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Zusammenfassung
Informationstheoretische Werkzeuge werden genutzt, um ein Kommunikationssystem mit
kodierter Modulation and Wahrscheinlichkeitsanpassung (PS) zu entwerfen, das nahe der
theoretischen Shannon Grenze operiert.
Das Prinzip der Amplituden-Wahrscheinlichkeitsanpassung (PAS) wird für Kanäle mit

einer symmetrischen kapazitätserreichenden Verteilung eingeführt. Es werden erreichba-
re Raten für Dekodiermetriken auf Symbol- und Bitebene analysiert und innerhalb einer
geschichteteten Architektur bestehend aus einer Vorwärtsfehlerkorrektur- und Wahrschein-
lichkeitsanpassungsschicht untersucht. Ferner wird eine Verteilungsanpassungskomponente
eingeführt.
Eine geometrische Anpassung des Modulationsformats (GS) wird diskutiert und es wird

ein Optimierungsalgorithmus auf der Basis von differentieller Evolution (differential evo-
lution) vorgeschlagen, um geometrisch optimierte Konstellationen zu erhalten. PS und GS
werden auf der Basis von erreichbaren Raten und Fehlerkurven mit kodierten Daten ver-
glichen. Hierbei dient der ATSC 3.0 Standard als repräsentative Fallstudie. Die Ergebnisse
lassen den Schluss zu, dass GS gegenüber PS für gleich große Konstellationen generell
unterlegen ist, insbesondere wenn Dekodiermetriken auf Bitebene herangezogen werden.
Zudem werden PS Strategien für den Fall entwickelt, dass jedes Bitlevel unabhängig von

den anderen in seiner Wahrscheinlichkeit angepasst wird. Dieser Ansatz wird als Produkt-
verteilungsanpassung bezeichnet und wird zum Beispiel im Falle von parallelen Kanälen
mit unterschiedlichen Modulationsformaten angewandt. Hierdurch können die Verteilungs-
anpassungskomponenten für die niedrigeren Bitlevel geteilt werden, was die Komplexität
verringert. Ein Verfahren zur Wahrscheinlichkeitsanpassung auf der Basis von Zeitauftei-
lung wird für On-Off Keying gezeigt – hier kann PAS aufgrund der fehlenden Symmetrie
in der Eingangsverteilung nicht angewandt werden.
Zudem werden Ansätze zum Entwickeln von binären und nicht-binären Low-density

parity-check (LDPC) Codes hergeleitet, die es erlauben, optimierte Codes für verschiedens-
te Vorgaben und spektrale Effizienzen zu konstruieren. Die Zuordnung von Bitleveln zu den
Variablenknoten des LDPC Codes werden für Dekodiermetriken auf Bitebene und Modu-
lationen höherer Ordnung optimiert. Um die Optimierung zu vereinfachen und bestehende
Ansätze zur Berechnung der Dekodierschwelle (z.B. EXIT oder P-EXIT) wiederverwenden
zu können, wird das Konzept von Ersatzkanälen eingeführt. Die erhaltenen Ergebnisse
werden durch Verteilungsdichteevolution (density evolution) und Simulationen verifiziert.
Für spektrale Effizienzen von 1.5 und 2.5 Bits/Kanalbenutzung werden konkrete Codes
entworfen. Es zeigt sich, dass jene Codes für die optimierten spektralen Effizienzen nahe
der theoretischen Grenzen operieren, jedoch ein suboptimales Ergebnis liefern, wenn sie bei
anderen Operationspunkten betrieben werden. Aus diesem Grund wird zusätzlich ein „ro-
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buster Ansatz“ entwickelt, durch den die Codes ein gutes Verhalten über eine große Breite
an spektralen Effizienzen zeigen. Es werden ebenso quantisierte LDPC Dekodieralgorith-
men untersucht und auf räumlich gekoppelte LDPC Codes angewandt. Nicht binäre LDPC
Codes werden mit Symbol- und Bitdekodiermetriken kombiniert und für kurze Blocklängen
simuliert. Hierbei zeigen sie einen klaren Vorteil gegenüber binären Codes.
Schließlich werden Anwendungen von Wahrscheinlichkeitsanpassung im Bereich der opti-

schen Datenübertragung diskutiert. Ein Erwartungs-Maximierungs-Algorithmus wird zum
blinden Schätzen der PAS Parameter vorgeschlagen, wodurch keine zusätzlichen Pilotsym-
bole und Kontrollinformationen mehr benötigt werden. Zudem wird PAS für Konstellatio-
nen in höheren Dimensionen erweitert. Dieses neue Verfahren wird Quadrantenwahrschein-
lichkeitsanpassung genannt und stellt die Grundlage für ein neues Verfahren dar, das einen
Kompromiss zwischen der Komplexität der Verteilungsanapassungskomponente sowie der
Komplexität der Soft-Informationsberechnung erlaubt.

Abstract
Information theoretic tools are used to design communication systems with coded mod-

ulation and probabilistic shaping (PS) that operate close to the Shannon limit.
Probabilistic amplitude shaping (PAS) is introduced for channels for which the capacity-

achieving distribution is symmetric. Achievable rates for symbol-metric decoding (SMD)
and bit-metric decoding (BMD) are analyzed in the context of a layered PS architecture
consisting of a forward error correction (FEC) and shaping layer. Distribution matching
is explained and shown to be a central building block for PAS.
Geometric shaping (GS) is discussed and an optimization algorithm based on differential

evolution is proposed to obtain optimized geometrically shaped constellations. PS and GS
are compared by means of achievable rates and finite blocklength coded results. The
ATSC 3.0 standard serves as a representative case study. It is concluded that GS is
generally inferior to PS for the same constellation size, especially if BMD is considered.
As extensions, PS strategies are developed where each bit level is shaped individually.
This approach is referred to as product distribution matching and is applied for instance
to parallel channels operated with different modulation formats. As a result, distribution
matchers for lower bit levels may be shared among all channels, which decreases complexity.
Further, achievable rates for hard-decision decoding and PAS are derived and compared to
in coded simulations by means of product codes. Shaping via time-sharing is demonstrated
for on-off keying, an example where PAS can not be applied because of the non-symmetric
input distribution.
Binary and non-binary low-density parity-check (LDPC) codes are designed considering

various constraints and target spectral efficiencies (SEs). Bit mapping optimization is
discussed for BMD and higher-order modulation. The concept of surrogate channels is
introduced to facilitate the code optimization and to reuse existing approaches such as
EXIT and P-EXIT analysis to determine decoding thresholds. The results are verified by
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density evolution and justified by finite length simulations. Specific code designs are given
for SEs of 1.5 and 2.5 bits/channel use. It is shown that these specifically designed codes
perform poorly when operated over a broad range of SEs for seamless rate adaptation.
Consequently, a tailored optimization approach for a robust code design is proposed as
well. Quantized LDPC decoding approaches are investigated and applied to spatially
coupled LDPC codes. Non-binary LDPC codes are combined with SMD and BMD and
simulated for short blocklength scenarios where they show superior performance compared
to binary codes.
Finally, applications of PS are discussed for optical communications. An expectation

maximization formulation is proposed for blindly estimating the PAS signaling parameters,
which avoids the need for additional pilots and control information. Further, PAS is
extended to higher dimensions by introducing the concept of quadrant shaping (QS). QS
is used to show case a shaping scheme that allows a trade-off between distribution matching
and demapping complexity.





1
Introduction

1.1. Motivation
Shannon’s seminal work [1] provided the blueprint for capacity achieving communications
and laid the theoretical foundation for all wired, wireless and optical communication sys-
tems that now constitute the backbone of our globalized world.
Although the underlying concept and proof technique are fairly easy to grasp, the non-

constructive proof by random coding arguments makes it difficult to implement the optimal
signaling strategy in practice. In general, communication at the Shannon limit requires two
components: First, we need good forward error correction (FEC) codes and, second, the
channel inputs should have the optimal input distribution. As history shows, accomplishing
these two goals took major efforts over the years and the brightest minds in information
theory contributed to its solution over the course of the past seventy years.
Needless to say, resignation and doubts concerning further progress was a constant

trait of this endeavor. For example, the 1971 IEEE Communications Theory Workshop
in St. Petersburg, Florida, became famous as the “coding is dead” workshop, as many
participants could not foresee any further significant improvements in coding at the time [2,
pp. 243–245]. Following R. Lucky’s rhetorical question “Why are we technologists so bad at
predicting the future of technology?” [2, p. 244], we now know that this sentiment was not
right and the coding gain was about to increase: The invention of the Viterbi algorithm [3]
emphasized the importance of soft decision inputs for the FEC decoder and the advent
of iterative decoding as used by Turbo codes [4] and low-density parity-check (LDPC)
codes [5] showed how the decoding of smaller component codes may result in an improved
performance with manageable complexity. Recently, the invention of polar codes [6, 7] has
given a constructive approach to design capacity achieving codes.
As pointed out before, a good FEC code is only one prerequisite to operate at the

Shannon limit. The other one is optimized signaling adjusted to the respective channel
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and input constraints. For many practically relevant transmission systems, the underlying
channel is well modelled by additive white Gaussian noise (AWGN). By Shannon’s channel
coding theorem, we know that the optimized input signal should be Gaussian distributed.
With the rise of voiceband modems facing bandwidth limited channels in the 1960s (see
Sec. 3.1), the need for adopting optimized signaling strategies became apparent. However,
the combination with FEC turned out to be challenging.
In 2014, a new approach to combine coding and optimized signaling, called probabilistic

amplitude shaping (PAS) was developed [8, 9] and was quickly adopted in practice as it
circumvents many of the previous difficulties. We refer to Sec. 3.2 for a detailed discussion.
This thesis focuses on this approach and investigates various aspects around PAS. In
particular, we provide a comprehensive picture of the interaction of optimized coding
and signaling using different FEC architectures. We focus on an information theoretic
treatment as well as practical finite length and simulation based validations.
Since its invention, PAS has been investigated for various standards and applications.

For wireless communications, it was considered during 5G standardization [10]. For wired
access, it is investigated for new versions of digital subscriber line (DSL) standards, see,
e.g., [11]. The most significant impact of PAS is in coherent optical communications. After
experiments in [12, 13] that validated the theoretical gains for the AWGN channel also for
fiber optical links, many other experiments and field trials followed – on dark fiber [14] and
even transatlantic [15, 16, 17] and transpacific distances [18]. Steve Grubb, global optical
architect at Facebook, considers probabilistic shaping (PS) “[...] as the best technique that
will closely approach the Shannon limit and achieve the highest capacities possible on a
submarine cable” [19].
While the increase of spectral efficiency (SE) by PS is important for optical communi-

cation, the benefits of increased flexibility are of even greater practical importance. By
changing the signal distribution, the transmission rate can be finely adjusted to tune the
reach and data rate. Previous transceivers did not offer such flexibility and required many
different modulation and code implementations.
Nowadays, several major optical equipment manufacturers offer products that implement

PS in their digital signal processors: In March 2018, Nokia presented the Photonics Service
Engine 3 (PSE3)1, claiming 65% increased capacity, while the power usage per bit is
reduced by 60% and any reach from 10 km to 10 000 km is supported. Acacia implements a
variant of PS by fractional quadrature amplitude modulation (QAM) constellations2 and
Ciena offers PS in their WaveLogic 5 DSP chip3, see also [20].
The demand for increased data rates will continue and even though we may hit the

Shannon limit for point-to-point links, much is still to be gained and explored for multi-user
and multi-antenna setups and their equivalents for optical communications (e.g., multi-core
fiber). To quote [2] again: “Fundamental studies in math should be supported. Do not be
shortsighted; they will pay off in the long run.”

1https://www.nokia.com/networks/technologies/photonic-service-engine/
2https://acacia-inc.com/product/ac1200/
3https://www.ciena.com/wavelogic/wavelogic-5

https://www.nokia.com/networks/technologies/photonic-service-engine/
https://acacia-inc.com/product/ac1200/
https://www.ciena.com/wavelogic/wavelogic-5
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The remaining parts of the thesis are structured as follows:

. Chapter 2 provides the information theoretic foundations for the subsequent chapters.
We start with a brief summary of results from probability theory and use these to
derive the channel coding theorem, introduce the concept of achievable rates and
explain the basic building blocks of a communication system. To put our simulation
results into perspective, we also introduce finite length coding bounds. Further, we
give a short introduction into graphs and the sum-product algorithm for inference
on graphical models.

. Chapter 3 introduces the concept of layered PS and explains the difficulty of combin-
ing FEC with optimized signaling. We discuss PAS as one implementation of layered
PS and compare it to geometric shaping which places the constellation points non-
uniformly over the real axis. We then extend the principle of PAS to parallel channels
and show why product distribution matching is beneficial for multi-carrier systems.
We also discuss gains of PS for hard decision decoding. Finally, we consider signaling
with on-off keying which has a non-symmetric capacity achieving distribution and
prevents the application of PAS. Instead, we resort to a time sharing based scheme.

. Chapter 4 deals with the design of LDPC codes for PAS with bit-metric decoding.
We review basic tools to design binary LDPC codes (density evolution, extrinsic
information transfer charts) and discuss their application for the bit mapping opti-
mization of off-the-shelf codes and for the joint code and bit mapping design of new
codes. In addition, we discuss quantized LDPC decoding and introduce binary mes-
sage passing, ternary messsage passing and quaternary message passing. All three
approaches exploit channel soft information but pass only one or two bit messages
during the iterative decoding schedule.

. Chapter 5 discusses decoding for PAS with non-binary low-density parity-check
(NB-LDPC) codes. We investigate symbol-metric and bit-metric decoding, derive
expressions for the decoder soft information and perform numerical comparisons.

. Chapter 6 presents applications of the previous topics to optical communications. We
show how signaling parameters (e.g., the employed distribution, signal-to-noise ratio)
may be estimated in a blind fashion from the received noisy signals and apply the
approach to measured simulation data. Finally, we extend PAS to higher dimensions
and introduce the concept of quadrant shaping. Transmission experiments validate
the theoretical findings.
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2
Preliminaries

2.1. Notation
We refer to the set of natural numbers as N; if zero is included, the set is denoted as N0.
The set of all integers is Z. The set of real numbers is R, the set of positive real numbers
is R+ and the set of non-negative real numbers is R+

0 . The set of complex numbers is C
and j is the imaginary unit. General sets are denoted by calligraphic letters such as A.
Depending on the context, we use different notations for vectors. In general, vectors are

written in bold font and are assumed to be row vectors, i.e., x = (x1, x2, . . . , xn). If the
dimension is important, it is denoted as a superscript, i.e., x = xn. We use the notation
[x]i = xi to index the i-th component of x. A matrix is written in uppercase with bold
font, e.g., X. As for a vector, the notation [X]ij = xij refers to the component in the i-th
row and j-th column of X.
The discrete, linear convolution of two vectors a = (a1, a2, . . . , ak) and b = (b1, b2, . . . , bl)

is denoted by c = a ∗ b. The i-th entry of the k + l − 1 dimensional vector c is

ci =
∑

j

aibi−j, ∀i ∈ {1, . . . , k + l − 1}.

The notation a∗b denotes a b-fold convolution of a with itself, i.e.,

a∗b = a ∗ . . . ∗ a︸ ︷︷ ︸
b times

.

Random variables are denoted in uppercase letters; the corresponding realizations have
lowercase. The probability mass function (PMF) of the random variable (RV) X is referred
to as PX , while the probability density function (PDF) is written as pX . The function 1 (·)
is the indicator function and returns one if its argument is true and zero otherwise.
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2.2. Probability Theory

2.2.1. Probability Space
A probability space is defined by the triple (Ω,F ,Pr). The set Ω = {ω1, ω2, . . . } is the
sample space and the set of all possible outcomes of a random experiment. These outcomes
are also called elementary events. Sometimes, one is interested not only in the occurrence
of a certain elementary event, but rather a general event that may consist of several
elementary events {ωi} ⊆ Ω. The set F is a σ-algebra, fulfilling the properties:

Ω ∈ F (2.1)
A ∈ F ⇒ Ac ∈ F (2.2)

A1,A2, . . . ∈ F ⇒
∞⋃

i=1
Ai ∈ F (2.3)

The probability measure Pr : F → [0, 1] is a function that assigns to each element in F
a number in the interval [0, 1] and fulfills the following properties for any A ∈ F :

Pr(A) ≥ 0 (2.4)
Pr(Ω) = 1 (2.5)

Pr
( ∞⋃

i=1
Ai
)

=
∞∑

i=1
Pr(Ai), if Ai ∩ Aj = ∅,∀i 6= j. (2.6)

2.2.2. Conditional Probability and Stochastic Independence
The events Ai, i = 1, . . . , n, are stochastically independent if

Pr(A1 ∩ A2 ∩ · · · ∩ An) =
n∏

i=1
Pr(Ai). (2.7)

The probability of the event B conditioned on the occurrence of event A with Pr(A) > 0
is

Pr(B|A) = Pr(A ∩ B)
Pr(A) . (2.8)

If the events A and B are independent, then (2.7) and (2.8) give

Pr(B|A) = Pr(B). (2.9)

Let the events Bi, i = 1, . . . , n, partition Ω, i.e., ∪ni=1Bi = Ω and Bi ∩ Bj = ∅, ∀i 6= j.
The law of total probability states that for any A ⊆ F we have

Pr(A) =
n∑

i=1
Pr(A|Bi) Pr(Bi). (2.10)
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Further, we can upper bound the union of events as

Pr
(

n⋃

i=1
Ai
)
≤

n∑

i=1
Pr(Ai). (2.11)

This bound is called a union bound and holds with equality if the events Ai, i = 1, . . . , n,
are disjoint.

2.2.3. Random Variables
For a given probability space (Ω,F ,Pr), we can define a RV X as a mapping from the
sample space Ω to another measurable space S, i.e., X : Ω → S. In the following, we
consider sets S which have an order relation. Depending on the further properties of S we
can distinguish two important types of RVs. If S = R, X is called a real or continuous
RV, which is defined via its cumulative distribution function (CDF) FX(x) as

FX(x) = Pr({ω ∈ Ω : X(ω) ≤ x}). (2.12)

If the CDF is differentiable (except for a finite number of points) and continuous, we
further define the PDF of RV X as

pX(x) = dFX(x)
dx . (2.13)

If S = X is a finite set, then the RV X : Ω → X is said to be a discrete RV and is
defined as

PX(x) = Pr({ω ∈ Ω : X(ω) = x}). (2.14)
We refer to (2.14) as the PMF of the RV X. Similarly to the continuous case, a discrete
RV also has a distribution function

FX(x) =
∑

a∈X :a≤x
PX(a). (2.15)

From (2.4) and (2.5), we have

pX(a) ≥ 0 PX(a) ≥ 0 (2.16)
∞∫

−∞
pX(x) dx = 1

∑

x∈X
PX(x) = 1. (2.17)

Note that the requirement for the set S to have an order relation is important, e.g.,
for discrete RVs defined on finite fields (Sec. 2.3.5). Here, no ordering exists such that no
CDF can be defined.
The definitions for joint and conditional density and mass functions for RVs follow in

the same spirit.
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The support of a PMF PX is defined as

supp(PX) = {x ∈ X : PX(x) > 0}. (2.18)

2.2.4. Moments of Random Variables
The expectation of a transformation f(X) of a discrete RV X with f : X → R is given by

E [f(X)] =
∑

x∈X
f(x)PX(x). (2.19)

For a real valued RV we have

E [f(X)] =
∫

R
f(x)pX(x) dx. (2.20)

The k-th moment (k ∈ N) of a RV defined on X ⊆ R is the expected value of the k-th
power of the RV X, and we have

E
[
Xk
]

=
∑

x∈X
xkPX(x) and E

[
Xk
]

=
∫

R
xkpX(x) dx. (2.21)

The variance of X can be related to the first and second moment of X as

Var [X] = E
[
(X − E [X])2

]
= E

[
X2
]
− E [X]2 . (2.22)

For a complex valued RV the variance is defined as

Var [X] = E
[
|X − E [X]|2

]
= E

[
|X|2

]
− |E [X]|2 . (2.23)

If higher moments of a real valued RV should be calculated, moment generating functions
are helpful. The moment generating function of the RV X is

MX(r) = E
[
erX

]
, r ∈ R. (2.24)

The k-th moment of X is given as

E
[
Xk
]

= dkMX(r)
dkr

∣∣∣∣∣
r=0

. (2.25)

The equality (2.25) can be proven by using the series expansion of the exponential function.

2.2.5. Functions of Random Variables
We often have to deal with functions of RVs and are interested in the resulting PDFs.
Consider Y = g(X), where X is a real valued RV and g : R → R is a monotonic,
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differentiable function. We have

FY (y) = Pr(Y ≤ y) = Pr(g(X) ≤ y)

=




Pr(X ≤ g−1(y)) = FX(g−1(y)), g is monotonically increasing
Pr(X ≥ g−1(y)) = 1− FX(g−1(y)), g is monotonically decreasing.

(2.26)

Therefore, the PDF of Y is

pY (y) = dFY (y)
dy = pX(g−1(y)) ·

∣∣∣∣∣
dg−1(y)

dy

∣∣∣∣∣ = pX(g−1(y)) ·
∣∣∣∣∣

1
g′(g−1(y))

∣∣∣∣∣ (2.27)

where g′(x) is the first derivative of g(x). If the function g is not monotonic (i.e., there is
no inverse function on R), then we determine intervals on which g is monotonic and treat
them separately. For this, we calculate all zeros of g(xi)− y = 0, i = 1, . . . , N , and get

pY (y) =
N∑

i=1
pX(xi) ·

∣∣∣∣∣
1

g′(xi)

∣∣∣∣∣ . (2.28)

2.2.6. Important Inequalities

The Markov inequality states that for a non-negative RV X, we have

Pr(X ≥ a) =
∫ ∞

a
pX(x) dx ≤

∫ ∞

a

x

a
pX(x) dx

≤
∫ a

0

x

a
pX(x) dx+

∫ ∞

a

x

a
pX(x) dx = E [X]

a
(2.29)

A generalized version of (2.29) is

Pr(X ≥ a) ≤ E [f(X)]
f(a) (2.30)

for any monotonically increasing, non-negative function f . The proof of (2.30) follows the
same steps as the previous derivation.
Using the Markov inequality (2.29), we can state Tchebycheff’s inequality

Pr(|X − E [X]| ≥ a) = Pr(|X − E [X]|2 ≥ a2) ≤ E [(X − E [X])2]
a2 = Var [X]

a2 (2.31)

which relates the probability of the deviation of an RV from its mean to its variance. Ob-
viously, the Markov inequality can be applied here as the RV |X − E [X]| is non-negative.
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2.2.7. Weak Law of Large Numbers

Let X1, X2, . . . , Xn be independent and identically distributed (iid) real-valued RVs. The
sample mean Sn is

Sn = 1
n

n∑

i=1
Xi. (2.32)

We have E [Sn] = E [X] and Var [Sn] = Var [X] /n. Using Tchebycheff’s inequality (2.31),
we have

Pr(|Sn − E [X]| > ε) = Pr(|Sn − E [X]|2 > ε2) ≤ Var [Sn]
ε2 = Var [X]

nε2 (2.33)

for any ε > 0. The weak law of large numbers (WLLN) states that the sample mean Sn
converges to the true mean in probability for an increasing number of samples, i.e.,

Pr(|Sn − E [X]| > ε)→ 0 for n→∞. (2.34)

2.3. Information Theory

2.3.1. Information Theoretic Quantities and Their Properties

We will first consider discrete RVs. The self-information of a realization of a discrete RV
X with PMF PX is defined as − log2(PX(x)). As PX is a PMF (2.16), it follows that
− log2(PX(x)) is always non-negative. We define the entropy of the discrete RV X as the
average self-information

H(X) = E [− log2(PX(X))] = −
∑

x∈supp(PX)
PX(x) log2(PX(x)). (2.35)

We can bound the entropy by

0 ≤ H(X) ≤ log2(|X |) (2.36)

where the left hand side follows from the non-negativity of the self-information and the
right hand side follows from

E
[
log2

(
1

PX(X) |X |

)]
+ log2(|X |) ≤

(
|supp(PX)|
|X | − 1

)
1

log(2) + log2(|X |) (2.37)

where we used the inequality log2(x) ≤ (x− 1)/ log(2). We have equality on the left-hand
side of (2.36) by a degenerate distribution PX and equality on the right hand side by a
uniform distribution over X .
For a binary RV X with PMF PX(0) = p, PX(1) = 1 − p and 0 ≤ p ≤ 1, we introduce
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the binary entropy function H2(p) as

H2(p) = −p log2(p)− (1− p) log2(1− p). (2.38)

We write H2(0) = H2(1) = 0. H2(p) is invertible on the interval [0, 0.5] and we denote its
inverse by H2

−1.

The cross entropy X(PX ‖ PY ) between PX and PY with supp(PX) ⊆ supp(PY ) is
defined as

X(PX ‖ PY ) = −
∑

x∈supp(PX)
PX(x) log2(PY (x)). (2.39)

The conditional entropy of the RV X|{Y = y} is

H(X|Y = y) =
∑

x∈supp(PX|Y (·|y))
−PX|Y (x|y) log2(PX|Y (x|y)) = E

[
− log2(PX|Y (X|y)

]
.

(2.40)
Averaging (2.40) over PY yields the conditional entropy H(X|Y ), i.e.,

H(X|Y ) =
∑

y∈Y
PY (y) H(X|Y = y) = E

[
− log2(PX|Y (X|Y ))

]
. (2.41)

We have that H(X|Y ) ≤ H(X) and equality is achieved if X and Y are stochastically
independent.

The Kullback-Leibler divergence D(PX ‖ PY ) for two distributions PX and PY with
supp(PX) ⊆ supp(PY ) is defined as

D(PX ‖ PY ) =
∑

x∈supp(PX)
PX(x) log2

(
PX(x)
PY (x)

)
= E

[
log2

(
PX(X)
PY (X)

)]
. (2.42)

The definition shows that the Kullback-Leibler divergence is not symmetric in its argu-
ments. As before, we can use the inequality log2(x) ≤ (x − 1)/ log(2) to show that the
divergence is non-negative:

−D(PX ‖ PY ) = H(X)− X(PX ‖ PY ) (2.43)

=
∑

x∈supp(PX)
PX(x) log2

(
PY (x)
PX(x)

)
(2.44)

≤ 1
log(2)

∑

x∈supp(PX)
PX(x)

(
PY (x)
PX(x) − 1

)
(2.45)

= 1
log(2)

∑

x∈supp(PX)
PY (x)− 1 ≤ 0. (2.46)
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From the previous result we see that the solution to optimization problems of the form

min
PY

X(PX ‖ PY ) (2.47)

is given by PY = PX .
The mutual information (MI) is defined as

I(X;Y ) = H(X)− H(X|Y ) = H(Y )− H(Y |X) (2.48)

= E
[
log2

(
PY |X(Y |X)
PY (Y )

)]
= D(PXY ‖ PXPY ) (2.49)

The reformulation in the last step as a divergence shows that the MI is non-negative and
zero if and only if X and Y are stochastically dependent. Further, from (2.36) and (2.48),
we can establish the following bounds for the MI

0 ≤ I(X;Y ) ≤ min(H(X),H(Y )). (2.50)

The term inside the expectation in (2.49) is often referred to as information density

i(x; y) = log2

(
PY |X(y|x)

∑
a∈X PY |X(y|a)PX(a)

)
. (2.51)

For a continuous RV, the concept of entropies does not exist. However, we can define
the differential entropy h(X) as

h(X) = E [− log2 (pX(X))] = −
∫

x∈supp(pX)

pX(x) log2(pX(x)) dx. (2.52)

In contrast to the entropy of a discrete RV, no bounds on (2.52) can be given. In particular,
the differential entropy can be negative, e.g., for a uniformly distributed RV between [0, A]
with A < 1. Most concepts introduced above can also be formulated in terms of the
differential entropy.
In practice, calculating the expectations of (2.35), (2.49) and (2.52) may not be feasible

if the involved RVs are high dimensional. However, if sampling from the respective dis-
tributions is possible, we can approximate them by employing the WLLN (2.34), i.e., we
obtain for n→∞

H(X) ≈ − 1
n

n∑

i=1
log2(PX(xi)) (2.53)

and

I(X;Y ) ≈ − 1
n

n∑

i=1
log2

(
PY |X(yi|xi)
PY (yi)

)
(2.54)
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where the samples xi, i = 1, . . . , n and sample pairs (xi, yi), i = 1, . . . , n are distributed as
PX and PY |XPX , respectively. Alternatively, numerical quadrature rules such as Gauss-
Hermite quadratures can be used (see Appendix A.3).

2.3.2. Channel Coding Theorem

In this section, we briefly review the steps of the noisy channel coding theorem as stated
by Gallager [21, Ch. 5]. We also discuss mismatched decoding metrics that were treated
by Gallager in exercise 5.221 of [21]. Mismatched decoding metrics were also discussed by
Kaplan and Shamai [22].

Problem Setting

Following James L. Massey’s “Basic Information-Theoretic Model of a Digital Communi-
cation System” [23], a system model for the following investigation is shown in Fig. 2.1.

Source Encoder Modulator

Channel

DemodulatorDecoderSink

/
w

/
vnc(w)

/
ŵ

/
xn(w)

/
yn

Figure 2.1.: Adaption of Massey’s “Basic Information-Theoretic Model of a Digital Com-
munication System”.

We are interested in transmitting one of 2nR messages w ∈ W = {1, . . . , 2nR}. We
associate each message w ∈ W with a codeword of the codebook C with cardinality |C| =
2nR. The codeword for the message w reads vnc(w) ∈ C with the codeword symbols vi(w),
i = 1, . . . , nc, taken from a set V . The modulator takes the codeword as input and returns
the modulated codeword xn(w) which is a string of length n with entries taken from a set
X . The modulated codeword xn(w) is transmitted over a channel pY n|Xn and the receiver
obtains a noisy estimate yn of the original message. The decoder has the task to estimate
the transmitted codeword x̂n from which the estimate of the original message ŵ can be
obtained. The noisy channel coding theorem characterizes the probability Pr(Ŵ 6= W ).

1“A discrete memoryless channel has the transition probabilities P (j|k). Unfortunately, the decoder
for the channel is a maximum likelihood decoder designed under the mistaken impression that the
transition probabilities are P ′(j|k).”
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Decoding Metrics

To determine the transmitted codeword from the observation yn, the decoder uses a de-
coding metric, i.e., a function q : X n × Yn → R+ that assigns a score to each modulated
codeword xn(w). The decoder chooses its estimate by selecting the message/codeword
which gets the highest score, i.e.,

ŵ = argmax
w∈W

q(xn(w), yn). (2.55)

For implementation reasons, most practical decoding metrics are memoryless, i.e., with a
slight abuse of notation, we have

ŵ = argmax
w∈W

n∏

i=1
q(xi(w), yi) where xi(w) = [xn(w)]i. (2.56)

There are different types of decoding metrics. In this thesis, we distinguish between:

. Decoding metrics based on symbol-metric decoding (SMD): SMD operates directly
on the modulation symbols x ∈ X . Hence, they can be employed with non-binary
(NB) codes, where the cardinality |V| of the codeword alphabet is the same as the
cardinality |X | of the modulation set2.

. Decoding metrics based on bit-metric decoding (BMD): BMD is commonly used
when binary FEC codes are combined with higher-order modulation formats, i.e.,
|X | > 2. To calculate a metric for each codeword bit, a marginalization step over
all possibly transmitted modulation symbols is needed. BMD is used for instance in
bit-interleaved coded modulation (BICM) [24].

Both approaches can be further classified into hard decision (HD) and soft decision (SD)
based metrics. We characterize HD based decoding metrics as those that use a Hamming
distance and do not exploit reliability information, see Sec. 3.8. Instead, SD metrics use
reliability information and generally outperform HD based schemes.
An important instance of an SD SMD decoding metric is q(xn, yn) = pY n|Xn(yn|xn).

It represents a maximum likelihood (ML) decoder that was analyzed by Gallager in [21].
In [22], Kaplan and Shamai use Gallager’s derivation of a mismatched decoder [21, Exercise
5.22] and formalize the setting. In this mismatched setting, the decoder does not know (or
does not use) pY n|Xn(yn|xn) because it has no access to it or only knows it approximately,
e.g., because it does not have instantaneous channel state information (CSI), but only a
time-average one. Another reason not to use pY n|Xn(yn|xn) is because the calculations may
be too complex [25, §4]. Most practical decoding metrics are mismatched.

2More generally, the cardinality of the codeword alphabet may also be a power of the cardinality of the
modulation set for SMD, also see Sec. 5.2
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Derivation of the Decoding Error Probability via Random Coding

Calculating the probability Pr(Ŵ 6= W ) for a given code and decoding metric is very
difficult in general, and it may require exhaustive Monte Carlo (MC) simulations. Instead,
Shannon had the idea to resort to a random coding argument to investigate the average
decoding error probability of an ensemble of codes. Instead of looking at a single code C,
we investigate a large set of codes, the so called code ensemble, and try to determine its
properties. Given the average decoding error performance, we know that there must exist
a code that is at least as good as the ensemble average. We will follow this line of thought
in the following.
Without loss of generality we assume a setup where the codeword and modulation symbol

set coincide, i.e., V = X . The random coding experiment to construct the codebook C has
the following form: For each of the 2nR messages in W , choose a codeword xn at random
by sampling it from PXn . All codewords are iid. The RV Xn is defined on X n, i.e., the
n-fold Cartesian product of X .
The law of total probability (2.10) gives

Pr(W 6= Ŵ ) =
∑

w∈W
Pr(Ŵ 6= w|W = w)PW (w). (2.57)

Consider a particular W = w0 to examine the probability Pr(Ŵ 6= w0|W = w0). As the
decision for Ŵ is based on maximizing the decoding metric, we decide erroneously for w̃
if q(xn(w̃), yn) > q(xn(w0), yn). We can write the corresponding error event as

E(w̃) =
{
q(Xn(w̃), Y n)
q(Xn(w0), Y n) ≥ 1

}
. (2.58)

We have

Pr(Ŵ 6= w0|W = w0)
=

∑

xn(w0)∈Xn
PXn(xn(w0)) Pr(Ŵ 6= w0|W = w0, X

n = xn(w0))

=
∑

xn(w0)∈Xn
PXn(xn(w0)) Pr


 ⋃

ŵ 6=w0

E(w̃)
∣∣∣∣∣∣
W = w0, X

n = xn(w0)



=
∑

xn(w0)∈Xn
PXn(xn(w0))

∫

Rn
pY n|Xn(yn|xn(w0))

× Pr

 ⋃

ŵ 6=w0

{
q(Xn(w̃), yn)
q(xn(w0), yn) ≥ 1

}∣∣∣∣∣∣
W = w0, X

n = xn(w0), Y n = yn


 dyn

(2.59)

where we first average over all possible codewords that may have been chosen for message
w0, and then we average over all possible noisy channel observations yn given xn(w0) was



18 Chapter 2. Preliminaries

chosen. Let us further examine the inner term in (2.59), for which we get:

Pr

 ⋃

w̃ 6=w0

{
q(Xn(w̃), yn)
q(xn(w0), yn) ≥ 1

}∣∣∣∣∣∣
W = w0, X

n = xn(w0), Y n = yn


 (2.60)

≤
∑

w̃ 6=w0

Pr
({

q(Xn(w̃), yn)
q(xn(w0), yn) ≥ 1

}∣∣∣∣∣W = w0, X
n = xn(w0), Y n = yn

)
(2.61)

≤
∑

w̃ 6=w0

(
Pr
({

q(Xn(w̃), yn)
q(xn(w0), yn) ≥ 1

}∣∣∣∣∣W = w0, X
n = xn(w0), Y n = yn

))ρ
(2.62)

≤

 ∑

w̃ 6=w0

E [q(Xn(w̃), yn)s|W = w0, X
n = xn(w0), Y n = yn]

q(xn(w0), yn)s



ρ

(2.63)

=

 ∑

w̃ 6=w0

E [q(Xn(w̃), yn)s]
q(xn(w0), yn)s



ρ

(2.64)

=
(

(2nR − 1) E [q(Xn, yn)s]
q(xn(w0), yn)s

)ρ
(2.65)

The step in (2.61) applies the union bound (2.11) and step (2.62) introduces a parameter
ρ with 0 ≤ ρ ≤ 1, see [21, Ch. 5.6]. In (2.63) we applied the generalized version of the
Markov inequality (2.30) with s > 0 and (2.65) follows because E [q(Xn(w̃), yn)] is the
same for all w̃ 6= w0.

We now restrict attention to a memoryless channel pY n|Xn(yn|xn) = ∏n
i=1 pY |X(yi|xi),

a memoryless decoding metric q(xn, yn) = ∏n
i=1 q(xi, yi) and PX(xn) = ∏n

i=1 PX(xi). The
inner part of (2.65) simplifies as

E [q(Xn, yn)s]
q(xn(w0), yn)s =

∑
an∈Xn PXn(an)q(an, yn)s

q(xn(w0), yn)s =
∑
an∈Xn

∏n
i=1 PX(ai)q(a, yi)s∏n

i=1 q(xi(w0), yi)s

=
∏n
i=1

∑
a∈X PX(a)q(a, yi)s∏n

i=1 q(xi(w0), yi)s
=

n∏

i=1

(∑
a∈X PX(a)q(a, yi)s
q(xi(w0), yi)s

)
. (2.66)

We use (2.66) to rewrite (2.65) as

Pr(Ŵ 6= W |W = w0) ≤ 2nRρ ·
n∏

i=1

∫

R

∑

x∈X
pY |X(yi|x)PX(x)

(∑
a∈X PX(a)q(a, yi)s

q(x, yi)s

)ρ
dyi

= 2nRρ ·
(∫

R

∑

x∈X
pY |X(y|x)PX(x)

(∑
a∈X PX(a)q(a, y)s

q(x, y)s

)ρ
dy
)n

= 2nRρ2−nE0(q,PX ,ρ,s) = 2−n(E0(q,PX ,ρ,s)−Rρ) (2.67)
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where we introduced the shorthand notation

E0(q, PX , ρ, s) = − log2

(∫

R

∑

x∈X
pY |X(y|x)PX(x)

(∑
a∈X PX(a)q(a, y)s

q(x, y)s

)ρ
dy
)
. (2.68)

The expression (2.67) appears in the solution manual3 for the exercises of [21] and is
discussed in further detail in [22]. The error exponent for a decoding metric q and rate R
is

E(q, R) = max
0≤ρ≤1

max
s≥0

max
PX

(E0(q, PX , ρ, s)−Rρ) . (2.69)

Gallager’s Error Exponent We can obtain Gallager’s random coding exponent of [21]
from (2.67) by instantiating it with q(x, y) = pY |X(y|x):

Pr(Ŵ 6= w0|W = w0)

= 2nRρ


∫

R

∑

x∈X
PX(x)pY |X(y|x)

(∑
a∈X PX(a)pY |X(yi|a)s

)ρ

pY |X(yi|xi(w0))sρ dy


n

= 2nRρ
(∫

R

∑

x∈X
PX(x)pY |X(y|x)1−ρs

(∑

a∈X
PX(a)pY |X(yi|a)s

)ρ
dy
)n

(2.70)

= 2nRρ


∫

R

(∑

x∈X
PX(x)pY |X(y|x)

1
1+ρ

)1+ρ

dy


n

(2.71)

= 2nRρ2−nE0,Gal(PX ,ρ) = 2−n(−Rρ+E0,Gal(PX ,ρ)) (2.72)

where we set s = 1/(1 + ρ) from (2.70) to (2.71) and we defined

E0,Gal(PX , ρ) = − log2



∫

R

(∑

x∈X
PX(x)pY |X(y|x)

1
1+ρ

)1+ρ

dy

 . (2.73)

The above specific choice for s is also the optimal one for this setting. In general, one
must optimize over s. Using the expression for the information density (2.51), we see that
(2.73) can be written as

E0,Gal(PX , ρ) = − log2 E
[
exp

(
−i 1

1+ρ
(X;Y )

)]
. (2.74)

The form (2.74) is useful for a numerical implementation by means of Gauss Hermite
quadrature rules, see Appendix A.3. We define Gallager’s coding exponent as

EGal(R) = max
0≤ρ≤1

max
PX

(E0,Gal(PX , ρ)− ρR). (2.75)

3The solution manual discusses the case for a discrete memoryless channel, but the structure is the same.
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Error Exponent for BMD and a Product Input Distribution We now investigate a
mismatched case with the bitwise decoding metric (see Sec. 2.3.6 for the employed notation)

q(x, y) =
m∏

k=1
pY |Bk(y|bk), b = (b1, b2, . . . , bm) = χ(x). (2.76)

The random coding experiment samples from PX , which factors as

PX(x) = PB(χ(x)) =
m∏

k=1
PBk(bk).

Now (2.68) gives:

EBMD
0 (PX , ρ, s)

= − log2

(∑

x∈X

m∏

k=1
PBk([χ(x)]k)

∫

R
pY |X(y|x)

(∑
a∈X PX(a)∏m

k=1 pY |Bk(y|[χ(a)]k)s∏m
k=1 pY |Bk(y|[χ(x)]k)s

)ρ
dy
)

= − log2

(∑

x∈X

m∏

k=1
PBk([χ(x)]k)

∫

R
pY |X(y|x)

(∑
a∈X

∏m
k=1 pY |Bk(y|[χ(a)]k)sPBk([χ(a)]k)∏m

k=1 pY |Bk(y|[χ(x)]k)s

)ρ
dy
)

= − log2

(∑

x∈X

m∏

k=1
PBk([χ(x)]k)

∫

R
pY |X(y|x)

(
m∏

k=1

∑
b∈{0,1} pY |Bk(y|b)sPBk(b)
pY |Bk(y|[χ(x)]k)s

)ρ
dy
)
.

