xw

r (t) is substituted in (12a). Afterwards, the
nonlinear system Eẋ(t)=f

(
x(t),u(t)

)
, y(t)=h

(
x(t)

)
for

u(t)=0 is plugged in, yielding the r × 1 equation (13).

4. PRACTICABLE W -SIDED MODEL REDUCTION
BY NONLINEAR MOMENT MATCHING

The first step towards a practical method consists in a-
pplying a linear projection xw

r (t) =ω(x(t)) =W TE x(t).
(cf. Cruz Varona et al. [2019]).

Nonlinear signal generator In this case, the PDE (13)
becomes the following nonlinear system of equations

W Tf
(
x(t),0

)
= s̃w

(
W TE x(t)

)
−L
(
W TE x(t)

)
h
(
x(t)

)
,

(14)
where the triple (s̃w,L,x0) is user-defined. Note that the
underdetermined system consists of r equations for r · n
unknowns in W T ∈ Rr×n, and a row-wise consideration
for eachwT

i ∈ R1×n, i = 1, . . . , r does not help any further.

Linear signal generator Interconnecting the nonlinear
system (9) with the linear signal generator (6), where

s̃w(xw
r (t))=Sw x

w
r (t) and L(xw

r (t))=LT, yields

W Tf
(
x(t),0

)
= SwW

TE x(t)−LT h
(
x(t)

)
, (15)

which is a linear system of equations.

Zero signal generator This special (linear) signal gene-

rator, where s̃w(xw
r (t))=0 and L(xw

r (t))=LT, yields

W Tf
(
x(t),0

)
= −LT h

(
x(t)

)
, (16)

which is again a linear system of equations.
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Steady-state of interconnected system

Consider the signal generator

with and

The steady-state of the interconnected system from Fig. 1 is

Steady-state of interconnected system

Consider the nonlinear, input-affine signal generator

with user-defined

The steady-state of the interconnected system (cf. Fig. 1) is

Projective Model Order Reduction

The goal of model order reduction is to find a reduced order

model (ROM) of much lower dimension :

with , such that .

In this Petrov-Galerkin projection setting, the main task is to

find suitable reduction matrices . One numerically

efficient linear reduction technique relies on the concept of

implicit moment matching by rational Krylov subspaces.

Nonlinear time-invariant systems

Consider now a large-scale, nonlinear time-invariant (NLTI), in exponentially stable,

MIMO state-space model of the form:

with mappings and For the sake of simplicity, we

consider the input-affine case later on, where
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Linear systems

Nonlinear systems

Linear time-invariant systems

Consider a large-scale ( ), linear time-invariant (LTI),

asymptotically stable, MIMO state-space model of the form:

with non-singular descriptor matrix, i.e.

The input-output behavior of LTI systems is characterized in

the frequency-domain by the transfer function matrix

Frequency-domain Output Moment Matching

If is chosen as basis of an output Krylov subspace

then the ROM fulfills the left tangential multipoint conditions

Hereby, the 0th tangential output moments are defined as

can be also interpreted as solution of the Sylvester

equation

Output Nonlinear Moment Matching

The PDE can be derived as follows:

1.) Insert the ansatz in the signal generator.

2.) Substitute the nonlinear system with

Output nonlinear moment matching can be interpreted in

time-domain as the interpolation of the steady-state of

and (cf. Fig. 1):

where is the unique solution of the Sylvester-like PDE

and is arbitrary but such that

Practicable W-sided Model Reduction by Approximated Nonlinear Moment Matching
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Time-domain Output Moment Matching

The 0th tangential output moments at are related to

the (well-defined) steady-state of from Fig. 1:

where is the unique solution of the Sylvester equation.

Thus, output moment matching in time-domain corresponds

to the interpolation of the steady-state of and

where is arbitrary but such thatand

Fig. 1. Time-domain interpretation of output moment matching for

linear systems: “System drives the signal generator”.

ROM

FOM linear signal generator

linear signal generator

Nonlinear Petrov-Galerkin projection

One way to reduce NLTI systems is to apply a nonlinear Petrov-Galerkin projection using

the mappings and

with and In this setting, the main task

is to find suitable nonlinear reduction mappings and their Jacobians

Output Nonlinear Moments

The 0th output nonlinear moments at

are related to the (well-defined) steady-state of

where is the unique solution of the Sylvester-like PDE

This PDE represents the nonlinear counterpart of

Note that the PDE has the dimension , and not

Since the PDE is difficult to solve, we propose here some simplifications to approximate its

solution and achieve a practical method for output nonlinear moment matching.

