

Nonlinear Moment Matching for the Simulation-Free Reduction of Structural Systems

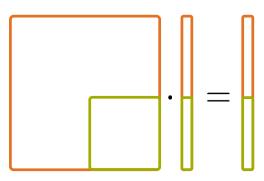
Maria Cruz Varona, Nico Schneucker, Boris Lohmann

Chair of Automatic Control, Technical University of Munich

IFAC MECHATRONICS & NOLCOS 2019

Mathematical Modeling and Model Order Reduction

Vienna, September 4th 2019



Motivation

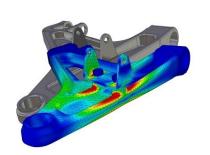
Nonlinear Moment Matching for the Simulation-Free Reduction of Structural Systems

Why nonlinear?

Geometric nonlinearities (large deformations)

Material nonlinearities

Nonlinear boundary conditions

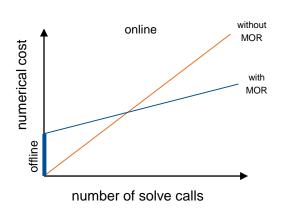


Why simulation-free?

Avoid expensive training simulations

→ simulation-free / system-theoretic

Simulation-Free Model Order Reduction for Nonlinear Second-Order Systems

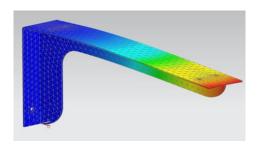


Why reduction?

Efficient numerical analysis, computer-aided design, uncertainty quantification, predictive maintenance

Why structural systems?

2nd-order systems arise in many applications: flexible structures, MEMS, vibroacoustics, biomechanics,...

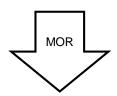


Projective Model Order Reduction

Second-order nonlinear full order model (FOM)

$$egin{aligned} oldsymbol{M}\ddot{oldsymbol{q}}(t) + oldsymbol{D}\dot{oldsymbol{q}}(t) + oldsymbol{f}(oldsymbol{q}(t)) &= oldsymbol{B}oldsymbol{F}(t) \ oldsymbol{y}(t) &= oldsymbol{C}oldsymbol{q}(t) \end{aligned}$$

Linear (Petrov-)Galerkin projection



$$\qquad \qquad \mathbf{q}(t) \approx \boldsymbol{V} \boldsymbol{q}_{\mathrm{r}}(t) \,, \quad \boldsymbol{V} \in \mathbb{R}^{n \times r} \qquad r \ll n$$

Reduced order model (ROM)

$$\boldsymbol{M}_{\mathrm{r}} \ddot{\boldsymbol{q}}_{\mathrm{r}}(t) + \boldsymbol{D}_{\mathrm{r}} \dot{\boldsymbol{q}}_{\mathrm{r}}(t) + \boldsymbol{W}^{\mathsf{T}} \boldsymbol{f} (\boldsymbol{V} \boldsymbol{q}_{\mathrm{r}}(t)) = \boldsymbol{B}_{\mathrm{r}} \boldsymbol{F}(t) \qquad \{ \boldsymbol{q}_{\mathrm{r}}(0), \, \dot{\boldsymbol{q}}_{\mathrm{r}}(0) \} = (\boldsymbol{W}^{\mathsf{T}} \boldsymbol{V})^{-1} \boldsymbol{W}^{\mathsf{T}} \{ \boldsymbol{q}_{0}, \, \dot{\boldsymbol{q}}_{0} \},$$

$$\boldsymbol{y}_{\mathrm{r}}(t) = \boldsymbol{C}_{\mathrm{r}} \boldsymbol{q}_{\mathrm{r}}(t)$$

with

$$\{M_{
m r},D_{
m r}\}=m{W}^{
m T}\{M,D\}\,m{V}, \hspace{1cm} f_{
m r}(m{q})=m{W}^{
m T}m{f}(m{V}m{q}_{
m r}) \hspace{1cm} ext{Hyper reduction!}$$
 Hyper reduction! $m{C}_{
m r}=m{C}\,m{V}, \hspace{1cm} m{V}$

Nonlinear dimensional reduction methods — Overview

First-order (state-space) nonlinear models

Simulation-based

- POD, Reduced Basis
- TPWL, Empirical Gramians
- · Hyper reduction: DEIM

Simulation-free / System-theoretic

- Reduction of polynomial systems (bilinear, quadratic-bil.)
 using Volterra series theory (balancing and Krylov)
- Extension to 1st-order systems?
- MDs for 1st-order systems (Himpsl '18, Meyer '19)
- Nonlinear Balanced Truncation (Scherpen '93)
- Nonlinear Moment Matching (Astolfi '10, Cruz et al. '19)

Second-order (mechanical) nonlinear models

Simulation-based

- POD, Reduced Basis
- TPWL, Empirical Gramians
- Hyper reduction: ECSW

Simulation-free / System-theoretic

- Reduction of polynomial 2nd-order systems (quadratic, cubic) using Volterra series theory
- Nonlinear Normal Modes (Rosenberg '62)
- Basis augmentation with Modal Derivatives (MDs)
- Extension to 2nd-order systems?
- Extension to 2nd-order systems!!

Moment Matching for Linear Second-Order Systems

Second-order linear system

$$M\ddot{q}(t) + D\dot{q}(t) + Kq(t) = BF(t),$$

 $y(t) = Cq(t).$

Moments of the transfer function

The moments $m_i(\sigma)$ at σ are the coefficients of the Taylor series of the transfer function.

Frequency-domain interpretation of Moment Matching

(Tangential) input Krylov subspace for proportional damping:

$$\operatorname{span}\left\{\boldsymbol{K}_{\sigma_{1}}^{-1}\boldsymbol{B}\,\boldsymbol{r}_{1},\ldots,\boldsymbol{K}_{\sigma_{r}}^{-1}\boldsymbol{B}\,\boldsymbol{r}_{r}\right\}\subseteq\operatorname{ran}(\boldsymbol{V})$$

leads to (tangential) multipoint moment matching:

$$oldsymbol{G}(\sigma_i) \, oldsymbol{r_i} = oldsymbol{G}_{ ext{r}}(\sigma_i) \, oldsymbol{r_i} \quad \Longleftrightarrow \quad oldsymbol{m}_0(\sigma_i) \, oldsymbol{r}_i = oldsymbol{m}_{ ext{r},0}(\sigma_i) \, oldsymbol{r}_i$$

Transfer function matrix

$$G(s) = C(s^2M + sD + K)^{-1}B$$

Example

$$egin{aligned} m{m_0}(\sigma) &= m{G}(\sigma) = m{C}\,m{K}_\sigma^{-1}\,m{B} \ m{m_1}(\sigma) &= m{G}'(\sigma) = -m{C}\,m{K}_\sigma^{-1}\,m{D}_\sigma\,m{K}_\sigma^{-1}\,m{B} \ &: \end{aligned}$$

$$K_{\sigma} = K + \sigma D + \sigma^2 M$$

 $D_{\sigma} = D + 2\sigma M$

Equivalence of Krylov and Sylvester equation

$$(\sigma_i^2 M + \sigma_i D + K) v_i = B r_i \iff$$

$$oldsymbol{M} oldsymbol{V} oldsymbol{S}_v^2 + oldsymbol{D} oldsymbol{V} oldsymbol{S}_v + oldsymbol{K} oldsymbol{V} = oldsymbol{B} oldsymbol{R}$$

