
Technische Universität München
Fakultät für Elektrotechnik und Informationstechnik

Lehrstuhl für Informationstechnische Regelung

Safe Learning Control for Gaussian Process
Models

Jonas Michael Umlauft

Vollständiger Abdruck der von der promotionsführenden Einrichtung Fakultät für Elek-
trotechnik und Informationstechnik der Technischen Universität München zur Erlangung
des akademischen Grades eines

Doktor-Ingenieurs (Dr.-Ing.)

genehmigten Dissertation.

Vorsitzende/-r: Prof. Dr. sc. techn. Reinhard Heckel

Prüfende/-r der Dissertation:

1. Prof. Dr.-Ing. Sandra Hirche

2. Prof. Dr.-Ing. Matthias Müller

Die Dissertation wurde am 01.10.2019 bei der Technischen Universität München eingereicht
und durch die promotionsführende Einrichtung Fakultät für Elektrotechnik und Informa-
tionstechnik am 22.01.2020 angenommen.

Preamble
This thesis summarizes the conducted research at the Chair of Information-oriented Control
(ITR) at the Technical University of Munich (TUM). I am very thankful for all the great
people that supported me during this time.
First, I am truly grateful to my doctoral advisor, Prof. Sandra Hirche, who supported me

all the way from my undergraduate studies to my doctorate, always giving me the freedom
to drive the research in my favorite direction. Her passion for scientific challenges and her
constant will to push our research in new directions always inspired me.
Second, I would like to thank all the dedicated and gifted people, I had the pleasure to work

with at ITR. With his patience and his commitment to academic research, the supervisor of
my bachelor’s thesis, Dominik Sieber, motivated me for this doctorate. My colleagues in the
con-humo project, José Ramón Medina, Satoshi Endo, Hendrik Börner, Melanie Kimmel and
Thomas Beckers, not just helped me to find the topic of this dissertation, but also inspired
me in many productive and fruitful discussions. A big thanks also goes to all my students,
especially Yunis Fanger, Lukas Pöhler and Armin Lederer, who supported me throughout
this thesis in many ways. I also highly appreciated the friendly and professional support by
Ulrike Scholze, Stefan Sosnowski, Miruna Werkmeister and all other nonscientific staff with
all teaching, administrative and technical matters. Furthermore, I am very grateful for the
hospitality of the team of the Chair of Automatic Control Engineering after the ITR lab
burned down in 2017.
Last but not least, I express my gratitude to my friends and family, who were very un-

derstanding when the work on this thesis absorbed me and who always encouraged me to
pursue my goals.

Acknowledgments
The research leading to these results was supported by the EU Seventh Framework Pro-
gramme FP7/2007-2013 within the ERC Starting Grant ”Control based on Human Models
(con-humo)”, grant agreement no. 337654.

i

Abstract
Machine learning allows automated systems to identify structures and physical laws based
on measured data and to utilize the resulting models for inference. Due to decreasing costs
for measuring, processing and storing data as well as increased availability of sensors and
improved algorithms, machine learning also known by the buzzword artificial intelligence
has attracted significant attention.
Data-driven models obtained from machine learning techniques are particularly attractive

in areas where an analytic derivation of a model is too tedious or not possible, because
the underlying principles are not understood. As control engineering is increasingly applied
in these areas, which include, e.g., complex chemical processes or physical human-robot
interaction systems, the use of data-driven models has become an advantageous alternative
to classical system identification for model-based control techniques.
However, to this day, data-driven models are rarely employed in safety-critical applications,

because the success of a controller, which is based on these models, cannot be guaranteed.
Therefore, this thesis analyzes the closed-loop behavior of learning control laws using rigorous
proofs. We focus in particular on Gaussian processes (GPs), which can be interpreted as
data-driven models. The advantages of GPs consist of a high level of flexibility, resulting
from their nonparametric nature, an intrinsic bias variance trade-off due to the underlying
Bayesian principle and an implicit model fidelity measure. The latter enables the derivation
of a model error bound and therefore facilitates the application of robust and adaptive control
techniques to guarantee stability. Along these lines, this thesis provides the three following
major contributions in learning and control based on GPs.
We show how Gaussian processes are employed for physically consistent identification of

unknown dynamical systems. Under the prior knowledge, that the true system is dissipating
energy, we enforce the model to show the same asymptotic behavior. This requires to learn
not only the dynamics, but also the convergence behavior, which we achieve by learning
control Lyapunov functions. Conditions for asymptotic stability are derived and the minimal
number of required data points is provided. A quantitative comparison based on a real-world
human motion data set shows the advantages over existing methods.
Furthermore, we propose a control law based on Gaussian process models, which actively

avoids uncertainties in the state space and favors trajectories along the training data, where
the system is well-known. We show that this behavior is optimal in the presence of power
limitations as it maximizes the probability of asymptotic stability.
Additionally, we consider an event-triggered online learning control law, which safely ex-

plores an initially unknown system. It only takes new training data whenever the uncertainty
in the system becomes too large to ensure conditions for asymptotic stability. As the under-
lying feedback linearizing control law only requires a locally precise model, no data-expensive
global model is needed. In order to increase data-efficiency, an information gain based criteria
is proposed for a safe forgetting strategy of data points.
Further results in dynamic knowledge-based leader-follower control, uncertainty modeling

for programming by demonstration, risk-aware path tracking and scenario-based optimal
control are summarized. All major results are validated with rigorous proofs and demon-
strated in simulation.

iii

Zusammenfassung

Maschinelles Lernen ermöglicht automatisierten Systemen - basierend auf Messdaten - Struk-
turen und Gesetzmäßigkeiten zu modellieren und diese für Vorhersagen zu nutzen. Aufgrund
sinkender Kosten für die Messung, Verarbeitung und Speicherung von Daten und einer ho-
hen Verfügbarkeit von Sensoren und verbesserten Algorithmen, gewann maschinelles Lernen,
auch unter dem Schlagwort künstliche Intelligenz, breite Aufmerksamkeit.
Datengetriebene Modelle aus dem Bereich des maschinellen Lernens sind vor allem in je-

nen Bereichen nützlich, in denen die analytische Herleitung eines Models zu aufwendig oder
nicht möglich ist, weil die zugrundeliegenden Prinzipien unbekannt sind. Da Regelungs-
technik zunehmend in diesen Bereichen (z.B. komplexe chemische Prozesse, physikalische
Mensch-Roboter Interaktion) eingesetzt wird, bietet die Verwendung dieser datengetriebenen
Modelle für die modellbasierte Regelung zunehmend Vorteile gegenüber der klassischen Sys-
temidentifikation.
Bis heute werden datengetriebene Modelle jedoch kaum in sicherheitsrelevanten Anwen-

dungen eingesetzt, weil keine Garantien für die erfolgreiche Regelung (basierend auf diesen
Modellen) gegeben werden können. Daher untersucht diese Arbeit das Verhalten geschlossener
Regelkreise mit lernenden Regelgesetzen mithilfe von Beweisen. Der Fokus liegt im beson-
deren auf Gaußprozessen, die als datengetriebene Modelle interpretiert werden können. Die
Vorteile sind eine hohe Flexibilität, die sich aus der nicht-parametrischen Grundstruktur
ergibt, eine implizite Lösung des Verzerrung-Varianz-Dilemmas aufgrund des zugrundeliegen-
den Prinzips von Bayes und ein inhärentes Maß für die Modellsicherheit. Letzteres ermöglicht
die Herleitung einer Schranke für den Modellfehler und erlaubt damit den Einsatz von Tech-
niken der robusten und adaptiven Regelung, um Stabilität zu garantieren. In diesem Sinne
liefert diese Arbeit drei wesentliche Beiträge zu der lernbasierten Regelung mithilfe von
Gaußprozessen.
Zunächst zeigen wir, wie Gaußprozesse eingesetzt werden können, um eine physikalisch

konsistente Identifizierung von unbekannten dynamischen Systemen zu erreichen. Unter dem
Vorwissen, dass das echte System Energie dissipiert, erzwingen wir das gleiche asymptotische
Verhalten im Modell. Dafür erforderlich ist es neben der Dynamik auch das Konvergenzver-
halten zu lernen. Dies wird erreicht, indem eine regelnde Lyapunovfunktion gelernt wird.
Bedingungen für die asymptotische Stabilität und die minimale Anzahl an Datenpunkten
werden hergeleitet. Ein quantitativer Vergleich basierend auf einem praxisnahen Datensatz
mit menschlichen Bewegungen zeigt die Vorteile gegenüber existierenden Methoden.
Des Weiteren wird ein Regelgesetz basierend auf Gaußprozessen vorgestellt, welches aktiv

Unsicherheiten im Zustandsraum vermeidet und Trajektorien bevorzugt, die entlang der
Trainingsdaten liegen und damit durch Bereiche verlaufen, in denen das System wohlbekannt
ist. Wir zeigen, dass dieses Verhalten optimal ist, falls eine Leistungsbeschränkung für das
Steuersignal vorliegt, da es die Wahrscheinlichkeit für asymptotische Stabilität maximiert.
Zusätzlich wird ein ereignisbasiertes online lernendes Regelgesetz betrachtet, welches sicher

ein zunächst unbekanntes System exploriert. Es nimmt nur dann neue Trainingsdaten auf,
wenn die Unsicherheit im Modell zu groß wird, um die Bedingungen für die asymptotische
Stabilität zu erfüllen. Da die zugrundeliegende Linearisierung durch Rückführung nur lokal
ein präzises Model benötigt, kann auf ein globales Model, welches ineffizient im Bezug auf die
Menge der Datenpunkte ist, verzichtet werden. Um die Dateneffizienz zu erhöhen, wird ein
sicherer Vergessensmechanismus von Datenpunkten vorgestellt, welcher den Informationszu-

iv

gewinn als Kriterium verwendet.
Darüber hinaus werden weitere Ergebnisse in den Bereichen der wissensbasierten Zuweisung

der Führer- und der Folgerrolle, der Unsicherheitsmodellierung in der Programmierung
durch Nachahmen, der risikoabhängigen Pfadverfolgung und der Szenario-basierten opti-
malen Regelung kurz zusammengefasst und vorgestellt.
Alle Resultate werden durch grundlegende Beweise belegt und in Simulationen veran-

schaulicht.

v

Contents

Preamble i

Abstract iii

1 Introduction 1
1.1 Challenges in data-driven control . 2
1.2 Main contributions and outline . 3

2 Gaussian Processes in Identification and Control 5
2.1 Gaussian process regression . 5
2.2 Gaussian processes in control . 7

2.2.1 System identification based on Gaussian processes 7
2.2.2 Learning control with Gaussian processes 7
2.2.3 Gaussian processes for optimal control 8
2.2.4 Gaussian processes in model predictive control 8
2.2.5 Gaussian processes for internal model control 8
2.2.6 Adaptive control and safe exploration 9
2.2.7 Gaussian processes in robotics . 9
2.2.8 Practical applications of Gaussian process-based control 9
2.2.9 Extensions to Gaussian processes . 10
2.2.10 Summary of previous works . 10

2.3 Interpretations of Gaussian processes . 10
2.3.1 Deterministic interpretation . 10
2.3.2 Robust interpretation . 11
2.3.3 Belief-space interpretation . 12
2.3.4 Stochastic interpretation . 12
2.3.5 Scenario interpretation . 13

2.4 Properties and bounds for Gaussian processes 14
2.4.1 Error bounds for Gaussian process models 14
2.4.2 Posterior variance limits . 16

3 Identification of Stable Systems 19
3.1 Problem formulation . 20
3.2 Stabilized Gaussian process state space models 23

3.2.1 Deterministic interpretation . 24
3.2.2 Probabilistic interpretation . 26
3.2.3 Convergence with additional training data 32

vii

Contents

3.3 Learning Lyapunov functions for stabilization 35
3.3.1 Optimization-based formulation . 35
3.3.2 Specific Lyapunov candidates . 38

3.4 Evaluation . 40
3.4.1 Evaluation setup . 40
3.4.2 Implementation . 40
3.4.3 Equilibrium estimation . 42
3.4.4 Quantitative comparison . 42
3.4.5 Probabilistic simulation . 44

3.5 Discussion . 46
3.6 Summary . 46

4 Uncertainty-based Control Lyapunov Design 49
4.1 Problem formulation . 50
4.2 Control design and analysis . 51

4.2.1 Conditions for asymptotic stability 52
4.2.2 Optimality under power limitations 54
4.2.3 Uncertainty-based control Lyapunov function 55
4.2.4 Extension to other system classes . 56

4.3 Numerical evaluation . 58
4.3.1 Setup and implementation . 58
4.3.2 Simulation results . 59

4.4 Discussion . 59
4.5 Summary . 61

5 Feedback Linearization with event-triggered Online Learning 63
5.1 Problem formulation . 64
5.2 Closed-loop identification of control-affine systems 66

5.2.1 Expressing structure in kernels . 67
5.2.2 Positivity of Gaussian process posterior mean functions 69
5.2.3 Closed-loop identification based on Gaussian processes 69
5.2.4 Improving identification . 72

5.3 Feedback linearizing control law . 72
5.3.1 Control law . 73
5.3.2 Convergence analysis . 75
5.3.3 Quantifying the ultimate bound . 77

5.4 Event-triggered model update . 79
5.4.1 Asymptotic stability for noiseless measurements 79
5.4.2 Ultimate boundedness for noisy measurements 81

5.5 Efficient data handling . 83
5.5.1 Safe forgetting . 83
5.5.2 Information value of data points . 84
5.5.3 Safe and optimal data selection . 84

5.6 Numerical evaluation . 86
5.6.1 Simulation results . 86
5.6.2 Experimental results . 90

5.7 Discussion . 94

viii

Contents

5.8 Summary . 96

6 Further Work 97
6.1 Dynamic uncertainty-based leader-follower control 97
6.2 Uncertainty modeling in programming by demonstration 97
6.3 Scenario-based optimal control . 99
6.4 Uncertainty-aware path tracking . 99
6.5 Learning a stable state-dependent coefficient form 99

7 Conclusion 103

Notation 107

List of Figures 117

List of Tables 119

List of Algorithms 121

Bibliography 123

ix

Introduction 1

As automated systems advance to new fields of applications, the environment in which they
operate becomes increasingly complex to model. Examples include physical human robot
interaction, autonomous driving, the process industry and many others. In these applica-
tions, an analytic derivation of a model is very complex or not even possible because the
underlying physical principles are not understood or unknown. Thus, an analytic represen-
tation for the system’s behavior is difficult to derive, but would be necessary for controlling
these processes. Furthermore, autonomous devices, like unmanned aerial/underwater vehi-
cles (UAVs/UUVs) are often deployed in unknown conditions requiring an online modeling
of the surrounding environment. In such complex scenarios, classical control techniques of-
ten show unsatisfactory performance, which triggered the utilization of data-driven models
developed in the field of machine learning.

The wide spread of machine learning in recent years is favored by the simplified collection,
processing and storing of data caused by high availability of sensors, faster processors and
cheaper storage. More particular, supervised learning is well suited to obtain precise models
from data if prior knowledge of the system is barely available. Neural networks (NNs) are
the most popular technique for supervised learning due to their impressive performance on
various tasks including playing the game of Go [1]. Nevertheless, a large amount of training
data (more than 107 data points in [1]) is often required until NNs reach high precision. In
contrast, Gaussian processes (GPs) are well known for their data-efficiency and generalize
well in untrained areas also for small data sets [2].

Despite the success in various fields including image classification [3], user recommenda-
tion [4] and artificial intelligence for gaming [1], learning algorithms are still rarely found
in safety-critical applications such as robotic control. In particular, reinforcement learning
algorithms which aim to autonomously acquire skills by interacting with the environment,
are barely analyzed with respect to safety. Highly critical is the autonomous exploration,
which these algorithm perform to discover better strategies, as this implies operation in areas
without training data and results in unpredictable behavior.

These unsolved problems reveal the present difficulty of learning-based control: Engineers
hesitate for good reasons to employ data-driven control in safety-critical functions (e.g., the
interaction with humans) where they are needed the most due to the missing alternatives to
data-driven approaches. This leaves a high potential of technological advancement unused
and thereby motivates the work of this thesis.

1

1 Introduction

1.1 Challenges in data-driven control
Before data-driven control can be applied in safety-critical applications, a rigorous analy-
sis of the closed-loop behavior is required. From the author’s perspective, the following
fundamental questions must be answered:

Challenge 1. How can data-driven models be designed to be logically or physically consistent,
but yet flexible to model the high complexity of the system?

It is generally not ensured that the behavior predicted by a data-driven model does not
violate any logical or physical principles, e.g., the conservation or dissipation of energy or
Kirchhoff’s law, because no fixed structure is imposed. Ignoring such properties of the real
system in the modeling process is a loss of available information and hence, this knowledge
should be used. However, this topic has only received very little attention in the literature [5]
and is a significant step for making data-driven models more reliable.

Challenge 2. Which safety guarantees can control laws, which are based on data-driven
models, provide and which assumptions are necessary in return?

On the one side, if nothing about the controlled system is initially known, guarantees
for the closed-loop behavior of the system under any control law cannot be expected. This
follows from the no-free-lunch theorems [6] stating that observations in one situation allow
no conclusion about similar ones given that no correlation between the two exists. On the
other side, assuming a fixed parametric structure of a real system simplifies the analysis
of the closed-loop behavior. However, this strictly limits the domains of applications and
ignores the fact that parametric models are usually inaccurate as they can not capture all
real-world effects.
Therefore, nonparametric models, which will be used here as equivalent term for data-

driven models, avoid assumptions regarding the parametric structure but make implications
on high-level properties of the real system. This includes the smoothness of the dynamic
function or the convergence behavior. It can be concluded that there is a trade-off between
the imposed assumptions and the safety certificates which can be derived for the closed-loop
system. The goal of this thesis is to explore this trade-off and push it towards stronger
guarantees with less restrictive assumptions.

Challenge 3. How can control laws, which are based on data-driven models, avoid areas
where the data is lacking and, vice versa, favor actions for which the model has a high
fidelity?

Data-driven models mainly rely on measurements taken from the real system, but the
available data will always be finite and not cover the entire input space densely. In unknown
areas, Bayesian approaches like Gaussian processes fall back to the prior, but the generaliza-
tion outside the training set is not as reliable as in trained areas. It is therefore a well-known
principle, also applied by humans, to preferably operate in scenarios where experience is
available. This risk-awareness is crucial for control laws operating on data-driven models
as the model cannot be trusted far away from training data. A controller which internal-
izes such uncertainty-avoiding strategies is key for the application of data-driven control in
safety-critical fields.

2

1.2 Main contributions and outline

Challenge 4. How can an initially unknown system be explored safely and which training
points should be collected for data-driven models?

Many systems cannot be probed offline, but measurements must be taken during operation,
e.g., the air drag of an aircraft can only be measured accurately while flying. However, if
no stabilizing controller is available, training data cannot be collected safely. Solving this
chicken and egg problem is crucial to employ learning-based controllers in various domains.
The exploration of initially unknown dynamics during operation is not a trivial task since
stability must be guaranteed at all times to prevent damage to the system or harm to its
environment.
Furthermore, controllers, which constantly adapt the model to newly taken measurements,

are considered as life-long learning systems. For conventional, parametric models, the con-
stantly growing set of measurements can be handled straight forward: Incrementally, the
parameters are updated with every new data point, which is then deleted (as all model in-
formation is stored in the parameters). In contrast, for a data-driven nonparametric model,
the data points are the parameters and must therefore be stored. The complexity of the
model grows with the number of available data points. This property is generally desired
because it is the reason for the infinite expressive power. But, considering computational
limits and storage constraints, this life-long learning imposes critical questions: When should
measurements be taken to generate new data points? Which data points must be kept and
which can be discarded?
Addressing these challenges is essential to successfully employ data-driven control ap-

proaches in new fields of applications and are therefore addressed in this thesis.

1.2 Main contributions and outline
This thesis develops control laws for unknown nonlinear dynamical system which - based on
data-driven identification - guarantee stability of the closed-loop system. Employing Gaus-
sian processes, we ensure physical consistency in the modeling, uncertainty-aware behavior
and data-efficient online learning of an initially unknown system.
First, Chapter 2 provides a brief introduction to Gaussian processes and a general review

of the literature on GP-based control. The Chapters 3 to 5 present in detail our approaches
addressing the Challenges 1 to 4. Each of the chapters contains a brief and specific overview
of the most relevant related work, and their main contribution is outlined in the following.
Furthermore, Chapter 6 provides an overview of additional work by the author to apply
data-driven control concepts in robotics. A conclusion and possible directions for future
research are presented in Chapter 7.

Chapter 3: Identification of Stable Systems Addressing Challenge 1, the chapter
focuses on transferring the knowledge about stable equilibria of the real system into the GP-
based model which thereby achieves consistent dissipation of energy. We augment the GP
model by a control Lyapunov function. This function is also learned from data and ensures
a consistent convergence behavior between the model and the real system. The analysis is
performed for the deterministic and the stochastic interpretation of the GP model (in detail
introduced in Sec. 2.3) and validated on a real-world data set. The results presented in this
chapter have been partially published in [7] and in [8].

3

1 Introduction

Chapter 4: Uncertainty-based Control Lyapunov Design This chapter addresses
Challenges 2 and 3. With the goal to stabilize an unknown system based on a GP model un-
der a given input power constraint, we propose an approach which maximizes the probability
for asymptotic convergence. Based on principles from path planing, a novel uncertainty-
aware control Lyapunov function is proposed which drives the system away from areas with
low model fidelity. It thereby reveals an equivalence between dynamic programming and
the maximization of the probability to converge which has not been studied before. This
allows to employ computationally efficient tools from optimal control for the implementation
of a risk-aware control strategy. The results presented in this chapter have been partially
published in [9].

Chapter 5: Feedback Linearization with event-triggered Online Learning This
chapter addresses Challenges 2 and 4. Considering the case that initially no data is given, an
online learning control algorithm is presented which safely explores the unknown systems.
We propose an event-triggered approach which adds data to the training data set whenever
the uncertainty of the model exceeds a Lyapunov stability criteria. Thus, new data points
are only added if necessary, which makes the approach highly data-efficient. Furthermore, we
derive a safe forgetting strategy to keep the number of data points under a given data budget.
The approach allows an asymptotically stable tracking of smooth reference trajectories under
mild assumptions regarding the true system. The results presented in this chapter have been
published in [10], [11] and [12].

4

Gaussian Processes in
Identification and Control 2

This chapter reviews Gaussian process modeling and its application in system identifica-
tion and control. It provides a broad overview of the related literature and states existing
properties of Gaussian processes, which are utilized in Chapters 3 to 5.

2.1 Gaussian process regression
A Gaussian process (GP) is a stochastic process defined in [2, Chapter 2] as follows.

Definition 2.1. A Gaussian process is a collection of random variables, any finite number
of which have a joint Gaussian distribution.

The definition does not state this explicitly, but the GP describes a set of infinitely many
Gaussian distributed random variables. Each of them is assigned a mean and (as they are
jointly distributed) a covariance, given by a prior mean function m : X → R and a prior
covariance function k : X × X → R. Both together fully specify a GP. The set X ⊆ Rn,
with n ∈ N is an Euclidean input space where each element is assigned a Gaussian distributed
random variable. This leads to the notation of a GP

fGP(x) ∼ GP (m(x), k(x,x′))

and its interpretation as distribution over functions [2]. Accordingly, the GP is frequently
applied in regression tasks, where noisy measurements of an unknown function f : X → R
are given in a data set

D =
{
x(i), y(i)

}N
i=1

, with y(i) = f
(
x(i)

)
+ ω(i), ω ∼ N (0,σ2

on),

where σ2
on ∈ R+,0 is the variance of the observation noise and ω(i) ∈ R, i = 1, . . . ,N are

independent and identically distributed (i.i.d.). Given an arbitrary test point x ∈ X, the
inferred function value must be jointly distributed according to Definition 2.1[

f(x)
y(1:N)

]
∼ N

([
m(x)

m
(
x(1:N)

)] ,
[
k(x,x) k(x)ᵀ
k(x) K + σ2

onIn

])
, (2.1)

where

k(x) = k
(
x(1:N),x

)
=
[
k
(
x(1),x

)
· · · k

(
x(N),x

)]ᵀ ∈ RN (2.2)

5

2 Gaussian Processes in Identification and Control

and

K =


k
(
x(1),x(1)

)
· · · k

(
x(1),x(N)

)
...

k
(
x(N),x(1)

)
· · · k

(
x(N),x(N)

)
 ∈ RN×N . (2.3)

Accordingly, the inference is obtained by conditioning on the test input and the training
data

f(x)|D ∼ N
(
m(x) + k(x)ᵀK−1

on

(
y(1:N) −m

(
x(1:N)

))
︸ ︷︷ ︸

=:µ(x)

, k(x,x)− k(x)ᵀK−1
on k(x)︸ ︷︷ ︸

=:σ2(x)

)
, (2.4)

where Kon = K + σ2
onIN . The functions µ : X → R and σ2 : X → R+,0 are the posterior

mean and posterior variance functions, respectively.

Remark 2.1. The choice of the kernel significantly determines the properties of the function
over which the GP describes a distribution. It allows to set high-level properties, like the
differentiability or boundedness of the posterior mean function.

A common choice for the covariance function, also considered as the kernel (function),
which leads to infinite differentiable and bounded functions is the squared exponential (SE)
kernel with automatic relevance determination

kSE(x,x′) = ζ2 exp
− n∑

j=1

(xj − x′j)2

2`2
j

 , (2.5)

where the signal variance ζ2 ∈ R+,0 and the lengthscales `2
j ∈ R+ with j = 1, . . . ,n are

so-called hyperparameters. These are typically concatenated in ψ (here: ψ ∈ Rn+1) and
determined from a likelihood maximization

max
ψ

log p
{
y(1:N)|x(1:N),ψ

}
= max

ψ
−1

2

(
y(1:N)TK−1

on y
(1:N) + log detKon +N log(2π)

)
.

(2.6)

Even though this optimization is generally non-convex, it is commonly solved with gradient-
based approaches [2]. Nevertheless, [13] provides an analysis for not properly chosen hyper-
parameters.

Remark 2.2. If GP regression is employed to model functions with multidimensional out-
puts f : X→ Rm, m ∈ N the observation noise is typically assumed to be independent

y(i) = f
(
x(i)

)
+ ω, ω ∼ N (0,σ2

onIm), i = 1, . . . ,N .

This allows a separate modeling of each of the m output dimension with an independent
GP, with corresponding mean and kernel functions mj(·), kj(·, ·), with hyperparameters ψj

j = 1, . . . ,m. The resulting posterior mean and covariance functions

µj(x) = mj(x) + kj(x)ᵀ(Kj + σ2
onIn)−1

(
y

(1:N)
j −mj

(
x(1:N)

))
σ2
j (x) = kj(x,x)− kj(x)ᵀ(Kj + σ2

onIn)−1kj(x)

6

2.2 Gaussian processes in control

are concatenated and the following notation will be used

µ(x) =


µ1(x)

...
µm(x)

 , σ2(x) =


σ2

1(x)
...

σ2
m(x)

 , σ(x) =


σ1(x)

...
σm(x)

 , Σ(x) =


σ2

1(x) 0
. . .

0 σ2
m(x)

 .

(2.7)

Remark 2.3. If there exists prior knowledge of a noise free function value of the unknown
function f(·), thus ykn = f(xkn), then this can be included in the GP regression. The joint
distribution in (2.1) is extended by the additional training point as follows f(x)

y(1:N)

ykn

 ∼ N



m(x)
m
(
x(1:N)

)
m(xkn)

 ,

 k(x,x) k(x)ᵀ k(x,xkn)
k(x) K + σ2

onIn k(xkn)
k(xkn,x) k(xkn)ᵀ k(xkn,xkn)


 , (2.8)

thus it will be handled like an additional training point without noise. The regression is
performed equivalently to (2.4).

2.2 Gaussian processes in control
This literature review provides a general overview on Gaussian processes in control. It
particularly focuses on works which derive formal guarantees for the behavior of the closed-
loop controller but (due to the extensive research in this field in the past years) does not
claim completeness. For the major contributions in Chapters 3 to 5 a more specific review
of the existing work will be presented in the beginning of each chapter. A basic tutorial on
GPs in control can be found in [14] and [15] also provides an overview on existing literature.

2.2.1 System identification based on Gaussian processes
Classical system identification focuses on model selection and parameter tuning based on
an analytical derivation of possible model structures [16]. The idea to utilize supervised
learning techniques to model dynamical systems started around 1990 and initially focused
mainly on the identification based on neural networks (NNs), e.g., [17] and [18]. An overview
on NNs in control is provided in [19].
Around 2000, a case based comparison [20] showed that GPs perform similarly to NNs for

modeling nonlinear dynamical systems, with advantages for the GP on small training sets.
It was accompanied by further work along these lines in [21], [22] and [23] which identified
the advantage of GPs to propagate the uncertainty of the state over multiple time steps in
predictive control schemes. A summary of this early work is found in [24] and [25].
The stability analysis of Gaussian process dynamical models was first approached in [26]

and [27] investigating how the convergence properties (number of equilibria, boundedness of
the state) relates to the choice of the kernel.

2.2.2 Learning control with Gaussian processes
Gaussian processes are also extensively used in model-based reinforcement learning (RL).
Starting in [28] and [29] the parameters of the policy / control law are updated based on an

7

2 Gaussian Processes in Identification and Control

internal simulation using the GP model before the controller is applied to the real system,
see [30] and [31]. The PILCO (Probabilistic Inference for Learning and COntrol) algorithm
introduced in [32]–[35] iteratively optimizes the controller and the GP model (based on new
measurements). It achieves an impressively high data-efficiency and this minimizes time to
interact with the environment, e.g., the double pendulum swing up task is learned with less
than 100 seconds of experience [36]. A survey of these techniques in the field of robotics is
available in [37].
To predict the future evolution of the state, these RL algorithms rely on the approxima-

tion through moment matching as explained in Sec. 2.3 and corresponds to the belief state
interpretation. A computational efficient solution to avoid this approximation is presented
in [38] based on numerical quadrature. It allows to construct a region in which stability of
a controller can be shown [39], [40].

2.2.3 Gaussian processes for optimal control
The work in [41] uses Bellman residual elimination based on Gaussian processes for an
approximate dynamic programming algorithm. A GP represents an approximation to the
cost-to-go function and it is shown that - based on a proper kernel - the Bellman residual
becomes zero. Similarly, [42] and [43] use a GP to model the value function for a finite
time horizon. The work in [44] uses differential dynamic programming based on a Gaussian
process dynamics and belief-space propagation of the state. In [45] a probabilistic approach
for value iteration is developed to learn the value function using a GP. In [46] iterative linear
quadratic regulator (LQR) is applied to obtain a (locally) optimal control law in real-time
execution.

2.2.4 Gaussian processes in model predictive control
While most of the approaches previously introduced also use a predictive scheme to derive the
controller, this section presents works which explicitly formulate a receding horizon model
predictive control (MPC) problem as defined in [47]. In [48] and [49] a MPC algorithm
based on GPs for state and input constraints is proposed which formulates an upper bound
on the uncertainty as additionally constraint. However, a feasibility and stability analysis is
missing. The work in [50] presents a piece-wise linear approximation to the MPC problem
and [51] uses MPC in an iterative learning setting performing an analysis of feasibility and
safety. The work in [52] directly learns the optimal control law based on supervised learning
and analyzes the robustness of the approach. It thereby allows to circumvent the high
computational complexity of MPC in the online phase, by performing it offline during the
training of the GP. Further approaches are presented in[53], [54] and [55] with applications
in autonomous racing, quadcopter control and path tracking, respectively.

2.2.5 Gaussian processes for internal model control
While most control techniques for GPs are based on a state space representation of the
dynamical system, the work in [56] considers an input-output model. It utilizes internal
model control, which is equivalent to a one step model predictive controller [57]. A variant,
which makes use of the variance prediction to constraint the system to areas with high model
fidelity, is presented in [58].

8

2.2 Gaussian processes in control

2.2.6 Adaptive control and safe exploration
A large body of the literature on GP-based control operates on a constant training set
during the run-time of the controller. The model-based RL algorithms (Sec. 2.2.2) record
new training data during each interaction with the environment, but the controller is not
updated until the interaction is stopped. In [59], the first GP-based controller which updates
the model during operation is proposed. It is extended in [60] to avoid areas with high model
uncertainties. A similar approach for control affine system is proposed in [29]. However, none
of these approaches analyzes the asymptotic behavior of the closed-loop system.
In [61] and [62] the residual dynamics of a control affine system are modeled and analyzed in

a model reference adaptive control (MRAC) setting. A probabilistic boundedness guarantee
for the control law is shown in [63]. The work in [64] uses a generative network for GPs to
predict uncertainties, while [65] focuses on the online estimation of kernel hyperparameters.
The work in [66] and [67] develops an optimization based feedback control law to guarantee

robust stability of the resulting closed-loop system. This allows to improve the performance
while safely collecting new training points. A more general case is addressed in [68] to safely
explore the region of attraction, which is then applied in [69] in a RL setting. It thereby
addresses the first part of Challenge 4, but does not answer which training points are valuable
to keep.

2.2.7 Gaussian processes in robotics
Gaussian process regression becomes computationally inefficient for a large number of train-
ing points. Therefore, the GP-based robotic control faces the challenge of real-time con-
straints requiring the GP inference to be performed within milliseconds [70]. High dimen-
sional state-spaces require a high-number of training points, which reinforces this difficulty.
This led to the development of local GP models for computed torque control, which trains
multiple GP models covering the state space [71]–[74].
An alternative approach is the incremental sparsification of training data, see [75] and [76].

A combination of both techniques is proposed in [77], [78]. A survey on this development is
provided in [79].
More recent developments focus on semi-parametric modeling to combine the strength of

nonparametric approaches (like GPs), with classical (parametric) mechanical models [80].
The work in [81] shows stability for the compute torque semi-parametric control approach.
While most previous approaches ignore the uncertainty estimate provided by the GP, the

work in [82] proposes an adaptation of feedback gains based on this measure. In [83] and [84]
this idea is further explored and a stability proof for the gain adaptation is provided. Even
though it does not directly prevent the controller from approaching regions with high model
uncertainty, it is a first step to address Challenge 3.

2.2.8 Practical applications of Gaussian process-based control
The work in [85] employs GPs in a RL setting to control the arm of an octopus, however,
only a (rather small) discrete action space is considered. The industrial process plant for gas-
liquid separator is considered in [86], [87] and [88]. In [89] the goal is to reduce air pollution
through optimal GP-based nonlinear MPC for combustion plants. In [90] a probabilistic
approach is presented to regulate the blood glucose level and [91] considers the perimeter

9

2 Gaussian Processes in Identification and Control

patrol problem. The work in [92] and [93] evaluates GP-based control for locomotion and
low-cost robotic manipulators.

2.2.9 Extensions to Gaussian processes
Despite faster processors and improved algorithms, the high computational complexity still
prevents the GP-based control techniques from being applied extensively in practical prob-
lems. This triggered research on the sparsification of GPs, see [94]–[97] and [98], which
either sort out non-informative training points or replace training points by more informa-
tive pseudo inputs. A survey of these developments is provided in [99]. Further developments
include local GP models [100] (see also Sec. 2.2.7) or leveraged GPs [101].

2.2.10 Summary of previous works
As this overview of the literature shows, Gaussian processes have already been applied exten-
sively in the field of data-driven control. Nevertheless, key challenges remain unaddressed in
particular considering safety-critical applications. First, available prior knowledge about the
real system with respect to its convergence behavior is often ignored in literature as outlined
by Challenge 1. Second, only a small fraction of the existing work, e.g. [69], [81], formally
analyzes the resulting closed-loop behavior and control designs which actively avoid high-risk
areas due to scarce data do not exist (Challenges 2 and 3). Furthermore, most existing ap-
proaches assume the availability of a high quality training data set without justification how
this can be obtained safely (except [63]). We will approach this shortcoming (Challenge 4)
with a general online learning framework.

2.3 Interpretations of Gaussian processes for modeling
dynamical systems

As the review on the literature shows, there exists a wide range of applications of GPs
in control, but - due to its complex nature - the interpretations of a GP model are not
uniform. This section presents different views that have been employed and provides a quick
discussion. For illustration, we consider an autonomous time-discrete Gaussian process state
space model (GPSSM) with a one dimensional state, thus the unknown system is assumed
to be of the form

xκ+1 = f(xκ) with initial state x0 ∈ X,

where x ∈ X ⊆ R and f : X→ X.

2.3.1 Deterministic interpretation
The most simplified view on Gaussian process dynamic models is to utilize its posterior mean
function as transition function, thus the model is

xκ+1 = µ(xκ).

10

2.3 Interpretations of Gaussian processes

A visualization is provided in Fig. 2.1 on the left. It ignores the uncertainty in the model
(represented by σ2(·)) like e.g., in [70], [71] or utilizes it for parallel tasks, e.g., [84] adjusts the
feedback gain in a computed torque controller or [102] balances a leader-follower approach.
A stability analysis of this interpretation is performed in [26].
An advantage of this interpretation, is its simplicity and the identical form to the true sys-

tem. Nevertheless, for a pure function approximation / regression task, alternative methods,
e.g., NNs, exist, which are computationally more efficient. Therefore, the uncertainty mea-
sure should be utilized - as shown in the following section - to justify this computationally
complex dynamical model.