(2.77)

We define the random coding exponent for BMD with a product input distribution as

EBMD(R) = max
0≤ρ≤1

max
s≥0

max
PX

(
EBMD

0 (PX , ρ, s)− ρR
)
. (2.78)

2.3.3. Information Rates
We want to define error free transmission by requiring that the average probability of error
approaches zero as n → ∞. Any rate R for which the random coding error exponent is
non-negative is an achievable rate. As shown in Appendix A.1, an achievable rate is

R = dE0(q, PX , ρ, s)
dρ

∣∣∣∣∣
ρ=0

. (2.79)

To calculate the derivative, we write (2.68) as

E0(q, PX , ρ, s) = − log2




E







∑
a∈X PX(a)q(a, Y )s

q(X, Y )s
︸ ︷︷ ︸

Z




ρ





= − log2 (E [Zρ])

= − log2

(
E
[
2log2(Zρ)

])
(2.80)
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and apply the differentiation laws of the moment generating function (2.25). We obtain

dE0(q, PX , ρ, s)
dρ

∣∣∣∣∣
ρ=0

= −E [log2(Z)] = E
[
log2

(
q(X, Y )s

∑
a∈X q(a, Y )sPX(a)

)]
(2.81)

and define the generalized mutual information (GMI) [22]

RGMI = max
s≥0

E
[
log2

(
q(X, Y )s

∑
a∈X q(a, Y )sPX(a)

)]
. (2.82)

Instantiating with q(x, y) = pY |X(y|x), we get

R = I(X;Y ) = E
[
log2

(
pY |X(Y |X)
pY (Y )

)]
. (2.83)

Similarly, for BMD as shown in (2.76), we have

RBICM =
m∑

k=1
I(Bk;Y ) (2.84)

which is known as the “BICM capacity” [26]. Subsequent works [27, 28, 29] extended the
framework and notion of the GMI. For both (2.83) and (2.84), the optimization over s
results in s = 1. This can be seen by noting that after inserting the respective metrics,
the resulting expressions can be understood as an instance of (2.47).

2.3.4. Important Channel Models and Their Capacities
Symmetric Channels

A discrete input, discrete output channel PY |X is said to be symmetric if the columns of
the corresponding channel transition probability matrix are permutations of each other.4
As a result, we have H(Y |X) = H(Y |X = x) and the conditional entropy does not depend
on the distribution PX of the channel input X.
For channels with a continuous output alphabet y ∈ R, we define symmetry by

pY |X(y|x) = pY |X(−y| − x). (2.85)

Binary Erasure Channel (BEC)

The binary erasure channel (BEC) has a ternary output alphabet Y = {0, 1, E} and its
model is shown in Fig. 2.2a. The transmitted symbols are either correctly received or
completely unknown, which is denoted by the erasure symbol E. The channel transition

4This assumes that the channel transition probability matrix is defined such that the probabilities
PY |X(·|x) are arranged as columns.
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Figure 2.2.: Channel models for important binary input channels.

probabilities are

PY |X(0|0) = PY |X(1|1) = 1− ε
PY |X(E|0) = PY |X(E|1) = ε.

(2.86)

As the channel is symmetric, a uniform input distribution is capacity achieving and we
calculate

CBEC = 1− ε. (2.87)

Binary Symmetric Channel (BSC)

The binary symmetric channel (BSC) has a binary output alphabet Y = {−1,+1} and
its model is shown in Fig. 2.2b. The transmitted symbols are received either correctly or
incorrectly. The channel transition probability is

PY |X(0|0) = PY |X(1|1) = 1− δ
PY |X(1|0) = PY |X(0|1) = δ.

(2.88)

As for the BEC, the BSC is symmetric and a uniform input distribution is capacity achiev-
ing. We have

CBSC = 1− H2(δ). (2.89)

Binary Error and Erasure Channel (BEEC)

The binary error and erasure channel (BEEC) is a combination of the BEC and BSC, such
that the channel output is ternary Y = {0, 1, E} and both errors and erasures may occur.
The channel transition probability is

PY |X(0|0) = PY |X(1|1) = 1− δ − ε
PY |X(1|0) = PY |X(0|1) = δ

PY |X(E|0) = PY |X(E|1) = ε

(2.90)
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The channel defined by (2.90) is again symmetric and we obtain

CBEEC = (1− ε) ·
(

1− H2

(
δ

1− ε

))
. (2.91)

Additive White Gaussian Noise Channel (AWGNC)

In contrast to the previously considered channels, the AWGN channel has a continuous
input and output, i.e., X = Y = R. The model is

Y = X +N. (2.92)

The RV N is Gaussian distributed with zero mean and variance σ2, i.e., N ∼ N (0, σ2).
The channel is characterized by the PDF

pY |X(y|x) = 1√
2πσ2

e−
(y−x)2

2σ2 . (2.93)

We obtain the MI

I(X;Y ) = h(Y )− h(Y |X) = h(Y )− h(N) = h(Y )− 1
2 log2(2πeσ2). (2.94)

To find the capacity of the AWGN channel with an average power constraint on the channel
input, i.e., E [X2] ≤ P , we maximize (2.94) over pX . This implies we have to solve

max
pX

h(Y ) subject to E
[
X2
]
≤ P. (2.95)

The average power constraint on X implies an average power constraint on Y such that
(assuming the channel input X and the noise N to be stochastically independent) E [Y 2] =
E [X2] + E [N2] ≤ P + σ2. For an average power constraint, the differential entropy
is maximized by a Gaussian distribution [30, Sec. 2.5.3] which implies that Y must be
Gaussian with zero mean and variance P + σ2. If X is Gaussian, Y is Gaussian as well5.
Therefore, we achieve capacity by choosing X ∼ N (0, P ) and the capacity is

CAWGN = h(Y )− 1
2 log2(2πeσ2) = 1

2 log2(2πe(P + σ2))− 1
2 log2(2πeσ2)

= 1
2 log2

(
1 + P

σ2

)
. (2.96)

The capacity CAWGN is the central quantity that we want to approach in this thesis. It
serves as the fundamental benchmark to assess our coding schemes. The ratio P/σ2 is
called the signal-to-noise ratio (SNR). The capacity (2.96) is strictly increasing in the

5The PDF of a sum of independent RVs is given by the convolution of the PDFs of the summands. The
convolution of two Gaussian PDFs is again Gaussian.
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SNR so that an inverse exists. We denote this inverse by C−1
AWGN in the following.

We now investigate the impact of a non-optimal, i.e., non Gaussian, distribution on the
channel input. Let X̃ denote the zero mean RV X̃ with E

[
X̃2
]

= P for the suboptimal
channel input and let Ỹ be the respective channel output. The MI I(X̃; Ỹ ) is

I(X̃; Ỹ ) = CAWGN −D(pỸ ‖ pY ). (2.97)

Hence, the “penalty” from not using the optimal distribution is characterized by the Kull-
back Leibler divergence of the respective channel output PDFs

pỸ (y) =
∫

R
pY |X(y|x)pX̃(x) dx and pY (y) =

∫

R
pY |X(y|x)pX(x) dx. (2.98)

This follows from the property that

D(pỸ ‖ pY ) =
∫

R
pỸ (y) log2

(
pỸ (y)
pY (y)

)
dy = − h(pỸ )−

∫

R
pỸ (y) log2(pY (y)) dy (2.99)

= − h(Ỹ ) + 1
2 log2(2πe(P + σ2)) = − h(Ỹ ) + h(Y ). (2.100)

The result (2.97) has a practical implication as we will see in subsequent sections: Even
though a system uses a non-optimal input distribution, it may still operate close to capacity
if the Kullback-Leibler distance between the implied output distributions is small.

2.3.5. Finite Fields and Linear Block Codes
Finite Fields

To impose structure on codes, the concepts of groups and finite fields are beneficial [31,
Ch. 2]. A group is an algebraic structure (G,+) with a set of elements G and an operation
+ such that the following four properties hold:

. Closure: For any a, b ∈ G, it must hold that a+ b ∈ G.

. Associativity: It must hold that a+ (b+ c) = (a+ b) + c, ∀a, b, c ∈ G.

. Neutral element: ∃0 ∈ G : a+ 0 = a, ∀a ∈ G.

. Inverse element: ∃(−a) ∈ G : a+ (−a) = 0, ∀a ∈ G.

If commutativity holds, i.e., a+ b = b+ a ∈ G, then the tuple (G,+) is called an Abelian
group.

Example 1. The set F2 = {0, 1} with operation + which is defined via mod 2 addition
is an Abelian group. The addition table is
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+ 0 1
0 0 1
1 1 0

The neutral element is 0 and the elements of F2 are self inverse.

A field is an algebraic structure (G,+, ·) with the set G and two operations + and · such
that

. (G,+) is an Abelian group with respect to + and neutral element 0. (G,+) is also
referred to as the additive group of G.

. (G \ {0}, ·) is an Abelian group with respect to ·. (G \ {0}, ·) is referred to as the
multiplicative group of G.

. The distributive law a · (b+ c) = a · b+ a · c holds for any a, b, c ∈ G.

For coding applications, finite fields, i.e., fields where the respective set contains a finite
number of elements are of major importance. To construct finite fields, we resort to a
construction based on polynomials. The set of all polynomials with coefficients in G (with
|G| = p and p being a prime number) is denoted as G[x]. Let f(x) = ∑o

i=1 fix
i be a

polynomial over G of degree o, i.e., deg(f(x)) = o. The polynomial f(x) is called a prime
polynomial, if fo = 1 and if f(x) is irreducible, meaning that f(x) can not be decomposed
into a product of two or more polynomials over G[x] with both degrees larger or equal
than one. The polynomials

Fq = G[x] mod f(x) (2.101)

then form a finite field with q = po elements.

Example 2. We want to construct a finite field with 8 elements over G = F2. According
to the previous definition, we need a prime polynomial of degree o = 3. We find that
two such polynomials exist and choose f(x) = 1 + x + x3 as prime polynomial (The
other one is f(x) = 1 + x2 + x3.). The finite field is F8 = {0, 1, x, x2, 1 + x, 1 + x2, x+
x2, 1 + x+ x2}.

While the construction of the addition table is straightforward, the construction of the
multiplication table turns out to be tedious. We exploit the fact that the multiplicative
group Fpo \ {0} is cyclic, i.e., each element can be written as a power of the primitive
element α ∈ Fpo \ {0}, i.e., Fpo =

{
0, α0, α1, . . . , αp

o−2
}
where αi · αj = α(i+j) mod (po−1).

To establish the addition table based on the primitive element, we need the notion of a
minimal and primitive polynomial: The minimal polynomial of an element β ∈ Fpo is
the monic polynomial in Fp[x] of smallest degree that has β as its root. The primitive
polynomial is the minimal polynomial of the primitive element α.
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Linear Block Codes

A (nc, kc) linear block code C over a finite field Fq is a kc dimensional subspace of Fnq . We
define its rate Rc as

Rc = log2(|C|)
nc

= log2(qkc)
nc

= kc

nc
log2(q). (2.102)

A linear block code can be defined in two ways. First, the code C may be specified by
its generator matrix G ∈ Fkc×nc

q as

C =
{
v ∈ Fnc

q : v = uG,u ∈ Fkc
q

}
(2.103)

where the generator matrix consists of kc linearly independent row vectors gi, i = 1, . . . , kc,
that form the basis of the code C. Therefore, the code consists of all vectors v that can be
represented as a linear combination of the basis vectors.
Alternatively, the code is specified by its full rank parity-check matrixH ∈ Fmc×nc

q with
mc = nc − kc via

C =
{
v ∈ Fnc

q : vHT = 0
}
. (2.104)

The dual code of C is denoted as C⊥ and is defined as

C⊥ =
{
x ∈ Fnc

q : xvT = 0, ∀v ∈ C
}
. (2.105)

Combining (2.103) and (2.104), it follows that H is a generator matrix of C⊥ and G is a
parity-check matrix of C⊥. Consequently, the dimension of the dual code C⊥ is (nc − kc).
For practical purposes, systematic encoding is beneficial, where the generator matrix is

decomposed into an identity matrix of dimension kc × kc and a parity-forming matrix P
of size kc × (nc − kc), i.e.,

G =
(
I P

)
. (2.106)

After encoding the information vector u, it appears as the first part of the codeword v
again since

v = uG = u
(
I P

)
=
(
u uP

)
.

Any generator matrix G can be brought into systematic form by Gaussian elimination6.
To define a linear code, we specify its generator matrix G or parity-check matrix H .
The Hamming weight wH(v) of a binary vector v = (v1, . . . , vnc) is defined as

wH(v) =
nc∑

i=1
1 (vi 6= 0) . (2.107)

6Sometimes, additional column permutations are necessary to obtain the form in (2.106).
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We use (2.107) to define the minimum distance of a linear code C as

dmin = min
v1,v2∈C
v1 6=v2

wH(v1 − v2) = min
v∈C\{0}

wH(v) (2.108)

where the last step exploits that the sum of two codewords is again a codeword. Hence,
the codeword with the lowest Hamming weight determines the minimum distance of the
code. For many classical algebraic codes, the minimum distance is directly related to their
(guaranteed) error correction capability t as

t =
⌊
dmin − 1

2

⌋
. (2.109)

We evaluate the performance of a blockcode by its frame error rate (FER) or bit error
rate (BER), which is given as

FER = Pr(W 6= Ŵ ) = Pr(U 6= Û), (2.110)

BER = 1
kc

kc∑

i=1
Pr(Ui 6= Ûi). (2.111)

The information sequence associated with the message W is denoted by the RV U =
(U1, U2, . . . , Ukc). The RV Û = (Û1, Û2, . . . , Ûkc) is the decision for U at the receiver after
FEC decoding. These metrics are usually evaluated by means of MC simulations.

Cyclic and Quasi-Cyclic Codes

A cyclic code C [31, Ch. 5] has the property that each cyclic rotation of a codeword is
again a codeword. A cyclic shift of the codeword v = (v1, v2, . . . , vnc) ∈ C to the right by
one position is defined as the operation

(v1, v2, . . . , vnc) 7→ (vnc , v1, . . . , vnc−1). (2.112)

Each cyclic code is also a linear code. Compared to linear codes, cyclic codes impose
further structural properties on the codewords which can be exploited for encoding and
decoding with lower complexity.
The codewords of a quasi-cylic (QC) code C are sectioned into t parts of length Q, i.e.,

we have
v = (v1, v2, . . . , vnc) = (v1,v2, . . . ,vt) (2.113)

where vi = (v(i−1)Q+1, . . . , viQ). If all sections vi, i = 1, . . . , t are shifted by the same offset,
the resulting vector is again a codeword. All codes in Chapters 4 and 5 are based on QC
constructions, as they have a smaller description complexity than random LDPC codes
and emerge naturally by building a code from a protograph ensemble.
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Bose-Chaudhuri-Hocquenghem Codes

Bose-Chaudhuri-Hocquenghem (BCH) codes [31, Ch. 6] are cyclic codes and binary sub-
codes of Reed Solomon codes with a guaranteed error correction capability of t. For a
BCH code with blocklength nc = 2o − 1 and error correction capability t, the generator
polynomial is defined as

g(x) = lcm (Φα(x),Φα2(x), . . . ,Φα2t(x)) (2.114)

where Φαj(x) is the minimal polynomial of the element αj ∈ F2o . The resulting code
dimension is kc = 2o − 1 − deg(g(x)). BCH codes have a minimum distance of dmin ≥
dmin,d = 2t+ 1 and are usually decoded by the Berlekamp-Massey algorithm [32].

Product Codes

Product codes [31, Ch. 4.7] can be understood as two dimensional blockcodes, where the
codeword is a two dimensional matrix with its rows and columns being formed by the
constraints of two linear blockcodes as component codes. Assuming a row code with
parameters (nr

c, k
r
c) and a column code with parameters (nc

c, k
c
c), the product code has the

parameters (nr
c · nc

c, k
c
c · kr

c). Further, it can be shown that its minimum distance is given
by the product of the minimum distances of the respective component codes.
Product codes can be decoded iteratively in a SD or HD manner. For the former, two

dimensional product codes can be understood as generalized LDPC codes (see Sec. 4) with
degree two variable nodes (VNs) and are decoded by the sum-product algorithm (SPA).
For HD decoding, the component codes are commonly decoded via syndrome decoding
(for high rate component codes) or by the Berlekamp Massey algorithm [32].

Example 3. We consider a (9,4) product code with a (3,2) single-parity check (SPC)
code for the row and column component codes. The codeword array V is

v1 v2

v3 v4

v1 + v2

v3 + v4

v1 + v3 v2 + v4
v1 + v2

+
v3 + v4

V =

Here, v1, v2, v3, v4 denote the bits of the systematic information part and all other bits
(shaded in dark gray) are calculated as the modulo 2 sum of the rows and columns,
respectively. The bit in the lower east corner is a “check on a check”.

For the HD case, the component codes are often BCH codes. We use product codes in
Sec. 3.8.4 to evaluate the performance of a shaped coded modulation setup with HD.
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2.3.6. Modulation Formats and Labeling
After FEC encoding, the bits are mapped to constellation symbols. An M -ary constel-
lation is a set X of M points that are used for the pulse shaping. Common constella-
tions areM -amplitude shift keying (ASK), M -QAM, M -phase-shift keying (PSK) andM -
amplitude phase-shift keying (APSK). M -ASK is also known as bipolar pulse-amplitude
modulation (PAM). The number M of points is usually chosen as a power of two, i.e.,
M = 2m,m ∈ N. We distinguish between coherent and non-coherent modulation formats,
where the latter do not convey information in the phase of a constellation point, i.e., only
the amplitude carries information. Examples for non-coherent modulation formats include
on-off keying (OOK) or unipolar PAM formats used with direct detection (DD)/intensity
modulation (IM) transceivers. An overview of different coherent modulation formats is
shown in Fig. 2.3.
In this thesis, ASK and QAM modulation formats are used in most cases. We define the

normalized M -ASK signaling set as XASK = {±1,±3, . . . ,±(M − 1)}, where M is even.
The extension to a two-dimensional M2-QAM constellation is straightforward: take the
Cartesian product of two real-valued ASK constellations, i.e., XQAM = XASK ×XASK.
For optical communications, higher dimensional modulations formats are of interest. For

instance, a four-dimensional dual polarized QAM (DP-QAM) constellation is the Cartesian
product of two QAM constellations, or equivalently, the Cartesian product of four ASK
constellations.
To use binary FEC codes, we introduce a binary interface for the transmitted constella-

tion points. We define the binary labeling function χ : X → {0, 1}m

χ(x) = b = b1b2 . . . bm (2.115)

that assigns an m-bit binary label b to each constellation point. A binary reflected Gray
code (BRGC) [33] usually works well in practice. It is depicted in Fig. 2.3.

2.3.7. Finite Length Coding Bounds
To evaluate the performance in the finite blocklength regime and to guide the design of
practical communication systems, finite length coding bounds are an important tool. Their
significance has increased with the advent of ultra-reliable low-latency communication
(URLLC) in 5G. The low latency aspect refers mainly to low processing latency, and
hence, small blocklengths. While results on finite blocklength information theory date
back to works by Feinstein [34], Shannon [35], Strassen [36], Gallager [37] and others,
broad interest was sparked by Polyanskiy’s seminal work [38] and many subsequent papers
that provided additional details on how to compute the presented bounds in a numerically
and computationally feasible manner.
In the following, we review some of these finite length bounds in detail. They will

serve as benchmark curves in the following chapters on tailored code designs. First, we
introduce Shannon’s sphere packing bound (SPB) of 1959. It provides a lower bound on
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Figure 2.3.: Overview of typical coherent modulation formats. A binary reflected Gray
code is used for the label of each signal point.

the FER of any spherical code, i.e., a code whose codewords lie on a spherical shell. We
then describe Gallager’s random coding bound (RCB) that was derived in Sec. 2.3.2 as
part of the channel coding theorem. A tighter version of the RCB is the so called random
coding union bound (RCUB) of [38, Sec. III-B]. The latter two bounds provide achievability
results. Finally, we present a bound based on the normal approximation (NA).

Sphere Packing Bound

The SPB appears in [39] and assumes a spherical codebook, i.e., C = {x ∈ Rn : ‖x‖2 = P}
with |C| = 2nR. The bound owes its name to the steps used in its derivation. With each
codeword xi, we associate a Voronoi region, defined as the convex set of points that are
closer to xi than to any of the other 2nR − 1 codewords of C. Each Voronoi cell is formed
by at most 2nR−1 hyperplanes that go through the origin, as all codewords have the same
distance from the origin. Hence, each Voronoi cell is a polyhedric cone, the cells subdivide
the space Rn, and the sum of their solid angles Ωi, i = 1, . . . , 2nR equals the surface area
of the n-dimensional spherical shell.
An ML decoder identifies for a given receive sequence y the Voronoi region from which it



2.3. Information Theory 31

originated. An error occurs if the received sequence falls outside the Voronoi region which
corresponds to the transmitted signal point. To lower bound this probability, Shannon
introduces the sphere packing argument, saying that a randomly picked Voronoi cell does
not exhibit a better probability of error than a circular cone of the same solid angle. This
claim is based on propositions stating that among the cones of a given solid angle, the
circular one provides the lowest probability of error and it is best to share the total solid
angle evenly between all Voronoi cells. The corresponding solid angle θ is therefore given
as

Ω(θ) = 2−nR (2.116)

where Ω(θ) is the solid angle of a spherical cap in n dimensions with half-angle θ

Ω(θ) = 1
2Isin2(θ)

(
n− 1

2 ,
1
2

)
(2.117)

and the function Ix(a, b) is the regularized, incomplete beta function

Ix(a, b) ,
∫ x
0 t

a(1− t)b dt
∫ 1

0 t
a(1− t)b dt

. (2.118)

For numerical evaluations and determining θ, rewriting (2.116) as done in [40, Sec. II] is
beneficial. Having the half angle θ, the probability can be lower bounded as

Pr(Ŵ 6= W ) ≥ Pr

Z +

√
P/σ2

√
V/(n− 1)

≤
√
n− 1 cot(θ)


 (2.119)

where Z is a Gaussian normal distributed RV and V is a χ2 distributed RV with (n− 1)
degrees of freedom. Further, the RV V is stochastically independent of Z. The CDF is
implemented in many numerical libraries7.
We note that the SPB as presented here does not take modulation constraints into

account. Refined versions of the SPB can be found in [40, 41].

Random Coding Bound

The RCB can be obtained from the channel coding theorem of Sec. 2.3.2. It gives an upper
bound on the FER as

Pr(W 6= Ŵ ) ≤ 2−nE(R) (2.120)
where E(R) denotes the respective error exponent, e.g., (2.69) or (2.75).

7The resulting RV has a non-central t distribution. For instance, in Matlab, the CDF is implemented by
the function nctcdf.
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Random Coding Union Bound

As the name suggests, the RCUB is based on the same random coding arguments as
Gallager’s matched or mismatched RCB (see Sec. 2.3.2). For a general decoding metric
q : X n ×Rn → R+, this bound is [38, Theorem 16]8

Pr(Ŵ 6= W ) ≤ E
[
min

(
1,Pr

(
q(Xn(w̃), Y n)
q(Xn, Y n) ≥ 1

∣∣∣∣∣X
n, Y n

))]
. (2.121)

The derivation starts from (2.60), applies the union bound (without introducing the tight-
ening parameter ρ as in (2.62)) and uses the generalized Markov inequality. As the resulting
expression represents a probability, we know that it is upper bounded by one, so that we
have

Pr

 ⋃

ŵ 6=w0

{
q(Xn(w̃), yn)
q(xn(w0), yn) ≥ 1

}∣∣∣∣∣∣
W = w0, X

n = xn(w0), Y n = yn


 (2.122)

≤ min
(

1, (2nR − 1)E [q(Xn(w̃), yn)s]
q(xn(w0), yn)s

)
. (2.123)

The improved tightening of the RCUB follows from the trivial upper bound 1. Unfor-
tunately, this modification couples all n channel uses and the integrals for the averaging
over pY |X(yi|x), i = 1, . . . , n, can not be calculated separately. We use the saddlepoint
approximation of [42] to obtain an approximation to the tail probability of the respective
RVs.

Normal Approximation

The starting point for the derivation of the NA is (2.121) and (2.123). Additionally, we
assume a memoryless decoding metric and set s = 1. It is

Pr(Ŵ 6= W ) ≤ E


min


1, 2

nR−
∑n

i=1 log2

(
q(Xi(w0),Yi)∑
a∈X PX (a)q(a,Yi)

)



 (2.124)

≤ 2−nδ · Pr
(
2nR−Zn ≤ 2−nδ

)
+ 1 · Pr

(
2nR−Zn ≥ 2−nδ

)
(2.125)

≤ 2−nδ · 1 + Pr
(
nR− Zn ≥ 2−nδ

)
(2.126)

≤ 2−nδ + Pr
(
Zn ≤ nR− 2−nδ

)
(2.127)

8We present a generalized version for the expression in Polyanskiy’s paper for an arbitrary decoding
metric q.
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where we introduced δ > 0, the RV

Zn =
n∑

i=1
log2

(
q(Xi(w0), Yi)∑
a∈X PX(a)q(a, Yi)

)

and used the bound

E [U ] =
∫

u≤a
u · pU(u) du+

∫

u≥a
u · pU(u) du ≤ a · Pr(U ≤ a) + 1 · Pr(U ≥ a)

for an RV U with supp(pU) = [0, 1]. To continue, we assume that Zn is Gaussian distributed
(normal approximation) which holds for n→∞ by the central limit theorem. By choosing
δ appropriately (δ has to decrease slower than 1/n and faster than 1/

√
n), we get

Pr(Ŵ 6= W ) ≈ Q


E [Zn]− nR√

Var [Zn]


 . (2.128)

For instance, if we consider SMD and have q(x, y) = pY |X(y|x), the mean and variance of
Zn becomes

E [Zn] = nE [i(X;Y )] = n I(X;Y ) (2.129)
Var [Zn] = n

(
E
[
i(X;Y )2

]
− E [i(X;Y )]2

)
. (2.130)

The latter term is called dispersion. The bound (2.128) can be tightened as shown in
[29, 38].

Numerical Evaluations of the Finite Length Bounds

In Fig. 2.4 we show results of the numerical evaluation of the finite length coding bounds
for 8-ASK, an SE of 1.5 bpcu and n ∈ {64, 128, 256} channel uses. For all plots, the SMD
decoding metric q(x, y) = pY |X(y|x) is considered. We observe that the RCUB provides
the tightest achievability bound for all considered blocklengths – it also outperforms the
NA for low FERs.
In Fig. 2.5, we depict the same scenario as before for n = 21 600 channel uses. As

expected from theory, the converse and achievability bounds become tighter. The realized
shaping gains according to the RCB is what the asymptotic information rate analysis
predicts.
In Fig. 2.6, we compare Gallager’s RCB for 4 and 8-ASK and an SE of 1.5 bpcu. We

consider SMD with q(x, y) = pY |X(y|x) and BMD with q(x, y) = ∏m
k=1 pY |Bk(y|[χ(x)]k).

For the latter, a BRGC label is employed. We see that the loss due to BMD for 8-ASK
is reflected for both short (n = 64) and long blocks (n = 21 600). The asymptotic BMD
loss is 0.43 dB for 8-ASK and negligible for 4-ASK. The latter is because the target SE
of 1.5 bpcu is close to the saturation region of 4-ASK (i.e., its high SNR regime). This
is the regime where SMD and BMD become similar in their performance, see Fig. 3.1.
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(d) n = 512

Figure 2.4.: Comparison of finite length bounds for 8-ASK with SMD, Rtx = 1.5 bpcu and
different numbers of channel uses. Note that the x-axis ranges reduce as n
increases.

This suggests that the operation points of BMD transceivers must be chosen carefully for
optimal performance. We further added the NA for 8-ASK for SMD and BMD. While we
observe significant differences for the RCB and the NA for a small number of channel uses,
both become more similar for large n. The relative differences between SMD and BMD
are also revealed for the NA.

2.4. Graph Theory

2.4.1. Undirected and Bipartite Graphs
Many mathematical concepts and relations can be stated as graphs. An undirected graph
G is a tuple (U , E) consisting of a set U = {u1, u2, . . . , uk} of nodes (or vertices) and a set
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Figure 2.5.: Comparison of finite length bounds for 8-ASK with SMD, Rtx = 1.5 bpcu and
n = 21 600 channel uses.
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Figure 2.6.: Comparison of the RCB and the NA for SMD and BMD for 4-ASK and 8-ASK
with Rtx = 1.5 bpcu.

E = {eij} of edges. The set E contains eij if there is a connection between node ui and
node uj. As the graph is undirected, the order of the indices i, j ∈ {1, 2, . . . , k} does not
matter. Further, each pairing of i, j is distinct and the requirement i 6= j prevents loops.
A length ` walk is a sequence of ` nodes ui1 , ui2 , ui3 , . . . , ui`+1 such that the edges

ei1i2 , ei2i3 , ei3i4 , . . . are in E . A path is a walk where each node ui1 , . . . , ui` appears at
most once. A length ` cycle is a path where the starting and ending nodes coincide, i.e.,
ui1 = ui`+1 . The length of the shortest cycle in a graph determines its girth.
Bipartite graphs belong to a special class of graphs, whose set U of nodes is split into

two disjoint subsets V and C such that U = V ∪ C and V ∩ C = ∅, and edges are allowed
to connect nodes from different node sets only, i.e., if eij ∈ E then vj ∈ V and ci ∈ C,
i = 1, . . . , |C|, j = 1, . . . , |V|. We refer to V and C as the sets of VNs and factor nodes (FNs),



36 Chapter 2. Preliminaries

respectively. The set N (vj) (N (ci)) denotes the neighbors of VN vj (FN ci), i.e.,

N (vj) = {ci ∈ C : eij ∈ E}, (2.131)
N (ci) = {vj ∈ V : eij ∈ E}. (2.132)

The girth of a bipartite graph is always an even number.

2.4.2. The Sum-Product Algorithm on Factor Graphs
Factor graphs are a special class of bipartite graphs that describe how a “global” function
of many variables decouples into the product of many “local” functions [43]. For instance,
the global function

f(v1, v2, v3, v4, v5) = f1(v1, v2)f2(v2, v3)f3(v3, v4)f4(v3, v5) (2.133)

is described by the factor graph of Fig. 2.7. The FNs c1, c2, c3, c4 are denoted by rectangu-

v1 v2 v3

v4

v5

c1 c2

c3

c4

Figure 2.7.: Factor graph for the global function of (2.133).

lar boxes and represent the local functions (factors) f1, f2, . . . , f4. The VNs v1, v2, . . . , v5
have circular boxes and represent the arguments of the local functions. In all our examples,
the values of the VNs come from a finite set F.
Suppose that we want to solve the marginalization problem

f(vi) =
∑

v1∈F
. . .

∑

vi−1∈F

∑

vi+1∈F
. . .

∑

v|V|∈F
f(v1, v2, . . . , v|V|) =

∑

∼vi
f(v1, v2, . . . , v|V|) (2.134)

where the notation ∼vi is short hand for the summation over the values of all VNs except
for the i-th one. Naively, this implies summing over 2|V|−1 values if the alphabet F of
each VN is binary. By exploiting the factorization (2.133), the complexity can be reduced
significantly by applying the distributive law. More precisely, we use the Cartesian product
distributive law [44].
The sum-product algorithm (SPA) formalizes the application of the distributive law and

uses the following building blocks at the VN and FN: For the VN update (Fig. 2.8a) we
have

mvj→ci(vj) =
∏

c∈N (vj)\{ci}
mc→vj(vj) (2.135)
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Figure 2.8.: Update rules of the SPA.

while the FN update is given by (Fig. 2.8b)

mci→vj(vj) =
∑

∼vj
fi(N (ci))

∏

v∈N (ci)\{vj}
mv→ci(vj). (2.136)

Example 4. We want to calculate f(v1) for the factor graph in Fig. 2.7 and use the
update rules of (2.135) and (2.136) to obtain:

mc3→v3(v3) =
∑

v4∈F
f3(v3, v4) ·mv4→c3(v4)

mc4→v3(v3) =
∑

v5∈F
f4(v3, v5) ·mv5→c3(v5)

mv3→c2(v3) = mc3→v3(v3) ·mc4→v3(v3)
mc2→v2(v2) =

∑

v3∈F
f2(v2, v3) ·mv3→c2(v3)

mv2→c1(v2) = mc2→v2(v2)
mc1→v1(v1) =

∑

v2∈F
f2(v1, v2) ·mv2→c1(v2).

Overall, we get

f(v1) = mc1→v1(v1) =
∑

v2∈F
f2(v1, v2)mv2→c1(v2)

=
∑

v2∈F
f2(v1, v2)


∑

v3∈F
f2(v2, v3)


∑

v4∈F
f3(v3, v4)mv4→c3(v4)


 ·


∑

v5∈F
f4(v3, v5)mv5→c3(v5)




 .
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Probabilistic Shaping

3.1. Introduction and Historic Overview
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Figure 3.1.: Information rates of uniform signaling with 4-ASK, 8-ASK and 16-ASK and
their comparison to the AWGN capacity. The solid curves are SMD rates, the
dashed ones are BMD rates.

In what follows, the AWGN channel with discrete inputs and an average power constraint
is of central interest. Its information theoretic model for n channel uses is described by

Yi = ∆Xi +Ni, E
[
(∆Xi)2

]
≤ P, i = 1, . . . , n (3.1)
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where Xi ∈ X is the discrete channel input, ∆ ∈ R+ is the constellation scaling and Ni is
zero mean Gaussian noise with variance σ2 and PDF given in (2.93). We define the SNR
as E [X2] /σ2 and drop the time index i whenever possible.
The model (3.1) has been studied in detail in the literature, as it can be used to model

various practical communication scenarios. To achieve the capacity of the AWGN chan-
nel, a codebook with Gaussian distributed signal points is necessary, see Sec. 2.3.4. For
practical implementations, such a codebook is not feasible because of its complexity re-
garding storage and analog-to-digital converter (ADC)/digital-to-analog converter (DAC)
requirements. While this was not much of an issue in the early days of digital commu-
nications, where channels were mostly power-limited and had a large bandwidth, things
changed when applications were facing band-limited channels and demanded higher SEs.
One of the first examples were voice band modems for telephone channels [45], which had
only 300Hz to 3000Hz of usable spectrum, but offered SNRs of up to 28 dB. While PSK
constellations were used mostly in the early 60s, QAM formats started to emerge in 1971,
where the Codex 9600 C used 16-QAM in the V.29 standard to transmit 4 bpcu uncoded.
Hereby, each constellation point was used with the same probability.
From the very beginning, researchers were well aware that this kind of signaling was not

optimal and incurred a loss compared to the capacity of the channel because of the non-
Gaussian signaling. This is illustrated in Fig. 3.1, where the achievable rates of 4-ASK,
8-ASK and 16-ASK are shown and compared to the Shannon limit CAWGN (2.96). For high
SNRs and forM →∞, the loss between signaling with discrete equi-spaced and uniformly
distributed constellation points and a Gaussian codebook amounts to 1.53 dB [45].
To mitigate this problem, researchers developed PS approaches, that use constellation

points with different probability. However, these approaches were not considered practical.
For instance, in [45], the authors suggest to use a prefix-free code (e.g., inverse Huffmann
coding) to parse the data bits into chunks and map those to respective constellation points,
but point out that the variable length of the outputs may lead to error propagation,
overflow and delay. It is further important to mention that shaping was not considered
as crucial at this point, as much larger gains could be obtained through improved coding
schemes.
One of those was Gottfried Ungerböck’s trellis coded modulation (TCM). In his seminal

work “Channel Coding with Multilevel/Phase Signals” [46], Ungerböck showed that the
efficiency of practical transceivers can be improved substantially if the FEC is designed
jointly with the modulation scheme. This allowed to achieve coding gains for higher-
order modulation that were comparable to those obtained previously for the power-limited
case [47]. TCM built on the notion that FEC needs to consider the Euclidean distance of
signal points and should enlarge it. This led to the notion of “coding by set partitioning”,
where the coded bits selected a partition of the constellation and the uncoded bits selected
the points within this partition.
To operate at the ultimate limit, PS and FEC should be combined. However, as many

works showed, the combination of PS and FEC was perceived as difficult – especially when
modern FEC codes (e.g., LDPC) should be considered.
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3.2. Probabilistic Shaping with Forward Error Correction
Predominantly, two approaches have been considered in the literature to combine FEC
and PS. They are depicted in Fig. 3.2 and Fig. 3.3 and will be discussed in the following
two subsections.

3.2.1. Shaping as an Inner Code

Source Encoder Shaper Modulator

Channel

DemodulatorDeshaperDecoderSink

Figure 3.2.: Shaping as an inner code.

The optimal distribution must be realized at the channel input where the power con-
straint applies. Therefore, a natural choice is to place the shaping as an inner code (i.e.,
after FEC encoding) as shown in Fig. 3.2. However, this approach has an important draw-
back: The “inverse” shaping operation must be performed before (or jointly with) the FEC
decoder. This may lead to severe error propagation and large complexity.
A practical approach was proposed by Gallager in [21, Sec. 6.2] and is now commonly

referred to asmany-to-one-mapping. The idea is to use a deterministic mapping function to
assign several binary sequences of length m bits (after FEC encoding) to one channel input
symbol. A comprehensive summary is given in [48]. While this solves the PS problem at
the transmitter side, the receiver now has to deal with both the decoding and deshaping.
Gallager notes that “Unfortunately, the problem of finding decoding algorithms is not
so simple” [21, Sec. 6.2]. Still, many recent works [49, 50, 51, 52, 53] picked up this
scheme and employ iterative demapping, i.e., iterations between the SD demapper and
SD FEC decoder to resolve the ambiguities. Another disadvantage is that this scheme
is inflexible in terms of the realized output distribution and therefore transmission rate,
as only distributions of the form PX(x) ∝ 1/2m can be realized and additional steps are
needed to match PX(x) to the capacity achieving distribution [54]. Additionally, the need
for joint demapping/decoding comes at the price of reduced flexibility and complicated
rate adaptation. Last but not least, shaping as an inner code generally requires a lower
FEC code rate, which is undesired for high data rates – the throughput that needs to be
supported by the digital signal processing (DSP) chip must be significantly larger in this
case.
Another type of shaping is Trellis shaping [55], [56, Sec. IV]. This method overcomes

the problem of error propagation and solves the decoding issues raised by Gallager. For
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this, a dedicated shaping code uses energy minimizing sequences only. The sequences are
found via a modified Viterbi algorithm in the shaping code trellis. A simple four state
convolutional shaping code may achieve shaping gains of up to 1 dB. Trellis shaping was
also considered in the context of the V.34 modem standard, but was perceived as too
complex compared to shell mapping (SM) [56, Ch. 4], [57].

3.2.2. Shaping as an Outer Code
An alternative strategy is pursued in Fig. 3.3. Here, the shaping is performed as an outer
code (i.e., before the FEC encoding) in such a way that the desired properties of the shaping
are not destroyed. Schemes of this kind are said to employ reverse concatenation and
originate from requirements in magnetic and optical data storage where certain sequences
are forbidden [58, 59, 60, 61]. In [62], the authors built on this principle and introduce

Source Shaping Encoder Modulator

Channel

DemodulatorDecoderDeshaperSink

Figure 3.3.: Shaping as an outer code.

the concept of sparse-dense transmission. The term “sparse-dense” hereby reflects the
composition of a FEC codeword with sparse (ones and zeros are not equally distributed)
and dense parts (zeros and ones are approximately equally distributed). The sparse part
is realized with appropriate mapping techniques (e.g., look-up tables) and maintained in
the FEC codeword by systematic encoding. In general, any communication scheme using
this approach operates in a time sharing (TS) fashion as only a fraction of the codeword
symbols are shaped.

3.3. Layered Probabilistic Shaping
In the classical random coding setup of Sec. 2.3.2, the FEC codebook was created at
random using the distribution PX so that all transmitted codewords have the optimal dis-
tribution for the considered channel. Practical codes, e.g., linear block codes as introduced
in Sec. 2.3.5, however, have code symbols that are (approximately) uniformly distributed.
To achieve a shaping gain, we should transmit codewords from a subset of the code, which
is chosen such that the code symbols of these codewords have the desired distribution.
The problem of reliably transmitting information over a noisy channel in a power efficient
manner is thereby decomposed into layers which can be tackled independently from each
other.
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First, the shaping layer has the task to encode into a subset of the FEC code. The FEC
layer has the task to recover the transmitted sequence from the noisy channel observations.
For this, the decoder uses a decoding metric that evaluates all codewords in the codebook
and exploits the knowledge about the prior of the possibly transmitted codeword symbol.
For the analysis of achievable rates for a layered PS scheme, we first consider both layers

as being independent of each other.

3.3.1. Forward Error Correction Layer

To analyze the FEC layer, we consider the following random coding experiment [63, Ap-
pendix B]: We create a codebook C with 2nmRc codewords and 0 ≤ Rc ≤ 1. Each entry of
a codeword is chosen at random and uniformly from the set X , i.e., PX(x) = 1/ |X |, with
|X | = 2m.
The decoder uses the decoding metric q : X ×R→ R+ to determine a decision for the

transmitted sequence. We follow similar steps as in Sec. 2.3.2 to obtain an upper bound
on Pr(Ŵ 6= W |W = w0, X

n = xn, Y n = yn), that is

Pr(Ŵ 6= W |W = w0, X
n = xn, Y n = yn) ≤ 2nmRc E [q(Xn, yn)]

q(xn, yn) (3.2)

= 2nmRc2log2

(
E[q(Xn,yn)]
q(xn,yn)

)
(3.3)

= 2nmRc2− log2

(
q(xn,yn)

E[q(Xn,yn)]

)
. (3.4)

For a memoryless metric, the probability (3.4) goes to zero if

Rc <
1
mn

n∑

i=1
log2

(
q(xi, yi)

E [q(X, yi)]

)
= 1
mn

n∑

i=1
log2


 q(xi, yi)∑

a∈X q(a, yi) 1
|X |


 . (3.5)

For n→∞ the right hand side of (3.5) converges to

1
m

E

log2


 q(X, Y )
∑
a∈X q(a, Y ) 1

|X |




 = 1− 1

m
E
[
− log2

(
q(X, Y )

∑
a∈X q(a, Y )

)]

︸ ︷︷ ︸
U(q)

= 1− 1
m

U(q)

(3.6)

by the WLLN (2.34). We refer to the underbraced term as the uncertainty U(q) and note
that it takes the form of a cross entropy (2.39). We can now instantiate (3.6) for SMD and
BMD. In contrast to before, we explicitly include the knowledge about the distribution
that is used for the shaping layer in the decoding metric. The SMD metric is

qSMD(x, y) = PX|Y (x|y) ∝ pY |X(y|x)PX(x) (3.7)
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and we have

qBMD(x, y) =
m∏

k=1
PBk|Y ([χ(x)]k|y) ∝

m∏

k=1
pY |Bk(y|bk)PBk(bk) (3.8)

for BMD where

PBk|Y (b|y) = PBkY (b, y)
pY (y) =

∑
x∈X b

k
pY |X(y|x)PX(x)
pY (y) (3.9)

and X b
k = {x ∈ X : [χ(x)]k = b}. The resulting mismatched uncertainty expressions are

U(qSMD) = E
[
− log2

(
PX|Y (X|Y )

∑
a∈X PX|Y (a|Y )

)]
= H(X|Y ) (3.10)

U(qBMD) = E
[
− log2

( ∏m
k=1 PBk|Y (bk|y)

∑
a∈X

∏m
k=1 PBk|Y ([χ(a)]k|y)

)]
=

m∑

k=1
H(Bk|Y ). (3.11)

In (3.10), the mismatched uncertainty becomes a matched uncertainty, i.e., a conditional
entropy.
For BMD, one often prefers a representation in the logarithmic domain and defines the

value

lk = log
(
PBk|Y (0|y)
PBk|Y (1|y)

)
such that PBk|Y (b|y) = elk(1−b)

1 + elk . (3.12)

Using this, we can rewrite (3.11) as

U(qBMD) =
m∑

k=1
E
[
− log2

(
eLk(1−Bk)

1 + eLk

)]
=

m∑

k=1
E
[
log2

(
1 + eLk
eLk(1−Bk)

)]

=
m∑

k=1
E
[
log2

(
1 + e−Lk·(1−2Bk)

)]
. (3.13)

3.3.2. Shaping Layer
The task of the shaping layer is to encode into a shaping set S which contains all sequences
with the desired properties, i.e., for the AWGN channel, the shaping set may contain
sequences with the lowest energy. For the FEC encoded codeword v, we have to ensure
that v ∈ S ∩ C. As outlined in detail in [63, Sec. IV-A]1, successful shaping set encoding
is possible if

Rtx <

[
log2(|S|)

n
−m(1−Rc)

]+

(3.14)

1The paper introduces additional rates, namely the shaping rate Rps with 0 ≤ Rps ≤ 1 and the FEC
code rate Rfec which corresponds to Rc in this thesis. We have Rtx = mRpsRfec.
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where [·]+ = max(0, ·). For a constant-composition shaping set S (see Sec. 3.4.2) we have

lim
n→∞

log2(|S|)
n

= H(X) (3.15)

and (3.14) becomes

Rtx < [H(X)−m(1−Rc)]+ = [mRc −D(PX ‖ PU)]+ . (3.16)

where PU is the discrete, uniform distribution on X , i.e., PU(u) = 1/ |X | ,∀u ∈ X . Using
(3.5) and (3.6) in (3.16), we have

Rtx < [H(X)− U(q)]+ . (3.17)

For SMD, we instantiate (3.17) with (3.10) and obtain

Rtx < RSMD = I(X;Y ). (3.18)

For BMD, we instantiate (3.17) with (3.11) and obtain

Rtx < RBMD =
[
H(X)−

m∑

k=1
H(Bk|Y )

]+

. (3.19)

The expression (3.19) was first stated in [8] and was derived by a random coding argument
and a typicality decoder. We denote the inverses of (3.18) and (3.19) by R−1

SMD and R−1
BMD,

respectively. For many scenarios, a practically feasible implementation of the shaping layer
constitutes the difficult part for a shaping scheme based on reverse concatenation.