Reduction parameters:

- Shifts: $S_v = \operatorname{diag}(\sigma_1, \ldots, \sigma_r)$
- Tang. directions: $oldsymbol{R} = [oldsymbol{r}_1, \dots, oldsymbol{r}_r]$

Linear systems – Steady-state response

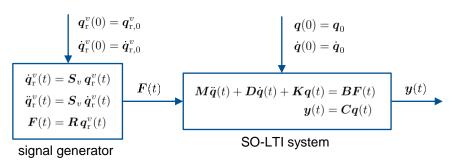
Notion of signal generators

Interconnecting a system with the following linear signal generator

$$\begin{vmatrix} \dot{\boldsymbol{q}}_{\mathrm{r}}^{v}(t) = \boldsymbol{S}_{v} \, \boldsymbol{q}_{\mathrm{r}}^{v}(t), & \boldsymbol{q}_{\mathrm{r}}^{v}(0) = \boldsymbol{q}_{\mathrm{r},0}^{v}, \\ \ddot{\boldsymbol{q}}_{\mathrm{r}}^{v}(t) = \boldsymbol{S}_{v} \, \dot{\boldsymbol{q}}_{\mathrm{r}}^{v}(t), & \dot{\boldsymbol{q}}_{\mathrm{r}}^{v}(0) = \dot{\boldsymbol{q}}_{\mathrm{r},0}^{v}, \\ \boldsymbol{F}(t) = \boldsymbol{R} \, \boldsymbol{q}_{\mathrm{r}}^{v}(t), & \boldsymbol{F}(t) = \boldsymbol{R} \, \boldsymbol{q}_{\mathrm{r},0}^{v}(t), \end{vmatrix} \Rightarrow \begin{cases} \boldsymbol{q}_{\mathrm{r}}^{v}(t) = \mathrm{e}^{\boldsymbol{S}_{v}t} \, \boldsymbol{q}_{\mathrm{r},0}^{v}, & \boldsymbol{S}_{v} = \mathrm{diag}(\sigma_{1}, \dots, \sigma_{r}) \\ \dot{\boldsymbol{q}}_{\mathrm{r}}^{v}(t) = \boldsymbol{S}_{v} \, \mathrm{e}^{\boldsymbol{S}_{v}t} \, \boldsymbol{q}_{\mathrm{r},0}^{v}, & \boldsymbol{R} = [\boldsymbol{r}_{1}, \dots, \boldsymbol{r}_{r}] \end{cases}$$

corresponds to exciting the system with a sum of (growing) exponentials.

Steady-state response of interconnected system



Recall:
$$m_0(\sigma_i) r_i = C(\sigma_i^2 M + \sigma_i D + K)^{-1} B r_i = C v_i$$

$$\begin{aligned} \boldsymbol{q}(t) &= \boldsymbol{q}_{\mathrm{h}}(t) \ + \sum_{i=1}^{r} & \boldsymbol{v}_{i} & \boldsymbol{q}_{\mathrm{r},i}^{v}(t) \\ \boldsymbol{q}(t) &= \boldsymbol{q}_{\mathrm{h}}(t) \ + \sum_{i=1}^{r} & \boldsymbol{\sigma}_{i}^{2} \boldsymbol{M} + \boldsymbol{\sigma}_{i} \boldsymbol{D} + \boldsymbol{K})^{-1} \boldsymbol{B} \boldsymbol{r}_{i} \end{aligned} \\ \overset{\text{decaying}}{\underset{\text{homog. solution}}{\text{decaying}}} & & \text{growing} \\ & \text{homog. solution} & & \text{part. solution} \end{aligned}$$

$$\boldsymbol{y}_{\mathrm{ss}}(t) = \sum_{i=1}^{r} \boldsymbol{C} (\boldsymbol{\sigma}_{i}^{2} \boldsymbol{M} + \boldsymbol{\sigma}_{i} \boldsymbol{D} + \boldsymbol{K})^{-1} \boldsymbol{B} \boldsymbol{r}_{i} \, \boldsymbol{q}_{\mathrm{r},i}^{v}(t) = \boldsymbol{C} \, \boldsymbol{V} \, \boldsymbol{q}_{\mathrm{r}}^{v}(t)$$

Linear Moment Matching by Interconnection

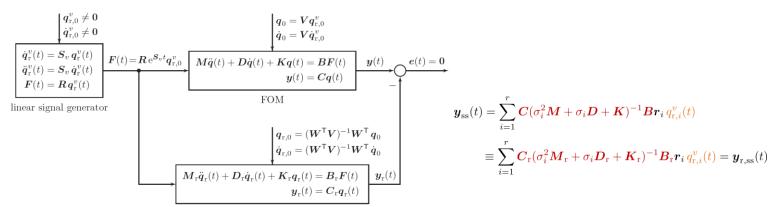
Time-domain interpretation of Moment Matching

Theorem 1: Consider the interconnection of the linear second-order system with the signal generator

$$egin{aligned} \dot{oldsymbol{q}}_{\mathrm{r}}^v(t) &= oldsymbol{S}_v \, oldsymbol{q}_{\mathrm{r}}^v(t), & oldsymbol{q}_{\mathrm{r}}^v(0) &= oldsymbol{q}_{\mathrm{r},0}^v
eq oldsymbol{0}, \\ \dot{oldsymbol{q}}_{\mathrm{r}}^v(t) &= oldsymbol{S}_v \, \dot{oldsymbol{q}}_{\mathrm{r}}^v(t), & \dot{oldsymbol{q}}_{\mathrm{r}}^v(0) &= \dot{oldsymbol{q}}_{\mathrm{r},0}^v
eq oldsymbol{0}, \\ oldsymbol{F}(t) &= oldsymbol{R} \, oldsymbol{q}_{\mathrm{r}}^v(t). \end{aligned}$$

ROM

Let V be the solution of the Sylvester equation $MVS_v^2 + DVS_v + KV = BR$, and W arbitrary such that $\det(W^\mathsf{T}V) \neq 0$. Furthermore, let $q_0 = Vq_{\mathrm{r},0}^v$ and $\dot{q}_0 = V\dot{q}_{\mathrm{r},0}^v$ with $q_{\mathrm{r},0}^v \neq 0$, $\dot{q}_{\mathrm{r},0}^v \neq 0$ arbitrary. Then, the ROM generated by projection with V exactly matches the output response of the FOM, i.e. $e(t) = y(t) - y_{\mathrm{r}}(t) = Cq(t) - CVq_{\mathrm{r}}(t) = 0 \quad \forall t$.