The first simplification step consists in applying a linear projection

instead of the nonlinear reduction mapping . In the following, we distinguish three

different signal generator cases.

Nonlinear signal generator: In this case, the PDE becomes the following algebraic

nonlinear system of equations

where the triple is user-defined. Note that the above system is underdetermined,

consisting of equations for unknowns in . A row-wise consideration for

each does – at first – not help any further.

Linear signal generator: Interconnecting the nonlinear system with a linear signal generator,

where and , yields

This is a linear system of equations, since the searched solution does not enter nonlinearly.

Zero signal generator: For this special case, where , it follows

which is again a linear system of equations.

and
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Output Nonlinear Moment Matching for linear/zero signal generator

As seen above, the proposed simplifications yield linear systems of equations (LSEs) in

case of a linear or zero signal generator. Therefore, the O-NLMM algorithm can be

simplified as follows:

Due to the linearity of and w.r.t. the unknown

, the (sparse, possibly complex) “shifted” matrix (cf. line 3) as well as the

constant row-vector (cf. line 5) can be constructed, yielding the well-known

LSEs . These LSEs can be solved using a direct (“\” in MATLAB) or an iterative

solver (e.g. pcg). Remarkably, no Newton-Raphson scheme is required at all in this case.

Computational Aspects

The above algorithm is given for the most general case of a nonlinear signal generator. In

this case, nonlinear systems of equations (NLSEs) of full order dimension n have to be

solved (cf. line 8-10). These NLSEs can be solved using either a self-programmed Newton-

Raphson scheme:

or a built-in routine (same holds for our proposed Input NLMM algorithm).

For the Newton-Raphson scheme, it is highly recommended to supply the analytical

Jacobian of the residual , in order to achieve a faster computation and avoid

the approximation via finite differences. Moreover, good initial guesses can conside-

rably speed-up the convergence of the Newton method.

In line 10, a direct solver (e.g. “\” in MATLAB) or an iterative solver (e.g. pcg) can be used.

Simulation-free Output Nonlinear Moment Matching Algorithm

Based on the proposed simplifications – i.e. (i) linear projection, (ii) row-wise consideration

and (iii) n initial states – we are now ready to state our practical algorithm for

projective, output nonlinear moment matching:

The inner for-loop is used to iteratively construct the (sparse) matrix , as well as

the row-vector functions and , which depend on
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Nonlinear systems (cont.)

Possible approach to achieve a practical algorithm
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Nonlinear signal generator: The afore obtained nonlinear system is underdetermined

consisting of equations for unknowns in . A row-wise consideration for

each might help, if (relevant) initial states

are taken, yielding well-determined systems of equations of the form:

Herein, is used instead of

Linear signal generator: With the proposed approach, the underdetermined linear system

becomes

which consists of equations for unknowns in , for each

Zero signal generator: The underdetermined linear system from before becomes

which is also well-determined (n equations for n unknowns).

Analysis, Discussion and Limitations

At this point, we want to briefly discuss the proposed simplifications, as well as the degrees

of freedom and limitations of the presented O-NLMM algorithm.

Adequate selection of the projection ansatz. The simple choice of a linear projection

is motivated by its easy and frequent use in comparison to

nonlinear projections. Nevertheless, a more sophisticated projection, like e.g. a polynomial

series expansion ansatz, might be superior and even indispensable in certain cases.

Appropriate choice of the signal generator. The signal generator

determines (1) the ansatz for the dynamics and (2) the “weighting” of the output. In

case of a linear signal generator, and holds, meaning that

complex exponentials and left tangential directions are being employed. Regardless

of their (questionable) suitability, an expansion-based generator ansatz can be also used.

Obtaining a state-independent matrix equation. In the Sylvester-like PDE from above,

the state vector cannot be factored out so easily like in the linear case. In fact, the key

to obtain a state-independent matrix equation of dimension lies on both the choice of

an adequate projection ansatz and signal generator, customized for the nonlinear system.

Limitations of the row-wise consideration. If a linear projection is applied and the

factorization of does not succeed, then the underdetermined system from above is

obtained. The proposed row-wise consideration, together with the initial states ,

has the limitation that the underdetermined equation is generally not fulfilled, since the

(nonlinear) couplings in are not being considered.

Approximating output nonlinear moments. What moments are being matched, when we

apply the O-NLMM algorithm? Since the PDE is not being solved, the “true” output

nonlinear moments are not exactly matched. Instead, we are

approximately matching these moments at the chosen data
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