3.3.3. Optimum Input Distribution
To find the optimal PMF PX , we solve the following optimization problem:

R?
SMD/BMD = max

PX ,∆
RSMD/BMD subject to E

[
(∆X)2

]
≤ P. (3.20)

For practical implementations, a parametric description of PX is desirable. In [64], the
authors introduced the family of Maxwell-Boltzmann (MB) distributions of the form

PX(x; ν) = exp(−νx2)
∑
a∈X exp(−νa2) (3.21)

where ν ∈ R. For ν = 0, the MB distribution degrades to the uniform distribution on X
and converges to a distribution with a support of two points for ν →∞.
The MB distribution arises naturally for power-efficient communication2 as it is the

2This can be seen if (3.20) is considered for RSMD = I(X;Y ) for high SNRs, when H(X|Y ) vanishes.
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Figure 3.4.: Optimized information rates for the AWGN channel and SMD and BMD met-
rics. R?

SMD and R?
BMD basically lie on top of each other.
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solution of the optimization problem

max
PX

H(X) subject to E
[
X2
]
≤ P. (3.22)

Therefore, the MB distribution maximizes the entropy of the channel input subject to an
average power constraint. In a dual formulation, one can show that the solution of (3.22)
is the same as for

min
PX

E
[
X2
]

subject to H(X) ≥ R. (3.23)

That is, the MB distribution minimizes the average energy subject to an entropy constraint.
If we optimize over the family of MB distributions only, we have

RMB,?
SMD/BMD = max

ν,∆
RSMD/BMD subject to E

[
(∆X)2

]
≤ P. (3.24)

The result of the optimization (3.20) is shown in Fig. 3.4. First, we see that the optimized
information rates are virtually the same as the AWGN capacity (dashed, black curve).
Surprisingly, there is no obvious gap between BMD and SMD, whereas we could observe
significant losses for BMD in the uniform case, see Fig. 3.1.
Another perspective on these results is shown in Fig. 3.5 where the gap to the AWGN

capacity is shown. The gap is defined as

∆SNR = R?,−1
SMD/BMD(CAWGN(SNR))− SNR. (3.25)

For PS and SMD, we observe in Fig. 3.5b that the gap to capacity is vanishingly small. For
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Figure 3.5.: Gap to AWGN capacity for SMD and BMD.

BMD, it is smaller than 0.05 dB for meaningful operating regimes. In contrast, Fig. 3.5a
shows the same scenario for uniform signaling. Here, the results for BMD are particularly
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Figure 3.6.: 8-ASK constellation with a BRGC labeling. Bit-level one (blue) represents
sign bits (distinguishing between the negative and positive side), whereas bit
levels two and three (red) denote the bits representing the amplitude values
1, 3, 5 and 7.

interesting as they indicate clear operating regions for each constellation size. The SNRs
points where a switch to the next higher constellation size should be performed are indi-
cated with a dot. We see that 8-ASK should be used for SNRs higher than about 9 dB and
16-ASK for SNRs higher than 15.4 dB. For SMD, we see that increasing the constellation
order generally decreases the gap to capacity for a given SNR. However, this requires to
use a lower rate FEC code to operate at the same SE, which is often not desired.

3.4. Implementation of Layered PS: Probabilistic
Amplitude Shaping

3.4.1. Foundations of Probabilistic Amplitude Shaping
PAS is a practically relevant instance of a layered PS scheme suited for the average power
constrained AWGN channel. It exploits the symmetry property of the optimal input
distribution such that the suboptimality of sparse-dense transmission is circumvented, see
Sec. 3.2.2. PAS relies on the following three requirements and principles:

1. The capacity achieving distribution P ∗X is symmetric, i.e., it allows a factorization as
X = A ·S, where the RVs A and S denote the amplitude and sign parts, respectively,
and we have

PX(x) = PA(|x|) · PS(sign(x)) (3.26)
where the alphabet of X is X = A×S with A = {1, 3, . . . ,M−1} and S = {−1,+1}.
This property is fulfilled for the AWGN channel with an average power constraint
(see [65, Proposition 2.3]). The PMF PA is non-uniform on A, whereas PS is uniform
on its binary support S.

2. A systematic generator matrix G = (I P ) is used for encoding.

3. A distribution matcher (DM) [66] generates a sequence of symbols with a specified
distribution.



3.4. Implementation of Layered PS: Probabilistic Amplitude Shaping 49

The transmitter component side of PAS is illustrated in Fig. 3.7 and is summarized as
follows: A number kdm of uniformly distributed source bits are converted by a one-to-one,

Source DM

χA(·) P χ−1
S (·)

�/
kdm

/
kc − (m− 1)n

/
n

/
n(m− 1)

/
mc

/
n

xn = an � sn

Figure 3.7.: Encoding procedure for PAS.

fixed-to-fixed length DM of rate kdm/n to a sequence of n shaped amplitude values. A bit
mapping function

χA : A → {0, 1}m−1 (3.27)
maps each amplitude ai of the amplitude sequence an = (a1, a2, . . . , an) to its binary
representation. For example, in Fig. 3.6, we have χA(3) = (1, 1). The binary representation
of an has length n(m− 1) and is encoded by a systematic generator matrix of a code with
rate Rc = (m − 1)/m such that n parity bits are generated. The distribution in the
systematic part is left unchanged, whereas the n parity bits are approximately uniformly
distributed (as a modulo-2 sum of many bits). We refer to this as the uniform check bit
assumption [9, Fig. 2]. Consequently, the parity bits can be used as sign bits using the
inverse of the sign mapping function

χS : {−1,+1} → {1, 0}. (3.28)

The final transmit sequence xn is obtained after a componentwise multiplication of the
amplitude sequence with the sign sequence.
A generalization of the scheme for code rates Rc > (m−1)/m is indicated by the dashed

line in Fig. 3.7. If the code rate is higher than (m − 1)/m, the encoding produces less
than n parity (sign) bits. To compensate, we can use some of the systematically encoded
information bits as additional signs bits. This procedure is referred to as extended PAS.
The transmission rate of the extended PAS scheme is

Rtx = kdm + kc − (m− 1)n
n

= kdm

n
+ Rcnc − (m− 1)n

n

= kdm

n
+ 1− (1−Rc) ·m [bits/channel use (bpcu)]. (3.29)

In the last step we assumed nc = n ·m. The term

γ = 1− (1−Rc) ·m (3.30)
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denotes the fraction of sign bits (i.e., those of bit level one) that are used as additional
information bits in the extended PAS scheme.

3.4.2. Distribution Matcher Algorithms
Blackbox Description

A fixed-to-fixed length DM is a function fdm : {0, 1}kdm → Cdm ⊆ An that takes an input
sequence of kdm bits and maps those in a one-to-one fashion3 to a length n output sequence.
For PAS, the shaping set S (see Sec. 3.3) is

S = Cdm × {−1,+1}n (3.31)

with cardinality |S| = 2kdm · 2n = 2kdm+n. The symbols of the output sequence are taken
from a set A. Let nai(an), i = 1, . . . , |A| denote the number of occurrences of the symbol
ai ∈ A in the sequence an. The symbols in the set Cdm have the empirical distribution

PÂ(ai) = 1
|Cdm|

∑

an∈Cdm

nai(an)
n

. (3.32)

Depending on the concrete implementation, the output distribution is a parameter of the
DM.

fdmuk
dm ∈ {0, 1}kdm an ∈ {1, . . . , |A|}n

Figure 3.8.: Blackbox description of a DM.

The DM rate is given by

Rdm = kdm

n
. (3.33)

For small and moderate blocklengths, an important performance metric of a DM is its rate
loss

Rloss = H(PÂ)−Rdm. (3.34)

Constant Composition Distribution Matching

Constant composition distribution matching (CCDM) was introduced in [66] and imple-
ments a DM interface based on types, i.e., all output sequences an have the same number
of occurrences nai(an), i = 1, . . . , |A|. We refer to a type configuration for a given output

3The function fdm is injective.



3.4. Implementation of Layered PS: Probabilistic Amplitude Shaping 51

alphabet A and output length n via the type vector

tnA = (na1(an), na2(an), . . . , na|A|(a
n)). (3.35)

The set of all sequences of type tnA is

T tnA = {an ∈ An |nai(an) = [tnA]i , i = 1, . . . , |A|} (3.36)

and its cardinality can be calculated by the multinomial
∣∣∣T tnA

∣∣∣ = n!
∏|A|
i=1[tnA]i!

. (3.37)

The maximum number kdm of bits that can be encoded with the codebook Ct
n
A

ccdm ⊆ T t
n
A is

kdm =
⌊
log2

(∣∣∣T tnA
∣∣∣
)⌋
. (3.38)

CCDM realizes an n-type distribution on the output sequence an such that (3.32) becomes

PÂ(ai) = nai(an)
n

. (3.39)

For a given distribution PA, its n-type approximation PÂ (with the Kullback-Leibler diver-
gence as underlying similarity metric) can be calculated with the approach shown in [67].
A CCDM can be implemented by arithmetic coding, where the arithmetic decoder serves

as a DM encoding device and the arithmetic encoder implements the DM decoding. For
binary output alphabets, an efficient approach is given in [68]. Further, the CCDM rate
loss (3.34) vanishes for long output blocklengths [69], i.e., we have

kdm

n
n→∞−−−→ H(Â) or, equivalently, Rloss

n→∞−−−→ 0. (3.40)

Shell Mapping for Distribution Matching

Shell mapping for distribution matching (SMDM) is based on the SM algorithm [57] that
was used in the V.34 modem standard [70]. The SM algorithm allows an efficient indexing
of the lowest weight sequences for a given alphabet A and output length n. Traditionally,
the indexing builds on a divide and conquer approach. Recently, approaches based on
enumerative coding [71, 72] have emerged [73].
SMDM depends on the weight function W n : An → N0 which assigns a weight to each

sequence an ∈ An, where we commonly have W n(an) = ∑n
i=1W (ai) with a slight abuse

of notation. For instance, W n(an) may represent the “power cost” for the transmission
of an. SM orders the sequences an ∈ An according to the sequence weights W n(an). As
permutations of an have the same weight, they are assigned the same cost. SM creates
one of these ordered lists, e.g., by lexicographical ordering. Overall, the SMDM codebook
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CWn

smdm is the solution to the problem

min
CWn

smdm⊆An

|CWn

smdm|=2kdm

∑

an∈CWn
smdm

W n(an) = min
CWn

smdm⊆An

|CWn

smdm|=2kdm

∑

an∈CWn
smdm

n∑

i=1
W (ai). (3.41)

It was shown in [74] that SM implements the optimum block-to-block distribution
matcher for the divergence metric D(PÃn ‖ P n

A), where PÃn is the realized output dis-
tribution on the sequences in Csmdm and P n

A is the desired distribution. However, because
of its implementation complexity, only moderate output lengths are practically feasible.
For a software implementation, big integer libraries (e.g., GNU Multiple Precision Arith-
metic Library, GMP4 or libNTL5) are required to address input sequences with kdm > 64
bits.
For our particular problem of power efficient signaling, we typically choose W (a) = a2.

In this case, the SMDM codebook contains sequences of minimum energy. The empirical
symbol output distribution PÂ is calculated as in [75].

3.4.3. Optimal Code Rate and Constellation Size
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Figure 3.9.: Optimal Rc for 4-ASK, 8-ASK and 16-ASK and BMD and SMD.

As seen from (3.29), a desired transmission rate can be obtained by PAS with different
code rates Rc by adjusting the DM rate accordingly. This is in contrast to uniform sig-
naling, where Rtx = Rc ·m such that for a given constellation cardinality of 2m points the
transmission rate is determined only by the code rate.

4https://gmplib.org/
5https://www.shoup.net/ntl/

https://gmplib.org/
https://www.shoup.net/ntl/
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This motivates to revisit the question for the optimal FEC code rate with PAS. In
Sec. 3.3.1, the condition for error-free decoding is derived. Asymptotically, the optimal
FEC code rate R?

c is therefore given by

R?
c = 1− 1

m
U(q) (3.42)

when the decoder uses the decoding metric q. For SMD, we have

R?
c = 1− 1

m
U(qSMD) = 1− 1

m
H(X|Y ) (3.43)

and for BMD

R?
c = 1− 1

m
U(qBMD) = 1− 1

m

m∑

k=1
H(Bk|Y ). (3.44)

We show the respective optimal FEC rates for different SNRs in Fig. 3.9. The numerical
computation uses an MB distribution. We see that the optimal FEC code rate R?

c for BMD
is almost constant over a wide range for all three modulation formats. This suggests to
operate PAS for BMD with the close-to-optimal code rates shown in Table 3.1. The pairing
reflects code rates which are also commonly available for off-the-shelf codes in standards.

M -ASK Rc

4 5/8
8 3/4
16 13/16

Table 3.1.: Close-to-optimal FEC code rates for PAS with BMD and a given M -ASK con-
stellation.

In Fig. 3.10, we show the gap to the AWGN capacity for a given rate using the FEC
rates of Table 3.1. We also add the SMD/BMD curves for 16-ASK from Fig. 3.5 for the
optimal FEC code rate to have an insight for the incurred suboptimality. The observed
gaps are smaller than 0.05 dB for the entire operating region. Interestingly, the loss due to
a non-optimal FEC is even negligible for SMD (compare the solid gray and green curve).

3.4.4. Error Exponents for Probabilistic Amplitude Shaping
In [76], the error exponent for PAS was derived for a memoryless decoding metric. It is
given as

EPAS(PA, q) = max
0≤ρ≤1

(E0,PAS(ρ, PA, q)− ρmRc) (3.45)
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Figure 3.10.: Gap to AWGN capacity for PAS signaling with SMD and BMD using the
close-to-optimal FEC code rates of Table 3.1.

where

E0,PAS(ρ, PA, q) =

−
∑

a∈A
PA(a) log2



∫

y∈R

∑

s∈{±1}
pY |X(y|sa)PS(s)

(∑
x∈X q(x, y) |X |
q(sa, y)

)ρ
dy

 (3.46)

Instantiating (3.46) with the metric (3.7) for SMD and (3.8) for BMD, we obtain

ESMD
0,PAS(ρ, PA) =

−
∑

a∈A
PA(a) log2



∫

R

∑

s∈{±1}
pY |X(y|sa)PS(s)

(
pY (y) |X |

pY |X(y|sa)PX(sa)

)ρ
dy

 (3.47)

EBMD
0,PAS(ρ, PA) =

−
∑

a∈A
PA(a) log2



∫

R

∑

s∈{±1}
pY |X(y|sa)PS(s)

(
pY (y)m |X |

∏m
k=1 pY |Bk(y|bk)PBk(bk)

)ρ
dy

 (3.48)

where b1 = χS(s) and bk = [χA(a)]k−1 for k = 2, . . . ,m in (3.48). We refer to the cor-
responding error exponents of (3.47) and (3.48) as ESMD

PAS (PA) and EBMD
PAS (PA). In [77],

the author derived PAS error exponents using the framework of joint source and channel
coding.
In Fig. 3.11, we compare the RCBs based on the PAS error exponents for SMD and

BMD decoding for 8-ASK and an SE of 1.5 bpcu. We observe that BMD entails almost
no loss, while uniform signaling with BMD had a loss of 0.44 dB in Fig. 2.6. For the
computation of the PAS RCB, we take the CCDM constraint into account, i.e., we use a
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21 600-type distribution and use the same distribution for each evaluated SNR. Instead,
the distribution for Gallager’s RCB is optimized for each SNR.
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PAS RCB BMD
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Figure 3.11.: Comparison of the PAS RCB for SMD and BMD for 8-ASK with Rtx =
1.5 bpcu.

3.5. Geometric Constellation Shaping
As an alternative to PS, geometric shaping (GS) can be employed to mimic a “Gaussian-
like” shape of the input distribution. While PS imposes a non-uniform distribution on a set
of equidistant constellation points, GS employs a uniform distribution on non-equidistant
constellation points. The authors of [78] show that this approach achieves the capacity
of the AWGN channel for SMD if the number of constellation points goes to infinity. In
[79], the achievable rate of GS is investigated when both SMD and BMD are employed on
one-dimensional constellations. Numerical results indicate that both optimization criteria
lead to different constellations. Recently, GS constellations were included in the DVB-
NGH [80, 81] and ATSC 3.0 standards [82, 83], where they are referred to as non-uniform
constellations (NUCs). Besides, GS constellations are also considered for optical commu-
nications [84, 85, 86]. Most of these works use tailored optimization procedures that take
potential non-linearities of the optical channel into account.
In the following, we compare PS and GS in terms of their information theoretic achievable

rates for SMD and BMD. To this end, we propose a differential evolution [87] based
optimization approach to optimize GS constellations for the AWGN channel. The results
show that GS has a gap to capacity of about 0.4 dB when BMD is used. In contrast,
PAS with BMD virtually achieves capacity. Further, we compare a selection of ATSC 3.0
modcods to a PAS system operating with a single modcod. FEC simulations show that
the information theoretic gains predict the coded performance improvements accurately.
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3.5.1. Optimized Constellations
A GS optimized constellation depends on the SNR and the employed decoding metric.
In the following, we investigate the design of GS optimized constellations for two kinds of
signaling with inphase and quadrature components: First, we construct constellations that
can be constructed as the Cartesian product of two one-dimensional GS optimized con-
stellations. Obviously, this results in less degrees of freedom, but facilitates optimization.
As an additional benefit, the inphase and quadrature components of the constellation can
be demapped independently of each other. Second, we design two-dimensional GS con-
stellations where the full design space is exploited. Usually, this results in inphase and
quadrature components that are correlated such that a two dimensional demapping is
necessary for optimal performance. In this case, we have the system model

Y = X +N, E
[
|X|2

]
≤ P (3.49)

where the discrete input X comes from a complex-valued constellation X and N is a
circularly symmetric Gaussian RV with PDF

pN(n) = 1
πσ2 e

− |n|
2

σ2 . (3.50)

The SNR is defined as E
[
|X|2

]
/σ2. For simplicity, we consider E

[
|X|2

]
= 1. The GS

optimization problem can be formulated as

X ∗ = argmax
X :E[|X|2]≤1
|X |=M

R{BMD/SMD}. (3.51)

For both metrics, the optimization problem (3.51) in X is non-convex. The works [79, 88]
employed “constrained non-linear optimization algorithms” without providing details on
the employed optimization procedure. In [89], simulated annealing is used to optimize
APSK constellations. Initial investigations by using standard, black box interior point al-
gorithms like Matlab’s fmincon showed that the optimization depends on the initialization,
which suggests that only locally optimal solutions are found.
We propose an optimization based on differential evolution [87], which is a genetic

algorithm that appears to find the global optimum, i.e., differential evolution recovered
previously reported results from any valid starting point.
The differential evolution approach is summarized in Algorithm 1. It starts with an

initial population {X̃ (0)
p }Pp=1 of candidate constellations (see line 1 of Algorithm 1). In each

generation, a population member experiences a mutation. For this, differential evolution
randomly selects three distinct population members and combines them as shown in line 6
(mutation). The result of this operation may violate the feasible set and the function
map(·) implements a bounce back strategy. Eventually, the new candidate constellation is
generated by replacing each component of X̃ (g−1)

p with probability pc by the corresponding
entry of T (crossing). If the metric for the new candidate T has improved we keep
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Algorithm 1 Genetic algorithm to find the best GS constellation for a given SNR.
INPUT: SNR, constellation sizeM , candidate set size P , number of generations G, crossover probability

pc, amplification factor F .
1: Choose feasible initial population set {X̃ (0)

p }Pp=1 at random.
2: Evaluate R{BMD,SMD} for each population member.
3: for g = 1, . . . , G do
4: for p = 1, . . . , P do
5: Choose r1 6= r2 6= r3 randomly from {1, . . . , P}.
6: T = map(X̃ (g−1)

r1 + F · (X̃ (g−1)
r2 − X̃ (g−1)

r3 ))
7: T = mutate(T , X̃ (g−1)

p , pc)
8: Evaluate metric of new candidate T .
9: Set X̃ (g)

p = T , if metric has improved.
10: end for
11: if all population members have the same metric then
12: Stop.
13: end if
14: end for

it, otherwise we set X̃ (g)
p = X̃ (g−1)

p (selection). We stop after G generations or once all
population members have the same objective function value.
As discussed before, we distinguish between one-dimensional GS (1D-GS) and two-

dimensional GS (2D-GS) and exploit symmetry to decrease the number of optimization
parameters.
For 1D-GS and an M -ary 1D constellation (1D-GS 1D-NUC), each of the M/2 com-

ponents of X̃p is constrained to the non-negative real axis and the augmented, final con-
stellation Xp with the negative part must fulfill the power constraint. A two-dimensional
1D-GS M -ary constellation (1D-GS 2D-NUC) can be obtained by the Cartesian product
of two copies of 1D-GS

√
M -ary 1D-NUCs.

For 2D-GS, the population members are restricted to the first quadrant of the complex
plane and (M/4) · 2 real variables must be optimized (M/4 for the real and M/4 for
the imaginary parts). This introduces additional degrees of freedom and leads to larger
achievable rates.
To remain in the feasible set, i.e., the real non-negative axis for 1D-GS and the first

quadrant for 2D-GS, the map function (see line 6 of Algorithm 1) replaces any negative
real or imaginary part by its absolute value and rescales it to meet the power constraint.
We used an amplification factor F = 0.5 and a crossover probability pc = 0.88. The

number of generations is set to G = 10 000 and the population size was chosen depending
on the number of degree of freedoms (DOFs) as P = 5 · DOF. Choosing this parameter
accurately turned out to be crucial in our experiments: Setting it too small, the optimum
may not be found and setting it too large, the number of generations would not suffice.
Usually 100 to 1000 generations are enough to observe convergence at low and medium
SNR.
If the optimization metric targets BMD rates, the bit labeling must be taken into account

as well. For 1D-GS, we randomly assign each component of X̃ (0)
p a log2(M)− 1 bit label.
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The labels for the augmented constellation Xp are then obtained by first replicating and
then prefixing each half with a zero and one, respectively. For 2D-GS, the same approach
applies, however, each quadrant in the augmented constellation is prefixed by one of the
four two-bit labels 00, 10, 11 and 01 in an ordered manner, which is consistent with
ATSC 3.0.

3.5.2. Achievable Rate Comparison of PS and GS
In the following, we compare the BMD and SMD achievable rates for both GS and PS
constellations. As a performance metric we employ the SNR gap to capacity of (3.25).
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Figure 3.12.: Gap to capacity for 1D-GS {4, 8, 16, 32}-ASK constellations and PAS.

Fig. 3.12a shows the gap to capacity for optimized one-dimensional {4, 8, 16, 32}-ASK
constellations with SMD. As a reference, we also plot the gaps for uniform, equidistant
constellations. As derived in [78], the shaping gain of GS constellations increases with the
constellation size.
Fig. 3.12b provides the same evaluation for BMD. Here, the gap to capacity does not

exhibit a monotonic behavior and is larger in the low to medium SNR regime, as there is
an additional BMD penalty. PS is better than GS over the whole range of constellations
and SNR values. In particular, the gap to capacity remains almost constant at about
10−2 dB, which improves upon GS by more than 0.4 dB and vanishes for SMD.
In Fig. 3.13, we show the gap to capacity for 1D-GS {16, 64}-ary 2D-NUCs and 2D-GS
{16, 32, 64}-ary constellations. The benefits of the additional degrees of freedom are clearly
visible.
Summarizing, both approaches improve the SE of a communication system compared to

uniform, equidistant signaling. PS is better than GS for the considered constellation sizes
for both BMD and SMD. Hence, the statement of [79], claiming that “any gain in capacity
which can be found via probabilistic shaping can also be achieved or exceeded solely
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Figure 3.13.: BMD gap to capacity for 2D-GS constellations.

through geometric shaping” should be considered with caution, as it implicitly assumes a
very large constellation size for GS. We illustrate this with two examples for SMD.

Example 5. In [78], the authors provide a signal set construction where the constellation
points are chosen as the centroids of equiprobable quantiles of the Gaussian distribution
and show that it is capacity-achieving forM →∞. An equidistant 8-ASK constellation
with optimized distribution using the procedure of Sec. 3.4 for 10 dB yields RSMD =
1.726 bpcu. To achieve the same rate, M = 50 constellation points must be used for
this GS approach.

Example 6. In [90], the author describes a practical scheme to construct capacity-
approaching APSK constellations with n rings having n constellation points each.
We consider the same case as in Example 5. The rate gap CAWGN − RSMD for an
equidistant 8-ASK constellation and optimized distribution at 10 dB is 0.0037 bits per
real dimension. According to [90, Fig. 2b], this requires an APSK constellation with
more than 352 = 1225 points and two-dimensional demapping.

Similar observations can be found in [91], where the authors investigate the impact of
constellation cardinality on the effect of approaching the AWGN channel capacity. They
show that the convergence speed of methods like [78] is only O(1/M2) (and thus require
large constellation sizes), whereas using Gauss quadratures that involves both geometrical
and probabilistic shaping approaches capacity exponentially fast in the constellation size.
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3.5.3. Case Study: ATSC 3.0
We now compare the coded performance of PS and GS. The GS constellations of the
recent ATSC 3.0 standard serve as reference designs.
For GS, the combination with FEC is straightforward and does not require any modifi-

cations. However, note that 2D-GS 2D-NUCs require two-dimensional demapping, so that
the soft information calculation has increased complexity compared to QAM constellations
where each component can be be demapped independently.
ATSC 3.0 defines 6 constellations (QPSK, {16, 64, 256, 1024, 4096}-NUCs), The smaller

ones (16, 64, 256) are 2D-GS 2D-NUCs, whereas the larger ones (1024, 4096) are 1D-GS
2D-NUCs. The standard also defines LDPC codes with blocklengths 16 200 and 64 800 bits
for code rates from 2/15 to 13/15 [92], giving rise to 46 modcods for the long blocklengths
and 29 modcods for the short blocklengths [93].
For each modcod, the standard provides a constellation that has been designed to per-

form well with the associated code. In Fig. 3.14, we depict the operating points of all
mandatory ATSC 3.0 modcods [82, Table 6.12] involving the {16, 64, 256}-ary 2D-GS 2D-
NUCs by considering their gap to capacity. For each modcod, we calculate the required
SNR to operate at an SE of Rtx = log2(M) · Rc bpcu, i.e., SNR = R−1

BMD(Rtx). For PAS
we consider a 256-QAM constellation that is constructed by the Cartesian product of two
equidistant 16-ASK constellations and operated with a 5/6 rate code. We emphasize that
only one modcod is necessary for PAS to operate within the targeted SE range of 1.0 bpcu
to 5.33 bpcu within 0.06 dB.
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Figure 3.14.: SNR gap to capacity for ATSC 3.0 operating points comprising 2D-GS
{16, 64, 256} 2D-NUCs and allowed code rates compared to a single PAS
modcod of 256-QAM and a 5/6 code.

In the following, we compare the coded performance of a selection of modcods which are
summarized in Table 3.2. The comparison shows that the asymptotic gains of Fig. 3.14
translate into practice.
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Rtx [bpcu] Modcod R−1
BMD(Rtx) [dB] ∆SNR [dB]

2.13 PAS 256-QAM, 5/6 5.34 0.043
ATSC 16 2D-GS, 8/15 5.66 0.37

3.20 PAS 256-QAM, 5/6 9.17 0.038
ATSC 64 2D-GS, 8/15 9.56 0.43

5.33 PAS 256-QAM, 5/6 15.99 0.040
ATSC 256 2D-GS, 10/15 16.38 0.44

Table 3.2.: Considered modcods for SEs of 2.13, 3.2 and 5.33 bpcu.

The rate 8/15 and 10/15 LDPC codes for the ATSC 3.0 constellations are irregular re-
peat accumulate (IRA) LDPC codes [94] with blocklength 64 800. For each constellation,
a different interleaving and bit-mapping is used according to the standard [82, Table 6.8].
PAS is operated with one single off-the-shelf 5/6 IRA LDPC code from the DVB-S2 stan-
dard of the same blocklength with an optimized bit-mapper of [9, Sec. VII-B]. In both
cases, we used 50 belief propagation (BP) iterations with full sum-product update rule
at the check nodes. Fig. 3.15 shows that the predicted asymptotic performance gains are
reflected in the coded results. For SEs of 3.2 bpcu and 5.33 bpcu, the gains even exceed
the predicted ones (0.59 dB vs. 0.39 dB and 0.54 dB vs. 0.4 dB).
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Figure 3.15.: Comparison of the coded performance of different ATSC 3.0 modcods and
PAS using a single modcod.
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3.6. Product Distribution Matching
In many practical settings, the data link is well modeled by a set of non-interacting par-
allel channels. Examples include multi-carrier transmission such as orthogonal frequency
division multiplexing (OFDM), discrete multitone (DMT), and multi-antenna transceivers
when the singular value decomposition (SVD) of the channel matrix is used to orthogo-
nalize the system. Employing current DM algorithms in such scenarios is challenging, as
techniques like bit-loading partition the transmitted sequence in several short segments,
each with an individual constellation size and distribution, which potentially causes a
significant rate loss.
For such applications, a tailored, hierarchical DM scheme is beneficial. Therefore, this

section proposes product distribution matching (PDM), which internally uses a collection
of parallel DMs with smaller output alphabets to synthesize the desired distribution as
a product distribution. A preferable implementation uses binary output alphabets for
the individual DMs. This approach both facilitates high-throughput applications by par-
allelization and reduces the rate loss for short output lengths, which makes the PDM
particularly amenable for large constellations and high-throughput. A similar approach
was developed independently in [95] and further investigated in [96].

3.6.1. Principles of Product Distribution Matching
The architecture for PDM is shown in Fig. 3.16. A number kdm of binary data bits are
demultiplexed into m − 1 parallel blocks of lengths kdm2 to kdmm . Note that we start
counting by two as bit level one is the sign bit and has a uniform distribution. No binary
matcher is required for this level. The m − 1 parallel binary DMs output m − 1 shaped
binary sequences of length n. We introduce the labeling function χdm

A : A → {0, 1}m−1.
Its inverse recombines the m− 1 DM output bits into an amplitude sequence of length n.

χdm,−1
A

an ∈ An

DM2

...

DMm

/
n

/
n

/
kdm2

/
kdmm

Figure 3.16.: The PDM architecture.

We further define the labeling function χdm(x) = (χS(sign(x)), χdm
A (|x|)) = bdm. For

PDM, we require that the distribution PX factors for each bit level, i.e.,

PX(x) =
m∏

k=1
PBdm

k
([χdm(x)]k). (3.52)
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At this point, it is not clear how χdm should be chosen. However, from the shaping layer
considerations in Sec. 3.3.2, we have

D(PX ‖ PU) =
[
m∑

k=1
H(Bdm

k )
]
− log2(|X |) (3.53)

when PX has the form (3.52). Analog to (3.15), the first term in (3.53) refers to the
asymptotic shaping set size. Therefore, an achievable rate is

RΠ
BMD =

[
m∑

k=1
H(Bdm

k )− U(qBMD)
]+

=
[
m∑

k=1
H(Bdm

k )−
m∑

k=1
H(Bfec

k |Y )
]+

. (3.54)

Note that (3.54) already takes into account that the mapping χdm for constructing the
amplitude sequence may be different from χfec used for modulation and demapping, i.e.,
the one that is used to calculate the bit metric. In general, the bit levels of Bfec are
stochastically dependent, while those of Bdm are not.

3.6.2. Optimal Input PMF
To find the optimum input distribution for PDM, we solve the following optimization
problem:

max
PX ,∆,χdm,χfec

RΠ
BMD subject to E

[
(∆X)2

]
≤ P. (3.55)

Numerical simulations for the average power constrained additive white Gaussian noise
channel (AWGNC) suggest to use the natural based binary code (NBBC) for χdm (see
Table 3.3) and the BRGC for χfec – for smaller constellation sizes, an exhaustive search
over all labeling functions is possible.
Similar to (3.23), a good heuristic for the optimal PX of (3.55) for the average power

constrained AWGNC is the solution of the following optimization problem:

min
PB2 ,...,PBm

E
[
X2
]

subject to
m∑

j=2
H(Bdm

k ) = Rdm

B = χdm(X).

(3.56)

Remark 1. In [97], the authors considered the case when Bdm = Bfec, in which case (3.54)
becomes

RBICM =
m∑

k=1
I(Bfec

k ;Y ) (3.57)
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-7 -5 -3 -1 1 3 5 7
BRGC 000 001 011 010 110 111 101 100
NBBC 000 001 010 011 111 110 101 100

Table 3.3.: Two labels for 8-ASK. The amplitude label of NBBC is NBC and the amplitude
label of BRGC is also BRGC.
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Figure 3.17.: Achievable rates for 64-ASK and different bit-metric decoding schemes.

which is the “BICM capacity” and derived earlier in (2.84). The rate expression of (3.19)
is more general and allows to capture the effect of different labeling strategies at the
transmitter and receiver (Bdm vs. Bfec).

In Fig. 3.17, we display the achievable rates for 64-ASK and different shaping schemes.
Note that the input distribution has been optimized for the shaped cases of RBMD and
RΠ

BMD for each SNR. We observe that the product constraint (3.52) in combination with
the adjusted labeling at the transmitter (Bdm) and receiver (Bfec) leads to a performance
loss of only 0.16 dB compared to RBMD with a 32-ary DM at an SE of 4 bpcu. At the same
time, the energy efficiency is improved by 1.8 dB over RBICM with a uniform distribution.

3.6.3. Numerical Simulation Results
We numerically assess the different DM implementations by using 64-ASK, a DM amplitude
distribution with Rdm = 4.1 bits and Rc = 9/10. This scenario therefore targets an SE of
Rtx = 4.5 bpcu with γ = 0.4. We employ a 32-ary CCDM as a reference. The performance
of this system is compared to a PDM setup with 1 (Bdm

2 ), 2 (Bdm
2 , Bdm

3 ), 3 (Bdm
2 , Bdm

3 , Bdm
4 ),

4 (Bdm
2 , Bdm

3 , Bdm
4 , Bdm

5 ) and 5 (Bdm
2 , Bdm

3 , Bdm
4 , Bdm

5 , Bdm
6 ) individually shaped bit levels

and corresponding binary CCDMs.
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DM configuration Required SNR [dB] Gap to capacity [dB]

32-ary DM 27.13 0.05
PDM 1 Bit shaped 28.29 1.21
PDM 2 Bits shaped 27.48 0.40
PDM 3 Bits shaped 27.35 0.27
PDM 4 Bits shaped 27.32 0.24
PDM 5 Bits shaped 27.31 0.23

Table 3.4.: Required SNRs for different DM configurations and a target SE of 4.5 bpcu
(C−1

AWGN(4.5) = 27.08 dB).
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Figure 3.18.: SNR loss comparison for 64-ASK and H(A) = 4.1 bits.

The capacity analysis of Table 3.4 provides insights into the asymptotic performance of
the considered schemes: While the gap to capacity to achieve an SE of 4.5 bpcu is very
similar for 3, 4 and 5 shaped bit levels, larger gaps can be observed when only 1 or 2 bit
levels are shaped. In all cases, the channel input distributions were chosen according to
(3.22) and (3.56) for Rdm = 4.1 bits. For PDM, a uniform distribution is imposed on the
unshaped bit levels.
However, the capacity analysis does not take the finite length implementation penalty of

the DMs into account. To assess this influence, we consider the rate loss of the PDM scheme
similar to (3.34). The rate and the output distribution of the k-th DM, k = 2, . . . ,m, is
kdmk

/n and PBdm
k
, respectively. If the PDM is realized by parallel, binary CCDMs then

kdmk
can be computed analogously to (3.38) via

kdmk
=
log2

(
n

n · PBdm
k

(0)

) . (3.58)
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The DM rate of PDM is

kdm

n
= kdm2 + · · ·+ kdmm

n
(3.59)

and the total rate loss of PDM is the sum of the individual rate losses, i.e.,

Rloss =
m∑

k=2

[
H(Bdm

k )− kdmk

n

]
. (3.60)

We evaluate (3.60) for output blocklengths ranging from 100 to 10 800 symbols in
Fig. 3.18. To allow an easier comparison, the rate loss is converted to an “SNR loss”
via

SNRloss = 10 log10

(
R−1

BMD(Rtx +Rloss)
R−1

BMD(Rtx)

)
. (3.61)

As a rule of thumb, the following expression is useful as a rough estimate:

SNRloss,awgn = 10 log10

(
22(Rtx+Rloss) − 1

22Rtx − 1

)

≈ Rloss · 20 log10 2 ≈ Rloss · 6 dB. (3.62)

We observe that the PDMs have an aggregated rate loss that is significantly lower than
the rate loss of the 32-ary DM.
For the case of factorizable amplitude distributions, a simple combinatoric argument

shows that symbol-wise DMs have a larger rate loss than PDMs.

Example 7. Consider the output distribution [4
9 ,

2
9 ,

2
9 ,

1
9 ], which is a product distri-

bution of [2
3 ,

1
3 ] and [2

3 ,
1
3 ]. The CCDM creates a codebook with 3780 entries, con-

sisting of all permutations of [1, 1, 1, 1, 2, 2, 3, 3, 4]. The PDM with binary CCDMs
creates a codebook with all permutations of [1, 1, 1, 1, 1, 1, 4, 4, 4], [1, 1, 1, 1, 1, 2, 3, 4, 4],
[1, 1, 1, 1, 2, 2, 3, 3, 4] and [1, 1, 1, 2, 2, 2, 3, 3, 3] which corresponds to 84, 1512, 3780 and
1680 possible sequences. The number of potential sequences has increased nearly by
a factor of 2. According to (3.33) and (3.59), this leads to matcher rates of 11

9 and 12
9

for CCDM and PDM, respectively.

To investigate both finite and asymptotic effects, we consider a coded scenario with a
rate 9/10 LDPC block code from the DVB-S2 standard [98] of block length 64 800 bits and
a corresponding DM output length of 10 800 symbols. One hundred iterations are used for
the BP decoding.
For an output length of 10 800 symbols (marked by an arrow in Fig. 3.18), the 32-ary DM

has a SNR loss of 0.1 dB, whereas the loss for the PDM implementations is smaller than
0.02 dB. At the same time, the 32-ary DM gains asymptotically, so that both effects start
to outweigh each other. This can be seen in particular for PDM with 4 and 5 shaped bit
levels, which show similar performance as the 32-ary DM. The large gap in the Shannon
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Figure 3.19.: Performance comparison of the proposed PDM for 64-ASK and a target SE
of 4.5 bpcu and different numbers of shaped bits.
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Figure 3.20.: Illustration of PAS for L = ∑m
i=2 νi parallel channels. Note that the power

control can still be applied individually.

limit for only 1 or 2 shaped bits can also be observed in the plot. This notion allows a
trade-off in practice: If a certain performance degradation is tolerable, a certain number
of DMs can be saved. For instance, if only 2 bit levels are shaped, then the loss in energy
efficiency is 0.4 dB at a target FER of 10−3.

3.7. Probabilistic Amplitude Shaping for Parallel Channels
In this section, we build upon the previous PDM scheme and apply it to a set of parallel
channels, which shares the component DMs for lower bit levels among different sub-carriers.
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We consider L parallel AWGN channels of the form

Y` = h`X` +N`, ` = 1, 2, . . . , L. (3.63)

The noise terms N` are zero mean Gaussian with unit variance. The coefficients h` model
the channel gains and we assume that both the receiver and transmitter have full channel
state information, i.e., they both know the channel gains h` and the noise variance.