7

Nonlinear systems – Nonlinear projection

Second-order nonlinear system

$$egin{aligned} oldsymbol{M}\ddot{oldsymbol{q}}(t) + oldsymbol{D}\dot{oldsymbol{q}}(t) + oldsymbol{f}(oldsymbol{q}(t)) &= oldsymbol{B}oldsymbol{F}(t) \ oldsymbol{y}(t) &= oldsymbol{C}oldsymbol{q}(t) \end{aligned}$$

Nonlinear (Petrov-)Galerkin projection

Approximation ansatz $q(t) \approx \nu(q_r(t))$ with the mapping $\nu(q_r)$:

$$\dot{m{q}} = rac{\partial m{
u}(m{q}_{
m r})}{\partial m{q}_{
m r}} \dot{m{q}}_{
m r}, \quad \ddot{m{q}} = rac{\partial m{
u}(m{q}_{
m r})}{\partial m{q}_{
m r}} \ddot{m{q}}_{
m r} + rac{\partial^2 m{
u}(m{q}_{
m r})}{\partial m{q}_{
m r}^2} \left(\dot{m{q}}_{
m r} \otimes \dot{m{q}}_{
m r}
ight), \quad \widetilde{m{V}}(m{q}_{
m r}) = rac{\partial m{
u}(m{q}_{
m r})}{\partial m{q}_{
m r}} \in \mathbb{R}^{n imes r}$$

Inserting the ansatz and its derivatives yields an overdetermined system of equations with the residual ε .

Premultiplying the equations with the Jacobian $\widetilde{W}(q)^{\mathsf{T}} = \frac{\partial \omega(q)}{\partial q} \bigg|_{q=\nu(q_{\mathrm{r}})}$ of another mapping $\omega(q(t))$ and enforcing $\widetilde{W}(q)^{\mathsf{T}} \varepsilon = 0$, yields the ROM

$$egin{aligned} \widetilde{m{M}}_{\mathrm{r}}\ddot{m{q}}_{\mathrm{r}} + \widetilde{m{g}} + \widetilde{m{D}}_{\mathrm{r}}\dot{m{q}}_{\mathrm{r}} + \widetilde{m{W}}(m{q})^{\mathsf{T}}m{f}ig(m{
u}(m{q}_{\mathrm{r}})ig) = \widetilde{m{B}}_{\mathrm{r}}m{F}, \ m{y}_{\mathrm{r}} = m{C}\,m{
u}(m{q}_{\mathrm{r}}), \end{aligned}$$

 $\text{with } \left\{ \widetilde{\boldsymbol{M}}_{\mathrm{r}}, \widetilde{\boldsymbol{D}}_{\mathrm{r}} \right\} = \widetilde{\boldsymbol{W}}(\boldsymbol{q})^{\mathsf{T}} \{ \boldsymbol{M}, \boldsymbol{D} \} \, \widetilde{\boldsymbol{V}}(\boldsymbol{q}_{\mathrm{r}}) \,, \ \ \widetilde{\boldsymbol{B}}_{\mathrm{r}} = \widetilde{\boldsymbol{W}}(\boldsymbol{q})^{\mathsf{T}} \boldsymbol{B} \,, \text{ the convective term } \ \ \widetilde{\boldsymbol{g}} = \widetilde{\boldsymbol{W}}(\boldsymbol{q})^{\mathsf{T}} \boldsymbol{M} \frac{\partial^{2} \boldsymbol{\nu}(\boldsymbol{q}_{\mathrm{r}})}{\partial \boldsymbol{q}_{\mathrm{r}}^{2}} \, \left(\dot{\boldsymbol{q}}_{\mathrm{r}} \otimes \dot{\boldsymbol{q}}_{\mathrm{r}} \right) \, \ \text{and} \ \ \widetilde{\boldsymbol{W}}(\boldsymbol{q})^{\mathsf{T}} \boldsymbol{M} = \widetilde{\boldsymbol{W}}(\boldsymbol{q})^{\mathsf{T}} \boldsymbol{M} \cdot (\boldsymbol{q}_{\mathrm{r}}) \, \boldsymbol{M} \cdot (\boldsymbol{q}_$

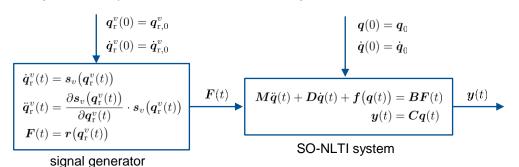
the initial conditions
$$q_{\mathrm{r}}(0) = \arg\min_{\boldsymbol{q}_{\mathrm{r},0}} \| \boldsymbol{\nu}(\boldsymbol{q}_{\mathrm{r},0}) - \boldsymbol{q}_0 \|_2^2$$
, $\dot{\boldsymbol{q}}_{\mathrm{r}}(0) = (\widetilde{\boldsymbol{W}_{\boldsymbol{q}_0}}^\mathsf{T} \widetilde{\boldsymbol{V}_{\boldsymbol{q}_{\mathrm{r},0}}})^{-1} \widetilde{\boldsymbol{W}_{\boldsymbol{q}_0}}^\mathsf{T} \dot{\boldsymbol{q}}_0$.

Nonlinear systems – Steady-state response

Nonlinear signal generator

$$egin{aligned} \dot{oldsymbol{q}}_{ ext{r}}^v(t) &= oldsymbol{s}_vig(oldsymbol{q}_{ ext{r}}^v(t)ig), & oldsymbol{q}_{ ext{r}}^v(0) &= oldsymbol{q}_{ ext{r},0}^v
eq oldsymbol{0}, & oldsymbol{s}_vig(oldsymbol{q}_{ ext{r}}^v(t)ig), & oldsymbol{q}_{ ext{r}}^v(0) &= oldsymbol{q}_{ ext{r},0}^v
eq oldsymbol{0}, & oldsymbol{s}_vig(oldsymbol{q}_{ ext{r}}^v(t)ig), & oldsymbol{q}_{ ext{r}}^v(0) &= oldsymbol{\dot{q}}_{ ext{r},0}^v
eq oldsymbol{0}, & oldsymbol{r}(oldsymbol{q}_{ ext{r}}^v) \\ oldsymbol{F}(t) &= oldsymbol{r}(oldsymbol{q}_{ ext{r}}^v(t)ig). & oldsymbol{s}_{ ext{r}}(0) &= oldsymbol{\dot{q}}_{ ext{r},0}^v
eq oldsymbol{0}, & oldsymbol{r}(oldsymbol{q}_{ ext{r}}^v) \\ oldsymbol{F}(t) &= oldsymbol{r}(oldsymbol{q}_{ ext{r}}^v(t)ig). & oldsymbol{s}_{ ext{r}}(0) &= oldsymbol{\dot{q}}_{ ext{r},0}^v
eq oldsymbol{0}, & oldsymbol{r}(oldsymbol{q}_{ ext{r}}^v) \\ oldsymbol{F}(t) &= oldsymbol{r}(oldsymbol{q}_{ ext{r}}^v(t)ig). & oldsymbol{s}_{ ext{r}}(0) &= oldsymbol{\dot{q}}_{ ext{r},0}^v
eq oldsymbol{0}, & oldsymbol{r}(oldsymbol{q}_{ ext{r}}^v(t) \\ oldsymbol{F}(t) &= oldsymbol{r}(oldsymbol{q}_{ ext{r}}^v(t)ig). & oldsymbol{s}_{ ext{r}}(0) &= oldsymbol{q}_{ ext{r},0}^v
eq oldsymbol{0}, & oldsymbol{r}(0) \\ oldsymbol{F}(t) &= oldsymbol{r}(t) &= oldsymbol{r}(t) \\ oldsymbol{r}(t) \\ oldsymbol{r}(t) &= oldsymbol{r}(t) \\ oldsymbol{r}(t) \\ oldsymbol{r}(t) \\ oldsymbol{r}(t) &= oldsymbol{r}(t) \\ oldsymbol{r$$