2.3.2 Robust interpretation

Introducing assumptions regarding the complexity of f(·) allows to derive confidence bounds
for the model prediction as shown in [103] and [104]. These bounds will in Sec. 2.4.1 be
presented in detail. They guarantee that the model error |f(·)−µ(·)| does not exceed βσ(x)
with a specific probability δ ∈ (0; 1), where β ∈ R+ is a function of X, the probability δ,
the number of training points N and properties of f(·). This allows to write the dynamical
system in a robust form

xκ+1 = µ(xκ)± βσ(xκ),

which has similarities to systems in differential inclusion [105]. This view on GPs triggered
many works in control which guarantee safety, e.g., [10] and [67]. Figure 2.1 provides an
illustration on the right side.
This interpretation takes full advantage of the model uncertainty measure provided by the

GP and therefore allows the derivation of stability results, which is a significant step towards
safe learning control. Nevertheless, the assumptions regarding the unknown function f(·)
are often not trivial to verify and an exact computation of β is not possible efficiently. It
also drops the information about the probability inside the interval and might thereby lead
to a rather conservative analysis.

−2 −1 0 1 2
−2

−1

0

1

2

xκ

x
κ

+
1

Deterministic interpretation

D
posterior mean µ(·)

−2 −1 0 1 2
−2

−1

0

1

2

xκ

x
κ

+
1

Robust interpretation

robust model µ(·) ± βσ(·)

Figure 2.1: The deterministic (left) and the robust (right) interpretation of a GP model.

11

2 Gaussian Processes in Identification and Control

2.3.3 Belief-space interpretation
In the reinforcement learning literature, the belief-space interpretation is frequently em-
ployed, which augments the state to consist of a mean µxκ ∈ X and a variance σ2

xκ ∈ R+ and
approximates it to be a Gaussian distributed random variable. This leads to the notation[

µxκ+1

σ2
xκ+1

]
= fBS

([
µxκ
σ2
xκ

])
,

where the transition function fBS : X × R+ → X × R+ can be computed analytically from
a GP model [33]. However, this only approximates propagation of the distribution over the
state for multiple time steps because the output distribution of a Gaussian process for an
uncertain input is generally non-Gaussian (due to the non-linearity). As an alternative to
an exact analytic solution, moment matching computes the first and second moment of the
output distribution for a Gaussian input distribution exactly and thereby derives fBS(·, ·).
A visualization is provided in Fig. 2.2.
An improved approximation technique is presented in [40], but there does not exist any

guarantee on how far the approximated propagated distribution is from the real distribution.
It is therefore not suitable for a profound stability analysis of control laws. Furthermore, the
approximation is computationally very demanding and its probabilistic nature does match
the true system f(·), which is deterministic.

2.3.4 Stochastic interpretation
Given the current state xκ, the GP assigns a Gaussian distribution to the next state, based
on the inferred mean and variance. This leads to the interpretation as a stochastic dynamical
system, which can be written in two ways

xκ+1 ∼ N
(
µ(xκ),σ2(xκ)

)
, xκ+1 = µ(xκ) + σ(xκ)ω, with i.i.d ω ∼ N (0, 1).

This formulation allows an analysis of the stability of GP models using stochastic stability
tools as it is performed in [27] and [7].
However, since the sampling in each step is independent from the realizations in previous

steps, it can lead to different function values for the same input. This ignores the fact that

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1

0

1

2

xκ

x
κ

+
1

Belief-space interpretation

input distribution
approx. output
exact output

Figure 2.2: The belief-space interpretation of a GP model.

12

2.3 Interpretations of Gaussian processes

the real system is a single true function. Furthermore, the covariance between states is
ignored and therefore the sampled function does not fulfill smoothness assumptions for the
GP imposed by the kernel. This is illustrated in Fig. 2.3 on the left.

2.3.5 Scenario interpretation

Following the interpretation of the GP as distribution over functions, [106] proposes to
sample a single realization of the GP in advance which is then used to propagate the state
deterministically. This is formalized as

fGP ∼ GP(m(·), k(·, ·)), xκ+1 = fGP(xκ).

Since each sample of a GP can be considered as a scenario, this concept is named scenario
interpretation and is analyzed in [107]. Furthermore, sampling one function as a scenario
overcomes the difficulties mentioned for the stochastic interpretation in Sec. 2.3.4 because
the drawn function is deterministic and follows the smoothness assumption imposed by the
kernel. A visualization is provided in Fig. 2.3 on the right.
However - due to its nonparametric nature - sampling a realization of the GP at once and

storing it is impossible in practice because it is an infinite dimensional object. The sequential
sampling proposed in [106], which iteratively conditions the sampling of the next state on
all previous states, leads to a non-Markovian system for which applicable analysis tools are
currently not available.

This overview shows that the various interpretations of GP dynamical models are used in
literature and all have their right to exist. A side by side comparison has so far only been
performed by the author in [107] and therefore delivers a notable contribution to the GP
literature for control. For each main contributions of this thesis, we will clearly indicate on
which interpretation of GPs we base our design and analysis.

−2 −1 0 1 2
−2

−1

0

1

2

xκ

x
κ

+
1

Stochastic interpretation

D
samples from N (µ(·), σ2(·))

−2 −1 0 1 2
−2

−1

0

1

2

xκ

x
κ

+
1

Scenario interpretation

samples from GP(m(·), k(·, ·))

Figure 2.3: The stochastic (left) and the scenario (right) interpretation of a GP model.

13

2 Gaussian Processes in Identification and Control

2.4 Properties and bounds for Gaussian processes
Gaussian processes are well researched and there exist numerous literature on their properties
from the fields of machine learning, statistics and information theory. However, only a few
results are relevant for this thesis, which are reviewed in the following.

2.4.1 Error bounds for Gaussian process models
Gaussian processes are particularly appealing for applications in control of safety-critical
systems because a formal analysis is analytically possible. As mentioned in Sec. 2.3.2, it is
possible to bound the error between the posterior mean function µ(·) and the function f(·)
of which the measurements are taken with high probability. However, such a guarantee does
not come without any assumptions on f(·) as the no-free-lunch theorem suggest [108].
The assumption does - thanks to the nonparametric nature of the GP - not require any

structural knowledge on f(·), like parametric regression techniques do. But it limits the
complexity of the function as measured by the reproducing kernel Hilbert space (RKHS) as
formulated in the following.

Assumption 2.1. The function f : X → R has a bounded RKHS norm with respect to a
known kernel k(·, ·), denoted by ‖f(·)‖2

k ≤ Bf .

A RKHS is a complete subspace of the L2, for which the inner product 〈·, ·〉k fulfills the
reproducing property 〈f , k(x, ·)〉k = f(x). The induced norm ‖f‖k =

√
〈f , f〉k measures the

smoothness of f(·). In most cases (for universal differentiable kernels), Assumption 2.1
translates in practice to assuming a continuously differentiable dynamic behavior. This
excludes for example impacts which lead to switching dynamics e.g. a bouncing ball or
robotic interaction tasks.
Furthermore the information gain which can be obtained on a compact set X from N + 1

noisy measurements x(1), . . . ,x(N+1) is defined as

γ = max
x(1:N+1)∈X

1
2 log det

(
IN+1 + 1

σ2
on
K

)
, with K = k

(
x(1:N+1),x(1:N+1)

)
. (2.9)

This allows to derive a bound for the model error as following.

Theorem 2.1. Consider a compact set X ⊂ Rn, a function f : X→ R under Assumption 2.1
and a probability δ ∈ (0; 1). Then,

P {|µ(x)− f(x)| ≤ βσ(x),∀x ∈ X,N ∈ N0} ≥ 1− δ, (2.10)

where β =
√

2Bf + 300γ log3((N + 1)/δ) and µ(·), σ(·) are posterior mean / variance func-
tion of a GP for N data points as defined in (2.4)

Proof. This result is stated and proven in [104, Theorem 6]1

1The constant 300 is not the exact number as it results from the derivation of the bound but is utilized by
the authors of [104] as conservative abbreviation of a constant factor for notational convenience.

14

2.4 Properties and bounds for Gaussian processes

The maximum information gain γ grows sublinearly (for most common kernels) with the
number of data points N and so does in consequence β, see [104] for more details. Thus,
the question whether the error bound becomes tighter, i.e. σ(·) decreases faster than β
increases with more training data points, cannot be answered in general but depends on the
distribution of the data points across X.
Theorem 2.1 can be extended to multiple dimensions using the union bound.

Proposition 2.1. Consider a compact set X ⊂ Rn, a function f : X → Rm for which the
RKHS norms are bounded ‖fj(·)‖2

kj
≤ Bfj , ∀j = 1, . . . ,m and probabilities δj ∈ (0; 1) for

which ∑m
j=1 δj < 1. Then,

P {|µ(x)− f(x)| ≤ ‖β‖‖σ(x)‖,∀x ∈ X,N ∈ N0} ≥ 1−
m∑
j=1

δj, (2.11)

where β = [β1 · · · βm] with βj =
√

2Bfj + 300γj log3((N + 1)/δj), µ(·), σ(·) are posterior
mean / standard deviation functions of a GP for N data points as defined in (2.7) and γj is
the information gain defined in (2.9) for each kernel kj(·, ·), j = 1, . . . ,m.

Proof. With the result from Theorem 2.1, the union bound yields

1−
m∑
j=1

δj ≤ P


m⋂
j=1
|µj(x)− fj(x)| ≤ βjσj(x),∀x ∈ X


≤ P

‖µ(x)− f(x)‖ ≤

∥∥∥∥∥∥∥∥

β1σ1(x)

...
βmσm(x)


∥∥∥∥∥∥∥∥,∀x ∈ X


and using the triangle and the Cauchy-Schwarz inequality

∥∥∥[β1σ1(x) · · · βmσm(x)
]ᵀ∥∥∥ ≤ m∑

j=1
βjσj(x) ≤ ‖β‖‖σ(x)‖,

yields the presented result.

Remark 2.4. This bound is very powerful, since the probability δ not just holds for in-
dividual x values, but addresses the entire function sample f(·) and thereby all x ∈ X.
Furthermore, it holds for all numbers of training data N , thus adding or removing data
points does not affect the probability that the bound is violated.

However, it must be admitted that the RKHS norm of an unknown is not trivial to obtain
for a real system and computing an exact value for γ is difficult. Nevertheless, to verify
Assumption 2.1, only a bound of the RKHS norm is required and upper limits on γ can be
obtained computationally efficient.
Furthermore, alternative bounds for which the conditions are simpler to verify are devel-

oped in [103], where the author is also contributing.

15

2 Gaussian Processes in Identification and Control

2.4.2 Posterior variance limits
As shown in Theorem 2.1, the variance function plays a crucial role to bound the model
error. We therefore review here a property of the variance function, which will be useful in
the remainder of this thesis.

Lemma 2.1. Consider a Gaussian process with noise free observations σ2
on = 0 and SE

kernel (2.5). Then, for the posterior variance function σ2(·) in (2.4) it holds that

σ2(x) ≤ ζ2
(

1− exp
(
−‖x− x(i)‖2

`2

))
:= σ̄2

x(i)(x) ∀i = 1, . . . ,N
∀x ∈ X,

where `2 = mini `2
i is the shortest lengthscale and σ2

x(i)

(
x(i)

)
= 0, ∀i = 1, . . . ,N .

Proof. Given constant hyperparameters, σ2(·) decreases globally point-wise with any ad-
ditional training point as derived in [109, Section 2.4]. Therefore, the posterior variance
function of GP with a dataset which contains the point x(i) can be upper bounded by the
posterior variance function for a dataset which only contains the point x(i). Substitut-
ing kSE(x,x) = ζ2, which holds ∀x, results in

σ2(x) ≤ ζ2 − ζ2 exp

− n∑
j=1

(
xj − x(i)

j

)2

2`2
j


2

≤ ζ2
(

1− exp
(
−‖x− x(i)‖2

`2

))

for all j = 1, . . . ,n. This yields the proposed upper bound.

Example 2.1. For n = 1, consider a SE kernel with ζ2 = 1 and `2 = 0.16 and the
training data set D = {(−0.1, 0), (0.5, 0), (1, 0)}. Then, the resulting posterior variance
function of a GP and the upper bound derived in Lemma 2.1 is illustrated in Fig. 2.4.

Further analysis of the posterior variance is provided in [110], where the author is also
contributing.

16

2.4 Properties and bounds for Gaussian processes

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

x

σ
2 (

·)

σ2(·)
σ̄2

x(1) (·)
σ̄2

x(3) (·)

Figure 2.4: Illustration of Lemma 2.1: The posterior variance function σ2(·) is shown in red,
two possible upper bounds, σ̄2

x(1)(·) and σ̄2
x(3)(·) are shown in blue. The training

data is x(1) = −0.1, x(2) = 0.5 and x(3) = 1.

17

Identification of Stable Systems 3

Data-driven modeling techniques are very powerful for systems where no analytic model
can be derived. However, the lack of an analytic description does not imply that no prior
knowledge about the system is given. In particular, for many physical systems, so called
high-level knowledge is accessible, e.g., balance of in and out flow in a node, smoothness
of the dynamics or the energy dissipation [111]. These fundamental properties are often
not considered in data-driven modeling and the resulting models thereby make physically
inconsistent predictions.
This work focuses on the consistent energy dissipation between the true system and the

data-driven model, which is closely entangled with the convergence behavior of a dynamical
system. Utilizing such high-level prior knowledge is not only helpful for increasing the model
precision but also crucial as without any prior knowledge no generalization outside of the
training points can be expected (see no-free-lunch theorems [108]).
The presented techniques can not only be employed for physically consistent modeling,

but are also applicable in human-like motion generation: Assume a goal-directed human
movement is modeled by a dynamical system in a robotic learning by demonstration scenario.
Then, the training data converges to the desired goal point and this behavior must also
be represented by the model. Thus, the model must represent the demonstrated motion
accurately and ensure that all generated trajectories converge to the goal point.
Ensuring physically consistent prediction or stability of a parametric model is rather

simple to verify, see [112] and [113]. Other classical system identification techniques, e.g.
autoregressive–moving-average (ARMA) models rely on subspace methods to ensure stabil-
ity [114], [115]. The deconvolution problem, to find the impulse response given input-output
data, is approached using regularization techniques as discussed in [116] and recent overviews
are given in [117] and [118]. This problem is also considered by the machine learning com-
munity using kernel-based techniques to identify the impulse response, see [119] and [120].
For the nonlinear case, Volterra series or Wiener-Hammerstein models exist, which con-

sider a very limited structure of the model [16]. Therefore, supervised learning methods,
e.g., NNs [121] or GPSSMs have gained attention, see [122] and [21]. However, an analysis
of the system stability is missing in these studies. A first GPSSM stability analysis is per-
formed in [26] and [27], for the deterministic and the stochastic interpretation, respectively.
Enforcing stability to Gaussian mixture models (GMMs) is studied in [123] and [124] and
more general techniques are developed in [125], [126] and [127].
While these approaches aim to incorporate stability into a model, none of them deals

with the inherent challenge of data-driven approaches that data is usually sparse and the
resulting models are imprecise. The uncertainty resulting from finite data is commonly
ignored. Therefore, this chapter develops a framework to deal with these uncertainties

19

3 Identification of Stable Systems

in form of a stochastic dynamical system and ensures its asymptotic convergence using
stochastic stability theory [128].
The main contribution is a novel identification algorithm to learn asymptotically stable

GPSSMs using control Lyapunov functions. For the deterministic interpretation of the GP,
we show a realization for arbitrary datasets and prove that the model is improved through
the stabilization. For the stochastic interpretation, we derive conditions for almost sure
asymptotic convergence and show how many additional training data are required to ensure
asymptotic stability if these conditions are not fulfilled on the initial dataset. To learn the
convergence behavior in a data-driven fashion, we propose the use of a sum of squares (SOS)
control Lyapunov function. This allows a computationally efficient estimation of unknown
equilibria and we demonstrate its advantages in simulation over alternative Lyapunov can-
didates on a real-world dataset.
The chapter is based on the work published in [7] and [8]. It is structured as follows: After

defining the problem setting in Sec. 3.1, this chapter proposes in Sec. 3.2 an optimization-
based stabilization of a GPSSM for the deterministic and the stochastic interpretation (as
introduced in Sec. 2.3). A data-driven search for a suitable control Lyapunov function
is presented in Sec. 3.3 followed by a numerical evaluation in Sec. 3.4 and a discussion
in Sec. 3.5.

3.1 Problem formulation
Here, we consider an unknown discrete-time system with state x ∈ X ⊆ Rn, n ∈ N, given by

xκ+1 = f(xκ), (3.1)

with initial condition x0 ∈ X, where κ ∈ N and f : X→ X. The following is assumed.

Assumption 3.1. The function f(·) is continuously differentiable but unknown.

Remark 3.1. The smoothness of the function f(·) is a quite natural assumption and holds
for a large class of systems. It is also an essential one because the generalization outside of
a training data set becomes very difficult for discontinuous functions [108].

The available training data set is assumed to take the following form

Assumption 3.2. The training set of N data pairs consists of consecutive measurements of
the state

D =
{(
x(i),y(i)

)}N
i=1

,

where y(i) = x
(i)
κ+1 is the consecutive state to x(i)

κ .1

Remark 3.2. The data does not necessarily stem from a single trajectory. Each pair can
be taken independently from other pairs and the order in the training set is not decisive. A
visualization of a possible data set is provided in Fig. 3.1

Furthermore, we make an assumption on the asymptotic behavior of the system (3.1).
1An extension to noisy measurements of the consecutive state is directly possible. However, we consider
it as an unrealistic setting to have noise on the consecutive state but not on the current state (as the
former becomes the latter in the next time step).

20

3.1 Problem formulation

x1

x2

x1∗ x(1)

y(1)x(2)

y(2)

x(3)

y(3)

x2∗ x(4)

y(4)

x(5)

y(5)

x(6)
y(6)

x(7)y(7)

x(8)

y(8)

Figure 3.1: An illustration of a training dataset D with two equilibria x1∗ ,x2∗ . The data origi-
nate from three different trajectories (1-2-3,4-5-6,7-8). Within one trajectory, the
end point of one step is the starting point of the next, e.g., y(1) = x(2), y(4) = x(5),
etc., but this is not necessarily the case.

Assumption 3.3. There exist N∗ unknown equilibria, denoted as xi∗ ∈ Xi∗ ⊆ X, where
i∗ = 1, . . . ,N∗ and f(xi∗) = xi∗. Each of the equilibria is asymptotically stable with corre-
sponding known domain of attraction Xi∗ ⊆ X for which holds

Xi∗ ∩ Xi′∗ = ∅, ∀i′∗ 6= i∗, and
N∗⋃
i∗=1

Xi∗ = X.

This formulates the main motivation of this chapter. A physical system whose dynamics
are unknown, dissipates energy and will eventually reach an equilibrium point. This equilib-
rium is not known and it is also tedious to determine it experimentally (since it takes usually
infinite time to be reached). In contrast, the region of attraction is commonly easier to find.

Example 3.1. Consider a ball filled with water, making its dynamics difficult to describe
analytically. This ball is dropped over hilly ground as illustrated in Fig. 3.2. It is obvious
in which valley the ball will role, given the starting position, X1∗, X2∗ or X3∗ (ignoring
the unstable equilibria on top the hills). But it cannot be observed (in finite time) where
it comes to rest due to the friction (in particular for the equilibrium x2∗).

Assumption 3.3 therefore comes with two fundamental challenges to a data-driven identifi-
cation. First, the convergence behavior must be estimated from data, which includes to find
the equilibria and a function which describes the dissipation of the energy (here, a Lyapunov
function). Second, this convergence behavior must be enforced in the model to ensure it is
consistent in terms of this prior knowledge on stability. This concept is visualized in Fig. 3.3.
The goal is to learn a GPSSM f̂ : X → X for the unknown true dynamics (3.1), denoted

by

xκ+1 = f̂(xκ). (3.2)

We consider two different cases here according to the deterministic and the stochastic inter-
pretation as presented in Sec. 2.3. For both, the prior knowledge given by Assumption 3.3 on
the stability is generally not fulfilled by standard GP models [26], [27]. Therefore, we propose

21

3 Identification of Stable Systems

X1∗ X2∗ X3∗

x1∗
x2∗ x3∗

Figure 3.2: An illustration of multiple stable equilibria.

to augment the GPSSM by a stabilization signal u : X → Rn. Despite the notation, u(·) is
not an external control input, but belongs internally to the model

f̂(xκ) := fGP(xκ) + u(xκ), (3.3)

where fGP : X→ X denotes a standard GPSSM without any stabilization and f̂ : X→ X the
proposed stabilized GPSSM. We aim to ensure the model f̂(·) follows Assumption 3.3. This
requires the estimation of the equilibria, which we will denote here as x̂i∗ , i∗ = 1, . . . ,N∗.
Furthermore, it must be ensured that these equilibria are stable with the given region of
attractions Xi∗ . We therefore formulate the objective for the deterministic GP as follows.

Objective 3.1. Find a stabilization signal u(·) which ensures that the model

xκ+1 = µ(xκ) + u(xκ) =: f̄(xκ), (3.4)

has N∗ asymptotically stable equilibria x̂i∗ ∈ Xi∗ with respective domains of attraction Xi∗.

Thus, we aim for a model, which has the same asymptotic convergence behavior as the
true system (3.1). Taking the posterior mean function of the GP, we obtain the GP model,
which is the most likely one after observing the data D. However, since the data is sparse,
a high model precision cannot be expected everywhere in the state space X. Therefore, we
want to make use of the model fidelity provided by the GP model. To do so we investigate
the probabilistic GP model by adding process noise into the model (which is not present in
the true system).

Remark 3.3. Including noise into the model ensures that it does not provide overconfident
predictions when it operates far from the training data. Such a stochastic model thereby
increases the safety when transferring simulation results to the real-world experiment. Fur-
thermore, it allows to apply risk-sensitive [129], uncertainty aware (Chapter 4) or path in-
tegral [130] control techniques.

Nevertheless, we aim to implement the prior knowledge on the convergence behavior (As-
sumption 3.3) into this stochastic model, which is formulated as following.

22

3.2 Stabilized Gaussian process state space models

data

estimating convergence

behavior (Sec. 3.3)

estimating dynamic

behavior (Sec. 2.1)

Lyapunov
function

equilibrium
points

virtual stabiliser
(Sec. 3.2.1 & 3.2.2)

stabilized
GPSSMrequest more data (Sec. 3.2.3)

Figure 3.3: An overview of the proposed scheme for a data-driven stabilization of GPSSMs.

Objective 3.2. Find a stabilization signal u(·) such that the model

xκ+1 = µ(xκ) + u(xκ) +
√

Σ(xκ)ωκ = f̄(xκ) +
√

Σ(xκ)ωκ ωκ ∼ N (0, In), (3.5)

has N∗ almost surely (a.s.) asymptotically stable equilibria x̂i∗ ∈ Xi∗, i∗ = 1, . . . ,N∗. Thus,
for all x0 ∈ Xi∗ it holds that

lim
k→∞
P(‖xκ − x̂i∗‖ = 0) = 1, ∀i∗ = 1, . . . ,N∗. (3.6)

The i.i.d. random variable ωκ ∈ Rn originates from the probability space (Ω,F ,P), which
has the sample space Ω = Rn and the sigma-algebra F of Borel sets on Ω. The probability
measure P is a normal distribution.
This chapter presents an algorithm which fulfills Objectives 3.1 and 3.2 using the aug-

mented GP model (3.3).

3.2 Stabilized Gaussian process state space models
In this section, we elaborate how stability of a GPSSM is enforced with the stabilization
signal u(·) using a given control Lyapunov function.
The first step towards Objectives 3.1 and 3.2 is to ensure that the GP mean function

estimate µ(·) has a fixed point at the given equilibria estimates x̂i∗ , thus x̂i∗ = µ(x̂i∗) for
all i∗ = 1, . . . ,N∗. This can be achieved as described in Remark 2.3, and will therefore not
further be discussed here. However, this will not ensure the asymptotic stability of these
equilibria or ensure the proper domain of attraction. To make the convergence behavior of
the model match the true system, this section discusses the choice of the internal stabilizing
signal u ∈ Rn in f̂(x).
We assume to be given N∗ control Lyapunov functions V i∗

θi∗
: X → R+,0 which are all

parameterized by θi∗ ∈ Θi∗ ⊆ Rnθi , nθi ∈ N and an estimated equilibrium x̂i∗ ∈ Xi∗ (see
Sec. 3.3 how the parameters are obtained from data). The following assumptions are made.

Assumption 3.4. For all parameter choices θi∗ ∈ Θi∗, the functions V i∗
θi∗

(·) are continuous
and positive definite, thus

V i∗
θi∗

(x) > 0, ∀x ∈ X\{x̂i∗} and V i∗
θi∗

(x̂i∗) = 0, ∀i∗ = 1, . . . ,N∗.

23

3 Identification of Stable Systems

Assumption 3.5. The functions V i∗
θi∗

(·) are radially unbounded

lim
‖x−x̂i∗‖→∞

V i∗
θi∗

(x) =∞, ∀θi∗ ∈ Θi∗ .

These assumptions make V i∗
θi∗

(·) Lyapunov candidates. We consider the deterministic
interpretation of the GP first in Sec. 3.2.1 before dealing with the stochastic interpretation
in Sec. 3.2.2 and 3.2.3.

3.2.1 Deterministic interpretation
For the deterministic interpretation of a GPSSM, the next state, given the current state, is
obtained from xκ+1 = µ(xκ). Using Remark 2.3 the estimated equilibria are incorporated,
but their asymptotic stability is not ensured. Therefore, the following optimization-based
stabilization is proposed.

Theorem 3.1. Consider the GP (2.7)/ (2.8) with SE kernel (2.5) and the stabilizing com-
mand u∗(·) obtained from the optimization

u∗(xκ) = arg min
u

1
2u

ᵀu, (3.7a)

s.t. V i∗
θi∗

(µ(xκ) + u)− V i∗
θi∗

(xκ) < 0 if xκ 6= x̂i∗ ,
and u = 0 if xκ = x̂i∗ ,

(3.7b)

where i∗ is chosen such that x0 ∈ Xi∗ and V i∗
θi∗

(·) is a Lyapunov candidate which fulfills
Assumption 3.4. Then, the model

xκ+1 = f̄(xκ) = µ(xκ) + u∗(xκ), (3.8)

converges asymptotically to the equilibrium x̂i∗ for all x0 ∈ Xi∗.

Proof. The optimization (3.7) ensures that the Lyapunov function V i∗
θi∗

(·) decreases in every
step V i∗

θi∗
(f̄(xκ))− V i∗

θi∗
(xκ) < 0, ∀xκ ∈ X \ {x̂i∗}. The constraint set is not empty ∀xκ ∈ X,

since a feasible solution u = x̂i∗−µ(x̂i∗) always exists with V i∗
θi∗

(x̂i∗)− V i∗
θi∗

(xκ) = −V i∗
θi∗

(xκ)
being negative definite.

An illustration of this optimization-based stabilization is provided in Fig. 3.4 on the left
side. For a single equilibrium point, this result can directly be extended to global stability.

Corollary 3.1. Let N∗ = 1, Vθ(·) is radially unbounded (Assumption 3.5), and X = Rn. Fur-
thermore, consider a GP (2.7)/ (2.8) with SE kernel (2.5) and the stabilizing command u∗(·)
proposed in (3.7). Then, the equilibrium x̂∗ of the model (3.8) is globally asymptotically
stable (GAS).

Proof. Since the Lyapunov function is radially unbounded and decreasing over time (compare
Theorem 3.1) the necessary conditions for global stability hold [131].

Thus, with the optimization-based choice in (3.7), Objective 3.1 is achieved.

24

3.2 Stabilized Gaussian process state space models

Remark 3.4. There are many choices for u(·) which would fulfill Objective 3.1 and the
most trivial is u = x̂i∗ − µ(x̂i∗). However, we are not just trying to stabilize the model, but
we aim to replicate the true system (3.1) as precise as possible. Therefore the GPSSM µ(·)
should be distorted only minimally because it represents the data optimal (according to the
likelihood optimization).

It can be shown that (for a convex Lyapunov function) the GPSSM without stabiliza-
tion µ(·) performs never better - in terms of prediction precision - than the proposed stabi-
lized GPSSM f̄(·) = µ(·) + u(·).

Proposition 3.1. Consider the GP (2.7)/ (2.8) with SE kernel (2.5) and convex Lyapunov
functions V i∗

θi∗
(·) which fulfill Assumption 3.4 and V i∗

θi∗
(f(x))−V i∗

θi∗
(x) < 0, ∀x ∈ Xi∗ \{x̂i∗},

and ∀i∗. Then, the prediction error of the GPSSM without stabilization µ(·) is never smaller
than that of the stabilized GPSSM f̄(·), thus

‖f̄(xκ)− f(xκ)‖ ≤ ‖µ(xκ)− f(xκ)‖, ∀xκ ∈ X. (3.9)

Proof. Since the true system (3.1) is asymptotically stable (Assumption 3.3), the Lya-
punov function V i∗

θi∗
(·) decreases with every step. Thus the next step f(xκ) lies within

the set Vxκ =
{
x ∈ X

∣∣∣V i∗
θi∗

(x) < V i∗
θi∗

(xκ)
}
, which is convex due to the convexity of V i∗

θi∗
(·).

For all xκ for which µ(xκ) ∈ Vxκ , holds u(xκ) = 0 and thus f̄(xκ) = µ(xκ), which results
in equality in (3.9). For all xκ for which µ(xκ) /∈ Vxκ , the stabilized GPSSM f̄(xκ) results
in a projection onto the convex set Vxκ , thus

f̄(xκ) = min
xκ+1∈Vxκ

‖xκ+1 − µ(xκ)‖.

The projection f̄(xκ) is closer to any point in the convex set Vxκ than µ(xκ). Therefore, it
is also closer to f(xκ).

Remark 3.5. Consider that Proposition 3.1 implies the assumption, that V i∗
θi∗

(·) are Lya-
punov functions of the unknown system. These are typically unknown and therefore this
imposes a quite strict assumption.

For an infinite number of training points, it can be shown that the proposed model (3.8)
converges to the true system.

Proposition 3.2. Consider the GP (2.7)/ (2.8) on a compact set X̄ ⊂ Rn with SE ker-
nel (2.5) and Lyapunov functions V i∗

θi∗
(·) which fulfill Assumption 3.4 and the condition

V i∗
θi∗

(f(x))−V i∗
θi∗

(x) < 0, for all x ∈ X̄ \ {x̂i∗}, ∀i∗. Let f(·) be a sample from the GP from
which infinitely many training points are generated using a dense distribution on X̄, then the
model f̄(·) approaches the true system f(·) almost surely

P
{

lim
N→∞

sup
x∈X̄

∥∥∥f(xκ)− f̄(xκ)
∥∥∥ = 0

}
= 1

for a stabilizing command u∗(xκ) = 0 ∀xκ ∈ X̄.

25

3 Identification of Stable Systems

Proof. Under the specified conditions, the maximum difference between the mean func-
tion µ(·) and the true function f(·) becomes arbitrarily small almost surely. This is a
well established result from scattered data interpolation [132, Eq. 2.11], where the error is
bounded by a power function (which corresponds to the posterior standard deviation of a
GP [133, Sec. 5.2]). This converges to zero for N →∞ [110, Corollary 3.2.]. Since V i∗

θi∗
(·) is

a continuous function the condition

V i∗
θi∗

(µ(xκ))− V i∗
θi∗

(xκ) < 0, ∀xκ ∈ X̄ \ {x̂i∗}

is fulfilled in the limitN →∞, and therefore u∗(xκ) = 0, ∀xκ ∈ X̄, which yields the provided
result.

This result uses simply the fact that a GP converges to the function from which the data
is taken. In this case, the stabilization becomes inactive and therefore does not distort the
model.
Regarding the optimization (3.7), the following is concluded.

Proposition 3.3. The optimization problem (3.7) is convex if and only if V i∗
θi∗

(x) is convex.

Proof. In the definition of the constraint set (3.7b), µ(xκ) and V i∗
θi∗

(xκ) are constant with
respect to the optimization variable u. The addition of u preserves the convexity. Therefore,
the constraint set is convex if and only if V i∗

θi∗
(·) is convex, which results in convexity of the

optimization problem as defined in [134].

This allows to employ efficient solvers for the optimization (3.7) in case of convex Lyapunov
functions.

Remark 3.6. For non-convex Lyapunov functions, finding a global minimum efficiently
cannot be expected. Nevertheless, the stability of the model (Theorem 3.1) is not affected,
because any feasible u results in a stable system. Suboptimal solutions will only potentially
result in behavior different from the training data, but convergence remains guaranteed.
This also facilitates the implementation in real-time critical applications: Since the opti-

mization is initialized at a feasible (i.e. stability guaranteeing) value, the optimization can
be interrupted at any time without affecting the convergence (assuming the solver stays in
the feasible region).

3.2.2 Probabilistic interpretation
For the probabilistic interpretation, the GPSSM infers a Gaussian distribution over the next
state given the current state as it is formalized in (3.5). The resulting system is analyzed
using tools from stochastic dynamical systems as reviewed in the following.

Lemma 3.1 (Stability of stochastic systems [135]). Consider a system of the form (3.5). If
there exists a positive definite function V : X→ R+,0 for which holds

E[V (xκ+1)|xκ]− V (xκ) < 0, ∀xκ ∈ X \ {x∗}, (3.10)

26

3.2 Stabilized Gaussian process state space models

Vθ(x)

xκ

fGP(xκ)

x̂∗

xκ+1

u∗ c̃1

Vθ(x)

xκ

fGP(xκ)

x̂∗

δV (xκ) < 0
xκ+1

u∗

δV (xκ) > 0

x̂∗ι
xκ

Figure 3.4: The optimizations (3.7) and (3.13) are illustrated for the deterministic and the
probabilistic case on the left and in the middle, respectively. The infeasible
situation with nζ̄2 ≥ `2 in (3.13c) is visualized on the right, where xκ ∈ Xi∗ . The
striped area indicates the set X̃i∗ for which holds δV (xκ) > 0 for any u.

then the equilibrium x∗ is a.s. asymptotically stable. If there exists a V (·) for which holds
α1(‖x‖) ≤ V (x) ≤ α2(‖x‖), ∀x ∈ X (where α1,α2 : R+,0 → R+,0 are arbitrary class K
functions) and for which

E[V (xκ+1)|xκ]− V (xκ) < 0, ∀xκ ∈ X \ Bι, (3.11)

with Bι = {x ∈ X |‖x− x∗‖ < ι} holds, then the system is a.s. ultimately bounded (UB) to
the set

Bι̃ = {x ∈ X |‖x− x∗‖ < ι̃}
with ultimate bound ι̃ = α−1

1 (α2(ι)).
Based on this Lyapunov analysis, the following stabilization of a GPSSM is proposed,

where

ζ̄2 = max
j=1,...,n

ζ2
j and `2 = min

i=1,...,N
j=1,...,n

`2
i,j (3.12)

are the largest signal variance and the smallest lengthscale across all SE kernels, respectively.
Theorem 3.2. Consider the GP (2.7)/ (2.8) with SE kernel (2.5) and the stabilizing com-
mand u∗(·) obtained from the optimization,

u∗(xκ) = arg min
u

1
2u

ᵀu, (3.13a)

s.t. δV (xκ) < 0 if xκ 6= x̂i∗ ,
δV (xκ) = 0 if xκ = x̂i∗ ,

(3.13b)

and u∗ = x̂i∗ − µ(xκ) if δV (xκ) > 0 ∀u, (3.13c)

where δV (xκ) = E
[
V i∗
θi∗

(fGP(xκ) + u)|xκ
]
− V i∗

θi∗
(xκ), and V i∗

θi∗
(·) is the i∗-th Lyapunov

function satisfying Assumption 3.4 with i∗ being chosen such that x0 ∈ Xi∗. Then, the
resulting model

xκ+1 = f̂(xκ) := fGP(xκ) + u∗(xκ) (3.14)

27

3 Identification of Stable Systems

converges a.s. to the hyperball

Bi∗ι = {x ∈ X |‖x− x̂i∗‖ < ι}

with ultimate bound

ι =

√√√√`2W0

(
nζ̄2

−`2 exp
(
−nζ̄2/`2

))
+ nζ̄2, (3.15)

where W0 : [− exp(−1);∞) → [−1;∞) is the principle branch of the Lambert W function.
If nζ̄2 < `2 holds, it converges a.s. asymptotically to x̂i∗, ∀x0 ∈ Xi∗.

Proof. By Assumption 3.4 V i∗
θi∗

(·) is a valid Lyapunov candidate. The optimization (3.13) is
designed to decrease the expected value of the Lyapunov function in every step δV (xκ) < 0,
whenever the optimization is feasible. Let X̃i∗ = {xκ ∈ Xi∗ |δV (xκ) > 0 ∀u} denote the
states for which the constraint set δV (xκ) < 0 is empty, thus no u exists which fulfills the
Lyapunov condition. For all states outside of the infeasible region, x ∈ X\X̃i∗ , the conditions
in Lemma 3.1 hold and the system converges to X̃i∗ . The case xκ ∈ X̃i∗ is covered in (3.13c)
and leads to the stochastic dynamics

xκ+1 ∼ N (x̂i∗ , Σ(xκ)). (3.16)

Without loss of generality and for notational convenience, we set x̂i∗ = 0. For the analysis
of (3.16), the quadratic Lyapunov function Vsq(x) = xᵀx is employed.2 The control Lya-
punov function V i∗

θi∗
(·) ensures convergence to the set X̃i∗ , but inside it is no longer applied,

since u∗ is chosen independently of V i∗
θi∗

(·) in (3.13c). Consider δVsq(·) as follows

δVsq(xκ) = E[Vsq(xκ+1)|xκ]− Vsq(xκ) = E[xᵀ
κ+1xκ+1]− xᵀ

κxκ = trace (Σ(xκ))− xᵀ
κxκ

=
n∑
j=1

σ2
j (xκ)− xᵀ

κxκ ≤ nζ̄2
(

1− exp
(
−‖xκ‖2

`2

))
︸ ︷︷ ︸

:=V (‖xκ‖)

− ‖xκ‖2︸ ︷︷ ︸
:=V̄ (‖xκ‖)

,

where E[xκ+1] = 0 from (3.16) and the variance upper bound from Lemma 2.1 are employed.
It can be seen that δVsq(0) = 0 and

lim
‖xκ‖→∞

δVsq(xκ) = −∞

since V (·) is bounded. Thus, if δVsq(·) has no further roots (δVsq(xκ) is negative definite),
the system is asymptotically stable. In case there are roots outside the origin, the outer
most is the ultimate bound.
Comparing the derivatives of V̄ (·) and V (·) yields

∂V (‖x‖)
∂‖x‖ = 2nζ̄2

`2 exp
(
−‖x‖2

`2

)
‖x‖, ∂V̄ (‖x‖)

∂‖x‖ = 2‖x‖.