3.7.1. Waterfilling Benchmark
The transmitter has an average power budget P , i.e., the inputs are subject to the sum
power constraint

1
L

L∑

`=1
E
[
X2
`

]
≤ P. (3.64)

The average SE

1
L

L∑

`=1

1
2 log2(1 + h2

`P`) (3.65)

is achievable with the channel inputs X` being independent zero mean Gaussian with
variance P`. The average SE is maximized by waterfilling, i.e.,

P ∗` =
[

1
λ
− 1
h2
`

]+

, λ : 1
L

L∑

`=1
P ∗` = P. (3.66)

Suppose that P ∗` is positive. The SE allocated to channel ` is then C` = 1
2 log2(h2

`/λ) and
we have

CWF(P ) = 1
L

L∑

`=1
C` = 1

L

L∑

`=1

1
2 log2

h2
`

λ
. (3.67)

The function CWF(P ) is the maximum achievable SE under the sum power constraint P
and it serves in the following as our benchmark. For discrete inputs, the power allocation
follows the mercury-waterfilling principle [99]. In the following, we develop a heuristic that
uses PDM and operates closely to CWF(P ).

3.7.2. Bit-Loading Strategy
Since the per-channel SEs can differ by several bits, we need to support several constella-
tions in parallel. This is important for, e.g., DSL systems where some good channels may
support up to 32 768-QAM [100], whereas the majority of channels needs to be operated
with smaller modulation formats. Next, we have to decide which constellation size is used
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for which channel, an approach known as bit-loading. We employ the following heuristic:
We calculate the waterfilling solution for the given channel coefficients and obtain the opti-
mal rate assignment C`, ` = 1, . . . , L from (3.67). Then, we use Ungerböck’s rule-of-thumb
[46] to choose a constellation size M` = 2m` for channel ` such that m` ≈ C` + 1. This
avoids a reduced SE because of too small constellation sizes. We assume the largest con-
stellation size is 2m, i.e., m = max`m`. Further, the smallest constellation size is 22-ASK
for the ease of exposure. An extension to channels using binary phase shift keying (BPSK)
is straightforward.

3.7.3. Product Distribution Matching for Parallel Channels
PAS can be combined with parallel channels as illustrated in Fig. 3.7. A DM device trans-
forms data bits into a sequence of amplitudes for each channel, which are then combined
with sign bits originating from a common encoding device. In its simplest form, this DM
device internally uses individual DMs, each with its output alphabet size matched to the
corresponding constellation size.

n3 bits

n2 bits
DM2

DM3

Figure 3.21.: Simultaneously generating two Gaussian-like amplitude distributions for 4-
ASK and 8-ASK by reusing the DM of bit level 2.

PDM allows to jointly generate a length L amplitude sequence with different constella-
tion sizes. For example, suppose we have L = ν2 + ν3 possibly different channels where
ν2 channels use 4-ASK and ν3 channels use 8-ASK. The PDM needs one binary DM for
4-ASK and two binary DMs for 8-ASK. As illustrated in the top part of Fig. 3.21, the
idea is now to use for the first amplitude bit level B2 of 4-ASK and 8-ASK a single binary
DM with output length n2 = ν2 + ν3, and to generate the second amplitude bit level B3
for 8-ASK by a second binary DM with output length n3 = ν3. This approach allows the
DMs to operate over a longer blocklength, causing the DM rate to reach its asymptotic
limit faster. The illustration in the bottom part of Fig. 3.21 shows this scheme.
We state how the system can be parameterized to operate at a given SE. For the

considered case we assume νi channel uses of a 2i-ASK constellation for i = 2, . . . ,m
within one FEC frame. The blocklength of the FEC code is

nc = L+
m∑

i=2
ni (3.68)
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Figure 3.22.: Achievable rates of the considered example.

where we have L = ∑m
i=2 νi and the parameters ni denote the DM output lengths

ni =
L∑

`=1
1(m` ≥ i) · νi, i = 2, 3, . . . ,m. (3.69)

The corresponding DM input lengths are k2, k3, . . . , km. The average SE of the overall
system is now

Rtx =
∑m
i=2 ki∑m
i=2 νi

+ γ. (3.70)

and converges to (∑m
i=2 H(Bdm

i )ni)/(
∑m
i=2 νi)+γ for large L. The formula (3.30) generalizes

to

γ = 1− (1−Rc)
∑m
i=2 νi · i∑m
i=2 νi

. (3.71)

3.7.4. Simulation Results
To evaluate the performance of parallel PAS with PDM, we employ the following example of
three different constellation sizes which are used equally often. The coefficients are chosen
such that the channel quality varies significantly (over a range of 12 dB) and requires three
different modulation formats. The waterfilling solution (3.67) for a target SE of 3.0 bpcu
yields the following rate allocation

Y1 = 2.0 ·X1 + Z1, C1 = 4.0
Y2 = 1.0 ·X2 + Z2, C2 = 3.0
Y3 = 0.5 ·X3 + Z3, C3 = 2.0
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Figure 3.23.: Coded performance comparison of PDM and uniform scheme for parallel
channels (LDPC code with block length 3600 bits).

which is achieved for an average sum-power of 17.94 dB. We select constellation sizes of

DMi νi ni PBdm
i

(0) H(Bdm
i )

2 300 900 0.1995 0.7208
3 300 900 0.3736 0.9534
4 300 600 0.4408 0.9898
5 300 300 0.4709 0.9976

Table 3.5.: PDM properties for the considered example.

2m1 = 32, 2m2 = 16 and 2m3 = 8 points according to our bit-loading strategy of Sec. 3.7.2.
The achievable rates are plotted against the average sum power in Fig. 3.22. Our proposed
heuristic scheme exhibits a gap of 0.2 dB to the waterfilling benchmark of (3.67) for the
target SE of 3.0 bpcu. The uniform reference curve is shown in black and has a gap of
1.22 dB to the waterfilling solution. The employed bit distributions are summarized in
Table 3.5 and have been chosen as the solution of the following heuristic optimization
problem (see also (3.56)) for Rdm = 3.0− γ with γ = 1/3:

min
P
Bdm

2
,...,P

Bdm
m

3∑

`=1

1
h2
`

E
[
X2
`

]
subject to 1

L

5∑

i=2
H(Bdm

i )ni = Rdm. (3.72)

In Fig. 3.23, we consider the same scenario with finite length LDPC codes from the 5G
standard [101] (basegraph BG1). The uniform reference uses a Rc = 3/4, while the shaped
case has a Rc = 5/6 code (γ = 1/3). In both cases the number of transmitted bits is 3600.
The asymptotic gains are reflected in the coded results. We perform 100 BP iterations.
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3.8. Probabilistic Amplitude Shaping for Hard-Decision
Decoding

This section investigates achievable rates for PAS with HD decoding metrics. While HD
decoding metrics are generally outperformed by their SD counterparts, they play an impor-
tant role for high throughput and low complexity optical receivers. There is no common
definition of HD metrics in the literature. In the following, we refer to a HD decoding
metric as one that obeys the following two principles:

1. The decoding metric does not exploit reliability information.

2. The decoding metric is based on the Hamming distance between the binary repre-
sentation of the received value and the transmitted constellation symbol.

We note that this definition is different from, e.g., [102, Sec. III-C] where the authors derive
achievable rates for “HD coded modulation decoders”, but allow to exploit soft-information
associated with the probability of the individual channel transition probabilities.

3.8.1. Demapping Strategies
We consider a coherent receiver architecture. As a result, we have to determine the hard
estimate for a given receive symbol y ∈ R first. We distinguish between symbol-metric
and bit-metric based approaches. A symbol-wise HD demapper obtains the estimate

x̂ = QSW
HD(y) = argmax

x∈X
PX|Y (x|y) = argmax

x∈X
pY |X(y|x)PX(x) (3.73)

whereas a bit-wise HD demapper obtains the estimate for the k-th bit as

b̂k = QBW,k
HD (y) = argmax

b∈{0,1}
PBk|Y (b|y) = argmax

b∈{0,1}
pY |Bk(y|bk)PBk(b). (3.74)

Both expressions represent the maximum a posteriori (MAP) estimate of the respective
symbol. Similarly, an ML estimate is possible when the respective prior (PX or PBk) is
neglected. With a slight abuse of notation, the Voronoi regions are given as

Rx =
{
y ∈ R : QSW

HD(y) = x
}

(3.75)

and

Rb
k =

{
y ∈ R : QBW,k

HD (y) = b
}
. (3.76)

We exemplarily depict the respective Voronoi regions in Fig. 3.24 for 8-ASK with PS and
an MB distribution with H(X) = 2.5 bits. The SNR is 9 dB.
Further, we show the influence of the respective demapping strategy on the uncoded

BER for 8-ASK with uniform and shaped signaling and a BRGC label in Fig. 3.25. The
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Figure 3.24.: Voronoi regions for HD demapping.

PS case uses the same MB distribution as before. As seen from the plot, the chosen
demapping strategy has almost no influence numerically. Similar conclusions were drawn
in [103].
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Figure 3.25.: Uncoded BER of uniform and shaped 8-ASK with different demapping met-
rics for HD decoding.

3.8.2. Achievable Rate Derivation
To derive achievable rates for HD schemes, we first state the decoding metrics and then use
these to calculate the respective mismatched uncertainty expressions according to (3.6).



3.8. Probabilistic Amplitude Shaping for Hard-Decision Decoding 75

Following our definition for HD based metrics, we choose

qHD
SMD(x, y) = ε1(x 6=QSW

HD (y))) (3.77)

qHD
BMD(x, y) =

m∏

k=1
ε1([χ(x)]k 6=QBW,k

HD (y)) = ε
∑m

k=1 1([χ(x)]k 6=QBW,k
HD (y)) (3.78)

where ε ∈ [0, 1) is a constant. The mismatched uncertainty expressions are given by

U
(
qHD

SMD

)
= min

s≥0
E

− log2


 εs·1(X 6=QSW

HD (Y ))
∑
a∈X ε

s·1(a 6=QSW
HD (Y ))




 , (3.79)

U
(
qHD

BMD

)
= min

s≥0
E

− log2


 εs·

∑m

k=1 1([χ(X)]k 6=QBW,k
HD (Y ))

∑
a∈X ε

s·
∑m

k=1 1([χ(a)]k 6=QBW,k
HD (Y ))




 (3.80)

such that we obtain the achievable rates according to (3.14) as

RHD
SMD =

[
H(X)− U

(
qHD

SMD

)]+
(3.81)

RHD
BMD =

[
H(X)− U

(
qHD

BMD

)]+
. (3.82)

The previous expressions can be simplified further and we can give an interpretation of
the optimization of (3.79) and (3.80). As shown in Appendix A.2, we have

RHD
SMD = [H(X)− H2(δSMD)− δSMD log2(M − 1)]+ (3.83)

RHD
BMD = [H(X)−mH2(δBMD)]+ (3.84)

where

δSMD = Pr(X̂ 6= X) (3.85)

δBMD = 1
m

m∑

k=1
Pr(B̂k 6= Bk). (3.86)

Remark 2. For uniform bit levels, (3.84) becomes

RHD
BMD = m(1− H2(δBMD)) (3.87)

which is an achievable rate for transmitting over m parallel BSC channels with error
probability δBMD.

The numerical evaluation of the achievable rates is shown in Fig. 3.26 for 4-ASK, 8-ASK
and 16-ASK. Note that the BMD rates for HD are better than their SMD counterparts for
both uniform and shaped signaling. This result was also observed in [104] and is because
no reliability information associated with the individual transition probabilities may be
exploited.
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Figure 3.26.: Comparison of HD achievable rates for 4, 8 and 16-ASK.
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Another perspective is provided in Fig. 3.27, where the gap to the AWGN capacity is
plotted. In contrast to the SD scenario of Fig. 3.5, we observe that each constellation size
should only be operated for a certain SNR regime. Again, this is because the decoder can
not make use of any reliability information in the HD context. For shaped signaling the
gap to AWGN capacity can be reduced to about 1.8 dB over the whole SNR range with
the optimal signaling.
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Figure 3.27.: Comparison of HD BMD gaps to AWGN capacity.

3.8.3. Optimal Code Rate and Constellation Size
As in Sec. 3.4.3, we investigate the optimal FEC rates R?

c for HD BMD. We show the
numerical evaluations of

R?
c = 1− 1

m
U
(
qHD

BMD

)

in Fig. 3.28 where the optimal distribution is used for each SNR. For 8-ASK and 16-ASK,
we identify operating regimes with an almost constant mismatched uncertainty suggesting
that using a fixed FEC code rate is close-to-optimal here. We summarize those FEC rates
in Table 3.6 and observe that those close-to-optimal, fixed FEC code rates are larger than
in the SD case of Table 3.1.

3.8.4. Coded Performance with Product Codes
In this section, we investigate how the predicted asymptotic gains translate into real gains
for a coded system. For FEC, we resort to a product code (PC) with BCH component
codes, see Sec. 2.3.5. The component codes are decoded iteratively by bounded distance de-
coding (BDD). In our case, BDD is implemented by the Berlekamp-Massey algorithm [32].



78 Chapter 3. Probabilistic Shaping

2 4 6 8 10 12 14 16 18 20 220.6

0.65

0.7

0.75

0.8

0.85

0.9
Rc = 9/10

Rc = 0.85

Rc = 3/4

SNR [dB]

R
? c

4-ASK
8-ASK
16-ASK

Figure 3.28.: Optimal R?
c for PAS with 4-ASK, 8-ASK and 16-ASK with HD and BMD.

M -ASK Rc

4 0.75
8 0.85
16 0.90

Table 3.6.: Close-to-optimal, fixed FEC code rates for HD BMD and a given constellation
order.

In Fig. 3.29, we depict a scenario for 8-ASK. The BCH code has parameters (255, 239, 2)6

such that the PC has an overall rate of Rc = (239/255)2 = 0.8784, which is close to the
optimal one with 8-ASK (see Fig. 3.28) for the desired operating range. The blocklength is
nc = 65 025 bits. We perform 20 iterations between the row and column component codes.
The target FER is 10−3. We obtain the different operating points by varying the DM rate
between 0.3647 bits/symbol to 1.8647 bits/symbol (γ = 0.6353). We also show results for
uniform scenarios (using the component codes BCH(255, 179) with Rc = 0.4927, BCH(255,
207) with Rc = 0.6590 and BCH(255, 231) with Rc = 0.8206) and observe that the PAS
operating points have a significantly reduced gap to the achievable rate over the whole
range of transmission rates. This is somewhat surprising as the uniform signaling modes
use codes of much lower code rate which also have a larger error correction capability.

6This code was also proposed as part of the G.975 standard for forward error correction for submarine
systems [105].



3.9. Performance Comparison of DM Algorithms for Short Blocklengths 79

5 7.5 10 12.5 15 17.5 20
1

1.5

2

2.5

SNR [dB]

R
at

e
[b

its
]

CAWGN

RHD
BMD PAS

Simulation PAS
RHD

BMD uni
Simulation uni

Figure 3.29.: Comparison of RHD
BMD and coded performance of a PC with rate Rc = 0.8784

and blocklength 65 025 for 8-ASK. The target FER is 10−3.

3.9. Performance Comparison of DM Algorithms for
Short Blocklengths

In Sec. 3.4.2 different DM architectures and their properties were discussed. For short
blocklength scenarios, their rate loss (3.34) must be taken into account, as any potential
gains from PS may vanish for short blocks. We illustrate the rate loss of CCDM and
SMDM in Fig. 3.30. SMDM improves upon CCDM for short blocklengths and the insights
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Figure 3.30.: Performance comparison of CCDM and SMDM for the considered setting.
The DM rate is 1.25 bpcu, the output alphabet is 4-ary.

of this investigation allow a quick assessment of possible gains in a coded scenario. For
this, we will review two different short blocklength setups for n = 64 and n = 192 channel
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Algorithm 2 Ordered Statistics Decoding.
INPUT: Generator matrix G, soft information ldec = (l11l12 . . . l1m . . . ln(m−1)lnm).
1: Sort according to reliability: l1 = sort(|ldec| , ’descend’) → permutation π1
2: Reorder columns of G: G1 = G(:,π1).
3: if rank(G1(:, 1 : kc)) < kc then
4: Apply additional permutation π2 such that G2 has full rank: G2 = G1(:,π2).
5: l2 = l1(π2).
6: end if
7: Determine information bits of most reliable basis: u = (l2(1 : kc) ≤ 0).
8: Build set of error patterns up to weight t:

Et =
{
e ∈ {0, 1}kc : wH(e) ≤ t

}
.

9: Build list of possible codewords as:

L = {c ∈ {0, 1}nc : c = (u+ e)G2, ∀e ∈ Et} .

10: Determine (permuted) codeword estimate ĉ2 as:

ĉ2 = argmax
c∈L

nc∑

i=1
[l2]i · (1− 2ci).

11: Codeword estimate is ĉ(π1(π2)) = ĉ2.

uses. Finite blocklength bounds from Sec. 2.3.7 will complement this investigation.
To focus on the DM properties and put aside the influence of the FEC decoder, the

receiver for the case n = 64 employs ordered statistics decoding (OSD). OSD is a SD
decoding algorithm for any linear blockcode that was conceived by Dorsch in 1974 [106]
and later rediscovered by Fossorier and Lin [107]. The algorithm aims at finding the most
reliable information basis and adds small weight error patterns up to Hamming weight t
to find the most likely codeword. If the OSD order t is chosen large enough, ML decoding
performance can be achieved. The procedure is summarized in Algorithm 2.
In Fig. 3.31, we present the results for a target SE of 1.5 bpcu with 8-ASK. The pa-

rameters of the employed codes C1 and C2 (derived from BCH codes) are summarized in
Table 3.7a and 3.7b. The best known linear codes for the chosen parameters have dmin = 14
(C1)7 and dmin = 28 (C2)8, respectively. In [107], the authors derive a condition for the
binary-input additive white Gaussian noise (biAWGN) channel that relates the minimum
distance of the code to the required OSD parameter tML to obtain near ML performance

7http://codetables.markus-grassl.de/BKLC/BKLC.php?q=2&n=192&k=144
8http://codetables.markus-grassl.de/BKLC/BKLC.php?q=2&n=192&k=96

http://codetables.markus-grassl.de/BKLC/BKLC.php?q=2&n=192&k=144
http://codetables.markus-grassl.de/BKLC/BKLC.php?q=2&n=192&k=96
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Figure 3.31.: Performance of OSD for 8-ASK with Rtx = 1.5 bpcu and n = 64. The
respective ML lower bounds are shown with dashed lines.

in the high SNR regime, which reads as

tML ≈
⌈
min

(
dmin

4 − 1, kc

)⌉
. (3.88)

From numerical evaluations, we conjecture that this rule of thumb also holds for BMD.
Consequently, we choose t = 3 for C1 and t = 5 for C2 such that the depicted results
correspond to the ML decoding performance of the respective codes.
For the shaped case, we compare two DM scenarios. The first employs a CCDM with

parameters summarized in Table 3.8a, whereas the second uses an SMDM with parameters
shown in Table 3.8b.
At an FER of 10−3 , PAS with SMDM performs within a gap of 0.3 dB to the SPB, while

CCDM is 0.5 dB less power efficient due to its significant rate loss at this short blocklength.
We can already observe this from the rate loss analysis shown in Tables 3.8a and 3.8b.
Using our rule of thumb of (3.62) to convert the rate loss to an SNR loss, we can expect
CCDM to be 0.69 dB − 0.24 dB ≈ 0.45 dB less power efficient, which is reflected in the
coded performance.
We further note that the SPB (2.119) is only a converse for the CCDM setting, as the

shaping set of CCDM is indeed a spherical code, whereas SMDM uses points within the
n = 64 dimensional sphere. The impact of the rate loss is alleviated to some extent by
exploiting a type check (TC) during the evaluation of the OSD list candidates in L: If the
codeword with the highest score does not pass the type check imposed by the type tnA, we
choose the candidate with the next highest score fulfilling the TC. If there is no candidate
at all in L, we randomly return a FEC codeword, which fulfills the TC. We see that the
TC is particularly helpful at low SNRs.
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Parameter Value

BCH
code

nc 255
kc 147
dmin,d 29

C1

nc 192
kc 144
Rc 3/4
dmin 14

(a) Parameters of code C1

Parameter Value

BCH
code

nc 255
kc 99
dmin,d 47

C2

nc 192
kc 96
Rc 1/2
dmin 23

(b) Parameters of code C2

Table 3.7.: Code parameters of the employed codes for OSD.

Parameter Value
kdm 80
n 64
Rdm 1.25
tnA {37, 21, 5, 1}
PA (0.578, 0.328, 0.078, 0.016)
Rloss 0.1157 bits

(a) CCDM

Parameter Value
kdm 80
n 64
Rdm 1.25
W (a) a2

PA (0.612, 0.306, 0.074, 0.008)
Rloss 0.0400 bits

(b) SMDM

Table 3.8.: DM parameters for n = 64.

In Fig. 3.32, we again show a scenario for 8-ASK and an SE of 1.5 bpcu, but with a
larger number of n = 192 channel uses and LDPC codes. In contrast to before, we only
compare SMDM and CCDM without a TC, as the latter is not easily integrated in the BP
decoding process. The DM parameters are summarized for both cases in Tables 3.9a and
3.9b.

The LDPC codes are taken from the 5G standard [101], see also Sec. 4.1.2. The codes
for PAS have a rate of Rc = 3/4 and are derived from basegraph 1. The code for the
uniform scenario has rate Rc = 1/2 and is obtained from basegraph 2. 200 BP iterations
are performed. At an FER of 10−3, the performance gap between SMDM and CCDM is
less pronounced than before and about 0.2 dB. Again, this is expected from the rate loss
analysis in Fig. 3.30 and Table 3.9, which predicts an SMDM improvement of 0.19 dB. The
gain over uniform signaling is about 1 dB.
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Figure 3.32.: Performance of 5G LDPC codes for 8-ASK with Rtx = 1.5 bpcu and n = 192.

Parameter Value
kdm 240
n 192
Rdm 1.25
tnA {118, 58, 14, 2}
PA (0.615, 0.302, 0.073, 0.010)
Rloss 0.0474 bits

(a) CCDM

Parameter Value
kdm 240
n 192
Rdm 1.25
W (a) a2

PA (0.622, 0.301, 0.070, 0.007)
Rloss 0.0156 bits

(b) SMDM

Table 3.9.: DM parameters for n = 192.

3.10. Channels with a Non-Symmetric, Capacity
Achieving Input Distribution

In this section, we examine a simple example where PAS cannot synthesize the optimal
input distribution because it is not symmetric. We consider OOK, a non-coherent modu-
lation scheme that is important for optical communications such as free space optical com-
munication (FSO) communications where simple transceiver architectures are required.
OOK with a uniform distribution has a significant energy loss compared to optimal

signaling. Therefore, many practical implementations resort to pulse position modulation
(PPM). However, PPM requires SMD for good performance, i.e., the FEC decoder must
operate on the whole PPM symbol. If binary codes with BMD are considered, a significant
performance loss is observed. This is illustrated in Fig. 3.33a, where a gap of 1.66 dB
between OOK with a capacity achieving input distribution and 8-PPM with BMD at a
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rate of 0.2 bpcu is visible.

3.10.1. System Model and Optimal Signaling for On-Off Keying
We consider the system model of (3.1) with the channel input X = {0, A}. The average
signal power is E [X2] = A2PX(A). An achievable rate is given by the MI I(X;Y ) and the
maximum achievable rate is the solution of the following optimization problem

COOK = max
PX

I(X;Y ) subject to A2PX(A) ≤ P. (3.89)

We refer to (3.89) as the “OOK capacity”, which is shown in Fig. 3.33a. Note that average
power constraint is always active, so that the amplitude is A =

√
P/PX(A). If a uniform

distribution is chosen, i.e., PX(0) = PX(A) = 0.5, we observe a significant degradation
in power efficiency. In Fig. 3.33b, we show the optimal pulse probability PX(A) and
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Figure 3.33.: Achievable rates for OOK and PPM. The right figure shows the optimal
probability PX(0) and pulse position A to achieve the OOK capacity.

pulse amplitude A as a result of the optimization in (3.89). We observe that the optimal
distribution is heavily biased in the low and medium SNR range, which gives an insight
why uniform signaling is particularly harmful here.

3.10.2. Probabilistic Shaping via Time Sharing
In the following, we employ the sparse-dense scheme of Sec. 3.2.2 with a (nc, kc) linear
blockcode. We distinguish between a modulated information symbol XS and a modulated
parity symbol XU. We use the signal set XS = {0, AS} for the information part, i.e., for a
number of kc = Rc ·nc channel uses. For the remaining (1−Rc) ·nc channel uses involving
the parity bits, the signal set is XU = {0, AU}.
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A CCDM realizes the non-uniformly distributed symbols. It encodes kdm uniformly
distributed bits into a length kc shaped information bit sequence which is then FEC en-
coded. The DM has rate Rdm = kdm/kc which approaches the entropy of the DM output
distribution (see Sec. 3.4.2) for long kc. Therefore, we have Rdm = H(XS) and the overall
transmission rate is

Rtx = H(XS) ·Rc. (3.90)

Thus, Rtx is directly related to PXS(AS) via

PXS(AS) = H−1
(
Rtx

Rc

)
. (3.91)

An achievable rate of the TS scheme is given by

RTS = Rc I(XS;YS) + (1−Rc) I(XU;YU). (3.92)

From (3.90), reliable communication is guaranteed as long as Rtx ≤ RTS. In the following,
we distinguish two cases.

Case 1: Same Pulse Amplitudes Consider the case where both pulse amplitudes are
the same, i.e., AS = AU = A. The average signal power is

E
[
RcX

2
S + (1−Rc)X2

U

]
=
(
RcPXS(A) + (1−Rc)

1
2

)
A2 (3.93)

and the optimization problem for (3.92) is

R∗TS1 = max
PXS ,A

RTS subject to
(
RcPXS(A) + (1−Rc)

1
2

)
A2 ≤ P. (3.94)

As for (3.89), the power constraint is always active. Thus, for a fixed PXS(A) we have
A = P/

√
RcPXS(A) + (1−Rc)/2.

Case 2: Individual Pulse Amplitudes We now permit different pulse amplitudes AS and
AU. The average signal power is

E
[
RcX

2
S + (1−Rc)X2

U

]
= RcPXS(AS)A2

S + (1−Rc)
1
2A

2
U. (3.95)

Similar to the first case, we have

R∗TS2 = max
PXS ,AS,AU

RTS subject to RcPXS(AS)A2
S + (1−Rc)

1
2A

2
U ≤ P. (3.96)

Again, the average power constraint is always active.
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Figure 3.34.: Achievable rates for the TS schemes with different code rates Rc.

3.10.3. Comparison of Achievable Rates via Time Sharing
We plot the achievable rates for both TS schemes in Fig. 3.34 for the code rates Rc = 0.5
and Rc = 0.75. The dashed curves show the transmission rates (3.90) with the optimized
pulse probabilities PXS(A) and PXS(AS) according to (3.94) and (3.96), respectively. The
crossing of the RTS and Rtx curves indicates the optimal operating points for the chosen
code rates. Comparing (3.89) and (3.92), we observe that using a low code rate, e.g.,
Rc = 0.5 in Fig. 3.34, increases the gap to COOK as the fraction of transmission symbols
with a uniform distribution also increases with lower Rc. The gap to the OOK capacity
is about 1.0 dB for Rc = 0.5, while it reduces to 0.3 dB for a rate Rc = 0.75 code at the
respective optimal transmission rates given by (3.90). These results motivate using a high
rate code, even for low transmission rates. This requires using a pulse probability different
from the optimal one from (3.94) or (3.96). For example, consider the first TS scheme. In
order to operate at Rtx = 0.25 bpcu as in Fig. 3.34 (a), instead of Rc = 0.5 we may use
Rc = 0.75 with PXS directly given by (3.91). We can also see that the gains of the TS
scheme 2 vanish for transmission rates larger than about 0.5 bpcu.

3.10.4. Signaling for Fixed Transmission and FEC Code Rates
As pointed out in Sec. 3.10.2, for a target transmission rate Rtx and fixed code rate Rc,
the probability PXS(AS) is given by (3.91). Thus, for the first TS scheme, the average
power constraint in (3.93) determines A and there are no additional degrees of freedom
for the optimization in (3.94). The second TS scheme has an additional degree of freedom
by optimizing over either AS or AU. A practical communication scheme uses a family of
channel codes of different rates. For each target rate Rtx we choose the code rate such that
the required SNR is minimized. We proceed as follows.
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Figure 3.35.: Achievable rates for TS schemes with fixed code rates from the set Rc.

1. Consider a set Rc of code rates.

2. For a target Rtx, determine the required SNR for all possible Rc ∈ Rc, such that
Rtx = R∗TSi , i ∈ {1, 2}. Since Rtx is fixed, for a specified Rc the pulse probabilities
PXS(A) (for RTS1) and PXS(AS) (for RTS2) are obtained from (3.91).

3. Among all Rc ∈ Rc, use the code rate R∗c that requires the smallest SNR.

As an example, consider the set of code rates Rc = {0.25, 0.33, 0.5, 0.67, 0.75, 0.8, 0.9}. For
different transmission rates in the range 0.2 bpcu ≤ Rtx ≤ 0.85 bpcu we determine the
required SNR for the code rates in Rc, and choose for each Rtx the code rate R∗c with the
lowest SNR requirement. Table 3.10 gives an overview of the code rates R∗c for some Rtx.
The gray colored curves in Fig. 3.35 represent the corresponding achievable rates versus
SNR for the first and second TS schemes using code rates from Tab. 3.10. Observe from
the table that for the second TS scheme it is beneficial to use high code rates, even if low
transmission rates are targeted. In Sec. 4.9, we optimize LDPC codes for the proposed TS
schemes.

3.11. Overview over Decoding Metrics and Achievable
Rates

In Fig. 3.36 we summarize practically relevant FEC decoding metrics, corresponding
achievable rates, their estimators for MC based evaluations, and implementation exam-
ples by means of different code classes. The overview discusses all examples in the pre-
vious sections. Apart from SMD and BMD, the class of multistage decoding metrics (in
combination with multilevel coding) [108] is also important in practice. For instance, for
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Rtx R∗c TS1 R∗c TS2

0.20 0.33 0.67
0.25 0.50 0.67
0.33 0.5 0.67
0.50 0.67 0.67
0.67 0.75 0.80
0.75 0.80 0.80
0.85 0.90 0.90

Table 3.10.: Code rates R∗c for some Rtx.

polar codes [6, 7] a multilevel coding/multistage decoding approach is natural for higher-
order modulation because of the successive cancelation decoding [109, 110]. Multilevel
coding/multistage decoding is possible for SD and HD decoding metrics.
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4
Code Design for Binary Low-Density
Parity-Check Codes

4.1. Introduction

Binary LDPC codes are binary linear block codes defined by an mc × nc sparse parity-
check matrix H . The code dimension1 is kc = nc − rank(H). An LDPC code can also be
described by its Tanner graph [111], which is a bipartite graph G = (V ∪ C, E) having nc
VNs vj ∈ V and mc FNs ci ∈ C (see Sec. 2.4.1). In the context of LDPC codes, the FNs
are also referred to as check nodes (CNs). The set E of edges contains the element eij if
and only if the parity-check matrix element hij (entry in the i-th row and j-th column of
H) is equal to 1. The degree of a VN vj is denoted by dvj and it is the cardinality of the
set N (vj). Similarly, the degree of a CN ci is denoted by dci and it is the cardinality of
the set N (ci). The Tanner graph of an exemplary LDPC is shown in Fig. 4.1.
To analyze the properties and characteristics of LDPC codes in an asymptotic setting,

Gallager introduced the notion of ensembles. In the following, we analyze two different
ensemble types.

4.1.1. Unstructured Ensembles

Unstructured LDPC code ensembles are characterized by their VN and CN degree distri-
butions. We distinguish two perspectives, namely the node and edge perspective. For the

1This definition is important for regular LDPC codes (see Sec. 4.1.1), which are rank deficient by con-
struction, such that rank(H) < mc.
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c1 c2 c3 c4

v1 v2 v3 v4 v5 v6
dv1 = 4 dv2 = 4 dv3 = 3 dv4 = 3 dv5 = 2 dv6 = 2

dc1 = 3 dc2 = 5 dc3 = 6 dc4 = 4

Figure 4.1.: Illustration of a Tanner graph with six VNs and four CNs.

node perspective, we have the VN and CN degree polynomials

Λ(x) =
dv,max∑

i=1
Λix

i R(x) =
dc,max∑

i=1
Rix

i. (4.1)

The coefficients Λi and Ri denote the fraction of VNs in V and CNs in C that have degree
i. Similarly, for the edge perspective, we have

λ(x) =
dv,max∑

i=1
λix

i−1 ρ(x) =
dc,max∑

i=1
ρix

i−1. (4.2)

Here, the coefficients λi and ρi denote the fraction of edges in E connected to degree i
VNs and CNs, respectively. We note that the above descriptions are in their most general
form. For practical LDPC codes, more constraints have to be imposed to get meaningful
codes. For instance, we allow degree one VNs above, but they have to be used with care.
In an unstructured ensemble, two degree one VNs may be connected to the same degree
two CN, giving rise to a code with minimum distance of two.

Example 8. For the Tanner graph in Fig. 4.1, we have

Λ(x) = 2
6x

2 + 2
6x

3 + 2
6x

4 R(x) = 1
4x

3 + 1
4x

4 + 1
4x

5 + 1
4x

6. (4.3)

The edge perspective degree distributions are

λ(x) = 4
18x+ 6

18x
2 + 8

18x
3 ρ(x) = 3

18x
2 + 4

18x
3 + 5

18x
4 + 6

18x
5. (4.4)

Both descriptions can be transformed into each other. For example, we have

λ(x) = 1
L′(1)L

′(x) ρ(x) = 1
R′(1)R

′(x). (4.5)
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The design rate Rc,d of an LDPC code is given by

Rc,d = 1− L′(1)
R′(1) = 1− d̄v

d̄c
(4.6)

where d̄v and d̄c denote the average VN and CN degree, respectively.

Decoding Complexity

To evaluate the decoding complexity of a given LDPC code, the internal decoder data flow
F is an important metric. It is defined as the number of bits that are processed in each
BP iteration and can be calculated as

F = 2 · kc · q · d̄v

Rc
= 2 · nc · q · d̄v (4.7)

where q is the number of bits used to represent a message sent on a given edge.

Role of Degree Two Variable Nodes

The number of degree two VNs plays an important role for the design of good LDPC
codes. On the one hand, a certain fraction of degree two VNs is necessary for capacity
approaching decoding thresholds [112, 113]. On the other hand, a too large fraction is
harmful for practical codes:

. A large fraction of degree two VNs may violate the stability condition, which is a
necessary condition for the convergence of the BP algorithm and ensures that the
minimum distance of the specified ensemble grows linearly with the blocklength [114]
for unstructured, irregular codes.

. Degree two VNs which form a cycle constitute the support of a codeword. Hence, a
lot of degree two VNs may lead to a small minimum distance if they are not placed
and connected judiciously2. For instance, a length 8 cycle between degree two VNs
results in a codeword with dmin = 4.

Any tailored code design needs to take these conflicting requirements into account.

4.1.2. Structured Ensembles and Protographs
For practical purposes, it is beneficial to impose more structure on an LDPC code en-
semble. Examples of structured LDPC code ensembles are multi-edge type (MET) [116]
and protograph based ensembles [117, 118]. Protograph based ensembles are defined via a
(typically small) basematrix B of dimension mp×np with elements bij ∈ [0, 1, . . . , bmax]. A

2One way to avoid cycles between degree two VNs is to place them in the form of a double diagonal
in the parity-check matrix. Repeat-accumulate codes [115] constitute an important LDPC code class
which adopts this property. This structure is also beneficial for low complexity encoding.
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C1 C2

V1 V2 V3

Figure 4.2.: Tanner graph of a protograph.

basematrix may also be represented as a bipartite graph, called a protograph. An example
is shown in Fig. 4.2 for the basematrix

B =
(

2 1 1
0 2 1

)
.

Since the elements of the basematrix are not strictly binary, parallel edges are allowed and
their numbers correspond to the respective entries in the basematrix. The Tanner graph
of an LDPC code can be obtained by lifting a protograph: through copy-and-permute
operations a number of copies of the protograph is generated and their edges are permuted
such that connectivity constraints imposed by the basematrix are maintained [117]. A
protograph-based LDPC (P-LDPC) code ensemble is defined by the set of all length-nc
LDPC codes whose Tanner graph is obtained by lifting B by a factor of Q such that
nc = Q · np.
The copy-and-permute operation can also be interpreted as follows: Each entry bij in the

basematrix is replaced by a sum of bij distinct permutation matrices of size Q× Q. This
approach allows a straightforward way to generate realizations of a protograph ensemble.
If cyclicly shifted identity matrices are used as permutation matrices, the resulting parity-
check matrices have a QC structure, see Sec. 2.3.5.
To distinguish the VNs and CNs in the protograph from those in the lifted parity-

check matrix, we introduce the protograph VN set Vp = {V1, V2, . . . , Vnp} and CN set
Cp = {C1, C2, . . . , Cmp}. Every protograph VN (CN) identifies a VN (CN) type. We use the
wording “a type Vk VN” with k ∈ {1, . . . , nP} to identify a VN in the lifted Tanner graph
of type Vk. We also use the convention that a VN vj in the Tanner graph is of type Vk
if dj/Qe = k, i.e., consecutive blocks of Q VNs are associated to a given type. The same
applies to CNs.
P-LDPC codes introduce structure for an LDPC code ensemble and facilitate the design

of optimized LDPC codes. For instance, the notion of a VN type can be used to designate
the association of a given BMD bit level to a VN in the protograph.
In the following, we review three well known protograph families, which will serve as

reference designs.

Accumulate-Repeat-Jagged-4-Accumulate (AR4JA) AR4JA codes [119, Sec. 7.4] con-
stitute a class of protographs with code rates (k − 1)/k, k ∈ {2, 3, . . . } and protograph



4.1. Introduction 95

Protograph ω?

BAR4JA−1/2 0.0144
BAR4JA−2/3 0.0058
BAR4JA−3/4 0.0032
BAR4JA−4/5 0.0021
BAR4JA−5/6 0.0015

Table 4.1.: Relative minimum distance of different AR4JA codes.

dimensions of mp × np = 3× (k + 3), i.e., there is one punctured VN. The basematrix of
the rate 1/2 code is

BAR4JA-1/2 =




0 0 1 0 2
1 1 0 1 3
1 2 0 2 1


 (4.8)

where the last column is punctured. The first two columns correspond to information bits,
the remaining ones are parity bits or punctured. Higher rate codes are obtained by adding
a pair of columns to the beginning of (4.8), e.g., for a rate 2/3 code, we have

BAR4JA-2/3 =




0 0 0 0 1 0 2
3 1 1 1 0 1 3
1 3 1 2 0 2 1


 . (4.9)

Realizations of this ensemble have a minimum distance that grows linearly with the block-
length. The relative minimum distance was computed with the algorithm of [120]. We
show the corresponding ω? in Table 4.1.

Protograph Based Raptor Like (PBRL) PBRL codes were introduced in [121]3 as one
approach for rate-compatible LDPC codes that can be derived from a common basematrix.
Their common structure is

B =
(
BHR 0
B I

)
(4.10)

and can therefore be understood as a concatenation of an high rate code with basematrix
BHR and an low-density generator matrix (LDGM) code with basematrix

(
B I

)
. This

code class is inherently rate-adaptive by adding rows to the LDGM code and thereby
decreasing its overall rate. For its construction, usually a good high rate (e.g., 2/3, 3/4)
basematrix BHR is chosen and the rows of the LDGM part are selected in a greedy manner
one after the other such that the decoding threshold of the respective code is minimized.

3An earlier patent showing similar ideas has priority date January 24, 2007, see https://patents.
google.com/patent/US8578249.

https://patents.google.com/patent/US8578249
https://patents.google.com/patent/US8578249
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PBRL codes have found their way into the 5G standard [122, 123] for enhanced mobile
broadband (eMBB). This choice is motivated by the requirements for 5G, which involve
the support of a large range of code rates, a fine granularity in blocklengths, support for
hybrid automated repeat request (HARQ), high throughput decoders and a simple code
description for a facilitated hardware implementation.

4.1.3. Sum-Product Algorithm for Single-Parity-Check Constraints
Finding the bit-MAP estimate can be interpreted as a special instance of an inference
problem, where the marginal PV |Y (vj|y) should be calculated from PV |Y (v|y). In the con-
text of factor graphs we can identify the global function f(v1, v2, . . . , vnc) with PV |Y (v|y).
Assuming this factor graph is cycle-free, we can use the SPA to calculate the marginal
with low complexity.
Classical LDPC codes4 use SPC codes as constraints at the CNs. Consider a CN ci with

degree dc, neighbors N (ci) = {vj1 , vj2 , . . . , vjdc
} and the local function

fi(vj1 , vj2 , . . . , vjdc
) = 1

(
vj1 + vj2 + . . .+ vjdc

= 0
)
. (4.11)

We first assume the exchanged messages to be in the probability domain. In this particular
case, the CN update (2.136) for k ∈ {1, . . . , dc} has a closed form expression [5]

mci→vjk (v) =
∑

∼vjk
fi(vj1 , vj2 , . . . , v, . . . , vjdc

)
∏

v∈N (ci)\{vjk}
mv→ci(v)

=
∑

∼vjk
1
(
vj1 + vj2 + . . .+ v + . . .+ vjdc

= 0
) ∏

v∈N (ci)\{vjk}
mv→ci(v)

= 1
2 + (−1)v 1

2
∏

v∈N (ci)\{vjk}
(1− 2 ·mv→ci(1)) (4.12)

If the VN alphabet is binary, i.e., vj ∈ F2, we prefer a representation of the messages
which avoids a renormalization of probabilities and calculating products. Therefore, we
reformulate the SPA in the log-domain and consider the messages

lvj→ci = log
(
mvj→ci(0)
mvj→ci(1)

)
lci→vj = log

(
mci→vj(0)
mci→vj(1)

)
. (4.13)

Using the VN update rule of (2.135), we get

lvj→ci = log
(∏

c∈N (vj)\{ci}mc→vj(0)
∏

c∈N (vj)\{ci}mc→vj(1)

)
=

∑

c∈N (vj)\{ci}
log

(
mc→vj(0)
mc→vj(1)

)
=

∑

c∈N (vj)\{ci}
lc→vj .

(4.14)

4“Classical” in the sense of LDPC codes as introduced by Gallager [5]. Generalized LDPC codes [111]
replace the SPC code by a general blockcode, e.g., a Hamming code.
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Similarly, for the CN update rule of (2.136), we get

lci→vj = log
(
mci→vj(0)
mci→vj(1)

)
= log

( 1
2 + 1

2
∏

v∈N (ci)\{vj}(1− 2mv→ci(1))
1
2 − 1

2
∏

v∈N (ci)\{vj}(1− 2mv→ci(1))

)
. (4.15)

To simplify the previous expression, we need two intermediate results. First, from (4.13),
we have

mvj→ci(1) = 1
1 + elvj→ci

(4.16)

such that

1− 2mvj→ci(1) = elvj→ci − 1
elvj→ci + 1

= tanh
(
lvj→ci

2

)
.