Steady-state response of interconnected system



$$m{q}(t) = m{q}_{
m h}(t) \ + \ m{
u} m{\left(m{q}_{
m r}^v(t)
ight)}$$
 decaying growing homog. sol. part. sol.

$$\begin{aligned} \text{For} \ \ t \rightarrow \infty \, \colon \quad & \boldsymbol{y}_{\rm ss}(t) = \boldsymbol{C} \, \boldsymbol{q}_{\rm ss}(t) = \boldsymbol{C} \boldsymbol{\nu} \big(\boldsymbol{q}_{\rm r}^v(t) \big) \\ & := & \boldsymbol{m}_0 \big(\boldsymbol{s}_v(\boldsymbol{q}_{\rm r}^v(t)), \boldsymbol{r}(\boldsymbol{q}_{\rm r}^v(t)), \boldsymbol{q}_{{\rm r},0}^v \big) \end{aligned}$$

Second-order nonlinear Sylvester-like PDE

State vector $q_{\mathbf{r}}^v(t)$ cannot be factored out, yielding a state-dependent, second-order PDE

$$egin{split} oldsymbol{M} rac{\partial oldsymbol{
u}(oldsymbol{q}_{ ext{r}}^v)}{\partial oldsymbol{q}_{ ext{r}}^v} rac{\partial oldsymbol{s}_vig(oldsymbol{q}_{ ext{r}}^vig)}{\partial oldsymbol{q}_{ ext{r}}^v} oldsymbol{s}_vig(oldsymbol{q}_{ ext{r}}^vig) + oldsymbol{M} rac{\partial^2 oldsymbol{
u}(oldsymbol{q}_{ ext{r}}^vig)}{\partial oldsymbol{q}_{ ext{r}}^v} oldsymbol{s}_vig(oldsymbol{q}_{ ext{r}}^vig) + oldsymbol{f}ig(oldsymbol{
u}(oldsymbol{q}_{ ext{r}}^vig) = oldsymbol{B} oldsymbol{r}ig(oldsymbol{q}_{ ext{r}}^vig) \end{split}$$

Nonlinear Moment Matching by Interconnection

Time-domain Second-Order Nonlinear Moment Matching

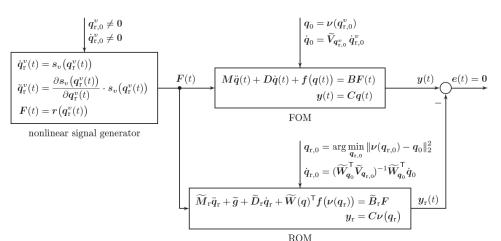
Theorem 2: Consider the interconnection of the nonlinear system with the nonlinear signal generator.

Let $\nu(q_{\rm r}^v)$ be the solution of the second-order Sylvester-PDE

$$egin{split} egin{split} eg$$

and $\omega(q)$ arbitrary such that $\det(\widetilde{\boldsymbol{W}}^{\mathsf{T}}\widetilde{\boldsymbol{V}}) \neq 0$. Furthermore, let $q_0 = \nu(q_{\mathrm{r},0}^v), \ \dot{q}_0 = \widetilde{\boldsymbol{V}}_{q_{\mathrm{r},0}^v} \ \dot{q}_{\mathrm{r},0}^v \ \dot{q}_{\mathrm{r},0}^v \neq 0, \ \dot{q}_{\mathrm{r},0}^v \neq 0$ arbitrary.

Then, the ROM generated by nonlinear projection using $\nu(q_r^v)$ exactly matches the output response of the FOM, i.e.



$$egin{aligned} oldsymbol{e}(t) &= oldsymbol{y}(t) - oldsymbol{y}_{\mathrm{r}}(t) = oldsymbol{C}oldsymbol{q}(t) - oldsymbol{C}oldsymbol{
u}(oldsymbol{q}_{\mathrm{r}}(t)) = oldsymbol{0} & orall t. \end{aligned}$$

$$\begin{split} \boldsymbol{y}_{\mathrm{ss}}(t) &= \boldsymbol{C} \, \boldsymbol{q}_{\mathrm{ss}}(t) := \boldsymbol{m}_{0} \big(\boldsymbol{s}_{v}(\boldsymbol{q}_{\mathrm{r}}^{v}(t)), \boldsymbol{r}(\boldsymbol{q}_{\mathrm{r}}^{v}(t)), \boldsymbol{q}_{\mathrm{r},0}^{v} \big) \\ &\equiv \boldsymbol{C} \boldsymbol{\nu} \big(\boldsymbol{q}_{\mathrm{r}}(t) \big) := \boldsymbol{m}_{\mathrm{r},0} \big(\boldsymbol{s}_{v}(\boldsymbol{q}_{\mathrm{r}}^{v}(t)), \boldsymbol{r}(\boldsymbol{q}_{\mathrm{r}}^{v}(t)), \boldsymbol{q}_{\mathrm{r},0}^{v} \big) \\ &= \boldsymbol{y}_{\mathrm{r},\mathrm{ss}}(t) \end{split}$$

10

Nonlinear Moment Matching – Simplifications

Nonlinear (state-dependent), second-order PDE is difficult to solve!

$$oxed{Mrac{\partial oldsymbol{
u}(oldsymbol{q}_{ ext{r}}^v)}{\partial oldsymbol{q}_{ ext{r}}^v}rac{\partial oldsymbol{s}_vig(oldsymbol{q}_{ ext{r}}^vig)}{\partial oldsymbol{q}_{ ext{r}}^v}oldsymbol{s}_vig(oldsymbol{q}_{ ext{r}}^vig) + oldsymbol{M}rac{\partial^2 oldsymbol{
u}(oldsymbol{q}_{ ext{r}}^vig)}{\partial oldsymbol{q}_{ ext{r}}^v}oldsymbol{s}_vig(oldsymbol{q}_{ ext{r}}^vig) + oldsymbol{D}rac{\partial oldsymbol{
u}(oldsymbol{q}_{ ext{r}}^vig)}{\partial oldsymbol{q}_{ ext{r}}^v}oldsymbol{s}_vig(oldsymbol{q}_{ ext{r}}^vig) + oldsymbol{D}ig(oldsymbol{u}(oldsymbol{q}_{ ext{r}}^vig) + oldsymbol{B}oldsymbol{
u}(oldsymbol{q}_{ ext{r}}^vig) + oldsymbol{B}oldsymbol{
u}(oldsymbol{q}_{ ext{r}}^vig) + oldsymbol{D}oldsymbol{u}(oldsymbol{q}_{ ext{r}}^vig) + oldsymbol{u}oldsymbol{u}(oldsymbol{q}_{ ext{r}}^vig) + oldsymbol{u}oldsymbol{u}(oldsymbol{q}_{ ext{r}}^vig) + oldsymbol{u}oldsymbol{u}(oldsymbol{q}_{ ext{r}}^vig)$$

Simplifications towards a practicable, simulation-free second-order nonlinear Moment Matching