Since exp
(
−‖x‖2/`2

)
≤ 1, it can be seen that V̄ (·) increases faster than V (·) ∀x ∈ X

if nζ̄2/`2 < 1. It is concluded that δVsq(x) < 0, ∀x ∈ X \ {0} for nζ̄2 < `2, which proves
that the equilibrium is a.s. asymptotically stable.

2For the special case V (x) = xᵀx, Lemma 3.1 simplifies to ι̃ = ι.

28

3.2 Stabilized Gaussian process state space models

If nζ̄2 > `2, consider that ∂V (‖x‖)
∂‖x‖ −

∂V̄ (‖x‖)
∂‖x‖ changes its sign at most once. Thus, only

the proposed ultimate bound (3.15) must be confirmed as the single root of δVsq(·). We
define z = nζ̄2

−`2 exp
(
−nζ̄2/`2

)
and make use of the principle branch W0(·) of the Lambert W

function. Substituting ‖x‖ = ι from (3.15) yields

V (ι)− V̄ (ι) = nζ̄2
(
1− exp

(
−W0(z)− nζ̄2/`2

))
− `2W0(z)− nζ̄2

= −nζ̄2 exp (−W0(z)) exp
(
−nζ̄2/`2

)
− `2W0(z)

=
(
nζ̄2

−`2 exp
(
−nζ̄2/`2

)
−W0(z) exp (W0(z))

)
`2 exp (−W0(z))

= (z − z) exp (−W0(z)) = 0,

where W0(z) exp (W0(z)) = z is applied, which is a known identity of the Lambert W
function. This allows to conclude

δVsq(x) < 0, ∀x ∈ {x ∈ X |‖x‖ > ι}

and shows a.s. UB with the specified bound ι according to Lemma 3.1.

Remark 3.7. The infeasible case (3.13c) typically occurs in close proximity to the equi-
librium point, where uncertainty is too large with respect to the small “step size”. The
stabilization command cannot be chosen such that the expected decrease of the Lyapunov
function δV (·) dominates the variance term trace (Σ(·)).
Figure 3.4 (center) visualizes the optimization-based stabilization (3.13). Figure 3.4 (right)

illustrates the infeasible case (3.16).

Corollary 3.2. Let N∗ = 1, Vθ(·) is radially unbounded (Assumption 3.5), and X = Rn. Fur-
thermore, consider a GP (2.7)/ (2.8) with SE kernel (2.5) and the stabilizing command u∗(·)
obtained from the optimization in (3.13). Then, the system (3.14) is a.s. globally UB to the
set Bι. If nζ̄2 < `2, the equilibrium x̂∗ of the model (3.14) is a.s. GAS.

Proof. Since the Lyapunov function is radially unbounded and decreasing over time (compare
Theorem 3.2) the necessary conditions for global stability hold [135].

Remark 3.8. For a polynomial Lyapunov candidate, the moments of Vθ(fGP(xκ) + u) are
polynomial in the mean and variance of fGP(xκ). For the general computation of the expected
value E[Vθ(fGP(xκ) + u)] in (3.13b), we refer to [136].

Consider the following example for the results in Theorem 3.1.

Example 3.2. For two dimensions (n = 2), the system (3.16) is simulated with `2 = 1
for two different cases:

i) Choose ζ̄2 = 1, thus nζ̄2 > `2 resulting in a.s. UB with bound ι ≈ 1.26.

ii) Choose ζ̄2 = 1/3, thus nζ̄2 ≤ `2 resulting in a.s. asymptotic stability.

Figure 3.5 visualizes the Lyapunov argumentation in the proof of Theorem 3.2, show-
ing V̄ (·) and V (·).

29

3 Identification of Stable Systems

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

1

2

3

ι
‖x‖

V
,V̄

V̄ (·)
V (·), `2 < nζ̄2

V (·), `2 > nζ̄2

Figure 3.5: Visualization for the proof of Theorem 3.2: For `2 > nζ̄2 the function V (·) grows
too slow for an intersection with V̄ (·) and therefore results in a.s. asymptotic
stability. For `2 < nζ̄2 V (·) intersects V̄ (·) at ι, resulting in a.s. UB.

For both cases, the simulations are initialized at the same Ninit = 103 randomly sampled
(uniformly from the interval [−5; 5]2) state x0. In each step, the next state is drawn from
an unbiased normal distribution with state dependent variance

xκ+1 ∼ N
([

0
0

]
,
[
σ̄2(xκ) 0

0 σ̄2(xκ)

])
,

where σ̄2(·) serves as an upper limit for any posterior variance of a GP with an arbitrary
training data set according to Lemma 2.1. The subscript of σ̄2

x(i) is dropped for notational
convenience.
The simulations in Fig. 3.6 quickly decrease for the asymptotically stable case. In

contrast, for the ultimately bounded case, the states drop below the ultimate bound, but
do not decrease further. The bound is exceeded irregularly because it only holds with
probability 1 for κ → ∞. To visualize this, Fig. 3.7 shows the number of trajectories
violating the bound over a longer time horizon.

Considering the interpretations of GPs in Sec. 2.3, the result in Theorem 3.2 is based on
the stochastic interpretation. However, it directly generalizes to the sequential sampling for
the scenario interpretation, proposed in [106], as shown in the following.
Corollary 3.3. Consider the SE kernel (2.5), the stabilizing command u∗(·) obtained from
(3.13) and the model

xκ+1 = fκGP(xκ) + u∗(xκ) with fκGP(xκ) ∼ N
(
µκ(xκ),σ2

κ(xκ)
)

, (3.17)

where

µκ(xκ) = E[fGP(xκ)|D,Dκ], σ2
κ(xκ) = V[fGP(xκ)|D,Dκ]

are the posterior mean and variance functions of a GP in (2.7)/ (2.8), which - in addition
to the data points D - are, for κ ≥ 1, conditioned on previously visited states

Dκ = {(xi−1,xi)}κi=1 .

30

3.2 Stabilized Gaussian process state space models

0 5 10 15 20 25 30
0

2

4

6

κ

‖x
κ
‖

‖x‖ = ι

0 5 10 15 20 25 30
0

2

4

6

κ

‖x
κ
‖

Figure 3.6: The norm of 20 out of 103 trajectories for different initial conditions from Ex-
ample 3.2 are illustrated. The ultimate bounded case with nζ̄2 > `2 (left) is
compared with the asymptotically stable case with nζ̄2 ≤ `2 (right).

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

·104

0

20

40

60

κ

N
vi

o

Figure 3.7: Violations of the ultimate bound ι for the simulation in Example 3.2. The number
of the Ninit = 103 trajectories which are outside the hyperball Bι (‖xκ‖ > ι) for
each time step κ are denoted by Nvio. The plot suggests that the violations of
the ultimate bound vanish over time.

31

3 Identification of Stable Systems

Then, the convergence properties defined in Theorem 3.2 for (3.14) also hold for (3.17).

Proof. The system (3.17) corresponds to a sequential sampling of the function over which
the GP describes a distribution as introduced in [106]. The convergence behavior cannot
directly be analyzed with the previously employed Lyapunov-based methods, because the
system is, due to the conditioning on all previously visited states, non-Markovian. However,
the difference in the sequentially conditioned mean function µκ(·) and the mean function of
the stochastic interpretation µ(·) will be accounted for by the stabilizing command u∗(·).
Furthermore, based on the results in [110] it can be concluded, that σ2

κ(·) ≤ σ2(·) (element-
wise, ∀x ∈ X). This ensures that the analysis based on (3.16) serves as a conservative
estimate and the convergence bounds for (3.14) also hold for (3.17).

According to Theorem 3.2, Objective 3.2 is only achieved if nζ̄2 < `2 holds. This constraint
could be imposed in the likelihood optimization (2.6). However, a limitation in the search
space of the hyperparameters leads to a suboptimal model choice if the likelihood attains
its maximum outside of the constraint set. Therefore, we want to circumvent this constraint
and instead propose to add additional data to the training set to achieve asymptotic stability
for arbitrary hyperparameters. Thus, the following section investigates how many additional
measurements from the system are required to satisfy Objective 3.2.

3.2.3 Convergence with additional training data
This section considers the case nζ̄2 > `2, which results according to Theorem 3.2 not nec-
essarily in asymptotic stability, and does not fulfill Objective 3.2. We therefore make an
assumption on the availability of additional training data Dadd and elaborate how many
additional points Nadd = |Dadd| are required to fulfill Objective 3.2.

Assumption 3.6. An additional dataset

Dadd =
{(
x(i),y(i)

)}N+Nadd

i=N+1
,

can be chosen, where y(i) = f
(
x(i)

)
is available for arbitrary input locations x(i) ∈ Bι. The

hyperparameters ψj, for all j = 1, . . . ,n of the GPSSM remain unchanged.

The assumption implies that N � Nadd since otherwise the optimal hyperparameters
would significantly be affected by the updated data set. Taking data points at arbitrary
locations is a rather strict assumption, but inevitable here. We leave it to future work to
relax this assumption.
Without loss of generality, only a single equilibrium at the origin x∗ = 0 with domain of

attraction Rn is considered from now on. The number of required additional datapoints is de-
rived as follows, where W91 : [9 exp(91); 0)→ [9∞; 91) is the lower branch of the Lambert W
function.

Theorem 3.3. Consider a GP (2.7)/ (2.8) with SE kernel (2.5). Then, there exists a set Dadd
of size

Nadd = (1 + 2ι/rtr)n + 1,

32

3.2 Stabilized Gaussian process state space models

where rtr := −`2 log
(
1− r̃2

a/nζ̄
2
)
and

r̃a := l

3
√
nζ̄2

√√√√−nζ̄2W−1

(
exp

(
`2

nζ̄2 − 1
)(

`2

nζ̄2−1
))

+ `2 − nζ̄2

such that for any (fixed) hyperparameter set ψj, j = 1, . . . ,n the system (3.14) is a.s.
asymptotically stable.

Proof. Similar to the proof of Theorem 3.2, consider

δVsq(xκ) =
n∑
j=1

σ2
j (xκ)− xᵀ

κxκ ≤ nmax
j
σ2
j (xκ)− xᵀ

κxκ,

which is negative for ‖xκ‖ > ι. In a first step, we analyze the area around the origin and
how to ensure δVsq(xκ) < 0 using a single additional data point.
Since the SE kernel is stationary, we can introduce the notation k(x,x′) = k(x − x′).

Furthermore, we denote the posterior variance function of a GP with hyperparameters ζ̄2, `2

and the dataset D2 =
{

(0, 0) ,
(
x(a),y(a)

)}
by σ2

D2(·). It serves as an upper bound for the
variance function maxj σ2

j (·) with dataset D2 ∪ D, for the same reasons as in Lemma 2.1.
First, we analyze the single dimensional case n = 1 to obtain a location for a single

additional data point x(a) = ra which ensures nσ2
D2(x) < x2 for x ∈ [0;x(a)]. According

to [137], σ2
D2(·) is given by

σ2
D2(x) = ζ̄2 − ζ̄2 (k(x)2 + k(ra−x)2)− 2k(ra)k(x)k(ra−x)

(ζ̄2)2 − k(ra)2 ,

where k(0) = ζ̄2 is used. Multiplying (ζ̄2)2 − k(ra)2 on both sides of σ2
D2(x) < x2 yields the

functions

Z̄(ra,x) := (ζ̄2)3 − ζ̄2k(ra)2 − ζ̄2k(x)2 − ζ̄2k(ra − x)2 − 2k(ra)k(x)k(ra − x),
Z(ra,x) := ((ζ̄2)2 − k(ra)2)x2,

for the left and right side, respectively. Their derivatives with respect to x are

∂Z̄(ra,x)
∂x

= 2
`2

(
ζ̄2xk(x)2 − ζ̄2(ra − x)k(ra − x)2 + k(ra)k(x)k(ra − x)(2x− ra)

)
= 2
`2

(
ra
(
k(ra)k(x)k(ra − x)− ζ̄2k(ra − x)2

)
+ x

(
ζ̄2k(x)2 + ζ̄2k(ra − x)2 − 2k(ra)k(x)k(ra−x)

))
,

∂Z(ra,x)
∂x

= 2x
(
(ζ̄2)2 − k(ra)2

)
.

Both derivatives are zero for x = 0. Thus, we consider the second derivatives evaluated at
the origin

Z̄ ′(ra) := ∂2Z̄(ra, 0)
∂x2 = 2

`2

(
(ζ̄2)3 − ζ̄2k(ra)2

(
1 + r2

a

`2

))
,

Z ′(ra) := ∂2Z(ra, 0)
∂x2 = 2((ζ̄2)2 − k(ra)2).

33

3 Identification of Stable Systems

With the lower branch of the Lambert W function W−1(·), it can be shown using [138] that

nZ̄ ′(ra)− Z ′(ra) = 2
`2

(
n(ζ̄2)3 − (ζ̄2)2`2 − k(ra)2

(
nζ̄2

(
1 + r2

a

`2

)
− `2

))

has only one positive zero at

ra = l√
nζ̄2

√√√√−nζ̄2W−1

(
exp

(
`2

nζ̄2 − 1
)(

`2

nζ̄2 − 1
))

+ `2 − nζ̄2.

Thus, for any x(a) ∈ [0; ra], it is concluded that nZ̄(ra,x)−Z(ra,x) < 0 for all x ∈
(
0;x(a)

]
.

Therefore, δVsq(x) < 0 holds ∀x ∈ (0;x(a)] if x(a) < r.
In the multiple dimensional case, it can be concluded from

∥∥∥x(a)
∥∥∥ < ra that δVsq(x) < 0

for all x = ax(a) with 0 < a ≤ 1. It therefore only holds on a line as visualized in Fig. 3.8
on the left.
To extend the result to a hyperball around the origin, we analyze the variance σ2

D2(x)
as x is moved on a hypersphere centered at the origin. Defining the constants c1 = k(‖x‖)
and c2 = k

(∥∥∥x(ã)
∥∥∥) and the variable τ =

∥∥∥x− x(ã)
∥∥∥, the derivative of σ2

D2(τ) with respect
to τ is given by

∂σ2
D2(τ)
∂τ

= ∂k(τ)
∂τ

−ζ̄2

(ζ̄2)2 − c2
2
(2k(τ)− 2c1c2),

which is non-negative because ∂k(τ)
∂τ
≤ 0 for the SE kernel, ζ̄2 ≥ c2 and k(τ) ≥ c1c2 since

∥∥∥x− x(ã)
∥∥∥2 ≤ ‖x‖2 +

∥∥∥x(ã)
∥∥∥2 ⇒ exp

(
−τ 2

2`2

)
≥ exp

(
−‖x‖2

2`2

)
exp

−
∥∥∥x(ã)

∥∥∥2

2`2



according to the triangle inequality. We conclude that the point with the highest variance
on the hypersphere lies on the opposite side of the point x(ã)

σ2
D2

(
−x(ã)

)
= max
‖x‖=‖x(ã)‖

σ2
D2(x),

as illustrated in Fig. 3.8 (center).
As a result, x(ã) must be chosen close enough to the origin, such that there exists a r̃a for

which all points ‖x‖ < r̃a are closer to x(ã), than to x(a),∥∥∥x(ã)+ x
∥∥∥ ≤ ∥∥∥x(ã)

∥∥∥+ ‖x‖ ≤
∥∥∥x(a)− x

∥∥∥ =
∥∥∥x(a)

∥∥∥− ‖x‖∥∥∥x(ã)
∥∥∥+ 2‖x‖ ≤

∥∥∥x(ã)
∥∥∥ ⇒

∥∥∥x(ã)
∥∥∥ ≤ 1

3
∥∥∥x(a)

∥∥∥,
which yields r̃a := ra/3.
So for the multidimensional case, it holds for all x with 0 < ‖x‖ < r̃a that nσ2

D2(x) < ‖x‖2

if
∥∥∥x(ã)

∥∥∥ ≤ r̃a. Thus we set x(N+1) = x(ã) according to Assumption 3.6.

34

3.3 Learning Lyapunov functions for stabilization

If r̃a > ι, the proof is completed since then nσ2
D2(x) < ‖x‖2 holds for all x ∈ X with one

additional training point.
For, r̃a ≤ ι, the region r̃a ≤ ‖x‖ ≤ ι, must be covered with enough training data to

ensure nσ2
D2(x) < ‖x‖2 everywhere. For simplicity, we show that nσ2

D2(x) < r̃2
a is ensured

for all ‖x‖ < ι. From the bound in Lemma 2.1, it follows that every additional data
point x(i), i ∈ {N + 2, . . . , N + Nadd} upper bounds the variance function in a radius rtr
given by

∥∥∥x− x(i)
∥∥∥2
< rtr ⇒ σ2

j (x) ≤ nζ̄2
(

1− exp
(
−‖x− x(i)‖2

`2

))
≤ r̃2

a.

The number of hyperballs with radius rtr required to cover a (larger) hyperball with radius ι
is given by the covering number. In [139] the upper bound on the covering number is given
by (1+2ι/rtr)n. Therefore, not more than (1+2ι/rtr)n+1 additional data points are required
to ensure δVsq(xκ) < 0 ∀x \ {0}, which concludes the proof.

Example 3.3. Reconsider Example 3.2 with n = 2, `2 = 1 and ζ̄2 = 1, for which ι ≈ 1.26
was obtained. According to Theorem 3.3, one training point x(ã) must be chosen near
the origin with r̃a ≈ 0.37 (ra ≈ 1.12). Figure 3.9 compares different choices of the first
additional data point x(ã). With rtr ≈ 0.0724 a maximum of Nadd = 1290 additional
training points is required to ensure a.s. asymptotic stability.

3.3 Learning Lyapunov functions for stabilization
For the stabilization of a GPSSM as presented in Sec. 3.2, any control Lyapunov function
(subject to Assumptions 3.4 and 3.5) is applicable. However, the GPSSM fGP(·) without
stabilization is the best fit to the data and therefore should only be minimally distorted
by the stabilization u(·). This requires an optimal choice of the Lyapunov functions V i∗

θi∗
(·)

based on the available data to properly describe the convergence behavior of the model.
This section presents a general framework for a data-driven optimization-based estimation
of the convergence behavior including the equilibria and discusses three specific choices for
the Lyapunov candidates.

3.3.1 Optimization-based formulation
Consider Lyapunov functions V i∗

θi∗
(·) which are parameterized by θi∗ ∈ Θi∗ and the estimated

equilibrium x̂i∗ ∈ Xi∗ . For fitting these parameters to the training set D, the following is
concluded.

Proposition 3.4. Consider N∗ Lyapunov candidates V i∗
θi∗

(·) under Assumptions 3.4 and 3.5
and the dataset from Assumption 3.2. Furthermore, consider Ii∗ =

{
i = 1, . . . ,N

∣∣∣x(i) ∈ Xi∗

}
and g : R→ R+, which is any function of the form

g(ξ) =
0 for ξ ≤ 0
g̃(ξ) for ξ > 0

with g̃(ξ) > 0 ∀ξ. (3.18)

35

3 Identification of Stable Systems

ι

x2

ra x(a) ι

x2

x(ã)

r̃a

rtr

x2

x1
r̃a

Figure 3.8: Illustration of the proof of Theorem 3.3. The red (stripped) areas indicate sets
where δVsq(x) < 0 holds. Blue crosses show additional training data in Dadd.
The one dimensional case is visualized on the left. The center shows the gener-
alization from one dimension to multiple dimensions with ‖x(ã)‖ = r̃a < ra/3.
The point −x(ã) is the most critical because the variance σ2

D2(·) decreases along
the direction of the arrows along the circle. On the right, a possible choice for
the covering with additional training points is shown.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.2

0.4

0.6

0.8

1

x

σ
2 D 2

(x
),
x

2

x2 nσ2
D2

(x), x(ã) = 0.3 nσ2
D2

(x), x(ã) = 1 nσ2
D2

(x), x(ã) = 1.6

Figure 3.9: Projection of Example 3.3 on a single axis. The condition x2 < nσ2
D2(x) holds ∀x

only if x(ã) = 0.3 < r̃a (green). For x(ã) = 1 (orange) it holds only in the positive
domain, for x(ã) = 1.6 (red), it is fulfilled nowhere around the origin.

36

3.3 Learning Lyapunov functions for stabilization

If the optimization
ηi∗ := min

θi∗∈Θi∗
x̂i∗∈Xi∗

∑
i∈Ii∗

g
(
V i∗
θi∗

(
y(i)

)
− V i∗

θi∗

(
x(i)

))
, (3.19)

results in ηi∗ = 0, then the GP model f̄(·) in (3.8) is exact at the training data in the i∗-th
region of attraction Xi∗ ∥∥∥f̄ (x(i)

)
− y(i)

∥∥∥ = 0, ∀i ∈ Ii∗ .
Proof. With the definition for g(·) in (3.18), it can be seen that ηi∗ = 0 holds if and only if

V i∗
θi∗

(
y(i)

)
− V i∗

θi∗

(
x(i)

)
≤ 0, ∀i ∈ Ii∗ . (3.20)

Since the GP mean function matches the true function at the training points µ
(
x(i)

)
= y(i)

(Lemma 2.1), the constraint (3.7b) is fulfilled for u = 0, which results in

f̄
(
x(i)

)
= µ

(
x(i)

)
= y(i), ∀i = 1, . . . ,N

which concludes the proof.
Remark 3.9. From the stability of the real system (Assumption 3.3) it can be concluded that
there always exists a positive definite function V : Xi∗ → R+,0 such that ηi∗ = 0. However,
it is unclear whether the chosen parameterization for V i∗

θi∗
(·) is suitable and thus (3.20) is

possibly violated for some data points. Nevertheless, the stability guarantees in Theorems 3.1
to 3.3 are not affected. The sub-optimality of the parameterization only affects the precision
of the model because the stabilization signal u(·) might become active where it should not,
e.g. at the training data points.

Example 3.4. Consider an unknown system with a single equilibrium and the training
data set

D =
{([

1.3
0.8

]
,
[
1.7
0.6

])
,
([

1.28
0.96

]
,
[
1.58
0.66

])
,
([

1.28
0.64

]
,
[
1.33
0.24

])}
.

For a Lyapunov candidate VSq(x) = (x− x̂∗)ᵀP (x− x̂∗), the initial estimates are chosen
to be θ = P = I2 and x̂∗ =

[
0.7 0.8

]ᵀ
. As illustrated in Fig. 3.10, this results in a

violation of condition (3.20) for two data points.
The optimal choices

x̂∗∗ =
[
1.6
0.8

]
θ∗ =

[
1 0
0 2.5

]

ensure that the Lyapunov function decreases for all data points (see Fig. 3.10), thus η = 0.

Remark 3.10. The definition of g(ξ) is designed to penalize a violation of the condi-
tion (3.20), since it results in ξ > 0. In contrast, any data point which fulfills (3.20) does not
increase (or decrease) the objective function. The form of g̃(·) is a design choice, where some
allow to employ efficient solvers for (3.19) as discussed in Propositions 3.5 to 3.7. In general,
it is advisable to choose a continuous function with lim

ξ→0
g̃(ξ) = 0 to avoid a discontinuous

optimization problem.

37

3 Identification of Stable Systems

x1

x2

x̂∗

θ
x̂∗ → x̂∗

∗

θ → θ∗

x1

x2

x̂∗ x̂∗
∗

Figure 3.10: Illustration for the optimization-based learning of a Lyapunov function from
data in (3.19). The optimal values for x̂∗ and θ are denoted by x̂∗∗ and θ∗,
respectively. The solid/dashed black/blue lines are level lines of a Lyapunov
candidate, the red arrows denote data points violating the condition (3.20) and
green arrows indicate data points in accordance to condition (3.20).

3.3.2 Specific Lyapunov candidates
This sections presents three specific Lyapunov candidates and discusses the resulting prop-
erties for the optimization (3.19). For notational convenience, we consider only a single
equilibrium and use Vθ for V i∗

θi∗
(·), x̂∗ for x̂i∗ , θ for θi∗ , Θ for Θi∗ and X for Xi∗ .

Quadratic Lyapunov function This Lyapunov candidate is defined as

VSq(x) = (x− x̂∗)ᵀP (x− x̂∗), P � 0, (3.21)

with θ = P and Θ = Sn+. The following is concluded.

Proposition 3.5. Consider a quadratic Lyapunov candidate (3.21), a convex set X and a
non-decreasing convex function g(·). Then, the optimization (3.19) is a biconvex optimization
problem which is convex in θ for constant x̂∗ and convex in x̂∗ for constant θ.

Proof. For a fixed x̂∗, VSq(·) is linear in θ. The difference of two linear function is linear and
therefore the argument of g(·) is linear in θ. For a fixed θ, VSq(·) is quadratic in x̂∗, but due
to a cancellation of the squared terms, the argument of g(·) is linear in x̂∗. The composition
of a linear function and the non-decreasing convex function g(·) is convex [134]. Since the
sum of convex functions is convex, the objective function is convex. As the constraint sets
are convex, the optimization problem is biconvex.

Based on this property, the optimization of the parameters of VSq(·) can be performed
efficiently based on biconvex optimization algorithms [140]. However, the low flexibility
with only a few parameters does not allow to represent a complex convergence behavior
and η must generally be expected to be larger for the quadratic Lyapunov function than for
the following Lyapunov functions with more parameters.

Sum of squares (SOS) Lyapunov functions A SOS [141] is a polynomial function
defined as follows.

38

3.3 Learning Lyapunov functions for stabilization

Definition 3.1. For x ∈ Rn, a multivariate polynomial ppoly(x) is a sum of squares (SOS)
if there exist polynomials rm(x), m = 1 . . . dpoly for which

ppoly(x) =
dpoly∑
m=1

r2
m(x). (3.22)

Alternatively, SOS are characterized as follows [142].

Property 3.1. A polynomial ppoly(x) of degree 2dpoly is a SOS if and only if there exists a
positive definite matrix Q ∈ Snpoly

+ , such that p(x) can be formulated as

ppoly(x) = mon(x)ᵀQmon(x),

where mon(x) ∈ Rnpoly contains monomials3 of degree greater zero and less or equal to dpoly.

This equivalence simplifies the construction of a SOS to a search for a positive semidefinite
matrix Q. For

VSOS(x) = mon(x− x̂∗)ᵀQmon(x− x̂∗), Q � 0, (3.23)

with θ = Q and Θ = Snpoly
+ , the following holds.

Proposition 3.6. Given a SOS Lyapunov candidate (3.23) and a non-decreasing convex
function g(·), the optimization (3.19) is convex in θ for a fixed x̂∗.

Proof. The proof is analog to Proposition 3.5.

Thus, by gaining more flexibility in the Lyapunov candidate, we have lost the computa-
tional efficiency to estimate the equilibrium point x̂∗ in a biconvex optimization.

Weighted sum of asymmetric quadratic functions (WSAQF) A weighted sum of
asymmetric quadratic functions (WSAQF) Lyapunov function, proposed in [125] as

VWSAQF(x) = (x− x̂∗)ᵀP 0(x− x̂∗) +
L∑
l=1

il(x− x̂∗)
(
(x− x̂∗)ᵀP l

(
x− x̂∗ − xWSAQF

l

))2
,

with il(x) =
{

1 if xᵀP l

(
x− xWSAQF

l

)
≥ 0

0 otherwise,
(3.24)

has continuous first order partial derivatives and is positive definite for P 0, . . .P L ∈ Sn+
and xWSAQF

1 , . . . ,xWSAQF
L ∈ X. Its parameters are accordingly

θ =
{
P 0, . . . ,P L,xWSAQF

1 , . . .xWSAQF
L

}
.

Due to a high number of parameters, it is also flexible, however the parameters θ cannot be
determined as efficiently as for SOS because (3.19) is biconvex as stated in the following.

3A monomial of degree dpoly in x ∈ Rn is a scalar function
∏n
j=1 x

Υj

j where Υj are non-negative in-
tegers with

∑n
j=1 Υj = dpoly. The number of all possible monomials of degree ≤ dpoly and > 0

is npoly = (n+dpoly)!
n!dpoly! − 1.

39

3 Identification of Stable Systems

Proposition 3.7. Given the WSAQF Lyapunov candidate in (3.24) and a non-decreasing
convex function g(·), the optimization (3.19) is a biconvex problem in θ for fixed x̂∗.

Proof. The proof is analogous to Proposition 3.5.

This suggests that SOS is the most suitable choice because it allows a high degree of flex-
ibility (compared to the quadratic Lyapunov function) and a more efficient computation of
its parameters than the WSAQF Lyapunov function. This will be validated in the numerical
evaluation in Sec. 3.4.

3.4 Evaluation

3.4.1 Evaluation setup
For the numerical evaluation, we work with the LASA handwriting dataset4, which con-
tains 24 goal-directed human motions in two dimensions (n = 2). There are 3 - 15 repeti-
tions for each motion and all repetitions terminate at the same final location. Due to the
generation by humans, there is no method known (to the author) to design a suitable para-
metric model describing the motion. Therefore, our data-driven nonparametric approach is
required to model and generalize the given motions using a dynamical system.
The common property of all motions is their convergence to a single goal point and to

preserve this key feature, the dynamical system model must be stable. Therefore, our idea
to stabilize a GPSSM is applicable here for this dataset.
We will assume that all trajectories are generated by a system of the form (3.1), which is

asymptotically stable (Assumption 3.3) with the final location being the single equilibrium
point x∗ = 0 (N∗ = 1, X = R2). The task is to identify a model of the form (3.4) and (3.5),
which generates trajectories with a high similarity to the demonstrations and also converges
to (the estimated) equilibrium.
Before presenting the results, we first discuss some implementation details in Sec. 3.4.2.

Then, we focus on the estimation of an unknown equilibrium based on the optimization (3.19)
in Sec. 3.4.3. Second, in Sec. 3.4.4, we consider the single equilibrium point to be known
(x∗ = x̂∗ = 0) to perform a quantitative comparison for the deterministic GP model on the
full dataset (24 motions) among the different Lyapunov candidates. Finally, in Sec. 3.4.5 we
simulate the probabilistic case showing how crucial the stabilization is.

3.4.2 Implementation
Before presenting the results, we first provide an algorithmic overview of the proposed ap-
proach in Algorithm 3.1 and details regarding the implementation.5
As already mentioned, the measurements acquired in Line 1 are taken from the LASA

dataset. In the first step of the proposed approach, the GPs are trained (line 2) based
on the training data using a quasi-Newton method to perform the optimization (2.6). In
Line 7, the optimal Lyapunov function based on (3.19) is determined using an interior-
point method. We do not explicitly exploit the (bi-)convexity with a specialized algorithm

4Available for download at https://bitbucket.org/khansari/seds
5Code for MATLAB is provided: https://gitlab.lrz.de/ga68car/stablegps.git

40

https://bitbucket.org/khansari/seds
https://gitlab.lrz.de/ga68car/stab legps.git

3.4 Evaluation

Algorithm 3.1 The proposed stable identification and prediction using GPSSMs.
1: take measurements D at arbitrary locations (Assumption 3.2)
2: optimize hyperparameters ψj, ∀j according to (2.6)
3: if probabilistic case ∧ nζ̄2 > `2 then
4: take Nadd further measurements Dadd at specific locations according to Theorem 3.3
5: end if
6: select region of attraction i∗ s.t. x0 ∈ Xi∗
7: optimize θi∗ of the Lyapunov function V i∗

θi∗
(·) using D (∪ Dadd) and estimate the equi-

librium x̂i∗ using (3.19)
8: initialize κ = 0
9: while number of desired simulation steps not exceeded do
10: if deterministic case then
11: determine optimal u(xκ) based on (3.7)
12: set xκ+1 = µ(xκ) + u(xκ)
13: else
14: determine optimal u(xκ) based on (3.13)
15: sample ωκ ∼ N (0, In)
16: set xκ+1 = µ(xκ) + u(xκ) +

√
Σ(xκ)ωκ

17: end if
18: update κ← κ+ 1
19: end while

to allow a fair comparison of all proposed Lyapunov candidates. Nevertheless, finding the
global optimum is more promising for the SOS and quadratic Lyapunov function. According
to Propositions 3.5 and 3.6, we chose g̃(ξ) = ξ as it results in a non-decreasing monotone
function g(·).
For efficient implementation, we perform a Cholesky decomposition for all positive definite

matrices and optimize over the nonzero entries of the lower triangular matrix. This avoids
to explicitly impose the symmetry constraint. Furthermore, the optimization (3.19) also
requires a regularization term to ensure that the objective function is not minimized by
setting all parameters in Q,P ,P 0, . . .P L close to zero. Instead, we impose a lower bound
on the eigenvalues of the positive definite matrices by defining

Snε$ =
{
P ∈ Sn+

∣∣∣$(P) ≥ ε$
}

, n ∈ N

and use it instead of Sm+ to define the constraint set Θ. This will not affect the statements
in Propositions 3.5 to 3.7 because the constraint ε$ − $(P) < 0 is convex (the eigenvalue
operation is linear and the minimum of a linear function is concave, its negative is convex).
Here we have chosen ε$ = 0.01.

Remark 3.11. For many practical applications, the equilibrium point of the unknown sys-
tem (3.1) might be known a priori. In this case, the Lyapunov function search is simplified
as the optimization is only over θ and therefore convex for VSq(·) and VSOS(·).

The simulation is initialized once at each starting point of the training trajectories and runs
until the state reaches proximity of the (estimated) equilibrium point ‖x− x̂∗‖ < 5 or a limit
of 1000 steps (choice depends on the application scenario and the willingness to wait for the

41

3 Identification of Stable Systems

simulation result). The optimization (3.7) and (3.13) (in Line 11 and Line 14, respectively)
are performed at each step by the interior-point algorithm, initialized with u = x̂∗ − µ(x).
The constraints (3.7b) and (3.13b) are rewritten to

V (µ(xκ) + u)− V (xκ) ≤ −εV V (xκ)
δV (xκ) ≤ −εV V (xκ)

with εV = 0.02 for the deterministic and probabilistic case, respectively to avoid the strict
inequalities.
The Lyapunov functions presented in Sec. 3.3.2 are utilized as follows.

• A quadratic Lyapunov function VSq(·) defined in (3.21) with n(n + 1)/2 = 3 free
parameters (the elements of the Cholesky decomposition of P).

• The SOS Lyapunov function VSOS(·) defined in (3.23) with degree 2dpoly = 4, resulting
in npoly = 5 monomials and therefore npoly(npoly +1)/2 = 15 free parameters (Cholesky
decomposition of Q).

• The WSAQF Lyapunov function VWSAQF(·) defined in (3.24) with L = 3 resulting
in (L + 1)n(n + 1)/2 + nL = 18 free parameters for the Cholesky decompositions
of P 0, . . . ,P 3 and xWSAQF

1 , . . . ,xWSAQF
3 .

3.4.3 Equilibrium estimation
For this first example, we assume the true equilibrium point x∗ = 0 to be unknown and only
consider the SOS Lyapunov function. Thus, for the optimization (3.19) a total of 17 (15
for SOS, 2 for the equilibrium point) variables are optimized. We utilize the motion called
Multi-Model 1 from the LASA dataset in this example.
The result for the simulation of the deterministic case is shown Fig. 3.11. The equilibrium

is identified to x̂∗ ≈
[
0.8120 −2.3987

]ᵀ
, which is sufficiently close to the origin (the true

equilibrium) as the simulation is terminated for ‖xκ − x̂∗‖ < 5.

3.4.4 Quantitative comparison
To enable a quantitative comparison of the Lyapunov functions presented in Sec. 3.3.2, we
define the following measures for the precision of the learned model.

• The total area between the curve connecting the training points and the curve con-
necting the simulated trajectory (see Fig. 3.12)

• The average correction effort Ecor ∈ R+ defined as Ecor = ∑
κ
‖uκ‖

/∑
κ
‖xκ‖ over all time

steps and trajectories.

The results are shown in Table 3.1. Regarding flexibility, SOS outperforms the quadratic
and WSAQF Lyapunov function on the employed dataset as shown in Table 3.1 since it
leads to the highest precision in both employed measures. Regarding the computational
complexity, the optimization of the parameters of the quadratic and the SOS Lyapunov
function (3.19) are convex problems, and therefore have significant advantages over the

42

3.4 Evaluation

−200 −150 −100 −50 0 50 100 150 200

−100

−50

0

50

100

150

200

x1

x
2

GPSSM without stabilization u(·)

‖σ2(x)‖
D
µ(x)

−200 −150 −100 −50 0 50 100 150 200

−100

−50

0

50

100

150

200

x1

x
2

GPSSM with stabilization u(·)

VSOS(x)
D
f̄(x)
xκ

Figure 3.11: For the motion Multi-Model 1 (training data in black), the GPSSM without sta-
bilization xκ+1 = µ(xκ) (top) and the stabilized model xκ+1 = µ(xκ) + u(xκ)
(bottom) are visualized (blue). Without stabilization (top), there is an unde-
sired equilibrium near

[
−200 80

]ᵀ
. The trajectories (red) converge asymptoti-

cally to the estimated equilibrium x̂∗ =
[
0.81 −2.40

]ᵀ
. Level lines of the SOS

control Lyapunov function are shown in green.