Second, we note that the inverse of the tanh(·), atanh(·), can be expressed as atanh(x) =
0.5 · ln((1− x)/(1 + x)). Hence, (4.15) becomes

lci→vj = 2 atanh

 ∏

v∈N (ci)\{vj}
tanh

(
lv→ci

2

)
 . (4.17)

As the exchanged messages in the current formulation of the SPA are beliefs (i.e., prob-
ability of a coded bit taking a certain value), the formulation is also known as belief
propagation.

4.1.4. Decoding of LDPC Codes
Practical LDPC codes usually do not have a cycle-free factor graph5 such that we can
only hope for an approximated value of the a posteriori distribution. Therefore we apply
the SPA iteratively and hope for convergence. In the following, we apply the previously
developed log-domain version of the SPA for the decoding of binary LDPC codes.
In contrast to Sec. 4.1.3, the exchanged messages on the Tanner graph have superscripts

(denoted by (`)) that indicate the iteration number. The overall procedure is summarized
in Algorithm 3. We initialize the algorithm by

l(0)
vj→ci = ldec,j = log

(
PV |Y (vj = 0|y)
PV |Y (vj = 1|y)

)
. (4.18)

5While a cycle-free graph is desirable from the perspective of getting exact results for the marginalization,
this property is harmful from a minimum distance perspective [124] in the sense that any cycle-free
Tanner graph with SPC CN constraints and Rc ≥ 1/2 has dmin ≤ 2. For general CN constraints see
comments in [124, Sec. V-C].
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Algorithm 3 Sum-Product Decoding of LDPC codes.
INPUT: l(0)

vj→ci = ldec,j ,∀j = 1, . . . , nc, ci ∈ N (vj); max. iterations `max
1: ` = 1
2: while ` ≤ `max do
3: // CN update
4: for i = 1, . . . ,mc do
5: for vj ∈ N (ci) do

6: l
(`)
ci→vj = 2 atanh

(∏
v∈N (ci)\{vj} tanh

(
l(`−1)
v→ci

2

))

7: end for
8: end for
9: // VN update
10: for j = 1, . . . , nc do
11: for ci ∈ N (vi) do
12: l

(`)
vj→ci =

∑
c∈N (vj)\{ci} l

(`)
c→vj + ldec,j

13: end for
14: end for
15: ` = `+ 1
16: end while
17: // Final codeword bit estimate
18: for j = 1, . . . , nc do
19: lapp,j =

∑
c∈N (vj) l

(`max)
c→vj + ldec,j

20: v̂j = 1
2 − 1

2 sign (lapp,j)
21: end for

In a practical implementation of Algorithm 3, two important simplifications can be
employed:

1. The CN update is calculated based on the Jacobian logarithm, i.e.,

ln(ex + ey) = max(x, y) + log
(
1 + e−|x+y|

)
.

For a degree dc = 3 CN ci with neighbors N (ci) = {vj1 , vj2 , vj3}, (4.17) becomes

lci→vj3 = fCN(lvj1→ci , lvj2→ci)
= sign(lvj1→ci , lvj2→ci) ·min

(∣∣∣lvj1→ci

∣∣∣ ,
∣∣∣lvj2→ci

∣∣∣
)

+ ln




1 + e−
∣∣∣lvj1→ci+lvj2→ci

∣∣∣

1 + e−
∣∣∣lvj1→ci−lvj2→ci

∣∣∣


 . (4.19)

For CNs with degree dc > 3, we apply (4.19) recursively:

lci→vjdc
= fCN(lvj1→ci , fCN(lvj2→ci , fCN(. . . , lvjdc−1→ci))). (4.20)

Additionally, to reduce the complexity of the CN operation, the trellis representation
of an SPC code [125] avoids the re-calculation of interim expressions. The imple-
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mentation of the CN update has a significant influence on the error floor [126]. If
not stated otherwise, all simulation results in this thesis use a non-saturating VN
and CN implementation.

2. The naive formulation of the VN update in Algorithm 3 calculates the sum of incom-
ing messages many times. Instead, a practical implementation calculates a temporary
value first

l
(`)
tmp,j =

∑

c∈N (vj)
l(`)c→vj + ldec,j

and then subtracts the corresponding incoming message to get the right extrinsic
value

l(`)vj→ci = l
(`)
tmp,j − l(`)ci→vj .

3. The message schedule, i.e., the order of how messages are computed and used for the
calculation of other messages, can be modified to achieve faster convergence speeds.
One prominent approach is the so called layered schedule [127], which commonly
saves half the number of iterations compared to the flooding schedule of Algorithm 3.
We will use the usual flooding schedule in all simulations.

4. Algorithm 3 can be extended by an early stopping criterion. For this, we calculate
the HD estimate v̂ after each iteration and check whether the syndrome v̂HT is zero.

Variants of the sum-product algorithm are the min-sum algorithm [128], which neglects
the second summand in (4.19) or the offset min-sum algorithm, which replaces the second
summand by a constant value that needs to be optimized for each code and current iteration
number. The scaled offset min-sum algorithm additionally scales the result of the minimum
operator in (4.19) by a scalar.

4.2. Asymptotic Decoding Threshold Analysis

4.2.1. Density Evolution
As shown in [129] the asymptotic analysis of LDPC codes via density evolution (DE) is
based on the concentration theorem stating that the decoding performance for an individual
member of the ensemble will concentrate asymptotically around its average performance
and that the average performance will concentrate around the performance of a cycle-free
graph for a large blocklength. To facilitate analysis, the symmetry condition allows to
constrain the DE to the all-zero codeword only.
Let Lv→c, Lc→v, Ldec be the RVs associated with the messages (4.14), (4.17) and (4.18),

respectively. The symmetry condition requires that

pLv→c|V (l|0) = pLv→c|V (−l|1) (4.21)
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pLc→v|V (l|0) = pLc→v|V (−l|1) (4.22)
pLdec|V (l|0) = pLdec|V (−l|1). (4.23)

As analysis reveals, the requirements (4.21), (4.22) hold for the BP algorithm as pre-
sented in Sec. 4.1.4. Whether (4.23) is fulfilled or not depends on the channel pY |X , the
modulation/demapping and binary labeling.

Example 9. For the AWGNC with BPSK signaling, i.e., X = {−1,+1}, χ(+1) =
0, χ(−1) = 1, the channel law pY |X is given by (2.93) and (4.18) becomes

ldec = log
(
e−(y−1)2/(2σ2)

e−(y+1)2/(2σ2)

)
= log

(
e4y/(2σ2)

)
= 2
σ2y. (4.24)

The above statement can be interpreted as a transformation of the RV Y . Conditioning
on X = −1 (i.e., V = 1) and X = 1 (i.e., V = 0), we have

(Ldec|{V = 0}) ∼ N (2/σ2, 4/σ2) (Ldec|{V = 1}) ∼ N (−2/σ2, 4/σ2). (4.25)

(4.23) is fulfilled for this channel and modulation setting. Note that the density
pLdec|V (l|0) exhibits an interesting property, namely the consistency condition f(x) =
f(−x)ex. A Gaussian distribution (2.93) is consistent, if its mean µ and variance σ2

are related as σ2 = 2µ. A consistent Gaussian distribution is therefore characterized
by a single parameter.

Density evolution tracks the densities pLv→c|V (l|0), pLc→v|V (l|0) and pLapp|V (l|0) over the
course of iterations. To simplify notation, we drop the conditioning on V = 0 and use the
all-zero codeword assumption. We declare successful decoding when

0∫

−∞
p
L

(`)
app

(l) dl→ 0 for `→∞. (4.26)

We now consider channels that are characterized by a single parameter ξ (e.g., ε for the
BEC, δ for the BSC, σ for the AWGNC). The set of channel parameters for which we
observe convergence (4.26) defines the convergence region

Υ =


ξ :

0∫

−∞
p
L

(`)
app

(l; ξ) dl→ 0 for `→∞


 . (4.27)

Here, p
L

(`)
app

(l; ξ) denotes the PDF of the a posteriori information, when the BP iterations
were initialized by ldec having a channel law with parameter ξ. The decoding threshold ξth
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is defined to be the supremum6 of all values in Υ:

ξth = sup
ξ

Υ. (4.28)

Density Evolution for Unstructured, Regular Ensembles

We first analyze (dv, dc) unstructured, regular ensembles. Following (4.14), the outgoing
message lv→c of a VN update, is given as the summation of independent RVs. Hence, its
PDF is given by a convolution of the incoming PDFs:

p
(`)
Lv→c(l) = pLdec(l) ∗

(
p

(`)
Lc→v(l)

)∗(dv−1)
(4.29)

Similarly, we have

p
(`)
Lapp(l) = pLdec(l) ∗

(
p

(`)
Lc→v(l)

)∗dv
. (4.30)

The CN update is more involved. The update rule (4.17) is a transformation of the RV
Lv→c, see Sec. 2.2.5. Unfortunately, no closed form expression can be given such that we
simply denote this transformation by the function fCN(·, ·), which takes the PDF of the
incoming message p(`)

Lv→c and the CN degree dc as arguments:

p
(`)
Lc→v(l) = fCN(p(`)

Lv→c(l), dc) (4.31)

We explain an approximate method in Sec. 4.2.2 to circumvent this problem. Alternatively,
Chung developed an alternative in his PhD thesis [130] that approximates pLc→v(l) by a
Gaussian distribution, whose mean and variance are derived from L(`)

v→c and the CN degree
dc.

Example 10. We derive the DE equations for a (dv, dc) regular LDPC code for the
BEC with erasure probability ε. We have

ldec = log
(
PY |X(y|0)
PY |X(y|1)

)
=





∞, y = 0
0, y = E

−∞, y = 1.
(4.32)

The density pLdec(l) degrades to a PMF with two mass points, one being at 0 with
probability ε and the other at +∞ with probability 1− ε. Therefore, DE for the BEC
is characterized by tracking the evolution of the a posteriori erasure probability ε(`)

app.
We obtain:

6This assumes that the degradation of the channel becomes more significant with a larger value of ξ.
This is the case for the BSC, BEC and AWGNC. If a transformation of the channel parameter is
considered, e.g., the SNR in case of the AWGNC, this definition must be adjusted.



102 Chapter 4. Code Design for Binary LDPC Codes

ε(`)
v→c = ε ·

(
ε(`)

c→v

)dv−1
(4.33)

ε(`)
c→v = 1−

(
1− ε(`)

v→c

)dc−1
(4.34)

ε(`)
app = ε ·

(
ε(`)

c→v

)dv
. (4.35)

Density Evolution for Protograph Based Ensembles

For protograph based ensembles, we have to take each VN (Vj, j = 1, . . . , np) and CN
(Ci, i = 1, . . . ,mp) type into account. Let Ldecj represent the RV describing the decoder
soft information at the j-th VN Vj. Correspondingly, we get

p
(`)
LVj→Ci

(l) = pLdec,j(l) ~
Ci′∈N (Vj)

p
(`)
LCi′→Vj

(l)∗(bij−1(i′=i)) (4.36)

p
(`)
Lapp,j(l) = pLdec,j(l) ~

Ci∈N (Vj)
p

(`)
LCi→Vj

(l)∗(bij). (4.37)

For the CN update, assuming that CN Ci has neighbors N (Ci) = {Vj1 , Vj2 , . . . , Vjdc
} we

have

p
(`)
LCi→Vj

(l) = fCN



p

(`)
LVj1→Ci

(l), . . . , p(`)
LVj1→Ci

(l)
︸ ︷︷ ︸

bij1−1(j=j1) times

, . . . , p
(`)
LVjdc→Ci

(l), . . . , p(`)
LVjdc→Ci

(l)
︸ ︷︷ ︸

bijdc
−1(j=jdc ) times




(4.38)

where the function fCN(·) represents the CN transformation of the incoming PDFs. Again,
we refer to Sec. 4.2.2 for the discussion of a practical implementation of this transformation.
We extend the notion of a convergence region for protographs. Let ξ = (ξ1, ξ2, . . . , ξnp)

denote the parameter vector which defines the (potentially) np different channels associ-
ated with each protograph VN type. We declare convergence for the protograph DE and
parameter vector ξ if

0∫

−∞
p
L

(`)
app,j

(l; ξj) dl→ 0 for `→∞, ∀j = 1, . . . , np. (4.39)

Correspondingly, we have the convergence region

Υp =


ξ :

0∫

−∞
p
L

(`)
app,j

(l; ξj) dl→ 0 for `→∞, ∀j = 1, . . . , np



 . (4.40)
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Example 11. As before, we instantiate (4.36), (4.37) and (4.38) for the BEC. Let εj
denote the erasure probability at the j-th VN Vj, i.e., the j-th VN is connected to a
BEC with erasure probability εj. We obtain

εVj→Ci = εj ·
∏

Ci′∈N (Vj)

(
ε

(`)
Ci′→Vj

)(bi′j−1(i=i′))
(4.41)

εCi→Vj = 1−
∏

Vj′∈N (Cj)

(
1− ε(`)

Vj′→Ci

)(bij′−1(j=j′))
(4.42)

εapp,j = εj ·
∏

Ci∈N (Vj)

(
ε

(`)
Ci→Vj

)bij
. (4.43)

4.2.2. Discretized Density Evolution

Discretized density evolution (DDE) approximates the real DE expressions (4.29) – (4.31)
by discretizing the PDF of the involved BP messages. It was used to design capacity
approaching LDPC codes in [112] and quantizes the decoder soft-information (4.18) with
a b bit (b ∈ N) quantization function, which first clips its input to B ∈ R+ or −B via

clip(l) =





+B, l ≥ +B
l, −B < l < +B
−B, l ≤ −B

(4.44)

and maps the result to q = 2b− 1 quantization levels. We define the quantization function
as Q(·) : R→ Q, where Q = {−(q − 1)/2, . . . , 0, . . . , (q − 1)/2}, ∆ = (2B)/(q − 1), and

Q(l) =





⌊
clip(l)/∆ + 1

2

⌋
, l > ∆

2⌈
clip(l)/∆− 1

2

⌉
, l < −∆

2
0, otherwise.

(4.45)

We use this type of quantization to represent l = 0 without quantization error. This is
important for punctured VNs. In the following, we describe DDE for protographs.
Using channel adapters [131] the PDFs of the m BMD bit channels are symmetrized

such that the all-zero codeword assumption can be used. We quantize the symmetrized
RV Ldec,j of the decoder soft information (4.18) at the j-th VN by (4.45) and represent
the PMF of the discrete RV by the vector ldec,j of length q, where the entries ldec,jk, k ∈ Q
correspond to

ldec,jk =
∫ (k+1)∆

k∆
pLdec,j(l) dl. (4.46)
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We define the DDE VN update rule as

lVj→Ci = T

ldec,j ∗ ~

Ci′∈N (Vj)
l
∗(bi′j−1(i=i′))
Ci′→Vj


 . (4.47)

The truncation operator T(·) shrinks the dimensions of the vectors resulting from the
convolution. For a length 2q − 1 vector c = (c−(q−1), . . . , cq−1), we have

T(c) =


−(q−1)/2∑

k=−(q−1)
ck, c−(q−1)/2+1, . . . , c(q−1)/2−1,

(q−1)∑

k=(q−1)/2
ck


 . (4.48)

For punctured VNs, we have ldec,jk = 0, ∀k ∈ Q \ {0} and ldec,j0 = 1.

For the CN operation, we first consider a degree three CN with two incoming messages
a and b. The outgoing message c is given as c = R(a, b), where each entry ck of c is given
by

ck =
∑

(k1,k2)∈Q×Q: LUT(k1,k2)=k
ak1bk2 . (4.49)

The two-dimensional data structure LUT(·, ·) : Q × Q → Q is a look-up table (LUT) of
the quantized CN operation for the SPA (4.17), i.e., for a, b ∈ Q, we have

LUT(a, b) = Q(2 atanh(tanh(a/2) · tanh(b/2)). (4.50)

The CN update rule can be stated as the nested application of the pairwise operator R(·, ·)

lCi→Vj = R
(
lVj′→Ci ,R(. . . , . . .)

)
(4.51)

to the set of messages

{ lV′j→Ci︸ ︷︷ ︸
(bij′−1(j′=j)) times

}, Vj′ ∈ N (Ci). (4.52)

The a posteriori message is

lapp,j = T

ldec,j ∗ ~

Ci′∈N (Vj)
l
∗bi′j
Ci′→Vj


 . (4.53)

We summarize DDE in Algorithm 4.
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Algorithm 4 Algorithmic description of DDE
INPUT: l(0)

Vj→Ci = ldec,j , ∀j = 1, . . . , np, Ci ∈ N (Vj), MIN_BER, max. iterations `DDE
max

1: converged← 0, `← 1
2: while ` ≤ `DDE

max do
3: for i = 1, . . . ,mp do
4: for j = 1, . . . , np do
5: if bij 6= 0 then
6: Calculate l(`)Ci→Vj according to (4.51).
7: end if
8: end for
9: end for
10: for j = 1, . . . , np do
11: for i = 1, . . . ,mp do
12: if bij 6= 0 then
13: Calculate l(`)Vj→Ci according to (4.47).
14: end if
15: end for
16: end for
17: for j = 1, . . . , np do
18: Calculate l(`)app,j according to (4.53)
19: end for
20: if

∑(q−1)/2
k=1 lapp,jk ≤ MIN_BER,∀j = 1, . . . , np then

21: converged← 1
22: Break.
23: end if
24: `← `+ 1
25: end while

4.2.3. EXIT and P-EXIT Analysis
The previously discussed approaches for calculating the decoding thresholds of LDPC codes
involve a significant computational burden, as the VN and CN operations have to deal with
PDFs or, in the discretized case, with PMFs. As any optimization of LDPC codes for a
particular setting involves evaluating the decoding threshold of different ensembles many
times, we need to come up with an efficient method. One approach to accomplish this is
by introducing a parameterized model of the decoding process so that a single parameter
(instead of an entire PDF or PMF) is tracked over the course of iterations. In [132], it was
shown empirically that the MI is one choice that yields accurate results. This gave rise to
extrinsic information transfer (EXIT) charts.

EXIT Analysis for Unstructured, Regular Ensembles

We first consider the case of unstructured, (dv, dc) regular ensembles again. Instead of the
PDFs (4.21)–(4.23), we now consider the MI expressions

Iv→c = I(V ;Lv→c) (4.54)
Ic→v = I(V ;Lc→v) (4.55)
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Idec = I(V ;Ldec). (4.56)

EXIT analysis requires to find functions fEXIT−CN and fEXIT−VN that return the extrinsic
MI Iv→c (Ic→v) given the respective input MI values, i.e.,

Iv→c = fEXIT−VN(Ic→v, Idec) (4.57)
Ic→v = fEXIT−CN(Iv→c). (4.58)

In many cases, no closed form expressions can be given, e.g., for turbo codes when the
parallel concatenated convolutional codes are decoded by component BCJR decoders. Here
we need to perform MC simulations first to come up with interpolations for (4.57) and
(4.58). For the BEC and component codes based on SPC codes and repetition codes (RCs),
the derivation is straightforward and is even equivalent to DE. The reason is that the
extrinsic channels are also BECs so that one parameter fully characterizes the setup.

Example 12. Starting from Example 10 and using (2.87), we find the EXIT formulas
for the BEC:

I(`)
v→c = fEXIT−VN(Ic→v, Idec) = Idec ·

(
1− I(`)

c→v

)dv−1
(4.59)

I(`)
c→v = fEXIT−CN(Iv→c) =

(
I(`)

v→c

)dc−1
(4.60)

I(`)
app = Idec ·

(
1− I(`)

c→v

)dv
. (4.61)

Another important channel is the binary-input additive white Gaussian noise channel
(biAWGNC). Unfortunately, finding the closed form expressions for (4.57) and (4.58) is
not possible. Instead, we aim for approximations based on the following observations:

. In [129], the authors showed that the SPA preserves the symmetry of the message
distributions and that the consistency condition holds (see Example 9). Now consider
a degree dv VN with neighbors N (vj) = {ci1 , . . . , cidv

}. If we assume that the
incoming and iid. messages Lci1 , . . . , Lcidv

are Gaussian distributed with variance
σ2
Lc→v , then Lv→c is also Gaussian distributed with variance

Var [Lv→ci ] = Var

 ∑

ci′∈N (v)\{ci}
Lci′→v + Ldec


 = (dv − 1)σ2

Lc→v + σ2
Ldec

(4.62)

and its mean follows by the consistency condition as 2 Var [Lv→ci ]. For convenience,
we introduce the function

I(X;L) = J(σL) = 1−
∞∫

−∞

1√
2πσ2

L

e
−(z−σ2

L
/2)2

2σ2
L log2

(
1 + e−z

)
dz (4.63)

which denotes the MI of a biAWGNC that fulfills the consistency condition, i.e., of
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L = X +N where X ∈ {−σ2
L/2,+σ2

L/2} and N ∼ N (0, σ2
L). Numerical approxima-

tions for (4.63) were given in [133] and [134]. The latter is more accurate, but also
more complicated to compute efficiently. The VN EXIT function is therefore given
by

Iv→c = fEXIT−VN(Ic→v, Idec) = J
(√

(dv − 1) · J−1(Ic→v)2 + J−1(Idec)2
)
. (4.64)

. For the CNs, we exploit the duality property of EXIT functions on the BEC. Let
f(x) be the EXIT function for a given code on the BEC. It is shown in [135] that
the EXIT function for the dual code is given by 1−f(1−x). As RCs and SPC codes
are dual to each other and we have the EXIT function for the VNs (4.64), we can
hope that this property also yields accurate results for the biAWGNC. The duality
of the CN and VN operations has been noted before [130].

Example 13. Using the previous derivations, we can now formulate the EXIT analysis
for a (dv, dc) regular LDPC code ensemble for transmission over the biAWGNC with
parameter σ2. We have

Iv→c = fEXIT−VN(Ic→v, Idec) = J
(√

(dv − 1) · J−1(Ic→v)2 + σ2
L

)
(4.65)

Ic→v = fEXIT−CN(Iv→c) = 1− J
(√

(dc − 1) · J−1(1− Iv→c)
)

(4.66)

Iapp = J
(√

dv · J−1(Ic→v)2 + σ2
L

)
(4.67)

where σ2
L = 4/σ2 according to (4.25).

P-EXIT Analysis for Protograph Based Ensembles

The previous EXIT analysis was adopted for protograph based ensembles in [136] and will
be referred to as P-EXIT in the following. It will serve as our primary tool in the subsequent
code design approaches. The main difference compared to the previous description is that
we need to track the MI of each edge individually.
In the following, we denote by I(`)

Vj→Ci the MI between the message sent at iteration ` by
the j-th VN to the i-th CN and the corresponding codeword bit. Similarly, I(`)

Ci→Vj denotes
the MI between the message sent at iteration ` by the i-th CN to the j-th VN and the
corresponding codeword bit. We further express the MI between the j-th channel output
and input as Idec,j. The evolution of the MI can be tracked by applying the recursion

I(`)
Vj→Ci = fP-EXIT-Vj−Ci

(
I

(`)
C→Vj , Idec,j

)
I(`)
Ci→Vj = fP-EXIT-Ci−Vj

(
I

(`−1)
V→Ci

)
(4.68)
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with

I
(`)
C→Vj =

(
I(`)
C1→Vj , I

(`)
C2→Vj , . . . , I

(`)
Cmp→Vj

)
I

(`)
V→Ci =

(
I(`)
V1→Ci , I

(`)
V2→Ci , . . . , I

(`)
Vnp→Ci

)
(4.69)

where we set I(`)
Vj→Ci = I(`)

Ci→Vj = 0 if Ci /∈ N (Vj). In (4.68) we introduced the VN and CN
P-EXIT functions fP-EXIT-Vj−Ci and fP-EXIT-Ci−Vj , which depend on the underlying channel
model and usually can not be given in closed form. We moreover denote by I(`)

app,j the MI
between the logarithmic a posteriori ratio message computed at the j-th VN in the `-th
iteration, and the corresponding codeword bit. Note that I(`)

app,j is a function of I(`)
C→Vi and

Idec,j. We define the protograph convergence region ΥEXIT
p as the set of channel MI vectors

Ich =
(
Idec,1, Idec,2, . . . , Idec,np

)
for which I(`)

app,j converges to 1, i.e.,

ΥEXIT
p =

{
Ich

∣∣∣ I(`)
app,j → 1, ∀j = 1, . . . , np, `→∞

}
.

Example 14. Adopting Example 10 for protograph ensembles, we obtain the following
P-EXIT equations when the j-th protograph VN is connected to a BEC with erasure
probability εj, j = 1, . . . , np:

I(`)
Vj→Ci = 1− εj

∏

Ci′∈N (Vj)

(
1− I(`−1)

Ci′→Vj

)bi′j−1(i′=i)
(4.70)

I(`)
Ci→Vj =

∏

Vj′∈N (Ci)

(
I(`)
Vj′→Ci

)bij′−1(j=j′)
(4.71)

I(`)
app,j = 1− εj

∏

Ci∈N (Vj)

(
1− I(`−1)

Ci→Vj

)bij
. (4.72)

Example 15. Adopting Example 13 for protograph ensembles, we obtain the following
P-EXIT equations when the j-th protograph VN is connected to a biAWGNC with
variance σ2

j , j = 1, . . . , np:

I(`)
Vj→Ci = J



√√√√

∑

Ci′∈N (Vj)
(bi′j − 1 (i = i′)) · J−1

(
I(`−1)
Ci′→Vj

)2
+ σ2

j/4


 (4.73)

I(`)
Ci→Vj = 1− J



√√√√

∑

Vj′∈N (Ci)
(bij′ − 1 (j′ 6= j)) · J−1

(
1− I(`)

Vi→Cj′

)2


 (4.74)



4.3. Optimizing LDPC Codes for Higher-Order Modulation 109

I(`)
app,j = J



√√√√

∑

Ci∈N (Vj)
bij · J−1

(
I(`)
Ci→Vj

)2
+ σ2

j/4


 . (4.75)

4.3. Optimizing LDPC Codes for Higher-Order
Modulation

4.3.1. Bit Level Uncertainties for Bit Metric Decoding
To operate LDPC codes with higher order modulation, usually BMD is employed, where
the demapper calculates a bit-wise soft information for each of the m = log2(M) bits
indexing a constellation symbol7. As numerical investigations show, the associated bit
channels have a different “reliability”. In the following, this reliability is expressed in
terms of the bit uncertainty H(Bk|Y ), k = 1, . . . ,m8. From (3.11), we recall that the sum
of all m bit uncertainties determines the mismatched uncertainty U(qBMD) for BMD and
layered PS. We depict the bit uncertainties for uniform and shaped signaling in Fig. 4.3
for {4, 8, 16}-ASK and a BRGC labeling.
For uniform signaling, the H(Bk|Y ) curves are monotonous and decrease for increasing

SNR. Further, the bit levels are ordered in the sense that H(Bk|Y ) ≤ H(Bk+1|Y ), k =
1, . . . ,m − 1. For PAS, the picture changes for the bit levels representing the amplitude,
i.e., B2, . . . , Bm. While the uncertainty of bit level one still shows a monotonous behavior
(bit level one is uniform), the uncertainties for bit levels two and higher first increase
and then decrease again for higher SNRs. This behavior is related to the optimal input
distribution being different for each SNR. For low SNRs, PX is shaped significantly, while
it becomes more and more uniform for higher SNRs. This observation is crucial for the
design of optimized LDPC codes with an irregular degree profile, as the mapping of the
bit channels to VNs with different degrees (for general unstructured irregular ensembles)
or to different VN types (for protographs) matters.

4.3.2. Review of Existing Approaches
Various optimization techniques have been proposed to improve LDPC codes for higher
order modulation with BMD. Two approaches can be distinguished in the literature and
are summarized in Fig. 4.4. The red frames indicate the parts which are subject to opti-
mization.

7Alternatively, multilevel coding with multistage decoding is possible as well (see also Sec. 3.11). However,
this requires the design of individual codes for each bit level and the blocklength of each code is smaller
for a given number of channel uses. As the performance of LDPC codes improves significantly with
their blocklength, BMD with one code for all bit levels is generally preferred.

8In the uniform case, the mutual information I(Bk;Y ) can be used, too, as I(Bk;Y ) = H(Bk)−H(Bk|Y ) =
1−H(Bk|Y ) which is then only an affine transformation of the uncertainty.
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Figure 4.3.: H(Bk|Y ) for {4, 8, 16}-ASK with uniform and MB distributions optimized for
each SNR. A BRGC code is used for the constellation labeling χ(·).
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Bit Mapping Optimization for Off-the-Shelf Codes

The first approach (Fig. 4.4a) considers the bit mapping optimization for an off-the-shelf
LDPC code. In [137], the authors introduce the concept of variable degree matched map-
ping (VDMM) to optimize the association of the AR4JA VN types (see Sec. 4.1.2) to the
two distinct bit channels of 16-QAM. Two schemes are investigated numerically: A wa-
terfilling scheme assigns the bit channels of highest mutual information I(Bk;Y ) to high
degree VNs, whereas a reverse waterfilling scheme assigns the bit channels of lowest mutual
information I(Bk;Y ) to low-degree VNs. A gain of 0.15 dB is observed between the two
schemes, but a random assignment is shown to perform at least as well as the waterfilling
scheme. We revisit this example later in Sec. 4.4.2. In [138, 139], the authors use MET
descriptions to optimize extended irregular repeat-accumulate (eIRA) codes for 8-PSK and
16-QAM using EXIT analysis and DDE.
The authors of [140] build upon the previous work of [137] and use P-EXIT to find opti-

mized bit mappings by trying out all possible permutations (4! = 24 for four transmitted
VNs types in a rate 1/2 AR4JA protograph) and deriving rules to find equivalent ones. In
[141], the authors discuss the inflexibility of the previous approaches, as they require that
the number of transmitted VNs types is an integer multiple of the number of bit levels
m. To circumvent this, they first lift the protograph by a factor of m such that it can
be combined with any modulation format. Still, only plain waterfilling VDMM mapping
is used. The authors of [142] then introduce generalized variable degree matched map-
ping (GVDMM), which uses the lifting technique of [141], and they perform an exhaustive
search over all possible permutations for various APSK and QAM constellations and the
AR4JA codes. Improved decoding thresholds over the waterfilling principle are reported.
In [143], the authors aim to improve the bit mapping for DVB-S2 LDPC codes for 64-

and 256-APSK constellations. They introduce an assignment matrix that defines what
fraction of a certain bit level is assigned to each VN degree and optimize its entries by
a multigrid search algorithm. The subsequent works [144, 145] adopt the notion of an
assignment matrix to establish a relation of the fraction of the bit levels assigned to a VN
type for structured codes.

Joint LDPC Code Design and Bit Mapping Optimization

The second approach (Fig. 4.4b) designs the code and the bit mapping jointly to exploit
additional degrees of freedom. The first attempt in this regard was [146], where the authors
used MET ensembles and modified the EXIT analysis to design optimized LDPC codes
for higher order modulations using linear programming. In [147, 148], we find optimized
protograph ensembles for uniform and shaped signaling. The approach builds heavily on
the surrogate channel approach which is outlined in the following.
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Figure 4.4.: Strategies for optimizing the bit mapping for LDPC codes and BMD.

4.3.3. Surrogate Based LDPC Code Design for Protographs
Previous work [149, 150, 151] has shown that LDPC codes tend to exhibit a universal
behavior. Universality refers to the fact that decoding performance is similar over various
channels for a common metric, e.g., the MI. In [149], this property was explicitly used for
code design, i.e., a code is designed specifically for one channel, but operated on another.
Such an approach is called surrogate channel based design. It is of great practical interest,
as the optimization for a specific channel model might not be feasible or is computationally
too cumbersome. A surrogate channel based design consists of two steps:

1. Choose the surrogate channel (e.g., BEC, biAWGNC).

2. Establish equivalence between the real and the surrogate channel.

The choice of the surrogate channel determines the complexity of the threshold analysis
and the accuracy of the obtained result. Further, we still have to find out how the actual
channel and the surrogate one should be matched, i.e., in what metric equivalence should
be established.
In the following, we investigate two surrogate channels, namely the BEC and the

biAWGNC and use the conditional entropy H(B|Y ) to establish equivalence. The validity
of the proposed techniques is verified by DDE.
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The BEC as Surrogate Channel

The code design uses BECs for the m bit channels. The BECs have the input X̆k and
channel output Y̆k. The erasure probability (2.86) for the k-th surrogate channel is ε̆k. As
H(X̆k|Y̆k) = ε̆k, we have

ε̆k = H(Bk|Y ), k = 1, . . . ,m. (4.76)

The biAWGNC as Surrogate Channel

The code design uses biAWGN channels of the form Y̆k = X̆k + N̆k where X̆k ∈ {−1,+1}
and N̆k ∼ N (0, σ̆2

k). Unfortunately, no closed form expression can be given, such that the
surrogate channel parameters σ̆2

k must be determined numerically:

σ̆2
k : H(B̆k|Y̆ ) = H(Bk|Y ), k = 1, . . . ,m. (4.77)

Comparison of the Surrogate Thresholds with Discretized Density Evolution

In Table 4.2 (a) and (b), we compare the thresholds obtained via P-EXIT using biAWGN
and BEC surrogate channels to the results obtained by DDE. We consider uniform and
shaped signaling for SEs of 1.5 bpcu and 2.5 bpcu.

SNRDDE
th SNREXIT

th (biAWGN) SNREXIT
th (BEC)

4-ASK uni, reg. LDPC (dv = 3, Rc = 3/4) 10.04 10.03 9.98
8-ASK uni, reg. LDPC (dv = 3, Rc = 1/2) 10.81 10.85 10.84
8-ASK PAS, reg. LDPC (dv = 3, Rc = 3/4) 9.37 9.36 9.30
8-ASK PAS, opt. protograph 8.80 8.77 9.00

(a) Decoding thresholds in dB for Rtx = 1.5 bpcu.

SNRDDE
th SNREXIT

th (biAWGN) SNREXIT
th (BEC)

16-ASK uni,reg. LDPC (dv = 3, Rc = 5/8) 17.41 17.39 17.43
16-ASK PAS,reg. LDPC (dv = 3, Rc = 13/16) 15.74 15.78 15.68

(b) Decoding thresholds in dB for Rtx = 2.5 bpcu.

Table 4.2.: Comparison of decoding thresholds obtained via P-EXIT (biAWGNC and BEC
surrogates) and DDE.

We observe that the P-EXIT thresholds based on the biAWGN surrogate channels pro-
vide close approximations of the real DDE thresholds, while the BEC surrogates exhibit
larger discrepancies, especially for the optimized protograph code with an irregular degree
profile, where a gap of 0.2 dB in the respective decoding thresholds is visible. Therefore
we will resort to biAWGN surrogate channels in all subsequent sections.
These results are validated in the finite length simulations of Figs. 4.5 and 4.6 for 200

and 20 BP iterations, respectively. The curves were obtained as follows: For each SNR, we
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derived the surrogate parameters of the m = 2 or m = 3 bit channels by (4.76) and (4.77).
We then simulate the transmission of a FEC codeword over the actual channel with BMD
and the parallel biAWGNCs and BECs with respective channel parameters. We see that
the biAWGNC surrogates capture the finite length scaling accurately (for both 20 and 200
BP iterations), while the BEC surrogates show larger discrepancies and are usually off by
0.1 dB to 0.3 dB. The beginning of the waterfall regions in Fig. 4.6 is well reflected by the
decoding thresholds of Table 4.2.

4.4. Optimizing Off-the-Shelf Protograph Based LDPC
Codes

None of the previously suggested optimization approaches is tailored to the code defined in
IEEE 802.3ca and also other standards (e.g., IEEE 802.11, G.hn). Some methods assume
unstructured LDPC codes (e.g., [139, 143]) and others are prohibitively complex to work
with the protograph sizes in standards. For example, the authors of [144] use differential
evolution to optimize the bit mapping for protograph based spatially coupled LDPC codes
with window decoding and exploit the periodicity imposed by window decoding to limit
the optimization space. Furthermore, sampling from the high-dimensional polytope to
generate populations for differential evolution becomes rather time consuming.
In this work, we propose an algorithm that optimizes the bit mapping of P-LDPC

codes one level after the other. We use the surrogate approach of Sec. 4.3.3 and P-EXIT
analysis to determine the decoding threshold for a given mapping and use the patternsearch
algorithm [152] to find the best bit mapping. We validate this approach by comparing the
predicted P-EXIT thresholds with DDE.
In the following, we use the ideas of [143, 144] to formulate an optimization procedure

that optimizes the assignment of the m bit channels to the np,t transmitted VN types of a
given protograph basematrix. This bit mapping can be expressed as a non-negative matrix
A = [a1, . . . ,anp,t ] of dimension m× np,t where the entry akj = [A]kj denotes the fraction
of bit level k that is assigned to the j-th transmitted VN type. The matrix A needs to
fulfill the constraints

np,t∑

j=1
akj

1
np,t

= 1
m
,

m∑

k=1
akj = 1, (4.78)

for all k ∈ {1, 2, . . . ,m} and j ∈ {1, 2, . . . , np,t}. We denote the set of matrices A which
fulfill the above constraints as A. For PAS, we further impose the constraints

a1j = 1, akj = 0, j ∈ {2, . . . ,m}, j ∈ Vpar
p (4.79)

where Vpar
p ⊆ Vp is the set of transmitted parity VNs in the protograph, as the parity VNs

have to be mapped to bit level one. The set A is adjusted accordingly in this case.
Let the BP decoding threshold for a given basematrix B, bit mapping A and signaling
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Figure 4.5.: Finite length decoding performance of various surrogate approaches with for
1.5 bpcu and 200 BP iterations.



116 Chapter 4. Code Design for Binary LDPC Codes

9.4 9.5 9.6 9.7 9.8 9.910−6

10−5

10−4

10−3

10−2

10−1

100

SNR [dB]

FE
R

8-ASK PAS BMD (reg.)
8-ASK PAS biAWGN (reg.)
8-ASK PAS BEC (reg.)

(a) 8-ASK, PAS, Rc = 3/4 (dv = 3, dc = 12)

10 10.1 10.2 10.3 10.4 10.510−6

10−5

10−4

10−3

10−2

10−1

100

SNR [dB]

FE
R

4-ASK uni BMD (reg.)
4-ASK uni biAWGN (reg.)
4-ASK uni BEC (reg.)

(b) 4-ASK, uni, Rc = 3/4 (dv = 3, dc = 12)

11.1 11.2 11.3 11.4 11.5 11.6 11.710−6

10−5

10−4

10−3

10−2

10−1

100

SNR [dB]

FE
R

8-ASK uni BMD (reg.)
8-ASK uni biAWGN (reg.)
8-ASK uni BEC (reg.)

(c) 8-ASK, uni, Rc = 1/2 (dv = 3, dc = 6)

Figure 4.6.: Finite length decoding performance of various surrogate approaches with for
1.5 bpcu and 20 BP iterations.



4.4. Optimizing Off-the-Shelf Protograph Based LDPC Codes 117

mode PX be SNRth(A;B, PX). The optimization problem is

min
A

SNRth(A;B, PX) subject to A ∈ A. (4.80)

The obvious choice for calculating the decoding threshold is DDE. However, DDE takes
a couple of seconds for the considered protograph sizes. Its use as part of an optimization
algorithm which evaluates the objective many times is therefore limited. Instead, we use
the surrogate approach of Sec. 4.3.3 and P-EXIT. We find the biAWGN surrogate with
parameter σ̆2

j for the j-th VN type as

σ̆2
j : H(X̆j|Y̆j) =

m∑

k=1
akj H(Bk|Y ), j = 1, . . . , np,t. (4.81)

4.4.1. Successive Bit Mapping Optimization

Performing the optimization (4.80) jointly over all bit levels is a complicated task, as it
involves a large number of optimization variables for large constellation sizes and proto-
graph dimensions. Instead, we propose a successive method that optimizes each bit level
one at a time while leaving the mappings of the other bit levels fixed. As a consequence,
we do not optimize over the whole bit mapping matrix A, but only over one row of A,
where the ordering is chosen as a parameter. All other bit levels are assigned uniformly.
The algorithm for uniform signaling is summarized in Algorithm 5. For PAS, the function
make_A is modified accordingly to account for the additional constraints (4.79). For the
optimization in line 3, we use patternsearch [152], a derivative free optimization approach
that starts from a feasible initial point x (i.e., one that fulfills the constraints) and then
performs a search with a set of vectors to find a direction in which the objective value
improves. For our setting, we use a so-called 2N basis which consists of the 2N canonical
unit vectors ei, i = 1, . . . , N of RN and their negative counterparts, where N is the number
of independent optimization variables. The algorithm then polls all possible new points
x ± s · ei after an appropriate scaling (s ∈ R+) of the basis vectors and selects the one
with the best objective value as the starting point for the next iteration.

4.4.2. Case Study: AR4JA

In this case study, we revisit the scenario of [137], which optimizes the bit mapping for
the rate 1/2 AR4JA basematrix (4.8) for 4-ASK and uniform signaling. Fig. 4.7 shows
the simulation results of various mappings, as well as our optimized mapping based on the
approach in Sec. 4.4. The optimized assignment matrix is

Aopt =
(

0 0 1 1
1 1 0 0

)
(4.82)
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Algorithm 5 Algorithmic description of the successive bit mapping optimization.
INPUT: Protograph B, Distribution PX , Ordering O, Set of fixed row indices I
1: AF ← [], I ← []
2: for j ∈ O do
3: aopt = argmina SNR∗(make_A(a, j,AF, I);B, PX) subject to 0 ≤ ai ≤ 1− sum(AF(:, i), 1)),∀i ∈
{1, . . . , np,t}

4: AF ←
[
AF
aopt

]
, I ← I ∪ {j}

5: end for
6: Aopt = make_A({}, {},AF, I)
7: function make_A(a, j,AF, I)
8: A(j, :)← a
9: A(I, :)← AF
10: A([1 : m] \ I, :) = (1/(m− |I|)) · (1− sum(AF, 1))
11: return A
12: end function

which obtains a decoding threshold of SNRDDE
th = 5.77 dB. Obviously, this does not corre-

spond to the waterfilling solution, which corresponds to

AWF =
(

0 1 0 1
1 0 1 0

)
(4.83)

and has a decoding threshold of SNRDDE
th = 5.93 dB. The random mapping corresponds

to Arnd = 0.5 · I with SNRDDE
th = 5.88 dB. The parity-check matrix has dimensions

mc × nc = 6144 × 10240 and is taken from [119]. Because of the puncturing, the number
of transmitted bits is nc,t = 8192. 200 BP iterations are performed.
In Fig. 4.8 we depict the same scenario, but only 20 BP iterations are performed. In-

terestingly, the optimized bit mapping from before is not optimal any more, but is about
0.2 dB worse than the the waterfilling one. If we repeat the optimization from above, but
only allow `EXIT

max = 20 iterations for P-EXIT, we obtain the mapping

Aopt =
(

0.16 0.95 0 0.88
0.84 0.05 1 0.12

)
(4.84)

which essentially represents the waterfilling one of (4.83). We also observe that its finite
length performance closely matches the waterfilling one. These results indicate that the
number of iterations must be taken into account when the bit mapping is optimized.