- A. Linear projection: $q(t) = \nu(q_{\rm r}^v(t)) = V q_{\rm r}^v(t)$
 - ightarrow PDE becomes an algebraic equation: $MV \frac{\partial s_vig(m{q}_{
 m r}^v(t)ig)}{\partial m{q}_{
 m r}^v(t)} \, s_vig(m{q}_{
 m r}^v(t)ig) + D\,V\,s_vig(m{q}_{
 m r}^v(t)ig) + fig(Vm{q}_{
 m r}^v(t)ig) B\,rig(m{q}_{
 m r}^v(t)ig) = \mathbf{0}$
- **B.** Column-wise consideration: above equation is underdetermined \rightarrow consider it column-wise for each $v_i \in \mathbb{R}^n, i = 1, \dots, r$

$$oldsymbol{M} oldsymbol{v}_i rac{\partial s_{v_i}ig(q_{ ext{r},i}^v(t)ig)}{\partial q_{ ext{r},i}^v(t)} \, s_{v_i}ig(q_{ ext{r},i}^v(t)ig) + oldsymbol{D} oldsymbol{v}_i \, s_{v_i}ig(q_{ ext{r},i}^v(t)ig) + oldsymbol{f}ig(oldsymbol{v}_i \, q_{ ext{r},i}^v(t)ig) - oldsymbol{B} oldsymbol{r}_iig(q_{ ext{r},i}^v(t)ig) = oldsymbol{0}$$

- C. Time discretization with collocation points: $\{t_k^*\}$, $q_{\rm r}^v(t_k^*)$, $k=1,\ldots,K$
 - → Equation becomes state-independent:

$$oldsymbol{M} oldsymbol{v}_{ik} rac{\partial s_{v_i}ig(q_{ ext{r},i}^v(t_k^*)ig)}{\partial q_{ ext{r},i}^v(t_k^*)} \, s_{v_i}ig(q_{ ext{r},i}^v(t_k^*)ig) + oldsymbol{D} oldsymbol{v}_{ik} \, s_{v_i}ig(q_{ ext{r},i}^v(t_k^*)ig) + oldsymbol{f}ig(oldsymbol{v}_{ik} \, q_{ ext{r},i}^v(t_k^*)ig) - oldsymbol{B} oldsymbol{r}_iig(q_{ ext{r},i}^v(t_k^*)ig) = oldsymbol{0}$$

Second-Order Nonlinear Moment Matching


```
Algorithm 1 Second-order NLMM (SO-NLMM)
\overline{\textbf{Input:} \ \boldsymbol{M}, \ \boldsymbol{D}, \ \boldsymbol{f}(\boldsymbol{q}), \ \boldsymbol{B}, \ \boldsymbol{J}_{\boldsymbol{f}}(\boldsymbol{q}), \ \boldsymbol{q}_{\mathrm{r},i}^{v}(t_{k}^{*}), \ \boldsymbol{\dot{q}}_{\mathrm{r},i}^{v}(t_{k}^{*}), \ \boldsymbol{\ddot{q}}_{\mathrm{r},i}^{v}(t_{k}^{*}), \ \boldsymbol{r}_{i}(q_{\mathrm{r},i}^{v}(t_{k}^{*})), }
       initial guesses v_{0,ik}, deflated order r_{\text{defl}}
Output: orthogonal basis V
  1: for i = 1 : r do \triangleright e.g. r different shifts \sigma_i
              for k = 1: K do \triangleright e.g. K samples in each shift
                       \texttt{fun=@(v)} \ \boldsymbol{M} \ \texttt{v} \ \ddot{q}^v_{\mathrm{r},i}(t_k^*) + \boldsymbol{D} \ \texttt{v} \ \dot{q}^v_{\mathrm{r},i}(t_k^*) + \boldsymbol{f}(\texttt{v} \ q^v_{\mathrm{r},ik}) - \boldsymbol{B} \ \boldsymbol{r}_i(q^v_{\mathrm{r},ik})
  3:
                       Jfun=@(v) M\ddot{q}_{r,i}^{v}(t_{k}^{*}) + D\dot{q}_{r,i}^{v}(t_{k}^{*}) + J_{f}(vq_{r,ik}^{v})q_{r,ik}^{v}
  4:
                      V(:,(i-1)*K+k) = Newton(fun, v_{0,ik}, Jfun)
  5:
                       V = gramSchmidt((i-1)*K+k, V) ▷ optional
  6:
               end for
  8: end for
  9: V = svd(V, r_{defl})
                                                   ▶ deflation is optional
```

Approximated nonlinear moments

Due to the simplications, we are *approximately* matching nonlinear moments!

$$m{y}_{
m ss}(t) = m{C} m{
u}ig(m{q}_{
m r}^v(t)ig) := m{m}_0ig(m{s}_v(m{q}_{
m r}^v(t)), m{r}(m{q}_{
m r}^v(t)), m{q}_{
m r,0}^vig)$$

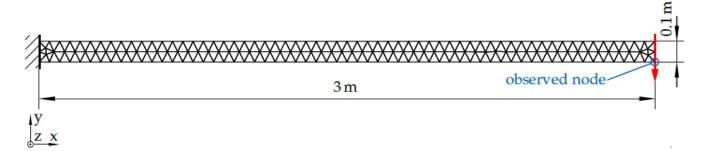
$$\begin{split} \boldsymbol{y}_{\mathrm{ss},i}(t_k^*) &= \boldsymbol{C} \, \boldsymbol{v}_{ik} \, q_{\mathrm{r},i}^v(t_k^*) \\ &:= \frac{\boldsymbol{m}_0 \big(s_{v_i}(q_{\mathrm{r},i}^v(t_k^*)), \boldsymbol{r}_i(q_{\mathrm{r},i}^v(t_k^*)), q_{\mathrm{r},0,i}^v, t_k^* \big) \end{split}$$

Computational aspects

- a) Different strategies and degrees of freedom: signal generators and collocation points $\left\{s_{v_i}, r_i, q_{\mathrm{r},0,i}^v, t_k^*\right\}$
- b) Computational effort: solution of nonlinear systems of equations (NLSE) with Newton
- c) Other aspects:
 - initial guesses for Newton scheme
 - orthogonalization process and deflation

Numerical Examples – Cantilever beam

2D model of a cantilever beam



- 246 triangular Tri6 elements; 1224 dofs
- linear St. Venant-Kirchhoff material (steel)
- geometric nonlinear behaviour
- loading force at the tip in negative y-direction
- simulation conducted with open-source AMfe-code
- numerical integration using implicit generalized-α scheme
- comparison of SO-NLMM with POD and basis augmentation

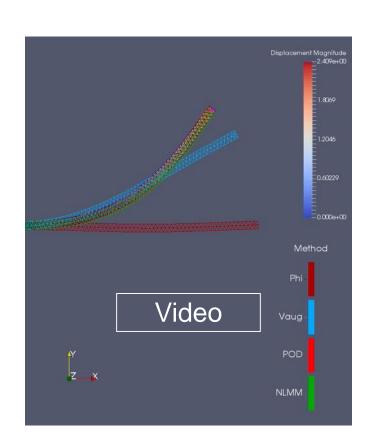
Training phase of SO-NLMM and POD:

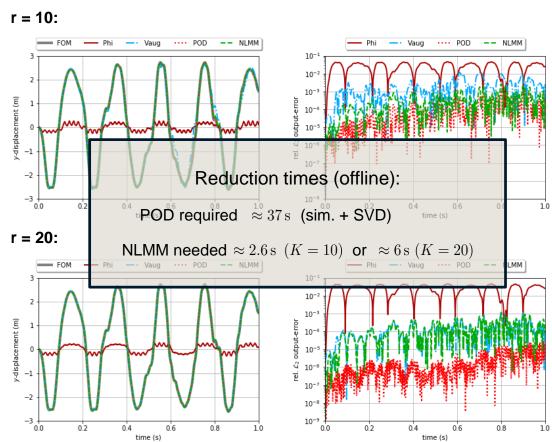
- single signal generator with K = 10 or K = 20
- signal generator: $q_{\rm r}^v(t) = \sin(10t), \ \dot{q}_{\rm r}^v(t), \ \ddot{q}_{\rm r}^v(t)$
- training input: $F(t) = r(q_r^v(t)) = 10^8 \cdot q_r^v(t)$

Test phase of FOM and ROMs:

• test input: $F(t) = 10^8 \cdot \sin(31t)$

Numerical Examples – Cantilever beam





Analysis, Discussion and Limitations

Adequate selection of the projection ansatz

$$oldsymbol{q}pproxoldsymbol{V}oldsymbol{q}_{\mathrm{r}} pproxoldsymbol{V}^{(k)}oldsymbol{q}_{\mathrm{r}}^{(k)} = oldsymbol{V}^{(1)}oldsymbol{q}_{\mathrm{r}}^{(1)} + oldsymbol{V}^{(2)}\left(oldsymbol{q}_{\mathrm{r}}\otimesoldsymbol{q}_{\mathrm{r}}
ight) + \cdots \hspace{1cm} oldsymbol{Q} oldsymbol{q} pprox oldsymbol{
olive{q}_{\mathrm{r}}} oldsymbol{q}_{\mathrm{r}}^{(k)} = oldsymbol{q}_{\mathrm{r}}^{(1)} + oldsymbol{V}^{(2)}\left(oldsymbol{q}_{\mathrm{r}}\otimesoldsymbol{q}_{\mathrm{r}}
ight) + \cdots \hspace{1cm} oldsymbol{Q} oldsymbol{q}_{\mathrm{r}} oldsymbol{q}_{\mathrm{r}}^{(k)} = oldsymbol{q}_{\mathrm{r}}^{(k)} oldsymbol{q}_{\mathrm{r}}^{(k)} + oldsymbol{V}^{(2)}\left(oldsymbol{q}_{\mathrm{r}}\otimesoldsymbol{q}_{\mathrm{r}}\right) + \cdots \hspace{1cm} oldsymbol{Q} oldsymbol{q}_{\mathrm{r}}^{(k)} = oldsymbol{q}_{\mathrm{r}}^{(k)} oldsymbol{q}_{\mathrm{r}}^{(k)} + oldsymbol{Q}_{\mathrm{r}}^{(k$$

Appropriate choice of the signal generator

Signal generator determines:

- Ansatz for the dynamics $q_{\rm r}^v(t)$, $\dot{q}_{\rm r}^v(t)$, $\ddot{q}_{\rm r}^v(t)$
- Exciting input of the system $F_{\text{train},i}(t_k^*) = r_i(q_{r,i}^v(t_k^*))$

$$\dot{oldsymbol{q}}_{\mathrm{r}}^v = \sum_{k=1}^N oldsymbol{S}_v^{(k)} \, oldsymbol{q}_{\mathrm{r}}^{v(k)} = oldsymbol{S}_v^{(1)} oldsymbol{q}_{\mathrm{r}}^v + oldsymbol{S}_v^{(2)} (oldsymbol{q}_{\mathrm{r}}^v \otimes oldsymbol{q}_{\mathrm{r}}^v) + \cdots,$$

$$egin{aligned} \dot{oldsymbol{q}}_{ ext{r}}^v &= \sum_{k=1}^N oldsymbol{S}_v^{(k)} oldsymbol{q}_{ ext{r}}^{v(k)} = oldsymbol{S}_v^{(1)} oldsymbol{q}_{ ext{r}}^v + oldsymbol{S}_v^{(2)} (oldsymbol{q}_{ ext{r}}^v \otimes oldsymbol{q}_{ ext{r}}^v) + \cdots, \ oldsymbol{F} &= \sum_{k=1}^N oldsymbol{R}^{(v)} oldsymbol{q}_{ ext{r}}^{v(k)} = oldsymbol{R}^{(1)} oldsymbol{q}_{ ext{r}}^v + oldsymbol{R}^{(2)} (oldsymbol{q}_{ ext{r}}^v \otimes oldsymbol{q}_{ ext{r}}^v) + \cdots, \end{aligned}$$

- Obtaining a state-independent matrix equation: factorization of the state vector $q_{\rm r}^v(t)$ to obtain a constant matrix equation! → depends on both (1) the projection ansatz and (2) the signal generator (problem-dependent!)
- Limitations of the column-wise consideration: $q_{\mathbf{r},i}^v(t) \in \mathbb{R}, \ s_{v_i}(q_{\mathbf{r},i}^v(t)), \ r_i(q_{\mathbf{r},i}^v(t))$ instead of $\mathbf{q}_{\mathbf{r}}^v(t) \in \mathbb{R}^r, \ s_v(\mathbf{q}_{\mathbf{r}}^v(t)), \ r(\mathbf{q}_{\mathbf{r}}^v(t))$ \rightarrow couplings in $Vq_{\rm r}^v(t)$, $Vs_v(q_{\rm r}^v(t))$ and $r(q_{\rm r}^v(t))$ are not being considered.
- Poisson stability of the signal generator

Summary & Outlook

Summary:

- Aim: simulation-free approaches for nonlinear structural systems
- Time-domain / Steady-state interpretation of linear moment matching with signal generators
- Astolfi's extension of Moment Matching to the nonlinear second-order case
 - Nonlinear projection ansatz yields a difficult second-order, state-dependent Sylvester-like PDE
- Simplifications proposed to achieve a practicable numerical algorithm for nonlinear MOR
 - ➤ Linear projection, column-wise consideration, time discretization yield nonlinear systems of equations (NLSE)
- Numerical examples & Discussion of different strategies, numerical aspects and choice of degrees of freedom

Ongoing / Future Work:

- Second-order NLMM for non-proportionally damped systems?
- Output Krylov subspace-based Nonlinear Moment Matching (duality!)
- Hyper-Reduction

Thank you for your attention!

Backup

References

[Rutzmoser '18]

[Salimbahrami '05]

[Scarciotti/Astolfi '17]

[Beattie/Gugercin '05] Krylov-based model reduction of second-order systems with proportional damping. In 44th IEEE Conference on Decision and Control.

[Cruz et al. '19] Practicable Simulation-Free Model Order Reduction by Nonlinear Moment Matching. https://arxiv.org/abs/1901.10750.

[Huang '04] Nonlinear Output Regulation: Theory and Applications. SIAM Advances in Design & Control.

> Model Order Reduction for Nonlinear Structural Dynamics: Simulation-free Approaches. PhD thesis, TUM

Structure preserving order reduction of large scale second order models. PhD thesis, TUM

Data-driven model reduction by moment matching for linear and nonlinear systems. Automatica

Thank you for your attention!