43

3 Identification of Stable Systems

x1

x2

x5
x(6)

x(1)
x(2)

x(3)
x(4)

x(5)

x0
x1

x2x3
x4

Figure 3.12: An illustration of the area error. The area shown in red measures how far the
trajectory generated by the model xκ+1 = f̄(xκ), x0, . . . ,x5 is from the training
trajectory x(1), . . . ,x(6).

WSAQF. Computing the stabilizing command for SOS has a disadvantage compared to
WSAQF and quadratic Lyapunov functions as (3.7) is not convex. However, this drawback is
inherent to flexible Lyapunov candidates: If only convex Lyapunov candidates are permitted,
systems with a complex convergence behavior cannot be represented and thereby lead to
imprecise modeling.

3.4.5 Probabilistic simulation
To evaluate the probabilistic setting discussed in (3.2), we compare simulations for the
following two settings.

• GPSSM without stabilization: Realizations of the trajectories are generated by drawing
in each step from

xκ+1 ∼ N (µ(xκ), Σ(xκ)), (3.25)

using the definitions in (2.7)/(2.8) for µ(·) and Σ(·).

• GPSSM with stabilization through the SOS Lyapunov function: At each step u(·) is
computed according to (3.13) and the next step is drawn from

xκ+1 ∼ N (µ+ u(xκ), Σ(xκ)) , (3.26)

which is equivalent to (3.5). The stabilizing command is independent of the realization
of xκ+1, which is unknown when u is computed. It only depends on µ(xκ) and Σ(xκ).

For both cases, the system is initialized twice with x0 =
[
−150 −120

]ᵀ
as shown in Fig. 3.13.

For the GPSSM without stabilization both trajectories do not converge in contrast to the
trajectories of the stabilized model, which are guaranteed to converge. Here only ultimate
boundedness holds because nζ̄2 > `2, with `2 ≈ 23.7266, and ζ̄2 ≈ 88.3054. The ultimate
bound ι ≈ 13.2856 is guaranteed according to Theorem 3.2. To achieve asymptotic stabil-
ity, Nadd = 10 additional data points would be necessary according to Theorem 3.3.

44

3.4 Evaluation

−160 −140 −120 −100 −80 −60 −40 −20 0 20

−120

−100

−80

−60

−40

−20

0

20

x1

x
2

GPSSM without stabilization

‖σ2(x)‖
D
µ(x)

−220 −200 −180 −160 −140 −120 −100 −80 −60 −40 −20 0 20

−140

−120

−100

−80

−60

−40

−20

0

20

40

x1

x
2

Comparing trajectories of GPSSMs with/without stabilization

(3.26) stabilized xκ+1 = N (µ(xκ) + u(xκ), Σ(xκ))
(3.25) non-stabilized xκ+1 = N (µ(xκ), Σ(xκ))

Figure 3.13: The mean and variance of a GPSSM are visualized on the top, the stochastic
simulations on the bottom. The black arrows indicate the training data for the
N-Shape motion. The stabilized trajectories are shown in red, the trajectories
without stabilization in green. For both cases, the model is initialized twice
at
[
−150 −120

]ᵀ
.

45

3 Identification of Stable Systems

V (·) Ecor Area Error (3.19) convex (3.7) convex
quadratic 0.22 8.1e+03 yes yes
SOS 0.038 3.3e+03 yes no
WSAQF 0.074 4.0e+03 no yes

Table 3.1: Average performance and properties of quadratic, SOS and WSAQF Lyapunov
functions on the LASA handwriting dataset. The convexity of (3.19) refers to the
case for which x∗ is known.

3.5 Discussion
The presented analysis is mainly focused on the SE kernel. While the results for the deter-
ministic case directly hold for other kernel classes as well, the results in the stochastic case
(Theorems 3.2 and 3.3) must be reevaluated. The ultimate boundedness results should be ex-
tendable to other bounded kernels, but the derivation of the asymptotic stability conditions
might not be possible. We leave this investigation to future work.
In Theorem 3.3, we derive how many data points are needed for asymptotic stability, but

we did not discuss where these must be positioned for efficient covering or how to obtain
these measurements. For the first, we refer to existing literature on covering, e.g., [143], [144]
and [139]. For the latter, we refer to Chapter 5 and the literature [66], where the safe
exploration using learning control is discussed.
This contribution has mainly focused on transferring knowledge about the convergence

behavior of the real system into a non-parametric model. Nevertheless, there exist numerous
other examples where high level knowledge is available and must be transferred into the
model to achieve physical consistency. One of them is constrained dynamics of mechanical
systems as discussed in [145], where specific kernels are chosen to ensure the model adheres
to the Gauss’ principle.
While the dynamics are learned by a nonparametric GP model, the convergence behavior

is captured in parametric Lyapunov functions. This does not consequently follow the data-
driven concept and requires prior knowledge to choose a proper structure for the Lyapunov
candidates. With nonparametric Lyapunov candidates with universal approximation prop-
erties a consistent data-driven concept can be realized. The work in [146] shows promising
results based on an approximate infinite horizon cost function, but is also computationally
more demanding.
In addition, there are currently no guarantees on how far the estimated equilibria are from

the true equilibria. The simulation suggests that the presented technique leads to accept-
able estimates if the training trajectories approach the equilibrium from different directions.
However, a rigorous theoretical investigation is missing.

3.6 Summary
This chapter proposes a novel approach for learning stable GPSSMs with multiple equilibria
using control Lyapunov functions. By providing an algorithm which includes fundamental
physical properties (here energy dissipation / stability) into the data-driven identification, we
take a step to solve Challenge 1. By investigating not only the deterministic interpretation
of the GP, but also considering stability of the stochastic model, we lay the foundation for

46

3.6 Summary

uncertainty aware control laws (Challenge 3).
For the deterministic case, we show (global) asymptotic stability of the model and prove

that the stabilization will never reduce the precision of the GP model (if the Lyapunov func-
tions are chosen correctly). For the stochastic case, we show (global) ultimate boundedness
and derive an upper bound for the number of additional training data which are required to
ensure asymptotic stability independently of the kernel parameters.
A generic framework to learn the convergence behavior of dynamical systems from training

data is presented in this chapter. This includes data-driven optimization-based adaptation
of a parametric Lyapunov candidate and an estimation of the equilibria. Furthermore, we
derive (bi-)convexity results for different types of Lyapunov candidates to ensure the required
optimization can be performed efficiently. The numerical analysis based on a real-world
human motion data set shows that SOS Lyapunov functions are well suited for data-driven
learning of the convergence behavior of dynamical systems.

47

Uncertainty-based
Control Lyapunov Design 4

Uncertainties in a control loop can arise from various sources, e.g., measurements of the
output can be corrupted by noise, the process itself can be of stochastic nature or the
model of the process is imprecise. Incorporating these uncertainties into the control design
becomes particularly important in safety-critical applications and various techniques have
been developed to handle uncertainties properly.
Robust control is a basic concept to ensure proper operation under a bounded model

error and allows to provide stability guarantees for closed-loop systems under specific as-
sumptions [147]. However, these assumptions are often not easy to justify and lead to a
conservative strategy, which sacrifices control performance [148]. Alternatively, stochastic
control can also handle uncertainties in the system and perform a profound stability analysis
based on the stochastic differential equations [128], [149], [150]. But this technique considers
uncertainty as a random behavior, rather than ignorance of the true dynamics.
Based on optimal control, various differential dynamic programming approaches are ex-

tended to deal with uncertain systems [44]. These predictive control techniques take the
future uncertainty implicitly into account for their control decision [151]. Extensions which
allow to explicitly weight the future uncertainties in the cost function are presented in [129],
[152], [153] known as risk-sensitive or uncertainty-dependent control design. However, sta-
bility or safety guarantees for these methods do not exist.
Since GPs provide a model fidelity measure, they are well suited for an uncertainty-based

control design. Nevertheless, a large body of the GP based control literature does not take
it explicitly into account for the design. The reinforcement learning approaches in [32], [33]
propagate uncertainty in the prediction of the roll-outs and thereby implicitly evaluate the
uncertainty in the cost function. However, uncertainties are not explicitly avoided, since
exploration (visiting areas with poor models knowledge) is actively pursuit. For safety-
critical applications such behavior is not acceptable.
The application in robotics utilize the GP only as function approximation and therefore

drop the additional information regarding the uncertainty [72], [74]. The work in [102]
controls the leader-follower behavior in multi-agent systems to ensure the agent with more
knowledge (less uncertainty) takes over a leading role, while others follow (see Sec. 6.1 for
more details). Tuning the gains of a feedback control law based on this uncertainty measure
is proposed in [82] and conditions for ultimate boundedness are derived in [84]. While
this approach increases safety in human-robot interaction due to a less aggressive controller
whenever possible, it does not address the fundamental problem to avoid areas, where the
model is poorly trained. Particularly in data-driven models it is essential to bypass areas
without training data, since the behavior of the system is unknown and therefore possibly
harmful.

49

4 Uncertainty-based Control Lyapunov Design

This chapter’s major contribution is an uncertainty-based control approach which asymp-
totically stabilizes an initially unknown system with high probability. The key idea is to
favor areas of the state space, where the uncertainty is low using dynamic programming ap-
proaches. We show that this behavior is the safest under a given power constraint. Thereby,
we reveal an equivalence of maximizing the probability for stability and the minimization
of uncertainty along the trajectory, which is intuitive but - to the best of our knowledge -
has not been shown so far. By using the value function of an optimal control problem as
uncertainty-aware Lyapunov function, we are able to use algorithms from path planning,
which ensure high computational efficiency.
The chapter is based on the work published in [9]. It is structured as follows: After

defining the problem setting in Sec. 4.1, this chapter proposes the uncertainty-aware control
approach in Sec. 4.2 and analyses its properties. A numerical illustration is provided in
Sec. 4.3 followed by a discussion in Sec. 4.4.

4.1 Problem formulation
In this chapter, a fully actuated control-affine system is considered

ẋ = f(x) +G(x)u, x(0) = x0, (4.1)

with state x ∈ X ⊂ Rn, compact X and input u ∈ U ⊆ Rn. The goal is an asymptotic
stabilization at an arbitrary point xg ∈ X considering the following assumptions:

Assumption 4.1. The function f : X→ Rn is unknown but the function value f(xg) is
known.

Without loss of generality, we take xg as an equilibrium point at the origin, thus f(0) = 0.
The assumption is easy to fulfill as only a single (noise free) measurement of the system
without control input is required.
The uncontrolled dynamics f(·) is unknown, however, as already discussed in Sec. 2.4.1

general prior knowledge must be assumed. Here, as already explained in Assumption 2.1,
the complexity of the function in terms of its RKHS norm is limited.

Assumption 4.2. Each element in f(·) =
[
f1(·) · · · fn(·)

]ᵀ
has a bounded RKHS norm

under a known kernel kj(·, ·), thus ‖fj‖kj < Bfj for j = 1, . . . ,n.

Furthermore, the effect of the control input on the state is known and the full actuation
holds across the entire state space.

Assumption 4.3. The function G : X → Rn×n is known, differentiable and invertible,
thus rank (G(x)) = n, ∀x ∈ X.

This limits the class of systems which are considered, nevertheless it holds for Lagrangian
systems, which are considered to be a quite general class. An example is a coupled multiple
tank system with separate actuated inflows for each tank.

Remark 4.1. An extension to systems which are not fully actuated is provided in Sec. 4.2.4.

To allow data-driven modeling of the unknown dynamics f(·), we assume the availability
of training data.

50

4.2 Control design and analysis

Assumption 4.4. A training set with N ∈ N data pairs consisting of the state and a noisy
measurement of its derivative

D =
{(
x(i),y(i)

)}N
i=1

, y(i) = f
(
x(i)

)
+ ω(i), (4.2)

is available, where ω(i) are i.i.d. samples of ω ∼ N (0,σ2
onIn), σ2

on ∈ R+,0.

We leave it open how this training data is obtained, but we also do not impose any
restriction where the data must be collected.

Remark 4.2. Note that for a well-behaved dynamical system without finite escape time, the
data can be collected in (short) uncontrolled runs of the system for a finite time interval.

Remark 4.3. Today’s improved sensor technology justifies the assumption on perfect mea-
surements of the state. If this cannot be argued, we refer to the literature [154] dealing with
inference for noisy input. However, extending our approach to this case is left for future
work. The measurements of the state’s derivative can be corrupted by noise, which allows
e.g., for finite difference approximations.

The goal is to design a state feedback control law which asymptotically stabilizes the
system (4.1) with high probability. Based on feedback linearization, we develop a robust
control Lyapunov approach using a GP model of the system. We aim to maximize the
probability for stabilization through an optimal choice of the Lyapunov function.

4.2 Control design and analysis
To realize a feedback linearizing control, a model of the unknown dynamics is required. We
utilize GP regression as introduced in Sec. 2.1 and include the known equilibrium point at the
origin (from Assumption 4.1) according to Remark 2.3 with xkn = 0, ykn = 0. Thus, for the
model estimate f̂(·), we utilize the GP posterior mean predictions for multiple dimensions
(as proposed in Remark 2.2) f̂(·) = µ(·), where all kernels are SE covariance functions as
defined in (2.5) and the prior mean function is set to zero. An extension to other classes of
kernels or prior mean functions is possible, but not discussed in this thesis.
The proposed control law is then given as

u(x) = −G−1(x)
(
f̂(x) + ku∇xᵀVclf(x)

)
, (4.3)

where ku ∈ R+ and Vclf : X → R+ is a positive definite differentiable function employed
as control Lyapunov function. The term −G−1(x)f̂(x) compensates the nonlinear system.
However, different from the classical feedback linearization, ku∇xᵀVclf(x) is not a linear control
law, but is a robustifying term derived from a control Lyapunov function.
First, in Sec. 4.2.1, we generally derive sufficient conditions on Vclf(·) and ku to ensure

stability of the closed-loop system with high probability. Then, in Sec. 4.2.2, we analyze
how to maximize this probability under an input power constraint. Finally, in Sec. 4.2.3,
we propose an optimal control Lyapunov function, which can efficiently be computed as it
is based on dynamic programming principles.

51

4 Uncertainty-based Control Lyapunov Design

4.2.1 Conditions for asymptotic stability
For the control law (4.3), the following is concluded.

Theorem 4.1. Consider the unknown system (4.1) under Assumptions 4.1 to 4.4 where f(·)
is modeled by a GP (2.7)/ (2.8) with SE kernel (2.5), denoted as f̂(·). Further consider
the control law (4.3) with ku > ‖β‖ and Vclf(·) is a positive definite differentiable function
with ‖∇xVclf(0)‖ = 0 and

‖σ(x)‖ − ‖∇xVclf(x)‖ ≤ 0, x ∈ X. (4.4)

Then, the origin of the closed-loop system is semiglobally asymptotically stable with proba-
bility at least 1−∑n

j=1 δj for all x0 ∈ X, where δj and β are defined in Proposition 2.1.

Proof. Choosing Vclf(·) as Lyapunov candidate yields

V̇clf(x) = ∇xVclf(x)ẋ = ∇xVclf(x)(f(x) +G(x)u(x))
= ∇xVclf(x)

(
f(x)− f̂(x)− ku∇xᵀVclf(x)

)
≤ ‖∇xVclf(x)‖

∥∥∥f(x)− f̂(x)
∥∥∥− ku‖∇xVclf(x)‖2,

where the inequality results from the Cauchy-Schwarz inequality. Proposition 2.1 yields

P
{
V̇clf(x) ≤ ‖∇xVclf(x)‖ (‖β‖‖σ(x)‖ − ku‖∇xVclf(x)‖) ,∀x ∈ X

}
≥ 1−

n∑
j=1

δj,

which results under condition (4.4) and ku > ‖β‖ in

P
{
x ∈ X \ {0}, V̇clf(x) < 0

}
≥ 1−

n∑
j=1

δj.

The strict inequality holds because ‖∇xVclf(x)‖ is lower bounded by the positive definite
function ‖σ(x)‖. Additionally, V̇clf(0) = 0 holds from ‖∇xVclf(0)‖ = 0. As X can be chosen
arbitrarily large (however must be compact as required by Proposition 2.1) the asymptotic
stability holds semiglobally.

Figure 4.1 visualizes the idea of the proof. It imposes two sufficient conditions on the
design of the control law: i) the gain ku must be chosen large enough and ii) the norm of the
gradient of the Lyapunov function ‖∇xVclf(·)‖ most be higher than the uncertainty ‖σ(·)‖
for all x ∈ X.

Example 4.1. Consider a one dimensional example n = 1 on X = [−2; 2] and a
SE kernel with `2 = 0.3 and ζ2 = 1. The dataset contains only the known equilib-
rium D = {(0, 0)}. Then, the quadratic Lyapunov function V (A)

sq = x2 satisfies the
constraint (4.4), while V (B)

sq = 1
2x

2 does not. The theoretical derivation is analogous to
the proof of Theorem 3.2, a graphical illustration is provided in Fig. 4.2.

52

4.2 Control design and analysis

Vclf(x)

‖β‖‖σ(x)‖

x

ẋ

f(x)
−f̂(x)

−ku∇x
ᵀ Vclf(x

)

u

Figure 4.1: Illustration of the proof for Theorem 4.1: For asymptotic convergence, the Lya-
punov function (black ellipse shows a level line) must be decreasing along the
system’s trajectory. Thus, ẋ (yellow) must point in the left half-plane of the
dashed tangent line (marked with green stripes). From Proposition 2.1 it is
known that f(·) − f̂(·) lies somewhere in the orange circle. Choosing a large
enough term for −ku∇xᵀVclf(x) (magenta), which is always perpendicular to the
tangent line, will guarantee the asymptotic convergence.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

2

x

σ
(x

),
‖∇

x
V

clf
(x

)‖

|2x| |x| σ(x)

Figure 4.2: Illustration for Example 4.1 and the condition (4.4) in Theorem 4.1.
For ∇xV (A)

sq = 2x (blue) the robustification in the control law (4.3) dominates
the uncertainty (red) for all x ∈ X, for ∇xV (B)

sq = x (green) it does not, which is
therefore not suitable.

53

4 Uncertainty-based Control Lyapunov Design

4.2.2 Optimality under power limitations
The conditions for stability derived in Theorem 4.1 leave large freedom in the control design
because there exists are variety of control Lyapunov functions which satisfy the requirements.
In Example 4.1 the quadratic Lyapunov function with properly chosen parameters meets
these requirements, but leads to unnecessary large control signals, in particular for |x| > 1
(compare Fig. 4.2).
Considering a power constraint in the control input

‖u(x)‖ ≤ umax, x ∈ X. (4.5)

the actuators can quickly saturate. Furthermore, the stability holds according to Theo-
rem 4.1 only with a certain probability. It therefore desirable to make use of this freedom in
the design of Vclf(·) to optimize this reliability υ ∈ (0; 1), defined as υ := 1−∑n

j=1 δj.
We introduce the notation β̃(υ) :=

∥∥∥[β1(δ1) · · · βn(δn)
]ᵀ∥∥∥ and its corresponding in-

verse υ = b(β1, . . . , βn), which exists under the assumption δ = δ1 = δ2 = · · · = δn due to
the monotonicity of βj(δj), for j = 1, . . . ,n. Furthermore, we define

σ̄ := max
x∈X
‖σ(x)‖, µ̄ := max

x∈X

∥∥∥f̂(x)
∥∥∥, (4.6)

which exist due to the boundedness of the SE kernel. The smallest singular value of the
matrix G(x), x ∈ X is denoted by %

G
∈ R+,0.

This allows to find necessary conditions for the optimality of Vclf(·) and ku to maximize
the reliability υ under the power constraint (4.5).

Theorem 4.2. Assume umax > µ̄/%
G
and consider the upper bound for the control input

‖u(x)‖ ≤ (µ̄+ ku‖∇xᵀVclf(x)‖)/%
G
≤ umax, x ∈ X. (4.7)

Then, the optimal reliability

υ∗ = arg max
‖∇xVclf(x)‖,ku

υ (4.8a)

s.t. (µ̄+ ku‖∇xVclf(x)‖)/%
G
≤ umax, ku > β̃(υ),

‖∇xVclf(x)‖ ≥ ‖σ(x)‖, x ∈ X
(4.8b)

is attained for

‖∇xVclf(x)‖ = ‖σ(x)‖, ku = (umax%G − µ̄)/σ̄ + ε. (4.9)

for any arbitrarily small ε with (umax%G − µ̄)/σ̄ > ε > 0. The maximum reliability is

υ∗ = b
(
(umax%G − µ̄)/σ̄ − ε

)
. (4.10)

Proof. The function β̃(υ) is monotone according to its definition in Proposition 2.1. This
allows to reformulate the optimization as a maximization of β̃. The objective is then linear
and the constraint set is convex. Thus, the maximum is attained on the boundary. As ku
must not depend on x, but (4.8b) must hold ∀x ∈ X, the lower bound (umax%G − µ̄)/σ̄ is
taken for ku.

54

4.2 Control design and analysis

Remark 4.4. Theorem 4.2 utilizes the upper bound (4.7) for the control input as con-
straint and does not maximize the reliability directly under (4.5). Therefore, the solu-
tion (4.10) lower bounds the actually achievable reliability, since (4.7) is more restrictive
than (4.5). For the remainder of this chapter, we mainly utilize the condition for optimal-
ity ‖∇xVclf(x)‖ = ‖σ(x)‖ which results from (4.7).

Theorem 4.2 provides insights on how the freedom in design of the control law (4.3)
can be utilized to maximize the reliability. The condition ‖∇xVclf(x)‖ = ‖σ(x)‖ clearly
indicates that the uncertainty in the model plays a crucial role in how the control Lyapunov
function Vclf(·) is chosen optimally, which will be discussed in more detail in the following
section.

4.2.3 Uncertainty-based control Lyapunov function
The optimality condition on the Lyapunov function Vclf(·) is a differential equation

‖σ(x)‖ = ‖∇xV (x)‖, x ∈ X (4.11)
with V (0) = 0,

where the boundary condition is obtained from Theorem 4.1. It cannot be solved analytically,
however, it is a well-known problem: It takes the same form as a necessary condition for the
optimal value function as derived from the Hamilton-Jacobi-Bellman (HJB) equation [155].
In a continuous path planning problem, the value function assigns to each initial state the
minimum accumulated cost to reach the goal state. The following theorem exploits this
relation.

Theorem 4.3. Consider the value function Vval : X→ R+,0 defined as

Vval(x0) = min
x̃(s)

∫ S

0
cσ (x̃(s)) ds s.t. x̃(0) = x0, x̃(S) = 0, (4.12)

representing the accumulated cost along an optimal path x̃(s) from the current state x0 to the
origin, which is parameterized by the arclength s ∈ [0;S], S ∈ R+ for which holds ‖dx̃

ds
‖ = 1.

For a stage cost cσ : X→ R+,0, given by

cσ(x) = ‖σ(x)‖, (4.13)

the value function Vval(·) is a control Lyapunov function Vclf(·) which solves the optimiza-
tion (4.8).

Proof. According to the HJB equation, the value function must satisfy the condition

‖∇xVval(x)‖ = cσ (x) , x ∈ X with boundary condition Vval(0) = 0. (4.14)

From the choice (4.13), it can be directly seen that the conditions for deriving the value
function (4.14) and for maximizing the achievable confidence in (4.11) are equivalent.

As a result of Theorem 4.3, the optimal control Lyapunov function is denoted by Vσ(·)
and defined as

Vσ(x) := min
x̃(s)

∫ S

0
‖σ (x̃(s))‖ds s.t. x̃(0) = x, x̃(S) = 0. (4.15)

55

4 Uncertainty-based Control Lyapunov Design

Remark 4.5. Equation (4.14) is also known as the inhomogeneous Eikonal equation [156].
Even though its solution is for most cost functions not differentiable, [157] developed so-called
viscosity solutions. These exist for continuous, bounded and positive definite cost functions,
which is fulfilled for the choice (4.13).

Remark 4.6. It can be concluded that there is an equivalence of the solution of the Eikonal
equation (4.14) and the optimal control Lyapunov function which maximizes the reliability.
From a practical perspective, this is helpful, since it allows to use existing tools from dynamic
programming, e.g., fast marching methods [158] for efficient computation. From a theoretical
perspective, it verifies an intuitive understanding: By choosing the trajectory which minimizes
the uncertainty along the path, the reliability, the probability for asymptotic stability of the
closed-loop system is maximized.

Note that the control law (4.3) drives the system towards parts of the state space where
the uncertainty is low and avoids areas with poor model quality. If the feedback linearization
was perfect, the control law would track the optimal path (least accumulated uncertainty)
based on the value function descend

ẋ = −∇xVval(x).

As a summary of the results, the following proposition is stated.

Proposition 4.1. Consider the unknown system (4.1) under Assumptions 4.1 to 4.4 where
the function f(·) is modeled by a GP (2.7)/ (2.8) with SE kernel (2.5), denoted as f̂(·)
and the power constraint (4.7). Further consider the control law (4.3) where the gain
is kc = (umax%G − µ̄)/σ̄ + ε and Vclf(·) = Vσ(·) is a viscosity solution of (4.15). Then, the
origin of the closed-loop system is semiglobally asymptotically stable with at least probability
υ∗ defined in Theorem 4.2.

Proof. The function Vσ(·) is positive definite from the fact that it is defined by a path integral
over a positive definite cost function. The condition on Vσ(·) in (4.4) is fulfilled with equality
and kc > β(υ∗) holds from (4.10). Therefore, the stability follows directly from Theorem 4.1
and the maximum confidence from Theorems 4.2 and 4.3.

4.2.4 Extension to other system classes
While the main contribution of this chapter is derived for the fully actuated system in (4.1),
we also provide some insight on how it can be extended to a more general system class.
Consider a single-input control affine system in the canonical form

ẋ1 = x2

ẋ2 = x3

· · ·
ẋn = f(x) + g(x)u, x0 = x(0), (4.16)

Equivalently to Assumptions 4.1 to 4.4 the following assumptions are made

Assumption 4.5. The function f : X→ R is unknown but the function value f(xg) is
known.

56

4.2 Control design and analysis

Again, without loss of generality, we consider f(0) = 0.
Assumption 4.6. The RKHS norm of f(·) is bounded under the kernel k(·, ·), ‖f‖k < Bf .
Assumption 4.7. The function g : X→ R+ is known, differentiable and strictly positive.
Assumption 4.8. A training set with N ∈ N data pairs consisting of the state and a noisy
measurement of the highest state’s derivative

D =
{(
x(i), y(i)

)}N
i=1

, y(i) = f
(
x(i)

)
+ ω(i), (4.17)

is available, where ω(i) are i.i.d. samples ω ∼ N (0,σ2
on), with σ2

on ∈ R+,0.
The control law is then formulated as

u(x) = − 1
g(x)

(
f̂(x) + ∇x1:n91Vclf(x)x2:n

∇xnVclf(x) + ku∇xnVclf(x)
)

, (4.18)

where ∇x1:n91Vclf(·) denotes the gradient of Vclf(·) concatenated from the derivatives with
respect to x1, . . . ,xn91.
Theorem 4.4. Consider the unknown system (4.16) under Assumptions 4.5 to 4.8 where f(·)
is modeled by a GP (2.8) with SE kernel (2.5), denoted as f̂(·). Further consider the control
law (4.18) with ku > β and Vclf(·) is a positive definite differentiable function with

|∇xnVclf(0)| = 0 and σ(x) ≤ |∇xnVclf(x)|, x ∈ X. (4.19)
Then, the origin of the closed-loop system is semiglobally asymptotically stable with proba-
bility at least 1− δ for all x0 ∈ X, where δ and β are defined in Proposition 2.1.
Proof. Choosing Vclf(·) as Lyapunov candidate yields
V̇clf(x) = ∇xVclf(x)ẋ

= ∇x1:n91Vclf(x)x2:n +∇xnVclf(x)
(
f(x)− f̂(x)− ∇x1:n91Vclf(x)x2:n

∇xnVclf(x) − ku∇xnVclf(x)
)

≤ |∇xnVclf(x)||f(x)− f̂(x)| − ku|∇xnVclf(x)|2,
where the inequality results from the Cauchy-Schwarz inequality. Theorem 2.1 yields

P
{
V̇clf(x) ≤ |∇xnVclf(x)| (βσ(x)− ku|∇xnVclf(x)|) ,∀x ∈ X

}
≥ 1− δ,

which results under condition (4.19) and ku > β in

P
{
x ∈ X \ {0}, V̇clf(x) < 0

}
≥ 1− δ.

Similarly to Theorem 4.1, X can be chosen arbitrarily large (however must be compact as
required by Theorem 2.1) and therefore the asymptotic stability holds semiglobally.

The result is analogous to Theorem 4.1, leaving again large freedom for the choice of Vclf(·).
We propose - for the same reasons as in Theorem 4.3 - to chose Vclf(·) as the value function
of an optimal control problem

Vσ(x) := min
x̃(s)

∫ S

0
σ (x̃(s)) ds s.t. x̃(0) = x, x̃(S) = 0, ∂x̃1:n91

∂s
= x̃2:n, (4.20)

where, in comparison to (4.15), an additional constraint is imposed to ensure the optimal
path x̃(·) complies with the dynamics (4.16).
We will not analyze this extension further in theory, since the key idea remains the same

as for the fully actuated system (4.1).

57

4 Uncertainty-based Control Lyapunov Design

4.3 Numerical evaluation
Consider the following two dimensional unstable system with two inputs

ẋ1 = x1 + (cos(x1)− 1)x2︸ ︷︷ ︸
f1(x)

+u1,

ẋ2 = −ς(x1) + x2︸ ︷︷ ︸
f2(x)

+u2,
(4.21)

where ς(x1) = 1
1+exp(−2x1) − 0.5 is a shifted sigmoid function. The functions f1(x) and f2(x)

are both continuous and therefore have a finite RKHS norm under a universal kernel ac-
cording to [104]. Choosing the SE kernel therefore fulfills Assumption 4.2. Assumptions 4.1
and 4.3 are fulfilled as G(x) = I2 and f1(0) = f2(0) = 0, where the latter is incorporated
in the GP regression model according to Remark 2.3.

4.3.1 Setup and implementation
To obtain a set of training data D, the system is initialized twice at the initial loca-
tions x0 =

[
0.3 0

]ᵀ
and x0 =

[
−0.3 0.1

]ᵀ
without any control, thus u1 = u2 = 0. During

a simulation for t ∈ [0; 3] measurements are taken in constant time intervals ∆t = 0.3 and
with observation noise σ2

on = 0.01 according to Assumption 4.4.
The hyperparameters of the SE kernels as defined in (2.5) are obtained from a likelihood op-

timization (2.6) using quasi-Newton methods. The maximum input power is set to umax = 24.
To compute the reliability, we perform a Monte Carlo experiment and sample 104 realiza-
tions of the GPs. It is observed that the model error bound imposed by Proposition 2.1
holds with υ∗ = 99.87% on the state space X = [−5.5; 5.5]2. As a result, we obtain ‖β‖ = 15
and set kc ≈ 17 with ε = 2. This empirical verification is necessary because the information
gain γj and the RKHS norm Bfj , j = 1, . . . ,n cannot be computed exactly. However, it has
the advantage that any sub-optimality of the hyperparameters, which might result from the
local optimizer to solve (2.6), is accounted for in the value for ‖β‖.
The most evolved step in the implementation of the proposed control law is the computa-

tion of the control Lyapunov function Vσ(·) according to its definition (4.15). As an analytic
solution to the value function does not exist, a numerical approximation is required, for
which we use a grid-based discretization of the state space with 104 points. In the resulting
graph only neighboring grid points are linked and each link is weighted with the average cost
σ(·) of the two connected nodes. Dijkstra algorithm is employed to find the shortest path
from each node to the origin and a linear interpolation is used to obtain the value function
in continuous space. Linear interpolation is chosen because it is almost everywhere differ-
entiable, computationally efficient and preserves the positive definiteness, which would not
be guaranteed for more evolved techniques, such as spline interpolation. Note that all these
computations are performed offline following the training of the GP model. Thus, the online
computation of the control law requires only the gradient evaluation, which is performed
using first-order finite differences (with finite difference εfd = 10−4). To ensure that the
numerical inaccuracies do not annul the stability guarantees, the control law online enforces
the condition ‖σ(x)‖ < ‖∇xVclf(x)‖ in (4.4) by scaling ∇xVclf(x) accordingly, if necessary.
For more evolved methods to approximate the value function in continuous space, we refer
to the literature on fast marching methods [158].

58

4.4 Discussion

All simulations are performed with an explicit Runge-Kutta variable step solver and
when ‖x‖ < 0.05, the trajectory is considered as converged.1

4.3.2 Simulation results
Figure 4.3 visualizes the training data and the trained GPSSM model. The training tra-
jectories indicate the diverging behavior of the uncontrolled system and is also represented
in the generalization in the GP mean function µ(·). The norm of the standard deviation
posterior functions of the GPs ‖σ(·)‖, which is utilized as uncertainty measure and cost
function, shows to increase with increasing distance to the training data.
The resulting value function, which is here used as control Lyapunov function Vσ(·), is

shown in Fig. 4.4 along with the resulting trajectories of the controlled system for different
initial conditions. It shows the intended behavior that the system is pushed towards the
training data, where the model accuracy is high before it drives in this low uncertainty area
towards the origin.

4.4 Discussion
To employ the presented approach, the stated assumption must be fulfilled. On the theo-
retical side, Assumption 4.2 is the most crucial. Even though it is not very restrictive, it is
very difficult to verify for real-world systems. Nevertheless, to provide guarantees regarding
the real system, some restrictions will always be necessary. In comparison to imposing para-
metric structural assumptions, we think our approach leaves more flexibility. Difficult to
compute is also the maximal information gain γj, however previous work in [104] argues that
upper bounds for it can be computed in polynomial time. We also refer to an alternative GP
bound in [103], which makes less restrictive assumptions and relies on Lipschitz constants,
which are easier to obtain.
The theoretical analysis shows that the maximal achievable reliability υ is according

to (4.10) a trade-off between the maximum available power umax, the complexity of the
system to control measured by Bfj , the number and distribution of the training data and
the considered state space X.
One major disadvantage on the practical side is the computational complexity of the ap-

proach. The control Lyapunov function cannot be computed analytically and the numerical
approximation techniques suffer from the curse of dimensionality. However, as we show
equivalence to optimal control and dynamic programming problems, various techniques are
applicable to improve the current implementation.
Furthermore, the heaviest computations are all performed offline, which include the Monte

Carlo experiment to compute the reliability, the computation of the control Lyapunov func-
tion using a grid-based discretization of the state space and the search for the optimal path
using the Dijkstra algorithm. These operations are performed for the considered example
in MATLAB 2019a on a i5-6200U CPU with 2.3GHz and 8GB RAM in ≈ 30s. The online
phase (using the proposed interpolation) is thereby significantly sped up. Important to note
is that the stability is guaranteed irrespectively of any numerical approximation error in the
computation of the control Lyapunov function.

1Code for MATLAB is provided: https://gitlab.lrz.de/ga68car/OptUCLF4GP

59

https://gitlab.lrz.de/ga68car/OptUCLF4GP

4 Uncertainty-based Control Lyapunov Design

−4 −2 0 2 4

−4

−2

0

2

4

x1

x
2

‖σ(·)‖
D
µ(·)

Figure 4.3: The training data D (black arrows) are obtained from two runs of (4.21) with
zero control input u = 0. The mean prediction (red streamlines) and the norm
of the variance (colormap: yellow is low, blue is high) visualize the GPSSM as
defined in (2.7).

−4 −2 0 2 4

−4

−2

0

2

4

x1

x
2

Vσ(·)
D
x(t)

Figure 4.4: The proposed uncertainty-aware Lyapunov function (4.12), is shown as a col-
ormap (yellow is low, blue is high) along with the training data (black arrows).
Trajectories (red lines) show the closed-loop behavior under the proposed control
law (4.3) for different initial states.

60

4.5 Summary

4.5 Summary
This chapter proposes a control law to stabilize arbitrarily complex, unknown, fully actuated
systems under mild assumptions with a specified probability. To achieve robustness to
model uncertainties, the employed feedback linearization uses a control Lyapunov function.
We first derive general conditions for asymptotic stability of the closed-loop system before
proposing a specific uncertainty-based control Lyapunov function. We show that under a
power constraint on the actuators, it yields the maximum reliability (probability to converge).
This reveals an intuitive equivalence: Actively avoiding regions in the state space with low
model fidelity yields a controller which maximizes the probability of stability. This is not
just interesting from a theoretical perspective, but also comes with practical benefits as it
allows to employ computational tools from path planning and dynamic programming.

61

Feedback Linearization with
event-triggered Online Learning 5

The online adaptation of controller or model parameters is a well understood concept in the
control literature for linear systems [159]. In particular MRAC, which improves continu-
ously an initially imprecise system model using online parameter estimation, is a popular
concept [160]. Closely related is iterative learning control (ILC), which improves control
performance for a repetitive task using experience from earlier executions by iteratively
modulating the control input [161], [162]. However, most existing MRAC and ILC methods
focus on parametric models, which suffer from limited flexibility and are not able to model
complex systems.
Considering nonparametric models, the majority of the work (reviewed in Chapter 2)

bases their model on one initial data set only. Thus, no training data is collected while
the controller is running and there is an inherent reason for that: Classical MRAC (using
parametric models) uses a continuous gradient descent in the adaptation of the parameters
to minimize the model error over time. However, for nonparametric models, there exist no
fixed parameters which can be improved over time. Instead, the data points itself are the
parameters and can therefore not be added continuously, but are rather added at discrete
time instances. This makes the analysis significantly more complex.
Most control approaches using a GP model with a fixed data set also do not discuss how

it can be obtained [73], [84]. Model-based reinforcement learning algorithms collect the data
during the interaction with the environment but update the model not until the trail is
finished. Thus, new data points obtained during the interaction are not taken into account
by the controller [32]. Furthermore, it is unclear weather an initial policy is safe to operate
the system [163].
The work in [68] focuses on safe exploration of a state space by sequentially adding new

points to the data set. However, the controller is designed to stay only in the region of
attraction and cannot track an arbitrary trajectory in the state space. Alternatively, [63]
introduces an adaptive control law to guarantee boundedness of the state but it does no
quantify the size of the ultimate bound. Additionally, it is based on a time-triggered adapta-
tion, thus data points are added to the data set irrespectively of their necessity. The resulting
computational burden for large data sets is a known drawback of GPs [2]. It is commonly
solved with heuristic deletion of training points or sparse approximation methods [99], which
makes it more difficult to provide safety guarantees. This chapter therefore exploits the idea
of event-triggered model updates. While event-based control is well researched [164] and
frequently applied in networked control system [165] it has not been applied in learning
control.
Besides GPs, NNs are also a popular identification tool which are mainly data-driven [18].