4.4.3. Case Study: IEEE 802.3ca
Recently, the standardization consortium for next generation passive optical network (PON)
finalized the IEEE 802.3ca standard [153], which uses an LDPC code for FEC. The pro-
posed code has a basematrix with dimensions mp × np = 12× 69 and an irregular degree
profile of degree three, six, eleven and twelve VNs. The circulant size is Q = 256, re-
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Figure 4.7.: Performance of different bit mappings for an AR4JA rate 1/2 LDPC code with
4-ASK and uniform signaling. 200 BP iterations are performed. The SE is
Rtx = 1.0 bpcu.

sulting in a final parity-check matrix size of mc = 3072 and nc = 17664. The final
graph has a girth of 6. The degree 11 and 12 VNs of the protograph are punctured.
While writing this manuscript, the exact shortening pattern for the last information VN
is still being discussed. In the following, we assume this VN to be shortened completely.
The number of transmitted bits is therefore nc,t = 16896 with the overall code rate of
Rc = 14336/16896 ≈ 0.8485.
We focus on a scenario with an SE of Rtx = 2.545 bpcu. Uniform signaling uses 8-ASK,

whereas PAS uses 16-ASK with an appropriately chosen MB input distribution. The
different constellation sizes are chosen such that the best performance for both signaling
modes is ensured. The DM rate is Rdm = 2.152 bits.
We validate the P-EXIT thresholds by DDE and use a 8-bit quantization (q = 255) with

B = 15. These values are motivated by numerical observations (e.g. in Fig. 4.17), which
show that a decoder with these parameters operates with almost no loss as compared to
a full resolution, floating point implementation. The obtained decoding thresholds are
summarized in Table 4.3. As a reference we choose a bit mapping Aref which assigns each
bit level uniformly to each VN type, i.e., Aref = 1/m · 1, where 1 is the all-ones matrix of
size m× np,t. For PAS, Aref is additionally adjusted to meet the constraints of (4.79).
We observe that the P-EXIT and DDE values are in good agreement with a maximum

difference of 0.12 dB, which is caused by the surrogate analysis and the mixing of the
bit channels. For uniform signaling the gain is 0.23 dB, and for PAS the gain is 0.37 dB
based on the DDE thresholds. In both cases, the optimization yields a bit mapping Aopt
which favors the assignment of the most reliable bit-channel (i.e., the one with the smallest
H(Bk|Y )) to the degree six VNs in the protograph. For uniform signaling, this means bit
level one is mapped to the degree 6 VN types, whereas for PAS bit level two (which has the
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Figure 4.8.: Performance of different bit mappings for an AR4JA rate 1/2 LDPC code
with 4-ASK and uniform signaling. 20 BP iterations are performed. The SE
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Signaling Bit mapping SNREXIT
th [dB] SNRDDE

th [dB]

PAS reference 16.00 16.12
optimized 15.67 15.75

uniform reference 17.12 17.21
optimized 16.90 16.98

Table 4.3.: Comparison of decoding thresholds with P-EXIT and DDE for PAS and uni-
form signaling.

largest prior log(PBk(0)/PBk(1))) is the most reliable one, see Fig. 4.3. Empirical studies
show that the ordering O (cf. the input of Algorithm 5) plays an important role and
that the best decoding threshold is achieved by starting with the bit channel having the
smallest uncertainty. This result is intuitive as the first bit channel has the largest degree
of freedom for the bit mapping optimization. We validate the asymptotic results by finite
length simulations in Fig. 4.9 with 100 BP iterations.

4.4.4. Case Study: DVB-S2
We now focus on the LDPC codes from the DVB-S2 standard, which defines codes of
various rates from 1/4 to 9/10 and blocklength nc = 64 800 bits. Although it is not directly
visible from the parity-check matrix, these codes have a protograph representation from
which the final code is derived after lifting by Q = 360. In the following, we describe the
optimization for two signaling modes targeting Rtx = 1.5 bpcu with 8-ASK (using a rate
3/4 code) and Rtx = 2.5 bpcu with 16-ASK (using the rate 5/6 code). The DM parameters
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are summarized in Table 4.4. The considered codes have the VNs degree profile shown in

Parameter Rtx = 1.5 bpcu Rtx = 2.5 bpcu

|A| 4 8
kdm 27 000 35 100
n 21 600 16 200
Rdm 1.25 2.167
tnA (13590, 6423, 1435, 152) (5776, 4680, 3072, 1635, 705, 246, 70, 16)

Table 4.4.: CCDM parameters for the target signaling modes.

Table 4.5.
Using the approach of Sec. 4.4.1, we obtain bit mappings with decoding thresholds

of SNREXIT
th = 8.82 dB and SNREXIT

th = 15.15 dB. For space reasons, we show only the
assignment of each bit level to the respective VN degree, i.e., each table entry denotes

∑

i∈Vp,dv

aji, j ∈ {1, 2, . . . ,m}

where Vp,dv ⊆ Vp denotes the subset of protograph VNs with degree dv. Table 4.6a shows
the results for the Rtx = 1.5 bpcu case, while Table 4.6b highlights the Rtx = 2.5 bpcu case.
In both cases, bit level one is completely assigned to the degree one and degree two VNs
because of PAS. For the Rx = 1.5 bpcu case, bit level three (which is the least reliable one
according to Fig. 4.3) is completely assigned to the degree 12 VNs. A similar observation
can also be observed in Rtx = 2.5 bpcu case, where bit level four (again, the least reliable
one) is assigned to the degree 13 VNs.
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VN degrees

Rc Λ13 Λ12 Λ3 Λ2 Λ1

3/4 5400 43 200 16 199 1
5/6 5400 48 600 10 799 1

Table 4.5.: Number of VNs with the respective degrees for the considered DVB-S2 LDPC
codes.

Vp,12 Vp,3 Vp,1,2

B1 0 0.083 0.25
B2 0 0.333 0
B3 0.083 0.25 0

(a) Rc = 3/4

Vp,13 Vp,3 Vp,1,2

B1 0.0119 0.074 0.1667
B2 0 0.25 0
B3 0.0357 0.2143 0
B4 0.0357 0.2143 0

(b) Rc = 5/6

Table 4.6.: Optimized assignment of bit levels to different VN degrees for two DVB-S2
codes.

To verify the asymptotic findings, Fig. 4.10 shows the finite length simulations. As a
reference scheme, we use a consecutive bit mapping. We observe that the optimized bit
mapping improves the decoding performance by 0.21 dB and 0.24 dB at an FER of 10−4,
respectively.

4.5. Protograph Based LDPC Code Design Examples

4.5.1. General Principles
In this section, we design optimized P-LDPC codes for different SEs using the previously
introduced tool chain. The design of tailored LDPC codes can usually be decomposed into
two steps:

1. Find a protograph ensemble with a good decoding threshold.

2. Construct a realization of the protograph ensemble (i.e., the parity-check matrix) by
using girth optimization tools.

To accomplish step one, we use differential evolution, a genetic algorithm. Its general
principle follows the one outlined in Algorithm 1 for the optimization of GS constellations,
however the combination and selection steps are modified (see Appendix A.5) to take the
discrete search space (entries of the basematrix) into account. For the optimization we
impose restrictions that facilitate the finite length code construction in step two. For
instance, we limit the maximum number of parallel edges in the basematrix to upper



4.5. Protograph Based LDPC Code Design Examples 123

8.6 8.8 9 9.2 9.410−6

10−5

10−4

10−3

10−2

10−1

100

0.21 dB

SNR [dB]

FE
R

RCB BMD PAS
Consecutive
Optimized

(a) Rtx = 1.5 bpcu

14.9 15.1 15.3 15.5 15.7 15.910−6

10−5

10−4

10−3

10−2

10−1

100

0.24 dB

SNR [dB]
FE

R

RCB BMD PAS
Consecutive
Optimized

(b) Rtx = 2.5 bpcu

Figure 4.10.: Performance of different bit mappings for DVB-S2 codes.

bound the maximum VN degree or limit the number of degree two VNs to ensure minimum
distance growth properties.
For step two, we first lift the protograph randomly by a factor of Q1 ≥ bmax to remove

all parallel edges and then use an adapted version of the progressive edge-growth (PEG)
algorithm [154] to lift the binary basematrix in a series of liftings with lifting factors
Q2, Q3, . . . , QLmax to the final parity-check matrix of blocklength nc = npQ with Q =
Q1 ·Q2 · . . . QLmax , while a desired target girth is ensured. The lifting is performed in several
steps as all code designs in this section are QC codes and lifting the binary basematrix
directly to its final size would result in a poor minimum distance and a large multiplicity
of potentially harmful structures. Numerical evaluations have shown that two additional
liftings, i.e., Lmax = 3 result in good codes for the considered setup.

4.5.2. Example Designs
We concentrate on SEs of 1.5 bpcu and 2.5 bpcu and consider shaped and uniform scenarios
with a blocklength of nc = 64 800 bits. The DM parameters for Rtx = 1.5 bpcu with a rate
3/4 code are given in Table 4.4. The parameters for Rtx = 2.5 bpcu and a rate 13/16 code
are given in Table 4.7.

Parameter Rtx = 2.5 bpcu

|A| 8
kdm 36 450
n 16 200
Rdm 2.25
tnA (5457, 4528, 3118, 1782, 845, 332, 109, 29)

Table 4.7.: CCDM parameters for Rtx = 2.5 bpcu and a rate 13/16 code.
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To limit the design space9, we impose further restrictions on the set of valid basematrices.
These restrictions help to avoid harmful structures. The considered designs constraints are
summarized in Tables 4.8 and 4.9. The general design guidelines were as follows:

. The selected basematrix dimensions are chosen as a trade-off to provide sufficient
degrees of freedom and maintain a manageable search space. Besides, the number
np of VNs must be an integer multiple of the number of bit levels m.

. The maximum VN degree is limited to 12 which limits the decoding complexity of
the final code, see the discussion of decoder data flow (4.7).

. The number of degree two VNs is limited tomp−1. This constitutes a necessary con-
dition for the protograph ensemble to have a linear minimum distance growth [155].
Further, if more than one degree 2 VN is allowed, we impose the constraint that they
are placed in a staircase fashion, i.e.,




1 0 0 0 . . .
1 1 0 0 . . .
0 1 1 0 . . .
0 0 1 1 . . .
0 0 0 1 . . .



.

As a result, we avoid cycles among degree 2 VNs already by construction and numer-
ical evaluations show that these designs behave favorably compared to others from
an error floor perspective. Further, if no constraints regarding the degree 2 VNs
were imposed, we usually observe that those are placed on the most unreliable bit
level, i.e., the one having the largest H(Bk|Y ), k = 1, . . . ,m. Constructing realiza-
tions of these codes and simulating them resulted in high error floors. Instead, we
intentionally place them on bit level one. This usually implies a minor penalty for
the decoding threshold (in the order of 0.05 dB to 0.1 dB), but the codes show steep
waterfall behavior and error floors are not visible down to at least 10−6 in FER.

For differential evolution, we choose G = 5000 generations and P = 500 population mem-
bers per generation, see Appendix A.5. The basematrices can be found in Appendix A.4.1.
The numerical results are shown in Fig. 4.11. The blue, green and red colors of the

curves refer to the three different signaling modes: 8-ASK with PAS and a rate 3/4 code,
4-ASK uniform with a rate 3/4 code and 8-ASK uniform with a rate 1/2 code. All modes
have have an SE of 1.5 bpcu. We show the results of regular LDPC codes with degree 3
VNs in dashed lines as references. At an FER of 10−3, the optimized code gains 0.53 dB
over the regular one and operates 0.37 dB from the PAS RCB for BMD. It also becomes
apparent that 4-ASK with a higher rate FEC code is better than using 8-ASK with a lower

9Theoretically, if an exhaustive search over all basematrices was performed, the decoding threshold
of up to bmpnp

max basematrices would need to be calculated. For a rate 3/4 basematrix of dimension
mp× = np = 3 × 12 and a maximum number of bmax = 3 parallel edges, this amounts to more than
336 ≈ 1.5× 1017 possibilities.
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Parameter B8-PAS-3/4-Λ2=2 B8-PAS-3/4-Λ2=0 B4-uni-3/4 B8-uni-1/2

Rc 3/4 3/4 3/4 1/2
mp × np 3× 12 3× 12 2× 8 6× 12
bmax 4 4 6 1
dv,max 12 12 12 6
Λ2 2 0 1 5
SNREXIT

th [dB] 8.77 8.88 9.70 9.88
SNRDDE

th [dB] 8.82 8.88 9.71 9.97
∆SNR [dB] 0.34 0.40 0.40 0.54
ω∗ 4.58× 10−4 3.97× 10−3 1.01× 10−3 1.48× 10−3

Table 4.8.: Overview of optimized P-LDPC ensembles for an SE of 1.5 bpcu.

rate FEC code. For the PAS case, we also show an optimized code B8-PAS-3/4-Λ2=0 that
does not have any degree 2 VNs. It loses 0.1 dB.
For an SE of 2.5 bpcu we optimize two codes for PAS. Its parameters are shown in

Table 4.9 and the simulation results are depicted in Fig. 4.12.
All protograph ensembles have a minimum distance that grows linearly with the block-

length. Comparing ω? for B8-PAS-3/4-Λ2=2 and B8-PAS-3/4-Λ2=0 we notice the huge impact of
degree 2 VNs. We further note that this property is only given for informative reasons and
generally does not apply to our constructed finite length codes as they have a QC design
– the concept and derivation of the relative minimum distance assumes a random design,
i.e., a lifting by means of arbitrary permutation matrices.

4.6. Robust LDPC Codes for Flexible Rate Adaptation

4.6.1. Need for Flexible Rate Adaptation
Practical communication systems need to adapt the SE to the channel quality. For instance,
in optical systems a transceiver that operates on a short network segment with high SNR
should achieve a high spectral efficiency to maximize the net data rate over this segment.
Similarly, a transceiver operating on a long network segment (e.g., an intercontinental
route) with low SNR should use a lower order modulation format and/or a FEC code
with low code rate to ensure reliable transmission. For wireless systems, rate adaptation is
important because the channel quality changes rapidly with the user’s mobility or fading
conditions.
As pointed out before, many existing transceivers implement rate adaptation by sup-

porting several modcods, i.e., combinations of modulation formats and coding rates. For
instance, LTE chooses from a set of 29 different modcods [156, Table 7.1.7.1-1] and DVB-
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Parameter B16-PAS-13/16-Λ2=0 B16-PAS-13/16-Λ2=2

Rc 13/16 13/16
mp × np 3× 16 3× 16
bmax 3 4
dv,max 6 12
Λ2 0 2
SNREXIT

th [dB] 15.36 15.26
SNRDDE

th [dB] 15.37 15.29
∆SNR [dB] 0.43 0.35
ω∗ 1.19× 10−3 3.07× 10−4

Table 4.9.: Overview of optimized P-LDPC ensembles for an SE of 2.5 bpcu.
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Figure 4.11.: Performance of optimized LDPC Codes for Rtx = 1.5 bpcu and nc = 64 800.
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Figure 4.12.: Performance of optimized LDPC Codes for Rtx = 2.5 bpcu and nc = 64 800.

S2X [157] defines 116 modcods [157, Table 1], which extend the 40 modcods of DVB-S2 [98].
Here, flexibility comes at the price of increased complexity and implementation overhead.
In [9], seamless rate adaptation from 2 to 10 bits per QAM symbol was demonstrated by
PAS with only five modcods. Its practical applicability was shown in optical experiments
in [12, 13].
We have seen in the previous sections that the performance of LDPC codes for higher or-

der modulation with BMD depends significantly on the bit mapping. The codes in Sec. 4.5
are optimized for one particular SE and their applicability to rate adaptive transceivers
is limited. We illustrate this by operating the optimized codes for Rtx = 1.5 bpcu and
Rtx = 2.5 bpcu over different SEs in Fig. 4.13.
Instead, in this section, we design robust LDPC codes for rate adaptive transceivers.

We exemplarily design a rate 13/16 P-LDPC code for a 16-ASK constellation to operate
over the AWGN channel with any SE in the range from 0.7 bpcu to 2.7 bpcu.
In order to find the protograph ensemble with the best decoding threshold, we resort to

differential evolution, see Appendix A.5. The asymptotic decoding threshold is used as a
metric to select new population members, but we modify the previous evaluation step of
Algorithm 10 such that

B(g)
p = argmin

B∈
{
B

(g−1)
p ,B̃

} max
Rtx∈R

SNREXIT
th (B, Rtx)−R−1

BMD(Rtx), p = 1, . . . , P (4.85)

where R ⊆ [0.7; 2.7] is the set of all considered operating points for which the code should
be optimized and SNREXIT

th (B, Rtx) denotes the decoding threshold (obtained via P-EXIT
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Figure 4.13.: Illustration of the gap to capacity of the decoding thresholds for different
operating modes and optimized basematrices.

and a biAWGNC surrogate) of the protograph B with signaling adjusted for a target SE
of Rtx.

4.6.2. Simulation Results
We design a rate 13/16 code which allows up to four different VN degrees per bit level such
that the resulting base matrices have dimensions mp×np = 3×16. The number of parallel
edges is limited to 3, which results in a maximum VN degree of 9. The number of degree
2 VNs is limited to one column and all other nodes must have a degree of at least 3 to
ensure a linear growth of the minimum distance [158]. We optimize basematrices for five
scenarios. The first four target specific SEs of 0.7 bpcu, 1.1 bpcu, 2.1 bpcu and 2.7 bpcu,
respectively. The last protograph Brob represents the robust approach that targets all
rates in the interval [0.7; 2.7] jointly and is given as

Brob =




3 1 1 2 1 2 2 1 0 1 1 1 3 1 1 1
3 2 2 0 2 2 2 2 2 0 1 1 3 2 1 2
3 0 0 1 0 0 0 0 1 2 3 3 3 0 0 0


 . (4.86)

For optimization, we chose R = {0.7, 1.1, 2.1, 2.7}. Including further rates did not im-
prove the asymptotic decoding thresholds considerably – using less or other operating
points resulted in inferior performance. We observed good results by including the bound-
aries of the desired operating region and pursuing the following heuristic approach: For
each target SE Rtx, consider the entropies H(Bk|Y ), k = 1, . . . ,m, e.g., in Fig. 4.3f. For
different SEs, the entropies may change their ordering. If this happens, the respective rate
should be added to R. In the considered example, the ordering of H(B1|Y ) and H(B4|Y )
changes around Rtx ≈ 1.1 bpcu, and again the ordering of H(B1|Y ) and H(B3|Y ) changes
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at around Rtx ≈ 2.1 bpcu. For small protograph sizes and limited degrees of freedom, it
may suffice to consider the boundary operating points only.

Fig. 4.14 depicts the SNR gap of the decoding thresholds to AWGN capacity, i.e.,
SNREXIT

th (B, Rtx) − (22Rtx − 1), for the considered range of SEs. Protographs which are
optimized for one particular SE tend to perform poorly if operated at other SEs. This
is especially the case for the codes optimized for high SEs, where the gap increases up
to 1.3 dB when operated at lower SNR. The robust protograph design exhibits the de-
sired feature of minimizing the maximum gap for each operating point in R and therefore
achieves a balanced behavior.
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Figure 4.14.: Gap in dB to CAWGN(SNR) of the asymptotic protograph BP decoding thresh-
olds over the range of considered SEs.

For the finite length comparison in Fig. 4.15, the protographs have first been lifted by a
factor of three to remove parallel edges and then by a factor of 338 to yield parity-check
matrices of size 2705 × 16224. As a baseline for performance comparison, we choose the
rate 5/6 DVB-S2 code for short frame sizes, which has a blocklength of n = 16 200 [98].
For the bit mapping bit levels two to four are assigned consecutively to the first 12 150
VNs, whereas bit level one is assigned to the remaining ones. As the information part
of the parity-check matrix has mostly degree three VNs and only a small number of 360
degree 13 VNs, optimizing the bit-mapper did not improve performance. In addition to the
DVB-S2 reference, we also plot the PAS RCB, see Sec. 3.4.4. In all cases, 100 BP iterations
with a full sum-product update rule are performed. We observe that the predictions of the
asymptotic decoding thresholds are well reflected in the finite-length performance as well.
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Figure 4.15.: Gap in dB to CAWGN(SNR) for different protograph designs over the range
of considered SEs at a target FER of 10−3.

4.7. Clipping Optimization for Quantized LDPC Decoders
Practical LDPC decoders quantize the exchanged messages with a finite number of bits.
This is particularly important for optical communication with its high throughput require-
ments [159, Sec. III]. Previous works [160, 161] noted that the performance of quantized
decoders depends on the clipping of messages and found the optimal clipping by time
consuming finite length simulations.
Instead, we optimize the clipping of a quantized sum-product LDPC decoder exemplarily

for three and four bits resolution with DDE. We use the decoding threshold of an ensemble
as the objective and show that DDE accurately predicts the finite length performance,
making it an important tool to facilitate the design process. We use a quantized LDPC
decoder as shown in [162, Sec. VI].
First we investigate the influence of the number of quantization levels q and the clipping

B. As noted in [161], clipping the soft information can greatly influence the performance
of the decoder and depends on the considered code ensemble.
We examine two scenarios with b = 3 and b = 4 bits resolution and investigate different

approaches to find the best B. The first approach considers the mismatched uncertainty
expression in (3.13). We evaluate the metric by generating soft information values accord-
ing to (4.18), quantizing them (4.45) and approximating the expectation by its empirical
mean in a MC manner. The second approach uses DDE of Sec. 4.2.2, and determines
the decoding threshold of the LDPC code ensemble given the selected quantization and
clipping parameters.
We depict the results of this analysis in Fig. 4.16 for the setting of Sec. 4.4.3. The

optimized clipping is given by B ≈ 6 for three bits and by B ≈ 8 for four bits. The
lines without markers represent the DDE thresholds, whereas the lines with markers are
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Figure 4.16.: Optimal value of B based on the uncertainty, DDE decoding thresholds and
finite length simulation results. The target rate is Rtx = 2.545 bpcu and we
depict the required SNR to achieve this SE for PAS and uniform signaling.
The black curves are based on the uncertainty. The curves without markers
denote the DDE decoding thresholds for uniform and PAS signaling. The
curves with markers are the corresponding finite length simulation results for
a frame error rate of 10−3. In all cases, an optimized bit mapping is used.

finite length simulation results and denote the required SNR to obtain a target FER of
10−3. Observe that the simulation results closely follow the DDE thresholds. Observe also
that the mismatched uncertainty (3.13) provides a good indication for the optimal clipping
value, but does not reflect the overall qualitative behavior.
In Fig. 4.17, we show the simulation results for the quantized decoders discussed in this

section. We see that the loss due to quantization is about 0.25 dB for 4 bits and 1.50 dB
for 3 bits compared to the unquantized case. A quantized decoder with B = 15 and q = 8
operates with almost no loss as compared to a floating point implementation with full
double resolution.

4.8. Quantized Message Passing Decoders
Optical coherent transceivers with data rates of 400Gbps are about to be installed in the
field [163] and research already considers 1Tbps. These data rates require sophisticated
optical components, improved digital signal processing algorithms, and FEC solutions
that can cope with the high speed. While SD decoders are superior in terms of the net
coding gain (NCG), HD decoders are appealing when low power consumption and high
throughputs are of paramount importance. HD-FEC for optical communications is usually
based on product-like codes with Reed-Solomon (RS) or BCH component codes of high
rate, which can be efficiently decoded via BDD (e.g., based on the syndrome). Spatially
coupled HD-FEC constructions, such as staircase codes [159] or braided codes [164] achieve
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Figure 4.17.: Decoding performance of the 802.3ca LDPC code with 3, 4 and 8 bits quan-
tization.

additional gains.
Recently, hybrid approaches based on concatenating an inner SD-FEC and an outer HD-

FEC have received attention [165, 166]. These ideas have found their way into standards:
the optical internet working forum established the 400G ZR standard, a specification to
transmit at 400Gbps over data center interconnect links up to 100 km, and agreed on an
FEC solution consisting of an inner Hamming code and an outer staircase code, where the
inner code decoder is SD and the outer code decoder is HD, with a total of 14.8% overhead
and a NCG of 10.8 dB.
To exploit the soft-information from the channel, while still only exchanging binary

messages during the iterations of BDD, the authors of [167] weight the HD output of the
component decoders and recombine it with the soft-information from the channel, after
which another HD is made. Similar approaches were also considered in [168, 169], where
soft information from the channel is used to exploit particularly reliable and unreliable
bits to improve the miscorrection-detection capability of the BDD decoder.
In [170], the authors present a one-bit binary message passing (BMP) algorithm for

LDPC codes. In particular, the VN processor combines the soft channel message with
scaled binary messages from the CNs, followed by a HD step. The idea of passing binary
messages dates back to the seminal work of Gallager [5], where he presented algorithms
that are now called Gallager A and Gallager B.
Thus, a BMP decoder (q = 1) allows to reduce the data flow F (4.7) by a factor of q

compared to a decoder using q bits to represent messages.
The work in [171] extends the BMP algorithm to ternary messages. The third message

is an erasure that denotes complete uncertainty about the respective bit value. The al-
gorithm, dubbed ternary message passing (TMP) decoding, closely resembles algorithm E
from [129], except that it exploits soft-information at the VNs.
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4.8.1. Protograph Based Spatially Coupled LDPC Codes
Consider a spatially coupled LDPC (SC-LDPC) code with a right-unterminated parity-
check matrix [172]

H =




H0(0)
H1(0) H0(1)

... H1(1) H0(2)
Hµ(0) ... H1(2)

Hµ(1) ... . . .
Hµ(2) . . .

. . .




. (4.87)

In (4.87), µ denotes the syndrome former memory of the SC-LDPC code. The index in
brackets denotes the spatial position. If the matrices Hi(s), i ∈ {0, . . . , µ}, are the same
for all spatial positions s ∈ {0, . . . , S− 1}, the SC-LDPC code is called time-invariant and
the index s can be dropped. The dimension of the matrices Hi(s) is mSC

c × nSC
c .

Because of the diagonal structure of H , a CN is connected to at most (µ + 1)nSC
c

VNs. This allows using a window decoding approach [173] that reduces latency, increases
throughput, and makes SC-LDPC codes particularly interesting for optical communica-
tions [172].
SC-LDPC codes are known to exhibit a phenomenon known as threshold saturation [174]

that allows to approach the bit-wise MAP decoding threshold of the underlying block code
with (unquantized) BP decoding.
SC-LDPC codes can be constructed from protographs and have the structure

B =




B0
B1 B0
... B1 B0

Bµ
... B1

Bµ
... . . .
Bµ

. . .

. . .




. (4.88)

The protograph in (4.88) is then lifted by a factor of Q to obtain the final parity-check
matrix H .
For practical operation, the SC-LDPC code is commonly terminated after a number of

S spatial positions. Due to this termination, a rate loss occurs that vanishes for large S.
The resulting code rate is

Rc = 1− µ+ S

S

mSC
p

nSC
p

= 1−
(

1 + µ

S

) mSC
p

nSC
p

(4.89)
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where the base matrices B0, . . . ,Bµ have dimensions mSC
p × nSC

p . The overall size of the
matrix B is mp × np = (µ+ S)mSC

p × nSC
p · S.

4.8.2. Decoding Algorithms for One And Two Bit Message Passing
In this section, we first review the BMP and TMP decoding algorithms introduced in [170]
and [171, Sec. 4.8.3]. In Sec. 4.8.4, we then present a new decoding algorithm that takes
full advantage of 2-bit messages, which we dub quaternary message passing (QMP).
For the described algorithms, we denote by m(`)

c→v the message sent from CN c to its
neighboring VN v at the `-th iteration. Similarly, m(`)

v→c is the message sent from VN v to
CN c. The soft information at the input of the decoder for the j-th coded bit is denoted
by ldec,j and calculated according to (4.18).

4.8.3. Binary and Ternary Message Passing
For BMP, the exchanged messages are binary, i.e., m(`)

v→c,m
(`)
c→v ∈ MBMP , {−1,+1}.

For TMP, the exchanged messages are ternary and we have m(`)
v→c,m

(`)
c→v ∈ MTMP ,

{−1, 0,+1}. A message value of zero indicates complete uncertainty about the respective
bit.
In every decoding iteration, each VN and CN computes extrinsic messages that are

forwarded to the neighboring nodes. Specifically, the message from VN v to CN c is
obtained by combining the channel soft-information ldec with a weighted version of all
other incoming CN messages. Finally, a quantization function Ψ: R → M is applied
to turn the result into binary and ternary messages for BMP and TMP, respectively.
The weighting factors w(`)

ij are real valued and depend on the current iteration number.
They can be obtained from the DE analysis of the respective decoding algorithm. The
quantization function is

Ψ(x) =




+1, x > 0
−1, x ≤ 0

(4.90)

for BMP and

Ψ(x) =





+1, x > T

0, −T ≤ x ≤ T

−1, x < −T
(4.91)

for TMP. The equality signs in (4.90) and (4.91) are chosen such that ties are broken.
Note that the threshold parameter T ∈ R+

0 in (4.91) depends on the SNR and needs to
be chosen for each signaling mode and iteration individually to minimize the decoding
threshold. However, numerical studies reveal that a single value that is kept constant over
the iterations entails almost no loss in performance. Therefore, we resort to this setting in
the following.
For the CN to VN update, a CN sends the product of incoming messages from the other

neighboring VNs. In the last iteration `max, the a-posteriori estimate of each codeword



4.8. Quantized Message Passing Decoders 135

Algorithm 6 BMP and TMP decoding.
Set m(0)

vj→ci = Ψ(ldec,j),∀j = 1, . . . , nc,∀ci ∈ N (vj).
` = 0
while ` ≤ `max do

// CN update
for i = 1, . . . ,mc do

for vj ∈ N (ci) do
m

(`)
ci→vj =

∏
vj′∈N (ci)\{vj}

m
(`−1)
vj′→ci

end for
end for
// VN update
for j = 1, . . . , nc do

for ci ∈ N (vj) do

m
(`)
vj→ci = Ψ

(
ldec,j +

∑
ci′∈N (vj)\{ci}

w
(`)
i′jm

(`)
ci′→vj

)

end for
end for
` = `+ 1

end while
// Final codeword bit estimate
for j = 1, . . . , nc do

ĉj = 1
2 − 1

2 sign
(
ldec,j +

∑
ci∈N (vj)

w
(`max)
ij m

(`max)
ci→vj

)

end for

bit is calculated by making a hard decision on the combined soft-information from all CN
neighbors and the channel. The algorithmic procedure for BMP and TMP decoding is
summarized in Algorithm 6. The weighting factors w(`)

ij have been derived as part of the
DE for BMP and TMP in [171].

4.8.4. Quaternary Message Passing
The TMP algorithm of Sec. 4.8.3 requires two bits per exchanged message. We now intro-
duce a QMP decoding algorithm that requires the same number of bits per exchanged mes-
sage, but allows a more granular quantization of the associated reliability soft-information.
The key idea of QMP is to distinguish between low and high reliability messages. The

VN to CN and CN to VN messages, m(`)
v→c and m(`)

c→v, respectively, take values in the
quaternary alphabetMQMP , {−H,−L,+L,+H} and L and H correspond to messages with
low and high reliability, respectively. The quantization function is

Ψ(x) =





−H, x ≤ −T
−L, −T < x < 0
+L, 0 ≤ x < T

+H, x ≥ T.

(4.92)
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Algorithm 7 QMP decoding.
1: Set m(0)

vj→ci = Ψ(ldec,j),∀j = 1, . . . , nc,∀ci ∈ N (vj).
2: ` = 0
3: while ` ≤ `max do
4: // CN update
5: for i = 1, . . . ,mc do
6: for vj ∈ N (ci) do
7: m(`)

ci→vj = min
vj′∈N (ci)\{vj}

|m(`−1)
vj′→ci |·

∏

vj′∈N (ci)\{vj}
sign

(
m(`−1)

vj′→ci

)

8: end for
9: end for
10: // VN update
11: for j = 1, . . . , nc do
12: for ci ∈ N (vj) do
13: l

(`)
av =

∑
ci′∈N (vj)\{ci}

sign(m(`)
ci′→vj )w

(`)
i′j,|m(`)

c
i′→vj |

14: m
(`)
vj→ci = Ψ

(
ldec,j + l

(`)
av
)

15: end for
16: end for
17: ` = `+ 1
18: end while
19: // Final codeword bit estimate
20: for j = 1, . . . , nc do
21: lin =

∑
ci∈N (vj)

sign(m(`max)
ci→vj )w

(`max)
ij,|m(`)

ci→vj |

22: ĉj = 1
2 − 1

2 sign (ldec,j + lin)
23: end for

The QMP decoding algorithm is summarized in Algorithm 7. At the CNs, a min-sum
decoding rule is employed. At the VNs, the incoming messages are weighted and combined
with the channel soft-information. In contrast to BMP and TMP, two sets of weighting
factors are needed for QMP depending on the magnitude of the received message. The
weights w(`)

ij,L are used for messages with low reliability (i.e., mc→v ∈ {−L,+L}), whereas
w

(`)
ij,H are used for messages with high reliability (i.e., mc→v ∈ {−H,+H}).

4.8.5. Initialization of Density Evolution for Different Bit Channels

We associate each VN type with a bit level. Let φ(j) be the bit level on which the VNs
of type Vj are mapped and let V(k)

p be the subset of protograph VNs that are mapped to
the k-th bit level. We assume that the number np of VNs in the protograph is an integer
multiple of m, such that each bit level is assigned to the same number of VNs.
Let p(`)

m (i, j) be the probability that the message sent from Vj to Ci at the `-th iteration
on one of the bij edges connecting Vj to Ci is equal to m ∈ {−H,−L,+L}. To initialize DE,
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we calculate the initial message probabilities as

p
(0)
−H(i, j) =

∫ −T

−∞
pL̃φ(j)|Bφ(j)

(l|0) dl (4.93)

p
(0)
−L(i, j) =

∫ 0

−T
pL̃φ(j)|Bφ(j)

(l|0) dl (4.94)

p
(0)
+L(i, j) =

∫ T

0
pL̃φ(j)|Bφ(j)

(l|0) dl. (4.95)

The integrals in (4.93)–(4.95) do not allow a closed form solution, but can be calculated
by means of Monte Carlo simulations or transformations of RVs. Note that the above
calculations need to be performed only once.
In Fig. 4.18, we show the CDFs Pr(L̃k ≤ l) for 8-ASK (k = 1, . . . , 3) with uniform and

PS signaling obtained via Monte Carlo simulations. The CDFs can be used to calculate
(4.93)–(4.95) as

p
(0)
−H(i, j) = Pr{L̃Φ(j) ≤ −T} (4.96)
p

(0)
−L(i, j) = Pr{L̃Φ(j) ≤ 0} − Pr{L̃Φ(j) ≤ −T} (4.97)
p

(0)
+L(i, j) = Pr{L̃Φ(j) ≤ T} − Pr{L̃Φ(j) ≤ 0}. (4.98)
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Figure 4.18.: Comparison of CDF plots for 8-ASK with uniform and PS signaling. Both
scenarios are for SNR = 9 dB. PS signaling uses an MB distribution with
entropy H(X) = 2.25 bits. The dashed lines in the insets denote the CDFs
obtained via the surrogate approach.
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4.8.6. Surrogate Channels for the Initialization of Density Evolution

As an alternative to Monte Carlo simulations, we can use a surrogate channel approach [149,
150, 151] to approximate the required input probabilities (4.93)–(4.95). For this, the bit-
channels pL̃k|Bk are replaced by “equivalent” AWGN channels with uniform binary inputs
for which the derivation of the CDFs is easier. We establish their “equivalence”10 by re-
quiring that the channel and its surrogate have the same channel uncertainty. Let the
surrogate be Y̆k = X̆k + N̆k with X̆k ∈ {−1,+1} and N̆k ∼ N (0, σ̆2

k) for k = 1, . . . ,m. For
each SNR, we calculate the set of equivalent channel parameters

σ̆2
k : H(B̆k|Y̆ ) = H(Bk|Y ), k = 1, . . . ,m. (4.99)

For QMP we obtain the expressions

p
(0)
−H(i, j) = Q

(
T + µch,φ(j)

σch,φ(j)

)
(4.100)

p
(0)
−L(i, j) = Q

(
µch,φ(j)

σch,φ(j)

)
−Q

(
T + µch,φ(j)

σch,φ(j)

)
(4.101)

p
(0)
+L(i, j) = Q

(
−T + µch,φ(j)

σch,φ(j)

)
−Q

(
µch,φ(j)

σch,φ(j)

)
(4.102)

where µch,k = 2/σ̆2
k, σ2

ch,k = 4/σ̆2
k, andQ(·) is the standard normal Gaussian tail probability,

i.e.,

Q(x) =
∫ ∞

x
(1/
√

2π) exp(−τ 2/2) dτ. (4.103)

In Fig. 4.18, we show the approximations of the true CDFs by the surrogate approach
(dashed lines). A close match of the true CDFs and their approximations is observed.

4.8.7. Density Evolution for Window Decoding

We follow the approach of [175] to determine the decoding threshold of protograph-based
SC-LDPC code ensembles for window decoding. For this, we apply the DE analysis of
[171, 176] for the respective decoding algorithm on a protograph matrix B[1:W,1:W ] that has
been derived from (4.88) for a given decoding window size of W with µ+1 ≤ W ≤ L. The
notation B[1:W,1:W ] denotes the block matrix of size W ×W that is formed from the first

10The term “equivalence” is not meant to have a strict information theoretic meaning in this context.
Rather, this term refers to the observation that both types of threshold evaluations yield similar
results numerically.
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Mode Rtx [bpcu] R−1
BMD(Rtx) [dB]

4U-0.50 1.0 5.2803
4U-0.75 1.5 9.3084
8PS-0.67 1.5 8.5334
8PS-0.83 1.5 8.5606

Table 4.10.: Operating modes and their capacities for SE = 1.5 bpcu.

W block rows and W block columns of B. For instance, for µ = 2 and W = 4 we have

B[1:4,1:4] =




B0 0 0 0
B1 B0 0 0
B2 B1 B0 0
0 B2 B1 B0


 . (4.104)

Convergence of the window decoder is declared when the probability of decoding error
for the VNs in the first block column is (approximately) zero. The respective decoding
threshold is referred to SNRBMP

th for BMP, SNRTMP
th for TMP, and SNRQMP

th for QMP,
respectively.

4.8.8. Numerical Results
We investigate the following signaling modes. The first one operates at 1.0 bpcu, whereas
the others operate at a SE of 1.5 bpcu:

1. 4U-0.50: 4-ASK uniform with Rc = 0.50

2. 4U-0.75: 4-ASK uniform with Rc = 0.75

3. 8PS-0.67: 8-ASK PAS with Rc = 0.67

4. 8PS-0.83: 8-ASK PAS with Rc = 0.83.

The required SNRs to operate at this SE are summarized in Table 4.10.
As FEC codes, we consider (asymptotically) regular, protograph-based SC-LDPC codes

with VN degrees dv = 4 and dv = 6, and design rates Rc ∈ {2/3, 3/4, 5/6}.
The submatrices Bi in (4.88) are given by

Bi = (1 1 . . . 1)
︸ ︷︷ ︸

dc

, i = 0, . . . , µ, (4.105)

where µ = dv − 1. The corresponding right-unterminated ensembles are referred to via
their base matrices as Bdv,dc .
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B SNRfull
th SNRBMP

th SNRTMP
th SNRQMP

th

B4,8 5.36 7.75 6.50 6.26

Table 4.11.: Decoding thresholds in dB for 4-ASK uniform and an SE of 1.0 bpcu.

B SNRfull
th SNRBMP

th SNRTMP
th SNRQMP

th

B4,16 9.41 10.89 10.11 10.00
B6,24 9.34 10.72 10.0 9.88

Table 4.12.: Decoding thresholds in dB for 4-ASK uniform and an SE of 1.5 bpcu.

Asymptotic Decoding Thresholds

The decoding thresholds in Tables 4.11, 4.12 and 4.13 were obtained for window decoding
and a window size ofW = 15 spatial positions, using the procedure presented in Sec. 4.8.7.
We use T = 1.3 as a threshold parameter for BMP, TMP, and QMP in all numerical
evaluations. A maximum number of 1000 iterations per window are performed. These
parameters were chosen to depict the absolute performance limits. Increasing the window
size did not further affect the numerical results. We conclude that the performance of a
block-based decoder is similar. For uniform signaling, we use a consecutive bit mapping
of the BMD bit channel to each protograph VN, i.e., for 2m-ASK we have

V(1)
p = {V1, V1+m, V1+2m, . . . , Vnp−(m−1)} (4.106)
...

V(m)
p = {Vm, V2m, V3m, . . . , Vnp}. (4.107)

For PAS, we must take into account that bit level one (representing the sign of the con-
stellation points [9]) is mainly formed by parity bits and has to be placed accordingly. We
choose

V(1)
p = {V(np/m)·(m−1)+1, V(np/m)·(m−1)+2, . . . , Vnp} (4.108)
V(2)

p = {V1, Vm, V2m−1, . . . , V(np/m−1)·(m−1)+1} (4.109)
...

V(m)
p = {Vm−1, V2(m−1), V3(m−1), . . . , V(np/m)·(m−1)}. (4.110)

These mappings are repeated for each spatial position.
The decoding threshold for full BP decoding is obtained via discretized DE [112] with

8-bit quantization and a dynamic range of the soft-information of [−16,+16]. Increasing
the resolution had no further effect. The DM rate for the PS modes was chosen according
to (3.29) and the output symbols have an MB distribution [64] with corresponding entropy.
As expected from [174], we see in Tables 4.11–4.13 that the regular ensembles under



4.8. Quantized Message Passing Decoders 141

B SNRfull
th SNRBMP

th SNRTMP
th SNRQMP

th

B4,12 8.65 10.81 9.68 9.50
B4,24 8.67 10.06 9.33 9.23
B6,18 8.57 10.62 9.55 9.37
B6,36 8.59 9.88 9.21 9.10

Table 4.13.: Decoding thresholds in dB for 8-ASK PS and an SE of 1.5 bpcu.