Nonlinear dimensional reduction methods

Simulation-based approaches (e.g. POD)

Take snapshots of the simulated trajectory for typical (training) input force and perform SVD

$$\mathbf{Q}_{(n,n_{\mathrm{s}})} = \left[\mathbf{q}(t_1), \, \mathbf{q}(t_2), \, \cdots, \, \mathbf{q}(t_{n_{\mathrm{s}}}) \right]$$

$$oldsymbol{Q} \overset{ ext{SVD}}{=} oldsymbol{M} \sum_{(n,n)} oldsymbol{\Sigma}_{(n,n_{ ext{s}})} oldsymbol{N}^{\mathsf{T}}_{ ext{s}} pprox oldsymbol{M}_{ ext{r}} oldsymbol{\Sigma}_{ ext{r}} oldsymbol{N}_{ ext{r}}^{\mathsf{T}}$$

Reduction basis: $V = M_r \in \mathbb{R}^{n \times r}$

$$oldsymbol{q}(t) pprox oldsymbol{V} \, oldsymbol{q}_{\mathrm{r}}(t) = \sum_{i=1}^{r} oldsymbol{v}_{i} \, q_{\mathrm{r},i}(t)$$

Simulation-free / System-theoretic methods

• Basis augmentation: Enrichment of a linear basis with nonlinear information

$$oldsymbol{V}_{ ext{aug}} = \left[oldsymbol{V}^{(1)},\,oldsymbol{V}^{(2)}
ight]$$

$$\boldsymbol{q}(t) pprox \boldsymbol{V}_{\mathrm{aug}} \, \boldsymbol{q}_{\mathrm{r,aug}}(t)$$

+ : Easy projection

-: Higher reduced order

Nonlinear projection (e.g. Quadratic Manifold)

$$V^{(1)} \in \mathbb{R}^{n \times r}$$

$$\boldsymbol{q}(t) \approx \boldsymbol{V}^{(1)} \boldsymbol{q}_{\mathrm{r}}(t) + \boldsymbol{V}^{(2)} \left(\boldsymbol{q}_{\mathrm{r}}(t) \otimes \boldsymbol{q}_{\mathrm{r}}(t) \right)$$

$$V^{(2)} \in \mathbb{R}^{n \times r^2}$$

Reduced coordinates:
$$q_{r}(t) = [q_{r,1}(t), \cdots, q_{r,r}(t)]^{T}$$

+ : Smaller reduced order

- : Difficult projection

Nonlinear MOR methods – Overview

Nonlinear systems

Reduction of nonlinear (parametric) systems

$$E\dot{x} = f(x, u)$$

$$E\dot{x} = f(x) + g(x) u$$
$$y = h(x)$$

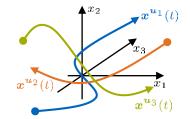
$$y = c^{T}x$$

- Simulation-based:
 - POD, TPWL
 - Reduced Basis, Empirical Gramians
- Simulation-free / System-theoretic:
 - Nonlinear Normal Modes (Rosenberg 1962)
 - Nonlinear Balanced Truncation (Scherpen 1993)
 - Nonlinear Moment Matching (Astolfi 2010)

Proper Orthogonal Decomposition

Starting point:
$$m{E}\,\dot{m{x}} = m{f}(m{x},m{u})$$

 $m{y} = m{h}(m{x})$



- 1. Choose suitable training input signals $u_1(t), u_2(t), \dots, u_t(t)$
- 2. Take snapshots from simulated full order state trajectories

$$X_{(n,n_s)} = [x^{u_1}(t_1), x^{u_1}(t_2), \cdots, x^{u_1}(t_N) \quad x^{u_2}(t_1), x^{u_2}(t_2), \cdots]$$

3. Perform singular value decomposition (SVD) of snapshot matrix

$$oldsymbol{X} \; = \; oldsymbol{M} \sum_{(n,n)} oldsymbol{\Sigma}_{(n,n_{\mathrm{s}})} oldsymbol{N}^\mathsf{T}_{\mathrm{r}} \; pprox \; oldsymbol{M}_{\mathrm{r}} \sum_{\mathrm{r}} oldsymbol{N}_{\mathrm{r}}^\mathsf{T} \ oldsymbol{(n_{\mathrm{s}},n_{\mathrm{s}})} \ oldsymbol{(n_{\mathrm{r}},n_{\mathrm{s}})} \ oldsymbol{(n_{\mathrm{r}},n_{\mathrm{s})} \ oldsymbol{(n_{\mathrm{r}},n_{\mathrm{s})} \ oldsymbol{(n_{\mathrm{r}},n_{\mathrm{s})}} \ oldsymbol{(n_{\mathrm{r}},n_{\mathrm{s})} \ oldsymbo$$

4. Reduced order basis: $V = M_r \in \mathbb{R}^{n \times r}$

Advantages:

- Choice of reduced order from singular values / error bound for approx. error
- ✓ Optimal in least squares sense:

$$\min_{\mathrm{rank}(\boldsymbol{X}_{\mathrm{r}})=r}||\boldsymbol{X}-\boldsymbol{X}_{\mathrm{r}}||_{2}$$

Disadvantages:

- Simulation of full order model for different input signals required
- SVD of large snapshot matrix required
- Training input dependency

Linear Systems – Sylvester equation

Equivalence of Krylov subspaces and Sylvester equations

$$\operatorname{span}\left\{(\sigma_1\boldsymbol{E}-\boldsymbol{A})^{-1}\boldsymbol{B}\,\boldsymbol{r}_1,\,\ldots,\,(\sigma_r\boldsymbol{E}-\boldsymbol{A})^{-1}\boldsymbol{B}\,\boldsymbol{r}_r\right\}\,\subseteq\,\operatorname{ran}(\boldsymbol{V})\qquad\Longleftrightarrow\qquad \left[\begin{array}{c}\boldsymbol{E}\,\boldsymbol{V}\,\boldsymbol{S}_v-\boldsymbol{A}\,\boldsymbol{V}=\boldsymbol{B}\,\boldsymbol{R}\end{array}\right]$$

Reduction parameters: • Shifts: $S_v = \operatorname{diag}(\sigma_1, \dots, \sigma_r)$ • Tang. directions: $R = [r_1, \dots, r_r]$

Column-wise computation via Arnoldi process

$$egin{aligned} egin{pmatrix} oldsymbol{V} = [oldsymbol{v}_1, \dots, oldsymbol{v}_r] \ \hline egin{pmatrix} oldsymbol{v} = oldsymbol{B} oldsymbol{r}_i \ \hline \end{pmatrix} oldsymbol{E} \left[oldsymbol{v}_1, \dots, oldsymbol{v}_r
ight] & oldsymbol{\sigma}_1 \ \hline & \ddots \ & \sigma_r \ \hline \end{pmatrix} - oldsymbol{A} \left[oldsymbol{v}_1, \dots, oldsymbol{v}_r
ight] = oldsymbol{B} \left[oldsymbol{r}_1, \dots, oldsymbol{r}_r
ight] \end{aligned}$$

Linear Sylvester equation

$$\left(oldsymbol{E} \, oldsymbol{V} \, oldsymbol{S}_v - oldsymbol{A} \, oldsymbol{V} - oldsymbol{B} \, oldsymbol{R}
ight) \cdot oldsymbol{x}_{\mathrm{r}}^v(t) = oldsymbol{0}, \quad ext{for} \quad oldsymbol{x}_{\mathrm{r}}^v(t) = oldsymbol{\mathrm{e}}^{oldsymbol{S}_v t} oldsymbol{x}_{\mathrm{r},0}^v$$