However, they have a fixed number of parameters (weights), which can therefore be adapted

63

5 Feedback Linearization with event-triggered Online Learning

continuously over time as in MRAC. This allows [166], [167] and [168] to derive proper
stability and performance guarantees. Similarly, the work in [169] proposes a feedback
linearizing control law and shows boundedness of the weights and the states in the closed-
loop. However, it cannot quantify the ultimate bound because NNs, in contrast to GPs, do
not inherently provide a measure for the precision of the model [170].
This chapter’s major contribution is a novel nonparametric event-triggered online learning

control law, which guarantees stochastic asymptotic stability of initially unknown, control
affine systems in the canonical form under very mild assumption. Its key idea is to add train-
ing points, whenever the Lyapunov stability condition is in danger to be violated. We also
address the challenge of constantly increasing computational complexity due to a growing
data set and propose a novel and safe data forgetting strategy for lifelong learning; It uses
an information theoretic criterion to keep the most valuable points for tracking the future
desired trajectory. The proposed control scheme is illustrated in Fig. 5.1.
The chapter is based on the work published in [10], [11] and [12]. It is structured as follows:

After defining the problem setting in Sec. 5.1, this chapter proposes a GP-based closed-loop
identification in Sec. 5.2 and the control law in Sec. 5.3 including an analysis of the closed-
loop behavior for model updates in arbitrary time instances. Section 5.4 introduces an
event-triggered model update for improved convergence and discusses strategies for efficient
data-handling. An evaluation in simulation and on a real-world robotic manipulator is
provided in Sec. 5.6, followed by a discussion in Sec. 5.7.

5.1 Problem formulation
This chapter considers a single-input control affine system in the canonical form

ẋ1 = x2

ẋ2 = x3

· · ·
ẋn = f(x) + g(x)u, x0 = x(0), (5.1)

with state x =
[
x1 x2 · · · xn

]ᵀ ∈ X = Rn, input u ∈ U = R and unknown func-
tions f : X→ R and g : X→ R. The following assumptions are made.
Assumption 5.1. The unknown functions f(·) and g(·) are globally bounded and differen-
tiable.
Assuming the continuity is very natural for most physical systems and also boundedness

is often true in practical systems due to saturating effects or physical limits.
Remark 5.1. The set X can also alternatively be considered as bounded, which automatically
implies (due to the differentiability) boundedness of f(·) and g(·). However, we decided X to
be unbounded and assume the dynamic functions to be bounded.
With Assumption 5.1, the following is derived.

Lemma 5.1. Consider the system (5.1) under Assumption 5.1 with bounded and continuous
input u. Then, the solution x(t) does not have a finite escape time, thus @t∞, 0 < t∞ < ∞
for which

lim
t→t∞
‖x(t)‖ =∞.

64

5.1 Problem formulation

unknown
plant

model-based
control (Sec. 5.3)

data-driven
model (Sec. 5.2)

event trigger
(Sec. 5.4)

data selection
(Sec. 5.5)

desired trajectory output

Figure 5.1: Proposed concept of an online learning control law with event-triggered model
updates and data selection.

Proof. According to [131, Theorem 3.2] a unique solution x(t), is ensured under the given
conditions for all t > 0. The finite escape time of this solution is excluded by the differen-
tiability and the boundedness of f(·), g(·) and u since ‖ẋ‖ <∞ for all ‖x‖ <∞.

Remark 5.2. This absence of a finite escape time is important as a stabilizing controller
is not known in advance (because f(·), g(·) are unknown). This property allows to take
measurements of the system in any finite time interval with a ”poor” controller (or the
uncontrolled system) without risking damage due to diverging states.

In addition, the following is assumed.

Assumption 5.2. The system’s relative degree is equal to the system order n for all x ∈ X.

Assumption 5.3. The sign of g(·) is known for at least one x ∈ X.

Assumption 5.2 excludes the existence of any internal dynamics and ensures global con-
trollability of the system. It is a restriction of the system class, but covers a broad variety
of dynamics for instance the wide-spread class of Lagrangian systems. The Assumption 5.3
is not very strong, as it concerns only a single point in the input space.
With these assumptions, the following lemma can be concluded.

Lemma 5.2. Consider the system (5.1) under Assumptions 5.1 to 5.3. Then, without loss
of generality, g(·) is taken as strictly positive, thus

g(x) > 0, x ∈ X. (5.2)

Proof. For g(·) = 0, the relative degree of (5.1) is not well defined which contradicts As-
sumption 5.2. Thus, g(x) 6= 0 holds ∀x ∈ X. With continuity from Assumption 5.1, a
constant sign of g(·) is concluded, which can be set positive without loss of generality.

To allow for a data-driven identification, measurements of the system must be available
as described in the following assumption.

65

5 Feedback Linearization with event-triggered Online Learning

Assumption 5.4. Noise free measurements of the state vector x(κ) = x(tκ) and noisy
measurements of the highest derivative y(κ) := ẋn(tκ) + ω(κ) can be taken at any discrete
time instance tκ with κ ∈ N0. The observation noise ω ∼ N (0,σ2

on) is assumed to be i.i.d.
Gaussian distributed. The data set

Dκ =
{
x(i), y(i)

}Nκ
i=1

, (5.3)

is time-varying and updated at time tκ. It remains unchanged until tκ+1 and Nκ ∈ N0 denotes
the current number of data points.

Exact measurements of the state vector is fundamental for feedback linearization control
laws and thereby a common assumption. The time-derivative of the state xn can, for practical
applications, be approximated through finite differences, where the approximation error is
then considered as part of the measurement noise.
The time-instance tκ, tκ+1 are not necessarily chosen equidistant, but only denote the time

instances at which updates occur. With each new measurement at time tκ, the data set Dκ

is updated, but stays untouched between tκ and tκ+1. Throughout this chapter, we will also
consider a limited computational power, which results in an upper bound for Nκ.
Based on these assumptions, the goal is a closed-loop identification of the unknown system,

where the approximations f̂κ : X→ R, ĝκ : X→ R for f(·), g(·), respectively, are updated at
times tκ. Based on these approximations a switching feedback linearizing control law

uκ(x) = 1
ĝκ(x)

(
−f̂κ(x) + ν(x)

)
, (5.4)

is proposed, where ν : X → R is the linear control law and the input to the approximately
linearized system. As the κ-th update occurs at tκ, the control law uκ is applied from tκ
until the next event at tκ+1, more formally written as

u = uκ(x), ∀t ∈ [tκ; tκ+1). (5.5)

Consider that the model updates tκ, tκ+1 do not necessarily occur periodically. We will first
consider arbitrary triggering time-instances and then introduce the updates triggered by the
uncertainty of the model estimates (Sec. 5.4).

5.2 Closed-loop identification of control-affine systems

For the identification, we aim to use GP posterior mean functions as approximations f̂(·)
and ĝ(·) in our model1. However, the introduced regression in Sec. 2.1 cannot be applied for
two reasons. First, the data points which are available according to Assumption 5.4 measure
the sum of f(·) and g(·)u, but the individual contribution remains unknown. Second, the
positivity of g(·), known from Lemma 5.2, must also be ensured by the approximation ĝ(·)
to generate bounded control inputs (5.5). The following sections present an extension to the
already introduced GP regression, which make it applicable under these constraints.

1The subscript κ is dropped in this section for notational convenience.

66

5.2 Closed-loop identification of control-affine systems

5.2.1 Expressing structure in kernels
In Chapter 2, we discussed how the kernel of the GP reflects the properties of the resulting
function. Besides its smoothness properties, the kernel can determine further characteristics,
e.g., periodicity or boundedness [26]. According to [171], it can also be utilized to express
prior knowledge regarding the structure of the unknown function, which will be exploited in
our identification approach. The basic principle is presented in the following.

Sum of functions

Consider fa, fb : X→ R both originating from independent GP priors

fa(x) ∼ GP (ma(x), ka(x,x′)) , fb(x) ∼ GP (mb(x), kb(x,x′)) ,

which add up to fsum : X→ R, thus fsum(x) = fa(x) + fb(x). Then,

fsum(x) ∼ GP (ma(x) + mb(x), ka(x,x′) + kb(x,x′))

is also a GP with prior mean ma(x)+mb(x) and kernel ka(x,x′)+ kb(x,x′). Consider N ∈ N
noisy measurements of the sum of the two function are given

y(i)
sum = fsum

(
x(i)

)
+ ω = fa

(
x(i)

)
+ fb

(
x(i)

)
+ ω(i),

with i.i.d. noise ω ∼ N (0,σ2
on) and i = 1, . . . ,N . Then, the joint distribution of the individual

functions and the observations is given byfa(x)
fb(x)
y(1:N)

sum

 ∼ N
0,

ka(x,x) 0 ka(x)ᵀ
0 kb(x,x) kb(x)ᵀ

ka(x) kb(x) Ka +Kb + σ2
onIN


 ,

where the prior mean functions are set to zero ma(·) = mb(·) = 0 for notational simplicity
and ka,kb,Ka,Kb are defined according to (2.2) and (2.3), respectively. Conditioning on
the observed outputs y(1:N)

sum , yields an inference for the output of fa(·) and fb(·) as following

fa(x)|X,y(1:N)
sum ∼ N

(
ka(x)ᵀK−1

sumy
(1:N)
sum , ka(x,x)− ka(x)ᵀK−1

sumka(x)
)

, (5.6)

fb(x)|X,y(1:N)
sum ∼ N

(
kb(x)ᵀK−1

sumy
(1:N)
sum , kb(x,x)− kb(x)ᵀK−1

sumkb(x)
)

, (5.7)

where Ksum = Ka + Kb + σ2
onIN . Similar to (2.6), the extended hyperparameter vec-

tor ψsum =
[
ψᵀ
a ψᵀ

b

]ᵀ
is obtained through likelihood optimization. This allows to infer an

approximation of the individual functions fa(·), fb(·) even though only their sum is measured.

Example 5.1. Consider the two functions fa(x) = sin(x) and fb(x) = x2 are un-
known, but N = 100 data points, uniformly randomly distributed in [−1; 1], are measured
of fsum(x) = sin(x) + x2 with an observation noise of σ2

on = 10−2. Then, with zero prior
mean function and SE kernels ka(·, ·) and kb(·, ·), the individual functions can be inferred
according to (5.6) and (5.7) as shown in Fig. 5.2

67

5 Feedback Linearization with event-triggered Online Learning

−2 −1 0 1 2

0

2

4

x

ou
tp

ut
fa(·) + fb(·)
µfa (·) + µfb

(·)
y

(1:N)
sum

−2 −1 0 1 2

−1

0

1

2

x

fa(·)
µfa (·)

−2 −1 0 1 2

0

1

2

3

4

x

fb(·)
µfb

(·)

Figure 5.2: Illustration for Example 5.1. The plot on the left shows the noisy training
data y(1:N)

sum , the true function fsum(·) and the inferred posterior mean function of
the GP. The plot in the middle and the right shows the individual functions fa(·)
and fb(·) and the individual posterior mean functions µfa(·) and µfb(·). Note that
no individual training points are given, but the GPs infer the functions from only
observing the sum. A technique for an improved inference of the individual func-
tions (middle and right) will be shown in Example 5.3.

Product with known function

Consider a sample of a GP fh : X→ R which is multiplied with a known function h : X→ R,
thus

fprod(x) = fh(x)h(x) where fh ∼ GP(0, kh(x,x′))

and fprod : X→ R. Then, fprod(·) is also a GP with a scaled kernel function

kprod(x,x′) = h(x)kh(x,x′)h(x′),

Given the noisy measurements of the product

y
(i)
prod = fprod

(
x(i)

)
+ ω(i) = fh

(
x(i)

)
h
(
x(i)

)
+ ω(i),

with ω ∼ N (0,σ2
on), i = 1, . . . ,N , the joint distribution of the measurements and the inferred

output of fprod(·) at a test input x is given by[
fh(x)
y

(1:N)
prod

]
∼ N

(
0,
[
kh(x,x) kh(x)ᵀHᵀ

Hkh(x) HᵀKhH + σ2
onIN

])
,

where H = diag
(
h
(
x(1)

)
, . . . ,h

(
x(N)

))
∈ RN×N and kh(·), Kh are defined analogously

to (2.2) and (2.3), respectively. By conditioning on the training data and the input, the
function fh(·) is inferred by

fh(x)|X,y(1:N)
prod ∼ N

(
kh(x)ᵀHᵀK−1

prody
(1:N)
prod , kh(x,x)− kh(x)ᵀHᵀK−1

prodHkh(x)
)
, (5.8)

where Kprod = HᵀKhH + σ2
onIN .

68

5.2 Closed-loop identification of control-affine systems

Example 5.2. Consider the unknown function fh(x) = cos(x) and the known scal-
ing function h(x) = exp(x) for which N = 100 data points uniformly randomly dis-
tributed in [−1; 1] are measured of fprod(x) = cos(x) exp(x) with an observation noise
of σ2

on = 10−2. Then, with zero prior mean function and SE kernel kh(·, ·), the unscaled
function fh(·) can be inferred according to (5.8) as shown in Fig. 5.3.

Remark 5.3. Instead of scaling the kernel, it seems more straight forward to use y(i)
prod/h

(
x(i)

)
as training data for a GP with unscaled kernel. However, this would scale the observation
noise undesirably, is numerically not stable and is not compatible with the summation of
kernels in the previous section.

5.2.2 Positivity of Gaussian process posterior mean functions
From Lemma 5.2 it is known that g(·) is strictly positive. It is crucial that the approxima-
tion ĝκ(·) also fulfills this property for all κ, as otherwise the feedback linearizing control
law (5.4) does not result in well-behaved control signals. For a GP posterior mean function,
positivity can be ensured by a suitable choice of the prior mean function as shown in the
following.

Lemma 5.3. Consider the posterior mean function (2.4) with a bounded and differen-
tiable kernel k(·, ·) and a data set D =

{
x(i), y(i)

}N
i=1

for which x(i) 6= x(i′) and y(i) > 0
hold ∀i, i′ = 1, . . . ,N , i 6= i′. Then, there exists a differentiable prior mean function m(·)
such that

µ(x) > 0, ∀x ∈ X.

Proof. A differentiable prior mean function m(·) with 0 ≤ m
(
x(i)

)
<∞, ∀i = 1, . . . ,N , can

always be chosen such that

k(x)ᵀ(K + σ2
onIN)−1

(
y(1:N) −m

(
x(1:N)

))
< m(x) ∀x ∈ X \

{
x(1), . . . ,x(N)

}
,

holds, because the left side of the inequality is bounded. For x ∈
{
x(1), . . . ,x(N)

}
, strict

positivity of µ(·) can be ensured by the choice m
(
x(i)

)
= y(i).

Remark 5.4. Based on Lemma 5.2, the measurements taken from g(·) (if directly available)
would violate the assumption y(i) > 0 only due to the noise. This can be corrected by using
suitable noise models, such as Gamma distributions, which are also compatible with GPs [2].
In most applications, is it sufficient to set m(·) to a positive constant and verify the strict
positivity of µ(·) using techniques proposed in [68].

5.2.3 Closed-loop identification based on Gaussian processes
For the proposed open-loop identification of control affine systems, we will now combine
the presented techniques. The ideas from Sec. 5.2.1 are employed to separate the effect of
the control input g(·) and of the unforced dynamics f(·) as no individual measurements are
available. Section 5.2.2 is used to ensure positivity according to Lemma 5.2.

69

5 Feedback Linearization with event-triggered Online Learning

−2 −1 0 1 2

−4

−2

0

2

x

ou
tp

ut

fh(·)h(·)
µfh

(·)h(·)
y

(1:N)
prod

−2 −1 0 1 2

−0.5

0

0.5

1

x

fh(·)
µfh

(·)

Figure 5.3: Illustration for Example 5.2. The plot on the left shows the noisy training
data y(1:N)

prod , the true function fprod(·) and the inferred mean function by the
GP. The plot on the right shows the unscaled function fh(·) and the posterior
mean function. The scaling function h(·) is considered to be known.

They key idea is to utilize a composite kernel [171] which replicates the structure of the
control affine structure

kfg(x,x′) = kf (x,x′) + u(x)kg(x,x′)u(x′), (5.9)

the first summand kf (·, ·) stands for the unknown unforced dynamics f(·); the second sum-
mand u(·)kg(·, ·)u(·) for the product of the unknown scaling of the control g(·) and the
known control signal u(·). To ensure smooth approximations (according to Assumption 5.1),
we utilize SE kernels with automatic relevance determination

kf (x,x′) = ζ2
f exp

 n∑
j=1

(xj − x′j)2

−2`2
j,f

 , kg(x,x′) = ζ2
g exp

 n∑
j=1

(xj − x′j)2

−2`2
j,g

 , (5.10)

with hyperparameters `2
j,f , `2

j,g ∈ R+ and ζ2
f , ζ2

g ∈ R+,0 for j = 1, . . . ,n, which are concate-
nated in

ψfg =
[
`2

1,f `2
1,g · · · `2

n,f `2
n,g ζ2

f ζ2
g

]ᵀ
.

Due to its universal property, the SE kernel allows to model any continuous function arbi-
trarily exact according to [172].

Remark 5.5. Important here is not to confuse GP models with structured (composite) ker-
nels with parametric models. The latter only has a finite and fixed number of parameters,
while the former has possibly infinitely many parameters for each part of its structure. The
kernels encodes knowledge of the structure, like sums and products, but each component has
unlimited flexibility.

To formulate the GP regression for the composite kernel (5.9), we define

U = diag
(
u1
(
x(1)

)
, . . . ,uNκ

(
x(Nκ)

))
∈ RNκ×Nκ ,

70

5.2 Closed-loop identification of control-affine systems

where ui denotes the control law which was active during the measurement of
{
x(i), y(i)

}
for i = 1, . . . ,Nκ. Furthermore, kf (·),kg(·),Kf ,Kg are analogously defined to (2.2) and (2.3),
respectively, and

Kfg = Kf +U ᵀKgU + σ2
onIn.

This allows to formulate the estimation for the control affine dynamics.

Lemma 5.4. The GP posterior mean prediction for the functions f(·), g(·), based on the
training data Dκ with the compound kernel (5.9) are given by

f̂(x) := µf (x) = kf (x)ᵀK−1
fg

(
y(1:N) −Umg

(
x(1:N)

))
, (5.11)

ĝ(x) := µg(x) = mg(x) + kg(x)ᵀUK−1
fg

(
y(1:N) −Umg

(
x(1:N)

))
, (5.12)

where the prior mean function for f(·) is set to zero, i.e. mf (·) = 0, and for g(·), mg(·) is
chosen according to Lemma 5.3.

Proof. The joint distribution for an input x and the kernel (5.9) is given by

 f(x)
g(x)
y(1:N)

 ∼ N



0
mg(x)

Umg

(
x(1:N)

)
 ,

kf (x,x) 0 kf (x)ᵀ
0 kg(x,x) kg(x)ᵀU ᵀ

kf (x) Ukg(x) Kfg


, (5.13)

similarly to (2.1). Then, the posterior mean functions (5.11) and (5.12) follow along the
lines of (2.4) according to [171].

It can be shown that all prior knowledge on f(·) and g(·) is transferred to their esti-
mates f̂κ(·), ĝ(·).

Proposition 5.1. Consider a control affine system (5.1) under Assumptions 5.1 to 5.4 and
the compound kernel (5.9). Then, the estimates f̂(·) and ĝ(·) in Lemma 5.4 are bounded,
infinitely differentiable and there exists a prior mean function mg(x) and a hyperparameter
vector ψfg such that ĝ(x) > 0 holds ∀x ∈ X.

Proof. The differentiability and boundedness are inherited from the SE kernel to all functions
represented by the GP [2]. In consequence, it also holds for the posterior mean functions
used as estimates here. The strict positivity of ĝ(·) follows from the fact that ζ2

g can be
chosen arbitrarily small. Thus, there always exists a positive function mg, for which mg(·)
dominates the term kᵀ

gUK
−1
fg

(
y(1:N) −Umg

(
x(1:N)

))
in (5.12).

Remark 5.6. This thesis focuses mainly on SE kernel, however the only properties which are
used for Proposition 5.1 are its differentiability and its boundedness. Thus, the conclusions
can be generalized to different classes of kernels which fulfill these properties.

The hyperparametersψfg are obtained from a likelihood optimization as presented in (2.6).

71

5 Feedback Linearization with event-triggered Online Learning

5.2.4 Improving identification
From Lemma 5.3, it can be concluded that the state remains bounded for any time inter-
val [0;T] with T < ∞. As this holds for any bounded control input, it can also be set to
zero u = 0 without risking damage. This allows to record an open-loop training point

y
(iol)
ol = f

(
x(iol)

)
+ ω(iol), iol = 1, . . . ,Nol, Nol ∈ N.

This only measures f(·) (with the noise ω) without any unknown contribution from g(·)u(·).
The GP framework allows to merge these Nol observations with the closed-loop training
points in Dκ to refine the prediction.
Consider the extension of the joint distribution (5.13), where u = 1 in the closed-loop (for

notational convenience) and u = 0 in the open-loop measurements. For mg(x) = 0 (also for
notional convenience)

f(x)
g(x)
y(1:N)

y
(1:Nol)
ol

 ∼ N
0,


kf (x,x) 0 kf (x)ᵀ kf ,ol(x)ᵀ

0 kg(x,x) kg(x)ᵀ 0
kf (x) kg(x) Kfg Kᵀ

ol,cl
kf ,ol(x) 0 Kol,cl Kol


 ,

where Kol,cl, Kol are the pairwise evaluation of kf (x(iol),x(i)), kf
(
x(iol),x(i′ol)

)
and kf ,ol(x)

evaluates kf
(
x,x(iol)

)
for all i = 1, . . . ,N , iol, i′ol = 1, . . . ,Nol. Then, the estimates are given

by

f̂(x) = [kᵀ
f (x) kᵀ

f ,ol(x)]
[
Kfg Kᵀ

ol,cl
Kol,cl Kol

]−1 [
y(1:N)

y
(1:Nol)
ol

]
, (5.14)

ĝ(x) = [kᵀ
g(x) 0]

[
Kfg Kᵀ

ol,cl
Kol,cl Kol

]−1 [
y(1:N)

y
(1:Nol)
ol

]
. (5.15)

Even though significant improvement of the identification can be expected in practice, we
do not further investigate this extension theoretically, since it further complicates the anal-
ysis and - to our knowledge - does not provide additional formal guarantees regarding the
convergence of the control law.

Example 5.3. Consider the two functions fa(x) = sin(x) and fb(x) = x2 are un-
known, but N = 100 data points uniformly randomly distributed in [−1; 1] are measured
of fsum(x) = sin(x) + x2 with an observation noise of σ2

on = 10−2. In comparison to
Example 5.1, with additional Nol = 50 measurements y(iol)

ol = fa(x(iol)) the individual
functions can be inferred much more precisely as shown in Fig. 5.4.

This concludes the proposed closed-loop identification based on GPs for control affine system.
A numerical illustration will be provided along the simulation results for the controller in
Sec. 5.6.

5.3 Feedback linearizing control law
This section introduces the feedback linearizing control law, shows ultimate boundedness for
arbitrary switching sequences and quantifies the ultimate bound.

72

5.3 Feedback linearizing control law

−2 −1 0 1 2

−1

0

1

2

x

ou
tp

ut

fa(·)
µfa (·)
µ

(ol)
fa

(·)

−2 −1 0 1 2

0

1

2

3

4

x

fb(·)
µfb

(·)
µ

(ol)
fb

(·)

Figure 5.4: Illustration for Example 5.3. The plot on the left shows the noisy additional
training data yol (crosses) and the true function fa(·) in black. For fb(·) (in black
on the right) no separate training data is provided. Nevertheless, the inferred
posterior mean function of the GP with additional training data is much more
precise (red) than without (blue).

The goal is to track a desired trajectory for the state x1, denoted as xd(t), for which the
following is assumed.

Assumption 5.5. The desired trajectory xd(t) is bounded and at least n− 1 times differen-
tiable, thus

xd(t) =
[
xd ẋd · · · dn−1xd

dtn−1

]ᵀ
is continuous and dnxd

dtn
is bounded.

The tracking error is defined as

e = x− xd =
[
e1 e2 · · · en

]ᵀ
=
[
x1 − xd x2 − ẋd · · · xn − dn−1xd

dtn−1

]ᵀ
For the control design, we aim for asymptotic stability of this tracking error, thus

lim
t→∞
‖e‖ = 0.

5.3.1 Control law
Consider the filtered state r ∈ R defined as

r =
[
λᵀ 1

]
e,

where λ =
[
λ1 λ2 · · · λn−1

]ᵀ ∈ Rn−1 is a vector of coefficients for which the polynomial
sn−1 + λn−1s

n−2 + · · ·+ λ1 with s ∈ C is Hurwitz. The dynamics of the filtered state are

ṙ = f(x) + g(x)u(x) + ρ(x),

73

5 Feedback Linearization with event-triggered Online Learning

where

ρ(x) = λᵀe2:n −
dnxd
dtn

,

with e2:n =
[
e2 · · · en

]ᵀ ∈ Rn−1. The feedback linearizing control law (5.4) is then rewrit-
ten as

uκ(x) = 1
ĝκ(x)

(
−f̂κ(x)− kcr − ρ(x)

)
, (5.16)

where ν(x) = −kcr − ρ(x) with the control gain kc ∈ R+ is used. The subscript κ ∈ N0
indicates that uκ(·) is applied in the κ-th time interval t ∈ [tκ; tκ+1) according to (5.5). The
estimates ĝκ(·), f̂κ(·) are based on the time-varying data set Dκ as introduced in Sec. 5.2.
An overview of the adaptive control scheme is visualized in Fig. 5.5 and presented in

algorithmic form in Algorithm 5.1.

Algorithm 5.1 Adaptive feedback linearization control
1: initialize κ = 0, D0 = {}, f̂0(·) = 0, ĝ0(·) = mg(·)
2: while simulation time not exceeded do
3: while t < tκ+1 do
4: run uκ(x) in (5.16) to control the system (5.1)
5: end while
6: set κ← κ+ 1
7: measure x(κ) = x(tκ) and y(κ) = ẋn(tκ) + ω(κ)

8: add training point Dκ = Dκ−1 ∪
{(
x(κ), y(κ)

)}
9: update the estimates f̂κ(·), ĝκ(·) according to (5.11), (5.12)
10: end while

Remark 5.7. The adaptation of the hyperparameters is not explicitly mentioned in Algo-
rithm 5.1 intentionally. The hyperparameters can either be considered as prior knowledge
and therefore remain unchanged, compare Assumption 5.7. Alternatively, a likelihood opti-
mization can be performed with any new data point, which we consider to be part of Line 9
in Algorithm 5.1.

control affine
system (5.1)

feedback
linearization (5.4)

GP model
(5.11) (5.12)

model update
event trigger (5.26)

kc
[
λᵀ 1

]
[
0 λᵀ]]

Dκ

xd
− e r −

ρ
−

ν u

f̂κ

ĝκ

x

σκ

x
ẋn

x

e

linearized for f̂κ = f , ĝκ = g

linear control law
λ is Hurwitz

Figure 5.5: The adaptive feedback linearizing control scheme including the event trigger pro-
posed in Sec. 5.4, to control the model update time tκ+1.

74

5.3 Feedback linearizing control law

Irrespective of whether Line 9 includes the hyperparameter optimization or not, it is com-
putationally the most demanding step. The complexity of the matrix inverse in (2.4) can
be reduced (from O(N3) to O(N2)) using a rank-1 update with the Sherman–Morrison for-
mula [173]. In any case, we assume an instantaneous execution of this line.

5.3.2 Convergence analysis
The time varying data set and the changing feedback control law requires an analysis of
the closed loop as a switched system. In a first step, an analysis for arbitrary switching is
performed, which is based on the principle of a common Lyapunov function.

Theorem 5.1. Consider the system (5.1) and a desired trajectory xd(t) under Assump-
tions 5.1 to 5.5. Further consider the control law (5.16), where f̂κ(·), ĝκ(·) are the GP poste-
rior mean functions in (5.11) and (5.12) to model f(·) and g(·), respectively. The GP model
is updated at arbitrary switching times tκ according to Algorithm 5.1. Then, there exists
a kc∗ > 0 such that for every kc ≥ kc∗ the tracking error e is globally uniformly ultimately
bounded (GUUB).

Proof. Consider the common Lyapunov function V (x) = r2/2 and its time derivative2

V̇ (x) = rṙ = r (f + guκ + ρ) = r

(
f + g

ĝκ
(−f̂κ − kcr − ρ) + ρ

)
(5.17)

= r
(
f − ḡκf̂κ

)
− kcḡκr2 + (1− ḡκ)rρ,

where ḡκ := g(x)
ĝκ(x) is positive and bounded ∀κ and x ∈ X from Proposition 5.1 and As-

sumption 5.1. In consequence, there exist constants c1, c3 ∈ Rn and C2,C3 ∈ Sn+ for which
holds∥∥∥r (f − ḡκf̂κ)∥∥∥ ≤ ‖cᵀ1e‖, ∥∥∥ḡκr2

∥∥∥ ≥ eᵀC2e, ‖(1− ḡκ)rρ‖ ≤ eᵀC3e+ cᵀ3e, ∀e,κ
(5.18)

since r, ρ depend linearly on e and f , f̂κ, ḡκ are bounded. Therefore,

V̇ (x) ≤‖c1‖‖e‖ − kc%(C2)‖e‖2 + %̄(C3)‖e‖2 + ‖c3‖‖e‖
= ‖e‖ (‖c1‖+‖c3‖) + ‖e‖2

(
%̄(C3)− kc%(C2)

)
, ∀κ

and there exists a kc∗ > 0 such that

%̄(C3)− kc∗%(C2) ≤ 0. (5.19)

Thus, outside of the set

B =
{
x ∈ X

∣∣∣∣∣‖e‖ ≤ ‖c1‖+ ‖c3‖
kc%(C1)− %̄(C2)

}
, (5.20)

and for every kc ≥ kc∗, the Lyapunov function decreases over time

V̇ (x) < 0, x ∈ X\B.
2The dependencies on x are partially omitted here and in future proofs for notational convenience.

75

5 Feedback Linearization with event-triggered Online Learning

for all κ ∈ N0. Thus, there exists a common radially unbounded Lyapunov function V (·),
which decreases outside of the set B. According to [174, Theorem 2.1], this allows to con-
clude that the tracking error converges to B for arbitrary switching sequences. Since B is
independent of the initial state, global uniform ultimate boundedness holds.

This shows that the proposed control law bounds the tracking error for a large enough
choice of the gain kc. However, it is i) unclear how large the ultimate bound is and ii) how
the critical gain kc∗ can be determined. To investigate this further, we make the following
simplifying assumption.

Assumption 5.6. A perfect approximation of g(·) is given (ĝ(x) = g(x), x ∈ X), allowing
direct measurements of f(·),

y
(i)
f = f

(
x(i)

)
+ ω(i) = ẋ(i)

n − g
(
x(i)

)
uκ
(
x(i)

)
+ ω(i)

with ω ∼ N (0,σ2
on) and i = 1, . . . ,Nκ. The data set becomes

Dκ =
{
x(i), y(i)

f

}Nκ
i=1

.

Remark 5.8. Assumption 5.6 requires more prior knowledge of the system, but this is often
available. For example in Lagrangian systems, which is a considerable large class of systems,
the generalized inertia matrix can be modeled very accurately using first order principles,
which corresponds to the function g(·). Furthermore, it is common for theoretical analysis
of control affine systems [175].

The remaining unknown function f(·) is now obtained from the GP posterior mean

f̂(x) := kf (x)ᵀK−1
on y

(1:Nκ), (5.21)

where kf andKf are computed according to (2.2) and (2.3) for the SE kernel. Based on the
additional prior knowledge obtained from Assumption 5.6, the result in Theorem 5.1 can be
improved as follows.

Corollary 5.1. Consider the system (5.1) and a desired trajectory xd(t) under Assump-
tions 5.1 to 5.6. Further consider the control law (5.16), where f̂κ(·) is the GP posterior
mean function in (5.21), which is adapted at arbitrary switching times tκ according to Al-
gorithm 5.1. Then, the tracking error ‖e‖ of the closed-loop switching system is GUUB for
any kc > 0.

Proof. The Lyapunov function V (x) = r2/2 and ḡκ = 1 yield the time derivative

V̇ (x) = rṙ = r (f + guκ + ρ) = r
(
f − f̂κ

)
− kcr2, (5.22)

which is negative definite if
(
f − f̂κ

)
< kcr holds. Thus independent of the gain kc, their

exists a bounded set outside of which the Lyapunov function is decreasing ∀κ. This yields
global uniform ultimate boundedness for all kc > 0.

For completeness, this convergence property is also formulated for a constant data set D,
thus no further measurements are taken and no data points are deleted from the set for
a t′ > tκ.

76

5.3 Feedback linearizing control law

Corollary 5.2. Consider the system (5.1) and a desired trajectory xd(t) under Assump-
tions 5.1 to 5.6. Further consider the control law (5.16), where f̂κ(·) is the GP posterior
mean function in (5.21) with a fixed data set D. Then, the tracking error ‖e‖ of the closed-
loop system is GUUB for any kc > 0.

Proof. The proof follows directly from the proof of Corollary 5.1.

Assumption 5.6 allows to conclude the boundedness for all choices of the control gain kc,
however, the size of the ultimate bound remains unknown. This will investigated in the
following section.

5.3.3 Quantifying the ultimate bound
The ultimate bound for the tracking error e, which was shown to exist in Theorem 5.1
and Corollaries 5.1 and 5.2 will be quantified in this section. This requires an upper bound
for the model error, which is defined as

∆fκ(x) = |f(x)− f̂κ(x)|, ∀κ. (5.23)

For the GP posterior estimate f̂κ(·), this error can be bounded, based on Theorem 2.1, by
the posterior standard deviation function σ(·) which is given according to (2.4) as

σ(x) =
√
kf (x,x)− kᵀ

f (x)K−1
on kf (x). (5.24)

To apply the results from Theorem 2.1, the assumption on the bounded RKHS norm is
required.

Assumption 5.7. The function f(·) has a bounded RKHS norm with respect to the employed
kernel kf (·, ·) with known hyperparameters denoted by ‖f(·)‖2

kf
≤ Bf .

Remark 5.9. The state space X here is unbounded and thereby not compact, which is a
condition for the application of Theorem 2.1. It can therefore not directly be applied to the
entire space X. However, from previous analysis in Theorem 5.1 and Corollary 5.1, it is
known that the state converges to a compact set, generally denoted by X̃ ⊂ X. We consider
therefore further in the analysis a compact state space X̃ which is chosen large enough to
include B as defined in (5.20).

Remark 5.10. The probability δ, with which the error bound in Theorem 2.1 holds, does
not refer to individual Nκ but to all Nκ ∈ N0. To emphasize this, (2.10) can be rewritten as

P

∞⋂

Nκ=0
|µκ(x)− f(x)| ≤ βκσκ(x),∀x ∈ X̃

 ≥ 1− δ.

where X̃ ⊂ X is a compact set subset of the state space.

Based on this additional assumption, the ultimate bound can be determined as follows.

77

5 Feedback Linearization with event-triggered Online Learning

Theorem 5.2. Consider the system (5.1) and a desired trajectory xd(t) under Assump-
tions 5.1 to 5.7. Further consider the control law (5.16), where f̂κ(·) is the GP posterior
mean function in (5.21), which is adapted at arbitrary switching times tκ according to Al-
gorithm 5.1. Then, with probability 1− δ, δ ∈ (0, 1), the tracking error ‖e‖ is GUUB for
any kc > 0 with ultimate bound

Bκ =
x ∈ X̃

∣∣∣∣∣∣‖e‖ ≤ βκσ̄κ

kc
∥∥∥[λᵀ 1

]∥∥∥
 , ∀x0 ∈ X̃,

where σ̄κ := maxx∈X̃ σκ(x) and βκ is defined in Theorem 2.1.

Proof. For the common Lyapunov candidate V (x) = r2/2, the time derivative is given by

V̇ (x) = r
(
f(x)− f̂κ(x)

)
− kcr2 ≤ |r|∆fκ(x)− kcr2. (5.25)

Applying Theorem 2.1, it can be concluded that

P
{

∆fκ(x) ≤ βκσ̄κ, ∀x ∈ X̃,κ ∈ N0
}
≥ 1− δ

⇒ P
{
V̇ (x) < 0, ∀x ∈ X̃ \ Bκ,κ ∈ N0

}
≥ 1− δ,

showing the convergence of r to a ball with radius βκσ̄κ
kc

and the ultimate boundedness of
the tracking error e to the set Bκ with probability larger then 1 − δ. The attributes hold
uniformly and globally from the fact that V (·) is a common time-independent and radially
unbounded Lyapunov function [174].

Remark 5.11. Theorem 5.1 shows the existence of an ultimate bound, which holds across
all time intervals and is thereby the maximum of the ultimate bounds in each time step. This
becomes clear in the choice of c1, c3,C2,C3 in (5.18), which provides bounds for all κ. In
contrast, Theorem 5.2 is here more specific and provides with Bκ a quantitative bound for each
time interval κ individually. Note that this does not imply that the tracking error e converges
to the set Bκ before the next time step tκ+1. It would converge to this tube (in infinite time)
if the control law stopped adapting after the κ-th update (as discussed in Corollary 5.2).

Even though the size of the set Bκ can now be computed, it is not necessarily decreasing
with any model update because βκ is increasing with additional data points and it is unclear
whether σ̄κ decreases faster. If a constant ultimate bound is desired, the gain kc can be
adopted accordingly as elaborated in the following.

Corollary 5.3. Consider the system (5.1) and a desired trajectory xd(t) under Assump-
tions 5.1 to 5.7. Further consider the control law (5.16), where f̂κ(·) is the GP posterior
mean function in (5.21), which is adapted at arbitrary switching times tκ according to Algo-
rithm 5.1. Additionally, the control gain kc is adapted according to

kcκ = βκσ̄κ

bB
∥∥∥[λᵀ 1

]∥∥∥ ,

where bB > 0 is the desired size of the bound, which can be chosen arbitrarily. Then, with
probability 1− δ, δ ∈ (0, 1), the tracking error ‖e‖ is GUUB by

Bconst =
{
x ∈ X̃ |‖e‖ ≤ bB

}
, ∀x0 ∈ X̃.

78

5.4 Event-triggered model update

Proof. This directly follows from the proof of Theorem 5.2 because it already analyzes a
switching control law, where now not just the model, but also the gain switches, which leads
to the same conclusion.

Remark 5.12. The results in Theorem 5.2 and Corollary 5.3 are powerful because they
allow to bound the tracking error to an arbitrarily small bound, by properly choosing kc.
This is usually sufficient for most practical applications. However, choosing large control
gains is also considered as disadvantageous because it leads to aggressive feedback control,
which amplifies noise and might lead to saturation of the actuators.

Therefore, the next section aims to improve the control design to ensure tight convergence
independent of the control gain kc.

5.4 Event-triggered model update
Until now, the switching times tκ+1, at which measurements are taken, were chosen arbi-
trarily. This section will design the instance of the model update to ensure asymptotic
convergence of the closed-loop. Previous work, such as [63] and [62] are based on a periodic
model update, thus the model update occurs after a fixed time-interval ∆t > 0, resulting
in tκ+1 = tκ + ∆t. While this might be the most intuitive idea and easy to implement, it has
several disadvantages.
First, it is unclear, whether, at the current state x(κ), the estimate f̂(·) is sufficiently

precise or not. In this context, ”sufficiently precise” is not an absolute number but refers to
the stability of the closed-loop. For a large model error ∆fκ(·), the condition of a decreasing
Lyapunov function is violated as it can be seen from (5.25). Since the model error is not
exactly known, ∆t must be chosen very small to ensure the stability condition holds at any
time.
Second, over an infinite time-horizon the periodic measurements result in infinitely many

data points, which are impossible to store in finite memory but might also be unnecessary.
Due to limited computational power and possible real-time constraints, also large finite data
sets might be critical to handle. This will be discussed in more detail in Sec. 5.5.

Remark 5.13. For time-triggered model updates, the choice of ∆t results in a trade-off
between precision of the trajectory tracking (size of the ultimate bound is determined by σ̄κ
in Theorem 5.2) and the computational complexity arising from measuring and processing
the data.

To break down this trade-off, the key idea of the proposed event-triggered online learning
is to add training data points only if necessary to guarantee stability. Thus, if the uncertainty
in the model about the true dynamics becomes too large and (5.25) could be violated, an
event is triggered. This intuitive approach will be investigated for noiseless measurements
in Sec. 5.4.1 and for noisy measurements in Sec. 5.4.2.

5.4.1 Asymptotic stability for noiseless measurements
First, the noise free measurements are formulated as an assumption.

79

5 Feedback Linearization with event-triggered Online Learning

Assumption 5.8. The time-derivative of the highest order state ẋn can be measured noise
free, thus σ2

on = 0.
The choice of the GP model as function approximation for f(·) yields the advantage that

it provides with its posterior standard deviation function σ(·) in (5.24) a bound on the model
error according to Theorem 2.1. This is utilized to define the following event

tκ+1 := {t > tκ |βκσκ(x) ≥ kc|r|} , (5.26)

where the triggering time tκ+1 is the first time instance t > tκ when βκσκ(·) becomes larger
or equal kc|r|. The inter-event time is defined as

∆tκ := tκ+1 − tκ. (5.27)

Remark 5.14. At t = tκ, after an update of the model has been performed, the error of the
model is zero, and so is σκ(·) according to Lemma 2.1. This implies σκ(x(tκ)) < kc|r(tκ)|
for all r 6= 0. Since σκ and r are continuous signals between two events, the event (5.26)
will always be triggered at equality, thus βκσκ(x(tκ+1)) = kc|r(tκ+1)|.
Based on the proposed event-trigger in (5.26) for the model update, the following conclu-

sion is drawn.
Theorem 5.3. Consider the system (5.1) and a desired trajectory xd(t) under Assump-
tions 5.1 to 5.8. Further consider the control law (5.16), where f̂κ(·) is the GP posterior
mean function in (5.21), which is updated according to the event-triggering law (5.26) and
Algorithm 5.1. Then, the tracking error e is uniformly globally asymptotically stable (UGAS)
for any kc > 0 and the inter-event time ∆tκ is lower bounded by a positive constant ∆t > 0
with probability 1− δ.
Proof. Consider the common Lyapunov candidate V (x) = r2/2 and its time derivative

V̇ (x) ≤ |r|∆fκ(x)− kcr2, (5.28)

where ∆fκ(·) is the model error defined in (5.23). It is zero in the time instance after the
noiseless measurements and the corresponding model update ∆fκ(x(tκ)) = 0, which results
in V̇ (x(tκ)) = −kcr2. For tκ < t < tκ+1 the estimation error ∆fκ(x(t)) is generally larger
than zero, but kcr2 > r∆fκ(x) will hold with probability 1− δ for all t < tκ+1 by design of
the triggering condition (5.26) and Theorem 2.1

P
{
V̇ (x) < 0,∀x ∈ X̃,κ ∈ N0

}
≥ 1− δ.

Considering that the state converges to a compact set X̃ = Bκ for any initial condition x0 ∈ X
according to Theorem 5.2, the Lyapunov function decreases globally resulting in uniform
global asymptotic stability with probability 1− δ.
To exclude any Zeno behavior, the Lipschitz constant Lσ> 0 is defined, such that σ̇κ ≤ Lσṙ,

which exists due to the differentiability of σκ(·) with respect to r. Along the lines of [176],
it is derived

d

dt

∣∣∣∣σκr
∣∣∣∣ = d

dt

√
σ2
κ√
r2

=
(σ2

κ)
−1
2 σκσ̇κ

√
r2 −

√
σ2
κrṙ(r2)−1

2

r2 = σ̇κr − σκṙ
r2 ≤

∣∣∣∣ σ̇κr
∣∣∣∣+ ∣∣∣∣σκṙr2

∣∣∣∣
≤
∣∣∣∣∣Lσ(∆fκ − kcr)

r

∣∣∣∣∣+
∣∣∣∣∣σκ(∆fκ − kcr)r2

∣∣∣∣∣ ≤ Lσ

∣∣∣∣∣∆fκr
∣∣∣∣∣+ Lσk

c +
∣∣∣∣∣∆fκσκr2

∣∣∣∣∣+ kc
∣∣∣∣σκr

∣∣∣∣ ,

80

5.4 Event-triggered model update

which yields according to Theorem 2.1

P
{
d

dt

∣∣∣∣σκr
∣∣∣∣ ≤ Lσβκ

∣∣∣∣σκr
∣∣∣∣+ Lσk

c + βκ

∣∣∣∣σκr
∣∣∣∣2 + kc

∣∣∣∣σκr
∣∣∣∣ ,∀x ∈ X̃, k ∈ N0

}
≥ 1− δ.

For φκ :=
∣∣∣σκ
r

∣∣∣, the following differential equation is obtained

φ̇κ = βκφ
2
κ + φκ(Lσβκ + kc) + Lσk

c, (5.29)

which yields for the time interval t ∈ [tκ; tκ+1) and the initial condition φκ(tκ) = 0 (obtained
from σκ(x(tκ)) = 0) the solution

φκ(t) = 1
2βκ

(
c1,φκ tan

(1
2 ((t− tκ)c1,φκ ± c2,φκ)

)
− Lσβκ − kc

)
, (5.30)

according to [177], where c1,φκ =
√

4βκLσkc − (Lσβκ + kc)2 and c2,φκ = 2 arccos
(

−c1
2
√
βκLσkc

)
.

By design, the event is triggered at φ = kc/βκ, which yields the lower bound

∆tκ ≥
(

2 arctan
(
(3kc + Lσβκ)/c1,φκ

)
+ c2,φκ

)
/c1,φκ ≥ (π + c2,φκ)/c1,φκ =: ∆t,

on the inter-event time, using arctan(·) < π/2.

To resolve the probabilistic nature of Theorem 5.3, we can make an additional assumption.

Assumption 5.9. Measurements of x and ẋn are continuously available.

This allows a redefinition of the event-trigger

tκ+1 := {t > tκ |∆fκ(x) ≥ kc|r|} , (5.31)

which is used in the following.

Corollary 5.4. Consider the system (5.1) and a desired trajectory xd(t) under Assump-
tions 5.1 to 5.9. Further consider the control law (5.16), where f̂κ(·) is the GP posterior
mean function in (5.21), which is updated according to the event-triggering law (5.31) and
Algorithm 5.1. Then, the tracking error e is UGAS for any kc > 0.

Proof. From the proof of Theorem 5.3 this directly follows.

Remark 5.15. In a digital control design, Assumption 5.9 cannot be fulfilled as it would
require infinite update rates of the sensor and the processing unites. Corollary 5.4 is therefore
rather stated for completeness.

5.4.2 Ultimate boundedness for noisy measurements
In case the measurements of ẋn are corrupted by noise (Assumption 5.8 is not applicable),
the asymptotic stability derived in Theorem 5.3 cannot be achieved. However, by redefining
the event-trigger, an ultimate bound can be derived, which is (for the same control gain kc)
tighter than in Theorem 5.2 . It is proportional to the noise level and thereby consistent
with Theorem 5.3 as shown in the following.

81

5 Feedback Linearization with event-triggered Online Learning

Corollary 5.5. Consider the system (5.1) and a desired trajectory xd(t) under Assump-
tions 5.1 to 5.7. Further consider the control law (5.16), where f̂κ(·) is the GP posterior
mean function in (5.21), which is updated according to the event-triggering law

tκ+1 := {t > tκ |βκσκ(x) ≥ kc|r| ∩ e /∈ Bσon } . (5.32)

and Algorithm 5.1 where

Bσon =
x ∈ X̃

∣∣∣∣∣∣‖e‖ ≤ σonβκ

kc
∥∥∥[λᵀ 1

]∥∥∥
 .

Then, with probability 1 − δ, the tracking error e is GUUB to the set Bσon for any kc > 0
and the inter-event time ∆tκ is lower bounded by a positive constant ∆t′ > 0, for all κ ∈ N
with probability 1− δ.

Proof. In contrast to Theorem 5.3, the model update at t = tκ does not lead to a perfect
model ∆fκ(x(tκ)) = 0. However, the posterior standard deviation function of the GP (5.24)
is at any training point upper bounded by the measurement noise σκ(x(tκ)) ≤ σon according
to Lemma 2.1. Considering again V (x) = r2/2 as Lyapunov function and its time derivative

V̇ (x(tκ)) ≤ |r|(βκσon − kc|r|),

it is obvious that V̇ (·) is possibly positive inside Bσon . But outside it is negative definite
which shows that the system is GUUB.
To exclude Zeno behavior only e /∈ Bσon must be analyzed, since inside Bσon no events are

triggered. The lower bound on the inter-event time is derived along the lines of Theorem 5.3.
Hence, the dynamics of φκ(t) as derived in (5.29) are the same for the noisy case, but the
initial condition φκ(tκ) is now unequal from zero (due to the noise). It can be upper bounded
by

φκ(tκ) <

√√√√ σ2
on

1 + σ2
on/ζ

2

/
|r| := φ0.

The solution for the zero initial condition in (5.30) is adapted to a nonzero initial condi-
tion φκ,0 according to [177] by changing c2 to

c′2,φκ = 2 arctan
(

2βκφ0 + Lσβκ + kc

c1

)
. (5.33)

Accordingly, the lower bound on the inter event time for the noisy case is

∆tκ ≥ (π + c′2,φκ)/c1,φκ =: ∆t′,

which concludes the proof.

82

5.5 Efficient data handling

5.5 Efficient data handling
Using a event-triggered model update, we have designed a control law which provides the
desired safety guarantees, with a vanishing tracking error for infinite time. Even though new
data points are only added to Dκ if required, Algorithm 5.1 eventually keeps accumulating
infinitely many data points. Since the GP is a data-driven model, whose parameters are the
data-points, the computational complexity to perform a prediction grows with Nκ. This can
be crucial, if any real-time requirements are in place or only limited computational power
is available. Particularly, if the desired trajectory covers a large area in the state space or
when high precision tracking is required, this can cause difficulties.

Remark 5.16. This thesis explicitly only tackles the challenge of computational limits in
the GP predictions f̂κ(·) and σκ(·). Since this operation must theoretically be performed in
continuous time (and therefore with very high updates rates in a digital setup) to implement
the proposed control law, we see this as the most crucial operation. Hence, we do not consider
any further restrictions, e.g., the computational time for a measurement, a model update or
finite memory.

Remark 5.17. There are different approaches in literature to reduce the computational com-
plexity of GPs. However, many perform an approximation in the prediction [96], [99] and
are therefore not applicable here, because we would lose the safety guarantees which were
shown based on the standard GP prediction.

We pursue the most direct approach to reduce the computational complexity of GPs,
known as subset of data, where a set of active data points D(a)

κ ⊆ Dκ is selected for prediction,
while all other points are neglected. Here, we impose a budget of N̄ (a) ∈ N data points, thus
we limit the active data set to |D(a)

κ | = N̄ (a)
κ ≤ N̄ (a). This implies the following assumption.

Assumption 5.10. The computational power of the controller allows to perform a prediction
of the GP model with N̄ (a) data points.

In contrast to previous work, e.g., in [63], which uses a heuristic forgetting strategy,
we present a data selection algorithm, which is optimal with respect to the future desired
trajectory and safe as it preserves all guarantees derived in the previous section. We first
prove safety for a minimal data set, then present a measure to quantify the value of a data
point and finally state the resulting algorithm.

5.5.1 Safe forgetting
We first show that the asymptotic stability in Theorem 5.3 also holds if only the last data
point is contained in the active training data set and all others are not utilized.

Corollary 5.6. Consider the system (5.1) and a desired trajectory xd(t) under Assump-
tions 5.1 to 5.8 and 5.10. Further consider the control law (5.16), where f̂κ(·) is the GP
posterior mean function in (5.21) which is based on the reduced data set

D(a)
κ = {x(tκ), ẋn(tκ)} ,

and updated according to the event-triggering law (5.31) and Algorithm 5.1. Then, with
probability 1− δ, the tracking error e is globally asymptotically stable for any kc > 0.

83

5 Feedback Linearization with event-triggered Online Learning

Proof. Since σκ(·) is continuous and zero at each training point, σκ(x(tκ)) = 0, it is concluded
that there exists a neighborhood of x(tκ) where σκ(x) < kc|r| holds. Therefore, the same
conclusion as in Theorem 5.3 can be drawn.
Remark 5.18. Corollary 5.6 shows that any memory restrictions can easily be obeyed and
a single data point in the GP model is sufficient for stability. However, the rate at which
events are triggered is generally increased and the control performance (convergence rate of
the tracking error) might suffer.

Since the problem setting allows to store more than a single data point, the goal is to
use N̄ (a) points in the GP prediction to be as precise as possible. So for |Dκ| ≤ N̄ (a), we
set D(a)

κ = Dκ and if ‖Dκ‖ > N̄ (a), we aim to select the N̄ (a) most useful points. The following
section will discuss how the utility of data points can be measured.

5.5.2 Information value of data points
Consider a set of states Xv ⊂ X at which the output of the unknown function f : X → R
should be inferred. Given is the set XDκ = {x(1),x(2), . . . ,x(Nκ)} ⊂ X for which (noisy)
measurements of the output of the function f(·) are available. The goal is to select N̄ (a)

κ

data points from XDκ , denoted by XD(a)
κ
⊂ XDκ to maximize the information about the

function f(·) at the states Xv.
A well understood measure of information is entropy, describing the uncertainty of random

variables [178]. Here, we consider the outputs f(x) for x ∈ Xv as random variables with
joint Gaussian distribution. Using ΣXv to denote their covariance, the entropy is given by

H(Xv) = 0.5 log (2π det(ΣXv
)) ,

which is a slight abuse of notation here, since Xv are not the random variables, but the
function values of f(·) at these locations. Continuing with this notation, the quantity of
interest, the conditional entropy, is formulated as

H(Xv|Xa) = H(Xv,Xa)−H(Xa).

The optimization to select the most informative data set D(a)
κ ⊂ Dκ about the function values

at the states Xv ⊂ X is then formally written as

D(a∗)
κ = arg min

D(a)
κ ⊂Dκ,

∣∣∣D(a)
κ

∣∣∣=N̄(a)

H(Xv|XD(a)
κ

). (5.34)

5.5.3 Safe and optimal data selection
The conditional entropy criterion selects the optimal training set with respect to a set of
states of interest Xv, which was not further specified so far. Previous work uses here a grid
over a compact input space to ensure a precise global model [178]. However, in our problem
setting, the state space is not bounded and the proposed control law only requires a good
model near the desired trajectory.
As a consequence, we choose the set Xv from the manifold of the future trajectory, thus

Xv ⊂ {xd(t) ∈ X |t ∈ [tκ;∞)} =: Xd.

84

5.5 Efficient data handling

Example 5.4. Consider ∆td ∈ R+ as the density at which the future trajectory is
sampled and Nd ∈ N determines how many data points are considered. Then, an example
for the choice of Xv is given by

Xv = {xd(tκ),xd(tκ + ∆td), . . . ,xd(tκ +Nd∆td))} .

This allows to optimally chose the active data set D(a)
κ for the tracking in the upcoming

time interval ∆tdNd. Consider that the time interval can be interrupted by the event-
trigger if tκ + ∆tdNd < tκ+1, which leads to a new active data set.

For most choices of Xv, it is not guaranteed that optimization (5.34) selects the most recent
training point x(tκ) for the active set. This possibly leads to a violation of the stability
condition, which we therefore make a constraint in the optimization

D(a∗)
κ = arg min

D(a)
κ ⊂Dκ,

∣∣∣D(a)
κ

∣∣∣=N̄(a)

H(Xv|XD(a)
κ

). s.t. βD(a)
κ
σD(a)

κ
(x) < kc|r|, (5.35)

where βD(a)
κ

and σD(a)
κ

(·) are defined as βκ and σκ(·) using D(a)
κ instead of Dκ, respectively.

Remark 5.19. According to Corollary 5.6, the stability constraint is satisfied if x(tκ) ∈ D(a)
κ .

Hence, the constraint set is never empty and therefore the optimization (5.35) is always
feasible.

A summary using the choice of Xv according to Example 5.4 is provided in Algorithm 5.2.

Algorithm 5.2 Event-triggered control under computational constraints.
1: initialize κ = 0, D0 = {}, f̂0(·) = 0, ĝ(·) = g(·)
2: while simulation time not exceeded do
3: while t < tκ+1 do
4: run uκ(x) in (5.16) to control the system (5.1)
5: end while
6: set κ← κ+ 1
7: measure x(κ) = x(tκ) and y(κ) = ẋn(tκ) + ω(κ)

8: add training point Dκ = Dκ−1 ∪
{(
x(κ), y(κ)

)}
9: if |Dκ| > N̄ (a) then

10: set Xv = {xd(tκ),xd(tκ + ∆td), . . . ,xd(tκ +Nd∆td))}
11: determine active set D(a∗)

κ according to (5.35)
12: else
13: set D(a∗)

κ = Dκ

14: end if
15: update f̂κ(·), ĝκ(·) and σκ(·) according to (5.11), (5.12) and (5.24) using D(a∗)

κ

16: end while

Remark 5.20. From a computational perspective, the combinatorial problem (5.35) is NP-
hard [179]. Therefore, a greedy alternative is employed, as shown in Algorithm 5.3 which

85

5 Feedback Linearization with event-triggered Online Learning

enforces the stability constraint by always making the most recent training point x(tκ) part
of the active set.

Algorithm 5.3 Greedy approximation to minimize the conditional entropy.
1: initialize X∗

D(a)
κ

= {x(tκ)}
2: for n̄ = 1, . . . , N̄ (a) − 1 do
3: X∗

D(a)
κ
← X∗

D(a)
κ
∪ arg min
x(i)∈XDκ

H(Xv|X∗D(a)
κ
∪ x(i))

4: end for

5.6 Numerical evaluation
To illustrate the presented control approach and algorithms, we show simulation results for
three different scenarios and present a robotic experiment.3.

5.6.1 Simulation results
For the numerical illustration, the following control affine system is considered

ẋ1 = x2, (5.36)

ẋ2 = 1− sin(x1) + ς(x2)︸ ︷︷ ︸
=f(x)

+
(

1 + 1
2 sin(x2/2)

)
︸ ︷︷ ︸

=g(x)

u,

where ς(x2) = 0.5
1+exp(−x2/10) is the sigmoidal function. It can directly be seen that this

modified pendulum system is in line with Assumptions 5.1 and 5.2. Since Assumption 5.7
cannot be directly verified, we learn offline a GP with a high density of training data to
represent f(·) and take a sample of this GP as the real system if Assumption 5.7 is applied.
For samples of a GP, Assumption 5.7 surely holds. Assumptions 5.3, 5.4, 5.6 and 5.8 can
directly be fulfilled by the setup of the simulation.
In total three scenarios are considered in simulation to illustrate different aspects of the

proposed control law and an overview of the employed parameter is given in Table 5.1.

Scenario 1: Time-triggered learning

In the first scenario (S1), we focus on the identification scheme as presented in Sec. 5.2.
Therefore, both functions, f(·) and g(·) are assumed to be unknown and Assumption 5.6
is not in place. We utilize the adaptive control law with a periodic switching sequence,
thus ∆tκ = 0.5 is constant ∀κ and only Theorem 5.1 is applicable. The event-based approach
is not evaluated in S1 to illustrate the simultaneous identification of f(·) and g(·) in closed-
loop. We corrupt the measurements with i.i.d. Gaussian noise and thereby Assumption 5.8
is not in place.

3Code for MATLAB is provided: https://gitlab.lrz.de/ga68car/adaptFeLi4GPs

86

https://gitlab.lrz.de/ga68car/adaptFeLi4GPs

5.6 Numerical evaluation

kc λ x0 S1: mg(x) σ2
on S2&S3: rmin β σ2

on `2
f ζ2 N̄ (a)(S3)

1 1
[
3 2

]ᵀ
= 2, ∀x 10−6 10−5 7 10−14 5 5 10

Table 5.1: Parameters for the simulation of the online learning approach

For the reference trajectory a smooth jump from x1 = 1 to x1 = 0 at t = 10 is chosen

xd(t) = 1− 1
1 + exp(−20(t− 10))

to fulfill Assumption 5.5.
Here, Assumption 5.7 is not considered to hold and therefore the hyperparameters of

the SE kernel are unknown. A model update with a new data point is therefore always
accompanied by hyperparmeter optimization according to (2.6). The simulation time is set
to t = 20, which results in a total of N = 40 data points. Data selection as proposed in
Sec. 5.5 is not considered.
Figure 5.6 compares the system dynamics f(·), g(·) in (5.36) with the corresponding es-

timates f̂(·), ĝ(·) at the end for the simulation, thus based on N = 40 data points. The
hyperparameters are fitted well, which can be seen as follows: The rate of change of f(·)
is higher in x1 direction and this is reflected in l1,f � l2,f . Equivalently, l1,g � l2,g shows
that g(·) mainly depends on x2. As a result, the closed-loop identification delivers a satis-
factory model precision.
The tracking performance over time is shown in Fig. 5.7 and Fig. 5.8 visualizes the resulting

trajectory in the state space. Clearly, after the system has collected sufficiently many points,
the state converges closely to the two stationary points

[
1 0

]ᵀ
and

[
0 0

]ᵀ
in the steady

state. Since the controller uses periodic updates, unnecessary data points are added to the
training set as time passes by. Therefore, the second scenario (S2) operates on an event-
triggered scheme which is designed to avoid this problem.

Scenario 2: Event-triggered learning

For Scenario 2 (S2), the event-triggered design in Sec. 5.4 is illustrated, which requires fur-
ther assumptions: The effect of the control signal on the system g(·) is perfectly known, thus
Assumption 5.6 is fulfilled. The observations are taken noise free (Assumption 5.8), however
a minimal noise level of σ2

on = 10−16 is implemented for numerical stability. Also Assump-
tion 5.7 is put in place resulting in constant hyperparameters (no likelihood optimization)
throughout the simulation.
We also set βκ constant for all κ and refer to the discussion in Sec. 5.7 and previous

work [68]. To avoid any numeric difficulties a lower bound on the filtered state is imple-
mented |r| > rmin. The desired trajectory is a sinusoidal function with amplitude 1, thus

xd(t) = sin(t),

and the simulation is manually stopped at t = 30. Here, no limit on the size of the data
set Dκ is imposed.
Figure 5.10 compares the event- and the time-triggered schemes. The rate of convergence

is approximately the same until a numerical limit is reached at ‖e‖ ≈ 10−5, which is aligned

87

5 Feedback Linearization with event-triggered Online Learning

−4 −2 0 2 4
−4

−2
0

2
4

−0.2

0

0.2

0.4

x1
x2

re
lat

ive
er

ro
r x(i) (f̂40(·) − f(·))/f(·)

−4
−2

0
2

4

−4−2024

−0.2

0

x1
x2

re
lat

ive
er

ro
r

x(i) (ĝ40(·) − g(·))/g(·)

Figure 5.6: Scenario 1: The surfaces illustrate the relative error between the true func-
tion f(·) (left), g(·) (right) and the model estimates f̂40(·), ĝ40(·) after taking 40
training points. The error is the lowest (in terms of absolute value) near the
training data (black marks), which are plotted for illustration purposes in the
x1-x2-plane.

0 2 4 6 8 10 12 14 16 18 20

0

2

4

t

x
1

xd(t)
x1(t)

Figure 5.7: Scenario 1: The black solid line illustrates the actual, the green dashed line the
desired value for the state x1. The system converges to the desired state over
time.

88

5.6 Numerical evaluation

0 0.5 1 1.5 2 2.5 3 3.5 4

−6

−4

−2

0

2

x1

x
2

x(i)

x(t)
xd(t)

Figure 5.8: Scenario 1: Black circles indicate the collected training points, the black solid
line illustrates the actual, the green dashed the desired trajectory. The system
approaches the desired states as more training points are collected.

with rmin. The event-triggered scheme stops taking new measurements after 29 data points
are collected around the desired trajectory. In contrast, the time-triggered collects 60 data
points (and would keep adding more) and is therefore computationally not as efficient as the
event-triggered scheme.

Scenario 3: Data selection

In Scenario 3 (S3), the same setup as for S2 is chosen, but an upper limit of N̄ (a) = 10 is
imposed on the number of data points employed in the GP model. Therefore, Algorithm 5.2
is utilized with Nd = 100 and ∆td = π/100. To highlight the benefits of the proposed data
selection, we compare the data selection in Algorithm 5.3 with a random selection of the
active data set D(a)

κ . For better illustration, we choose a sinusoidal reference trajectory with
increasing amplitude

xd(t) = 0.2t sin(t)

and the simulation is manually stopped at t = 12.
Figure 5.11 shows the resulting trajectories in the state space and the active set of training

data. For the proposed entropy-based selection, it can be observed that data points near Xv

are chosen, which results in smaller values of σκ(·) along the future desired trajectory. This
results in less events (60) compared to the random data selection (163).

89

5 Feedback Linearization with event-triggered Online Learning

−2 −1 0 1 2 3 4

−2

−1

0

1

2

3

x1

x
2

σ29(·) XDκ

x(t) xd(t)

Figure 5.9: Scenario 2: Black circles indicate the collected training points, the black solid
line illustrates the actual, the green dashed the desired trajectory. The colormap
shows the variance function (2.4) for the GP σ29(·) after the 29th update, where
yellow indicates low variance and blue high variance.

5.6.2 Experimental results
Experimental Setup

For the evaluation in a robotic experiment, the two degree of freedom (DoF) manipulator
CARBO as shown in Fig. 5.12 is employed. It has two rotational joints q =

[
q1 q2

]ᵀ ∈ R2

and its dynamics are generally given by

q̈ = −M rob(q)−1 (Crob(q, q̇)q̇ + grob(q))︸ ︷︷ ︸
f(x)

+M rob(q)−1︸ ︷︷ ︸
G(x)

u,

where M rob : R2 → S2
+ is the mass matrix, Crob : R2 × R2 → R2×2 is the Coriolis matrix

and grob : R2 → R2 is the gravity vector. The input u ∈ R2 is a vector of the applied torques
in each joint, the state is x =

[
q1 q2 q̇1 q̇2

]ᵀ
As we consider a similar scenario as in S2, G(·) is assumed to be known (Assumption 5.6

holds), while f(·) is unknown. Therefore, the mass matrix M rob(·) is given as follows

M rob(q) =
[
I1 + I2 + M1̃l

2
1 + M2

(
l21 + l̃22

)
+ 2M2l1̃l2 cos(q2) I2 + M2̃l

2
2 + 2M2l1̃l2 cos(q2)

I2 + M2̃l
2
2 + 2M2l1̃l2 cos(q2) I2 + M2̃l

2
2

]

where the parameter values for the moments of inertia I1, I2, the centers of mass l̃1, l̃2, the
lengths of the links l1, l2 and the masses M1, M2 are provided in Table 5.2.
The expression for Crob(·, ·) and grob(·) are considered unknown. Therefore, f(·) is identi-

fied using the proposed online learning. This covers all unknown components in the dynamics
including external forces and any type of friction, which is usually very difficult to model
with first order principles.

90

5.6 Numerical evaluation

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

0.1

0.2

0.3

t

|σ
κ
/
r|

event-triggered online learning

tκ ‖e‖
|σκ/r| kc/βκ

10−7

10−5

10−3

10−1

101

‖e
‖

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

0.2

0.4

0.6

0.8

t

|σ
κ
/r

|

time-triggered online learning

tκ ‖e‖
|σκ/r|

10−8

10−5

10−2

101

‖e
‖

Figure 5.10: Scenario 2: Comparison of the event-triggered (top) and time-triggered (bot-
tom) online learning. For the first, events (magenta circles) are triggered
when the threshold kc/βκ (black horizontal line) is reached by |σκ/r| as pro-
posed in (5.26). For the latter, events are triggered after a fixed time interval
(∆t = 0.5). The blue lines show the norm of the tracking error ‖e‖.

l1 l2 l̃1 l2 I1 I2 M1 M2

0.3 m 0.3 m 0.15 m 0.15 m 1 kg m2 1 kg m2 1.5 kg 1.5 kg

Table 5.2: Physical parameters of the two DoF robotic manipulator

91

5 Feedback Linearization with event-triggered Online Learning

−3 −2 −1 0 1 2 3 4
−3

−2

−1

0

1

2

3

x
2

Random Selection of D(a)
κ

−3 −2 −1 0 1 2 3 4
−3

−2

−1

0

1

2

3

x1

x
2

Entropy-based Selection of D(a)
κ

σκ XDκ XD(a)
κ

x(t) xd(t) Xv

Figure 5.11: Scenario 3: Black circles indicate the collected training points Dκ, the red as-
terisk the selected training data D(a)

κ , the black solid line illustrates the actual,
the green dashed the desired trajectory. The colormap shows the variance func-
tion (2.4) for the GP σκ(·) after the last update, which is only based on N̄ (a) = 10
data points in D(a)

κ (yellow indicates low variance and blue high variance). On
the top D(a)

κ is chosen randomly from Dκ. On the bottom, the proposed data
selection Algorithm 5.3 is utilized.

92

5.6 Numerical evaluation

q1

q2

Figure 5.12: The two DoF robotic manipulator CARBO used for evaluation of the proposed
event-triggered online learning approach.

Since f(·) has a two-dimensional output, two GPs are employed. The input training data
is for both the same, measurements of the state x =

[
qᵀ q̇ᵀ

]ᵀ
, the output data are the rows

of −M rob(q)−1 (Crob(q, q̇)q̇ + grob(q)), respectively.
The even-triggering law (5.26) is extended to multiple dimensions using a logical OR-

operation to trigger whenever one of the GPs has reached the threshold, thus

tκ+1 := {t > tκ |β1,κσ1,κ(x) ≥ kc1|r1| ∨ β2,κσ2,κ(x) ≥ kc2|r2|} .

The hyperparameters of the GP models are set to fixed values as provided in Table 5.2,
which are obtained from an offline learning procedure along the same reference trajectory
which is used in the online learning scheme. The desired trajectory for joint 1 and 2 are

q1 : x1,d(t) = π

6 cos(0.5t), q2 : x2,d(t) = π

6 cos(t),

respectively.
The controller runs on an Ubuntu 14.04 real-time kernel with a Matlab/Simulink 2017

implementation and a sample rate of 1 kHz.

ζ2
f1 ζ2

f2 `2
1:n,f1 `2

1:n,f2 β1 β2 kc1 kc2 λ1 λ2

39 80 [0.8 4.9 13 11] [13 3913 26 2.5] 29 21 4 3 10 10

Table 5.3: Parameters of the online learning controller in the robotic experiment.

93

5 Feedback Linearization with event-triggered Online Learning

Results

Similar to S2, we compare the proposed event-triggered online learning with a time-triggered
online learning with ∆t = 0.5s and a model-free controller, where f̂κ(x) = 0, ∀x is used
in (5.4). The tracking error for both joints is shown in Figs. 5.13 and 5.14. The model-free
controller (a PD controller with gains according to Table 5.3) shows no improvement over
time, while the event-triggered and the time-triggered control laws show decreasing tracking
errors.
Figure 5.15 shows the accumulative number of model updates over time. While the pro-

posed event-triggered scheme adds most training points in the first period of the desired
trajectory, the time-triggered scheme adds points at a constant rate. In the long run, the
time-triggered update law adds too many training data point because the real-time con-
straint is violated for a data set with Nκ > 80. A problem which the event-triggered scheme
circumvents because it only adds data points if required and is thereby more data-efficient.

5.7 Discussion
The proposed approach safely controls unknown systems, even if no data points are initially
available. This is a crucial novelty because many previous approaches do not discuss how
training data can be collected without harming the system or its environment. The identifi-
cation scheme relies on Bayesian principles which enables to incorporate prior knowledge of
the closed-loop system structure into the model. It is very powerful since a very large class
of functions f(·) and g(·) can be represented properly using the flexibility of a nonparametric
model.
The provided safety guarantees are based on the capability of the GP to measure its own

fidelity and thereby to bound the model error. This property, introduced in Theorem 2.1,
requires Assumption 5.7, which is very crucial. Even though it is less restrictive than para-
metric assumptions, it is still difficult to verify in practice. However, some assumptions are
necessary because a generalization outside of the training set would otherwise not be possi-
ble [108]. Furthermore, the maximum mutual information γκ required in Theorem 2.1 is not
trivial to obtain. However, [104] provides for the most common kernels upper bounds on γκ.
Furthermore, alternative bound, which do not require this value have already been pointed
out [103].
While this work mainly considers g(·), the effect of the control input on the dynamics, to be

known, it is also possible to learn it from data. An analysis of the resulting convergence prop-
erties has been published recently [180] which allows to drop Assumption 5.6. While [180]
only considers a static data set, we expect that an extension to the online event-triggered
controller is directly possible. Furthermore, this approach does not consider a limitation on
the control input. It can be shown, that u is bounded under the given assumptions, but
predefined limits cannot actively be imposed.
The proposed event-triggered update law is highly data-efficient, since only necessary data

points are collected. The feedback linearizing controller only requires a locally precise model,
which makes it sufficient to store only a single data point (compare Corollary 5.6). This is a
significant advantage over most existing approaches which require a globally precise model
and thereby a large data set.
We are aware that two computational challenges remain open if the controller is applied

94

5.7 Discussion

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

−0.1

0

0.1

t [s]

q 1
−

q 1
,d

[ra
d]

time-triggered model-free event-triggered

Figure 5.13: Comparison of the tracking error of the first joint q1−q1,d for the proposed event-
triggered control (black), a time-triggered approach (green) and a model-free
control approach (green).

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
−0.2

−0.1

0

0.1

t [s]

q 2
−

q 2
,d

[ra
d]

time-triggered model-free event-triggered

Figure 5.14: Comparison of the tracking error of the second joint q2 − q2,d for the proposed
event-triggered control (black), a time-triggered approach (green) and a model-
free control approach (blue).

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
0

20

40

60

80

t [s]

N
κ

event-triggered time-triggered

Figure 5.15: Accumulative number of model updates in comparison for the event-triggered
and the time-triggered control law.

95

5 Feedback Linearization with event-triggered Online Learning

over a long time scale. First, the current algorithm requires a growing (and unbounded)
amount of memory since data is never deleted. However, the presented data selection scheme
has already demonstrated, how data can safely be ignored by the controller. In fact, con-
sidering the constraints (5.35), all non-active data could be deleted safely (maintaining the
provided convergence guarantees) leading to a O(1) memory usage. Also the number of
active data points can be chosen very small (as low as N̄ (a) = 1) leading to minimal data
storage requirements. Nevertheless, it should be considered that there is a trade-off between
the number of stored / active data points (memory) and the frequency of the events, which
are computationally quite expensive.
Second, the selection of the active data set adds an additional computational burden and

the question whether it is beneficial requires a closer consideration: The greedy approxima-
tion proposed in Algorithm 5.3 requires O

(
NN̄ (a)

)
steps, while the model update (including

the matrix inversion) takes (with a rank-1 update) O
(
N̄ (a)2) or O (N2) with or without data

selection, respectively. Thus, for N � N̄ (a) the selection can be expected to speed up the
model update step. But, even more important, the computation of the control law (GP
posterior mean) requires O

(
N̄ (a)

)
or O (N) steps and the detection of events (GP posterior

variance) takes O
(
N̄ (a)2) or O (N2) steps with or without data selection, respectively. These

two operations are performed “continuously”, i.e. occur much more frequently than an event
and therefore the selection is expected to pay off for the overall computation time.
In conclusion, this approach contributes to solve Challenges 2 and 4 because the control

law is safe from the first time instance, without requiring any knowledge of the system in
advance. In comparison, to previous methods like NN-based controllers in [181], it quantifies
the ultimate bound for the tracking error and in comparison to [84] asymptotically stabilizes
the system. Key to this innovation is the event-triggered design of the control low which
allows safe exploration of unknown areas while safely following a reference trajectory.

5.8 Summary
This chapter proposes a closed-loop nonparametric identification scheme for control-affine
systems. It takes advantage of compound kernels to transfer knowledge about the system’s
structure into the model. Based on feedback linearization, the control law achieves global
uniform ultimate boundedness of the tracking error for model updates at arbitrary time
instances.
Furthermore, an event-triggered online learning scheme is proposed, which collects new

training data only when necessary to ensure stability. This results in asymptotic stability
guarantees for noise free measurements. To keep the control law computationally tractable
this chapter presents an optimal selection of the most informative data points with respect
to the future desired trajectory.
The proposed algorithms are illustrated in multiple simulation scenarios and evaluated in

a robotic experiment.

96

Further Work 6

In addition to the contributions presented in Chapters 3 to 5, the author has published
further work in the intersection of machine learning and control. This chapter summarizes
these contributions very briefly. For more details, we refer to the respective publications.

6.1 Dynamic uncertainty-based leader-follower control
Humans cooperate very successfully in a variety of tasks, even if knowledge about the task
is distributed asymmetrically among cooperation partners [182]. A common cooperation
paradigm for asymmetric knowledge distribution is the so-called leader-follower scheme.
Here, the well-informed partner adopts a leading role, while the less knowledgeable part-
ner assumes a following role. Leader-follower schemes are well established in control [183],
but the roles are rarely adapted dynamically (during task execution) and often not assigned
based on knowledge.
Therefore, the work in [102] proposes a knowledge-based cooperation scheme using GPs.

When an agent has high training data density in the current phase of the task, its GP
posterior variance is low and it has high confidence about the task. As a result, it takes over
a leading role, by being less cooperative and rather tracking its desired trajectory. When only
little training data is currently available, the GP posterior variance increases and the agent
focuses on cooperation (here, it strives to maintain the formation), rather than following its
uncertain estimate of a desired trajectory. The comparison to a constant cooperation scheme
is shown in Fig. 6.1.

6.2 Uncertainty modeling in programming by
demonstration

The most appealing property of GPs is their representation of the fidelity of the model.
However, most approaches ignore that the GP posterior variance function only represents
the proximity to training data and thereby models uncertainty due to missing data. However,
there might also be uncertainty due to contradiction in the data or multi-modality, which is
not modeled by a GP.
Particularly, in learning by demonstration in robotics, where multiple demonstrations of

the same task exist, the variability of the data carries crucial information about the task
itself. For example, in the manipulation of an object, a phase with low demonstration
variability might indicate a narrow passage in the task space.

97

6 Further Work

−0.5

0

0.5 Deviation from
training data

y
[m

]

Constant Cooperation
Agent 1 Agent 1 Data
Agent 2 Agent 2 Data

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
−0.5

0

0.5

Matching training data

t[s]

y
[m

]

Dynamic Cooperation

Figure 6.1: Illustration of the knowledge-based leader-follower cooperation. With constant
cooperation, both agents are equal at any time. Therefore, they agree on a tra-
jectory, which maintains the formation, but does not properly follow the training
data. With the proposed dynamic cooperation, the agent, which has training
data for the current phase of the task, takes over the lead and the other ensures
that the formation is maintained. Here, Agent 1 leads for t ∈ [5; 15] and Agent 2
for t ∈ [16; 25.5].

98

6.3 Scenario-based optimal control

The work in [170] proposes a GP-based modeling technique by applying Wishart-processes
(presented in [184]) to a learning by demonstration scenario. In the reproduction of the pre-
sented motion, the stiffness of the robot is increased in phases with low variability in the
training data and decreased where variability is high. Thereby, the controller is only aggres-
sive when necessary and increases the safety in human-robot interaction. A visualization is
provided in Fig. 6.2.

6.3 Scenario-based optimal control
Drawing (and storing) a sample from a GP is practically impossible because it is an infinite
dimensional object [106]. This might be the reason why the scenario view on GPs is the
least utilized among the presented interpretations in Sec. 2.3. Nevertheless, model predictive
control schemes do not need to sample an entire function, but only a finite number of function
values.
This insight enables the combination of a scenario-based optimal control approach and GP

models in [107]. By sampling trajectories over a finite time horizon from a GP dynamical
model, the variety of possible outcomes is properly represented. The work uses a differential
dynamic programming approach to solve the optimal control problem. Based on the result
from robust convex optimization, performance guarantees are derived. A visualization of
this scenario-based approach is provided in Fig. 6.3.

6.4 Uncertainty-aware path tracking
Many programming by demonstration tasks require the replication or generalization of a
presented path. In a large fraction of the literature, the desired motion is modeled as a
dynamical system, due to its robustness to perturbation and real-time capability. Most
works also provide guarantees for convergence to the desired final point, see e.g., dynamic
movement primitives (DMP) [185] or stable estimator of dynamical systems (SEDS) [123].
However, all previous works ignore the uncertainty, which comes with sparse training data.

In contrast, the work in [186] develops an uncertainty-based path tracking, which actively
makes use of the capability of a GPSSM to quantify its uncertainty due to missing data. The
approach actively strives into regions with more demonstration data and thus higher model
certainty, which allows to reproduce human-demonstrated motions with higher precision
than competitive state-of-the-art methods.
It is designed for goal-directed tasks, where it is essential to impose stability constraints on

the model representing the human motion to make sure it reaches the correct final position.
To guarantee this stability of the resulting trajectories, the presented approach uses a non-
parametric GP-based Lyapunov function, which is visualized in Fig. 6.4.

6.5 Learning a stable state-dependent coefficient form
While most other contributions in this thesis focus on GPs, the work in [187] presents a
more general framework to learn stable stochastic dynamical systems. More specifically,
it considers the state-dependent coefficient form, which can represent arbitrary continuous

99

6 Further Work

−0.2 −0.15 −0.1 −5 · 10−2 0 5 · 10−2 0.1 0.15 0.2
−0.1

0

0.1

0.2

start
goal

y[m]

x
[m

]

training paths
reproduced path
inferred variance

Figure 6.2: Shown are six training trajectories (red) provided by a human operator in the vir-
tual environment and the reproduced trajectory (green). The proposed method
infers the variability of the training data (blue). Based on this information, the
manipulator is less stiff near the start (y < 0.02) which makes it safer in case
of human interaction. It is more stiff near the goal (y > 0.02), which prevents
collision with the obstructed environment in case of disturbances.

−1 −0.5 0 0.5 1 1.5 2 2.5
−1

−0.5

0

0.5

1

1.5

2

2.5

3

x1

x
2

scenarios
actual trajectory
uncontrolled system

Figure 6.3: The blue arrows show the zero input behavior of an example non-linear system.
The objective here is the stabilization at the origin. The red lines show the
controlled behavior for different samples from the GP dynamic model. The black
line shows the response of the real system to the optimal input sequence.

100

6.5 Learning a stable state-dependent coefficient form

−200 −150 −100 −50 0 50

−50

0

50

100

150

x1

x
2

uncertainty-based Lyapunov function training data
uncertainty-based path tracking SEDS

Figure 6.4: The black arrows show a training motion, which is supposed to be replicated in a
learning by demonstration scenario. Previous approaches (SEDS in green) are not
capable of following the training data precisely, because they do not include an
incentive to stay near training data. In contrast, the proposed uncertainty-based
Lyapunov function drives the generated trajectories towards the areas with low
uncertainty (dark blue) and prevents the path-tracking from moving into areas
without training data (light blue to yellow).

nonlinear dynamical systems. Thereby, it learns an arbitrary probability distribution as a
function of the state space using a two layer learning architecture.
This is a major advantage over GP models, whose posterior variance function models the

density of the data, but, e.g., cannot capture a multi-modal distribution of the data. As a
main contribution, [187] derives constraints to ensure convergence with probability one of the
resulting model. These constraints can directly be incorporated in the learning procedure. It
applies this general framework to Beta and Dirichlet distributions and evaluates the presented
techniques on a real-work human motion data set. An example is shown in Fig. 6.5.

101

6 Further Work

−20 0 20 40 60 80 100 120 140 160 180 200 220
0.6

0.8

1

xk

m
ea

n

training data
inferred mean
inferred variance

0

0.02

0.04

0.06

0.08

va
ria

nc
e

Figure 6.5: The inferred mean and variance of a Beta distribution are shown over the state
space. The distribution accurately represents the high variance for x < 50 and
the low variance for states with x > 50. The mean function properly averages
the training data.

102

Conclusion 7

The application of data-driven models in control significantly progressed over the past years.
More and more publications focus on formal guarantees of model-based control laws and
take the present uncertainties due to imperfect modeling into consideration. This progress
improves the reliability of learning-based control and supports its application in safety-critical
domains, e.g., autonomous driving or physical human robot interaction.
This thesis focuses on Gaussian processes (GPs) as data-driven models and contributes

novel concepts for system identification and the design of control laws which are summarized
in the following.

Summary of contributions
After the introduction, we present in Chapter 2 a structured literature review on GPs in
control and classify different interpretations of GPs used in existing works. Then, for the
identification of dynamical systems, we propose a framework to impose consistent conver-
gence behavior of the real unknown system and the nonparametric model. In a physical
context, this ensures that the model also follows the principle of energy dissipation. The
framework learns the convergence behavior from data and ensures this is mimicked by the
Gaussian process state space model. We show that this approach under certain conditions
never performs worse than a GP model without stabilization. In contrast to previous work,
we include the uncertainty due to sparse training data in the model and derive how many
data points are needed to guarantee asymptotic stability.
To take advantage of data-driven models, which include an estimate of the model fidelity,

we propose a control law which actively avoids areas in the state space where the model
uncertainty is high. The analysis shows that it is optimal, with respect to the probability of
convergence, to steer the system along a trajectory near the training data where the model
precision is high. This behavior is intuitive but has not been shown formally before.
If a training data set is not available, safe exploration of an unknown system is crucial.

Therefore, we propose an online learning feedback linearizing control law, which is stable from
the start and continuously improves the model over time. This event-triggered control scheme
takes new measurements only if necessary and is thereby highly data-efficient. Compared to
other online methods, it only operates on a local model making it unnecessary to store a large
data set for a globally valid model. We show asymptotic stability of the resulting closed-
loop switching system and propose an information-theoretic selection of data to reduce the
computational complexity.
All results are supported by rigorous mathematical proofs along with numerical evalua-

tions, showing that the proposed concepts are significant contributions to make data-driven
models for control applicable in safety-critical domains.

103

7 Conclusion

Implications

We take this chance to revisit the challenges imposed for learning-based control in Sec. 1.1.

Challenge 1 Making a model logically and physically consistent with the real system
requires to consider various aspects. In Chapter 3 this thesis focuses on the dissipation of
energy. Learning not only the dynamics but also the convergence behavior from data allows
to combine the flexibility of nonparametric models with consistent stability properties of the
true system and the model. Further physical or logical verifications of the model are not
studied.

Challenge 2 The question on formal guarantees and the required assumptions is addressed
by the two proposed control laws, in an offline setting in Chapter 4 and an online setting
in Chapter 5. Both show that despite the present uncertainties, asymptotic stability can
be achieved in both cases. Two assumptions are necessary to draw this conclusion. First,
the volatility of the dynamics must be restricted (here a bound on the reproducing kernel
Hilbert space norm), which corresponds to a smooth dynamical system. Second, knowledge
about the effect of the input on the state is required. While the first assumption is inevitable,
according to the no-free-lunch theorems [108], the second originates from the chosen feedback
linearizing control design.

Challenge 3 The existing control approaches which avoid uncertain areas and favor well-
known areas, known as risk-sensitive control [129], are largely missing an analysis of stability.
In Chapter 4 this work presents a novel controller which maximizes the probability for
stability under a given power constraint and shows the desired risk-aware behavior for data-
driven models.

Challenge 4 Systems for which initially no training data exists must be explored safely
through an online closed-loop identification. Since the control law proposed in Chapter 5
requires only a locally precise model, the closed-loop stability can be guaranteed from the
start and thereby allows safe exploration of unknown systems. Focusing on data efficiency,
we develop an event-triggered update scheme which only adds training points if necessary
due to a high model uncertainty. It thereby answers the question which data points should
be collected. By proposing a safe forgetting strategy, which uses the information gain as
criteria, we also address the question which data points should be kept in case of data
processing or storage constraints.

Future directions

Although this thesis presents novel techniques to learning-based control and thereby makes
progress towards the safe application in various tasks, many problems remain unsolved. We
would like to point out these open research questions, which we suggest to study in the
future.

104

Safe online learning

The simultaneous identification and control of an unknown system is, within this thesis, only
discussed in Chapter 5 and is also underrepresented in the literature. However, this is one of
the most urgent difficulties in the field. The assumption that an initial data set is available
is hard to justify because there might be no safe method to obtain the data. Therefore,
algorithms are required which start with no data points initially and safely control the
system while exploring the state space. The idea of life-long learning, where data points
are constantly added during operation, is important for constant improvement, however,
solutions must be found to an infinitely increasing data set.

Computational and data efficiency

Gaussian processes are a computationally very heavy tool, which becomes intractable in most
real-time applications for more than 104 data points. While there are many good reasons
to choose GPs as a dynamical model (among others its very good generalization for small
data sets), a solution must be found for complex systems with high dimensional state space.
Since these require large data sets for precise control, the computational tractability and the
data efficiency must be a focus of future work. The contribution in Sec. 5.5.1 is only a step
in this direction.

Systems with unknown state spaces

An assumption, which was not explicitly stated here, is that the state space of the system
is known. However, if the fundamental (physical) relations of a complex system are not
understood, it might not just be impossible to derive the dynamics but also difficult to
define the state space. An example which is often mentioned for the application of data-
driven control is soft-robotics [188]. However, flexible structures typically require an analysis
using finite element methods, which is only an approximation to an infinite dimensional state
space. Therefore, future work must transfer the presented ideas to an input-output view of
a dynamical system, which comes with many more challenges regarding observability and
controllability of learned systems.

State and input constraints

The notion of safety in this thesis only considers the asymptotic behavior of the system,
i.e. the derived bounds (e.g. on the tracking error) are not satisfied at all times, but are
only ensured as time approaches infinity. One idea to resolve this difficulty is to analyze the
rate of convergence using Lyapunov-based techniques, which guarantees a certain tracking
precision for a given (finite) time interval. However, there exist various control approaches,
e.g., MPC, control barrier functions and invariance control, which directly allow to impose
state or input constraints in the design. Combining those methods with data-driven models
and performing a rigorous analysis of the closed-loop behavior will be of great value for many
safety-critical applications.

105

7 Conclusion

Formal guarantees with alternative regression models

The work in this thesis is focused on GPs because it allows to bound the model error under
mild assumptions and thereby allows to prove formal stability results for the proposed control
laws. However, GPs also have disadvantages (e.g., a high computational complexity), which
is the reason why most publications in the field of machine learning focus on alternative
approaches, such as neural network. Transferring the presented techniques and proofs to
other supervised learning techniques would make data-driven control applicable in more
complex tasks and empower learning-based control to operate large scale systems.

106

Notation

Acronyms & Abbreviations
a.s. almost surely

CLF control Lyapunov function

DoF degree of freedom

DMP dynamic movement primitives

GP Gaussian process

GPSSM Gaussian process state space model

GUUB globally uniformly ultimately bounded

GAS globally asymptotically stable

HJB Hamilton-Jacobi-Bellman

i.i.d. independent and identically distributed

ILC iterative learning control

LQR linear quadratic regulator

MPC model predictive control

MRAC model reference adaptive control

NN neural network

RKHS reproducing kernel Hilbert space

RL reinforcement learning

SE squared exponential

SEDS stable estimator of dynamical systems

SOS sum of squares

UAV unmanned aerial vehicle

107

Notation

UGAS uniformly globally asymptotically stable

UB ultimately bounded

UUV unmanned underwate vehicle

WSAQF weighted sum of asymmetric quadratic functions

Conventions & Operators
|·| absolute value of a real number or cardinality of a set

IN ∈ RN×N identity matrix

E[·] expected value of a random variable

V[·] variance of a random variable

·(i) i-th training point

·ᵀ transpose of a vector or matrix

‖·‖ Euclidean norm of a vector (if not state differently)

diag(·, ·, · · ·) arranges the elements on the diagonal of a diagonal matrix

‖·‖k reproducing kernel Hilbert space norm of a function

〈·, ·〉 inner product of a vector space

· ∼ N (·, ·) random variable follows a Gaussian distribution with mean and variance

· ∼ GP(·, ·) function is distributed according to a Gaussian process with mean and
variance function

1 : N integer indices from 1 to N , thus 1, 2, . . . ,N

x(1:N) concatenation of x1 to xN , thus [x1 · · · xN]ᵀ

f
(
x(1:N)

)
concatenation of function evaluations, thus

[
f
(
x(1)

)
· · · f

(
x(N)

)]ᵀ
O(·) big O notation to describe limiting behavior of functions

P {·} probability of an event

p (·) probability density function

det(·) determinate of a matrix

log(·) natural logarithm of a positive scalar

rank(·) rank of a matrix

108

Notation

trace(·) trace of a matrix

x ∈ (a; b) open interval, thus a < x < b

x ∈ [a; b] closed interval, thus a ≤ x ≤ b

∇x · Nabla operator, gradient of a scalar function

∇xᵀ · Nabla operator, gradient transpose of a scalar fucntion

%(·), %̄(·) minimal and maximal singular value of a matrix, respectively

$(·), $̄(·) minimal and maximal eigenvalue value of a matrix, respectively

0 vector/matrix of zeros of proper dimensions

Sets & Spaces
B,Bι,Bι̃ ⊆ X hyperball (with radius ι, ι̃)

Bσon ⊆ X hyperball whose radius depends on the observation noise σon

Bκ ⊆ X hyperball at κ-th time step

D, Dκ set of training data (after κ model updates)

D(a)
κ ,D(a∗)

κ (optimal) set of active training data at the κ-th time step

Dadd set of additional training data

L2 the space of square-integrable functions

N set of positive integers

R, R+,R+,0 set of real / positive real / non-negative real numbers

Sn+ ⊂ Rn×n set of symmetric positive definite n× n matrices

Snε$ ⊆ Sn+ set of symmetric n× n matrices, with all eigenvalues larger than ε$

U ⊆ Rnu set of control inputs

X ⊆ Rn state or input space, refer to definition

Xi∗ ⊆ X region of attraction of the i∗-th equilibrium point

X̃i∗ ⊆ Xi∗ region around the i∗-th equilibrium point, refer to definition

Xd ⊂ X manifold of states of the future desired trajectory

Xa ⊂ X active input training points

Xv ⊂ X state of interest

109

Notation

Functions
α1,α2 : R+,0 → R+,0 class K functions, i.e. strictly increasing and α(0) = 0

b : Rn
+ → (0; 1) computes the reliability for given error bounds

β̃ : (0; 1)→ R+ computes the constant β given a probability

cσ : X→ R cost function to plan optimal path

Crob : R2 × R2 → R2×2 Coriolis matrix of a two DoF robotic manipulator

∆fκ, ∆f : X→ R+,0 model error (in the κ-th time step)

f : X→ R general scalar function, refer to definition

f : X→ Rm general vector field, refer to definition

f̄ : X→ X stabilized GPSSM to estimate f(·)

f̂ , f̂κ : X→ R approximation to the function f(·) (at time step κ)

f̂ : X→ Rm approximation to the function f(·), refer to definition

fGP : X→ R Gaussian process estimate for f(·)

fBS : X× S+ → X× S+ dynamics in the belief-space interpretation

fsum, fprod : X→ R function, which is a sum / product of two functions

fa, fb, fh : X→ R functions, which are samples from a GP

grob : R2 → R2 gravity vector of a two DoF robotic manipulator

g : X→ R scaling of the input for a single input control affine system

G : X→ Rn×n scaling of the input for a control affine system

ĝ, ĝκ : X→ R approximation to the function g(·) (at time step κ)

ḡκ : X→ R ratio of g(·) to ĝκ(·)

g : R→ R+ penalty function for fitting Lyapunov functions to data

g̃ : R+ → R+ penalty function in the positive domain for fitting Lyapunov
functions to data

h : X→ R scalar function in general, refer to definition

H : Xm → R+ entropy of m jointly distributed random variables

k, ka, kb, kh : X× X→ R kernel functions of a GP

kprod : X× X→ R kernel function for product of a GP and a known function

110

Notation

kSE : X× X→ R squared exponential kernel

kfg, kf , kg : X× X→ R kernel function for identification of control affine systems

k,ka,kb,kh,kg,kf: X→ RN covariances between a test input x and the training
data x(1:N)

M rob : R2 → S2
+ mass matrix of a two DoF robotic manipulator

mon : X→ Rnpoly vector of monomials

M̃ , Ñ : R→ R auxiliarily functions, refer to definition

m,ma,mb : X→ R prior mean function of a GP

µ : X→ R posterior mean function of a GP in general

µf ,µg : X→ R posterior mean function of a GP to model functions f(·)
and g(·), respectively

µ : X→ Rm posterior mean function of m GPs concatenated as vector

ppoly : X→ R polynomial of degree dpoly

p : R→ R+ probability density function, refer to definition

σ : X→ R posterior standard deviation of a GP

σ : X→ Rm posterior standard deviation of m GPs concatenated as
vector

σ2 : X→ R posterior variance function of a GP

Σ : X→ Rm×m posterior variance function of m GPs concatenated as
diagonal matrix

σ2 : X→ Rm posterior variance function of m GPs concatenated as vector

σ2
D2 : X→ R posterior variance of a GP for a dataset with two points

ς : R→ (−0.5; 0.5)) shifted sigmoid function

V : X→ R+,0 general Lyapunov candidate, refer to defintion

Vσ : X→ R+,0 uncertainty-aware Lyapunov function

Vclf : X→ R+,0 generic control Lyapunov function

Vval : X→ R+,0 value function for an optimal control problem

Vθ,V i∗
θi∗

: X→ R+,0 parameterized Lyapunov function learned from data

VSq : X→ R+,0 quadratic Lyapunov function

Vsq : X→ R+,0 isotropic quadratic Lyapunov function

111

Notation

VSOS : X→ R+,0 sum of squares Lyapunov function

VWSAQF : X→ R+,0 weighted sum of asymmetric squares Lyapunov function

W0 : [9 exp(91);∞)→ [91;∞) principle branch of the Lambert W function

W91 : [9 exp(91); 0)→ [9∞; 91) lower branch of the Lambert W function

V̄ ,V : R+,0 → R+,0 auxiliarily functions to decompose a Lyapunov function

x̃ : [0 S]→ X path parameterized by the arclength s ∈ [0;S]

Z̄,Z : R+ × X→ R auxiliarily functions to analyze the posterior variance

Z̄ ′,Z ′ : R+ → R auxiliarily functions to analyze the posterior variance

Constants & Variables
β ∈ R+, β ∈ Rm

+ constants linking the model error to the variance of a GP

bB ∈ R+ desired size of the ultimate bound

Bf ∈ R bound for the reproducing kernel Hilbert space norm of f(·)

c1, c2 ∈ R auxiliarily constants, refer to definition

c1, c3 ∈ Rn constants to bound terms of a Lyapunov function

C2,C3 ∈ Sn+ constants to bound terms of a Lyapunov function

c1,φκ , c2,φκ ∈ R+,0 constants defined for notational convenience

dpoly ∈ N degree of a monomial

δ ∈ (0; 1) probability that the model error of a GP violates a certain bound

Ecor ∈ R+,0 correction effort, refer to definition

e ∈ Rn tracking error

ε ∈ R+ arbitrarily small constant

εfd ∈ R+ constant to compute numerical gradients using finite differences

ε$ ∈ R+ lower bound for eigenvalues of positive definite matrices

εV ∈ R+ constant to resolve strict inequality constraints

γ ∈ R+ maximum mutual information

gconst ∈ R+ gravity constant

H ∈ RN×N diagonal matrix with h
(
x(i)

)
, i = 1, . . . ,N on its diagonal

112

Notation

i ∈ {1, . . . ,N} index (mainly used for training points)

i∗ ∈ {1, . . . ,N∗} index for equilibria

Ii∗ ⊆ {1, 2, . . . ,N} indices of data points within the i∗-region of attraction

i ∈ {0, 1} indicator variable for WSAQF

I1, I2 ∈ R+ moment of inertia of a two DoF robotic manipulator

j ∈ {1, . . . ,n} index (mainly used for dimensions of the state space)

κ ∈ N0 time index for time-discrete event-triggered systems

kc ∈ R+ controller gain

K,Ka,Kb,Kh ∈RN×N covariance matrix of training data

Kf ,Kg ∈ RN×N covariance matrix of training data for kf (·, ·) / kg(·, ·)

Ksum,Kprod ∈ RN×N covariance matrix of training data, refer to definition

Kon ∈ RN×N covariance matrix of training data including observation noise

Kfg ∈ RN×N covariance matrix of training data for the compound
kernel kfg(·, ·) including observation noise

Kol,cl ∈ RNol×N covariance matrix of training data for open- and closed-loop
measurements

Kol,ol ∈ RNol×Nol covariance matrix of training data for open-loop measurements

`2 ∈ R+ lengthscale of a SE kernel

`2
j,f , `2

j,g ∈ R+ lengthscale of SE kernel kf (·, ·), kg(·, ·), respectively

`2 ∈ R+ smallest lengthscale of (multiple) SE kernel(s)

%
G
∈ R+,0 smallest singular value of a matrix G

Lσ ∈ R+ Lipschitz constant of GP posterior standard deviation function

l ∈ {1, . . . ,L} indexing variable in WSAQF

L ∈ N number of asymmetric squared functions in WSAQF

l1, l2 ∈ R+ length of links of two DoF robotic manipulator

l̃1, l̃2 ∈ R+ center of mass for each link of two DoF robotic manipulator

λ1, . . . ,λn−1 ∈ R coefficients of a linear filter

λ ∈ Rn−1 concatenation of coefficients of a linear filter

ηi∗ ∈ R+,0 measure how well a Lyapunov function fits data

113

Notation

M1,M2 ∈ R+ mass of each link of a two DoF robotic manipulator

µxκ+1 ∈ X mean of the next state in belief-space view

µ̄ ∈ R+ upper bound for GP posterior mean function

n ∈ N dimensionality of an input or state space

N ∈ N number of training points

Nol ∈ N number of training points obtained from open-loop measurements

N̄ (a)
κ ∈ N number of training points in the active data set in the κ-th time

step

N̄ (a) ∈ N budget (maximum number of training points in active data set)

Nd ∈ N number of points sampled from future desired trajectory

N∗ ∈ N number of equilibria

Ninit ∈ N number of different initial points

Nvio ∈ N number of trajectories violating the ultimate bound

Nadd ∈ N number of added data points

npoly ∈ N number of a monomials with a degree dpoly in n dimensions

ν ∈ R linear feedback control

ω ∈ R,ω ∈ Rn independent and identically distributed noise

ψ,ψfg hyperparameters of a Gaussian process / composite kernel kfg(·, ·)

φ ∈ R upper bound for triggering condition

P 0...L ∈ Sn+ coefficient matrices for the WSAQF

P ∈ Rn×n coefficient matrix for a quadratic function

Q ∈ Rn×n coefficient matrix for sum of squares function

q1, q2 ∈ R, q ∈ R2 joint angles of a two DoF robot in radiants

rtr ∈ R+ radius around a training point

ρ ∈ R filtered tracking error

r ∈ R filtered state

rmin ∈ R+ lower bound for the absolute value of r

ra, r̃a ∈ R+,0 distances in the state space, refer to definition

114

Notation

Υ1, . . . , Υn ∈ N exponents of monomials

ι, ι̃ ∈ R+ radius of a ball or utlimate bound

σon ∈ R+,0 standard deviation of the observation noise

σ2
on ∈ R+,0 variance of the observation noise

ζ2 ∈ R+,0 signal variance of a SE kernel

ζ2
f , ζ2

g ∈ R+,0 signal variance of SE kernel kf (·, ·), kg(·, ·), respectively

ζ̄2 ∈ R+,0 maximal signal variance of mutiple SE kernels

σ̄2 ∈ R+ upper bound for GP posterior variance

σ̄ ∈ R+ upper bound for GP posterior standard deviation

σ2
xκ+1 ∈ R+ variance of the state in belief-space view

s ∈ C complex variable in a characteristic polynomial

s ∈ R paramterization of a path

S ∈ R upper limit for paramterization of a path

θ ∈ Θ,θi∗ ∈ Θi∗ parameter vector for Lyapunov function Vθ(·),V i∗
θi∗

(·)

Θ, Θi∗ ⊆ Rnθ possible parameter set with dimension nθ

tκ ∈ R+ current time instance

tκ+1 ∈ R+ next time instance

∆t, ∆tκ ∈ R+ time interval (in the κ-th step)

∆td ∈ R+ time interval at which the future desired trajectory is sampled

∆t ∈ R+ lower bound for the inter-event time

τ ∈ R+ auxiliarily variable, refer to definition

υ ∈ (0; 1) reliability (probability that a system is stable)

u ∈ R, u ∈ Rnu control input, refer to definition

umax ∈ R+ maximum control power

U ∈ RN×N diagonal matrix with control input at training points

x ∈ X state of a system / input to a function

xκ,xκ ∈ X current state of a time discrete system

xκ+1,xκ+1 ∈ X next state of a time discrete system

115

Notation

xg ∈ X goal state to which a system converges

xkn ∈ X state at which the function value is known

x̂∗, x̂i∗ ∈ X estimate of the (i∗-)equilibrium point

x∗,xi∗ ∈ X the (i∗-th) equilibrium point

x(a),x(ã) ∈ X specific points in the state space, refer to definition

xd ∈ X desired trajectory

xWSAQF
1 , . . . ,xWSAQF

L ∈X centers in the weighted sum of asymmetric quadratic functions

y ∈ R,y ∈ Rn noisy measurement of the output of a function

ykn ∈ R known function value at xkn

ysum ∈ R noisy measurements of the sum of two functions

yprod ∈ R noisy measurements of the product of two functions

yol ∈ R noisy open loop measurements

z ∈ R auxiliarily variable

116

List of Figures

2.1 Deterministic and robust interpretation of a GP model. 11
2.2 Belief-space interpretation of a GP model. 12
2.3 Stochastic and scenario interpretation of a GP model. 13
2.4 Illustration of Lemma 2.1 . 17

3.1 Illustration of a training dataset . 21
3.2 Illustration for a system with multiple equilibria 22
3.3 Overview of the proposed data-driven stabilization of GPSSMs 23
3.4 Illustration for the optimization-based stabilization 27
3.5 Visualization for the proof of Theorem 3.2 30
3.6 Norm of trajectories of Example 3.2 on stochastic stability 31
3.7 Longterm simulation of Example 3.2 on stochastic stability 31
3.8 Illustration of the proof of Theorem 3.3 . 36
3.9 GP posterior variance for two data points 36
3.10 Optimization-based learning of Lyapunov functions from data 38
3.11 Identification of an unknown equilibrium from data 43
3.12 Illustration of the area error employed as quality measure 44
3.13 Stochastic simulation of a GPSSM . 45

4.1 Illustration of the proof for Theorem 4.1 . 53
4.2 Illustration for Example 4.1 . 53
4.3 Visualization of the trained GPSSM . 60
4.4 Simulated trajectories for the uncertainty-aware control approach 60

5.1 Overview of the proposed online learning control law 65
5.2 Example for inferring the sum of functions with structured kernels 68
5.3 Example for inferring the product of functions with structured kernels 70
5.4 Example for inferring the sum of functions with additional data 73
5.5 Overview of the event-triggered feedback linearizing control structure 74
5.6 Comparing the model estimates with the true system 88
5.7 Tracking error for time-triggered updates of the data set 88
5.8 Trajectory for time-triggered updates of the data set 89
5.9 Trajectory for event-triggered updates of the data set 90
5.10 Comparing event-triggered and time-triggered events 91
5.11 Trajectory for event-triggered updates with selected data 92
5.12 The two DoF robotic manipulator CARBO 93
5.13 Comparing tracking error in robotic experiment (first joint) 95
5.14 Comparing tracking error in robotic experiment (second joint) 95

117

List of Figures

5.15 Events triggered in the robotic experiment 95

6.1 Illustration of the knowledge-based leader-follower cooperation 98
6.2 Illustration of uncertainty modeling in programming by demonstration . . . 100
6.3 Illustration of a scenario-based optimal control approach for GPs 100
6.4 Illustration of the uncertainty-aware path tracking 101
6.5 Illustration of learning a stable system with Beta distributions 102

118

List of Tables

3.1 Performance and properties of different Lyapunov functions 46

5.1 Parameters for the simulation of the online learning approach 87
5.2 Physical parameters of the two DoF robotic manipulator 91
5.3 Parameters of the online learning controller in the robotic experiment. 93

119

List of Algorithms

3.1 Stable identification and prediction for GPSSMs 41

5.1 Adaptive feedback linearization control . 74
5.2 Event-triggered control under computational constraints. 85
5.3 Greedy approximation to minimize entropy 86

121

Bibliography

[1] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hu-
bert, L. Baker, M. Lai, A. Bolton, et al., “Mastering the game of go without human
knowledge”, Nature, vol. 550, no. 7676, pp. 354–359, 2017.

[2] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine Learning.
Cambridge, MA, USA: MIT Press, 2006.

[3] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep con-
volutional neural networks”, in Advances in Neural Information Processing Systems
(NeurIPS), Curran Associates, Inc., 2012, pp. 1097–1105.

[4] N. Du, Y. Wang, N. He, J. Sun, and L. Song, “Time-sensitive recommendation from
recurrent user activities”, in Advances in Neural Information Processing Systems
(NeurIPS), Curran Associates, Inc., 2015, pp. 3492–3500.

[5] P. Ponte and R. G. Melko, “Kernel methods for interpretable machine learning of
order parameters”, Physical Review B, vol. 96, no. 20, p. 205 146, 20 2017.

[6] D. H. Wolpert and W. G. Macready, “No free lunch theorems for optimization”, IEEE
Transactions on Evolutionary Computation, vol. 1, no. 1, pp. 67–82, 1997.

[7] J. Umlauft, A. Lederer, and S. Hirche, “Learning stable Gaussian process state space
models”, in American Control Conference (ACC), IEEE, 2017, pp. 1499–1504.

[8] J. Umlauft and S. Hirche, “Learning stochastically stable Gaussian process state-space
models”, IFAC Journal of Systems and Control, vol. 12, p. 100 079, 2020.

[9] J. Umlauft, L. Pöhler, and S. Hirche, “An uncertainty-based control Lyapunov ap-
proach for control-affine systems modeled by Gaussian process”, IEEE Control Sys-
tems Letters, vol. 2, no. 3, pp. 483–488, 2018.

[10] J. Umlauft, T. Beckers, M. Kimmel, and S. Hirche, “Feedback linearization using
Gaussian processes”, in Conference on Decision and Control (CDC), IEEE, 2017,
pp. 5249–5255.

[11] J. Umlauft and S. Hirche, “Feedback linearization based on Gaussian processes with
event-triggered online learning”, IEEE Transactions on Automatic Control (TAC),
pp. 1–16, 2020.

[12] J. Umlauft, T. Beckers, A. Capone, A. Lederer, and S. Hirche, “Smart forgetting for
safe online learning with Gaussian processes”, in Learning for Dynamics and Control
(L4DC), ser. Proceedings of Machine Learning Research, vol. 120, The Cloud: PMLR,
2020, pp. 160–169.

123

Bibliography

[13] T. Beckers, J. Umlauft, and S. Hirche, “Mean square prediction error of misspecified
Gaussian process models”, in Conference on Decision and Control (CDC), IEEE,
2018, pp. 1162–1167.

[14] M. Liu, G. Chowdhary, B. Castra da Silva, S. Y. Liu, and J. P. How, “Gaussian
processes for learning and control: A tutorial with examples”, IEEE Control Systems
Magazine, vol. 38, no. 5, pp. 53–86, 2018.

[15] J. Kocijan, Modelling and Control of Dynamic Systems Using Gaussian Process Mod-
els. Springer, 2016.

[16] L. Ljung, System Identification. NJ, USA: Prentice Hall PTR, 1998.
[17] K. Narendra and K. Parthasarathy, “Adaptive identification and control of dynamical

systems using neural networks”, in Conference on Decision and Control (CDC), vol. 2,
IEEE, 1989, pp. 1737–1738.

[18] M. M. Polycarpou and P. A. Ioannou, Identification and control of nonlinear systems
using neural network models: Design and stability analysis. University of Southern
Calif., 1991.

[19] P. M. Nørgård, O. Ravn, N. K. Poulsen, and L. K. Hansen, Neural Networks for
Modelling and Control of Dynamic Systems - A Practitioner’s Handbook. London:
Springer, 2000.

[20] J. Kocijan, B. Banko, B. Likar, A. Girard, R. Murray-Smith, and C. E. Rasmussen,
“A case based comparison of identification with neural network and Gaussian pro-
cess models.”, in International Conference on Intelligent Control Systems and Signal
Processing (ICONS), Max-Planck-Gesellschaft, vol. 1, 2003, pp. 137–142.

[21] J. Kocijan, A. Girard, B. Banko, and R. Murray-Smith, “Dynamic systems identifica-
tion with Gaussian processes”, Mathematical and Computer Modelling of Dynamical
Systems, vol. 11, no. 4, pp. 411–424, 2005.

[22] J. M. Maciejowski, Predictive control: with constraints. Prentice Hall, 2002.
[23] A. Girard, C. E. Rasmussen, J. Quinonero-Candela, and R. Murray-Smith, “Multiple-

step ahead prediction for non linear dynamic systems–a Gaussian process treatment
with propagation of the uncertainty”, Advances in Neural Information Processing
Systems (NeurIPS), vol. 15, pp. 529–536, 2002.

[24] J. Kocijan, “Dynamic GP models: An overview and recent developments”, in Inter-
national Conference on Applied Mathematics, Simulation, Modelling (ASM), 2012,
pp. 38–43.

[25] J. Kocijan, “Control algorithms based on Gaussian process models: A state-of-the-art
survey”, in Special International Conference on Complex Systems: Synergy of Control,
Communications and Computing (COSY), 2011, pp. 69–80.

[26] T. Beckers and S. Hirche, “Stability of Gaussian process state space models”, in
European Control Conference (ECC), 2016, pp. 2275–2281.

[27] ——, “Equilibrium distributions and stability analysis of Gaussian process state space
models”, in Conference on Decision and Control (CDC), IEEE, 2016, pp. 6355–6361.

124

Bibliography

[28] M. Kuss and C. E. Rasmussen, “Gaussian processes in reinforcement learning”, in
Advances in Neural Information Processing Systems (NeurIPS), Curran Associates,
Inc., 2004, pp. 751–758.

[29] D. Sbarbaro and R. Murray-Smith, “Self-tuning control of non-linear systems us-
ing Gaussian process prior models”, in Switching and Learning in Feedback Systems:
European Summer School on Multi-Agent Control, Maynooth, Ireland, September 8-
10, 2003, Revised Lectures and Selected Papers. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2005, pp. 140–157.

[30] M. P. Deisenroth, C. E. Rasmussen, and J. Peters, “Model-based reinforcement learn-
ing with continuous states and actions”, in European Symposium on Artificial Neural
Networks (ESANN), 2008.

[31] J. Hall, C. E. Rasmussen, and J. Maciejowski, “Reinforcement learning with reference
tracking control in continuous state spaces”, in Conference on Decision and Control
(CDC), IEEE, 2011, pp. 6019–6024.

[32] M. P. Deisenroth and C. E. Rasmussen, “PILCO: A model-based and data-efficient ap-
proach to policy search”, in International Conference on Machine Learning (ICML),
2011, pp. 465–472.

[33] M. P. Deisenroth, Efficient reinforcement learning using Gaussian processes. KIT
Scientific Publishing, 2010, vol. 9.

[34] J. Hall, C. E. Rasmussen, and J. Maciejowski, “Modelling and control of nonlinear
systems using Gaussian processes with partial model information”, in Conference on
Decision and Control (CDC), IEEE, 2012, pp. 5266–5271.

[35] M. P. Deisenroth, C. E. Rasmussen, and D. Fox, “Learning to control a low-cost
manipulator using data-efficient reinforcement learning”, in Robotics: Science and
Systems VII. MITP, 2012, ch. 8, pp. 57–64.

[36] M. P. Deisenroth, D. Fox, and C. E. Rasmussen, “Gaussian processes for data-efficient
learning in robotics and control”, IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, vol. 37, no. 2, pp. 408–423, 2015.

[37] M. P. Deisenroth, G. Neumann, J. Peters, et al., “A survey on policy search for
robotics”, Foundations and Trends in Robotics, vol. 2, no. 1–2, pp. 1–142, 2013.

[38] J. Vinogradska, B. Bischoff, J. Achterhold, T. Koller, and J. Peters, “Numerical
quadrature for probabilistic policy search”, Transactions on Pattern Analysis and
Machine Intelligence, vol. 42, pp. 164–175, 1 2018.

[39] J. Vinogradska, B. Bischoff, D. Nguyen-Tuong, H. Schmidt, A. Romer, and J. Pe-
ters, “Stability of controllers for Gaussian process forward models”, in International
Conference on Machine Learning (ICML), JMLR, NY, USA, 2016, pp. 545–554.

[40] J. Vinogradska, “Gaussian processes in reinforcement learning: Stability analysis and
efficient value propagation”, PhD thesis, Technical University of Darmstadt, 2018.

[41] B. Bethke and J. P. How, “Approximate dynamic programming using bellman resid-
ual elimination and Gaussian process regression”, in American Control Conference
(ACC), IEEE, 2009, pp. 745–750.

125

Bibliography

[42] M. P. Deisenroth, J. Peters, and C. E. Rasmussen, “Approximate dynamic program-
ming with Gaussian processes”, in American Control Conference (ACC), IEEE, 2008,
pp. 4480–4485.

[43] C. E. Deisenroth Marc P.and Rasmussen and J. Peters, “Gaussian process dynamic
programming”, Neurocomputing, vol. 72, no. 7-9, pp. 1508–1524, 2009.

[44] Y. Pan and E. Theodorou, “Probabilistic differential dynamic programming”, in Ad-
vances in Neural Information Processing Systems (NeurIPS), Curran Associates, Inc.,
2014, pp. 1907–1915.

[45] B. Bischoff, D. Nguyen-Tuong, H. Markert, and A. Knoll, “Learning control under un-
certainty: A probabilistic value-iteration approach”, in European Symposium on Arti-
ficial Neural Networks, Computational Intelligence and Machine Learning (ESANN),
2013.

[46] J. Boedecker, J. T. Springenberg, J. Wülfing, and M. Riedmiller, “Approximate real-
time optimal control based on sparse Gaussian process models”, in Symposium on
Adaptive Dynamic Programming and Reinforcement Learning (ADPRL), 2014, pp. 1–
8.

[47] L. Grüne and J. Pannek, Nonlinear model predictive control: theory and algorithms.
Springer Publishing Company, Incorporated, 2013.

[48] J. Kocijan, R. Murray-Smith, C. E. Rasmussen, and B. Likar, “Predictive control
with Gaussian process models”, in The IEEE Region 8 EUROCON Computer as a
Tool., vol. 1, 2003, pp. 352–356.

[49] J. Kocijan, R. Murray-Smith, C. E. Rasmussen, and A. Girard, “Gaussian process
model based predictive control”, in American Control Conference (ACC), vol. 3,
IEEE, 2004, pp. 2214–2219.

[50] A. Grancharova, J. Kocijan, and T. A. Johansen, “Explicit stochastic nonlinear pre-
dictive control based on Gaussian process models”, in European Control Conference
(ECC), 2007, pp. 2340–2347.

[51] U. Rosolia and F. Borrelli, “Learning model predictive control for iterative tasks”,
arXiv preprint arXiv:1609.01387, 2016.

[52] T. Koller, F. Berkenkamp, M. Turchetta, and A. Krause, “Learning-based model pre-
dictive control for safe exploration”, in Conference on Decision and Control (CDC),
IEEE, 2018, pp. 6059–6066.

[53] L. Hewing, J. Kabzan, and M. N. Zeilinger, “Cautious model predictive control using
Gaussian process regression”, IEEE Transactions on Control Systems Technology,
pp. 1–8, 2019.

[54] G. Cao, E. M.-K. Lai, and F. Alam, “Gaussian process model predictive control of
an unmanned quadrotor”, Journal of Intelligent & Robotic Systems, vol. 88, no. 1,
pp. 147–162, 2017.

[55] C. J. Ostafew, A. P. Schoellig, T. D. Barfoot, and J. Collier, “Learning-based nonlinear
model predictive control to improve vision-based mobile robot path tracking”, Journal
of Field Robotics, vol. 33, no. 1, pp. 133–152, 2016.

126

Bibliography

[56] G. Gregorcic and G. Lightbody, “Gaussian process approaches to nonlinear mod-
elling for control”, in Intelligent Control Systems Using Computational Intelligence
Techniques. Institution of Engineering and Technology, 2005, ch. 6, pp. 177–217.

[57] G. Gregorčič and G. Lightbody, “Gaussian process internal model control”, in Inter-
national PhD Workshop on Advances in Supervision and Control Systems, Strunjan,
Slovenia, 2002, pp. 39–46.

[58] G. Gregorcic and G. Lightbody, “Internal model control based on a Gaussian process
prior model”, in American Control Conference (ACC), vol. 6, IEEE, 2003, pp. 4981–
4986.

[59] R. Murray-Smith and D. Sbarbaro, “Nonlinear adaptive control using nonparametric
Gaussian process prior models”, IFAC Proceedings Volumes, vol. 35, no. 1, pp. 325–
330, 2002.

[60] R. Murray-Smith, D. Sbarbaro, C. E. Rasmussen, and A. Girard, “Adaptive, cautious,
predictive control with Gaussian process priors”, in IFAC Symposium on System Iden-
tification, 2003, pp. 1195–1200.

[61] G. Chowdhary, H. A. Kingravi, J. P. How, and P. A. Vela, “Bayesian nonparametric
adaptive control of time-varying systems using Gaussian processes”, in American
Control Conference (ACC), IEEE, 2013, pp. 2655–2661.

[62] ——, “Bayesian nonparameteric model reference adaptive control using Gaussian pro-
cesses”, in Guidance, Navigation, and Control Conference (GNC), AIAA, 2013.

[63] ——, “Bayesian nonparametric adaptive control using Gaussian processes”, IEEE
Transactions on Neural Networks and Learning Systems, vol. 26, no. 3, pp. 537–550,
2015.

[64] G. Joshi and G. Chowdhary, “Adaptive control using Gaussian-process with model
reference generative network”, in Conference on Decision and Control (CDC), IEEE,
2018, pp. 237–243.

[65] R. C. Grande, G. Chowdhary, and J. P. How, “Nonparametric adaptive control us-
ing Gaussian processes with online hyperparameter estimation”, in Conference on
Decision and Control (CDC), IEEE, 2013, pp. 861–867.

[66] F. Berkenkamp and A. P. Schoellig, “Learning-based robust control: Guaranteeing
stability while improving performance”, in International Conference on Intelligent
Robots and Systems (IROS), IEEE, 2014.

[67] ——, “Safe and robust learning control with Gaussian processes”, in European Control
Conference (ECC), 2015, pp. 2496–2501.

[68] F. Berkenkamp, R. Moriconi, A. Schoellig, and A. Krause, “Safe learning of regions of
attraction for uncertain, nonlinear systems with Gaussian processes”, arXiv preprint
arXiv:1603.04915, 2016.

[69] F. Berkenkamp, M. Turchetta, A. Schoellig, and A. Krause, “Safe model-based re-
inforcement learning with stability guarantees”, in Advances in Neural Information
Processing Systems (NeurIPS), Curran Associates, Inc., 2017, pp. 908–918.

[70] D. Nguyen-Tuong, M. Seeger, and J. Peters, “Real-time local GP model learning”, in
From Motor Learning to Interaction Learning in Robots, Springer, 2010, pp. 193–207.

127

Bibliography

[71] D. Nguyen-Tuong and J. Peters, “Local Gaussian process regression for real-time
model-based robot control”, in International Conference on Intelligent Robots and
Systems (IROS), IEEE, 2008, pp. 380–385.

[72] D. Nguyen-Tuong and J. Peters, “Learning robot dynamics for computed torque con-
trol using local Gaussian processes regression”, in ECSIS Symposium on Learning and
Adaptive Behaviors for Robotic Systems, IEEE, 2008, pp. 59–64.

[73] D. Nguyen-Tuong, M. Seeger, and J. Peters, “Model learning with local Gaussian
process regression”, Advanced Robotics, vol. 23, no. 15, pp. 2015–2034, 2009.

[74] D. Nguyen-Tuong, J. R. Peters, and M. Seeger, “Local Gaussian process regression
for real time online model learning”, in Advances in Neural Information Processing
Systems (NeurIPS), Curran Associates, Inc., 2009, pp. 1193–1200.

[75] D. Nguyen-Tuong and J. Peters, “Incremental online sparsification for model learning
in real-time robot control”, Neurocomputing, vol. 74, no. 11, pp. 1859–1867, 2011.

[76] J. Schreiter, P. Englert, D. Nguyen-Tuong, and M. Toussaint, “Sparse Gaussian pro-
cess regression for compliant, real-time robot control”, in International Conference
on Robotics and Automation (ICRA), IEEE, 2015, pp. 2586–2591.

[77] S. Park, K. shabbir Mustafa, and K. Shimada, “Learning-based robot control with
localized sparse online Gaussian process”, in International Conference on Intelligent
Robots and Systems (IROS), IEEE, 2013, pp. 1202–1207.

[78] ——, “Learning based robot control with sequential Gaussian process”, in Workshop
on Robotic Intelligence in Informationally Structured Space (RiiSS), 2013, pp. 120–
127.

[79] D. Nguyen-Tuong and J. Peters, “Model learning for robot control: A survey”, Cog-
nitive processing, vol. 12, no. 4, pp. 319–340, 2011.

[80] R. Camoriano, S. Traversaro, L. Rosasco, G. Metta, and F. Nori, “Incremental semi-
parametric inverse dynamics learning”, in International Conference on Robotics and
Automation (ICRA), IEEE, 2016, pp. 544–550.

[81] T. Beckers, J. Umlauft, and S. Hirche, “Stable model-based control with Gaussian
process regression for robot manipulators”, in World Congress of the International
Federation of Automatic Control (IFAC), vol. 50, Toulouse, France: Elsevier, 2017,
pp. 3877–3884.

[82] N. T. Alberto, M. Mistry, and F. Stulp, “Computed torque control with variable
gains through Gaussian process”, in International Conference on Humanoid Robots
(Humanoids), IEEE, 2014, pp. 212–217.

[83] T. Beckers, J. Umlauft, D. Kulic, and S. Hirche, “Stable Gaussian process based track-
ing control of Lagrangian systems”, in Conference on Decision and Control (CDC),
IEEE, 2017, pp. 5180–5185.

[84] T. Beckers, D. Kulić, and S. Hirche, “Stable Gaussian process based tracking control
of Euler-Lagrange systems”, Automatica, vol. 23, no. 103, pp. 390–397, 2019.

128

Bibliography

[85] Y. Engel, P. Szabo, and D. Volkinshtein, “Learning to control an octopus arm with
Gaussian process temporal difference methods”, in Advances in Neural Information
Processing Systems (NeurIPS), ser. NIPS’05, Vancouver, British Columbia, Canada:
Curran Associates, Inc., 2005, pp. 347–354.

[86] B. Likar and J. Kocijan, “Predictive control of a gas–liquid separation plant based
on a Gaussian process model”, Computers & Chemical Engineering, vol. 31, no. 3,
pp. 142–152, 2007.

[87] A. Grancharova and J. Kocijan, “Explicit stochastic model predictive control of gas–
liquid separator based on Gaussian process model”, in International Conference on
Automatics and Informatics, vol. 188, Sofia, Bulgaria, 2011, pp. 85–88.

[88] J. Kocijan and B. Likar, “Gas–liquid separator modelling and simulation with Gaussian-
process models”, Simulation Modelling Practice and Theory, vol. 16, no. 8, pp. 910–
922, 2008.

[89] A. Grancharova, J. Kocijan, and T. A. Johansen, “Explicit stochastic predictive con-
trol of combustion plants based on Gaussian process models”, Automatica, vol. 44,
no. 6, pp. 1621–1631, 2008.

[90] M. de Paula and E. Martinez, “Probabilistic optimal control of blood glucose under
uncertainty”, in 22nd European Symposium on Computer Aided Process Engineering,
ser. Computer Aided Chemical Engineering, vol. 30, Elsevier, 2012, pp. 1357–1361.

[91] N. Qi, Q. Sun, K. Sun, X. Liu, F. Wu, and C. Liu, “Approximate dynamic program-
ming based on Gaussian process regression for the perimeter patrol optimization
problem”, in International Conference on Mechatronics and Control (ICMC), 2014,
pp. 1750–1754.

[92] M. P. Deisenroth, R. Calandra, A. Seyfarth, and J. Peters, “Toward fast policy search
for learning legged locomotion”, in International Conference on Intelligent Robots and
Systems (IROS), IEEE, 2012, pp. 1787–1792.

[93] O. M. Cliff, T. Sildomar, and Monteiro, “Evaluating techniques for learning a feed-
back controller for low-cost manipulators”, in International Conference on Intelligent
Robots and Systems (IROS), IEEE, 2013, pp. 704–709.

[94] L. Csato and M. Opper, “Sparse online Gaussian processes”, Neural computation,
vol. 14, no. 3, pp. 641–668, 2002.

[95] N. Lawrence, M. Seeger, and R. Herbrich, “Fast sparse Gaussian process methods: The
informative vector machine”, in Advances in Neural Information Processing Systems
(NeurIPS), Curran Associates, Inc., 2003, pp. 609–616.

[96] E. Snelson and Z. Ghahramani, “Sparse Gaussian processes using pseudo-inputs”, in
Advances in Neural Information Processing Systems (NeurIPS), Curran Associates,
Inc., 2005, pp. 1257–1264.

[97] M. Seeger, C. Williams, and N. Lawrence, “Fast forward selection to speed up sparse
Gaussian process regression”, in Artificial Intelligence and Statistics, 2003.

[98] M. Lazaro-Gredilla, J. Quinonero-Candela, C. E. Rasmussen, and A. R. Figueiras-
Vidal, “Sparse spectrum Gaussian process regression”, Journal of Machine Learning
Research, vol. 11, no. Jun, pp. 1865–1881, 2010.

129

Bibliography

[99] J. Quinonero-Candela and C. E. Rasmussen, “A unifying view of sparse approximate
Gaussian process regression”, The Journal of Machine Learning Research, vol. 6,
pp. 1939–1959, 2005.

[100] E. Snelson and Z. Ghahramani, “Local and global sparse Gaussian process approxi-
mations”, in International Conference on Artificial Intelligence and Statistics, 2007,
pp. 524–531.

[101] S. Choi, K. Lee, and S. Oh, “Robust learning from demonstration using leveraged
Gaussian processes and sparse-constrained optimization”, in International Conference
on Robotics and Automation (ICRA), IEEE, 2016.

[102] Y. Fanger, J. Umlauft, and S. Hirche, “Gaussian processes for dynamic movement
primitives with application in knowledge-based cooperation”, in International Con-
ference on Intelligent Robots and Systems (IROS), IEEE, 2016, pp. 3913–3919.

[103] A. Lederer, J. Umlauft, and S. Hirche, “Uniform error bounds for Gaussian process
regression with application to safe control”, in Advances in Neural Information Pro-
cessing Systems (NeurIPS), Curran Associates, Inc., 2019, pp. 659–669.

[104] N. Srinivas, A. Krause, S. M. Kakade, and M.W. Seeger, “Information-theoretic regret
bounds for Gaussian process optimization in the bandit setting”, IEEE Transactions
on Information Theory, vol. 58, no. 5, pp. 3250–3265, 2012.

[105] D. E. Stewart, Dynamics with Inequalities: impacts and hard constraints. SIAM, 2011,
vol. 59.

[106] R. Frigola-Alcade, “Bayesian time series learning with Gaussian processes”, PhD the-
sis, University of Cambridge, 2015.

[107] J. Umlauft, T. Beckers, and S. Hirche, “A scenario-based optimal control approach
for Gaussian process state space models”, in European Control Conference (ECC),
2018, pp. 1386–1392.

[108] D. H. Wolpert, “The supervised learning no-free-lunch theorems”, in Soft Computing
and Industry, Springer, 2002, pp. 25–42.

[109] F. Vivarelli, “Studies on the generalisation of Gaussian processes and Bayesian neural
networks”, PhD thesis, Aston University, Birmingham, UK, 1998.

[110] A. Lederer, J. Umlauft, and S. Hirche, “Posterior variance analysis of Gaussian pro-
cesses”, arXiv preprint: arXiv:1906.01404, 2019.

[111] H. H. Asada, F. Wu, A. Girard, and M. Mayalu, “A data-driven approach to precise
linearization of nonlinear dynamical systems in augmented latent space”, in American
Control Conference (ACC), IEEE, 2016, pp. 7–1844.

[112] J. M. Maciejowski, “Guaranteed stability with subspace methods”, Systems & Control
Letters, vol. 26, no. 2, pp. 153–156, 1995.

[113] B. Boots, G. J. Gordon, and S. M. Siddiqi, “A constraint generation approach to
learning stable linear dynamical systems”, in Advances in Neural Information Pro-
cessing Systems (NeurIPS), Curran Associates, Inc., 2008, pp. 1329–1336.

[114] P. Van Overschee and B. L. De Moor, Subspace identification for linear systems:
Theory—Implementation—Applications. Springer Science & Business Media, 2012.

130

Bibliography

[115] W. Favoreel, B. De Moor, and P. Van Overschee, “Subspace state space system iden-
tification for industrial processes”, Journal of process control, vol. 10, no. 2, pp. 149–
155, 2000.

[116] D. L. Phillips, “A technique for the numerical solution of certain integral equations
of the first kind”, Journal of the ACM (JACM), vol. 9, no. 1, pp. 84–97, 1962.

[117] H. W. Engl, M. Hanke, and A. Neubauer, Regularization of inverse problems. Springer
Science & Business Media, 1996, vol. 375.

[118] A. Kirsch, An introduction to the mathematical theory of inverse problems. Springer
Science & Business Media, 2011, vol. 120.

[119] G. Pillonetto and G. De Nicolao, “A new kernel-based approach for linear system
identification”, Automatica, vol. 46, no. 1, pp. 81–93, 2010.

[120] G. Pillonetto, F. Dinuzzo, T. Chen, G. De Nicolao, and L. Ljung, “Kernel meth-
ods in system identification, machine learning and function estimation: A survey”,
Automatica, vol. 50, no. 3, pp. 657–682, 2014.

[121] O. Nelles, Nonlinear system identification: From classical approaches to neural net-
works and fuzzy models. Springer Science & Business Media, 2013.

[122] J. M. Wang, D. J. Fleet, and A. Hertzmann, “Gaussian process dynamical models”, in
Advances in Neural Information Processing Systems (NeurIPS), Curran Associates,
Inc., 2005, pp. 1441–1448.

[123] S. M. Khansari-Zadeh and A. Billard, “Learning stable nonlinear dynamical systems
with Gaussian mixture models”, IEEE Transactions on Robotics (T-RO), vol. 27,
no. 5, pp. 943–957, 2011.

[124] J. R. Medina and A. Billard, “Learning stable task sequences from demonstration
with linear parameter varying systems and hidden markov models”, in Conference
on Robot Learning, ser. Proceedings of Machine Learning Research, vol. 78, PMLR,
2017, pp. 175–184.

[125] S. M. Khansari-Zadeh and A. Billard, “Learning control Lyapunov function to en-
sure stability of dynamical system-based robot reaching motions”, Robotics and Au-
tonomous Systems, vol. 62, no. 6, pp. 752–765, 2014.

[126] C. Blocher, M. Saveriano, and D. Lee, “Learning stable dynamical systems using
contraction theory”, in International Conference on Ubiquitous Robots and Ambient
Intelligence (URAI), IEEE, 2017, pp. 124–129.

[127] K. Neumann and J. J. Steil, “Learning robot motions with stable dynamical systems
under diffeomorphic transformations”, Robotics and Autonomous Systems, vol. 70,
pp. 1–15, 2015.

[128] H. J. Kushner, Introduction to stochastic control. Holt, Rinehart and Winston New
York, 1971.

[129] J. R. Medina, L. Dongheui, and S. Hirche, “Risk-sensitive optimal feedback control for
haptic assistance”, in International Conference on Robotics and Automation (ICRA),
IEEE, 2012, pp. 1025–1031.

131

Bibliography

[130] E. Theodorou, J. Buchli, and S. Schaal, “A generalized path integral control approach
to reinforcement learning”, Journal of Machine Learning Research, vol. 11, no. Nov,
pp. 3137–3181, 2010.

[131] H. K. Khalil and J. W. Grizzle, Nonlinear systems. Prentice hall New Jersey, 1996,
vol. 3.

[132] R. Schaback, “Improved error bounds for scattered data interpolation by radial basis
functions”, Mathematics of Computation, pp. 201–216, 1999.

[133] M. Kanagawa, P. Hennig, D. Sejdinovic, and B. K. Sriperumbudur, “Gaussian pro-
cesses and kernel methods: A review on connections and equivalences”, arXiv preprint
arXiv:1807.02582, 2018.

[134] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge university press,
2004.

[135] Y. Li, W. Zhang, and X. Liu, “Stability of nonlinear stochastic discrete-time systems”,
Journal of Applied Mathematics, vol. 2013, 2013.

[136] K. Triantafyllopoulos, Moments and cumulants of the multivariate real and complex
Gaussian distributions, University Bristol, 2002.

[137] C. K. I. Williams and F. Vivarelli, “Upper and lower bounds on the learning curve
for Gaussian processes”, Machine Learning, vol. 40, no. 1, pp. 77–102, 2000.

[138] Wolfram|Alpha, Solution based on the analytic continuation of the product log func-
tion, Online, 2019.

[139] V. Temlyakov, “A remark on covering”, arXiv preprint arXiv:1301.3043, 2013.
[140] J. Gorski, F. Pfeuffer, and K. Klamroth, “Biconvex sets and optimization with bi-

convex functions: A survey and extensions”, Mathematical Methods of Operations
Research, vol. 66, no. 3, pp. 373–407, 2007.

[141] A. Papachristodoulou and S. Prajna, “On the construction of Lyapunov functions
using the sum of squares decomposition”, in Conference on Decision and Control
(CDC), vol. 3, IEEE, 2002, pp. 3482–3487.

[142] P. A. Parrilo, “Structured semidefinite programs and semialgebraic geometry methods
in robustness and optimization”, PhD thesis, California Institute of Technology, 2000.

[143] C. A. Rogers, “Covering a sphere with spheres”, Mathematika, vol. 10, no. 2, pp. 157–
164, 1963.

[144] I. Dumer, “Covering spheres and balls with smaller balls”, in International Symposium
on Information Theory, IEEE, 2006, pp. 992–996.

[145] A. Geist and S. Trimpe, “Learning constrained dynamics with Gauss’ principle ad-
hering Gaussian processes”, in Conference on Learning for Dynamics and Control
(L4DC), ser. Proceedings of Machine Learning Research, vol. 120, The Cloud: PMLR,
2020, pp. 225–234.

[146] W. Xiao, A. Lederer, and S. Hirche, “Learning stable nonparametric dynamical sys-
tems with Gaussian process regression”, in IFAC World Congress, Berlin, 2020.

[147] P. A. Ioannou and J. Sun, Robust adaptive control. PTR Prentice-Hall Upper Saddle
River, NJ, 1996, vol. 1.

132

Bibliography

[148] K. Zhou and J. C. Doyle, Essentials of Robust Control. Prentice hall Upper Saddle
River, NJ, 1998, vol. 104.

[149] R. Khasminskii, Stochastic stability of differential equations. Springer Science & Busi-
ness Media, 2011, vol. 66.

[150] K. J. Astrom, Introduction to Stochastic Control Theory. Courier Corporation, 2012.
[151] E. Theodorou, Y. Tassa, and E. Todorov, “Stochastic differential dynamic program-

ming”, in American Control Conference (ACC), IEEE, 2010, pp. 1125–1132.
[152] J. R. Medina, D. Sieber, and S. Hirche, “Risk-sensitive interaction control in uncer-

tain manipulation tasks”, in International Conference on Robotics and Automation
(ICRA), IEEE, 2013, pp. 502–507.

[153] J. R. Medina and S. Hirche, “Uncertainty-dependent optimal control for robot con-
trol considering high-order cost statistics”, in International Conference on Intelligent
Robots and Systems (IROS), IEEE, 2015, pp. 3995–4002.

[154] A. Mchutchon and C. E. Rasmussen, “Gaussian process training with input noise”, in
Advances in Neural Information Processing Systems (NeurIPS), Curran Associates,
Inc., 2011, pp. 1341–1349.

[155] D. P. Bertsekas, Dynamic programming and optimal control. Athena scientific Bel-
mont, MA, 1995, vol. 1.

[156] I. M. Mitchell and S. Sastry, “Continuous path planning with multiple constraints”,
in Conference on Decision and Control (CDC), vol. 5, IEEE, 2003, pp. 5502–5507.

[157] M. G. Crandall and P.-L. Lions, “Viscosity solutions of Hamilton-Jacobi equations”,
Transactions of the American Mathematical Society, vol. 277, no. 1, pp. 1–42, 1983.

[158] J. A. Sethian, “Fast marching methods”, SIAM review, vol. 41, no. 2, pp. 199–235,
1999.

[159] K. J. Åström and B. Wittenmark, Adaptive control. Courier Corporation, 2013.
[160] M. Krstic, I. Kanellakopoulos, P. V. Kokotovic, et al., Nonlinear and adaptive control

design. Wiley New York, 1995, vol. 222.
[161] D. A. Bristow, M. Tharayil, and A. G. Alleyne, “A survey of iterative learning con-

trol”, IEEE Control Systems Magazine, vol. 26, no. 3, pp. 96–114, 2006.
[162] R. Chi, Y. Liu, Z. Hou, and S. Jin, “Data-driven terminal iterative learning control

with high-order learning law for a class of non-linear discrete-time multiple-input–
multiple output systems”, IET Control Theory & Applications, vol. 9, no. 7, pp. 1075–
1082, 2015.

[163] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. Cambridge,
MA, USA: MIT Press, 1998.

[164] A. Molin and S. Hirche, “On the optimality of certainty equivalence for event-triggered
control systems”, IEEE Transactions on Automatic Control (TAC), vol. 58, no. 2,
pp. 470–474, 2013.

[165] M. Mazo and P. Tabuada, “Decentralized event-triggered control over wireless sen-
sor/actuator networks”, IEEE Transactions on Automatic Control (TAC), vol. 56,
no. 10, pp. 2456–2461, 2011.

133

Bibliography

[166] F. L. Lewis, A. Yesildirek, and K. Liu, “Multilayer neural-net robot controller with
guaranteed tracking performance”, IEEE Transactions on Neural Networks, vol. 7,
no. 2, pp. 388–399, 1996.

[167] F. L. Lewis, K. Liu, and A. Yesildirek, “Neural net robot controller with guaranteed
tracking performance”, IEEE Transactions on Neural Networks, vol. 6, no. 3, pp. 703–
715, 1995.

[168] R. M. Sanner and J.-J. E. Slotine, “Stable adaptive control and recursive identification
using radial Gaussian networks”, in Conference on Decision and Control (CDC),
IEEE, 1991, pp. 2116–2123.

[169] A. Yesildirak and F. L. Lewis, “Feedback linearization using neural networks”, Auto-
matica, vol. 31, no. 11, pp. 1659–1664, 1995.

[170] J. Umlauft, Y. Fanger, and S. Hirche, “Bayesian uncertainty modeling for program-
ming by demonstration”, in International Conference on Robotics and Automation
(ICRA), IEEE, 2017, pp. 6428–6434.

[171] D. Duvenaud, “Automatic model construction with Gaussian processes”, PhD thesis,
Computational and Biological Learning Laboratory, University of Cambridge, 2014.

[172] M. W. Seeger, S. M. Kakade, and D. P. Foster, “Information consistency of non-
parametric Gaussian process methods”, IEEE Transactions on Information Theory,
vol. 54, no. 5, pp. 2376–2382, 2008.

[173] J. Sherman and W. J. Morrison, “Adjustment of an inverse matrix corresponding
to a change in one element of a given matrix”, Ann. Math. Statist., vol. 21, no. 1,
pp. 124–127, 1950.

[174] D. Liberzon, Switching in systems and control. Springer Science & Business Media,
2012.

[175] J.-J. E. Slotine and J. Karl Hedrick, “Robust input-output feedback linearization”,
International Journal of Control, vol. 57, no. 5, pp. 1133–1139, 1993.

[176] P. Tabuada, “Event-triggered real-time scheduling of stabilizing control tasks”, IEEE
Transactions on Automatic Control (TAC), vol. 52, no. 9, pp. 1680–1685, 2007.

[177] Wolfram|Alpha, Solution first-order nonlinear ordinary differential equation, Online,
2018.

[178] A. Krause, A. Singh, and C. Guestrin, “Near-optimal sensor placements in Gaussian
processes: Theory, efficient algorithms and empirical studies”, Journal of Machine
Learning Research, vol. 9, no. Feb, pp. 235–284, 2008.

[179] C.-W. Ko, J. Lee, and M. Queyranne, “An exact algorithm for maximum entropy
sampling”, Operations Research, vol. 43, no. 4, pp. 684–691, 1995.

[180] A. Lederer, A. Capone, J. Umlauft, and S. Hirche, “How training data impacts per-
formance in learning-based control”, IEEE Control Systems Letters, vol. 5, no. 3,
pp. 905–910, 2021.

[181] F. L. Lewis, S. Jagannathan, and A. Yesildirak, Neural network control of robot ma-
nipulators and non-linear systems. CRC Press, 1998.

134

Bibliography

[182] C. Vesper and M. J. Richardson, “Strategic communication and behavioral coupling
in asymmetric joint action”, Experimental brain research, vol. 232, no. 9, pp. 2945–
2956, 2014.

[183] L. Consolini, F. Morbidi, D. Prattichizzo, and M. Tosques, “Leader–follower formation
control of nonholonomic mobile robots with input constraints”, Automatica, vol. 44,
no. 5, pp. 1343–1349, 2008.

[184] A. Wilson and Z. Ghahramani, “Generalised Wishart processes”, in Conference on
Uncertainty in Artificial Intelligence, Corvallis, Oregon: AUAI Press, 2011, pp. 736–
744.

[185] A. J. Ijspeert, J. Nakanishi, and S. Schaal, “Learning rhythmic movements by demon-
stration using nonlinear oscillators”, in International Conference on Intelligent Robots
and Systems (IROS), vol. 1, IEEE, 2002, pp. 958–963.

[186] L. Pöhler, J. Umlauft, and S. Hirche, “Uncertainty-based human trajectory tracking
with stable Gaussian process state space models”, en, in IFAC Conference on Cyber-
Physical & Human Systems (CPHS), IFAC, Miami, 2018.

[187] J. Umlauft and S. Hirche, “Learning stable stochastic nonlinear dynamical systems”,
in International Conference on Machine Learning (ICML), ser. Proceedings of Ma-
chine Learning Research, vol. 70, International Convention Centre, Sydney, Australia:
PMLR, 2017, pp. 3502–3510.

[188] H. Shen, “Meet the soft, cuddly robots of the future.”, Nature, vol. 530, no. 7588,
pp. 24–26, 2016.

135

	Preamble
	Abstract
	Introduction
	Challenges in data-driven control
	Main contributions and outline

	Gaussian Processes in Identification and Control
	Gaussian process regression
	Gaussian processes in control
	System identification based on Gaussian processes
	Learning control with Gaussian processes
	Gaussian processes for optimal control
	Gaussian processes in model predictive control
	Gaussian processes for internal model control
	Adaptive control and safe exploration
	Gaussian processes in robotics
	Practical applications of Gaussian process-based control
	Extensions to Gaussian processes
	Summary of previous works

	Interpretations of Gaussian processes
	Deterministic interpretation
	Robust interpretation
	Belief-space interpretation
	Stochastic interpretation
	Scenario interpretation

	Properties and bounds for Gaussian processes
	Error bounds for Gaussian process models
	Posterior variance limits

	Identification of Stable Systems
	Problem formulation
	Stabilized Gaussian process state space models
	Deterministic interpretation
	Probabilistic interpretation
	Convergence with additional training data

	Learning Lyapunov functions for stabilization
	Optimization-based formulation
	Specific Lyapunov candidates

	Evaluation
	Evaluation setup
	Implementation
	Equilibrium estimation
	Quantitative comparison
	Probabilistic simulation

	Discussion
	Summary

	Uncertainty-based Control Lyapunov Design
	Problem formulation
	Control design and analysis
	Conditions for asymptotic stability
	Optimality under power limitations
	Uncertainty-based control Lyapunov function
	Extension to other system classes

	Numerical evaluation
	Setup and implementation
	Simulation results

	Discussion
	Summary

	Feedback Linearization with event-triggered Online Learning
	Problem formulation
	Closed-loop identification of control-affine systems
	Expressing structure in kernels
	Positivity of Gaussian process posterior mean functions
	Closed-loop identification based on Gaussian processes
	Improving identification

	Feedback linearizing control law
	Control law
	Convergence analysis
	Quantifying the ultimate bound

	Event-triggered model update
	Asymptotic stability for noiseless measurements
	Ultimate boundedness for noisy measurements

	Efficient data handling
	Safe forgetting
	Information value of data points
	Safe and optimal data selection

	Numerical evaluation
	Simulation results
	Experimental results

	Discussion
	Summary

	Further Work
	Dynamic uncertainty-based leader-follower control
	Uncertainty modeling in programming by demonstration
	Scenario-based optimal control
	Uncertainty-aware path tracking
	Learning a stable state-dependent coefficient form

	Conclusion
	Notation
	List of Figures
	List of Tables
	List of Algorithms
	Bibliography