B SNRBMP
th SNRTMP

th SNRQMP
th

B4,16 10.89 10.11 10.0
B4,12 10.81 9.68 9.50

Table 4.14.: Decoding thresholds in dB via surrogates of selected ensembles of Table III
and Table IV.

full BP decoding come close (within a few hundred of a dB) to the theoretic limits for the
specific signaling modes. In previous works [170, 171], the authors observed that quantized
message passing decoders have a smaller gap to the achievable rate limit for high rate codes,
even when codes are specifically designed for low code rates. This is also reflected in the
following results.
While BMP, TMP, and QMP have gaps of 2.39 dB, 1.14 dB, and 0.9 dB to the unquan-

tized BP threshold for 4U-0.50 (i.e., for Rc = 1/2), the gaps are only 1.48 dB, 0.70 dB, and
0.59 dB for 4U-0.75 (i.e., for Rc = 3/4). The gain of TMP over BMP, i.e., using two bits
instead of one, is significant and ranges from 0.7 dB to 1.25 dB depending on the signaling
mode and code ensemble. The gain of QMP over TMP is particularly pronounced for low
code rates (0.24 dB for 4U-0.50) and decreases for higher code rates to about 0.1 dB. We
note that these gains can be obtained at no increase in data flow. This observation has
a particular implication for PAS, where the same transmission rate can be obtained with
different FEC code rates by adjusting the signaling distribution: Going from a rate 2/3
to a rate 5/6 code (B4,12 vs. B4,24) decreases the decoding threshold by 0.75 dB (BMP),
0.35 dB (TMP) and 0.27 dB (QMP). This is in contrast to full BP, where the decoding
threshold even slightly deteriorates. Uniform signaling does not allow this flexibility, as
the constellation order and FEC code rate directly determine the transmission rate.
In Table 4.14 we show the thresholds for the B4,16 (uniform) and B4,16 (PS) ensembles

obtained via the surrogate approach of Sec. 4.8.5. We observe that the decoding thresholds
numerically coincide.

Finite Length Simulations

We validate our asymptotic findings by finite length simulations with a block-based decoder
for the 4U-0.75 and 8PS-0.83 signaling modes in Fig. 4.19. We use terminated SC-LDPC
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codes with S = 50 spatial positions and an overall blocklength of nc = 60 000 bits. The
resulting code rates are 0.735 (B4,16) and 0.8233 (B4,24) according to (4.89) with lifting
factors ofQ = 300 andQ = 200, respectively. We used cyclic liftings and girth optimization
techniques to ensure a minimum girth of eight. Because of the termination, the effective
SE is 1.47 bpcu. The weighting factors were chosen as calculated by the DE analysis at
the respective decoding threshold.
For both cases, QMP gains about 0.8 dB compared to BMP. As predicted by DE, the

performance of QMP improves over TMP in the order of about 0.1 dB. The gap of QMP
to full BP decoding is about 0.75 dB at a FER of 10−4.
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Figure 4.19.: FER simulation results for uniform (a) and PAS (b) signaling and an SE of
1.5 bpcu.

4.9. Protograph Based LDPC Code Design for On-Off
Keying

We now discuss the design of P-LDPC codes for the two TS schemes of Sec. 3.10. As in
the previous sections, the PDF of the decoder soft information is not symmetric for OOK.
Instantiating (4.18) for OOK, we have

ldec = A

σ2y −
A2

2σ2
︸ ︷︷ ︸

channel

+ log
(
PX(A)
PX(0)

)

︸ ︷︷ ︸
prior

. (4.111)

To find optimized protograph ensembles for the TS schemes, we resort to the surrogate
approach of Sec. 4.3.3. We determine the parameters of the surrogate channels for the
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shaped and uniform parts as

σ̆2
S : H(X̆S|Y̆S) = H(XS|YS), (4.112)

σ̆2
U : H(X̆U|Y̆U) = H(XU|YU). (4.113)

The RVs X̆S, X̆U and Y̆S, Y̆U denote the input and output of the surrogate channels for
the shaped and uniform part, respectively. Equation (4.112) must be solved numerically,
and we obtain σ̆2

U = (4σ2)/A2
U.

For the optimization with differential evolution and P-EXIT, we assume that the first
(np−mp) protograph VNs are associated with a biAWGN channel with variance σ̆2

S, while
the remaining mp nodes are connected to biAWGN channel with variance σ̆2

U.
As constraints, we allow for a maximum number of mp − 1 VNs of degree 2 and set

the maximum number of parallel edges to four. We design three optimized base matri-
ces, where two target an SE of 0.25 bpcu with schemes TS1 (BOOK−0.25−TS1) and TS2
(BOOK−0.25−TS2) and the third targets an SE of 0.67 bpcu with TS1 (BOOK−0.67−TS1). The
signaling parameters are summarized in Table 4.15 and the thresholds of the obtained
basematrices are shown in Table 4.16. The basematrices can be found in Appendix A.4.2.
As before, we observe that the thresholds obtained via the surrogate approach are close to
the ones obtained by DDE.

Parameters Rtx = 0.25 bpcu Rtx = 0.67 bpcu

TS1
R−1

TS1 [dB] −1.1591 4.6588
Rdm 0.5 0.89
A 1.8107 1.6790
PXS(A) 0.11 0.3063

TS2

R−1
TS2 [dB] −1.8094 –

Rdm 0.3750 –
AS 3.4264 –
AU 1.6118 –
PXS(AS) 0.0724 –

Table 4.15.: OOK signaling parameters for the considered protograph optimization.

To verify our asymptotic findings, we construct finite length codes from the ensembles
given byBOOK−0.25−TS1,BOOK−0.25−TS2 andBOOK−0.67−TS1 and compare to state-of-the-art
off-the-shelf codes. Fig. 4.20 shows the scenario for an SE of 0.25 bpcu. The blocklength
is n = 64 800. For Rc = 0.5 we consider TS scheme one while for Rc = 0.67 we use TS
scheme two. For comparison, the performance of an off-the-shelf DVB-S2 code [98] with
uniform signaling with Rc = 0.25 is shown. Also, the performance of two off-the-shelf
DVB-S2 codes with shaping (i.e., for Rc = 0.5 and Rc = 0.67) is shown. We observe that
in the waterfall region shaping gains 0.1 dB for case 1 and 0.35 dB for case 2, using codes
from the DVB-S2 standard. However, the DVB-S2 LDPC codes show visible error floors.
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Parameter BOOK−0.25−TS1 BOOK−0.25−TS2 BOOK−0.67−TS1

Rc 1/2 2/3 3/4
mp × np 4× 7 3× 9 3× 12
bmax 4 4 4
dv,max 12 12 12
SNREXIT

th [dB] −0.70 −1.43 4.98
SNRDDE

th [dB] −0.68 −1.42 4.99
∆SNR [dB] 0.47 0.39 0.33

Table 4.16.: Overview of optimized P-LDPC ensembles for OOK with TS1 and TS2.

Our designs gain 0.35 dB for case 1 and 1.06 dB for case 2, respectively.
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Figure 4.20.: Performance comparison of uniform and shaped modulation formats using
TS for an SE of Rtx = 0.25 bpcu.

Fig. 4.21 depicts the scenario for Rtx = 0.67 bpcu and TS scheme one. Here we did
not consider TS scheme two, since the achievable rate curves in Fig. 3.35 suggest only
small gains. Let n = 64 800 and Rc = 0.75 for C3. With shaping, the DVB-S2 code of
Rc = 0.75 gains 0.8 dB with respect to a DVB-S2 code of Rc = 0.67 with uniform signaling.
A dedicated P-LDPC code shows gains 0.92 dB with respect to the uniform case.
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TS for an SE of Rtx = 0.67 bpcu.





5
Code Design for Non-Binary
Low-Density Parity-Check Codes

5.1. Introduction

5.1.1. Non-Binary Low-Density Parity-Check Codes
Non-binary LDPC (NB-LDPC) codes are block codes defined by an mc×nc sparse parity-
check matrix H , where the non-zero entries of H are taken from the finite field Fq with
q > 2. In this chapter, we consider only NB-LDPC codes over binary extension fields with
q = 2o, o ∈ N. As for binary LDPC codes, the parity-check matrix H can be represented
by a bipartite graph and each codeword symbol vj ∈ F2o is represented by one of the nc
VNs vj, j = 1, . . . , nc, in the graph. The mc linear constraints are represented by CNs ci,
i = 1, . . . ,mc. If the edge label hij ∈ F2o is non-zero, then there is an edge between vj and
ci. Note that for binary LDPC codes, the edge labels hij were allowed to take values in
F2 only.
We concentrate on a special class of NB-LDPC codes, namely ultra-sparse regular LDPC

codes, which have a constant VN degree of dv = 2 and a constant CN degree dc. In graph
theory, ultra-sparse NB-LDPC are also known as cycle codes [177]. Their design rate is
Rc,d = 1− 2/dc.
Previous works have shown that the ultra-sparse structure facilitates the design of graphs

with a large girth [178] even for small blocklengths1. As a result, they clearly outperform
the binary counterparts for short blocklengths. All discussed codes in this section further
have a QC structure. It was shown in [179, Corollary 2.1] that QC ultra-sparse NB-LDPC

1The choice for ultra-sparse codes with dv = 2 is also motivated by DE results for NB-LDPC codes
over large field orders, e.g., F64 and above. Here, an optimization of the degree distributions shows a
dominating fraction of degree two VNs.
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codes always have a girth of the form g = 4 · i, i ∈ N.
While the girth properties of ultra-sparse NB-LDPC codes are beneficial, their minimum

distance scales only logarithmically with the blocklength [180, Sec. IV-E] so that a careful
design and selection of the non-zero coefficients hij in the parity-check matrix is needed.
We discuss this aspect in Sec. 5.1.3.

5.1.2. Decoding of Non-Binary Low-Density Parity-Check Codes

NB-LDPC codes are decoded by an NB version of the SPA of Sec. 4.1.4 to calculate
an approximation of the symbol-MAP probability PV |Y (vj|y), j ∈ 1, . . . , nc, where y =
(y1, y2, . . . , yn) is the vector of channel observations. The variable α denotes the primitive
element of Fq in the following, see Sec. 2.3.5.
We define the VN to CN message vector for the `-th iteration as

m(`)
vj→ci =




m(`)
vj→ci(0)

m(`)
vj→ci(α

0)
...

m(`)
vj→ci (αq−2)



. (5.1)

We discuss the initialization of (5.1) for ` = 0 and the derivation of the decoder soft
information in greater detail in Sec. 5.2 and Sec. 5.3.
The CN to VN vector for the `-th iteration is

m(`)
ci→vj =




m(`)
ci→vj(0)

m(`)
ci→vj(α

0)
...

m(`)
ci→vj (αq−2)



. (5.2)

We now derive the expressions for the respective CN and VN updates. The CNs im-
plement an NB SPC code, i.e., for the i-th CN with degree dc and neighbors N (ci) =
{vj1 , . . . , vjdc

} the incoming messages must fulfill

dc∑

l=1
hijlvjl = 0. (5.3)

Hence, we have for β ∈ F2o

mci→vj(β) = Pr
(
hij1Mvj1→ci + . . .+ hijβ + . . . hijdc

Mvjdc
→ci = 0

)
(5.4)

whereMvj→ci denotes the RV of the message from the j-th VN to the i-th CN. Their PMF
is given by (5.1). Regarding (5.3), we introduce the short hand notation vπj = hijvj. The
dependence of vπj on the i-th CN is assumed from the context. Now, (5.3) can be written
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as
dc∑

l=1
vπjl = 0 (5.5)

and the PMFs of the RV Mvπj→ci are obtained by cyclicly shifting the entries of the PMF
vector (5.1) except for the first one, i.e., for hij = αl, we have

PMvπ
j
→ci

(αk) = PMvj→ci
(αk−l), k = 0, . . . , 2o − 2. (5.6)

For instance, we get

m
(`)
vπj→ci =




m(`)
vj→ci(0)

m(`)
vj→ci(α

q−2)
...

m(`)
vj→ci (αq−4)

m(`)
vj→ci(α

q−3)




for hij = α1 (5.7)

and

m
(`)
vπj→ci =




m(`)
vj→ci(0)

m(`)
vj→ci(α

q−3)
...

m(`)
vj→ci (αq−5)

m(`)
vj→ci (αq−4)




for hij = α2. (5.8)

Correspondingly, we have

mci→vj(β) = Pr
(
Mvπj1→ci + . . .+ hijβ + . . .Mvπjdc

→ci = 0
)
. (5.9)

Unfortunately, no closed form expression can be given for (5.9) as it was possible for the
binary case, see (4.12). Instead, the probability is determined by a convolution which has
complexity O(d2

c), i.e.,

mci→vj = ~
vj′∈N (ci)\{vj}

mvπ
j′→ci . (5.10)

However, for NB codes over binary extension fields computational savings are possible
by implementing the convolution as a componentwise multiplication by the Hadamard
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transform (HT) [181]. As a result (5.10) can be written as

mci→vj = H




⊙

vj′∈N (ci)\{vj}
H
(
mvπ

j′→ci

)

 (5.11)

where the operator H(·) denotes the self-inverse HT given by

H(a) = 1√
2

(
+1 +1
+1 −1

)⊗o
a. (5.12)

Efficient HT implementations reduce the complexity of calculating (5.10) to O(dc log(dc)).
The VNs implement an RC such that

mvj→ci =

 ⊙

ci′∈N (vj)\{ci}
mcπ

i′→vj


�mdec,j (5.13)

wheremdec,j is the decoder soft information andmcπi→vj denotes the PMF after the reverse
cyclic shift when going from the CNs to the VNs, i.e., for hij = αk, we have

PMcπ
i
→vj

(αk) = PMci→vj
(αk+l). (5.14)

For instance, we get

m
(`)
cπi→vj =




m(`)
ci→cj(0)

m(`)
ci→vj(α

1)
...

m(`)
ci→vj (αq−2)
m(`)

ci→vj(α
0)




for hij = α (5.15)

and

m
(`)
cπi→vj =




m(`)
ci→vj(0)

m(`)
ci→vj(α

2)
...

m(`)
ci→vj (α0)

m(`)
ci→vj(α

1)




for hij = α2. (5.16)

If a certain number of iterations has been performed or if a stopping criteria has been
reached, then the a posteriori probability vector of the j-th VN is

mapp,j =

 ⊙

c∈N (vj)
mcπ→vj


�mdec,j. (5.17)
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Algorithm 8 Sum-Product Decoding of NB-LDPC codes in the Probability Domain.
1: Given: m(0)

vj→ci = mdec,j ,∀j = 1, . . . , nc, i ∈ N (vj).
2: ` = 0
3: while ` ≤ `max do
4: // CN update
5: for i = 1, . . . ,mc do
6: for j ∈ N (ci) do
7: m

(`)
ci→vj = ~vj′∈N (ci)\{vj}m

(`)
vπ
j′→ci

8: end for
9: end for
10: // VN update
11: for j = 1, . . . , nc do
12: for i ∈ N (vj) do
13: m

(`)
vj→ci =

(⊙
ci′∈N (vj)\{ci}m

(`)
cπ
i′→vj

)
�mdec,j

14: Normalize m(`)
vj→ci .

15: end for
16: end for
17: ` = `+ 1
18: end while
19: // Final codeword symbol estimate
20: for j = 1, . . . , nc do
21: mapp,j =

(⊙
i′∈N (vj)m

(`)
ci′→vj

)
�mdec,j

22: v̂j = argmaxv∈Fq mapp,j(v)
23: end for

The decoding algorithm in the probability domain is summarized in Algorithm 8.

5.1.3. Optimization of the Non-Zero Parity-Check Matrix Entries
In contrast to binary LDPC codes, NB-LDPC codes offer an additional degree of freedom
in their design by choosing the non-zero coefficients in the parity-check matrix. Even in
early works [182] it was noted that a deliberate choice may yield a better performance
(both in terms of the error floor and waterfall behavior) compared to a purely random
selection. In [180] the authors propose several strategies to mitigate these issues.
We illustrate the problem by means of a (dv = 2, dc = 8) code with nc = 192 for 8-ASK

and an SE of 1.5 bpcu in Fig. 5.1. A random choice of the non-zero coefficients yields a
high error floor which is due to low weight NB codewords with dmin = 4. We also plot the
undetected error rate and see that it coincides with the FER, which suggest that all frame
errors are caused by wrong codewords.
To circumvent this, we choose the coefficients such that the minimum distance of the

code formed by the binary image of the non-zero coefficients in a row is maximized [180].
For a NB-LDPC code over F2o with a CN degree of dc, the code of the binary image of
a row has parameters (dc · o, (dc − 1) · o). The best set of coefficients can be found by
exhaustive search for moderate field sizes and CN degrees. For a degree dc CN and a field
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Figure 5.1.: Influence of the choice of the non-zero coefficients in the parity-check matrix
of a (dv = 2, dc = 8) NB-LDPC code over F64 on the decoding performance.

size of 2o, we have to evaluate the minimum distance of (2o − 1)dc different binary codes.
As these codes usually have a high rate, this computation should be performed in the
dual domain by means of the MacWilliams identity [183]. Recently, approximate methods
for large field sizes and large dc were considered as well [184]. For the considered code
parameters of Fig. 5.1, we find the best choice of coefficients as

(
α0 α6 α13 α21 α28 α36 α44 α54

)
(5.18)

where the underlying primitive polynomial is 1 + x + x6. For the optimized code we use
permutations of (5.18) for each row. The code of the binary image associated with (5.18)
has dmin = 3 with a multiplicity of 276. In contrast, the binary codes associated with the
random choice of coefficients in Fig. 5.1 had all dmin = 2 with multiplicities ranging from
6 to 25.

5.1.4. Non-Binary Codes and Probabilistic Amplitude Shaping
The combination of PAS and NB codes was suggested in [185]. Herein, the authors show
that the parity symbols after encoding are distributed uniformly asymptotically, even
if the information symbols follow a non-uniform distribution. This property enables a
straightforward application of PAS, as it extends the uniform check bit assumption [9,
Fig. 2] to higher order fields. Further, the authors propose a new design for circular QAM
constellations that can be used with NB codes over prime fields of order larger than two.
In what follows, we propose a different strategy and consider only NB codes over the

extension field Fq with q = 2o. This specific choice enables low complexity decoding
by using the HT at the CNs while benefitting from the excellent performance for short
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blocklengths. Two approaches are discussed in Sec. 5.2 and Sec. 5.3, respectively. The first
approach employs SMD and requires that the field and constellation order are matched.
The second approach uses BMD and allows any combination of field and constellation
order. At the same time, the loss of BMD is limited to a small value because of shaping.

5.2. Symbol-Metric Decoding of Non-Binary LDPC Codes

Source DM

βA(·) P β−1
S (·)

βS(·)

χ−1
S (·)

�/
kdm

/
kc · o− (m− 1)n

/
n

/
n(m− 1)/o

/
mc

/
mco

/ n

xn = an � sn

Figure 5.2.: Transmitter system model for PAS with SMD and NB Fq codes and q = 2o.

The PAS system model for NB codes is depicted in Fig. 5.2 and is a natural extension of
the binary case shown in Fig. 3.7. Again, we exploit the symmetry property of the optimal
input distribution PX to factorize it into independent RVs referring to the amplitude and
sign (3.26). We consider a 2m-ASK constellation. The sign distribution PS is uniform on
S = {−1,+1}, while PA is non-uniform on the amplitude set A = {1, 3, . . . , 2m − 1}.
We first use Rc = (m− 1)/m codes. In Fig. 5.2, this corresponds to the absence of the

dashed lines. The DM maps kdm data bits to n amplitudes. The FEC encoder generates
redundancy, which is mapped to the n signs. FEC encoding is systematic to preserve the
amplitude distribution imposed by the DM. The combination of an amplitude and a sign
results in one channel input symbol. The n channel input symbols can be represented by
m · n bits, which requires an NB code with blocklength nc = (nm)/o. Each amplitude
requires (m−1) bits for its representation and we require o = λ(m−1) when 2m-ASK PAS
is combined with NB codes over F2o . The variable λ ∈ N defines the number of amplitudes
in A which are mapped to one F2o symbol. We denote this mapping as

βA : Aλ → F2o . (5.19)

The amplitude part has a size of kc = n/λ symbols and is collected in the vector u ∈ Fkc
2o .

Systematic encoding withG =
(
I P

)
yields the parity part p = uP of (1−Rc)nc symbols

that are approximately uniformly distributed [185, Theorem I]. The decoder assumes that
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the signs are uniformly distributed. Using the inverse of the mapping

βS : {0, 1}o → F2o (5.20)

we relate each parity symbol to a sign sequence.
For the decoder input we calculate the vectors

mdec,j =




PV |Y (0|y)
PV |Y (α0|y)

...
PV |Y (αq−2|y)



, j = 1, . . . , nc. (5.21)

The expression PV |Y (v|yj) denotes the probability that the j-th codeword symbol is v ∈ F2o

when yj was received.
We distinguish two cases for the decoder soft information vectors mdec,j depending on

whether the codeword symbol v refers to an amplitude (5.19) or sign mapping (5.20). Let
yA
j = (yj1, . . . , yjλ) be the vector of all received symbols that resulted from the transmission

of the amplitudes associated with the j-th codeword symbol. Similarly, the vector yS
j =

(yj1, . . . , yjo) refers to the received symbols that resulted from the transmission of the signs
associated with the j-th codeword symbol.

Amplitude Mappings For j = 1, . . . , kc and a = (a1, . . . , aλ) = β−1
A (v), assuming uniform

signs, the demapper calculates the metric

PV |Y (v|yA
j ) ∝ PV,Y (v,yA

j ) = PAY (β−1
A (v),yA

j )

=
λ∏

l=1
PAY (al, yjl)

=
λ∏

l=1

∑

s∈{±1}
PXY (al · s, yjl)

=
λ∏

l=1

1
2PA(al)

∑

s∈{±1}
pY |X(yjl|al · s). (5.22)

Sign Mappings For the parity part j = kc + 1, . . . , nc and s =
(
s1, . . . , so

)
= β−1

S (v),
assuming uniform signs, the demapper calculates the metric

PV |Y (v|yS
j ) ∝ PV Y (v,yS

j ) = PSY (β−1
S (v),yS

j )

=
o∏

l=1
PSY (sl, yjl)

=
o∏

l=1

∑

x∈X :
sign(x)=sl

PXY (x, yjl)
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=
o∏

l=1

1
2
∑

a∈A
PY |X(yjl|a · sl)PA(a). (5.23)

Example 16. We illustrate the setting for 8-ASK, i.e., m = 3, and a rate Rc = 2/3
code over F16 (o = 4) with blocklength nc = 3. Using these parameters, we have
n = (nc · o)/m = 4 channel uses. Each of the two symbols in the information part
(v1, v2) represents λ = o/(m − 1) = 4/(3 − 1) = 2 amplitudes. The last codeword
symbol forms the parity part and is mapped to four sign bits.

v1 v2 v3

u p

a1, a2

yA
1 = (y1, y2)

a3, a4

yA
2 = (y3, y4)

s1, s2, s3, s4

yS
3 = (y1, y2, y3, y4)

As for the binary case, PAS can also be operated with NB codes of rates larger than
(m − 1)/m. In this case, (γn)/o information symbols are used as signs, see (3.30). This
means (5.22) must be applied only for the first n/λ variables nodes (nodes associated with
amplitude mappings) and the remaining n/o variable nodes (nodes associated with sign
mappings) are initialized with (5.23).

Example 17. We illustrate this setting for m = 3 and a rate Rc = 5/6 code over
F16 (o = 4) with blocklength nc = 6. Using these parameters, we have a number of
n = (nc · o)/m = 8 channel uses. Four of the five codeword symbols in the information
part (v1, v2, v3, v4) represent amplitudes. The last information symbol (v5) as well as
the parity symbol (v6) originate from sign mappings.

v1 v2 v3 v4 v5 v6

u p

a1, a2

yA
1 = (y1, y2)

a3, a4

yA
2 = (y3, y4)

a5, a6

yA
3 = (y5, y6)

a7, a8

yA
4 = (y7, y8)

s1, s2, s3, s4

(y1, y2, y3, y4)︸ ︷︷ ︸
yS

5

s5, s6, s7, s8

(y5, y6, y7, y8)︸ ︷︷ ︸
yS

6

5.3. Bit-Metric Decoding of Non-Binary LDPC Codes
5.3.1. Bit-Metric Decoding for Uniform Constellations
We now describe how a NB-LDPC code can be operated with BMD and uniform signaling.
The blockwise application of (5.20) maps a length kc · o vector of uniformly distributed
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bits to kc symbols of F2o . This sequence is encoded into a length nc symbols codeword
v with binary representation vbin = (vbin,1, vbin,2, . . . , vbin,nc·o). We assume nc · o = m · n
for simplicity in the following. Eventually, the modulator maps blocks of m bits to one
2m-ASK symbol

xi = χ−1(vbin,(i−1)·m+1, . . . , vbin,i·m), i = 1, . . . , n.

At the receiver side, the received sequence is demodulated by calculating the entries of
the soft information vector ldec = (ldec,1, ldec,2, . . . , ldec,m·n) where

ldec,(i−1)m+k = log
(
PBk|Y (0|yi)
PBk|Y (1|yi)

)
(5.24)

for i = 1, . . . , n and k = 1, . . . ,m. The distribution PBk|Y was derived in (3.9). The input
(5.21) to the NB-LDPC decoder is calculated for mdec,j = (mdec,j(0), . . . ,mdec,j(αq−2)) as

mdec,j(c) = P̃j(c)∑
c′∈Fq P̃j(c′)

with P̃j(c) =
o∏

l=1
P̃jl, c ∈ Fq (5.25)

for j = 1, . . . , nc and l = 1, . . . , o, where

P̃j,l =




exp(ldec,(j−1)·o+l)
1+exp(ldec,(j−1)·o+l)

, if [β−1
Fq

(c)]l = 0,
1

1+exp(ldec,(j−1)·o+l)
, if [β−1

Fq
(c)]l = 1.

(5.26)

Of course, an interleaver can be included in the setup above, e.g., for fading channels.

5.3.2. Bit-Metric Decoding for PAS
The same principle as shown in Sec. 5.3.1 can also be applied to PAS and is shown in
Fig. 5.3. A number kdm of uniformly distributed information bits are matched to n am-
plitudes following a specified distribution. Using the amplitude mapping χA (3.27) the
amplitudes are mapped to a length n · (m − 1) bit string, mapped to F2o symbols and
encoded into the codeword v. A modulator then maps the binary image of v to channel
inputs x ∈ X via a consecutive application of χ−1, while taking the position of amplitude
and sign bits into account.
At the receiver side, the demapper calculates a soft information vector as shown in

(5.24), (5.25) and (5.26) for the uniform scenario.

Example 18. Consider a length nc = 3, rate Rc = 2/3 code over F32 (o = 5), while
using an 8-ASK constellation (m = 3) such that the channel is used n = (nc ·o)/m = 5
times with constellation symbols x1, x2, x3, x4, x5. The length m binary label of the
i-th channel symbol is referred to as bi,1 . . . bi,m. That is, for the given scenario, we
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(a) Transmitter component
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
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

ûS
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Figure 5.3.: Operating a rate Rc = kc/nc NB-LDPC code with PAS and BMD. The dashed
lines are needed for code rates Rc > (m− 1)/m. The functions χA(·) and β(·)
are applied to each amplitude in the vector a and chunks of o consecutive bits
in abin, respectively.

have χ(xi) = bi,1bi,2bi,3. Conventional PAS with NB codes and SMD (see Sec. 5.2) is
not possible for these parameters, as o = 5 is not an integer multiple of m − 1 = 2.
After encoding, the binary image of the codeword v = (v1, v2, v3) is

vbin = (b1,2b1,3b2,2b2,3b3,2︸ ︷︷ ︸
β−1

S (c1)

, b3,3b4,2b4,3b5,2b5,3︸ ︷︷ ︸
β−1

S (v2)

, b1,1b2,1b3,1b4,1b5,1︸ ︷︷ ︸
β−1

S (v3)

).

The binary image of the parity symbol v3 ∈ F32, i.e., β−1
S (v3), provides the signs for

the five channel uses and the soft information vector reads

ldec = (l1,2l1,3l2,2l2,3l3,2l3,3l4,2l4,3l5,2l5,3l1,1l2,1l3,1l4,1l5,1) . (5.27)

Eventually, the vector ldec is combined as shown in (5.25) and (5.26) to form the
decoder a-priori soft-information.
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8-ASK 16-ASK
SE = 1.5 bpcu SE = 3bpcu

Rc 1/2 3/4 3/4 5/6
Mode uni. PAS uni. PAS

R−1
BMD [dB] 9.44 8.48 19.25 18.11

R−1
SMD [dB] 9.00 8.46 19.17 18.10

F64, BMD [dB] 9.93 8.90 – –
F64, SMD [dB] 9.53 8.92 – –

F256, BMD [dB] 9.91 8.93 19.79 18.54
F256, SMD [dB] – 8.93 19.85 –

Table 5.1.: MCDE thresholds and required asymptotic SNR values in dB.

5.4. Asymptotic Decoding Thresholds
We investigate the asymptotic decoding thresholds for SMD and BMD with NB-LDPC
codes. As shown in [186], DE for NB-LDPC codes can exploit symmetry of the involved
messages as well as the all-zero codeword assumption. Despite these properties, DE still
turns out to be challenging for NB-LDPC codes, as it requires to track a density for each
field element. To circumvent this difficulty, we resort to Monte Carlo Density Evolution
(MCDE) which is explained in detail in Appendix A.6.
The results of the MCDE analysis are shown in Table 5.1. For the Rtx = 1.5 bpcu case,

we observe a gap of 0.4 dB between uniform signaling with SMD and BMD, while there is
no significant loss for the shaped case. Further, we note that going from F64 to F256 does
not give significant performance gains with respect to the decoding threshold.
For Rtx = 3.0 bpcu, the gap between SMD and BMD in the uniform case decreases to

0.06 dB as predicted by the achievable rate analysis. The gain of about 1.1 dB for shaped
signaling is well reflected in the decoding thresholds as well.

5.5. Finite Length Simulation Results
In this section, we compare both approaches by means of finite length simulations for
8-ASK with Rtx = 1.5 bpcu (n = 192) and 16-ASK with Rtx = 3.0 bpcu (n = 288). The
DM parameters for the 8-ASK scenario and n = 192 are the same as in Table 3.9. For the
16-ASK case, we summarize the parameters in Table 5.2.
The NB-LDPC codes were constructed from protographs of the form

[2 2 . . . 2︸ ︷︷ ︸
dc/2

]

via cyclic liftings and a PEG-like algorithm [154]. All constructed matrices have girth 8.
The coefficients were optimized according to the approach of Sec. 5.1.3. We performed a
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maximum of 200 BP iterations for decoding.

Parameter Value
kdm 768
n 288
Rdm 2.667
tnA {64, 60, 51, 41, 30, 21, 13, 8}
PA (0.2222, 0.2083, 0.1771, 0.1424, 0.1042, 0.0729, 0.0451, 0.0278)
Rloss 0.0903 bits

(a) CCDM

Parameter Value
kdm 768
n 288
Rdm 2.667
W (a) a2

PA (0.2413, 0.2205, 0.1841, 0.1403, 0.0976, 0.0618, 0.0357, 0.0187)
Rloss 0.011 bits

(b) SMDM

Table 5.2.: DM parameters for the 16-ASK, Rtx = 3.0 bpcu setup.

In Fig. 5.4, we show the performance for 8-ASK and a target SE of 1.5 bpcu. We consider
codes over F64 and F256. The PAS setting uses a rate Rc = 3/4 code (dv = 2, dc = 8),
while uniform signaling employs a rate Rc = 1/2 code (dv = 2, dc = 4) As suggested from
the decoding thresholds in Table 5.1, the codes over both fields perform very similar to
each other. For uniform signaling, we see a significant gain of 0.47 dB of SMD over BMD.
We note that the plot does not include any SMD results for the F256 code and uniform
signaling, as such an operation is not possible (m = 3 is not an integer multiple of o = 8),
see Sec. 5.2. The PAS results use SMDM and achieve a gain of 0.72 dB over uniform
signaling with SMD. Further, SMD and BMD practically coincide in the shaped case as
could be expected from Table 5.1. We complement the NB results with the binary ones
from Fig. 3.32 in which the 5G LDPC codes are used. We see that the NB codes clearly
outperform the binary codes for low FERs. Further, to put the results into perspective,
we also include the SPB and RCUB from Sec. 2.3.7, where the latter is evaluated for SMD
and the distribution realized by SMDM (see Table 3.9). At an FER of 10−4, we operate
0.93 dB from the SPB and 0.3 dB from the RCUB.
In Fig. 5.5, we show the average number of iterations until convergence (i.e., until the

syndrome is zero) for all of the considered signaling options of Fig. 5.4. For high SNRs,
NB codes usually require only two to three iterations. We also observe that the shaped
modes require less iterations for the same FER.
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Figure 5.4.: Coded performance of NB-LDPC codes for an SE of 1.5 bpcu and n = 192.

In Fig. 5.6 we show the performance for 16-ASK and a target SE of 3.0 bpcu. The PAS
setting uses BMD with a rate Rc = 5/6 code (dv = 2, dc = 12) over F256. SMD with the
setup of Sec. 5.2 is not possible here, as the extension order (8) is not an integer multiple
of the number of amplitude bits (3). Uniform signaling employs a rate Rc = 3/4 code
(dv = 2, dc = 8) over F256, while both SMD and BMD is used.
We observe a significant performance gain of 0.53 dB of SMDM over CCDM, which

matches the one predicted by comparing the respective rate loss values ((0.0903− 0.011) ·
6 dB ≈ 0.48 dB) of Table 5.2. Having the results of Table 3.9 in mind (which even considers
a smaller output blocklength of n = 192 channel uses, but only predicts an improvement
by 0.19 dB) this may look surprising, but it is due to the larger 8-ary output alphabet of
the DMs. The rate loss also depends on the cardinality of the output alphabet.
The gain over uniform signaling is 1.25 dB at an FER of 10−4 Further, we see that the
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Figure 5.5.: Comparison of the number of required decoding iterations for the setup of
Fig. 5.4.

performance of the uniform setup is very similar for SMD and BMD. At an FER of 10−4,
the gap to the SPB is 0.91 dB and 0.4 dB to the RCUB. As before, we evaluate the latter
with the SMDM output distribution of Table 5.2b.
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Figure 5.6.: Coded performance of NB-LDPC codes for an SE of 3.0 bpcu and n = 288.



6
Applications to Optical Communications
To fully characterize the performance of optical transceivers, one must conduct trans-
mission experiments. In the following, we consider the DSP (e.g., sampling, chromatic
dispersion compensation, equalization, phase noise compensation) and the optical channel
as a black box which provides the discrete time receive samples.
For a given experimental setup (e.g., input power, transmission distance, DSP and mod-

ulation setting), we transmit a test sequence xn and measure a noisy observation yn. The n
entries x1 . . . xn correspond to n real-valued ASK symbols. In case of 2D modulation, two
successive entries of xn correspond to the in-phase and quadrature components of a QAM
symbol; if in addition polarization division multiplexing is applied, four successive entries
of xn correspond to the in-phase and quadrature components of the two polarizations.

6.1. Blind Estimation of Shaping Parameters
PAS gained much interest in the field of optical communications to increase the SE and
flexibility of transceivers. Several metrics have been suggested to characterize the perfor-
mance limits of a coded modulation system, e.g., GMI [187], normalized generalized mutual
information (NGMI) [188, 189] and cross entropy based (mismatched) uncertainty [63], see
also Sec. 3.3. The essential component of these metrics is a simple and tractable model of
the optical communication channel as seen by the FEC decoder.
A pragmatic and empirically accurate model to describe the accumulated noise at the

receiver after transmission over a long, dispersion-uncompensated fiber is an AWGN chan-
nel [190, 191]. As usual, its parameters (e.g., noise variance, gain) must be estimated
at the receiver. For PS, the receiver also needs to know the distribution of the transmit
symbols to achieve the best performance [192]. Usually, these parameters are either known
or obtained by data-aided (DA) ML estimation using both the transmitted and received
data [13, Sec. III-B]. In general, the latter approach should be used with caution, as it
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may overestimate the achievable rates.
In this section, we propose an unsupervised learning approach based on expectation

maximization (EM) that estimates all model parameters for a decoding metric suitable for
PAS and SD-FEC schemes in a blind fashion. The solution uses only the channel outputs
and learns all relevant parameters on the fly. This is particularly important for PAS which
is inherently rate flexible and a separate signaling of the modulation parameters is undesir-
able. We validate the approach by using recorded data from transmission experiments [13]
and compare to DA estimation.

6.1.1. Maximum-Likelihood Estimation

We first consider ML estimation to find the parameters θ ∈ Rn of a model that “explains”
the observations1 yi, i = 1, . . . , N . The model is commonly given by a PDF pY N (·;θ) or
PMF PY N (·;θ). We assume a memoryless model for the observations yN such that

pY N (yN ;θ) =
N∏

i=1
pYi(yi;θ). (6.1)

The ML problem is

θ̂ = argmax
θ

N∏

i=1
pYi(yi;θ) = argmax

θ

N∑

i=1
ln (pYi(yi;θ))

︸ ︷︷ ︸
L(θ)

. (6.2)

We refer to the factors in (6.2) as likelihoods, and the summands as log-likelihoods. The
function L(θ) is called a log-likelihood function and it follows by introducing the logarithm.
Taking logarithms is useful when dealing with exponential models [193] that often appear
in practice.
We assume that the transmitter sends a sequence of N pilot symbols xi, i = 1, . . . , N ,

that the receiver knows, and the AWGN model (3.1) becomes

Yi = ∆xi +Ni, i = 1, . . . , N (6.3)

where the Ni are independent and identically distributed as N (0, σ2). We collect the model
parameters θ1 = ∆ and θ2 = σ2 into the vector θ = (θ1, θ2) and use (6.2) (recognizing that
Yi ∼ N (∆xi, σ2)) to obtain

θ̂ = argmax
θ

N∑

i=1
ln (pYi(yi;θ)) = argmax

θ

N∑

i=1
−1

2 ln(2πθ2)− (yi − θ1xi)2

2θ2
︸ ︷︷ ︸

L(θ)

. (6.4)

1In the context of supervised/unsupervised learning, the model observations are also called labels.
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Taking derivatives and equating to zero, we have

∇L(θML) =




∑N
i=1

(yi−θML,1xi)xi
θML,2

∑N
i=1

(yi−θML,1xi)2

2θ2
ML,2

− N
2θML,2


 = 0 (6.5)

so that

θ̂ML,1 = ∆̂ =
∑N
i=1 yixi∑N
i=1 x

2
i

(6.6)

θ̂ML,2 = σ̂2 = 1
N

N∑

i=1
(yi − xiθ̂1)2. (6.7)

These are the ML estimates because the problem is convex, as can be checked via the
Hessian. The receiver uses these parameter estimates for detection and decoding, e.g., for
calculating soft information for the FEC decoder (4.18).

6.1.2. Expectation Maximization
Introduction

We recall the definition of the Kullback-Leibler divergence (2.46) and use the log-sum
identity [30, Sec. 1.9.1]. Consider positive ak and non-negative bk for k = 1, . . . , K, and
suppose that at least one of the bk is positive. Let Sa = ∑K

k=1 ak and Sb = ∑K
k=1 bk, and

define PA(k) = ak/Sa and PB(k) = bk/Sb for k = 1, . . . , K. We have

K∑

k=1
ak log

(
ak
bk

)
= Sa log

(
Sa
Sb

)
+ Sa D(PA||PB). (6.8)

Now suppose that we wish to perform the same task as before but without sending pilots.
Instead, we know only that the Xi are taken from a discrete and finite set X and have
the respective distributions PXi , i = 1, . . . , N . The receiver has access only to the labels
yi, i = 1, . . . , N and the ML rule is

θ̂ = argmax
θ

N∑

i=1
ln (pYi(yi;θ)) = argmax

θ

N∑

i=1
ln
(∑

x∈X
pYiXi(yi, x;θ)

)

︸ ︷︷ ︸
L(θ)

. (6.9)

Compared to (6.4), solving for the stationary points of (6.9) is challenging and no closed
form solution can be given for most cases because of the marginalizing over the latent or
hidden variables Xi. If we knew the latent variables Xi, we could group the observations
based on the originally transmitted constellation point, and apply ML estimation with the
pilots. To simplify the problem and come up with a solution of (6.9), the idea of EM is
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the following: Break the ML estimation in two parts, namely:

1. First, calculate a “soft” assignment to the latent variables.

2. Second, perform the desired parameter optimization.

The EM algorithm was described by Dempster, Laird and Rubin [194] in 1977.

Evidence Lower Bound (ELBO)

Consider the log-likelihood function from (6.9):

L(θ) =
N∑

i=1
ln
(∑

x∈X
pYiXi(yi, x;θ)

)
(6.10)

where pYiXi(y, x;θ) = PXi(x;θ)pY |X(y|x;θ) and where we abuse notation by writing
pYiXi(·;θ) as a density. We artificially augment L(θ) by N auxiliary probability distri-
butions QXi|Yi(·|yi), i = 1, . . . , N and exploit that ∑x∈X QXi|Yi(x|yi) = 1:

L(θ) =
N∑

i=1

(∑

x∈X
QXi|Yi(x|yi)

)
ln
(∑

x∈X pYiXi(yi, x;θ)
∑
x∈X QXi|Yi(x|yi)

)

=
N∑

i=1

[∑

x∈X
QXi|Yi(x|yi) ln

(
pYiXi(yi, x;θ)
QXi|Yi(x|yi)

)]
+ D

(
QXi|Yi(·|yi)||PXi|Yi(·|yi;θ)

)
(6.11)

where we have applied the log-sum identity (6.8) with

ax := QXi|Yi(x|yi) and bx := pYiXi(yi, x;θ) (6.12)

so that Sa = 1 and Sb = pY (yi;θ). We thus have

L(θ) ≥ E(θ) :=
N∑

i=1

∑

x∈X
QXi|Yi(x|yi) ln

(
pYiXi(yi, x;θ)
QXi|Yi(x|yi)

)
(6.13)

where E(θ) is referred to as the evidence lower bound (ELBO). Moreover, equality holds
in (6.13) if and only if

QXi|Yi(x|yi) = PXi|Yi(x|yi;θ), ∀x ∈ X , ∀i = 1, . . . , N. (6.14)

The ELBO is the fundamental building block of the EM algorithm summarized in Al-
gorithm 9.
We make several remarks.

. Various approaches can be used to check convergence. For instance, the algorithm
can be stopped after a certain number of iterations if the value ‖θ(t) − θ(t−1)‖ is
small, or if L(θ(t))− L(θ(t−1)) is small.
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Algorithm 9 Expectation Maximization
1: t = 1
2: Initialize θ(1) with a good starting value.
3: while convergence criteria is not met do
4: E-step: Compute

Q
(t)
Xi|Yi(x|yi) = PXi|Yi

(
x|yi;θ(t)

)
, ∀x ∈ X , ∀i = 1, . . . , N

5: M-step: Compute

θ(t+1) = argmax
θ

N∑

i=1

∑

x∈X
Q

(t)
Xi|Yi(x|yi) ln (pYiXi (yi, x;θ))

6: t = t+ 1
7: end while

. Initializing the EM algorithm with different starting values θ(1) and choosing the
outcome with the highest objective function value may improve performance.

. The name E-step (for “expectation step”) is not self-explanatory in the above for-
mulation. The terminology comes from [194] where the E-step is written as

Q(θ,θ(t)) =
N∑

i=1
E
Q

(t)
Xi|Yi

(·|yi) [ln(pY X(yi, X;θ))] (6.15)

where Q(t)
Xi|Yi(x|yi) = PX|Y (x|yi;θ(t)), and the M-step as

θ(t+1) = argmax
θ

Q(θ,θ(t)). (6.16)

We prefer the presentation in Algorithm 9 as the required computational steps, i.e.,
computing the Q(t)

Xi|Yi(·|yi) and the maxima, are specified separately.

6.1.3. K-Means
An algorithm closely related to the EM algorithm is K-Means, a name coined by Mac-
Queen [195] in 1967, though the concept was originally formulated by Steinhaus [196] in
1957. While at Bell Labs, Llyod also formulated K-Means to find an optimal quantizer for
pulse code modulation (PCM), but the approach was not published until 19822.
We begin with the K-means problem formulation and then relate it to our approach in

the previous section. As a clustering algorithm, K-Means aims at solving the following
problem: Given a set of N points yi ∈ Rn, i = 1, . . . , N , we want to find K centers
xj ∈ Rn, j = 1, . . . , K and corresponding assignments δji ∈ {0, 1} such that the distance

2https://en.wikipedia.org/wiki/K-means_clustering#History

https://en.wikipedia.org/wiki/K-means_clustering#History
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of each point to its (representative) center is minimized. We have

min
xj , j=1,...,K

δji, j=1,...,K, i=1,...,N

N∑

i=1

K∑

j=1
δji ‖xj − yi‖2 . (6.17)

Because of the discrete nature of the assignment variables δji, solving (6.17) directly with
convex optimization techniques is not possible. However, we can pursue a two step ap-
proach that first finds the optimal centers and then updates the assignment:

1. (E-step replaced by Decision-step) Given the cluster centers xj, j = 1, . . . , K, the
optimal assignment δj∗i for the i-th point yi is found via

j∗ = argmin
j∈{1,2,...,K}

‖xj − yi‖2 . (6.18)

2. (M-step) Given an assignment δij, we can find the optimal centers by solving for a
stationary point xj as

∂

∂xj

N∑

i=1

K∑

j=1
δji ‖xj − δjiyi‖2 =

N∑

i=1
2xjδji − 2δjiyi = 0

such that
xj =

∑N
i=1 δjiyi∑N
i=1 δji

. (6.19)

6.1.4. Numerical Results
We consider the model (3.1) with circularly symmetric, complex Gaussian noise with zero
mean and variance σ2. We use the developed EM algorithm to estimate the signaling
parameters for an optical transmission experiment with PAS. The model parameters are
specified by the parameter vector θ = (∆, σ2,p) for a general PX or by θ = (∆, σ2, ν) for
an MB distribution PX (3.21), respectively. The entries of the vector p = (p1, p2, . . . , pM)
are pi = PX(xi).
The stationary points of the optimization in the M-step of Algorithm 9 are given as

∆EM
opt =

∑N
i=1

∑
x∈X Q

(t)
Xi

(x)<(yix∗)
∑n
i=1

∑
x∈X Q

(t)
Xi

(x) |x|2
(6.20)

σ2,EM
opt = 1

N

n∑

i=1

∑

x∈X
Q

(t)
Xi

(x)
∣∣∣yi −∆EM

optx
∣∣∣
2

(6.21)

pEM
j,opt = 1

N

n∑

i=1
Q

(t)
Xi

(xj) (6.22)

where pEM
opt = (pEM

1,opt, . . . , p
EM
M,opt). If we assume an MB distribution on X , the value for νopt
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is the solution of the non-linear equation

1
n

N∑

i=1
E
X∼Q(t)

Xi

[
X2
]

= EX∼P νopt
X

[
X2
]
. (6.23)

Remark 3. The EM estimation can be considered in the framework of decoding metrics
as follows: First, note that blind estimation calculates the model parameters from the
observation yn, i.e., ∆(yn), σ2(yn), PX(yn). Second, note that once the parameters are
estimated, a memoryless metric is used. Together, we have

q(xn, yn) =
n∏

i=1
q(xi, yi; ∆(yn), σ2(yn), PX(yn)) (6.24)

that is, blind parameter estimation is included in the general framework of decoding metrics
q(xn, yn). In particular, the derivations of Secs. 3.3.1 and 3.3.2 hold and no potential rate
overestimation as in the case of DA estimation can occur.

We evaluate the DA and EM approaches by comparing their achievable rate estimates.
For this, we use the obtained parameters and calculate the decoder soft information (4.18)
lik for all i = 1, . . . , N samples and k = 1, . . . ,m bit levels to evaluate (3.13) empirically
(see also (2.53) and (2.54)). The achievable rate estimate is

R̂BMD =
[
H(X)− 1

N

N∑

i=1

m∑

k=1
log2

(
1 + e−(1−2bik)lik

)]+

. (6.25)

As shown in [194], EM does not necessarily converge to the globally optimal solution of
(6.9), but usually only to a local optimum. To guarantee convergence to good parameter
values, the EM algorithm needs to be initialized carefully. For this, we choose the initial
parameter θ(0) by a modified version of K-Means [197], which uses only the channel outputs
and includes a constraint on the equi-spaced constellation points. The number of initial
clusters for K-Means is an important parameter, as not all of the M constellation points
might have been transmitted. We circumvent this problem by initializing K-Means with
a smaller number of clusters. For instance, for 64-QAM, we run the EM algorithm with
initializations obtained from K-Means with the number of clusters set to {4, 16, 36, 64} and
choose the parameter set that yields the largest R̂BMD. This corresponds to the common
practice of initializing EM with different random starting points and using the set of
parameters maximizing the objective (6.9).
To assess the performance of both schemes, we use the recorded sequences of one of

our previous transmission experiments [13], in which four shaping modes with different
entropies were investigated. The PMFs are depicted in Fig. 6.1. The length of each
sequence was N ≈ 20 000 QAM symbols. Mode 4 effectively corresponds to a 36-QAM
constellation. The results are shown in Fig. 6.2. We observe that both the DA and EM
approaches achieve the same achievable rates, showing that EM can accurately estimate
the parameters for all considered modes. EM converged in less than 30 iterations.
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Figure 6.1.: Employed distributions for evaluation of the EM approach.

6.2. Extension of Probabilistic Amplitude Shaping to
Higher Dimensions

In the previous chapters PAS was used only for one and two dimensional constellations.
For optical communications, higher dimensional constellations are of interest, too, as polar-
ization division multiplexing allows to modulate the inphase and quadrature components
of both polarizations with, e.g., one four dimensional (4D) symbol. The combination of
4D shaping with forward error correction (FEC) is discussed in [198]. The main conclusion
of [198] is that when BMD is used, conventional QAM modulations perform better than
4D shaping. This is partially attributed to the absence of good binary labels for shaped
4D constellations. In this section, we discuss the concept of quadrant shaping (QS) [199]
which extends PAS to higher dimensions. We also show that finding good binary labels is
possible with the proposed approach as a BRGC is used overall.

6.2.1. Quadrant Shaping
We consider the AWGN model

Y = ∆X +N (6.26)

where the channel inputs X ∈ X ⊂ R4 are taken from the 4-fold Cartesian product
of an M -ASK constellation. The signaling set thus has cardinality |X | = M4. As a
binary labeling, we use the BRGC for M -ASK in each dimension, i.e., we assign a length
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Figure 6.2.: Achievable rates obtained via DA and blind (EM) parameter estimation. The
sequences are taken from the transmission experiment in [13]. One loop cor-
responds to 240 km.

m = 4 log2(M) binary label for each x ∈ X via χ : X → {0, 1}m and χ(x) = b1b2 . . . bm = b.
The noise N is a multivariate Gaussian RV with stochastically independent entries that
have variance σ2. The PDF is given in (A.19). The channel output is as Y ∈ R4.
To generate the desired distribution on the constellation symbols, PAS uses a DM to

create non-uniformly distributed amplitudes and it uses the approximately uniformly dis-
tributed parity bits of a FEC code to generate the corresponding signs. This idea can be
extended to four (and higher) dimensions. The 1D amplitudes of the original PAS become
4D constellation points in the positive quadrant Q = {x ∈ X |xi ≥ 0, i = 1, 2, 3, 4} with
|Q| = 2m−4. Four sign bits choose the 4D symbol’s quadrant.

Example 19. We show an example for QS in two dimensions in the figure below. The
DM can be implemented as a LUT with eight entries.
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6.2.2. Experimental Investigation
A key enabler for PAS is the DM and most work so far considered CCDM (see Sec. 3.4.2),
which has excellent performance but introduces additional complexity because of the arith-
metic coding. For low-complexity applications, we may also use a simple LUT as DM and
select low power sequences from a (4D) hypercube consisting of the 4-fold Cartesian prod-
uct ofM -ary ASK constellations. The combination with FEC is then realized via quadrant
shaping.
We show experimentally that rate adaptation with steps of 0.5 bits/QAMsymbol (bpQs)

can be achieved with the scheme of the previous section and a simple LUT. Further, we
compare this method to conventional PAS with CCDM and uniform constellations.

System Setup

We distinguish three signaling and receiver schemes. PAS-nD-1D is the conventional set-
ting using a n-dimensional (nD) DM and 1D demapping. PAS-4D-4D uses a 4D DM
and also demaps in 4D. A variant of the latter is PAS-4D-2D, where a sub-optimal
and less complex demapping in 2D is used. The PAS-4D schemes employ 4D signaling
with an M -ASK constellation in each dimension. For the binary labeling of the con-
stellation points, we use an m = log2(M4) bit BRGC. Following the principle of QS,
mQ = m − 4 bits determine a point in a quadrant and mS = 4 bits represent the 4
sign bits. A rate adaptation can be realized by a DM based on a LUT with at most
2mQ entries, that selects a subset of 2kdm low-energy points from the 2mQ points in a
quadrant. The corresponding DM rate is Rdm = kdm bits/4D-symbol. We refer to the
resulting constellation as X . The SE is Rtx = Rdm + 4 · γ bits/4D-symbol, where γ is
the fraction of sign bits per dimension that carry additional information bits. For the
FEC code rate Rc we have γ = 1 − (1 − Rc) · log2(M). By choosing k, a rate adap-
tation with a granularity of 1 bit/4D-symbol, i.e., 0.5 bpQs is possible so that any SE
within the set {0.5, 1.0, 1.5, . . . , 2 log2(M)− 2}+ 2 · γ bpQs can be realized with the same
FEC overhead (OH). If the scheme is extended to N -dimensions (ND), a granularity of
1/(N/2) bpQs is possible. The exemplary transmission modes of this work target SEs of
3 bpQs, 4 bpQs and 5 bpQs and are summarized in Table 6.1. We assume a single FEC
code with OH = 23% (Rc = 13/16).
The calculated achievable rates for BMD and the linear AWGN channel are shown in

Fig. 6.3. We observe that the PAS-4D modes are superior to their uniform {16, 64, 256}-
QAM counterparts for all three target SEs. The loss in power efficiency due to 2D demap-
ping is at most 0.2 dB for BMD. The PAS-nD-1D modes virtually achieve Gaussian ca-
pacity.
We experimentally investigate the 4D signaling scheme for a short-reach scenario and

unrepeated transmission for 100 km, 140 km and 180 km, where the four dimensions are
transmitted as two complex dimensions in two subsequent time slots. The CCDM for PAS-
nD-1D operates in n = 6000 dimensions and the input distributions are taken from the MB
family. The setup is shown in Fig. 6.4. The data symbols are interleaved with quadrature
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Signaling mode Rtx[bpQs] |X | Rdm[bpQs] OH

PAS-4D-4D-4.5 5.0 8182 4.5 23%
PAS-4D-4D-3.5 4.0 2048 3.5 23%
PAS-4D-4D-2.5 3.0 512 2.5 23%

PAS-nD-1D-4.5 5.0 256 4.5 23%
PAS-nD-1D-3.5 4.0 256 3.5 23%
PAS-nD-1D-2.5 3.0 256 2.5 23%

16-QAM uniform 3.0 16 – 33%
64-QAM uniform 4.0 64 – 50%
256-QAM uniform 5.0 256 – 60%

Table 6.1.: Investigated signaling modes for the experiment.
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Figure 6.3.: Simulated achievable rates of several signaling strategies for the linear AWGN
channel.

phase-shift keying (QPSK) pilots at a pilot rate of 10%. A frame alignment sequence is
added at the beginning of the sequence and square root raised cosine (RRC) pulse shaping
with a roll-off factor of 0.1 is applied [200]. We employ a wave-division multiplexing
(WDM) setup with 5 external cavity lasers (ECLs, 10 kHz linewidth) on a 25GHz grid.
An arbitrary waveform generator (AWG, 20GHz) drives the two IQ modulators. The
four interferers (IQ mod 1) are combined with the central channel (IQ mod 2), a delay-
and-add polarization emulator generates a dual-polarization signal and the channels are
individually decorrelated. The transmission link consists of an erbium doped fiber amplifier
(EDFA) followed by a variable optical attenuator (VOA) that sets the total power launched
into the standard single-mode fiber (SSMF) of lengths 100 km, 140 km and 180 km. After
transmission, the central channel is demodulated using a standard preamplified coherent
receiver followed by a digital storage oscilloscope (DSO, 80 GSa/s and 33 GHz analog
bandwidth). The receiver DSP is performed offline [200].
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Figure 6.4.: Experimental setup of the optical experiment.

In back-to-back experiments, we validated that all modulation formats exhibit the same
implementation penalty in the operating regime of interest to ensure a fair comparison. The
achievable rates for the transmission experiments for link lengths of 100 km, 140 km and
180 km are shown in Fig. 6.5. To operate efficiently for all three distances (corresponding
to optimal launch powers of 9 dBm, 12 dBm and 15 dBm) at the desired SEs (dashed gray
line), the three different uniform constellations (16-, 64- and 256-QAM) would need to
be operated with three different FEC codes (see Table 6.1). The PAS modes allow a
flexible operation with a single FEC. For increased transmission lengths, and therefore
launch powers Pin, we observe that the PAS-nD-1D modes are penalized due to their
increased higher order moments and their severe impact on the non-linear interference
noise (NLIN) [201, 200]. At the respective optimal launch powers, the shaping gain of
PAS-nD-1D is 0.2 bpQs, 0.15 bpQs, and 0.04 bpQs as compared to PAS-4D-4D. However,
the PAS-4D DM is a simple LUT with at most 2kdm = 29 = 512 entries. Moreover, 2D
demapping (PAS-4D-2D) loses at most 0.1 bpQs for a target SE of 4 bpQs.
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Figure 6.5.: Achievable rates of the considered signaling strategies for the transmission
experiment.

The results show that 4D signal shaping and rate adaptation with a simple LUT based
DM allows a good trade-off between shaping gain and DM complexity. The suggested
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schemes are promising for transmission links where full fledged PAS is too complex or
penalized because of NLIN. Future work should investigate the trade-off between higher
dimensional constellations with N > 4, rate flexibility, and demapping complexity.





7
Conclusions and Outlook
In this thesis we investigated PS for higher-order modulation and developed tailored code
constructions for binary and non-binary LDPC codes. The results were presented by means
of information theoretic quantities (achievable rates and finite length bounds) as well as
simulations using various FEC codes and decoders, which validated the developed theory
and stressed its importance for system design. As an outlook, this thesis gives rise to
questions of theoretical and practical relevance that deserve attention and require further
study.
For PS we considered OOK as one example where the capacity achieving input distribu-

tion is not symmetric and PAS can not be applied. The class of channels and modulation
constraints that require such an asymmetric constellation also comprises the case of unipo-
lar PAM constellations, which play an important role for transceivers based on IM and DD,
e.g., for low cost data center applications. While shaping via TS shows significant gains
over uniform signaling, there is still a non-negligible gap motivating a new scheme that
closes this gap. For polar codes, the scheme by Honda and Yamamoto [202] provides such
a solution. In addition, studying peak-power constraints originating, e.g., from limited
extinction ratios of Mach-Zehnder modulators, is interesting from an information theo-
retic perspective. Further, PS was found to be beneficial for multi user information theory
scenarios such as dirty paper coding [203] and investigating related setups for wiretap
channels is likely to yield new insights.
In the LDPC code design part, we used the decoding threshold as our primary design

target. However, the decoding threshold is a quantity that is defined asymptotically, while
we aim at designing good practical finite length codes. This raises the question whether
codes can be designed specifically for the desired target blocklength. Machine learning
approaches [204] or genetic algorithm formulations [205, 206] may provide good frameworks
for this task. Similarly, DE assumes an infinite number of iterations, while practical
decoders often perform only 5 to 10 iterations or even less, e.g., for window decoding [172].
Recent work [207] has shown that simply adjusting the number of DE iterations may not
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yield accurate results. Another interesting aspect is the investigation of error floors for
different bit mappings for the same parity-check matrix. Numerical evidence suggests that
certain mappings yield a higher undetected error rate than others. Further, the code design
in Sec. 4.5 did not take the need for efficient encoding into consideration. It is interesting
to integrate this requirement as well.
For high throughput decoding applications, quantized LDPC decoders will become in-

creasingly important. Our studies concentrated on their performance and investigated
losses compared to the unquantized case. Future work should take the effects of a limited
number of iterations and error floors into account.
For NB-LDPC codes, the design of codes over intermediate field sizes, e.g., F32, is inter-

esting to find a trade-off between improved performance at short block lengths (compared
to binary LDPC codes) and decoding complexity. As for the binary case, one needs to find
a good optimization metric for finite length code design that is sufficiently easy to evalu-
ate. We remark that our numerical investigations showed significant deviations between
the real decoding thresholds and those obtained by existing P-EXIT approaches [208] for
NB-LDPC codes.
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Appendix

A.1. Derivation of Achievable Rates
In Sec. 2.3.3, we define the achievable rate for a certain random coding experiment as a
rate R for which the random coding exponent E(R) is positive. Hence, we need to analyze
the function

E(R) = max
0≤ρ≤1

(E0(ρ)− ρR)

This is an optimization problem with affine inequality constraints, for which we can use the
Karush-Kuhn-Tucker (KKT) conditions [209] to obtain insights. The Lagrangian function
is

L(ρ, µ, λ) = E0(ρ)− ρR + µρ+ λ(1− ρ).

Primal feasibility (PF):

. ρ ≥ 0

. ρ ≤ 1

Dual feasibility (DF):

. E ′0(ρ)−R + µ− λ = 0

. µ ≥ 0

. λ ≥ 0
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Complementary slackness (CS):

. µρ = 0

. λ(1− ρ) = 0

Depending on the Lagrangian variables and the CS constraints we can analyze different
cases:

1. Case 1: µ 6= 0, λ 6= 0.
This assumption leads to a contradiction. µ 6= 0 implies ρ = 0, but at the same time
λ 6= 0⇒ ρ = 1, which is not possible.

2. Case 2: µ 6= 0, λ = 0. µ 6= 0 implies ρ = 0 and E ′0(0)−R+µ = 0, i.e., for R ≥ E ′0(0).

3. Case 3: µ = 0, λ 6= 0. λ 6= 0 implies ρ = 1 and E ′0(1)−R−λ = 0, i.e., for R ≤ E ′0(1).

4. Case 4: µ = 0, λ = 0. We have 0 < ρ < 1 and E ′0(ρ)−R = 0.

From the four cases above, we can draw the following conclusions:

. For 0 ≤ R < E ′0(1) : ρ = 1 and E(R) = E0(1)−R is linear with slope −1.

. For E ′0(1) ≤ R ≤ E ′0(0) : 0 < ρ < 1.

. For R > E ′0(0): ρ = 0, E(R) = E0(0) = 0.

The value of E ′0(1) is commonly referred to as critical rate Rcrit. Correspondingly, an
achievable rate is given by

R = ∂E0(ρ)
∂ρ

∣∣∣∣∣
ρ=0

. (A.1)

A.2. Derivation of Achievable Rates for Hard-Decision
Decoding

In (3.79) and (3.80) we derived the mismatched uncertainty expressions

U
(
qHD

SMD

)
= min

s≥0
E

− log2


 εs·1(X 6=QSW

HD (Y ))
∑
a∈X ε

s·1(a 6=QSW
HD (Y ))






U
(
qHD

BMD

)
= min

s≥0
E

− log2


 εs·

∑m

k=1 1([χ(X)]k 6=QBW,k
HD (Y ))

∑
a∈X ε

s·
∑m

k=1 1([χ(a)]k 6=QBW,k
HD (Y ))




 .



A.2. Derivation of Achievable Rates for Hard-Decision Decoding 181

Starting with the SMD case, we have

E

− log2


 εs·1(X 6=QSW

HD (Y ))
∑
a∈X ε

s·1(a 6=QSW
HD (Y ))






= −
∫

R

∑

x∈X
pY |X(y|x)PX(x) log2


 εs·1(x 6=QSW

HD (y))
∑
a∈X ε

s·1(a 6=QSW
HD (y))


 dy

= −
∑

x̂∈X

∑

x∈X
PX̂|X(x̂|x)PX(x) log2

(
εs·1(x 6= x̂)

∑
a∈X εs·1(a 6= x̂)

)
(A.2)

where we introduced

PX̂|X(x̂|x) =
∫

y∈Rx̂
pY |X(y|x) dy, x̂ ∈ X . (A.3)

Let us now investigate the term within the logarithm of (A.2) for which we have

εs·1(x 6= x̂)
∑
a∈X εs·1(a 6= x̂) =





εs

(M−1)εs+1 , x 6= x̂,
1

(M−1)εs+1 , x = x̂.
(A.4)

Therefore, we may write (A.2) as

−
∑

x,x̂∈X :
x̂=x

PX̂|X(x̂|x)PX(x) log2

(
1

(M − 1)εs + 1

)
−

∑

x,x̂∈X :
x̂ 6=x

PX̂|X(x̂|x)PX(x) log2

(
εs

(M − 1)εs + 1

)
.

(A.5)

Introducing

δSMD =
∑

x̂ 6=x
PX̂|X(x̂|x)PX(x) (A.6)

1− δSMD =
∑

x̂=x
PX̂|X(x̂|x)PX(x) (A.7)

we can reformulate (A.5) as

− (1− δSMD) log2

(
1

(M − 1)εs + 1

)
− δSMD log2

(
εs

(M − 1)εs + 1

)
(A.8)

− (1− δSMD) log2

(
1

(M − 1)εs + 1

)
− (M − 1) δSMD

M − 1 log2

(
εs

(M − 1)εs + 1

)
(A.9)

and we recognize its representation as a cross entropy (2.39). This expression is minimized
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over s if we choose

δSMD

M − 1 = εs

(M − 1)εs + 1

according to (2.47). Finally, we get

s = logε
(

δSMD

(1− δSMD)(M − 1)

)

and

U
(
qHD

SMD

)
= H2(δSMD) + δSMD log2(M − 1). (A.10)

The derivation for BMD follows similar steps:

E

− log2


 εs·

∑m

k=1 1([χ(X)]k 6=QBW,k
HD (Y ))

∑
a∈X ε

s·
∑m

k=1 1([χ(x)]k 6=QBW,k
HD (Y ))






= −
∫

R

∑

x∈X
pY |X(y|x)PX(x) log2


 εs·

∑m

k=1 1([χ(x)]k 6=QBW,k
HD (y))

∑
a∈X ε

s·
∑m

k=1 1([χ(a)]k 6=QBW,k
HD (y))


 dy

= −
∫

R

∑

x∈X
pY |X(y|x)PX(x) log2




∏m
k=1 ε

s·1([χ(x)]k 6=QBW,k
HD (y))

∑
a∈X

∏m
k=1 ε

s·1([χ(a)]k 6=QBW,k
HD (y))


 dy

= −
∫

R

∑

b∈{0,1}m
pY |B(y|b)PB(b) log2




∏m
k=1 ε

s·1(bk 6=QBW,k
HD (y))

∏m
k=1

∑
b∈{0,1} ε

s·1(b 6=QBW,k
HD (y))


 dy

= −
∫

R

∑

b∈{0,1}m
pY |B(y|b)PB(b)




m∑

k=1
log2


 εs·1(bk 6=QBW,k

HD (y))
∑
b∈{0,1} ε

s·1(b 6=QBW,k
HD (y))




 dy

= −
m∑

k=1

∫

R

∑

bk∈{0,1}
pY |Bk(y|bk)PBk(bk) log2


 εs·1(bk 6=QBW,k

HD (y))
∑
b∈{0,1} ε

s·1(b 6=QBW,k
HD (y))


 dy

= −
m∑

k=1

∑

b̂k,bk∈{0,1}
PB̂k|Bk(b̂k|bk)PBk(bk) log2


 εs·1(bk 6= b̂k)
∑
b∈{0,1} ε

s·1(b 6= b̂k)


 .

In the last step, we introduced

PB̂k|Bk(b̂|b) =
∫

Rb̂
k

pY |Bk(y|b) dy. (A.11)
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Again, we investigate the inner term of the logarithm for which we have

εs·1(b 6= b̂)
∑
b∈{0,1} ε

s·1(b 6= b̂) =




1
1+εs , b = b̂,
εs

1+εs , b 6= b̂.
(A.12)

The setting in (A.11) is an instance of a general problem where
m∑

k=1
E [f(Xk)] (A.13)

should be calculated with f : R→ R and where the RVs Xk have possibly different PMFs
but share the same support X . It is straightforward to show that

m∑

k=1
E [f(Xk)] = mE [f(Z)] (A.14)

where the PMF of the RV Z is given as

PZ(a) = 1
m

m∑

k=1
PXk(a). (A.15)

The normalization with 1/m is required to obtain a valid PMF. Exploiting this insight,
we choose

PÂA(â, a) = 1
m

m∑

k=1
PB̂k|Bk(â|a)PBk(a)

and rewrite (A.11) as

−m
∑

â,a∈{0,1}
PÂA(â, a) log2

(
εs·1(a 6= â)

∑
b∈{0,1} εs·1(b 6= â)

)

= −m




∑

a,â∈{0,1}:
a=â

PÂA(â, a) log2

( 1
1 + εs

)
+

∑

a,â∈{0,1}:
a6=â

PÂA(â, a) log2

(
εs

1 + εs

)

 .

Substituting

δBMD =
∑

a,â∈{0,1}:
a6=â

PÂA(â, a)

we have

−m
(

(1− δBMD) log2

( 1
1 + εs

)
+ δBMD log2

(
εs

1 + εs

))
(A.16)
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which is minimized over s by

δBMD = εs

1 + εs

according to (2.47) such that

s = logε
(

δBMD

1− δBMD

)
.

We obtain

U
(
qHD

BMD

)
= mH2(δBMD). (A.17)

A.3. Gauss-Hermite Quadrature Rule
The K-th order Gauss-Hermite quadrature approximate integrals of the form

∞∫

−∞
e−z2

f(z) dz ≈
K∑

i=1
wif(ξi) (A.18)

by a weighted sum [210, §3.5(v)]. The samples points ξi, i = 1, . . . , K are the roots of the
Hermite polynomial HK(x) [210, §18.3] and the weights wi, i = 1, . . . , K are given by

wi = 2K−1K!
√
π

K2HK−1(ξi)2 .

Gauss-Hermite quadratures are useful when a differential entropy or mutual information
should be calculated and the channel law is Gaussian. For many scenarios, however, we
encounter expressions that have a slightly different form than (A.18). In this case, we use
integration by substitution. In the following, we illustrate the procedure by calculating the
mutual information I(X;Y ) when the channel law pY |X(y|x) is a N -dimensional Gaussian
RV, i.e.,

pY |X(y|x) = 1
(2πσ2)N/2 exp

(
−‖y − x‖

2

2σ2

)
. (A.19)

We have

I(X;Y ) =
∫

RN

∑

a∈X
pY |X(y|a)PX(a) log2

(
pY |X(y|a)

∑
b∈X pY |X(y|b)PX(b)

)

︸ ︷︷ ︸
f(y,a)

dy

=
∑

a∈X
PX(a)

∫

RN

pY |X(y|a)f(y,a) dy
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=
∑

a∈X
PX(a)

∫

RN

Ae−
‖y−a‖2

B f(y,a) dy

= A
√
B
∑

a∈X
PX(a)

∫

RN

e−‖z‖
2
f(
√
Bz + a,a) dz

= A
√
B
∑

a∈X
PX(a)




K∑

i1=1
. . .

K∑

iN=1
wi1 · . . . · wiNf(

√
B(ξi1 , ξi2 , . . . , ξiN )T + a,a)




where we introduced the abbreviations A = 1/(2πσ2)N/2 and B = 2σ2. Gauss-Hermite
quadratures can also be used to calculate integrals involving circularly symmetric Gaussian
PDFs (3.50).

A.4. Collection of Optimized Basematrices

A.4.1. Optimized Protographs for Higher-Order Modulation

B8-PAS-3/4-Λ2=2 =




1 0 0 4 2 2 2 2 0 0 0 4
1 1 2 3 1 1 2 0 2 2 2 3
0 1 1 4 0 0 1 1 1 1 1 4


 (A.20)

B8-PAS-3/4-Λ2=0 =




0 1 4 4 2 2 2 4 0 0 0 0
2 0 4 4 0 1 0 4 1 1 1 1
1 4 3 3 1 4 3 4 2 2 2 2


 (A.21)

B4-uni-3/4 =
(

6 1 1 6 1 1 1 1
6 2 2 6 2 1 2 2

)
(A.22)

B8-uni-1/2 =




1 0 0 0 0 0 0 0 1 1 1 0
1 1 0 0 0 0 0 0 1 1 1 0
0 1 1 0 0 1 1 1 0 1 1 1
0 0 1 1 0 0 0 0 1 1 1 0
0 0 0 1 1 1 1 1 0 1 1 1
0 0 0 0 1 1 1 1 0 1 1 1




(A.23)

B16-PAS-13/16-Λ2=0 =




3 2 2 1 3 2 3 2 0 2 1 2 0 2 2 2
1 0 0 3 2 1 2 2 3 0 3 0 3 0 0 0
0 1 1 2 1 3 1 2 3 1 2 1 3 1 1 1


 (A.24)

B16-PAS-13/16-Λ2=2 =




1 0 4 0 0 0 0 1 4 4 4 0 1 1 1 1
1 1 1 2 2 1 1 2 4 4 3 2 2 2 2 2
0 1 4 1 4 2 2 2 4 4 4 1 0 0 0 0


 (A.25)

For all protographs in this section, the optimal bit mapping assignment is

Φ(j) =
(

(j − 1) mod
(
np

m

))
+ 1, j = 1, . . . , np. (A.26)
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For instance, for B8-PAS-3/4-Λ2=2, we have m = 3 (8-ASK), np = 12 such that the first four
VNs need to be mapped to bit level one, the next four to bit level two and and the last
four to bit level three.

A.4.2. Optimized Protographs for On-Off Keying

In the following, we provide the optimized base matrices for OOK with shaping via TS
as introduced in Sec. 4.9. For BOOK−0.25−TS1 the first column is punctured. The first kp
VNs of each basematrix are associated with the shaped part, the remaining ones with the
unshaped part.

BOOK−0.25−TS1 =




3 0 0 1 2 0 0
1 0 2 0 0 1 2
3 0 1 2 2 1 1
2 1 0 0 0 0 0




BOOK−0.25−TS2 =




1 0 1 0 2 0 0 0 3
4 2 3 2 4 2 1 1 3
3 1 4 1 1 1 2 1 1




BOOK−0.67−TS2 =




4 0 1 4 0 3 0 0 2 0 0 0
0 1 2 3 1 1 1 2 2 1 3 2
3 2 1 4 1 2 2 1 2 1 1 1




A.5. Differential Evolution for the Optimization of
Basematrices

In the following, we describe the optimization approach based on differential evolution [87]
to design basematrices for a desired operating mode.
In line 1, the initial candidates are obtained by uniformly sampling integers in [0, bmax],

where bmax ∈ N0 indicates the maximum allowed number of parallel edges and is specified in
the design constraints. If the resulting basematrix does not fulfill the design constrains, it is
rejected and we start over. The function combine_and_mutate() in line 7 is implemented
as shown in Algorithm 11. Its main task is to ensure that the obtained basematrix has
only non-negative integer entries after the recombination with other population members.
In particular, we round each entry to the next integer in line 3.
The inner loop of Algorithm 10 is easily parallelizable, which can be used to speed-up

the optimization if multiple CPUs are available.
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Algorithm 10 Genetic algorithm to find the best basematrix for a given signaling mode.
INPUT: Protograph dimensions mp×np, design constraints, candidate set size P , number of generations

G, crossover probability pc, amplification factor F .
1: Choose feasible initial population set

{
B

(0)
p

}P
p=1

at random.

2: Evaluate SNREXIT
th for each population member.

3: for g = 1, . . . , G do
4: for p = 1, . . . , P do
5: repeat
6: Choose r1 6= r2 6= r3 randomly from {1, . . . , P}.
7: B̃ = combine_and_mutate

(
B

(g−1)
p ,

{
B

(g−1)
p

}P
p=1

, r1, r2, r3, F, pc

)
.

8: until B̃ fulfills design constraints
9: Evaluate SNREXIT

th of new candidate B̃.
10: Set B(g)

p = B̃, if decoding threshold has improved.
11: end for
12: if all population members have the same metric then
13: Stop.
14: end if
15: end for

A.6. Monte-Carlo Density Evolution
MCDE was introduced in [211] and is based on assumptions that also underly the SPA:
the incoming messages of a VN or CN are assumed to be stochastically independent. In
the following, we describe the MCDE algorithm for protographs and NB-LDPC codes
using PMFs as messages. Its application to binary codes is straightforward. As usual for
protographs, we track each edge of the underlying Tanner graph separately and it turns
out beneficial to consider an “edge centered” perspective in the following. We illustrate
this principle with the protograph

B =
(

2 1 1
0 2 1

)

of the introductory example in Fig. 4.2. We first enumerate each edge as shown in Fig. A.1
and introduce the sets EV(i) (EC(i)) of edges that connect to the same VN (CN) as the i-th

C1 C2

V1 V2 V3

3 6 71 2
4 5

Figure A.1.: Tanner graph of a protograph with enumerated edges.

edge. For instance, we have EV(3) = {4, 5} and EC(2) = {1, 3, 6}. Further, we need to keep



188 Appendix A. Appendix

Algorithm 11 Implementation of the combine_and_mutate() function to obtain a new
protograph basematrix based on the current population.
1: function combine_and_mutate(B(g−1)

p ,
{
B(g−1)
p

}P
p=1

, r1, r2, r3, F , pc)
2: B̃ = B(g−1)

r1 + F ·
(
B(g−1)
r2 −B(g−1)

r3

)

3: B̃ = round(B̃)
4: // find entries of B̃ which are not within the allowed set
5: idx = B̃(:) < 0 | B̃ > bmax
6: // and replace them by choosing the respective entry at random
7: B̃(idx) = randi([0, bmax], sum(idx))
8: for i = 1 : numel(B̃) do
9: if rand() < pc then
10: continue
11: else
12: B̃(i) = B(i)(g−1)

13: end if
14: end for
15: return B̃
16: end function

track from which VN each edge i originates. We denote this VN as V(i).
The decoding threshold is found by performing a bisection search over a given start

interval (SNRl, SNRh) and testing whether the SPA converges for the SNR value in the
center of this interval (lines 4 – 48). To test for convergence of the SPA, we imitate the
decoding algorithm for NB-LDPC codes (Algorithm 8) and use S samples per edge in
protograph. A sample is defined as one PMF vector representing the belief about a certain
codeword symbol. To obtain accurate results, we choose S = 104. In each iteration a new
length q decoder soft information vector mdec is generated for each of the S edge samples
(line 7) in an iid. fashion. For instance, this is done according to (5.22), (5.23) or (5.25).
For the permutation of the message vectors (line 12), we randomly choose an element from
Fq and use the same element for the de-permutation (line 20). If a certain construction
allows only coefficients from a restricted set (see Sec. 5.1.3), this can be reflected here as
well. After `max iterations we calculate the number of occurred symbol errors in lines 31
– 39. An error is declared if the zero element is not the most likely one (line 35). If no
error is observed, we declare convergence for the SNR under consideration and adjust the
bounds of the new interval.
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Algorithm 12 MCDE for NB-LDPC codes.
INPUT: Basematrix B, Number of samples per edge S, field size q, SNR range (SNRl,SNRh) in which

the decoding threshold is expected, desired accuracy SNRacc, `max maximum number of iterations
1: E = sum(B(:))
2: mV→C = zeros(E,S, q)
3: mC→V = zeros(E,S, q)
4: while (SNRh − SNRl) > SNRacc do
5: converged = 0, ` = 0
6: SNRm = SNRl + (SNRh − SNRl)/2
7: Generate decoder soft information mdec(i, j, :), i ∈ {1, . . . , E}, j ∈ {1, . . . , S} for SNR = SNRm.
8: while ` < `max do
9: // CN operation
10: for i = 1, . . . , E do
11: for j = 1, . . . , S do
12: Perform random permutation of mV→C(i, j, :) to obtain mπ

V→C(i, j, :), see (5.7).
13: mC→V (i, j, :) = ~k∈EC(i)m

π
V→C(k, j, :)

14: end for
15: end for
16: // VN operation
17: Generate new iid. mdec
18: for i = 1, . . . , E do
19: for j = 1, . . . , S do
20: Perform de-permutation of mC→V (i, j, :) to obtain mπ

C→V (i, j, :), see (5.15).
21: mV→C(i, j, :) = mdec(i, j, :)�

(⊙
k∈EV(i)m

π
C→V (k, j, :)

)

22: end for
23: end for
24: end while
25: // APP operation
26: for i = 1, . . . , E do
27: for j = 1, . . . , S do
28: mapp(i, j, :) = mdec(i, j, :)�

(⊙
k∈V(i)mC→V (k, j, :)

)

29: end for
30: end for
31: err_ctr = 0
32: for i = 1, . . . , E do
33: for j = 1, . . . , S do
34: [∼,idx_max] = max(mapp(i, j, :))
35: if idx_max 6= 0 then
36: err_ctr += 1
37: end if
38: end for
39: end for
40: if err_ctr == 0 then
41: converged = 1
42: end if
43: if converged then
44: SNRh = SNRm
45: else
46: SNRl = SNRm
47: end if
48: end while
49: return SNRm





B
Acronyms
ADC analog-to-digital converter

APSK amplitude phase-shift keying

AR4JA accumulate-repeat-jagged-4-accumulate

ASK amplitude shift keying

AWGN additive white Gaussian noise

AWGNC additive white Gaussian noise channel

BCH Bose-Chaudhuri-Hocquenghem

BDD bounded distance decoding

BEC binary erasure channel

BEEC binary error and erasure channel

BER bit error rate

biAWGN binary-input additive white Gaussian noise

biAWGNC binary-input additive white Gaussian noise channel

BICM bit-interleaved coded modulation

BMD bit-metric decoding

BMP binary message passing
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BP belief propagation

BPSK binary phase shift keying

BRGC binary reflected Gray code

BSC binary symmetric channel

CCDM constant composition distribution matching

CDF cumulative distribution function

CN check node

CSI channel state information

DA data-aided

DAC digital-to-analog converter

DD direct detection

DDE discretized density evolution

DE density evolution

DM distribution matcher

DMT discrete multitone

DOF degree of freedom

DSL digital subscriber line

DSP digital signal processing

eIRA extended irregular repeat-accumulate

EM expectation maximization

eMBB enhanced mobile broadband

EXIT extrinsic information transfer

FEC forward error correction

FER frame error rate

FN factor node

FSO free space optical communication
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GMI generalized mutual information

GS geometric shaping

GVDMM generalized variable degree matched mapping

HARQ hybrid automated repeat request

HD hard decision

HT Hadamard transform

iid independent and identically distributed

IM intensity modulation

IRA irregular repeat accumulate

KKT Karush-Kuhn-Tucker

LDGM low-density generator matrix

LDPC low-density parity-check

LUT look-up table

MAP maximum a posteriori

MB Maxwell-Boltzmann

MC Monte Carlo

MCDE Monte Carlo Density Evolution

MET multi-edge type

MI mutual information

ML maximum likelihood

NA normal approximation

NB-LDPC non-binary low-density parity-check

NB non-binary

NBBC natural based binary code

NCG net coding gain

NGMI normalized generalized mutual information
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NLIN non-linear interference noise

NUC non-uniform constellation

OFDM orthogonal frequency division multiplexing

OH overhead

OOK on-off keying

OSD ordered statistics decoding

P-LDPC protograph-based LDPC

PAM pulse-amplitude modulation

PAS probabilistic amplitude shaping

PBRL protograph-based Rapter-Like

PC product code

PDF probability density function

PDM product distribution matching

PEG progressive edge-growth

PMF probability mass function

PON passive optical network

PPM pulse position modulation

PS probabilistic shaping

PSK phase-shift keying

QAM quadrature amplitude modulation

QC quasi-cylic

QMP quaternary message passing

QS quadrant shaping

RC repetition code

RCB random coding bound

RCUB random coding union bound
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RS Reed-Solomon

RV random variable

SC-LDPC spatially coupled low-density parity-check code

SD soft decision

SE spectral efficiency

SM shell mapping

SMD symbol-metric decoding

SMDM shell mapping as distribution matcher

SNR signal-to-noise ratio

SPA sum-product algorithm

SPB sphere packing bound

SPC single-parity check

SVD singular value decomposition

TC type check

TCM trellis coded modulation

TMP ternary message passing

TS time sharing

URLLC ultra-reliable low-latency communication

VDMM variable degree matched mapping

VN variable node

WLLN weak law of large numbers
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