Properties and interpretation:

- Constant (state-independent) linear Sylvester equation or linear systems of equations (LSE)
- We apply
 - a linear projection and
 - excite the system with a sum of growing exponentials (shifts & tang. directions user-defined)

Linear Second-Order Systems – Sylvester equation

Equivalence of Krylov subspaces and Sylvester equations

$$\operatorname{span}\left\{(\sigma_1^2\boldsymbol{M} + \sigma_1\boldsymbol{D} + \boldsymbol{K})^{-1}\boldsymbol{B}\,\boldsymbol{r}_1, \dots, (\sigma_r^2\boldsymbol{M} + \sigma_r\boldsymbol{D} + \boldsymbol{K})^{-1}\boldsymbol{B}\,\boldsymbol{r}_r\right\} \subseteq \operatorname{ran}(\boldsymbol{V}) \qquad \Longleftrightarrow \qquad$$

$$oxed{MV S_v^2 + DV S_v + KV = BR}$$

Reduction parameters: • Shifts: $S_v = \operatorname{diag}(\sigma_1, \ldots, \sigma_r)$ • Tang. directions: $R = [r_1, \ldots, r_r]$

Column-wise computation via Arnoldi process

$$\overline{\left(\sigma_i^2oldsymbol{M}+\sigma_ioldsymbol{D}+oldsymbol{K}
ight)oldsymbol{v}_i=oldsymbol{B}oldsymbol{r}_i}$$

$$oldsymbol{V} = [oldsymbol{v}_1, \ldots, oldsymbol{v}_r]$$

$$\underbrace{ \begin{pmatrix} \boldsymbol{V} = [\boldsymbol{v}_1, \ldots, \boldsymbol{v}_r] \\ \boldsymbol{\sigma}_i^2 \boldsymbol{M} + \sigma_i \boldsymbol{D} + \boldsymbol{K} \end{pmatrix} \boldsymbol{v}_i = \boldsymbol{B} \boldsymbol{r}_i }_{} \quad \underbrace{ \begin{pmatrix} \boldsymbol{V} = [\boldsymbol{v}_1, \ldots, \boldsymbol{v}_r] \\ \boldsymbol{\sigma}_i^2 \end{pmatrix}}_{} \quad M \left[\boldsymbol{v}_1, \ldots, \boldsymbol{v}_r\right] \begin{bmatrix} \sigma_1^2 \\ \vdots \\ \sigma_r^2 \end{bmatrix} + D \left[\boldsymbol{v}_1, \ldots, \boldsymbol{v}_r\right] \begin{bmatrix} \sigma_1 \\ \vdots \\ \sigma_r \end{bmatrix} + K \left[\boldsymbol{v}_1, \ldots, \boldsymbol{v}_r\right] = \boldsymbol{B} \left[\boldsymbol{r}_1, \ldots, \boldsymbol{r}_r\right]$$

Linear Second-Order Sylvester equation

$$\left(oldsymbol{M} oldsymbol{V} oldsymbol{S}_v^2 + oldsymbol{D} oldsymbol{V} oldsymbol{S}_v + oldsymbol{K} oldsymbol{V} - oldsymbol{B} oldsymbol{R}
ight) \cdot oldsymbol{q}_{ ext{r}}^v(t) = oldsymbol{0}, \quad ext{for} \quad oldsymbol{q}_{ ext{r}}^v(t) = oldsymbol{e}^{oldsymbol{S}_v t} oldsymbol{q}_{ ext{r},0}^v$$

Properties and interpretation:

- Constant (state-independent) linear Sylvester equation or linear systems of equations (LSE)
- We apply
 - a linear projection and
 - excite the system with a sum of growing exponentials (shifts & tang. directions user-defined)

Approximated Nonlinear Moments

Linear Moments

$$\begin{aligned} & \boldsymbol{m}_0(\sigma_i, \boldsymbol{r}_i) = \boldsymbol{m}_0(\sigma_i) \, \boldsymbol{r}_i \\ & \boldsymbol{y}_{\mathrm{ss}}(t) = \sum_{i=1}^r \boldsymbol{y}_{\mathrm{ss},i}(t) = \boldsymbol{C} \sum_{i=1}^r (\sigma_i^2 \boldsymbol{M} + \sigma_i \boldsymbol{D} + \boldsymbol{K})^{-1} \boldsymbol{B} \boldsymbol{r}_i \, \mathrm{e}^{\sigma_i t} q_{\mathrm{r},0,i}^v = \sum_{i=1}^r \boldsymbol{m}_0(\sigma_i, \boldsymbol{r}_i) \, \mathrm{e}^{\sigma_i t} q_{\mathrm{r},0,i}^v = \boldsymbol{C} \boldsymbol{V} \boldsymbol{q}_{\mathrm{r}}^v(t) \end{aligned}$$

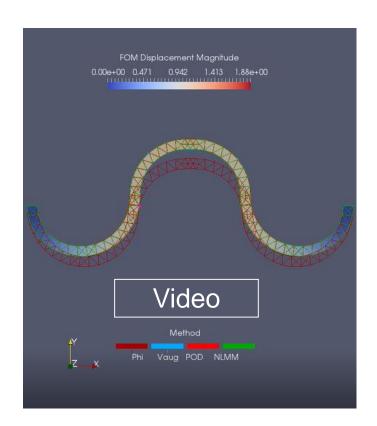
Nonlinear Moments

$$egin{aligned} m{m_0}ig(m{s_v}(m{q_{
m r}^v}(t)),m{r}(m{q_{
m r}^v}(t)),m{q_{
m r}^v}(t),m{q_{
m r}^v}(t)),m{q_{
m r}^v}(t),m{q_{
m r}^v}(t)), m{q_{
m r}^v}(t)) \ &:=m{m_0}ig(m{s_v}(m{q_{
m r}^v}(t)),m{r}(m{q_{
m r}^v}(t)),m{r}(m{q_{
m r}^v}(t)),m{q_{
m r,0}^v}) \end{aligned}$$

Approximated Nonlinear Moments

$$\begin{aligned} \boldsymbol{m_0}\big(s_{v_i}(q^v_{\mathrm{r},i}(t^*_k)), \boldsymbol{r}_i(q^v_{\mathrm{r},i}(t^*_k)), q^v_{\mathrm{r},0,i}, t^*_k\big) & \qquad \qquad \left\{s_{v_i}(q^v_{\mathrm{r},i}(t^*_k)), \boldsymbol{r}_i(q^v_{\mathrm{r},i}(t^*_k)), q^v_{\mathrm{r},0,i}, t^*_k\right\} \\ \boldsymbol{y}_{\mathrm{ss},i}(t^*_k) &= \boldsymbol{C} \, \boldsymbol{v}_{ik} \, q^v_{\mathrm{r},i}(t^*_k) \\ &:= \boldsymbol{m_0}\big(s_{v_i}(q^v_{\mathrm{r},i}(t^*_k)), \boldsymbol{r}_i(q^v_{\mathrm{r},i}(t^*_k)), q^v_{\mathrm{r},0,i}, t^*_k\big) \end{aligned}$$

Numerical Examples – S-shape



r = 20:

