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Abstract

In this paper we utilize Numenta’s Hierarchical Temporal Memory implementation NuPIC for online visual motion pattern
prediction and test its performance on virtual animations as well as real world human motion data. For evaluation we run
a series of progressively more complex experiments testing specific capabilities: Prediction of fixed-time noise-free motion
animations, prediction of protocol-directed tasks with real-world camera captured human motion data, and lastly prediction
of repetitive tasks performed without a strict protocol. Results show that the presented setup is able to predict time sequenced
images as well as highly variable human motions increasingly well over several iterations. Limits are faced for non sequential
variable hand motion execution: Here, predictions are made but do not improve in quality over time. The network runs online
in real time and can be transferred to different tasks without expert knowledge. These characteristics qualify the setup for
human robot interaction scenarios without the need for verified prediction accuracy.

I. INTRODUCTION

Human robot interaction (HRI) scenarios constitute an
increasingly growing field of research as robots can facilitate
many novel practical applications in daily tasks. In interac-
tive task execution the strengths and advantages of both
human and robotic or algorithmic workers can be exploited
to increase overall task efficiency. In 2013, Huber et al.
[1] empirically demonstrated that for workflows in HRI
scenarios, a fully predictive and adaptive assistant can react
in the exact timeframes a human counterpart has finished
a task and needs robotic input. In fact, robots predicting
assistance time frames and handing over objects at the exact
time the human required it sped up the overall task execution
more than robots assisting in fixed time intervals.

This means that an optimal assistant acts in a predictive
manner. In highly vision-based tasks such as assembly of
machine parts or mechanical reparation, a motion prediction
system has to be implemented that makes predictions based
on visual data. Predictive algorithms are required to extract
the required knowledge such as the co-worker’s state, the
robot position and any additional manipulable objects as
well as obstacles from the visual information to compute an
accurate prediction based on the current situation. Specific
challenges in the prediction of human motion can be found
in highly variable task executions and complex environmen-
tal setups which can induce high noise ratios.

Several approaches, both model-based and trained ones
utilizing neural networks, have been implemented in an
attempt to predict visual motions. However, most of them
lack two fundamental characteristics essential for a system
dealing with physical world motion prediction: Real-time

online learning and high noise robustness. The HTM im-
plementation offers both and includes systems for inherent
temporality. The predictive state relation can be learned and
re-learned online in a fast manner and multifold given the
current sensory input. Hereby, the HTM can handle complex
situations, e.g. with changing speeds or repeating frames by
fast adapation. Additionally, in the real world, situations
change both short-term and long-term. The HTM learns
relations online and therefore does not require manual re-
adjustment or parametrization with changing environmental
conditions.

II. STATE OF THE ART

In robotics, visual human detection, recognition and
analysis, or “looking at people” [2], has been one of the
classic and most popular research fields, since it is essential
for dynamic HRI. Required skills are well performed by
humans while computers are, historically, very bad at it. We
here focus on one subset of this task, namely the prediction
of motions, which is essential to understand and adapt to
observed environmental motions.

Extremely simple approaches, such as the constant pose
predictor [3], can currently often outperform other very
complex algorithms in metrics such as short-term 0.4 and
1 second prediction error. This gives researchers some very
good baselines to compare state-of-the-art motion prediction
to. Recent approaches for visual motion prediction include
LSTM-3LR (3 layers of Long Short-Term Memory cells)
[4] and ERD (Encoder-Recurrent-Decoder) that is able to
produce plausible long-term human motion predictions. In
[5] a structural recurrent neural network (RNN) is presented



that introduces expert knowledge by utilizing semantic
knowledge about the network as input, and dynamically as-
signs different RNNs to similar parts of the data. Martinez et
al. [3] analyzed the previous [5, 4] methods by looking at the
architectures, loss functions, and training procedures. Three
adaptations were proposed to improve motion prediction to
compete with other state-of-the-art approaches. Bliitepage
et al. [6] presented a full-body motion prediction system
based on RGB + depth data that utilizes a deep generative
model for online motion predictions of up to 1660ms.

Recent work involving prediction of hand motions specif-
ically include a system [7] with a convolutional neural
network and RNN based model in order to adjust robot
motion trajectories to improve human-robot collaboration.
Predictive neural networks for human robot collaboration
have been demonstrated in [8] for human like hand reaching
with Long Short-Term Memory. A HTM has been utilized
for proprioceptive biomimetic arm motion prediction and
prediction based Classical Conditioning learned from a
human partner in [9]. To the best of our knowledge, the
predictive HTM implementation has not yet been applied
for human-oriented visual motion prediction, which we
introduce in this paper.

A. Hierarchical Temporal Memory

The Hierarchical Temporal Memory (HTM) [10] neural
network family provides both online learning and inherent
temporality and may therefore be well-suited for online
motion prediction. Our setup is based on Numenta’s open
source implementation NuPIC.

During execution, HTM cells make constant predictions
about the next timestep, and their synapses to other cells
are reinforced or weakened according to variations of the
Hebbian Rule of Learning [11]. From these constant next-
step predictions, further predictions such as 5-step or 10-
step predictions can be extrapolated using a weight matrix.
Furthermore, HTM systems use Sparse Distributed Rep-
resentations (SDRs) for both input and output. Compared
to dense bit array encodings, SDRs have a higher noise
tolerance and can thus be considered more stable under
varying input dynamics [12]. Using a threshold overlap for
comparison, SDRs can tolerate extremely high noise values
with low false positives. Many systems using digital sensors,
such as computer vision, are subjected to high signal to
noise ratios and can thus benefit from high noise tolerance.

While pre-computation of raw image data can promise
increasing network performance, we here take the raw
images as direct input. This enables us to maintain general
applicability as well as test the network’s capability to
perform all logical tasks required for a prediction. Any
sophisticated pre-processing would be highly task and envi-
ronment dependent, which is time consuming in adaptation
and not the goal of our current conducted study of a
general prediction framework. We therefore only make use
of general basic thresholding and filtering techniques. A

system setup not containing task-specific solution steps can
be considered very versatile, as it can be employed to solve
diverse tasks without additional adjustments.

III. NETWORK SETUP

For predictions, experiment execution data is processed
through the neural network in fixed frame rates. Each step,
the current image is captured, the network processes the
data (Figure 1), predictions are extracted, and finally values
are presented to the user for evaluation.

A. Sensory Input

A binary image with 32 - 32 pixels (n = 1024) serves
as the online input to the networks sensory regions. The
method of image capture differs from experiment to exper-
iment, and may be pre-computed to be represented in this
format, as described in the experiments’ sections.

B. Region data processing

In the network (Figure 1), each pixel has one correspond-
ing sensor and one classifier region, which is used for 5-
step predictions. When running a step, the camera input is
captured and split up into individual pixels, each of which is
assigned onto its corresponding sensor region’s data source.
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Fig. 1: Neural Network Setup: The network processes the image
input in Sensor Regions pooled by a topological Spatial Pooler,
additional regions and lastly Classifier regions.

More regions are linked, in sequence, whereas the first
region receives input from the sensory regions, while the
last region forward-feeds its outputs into the classifier
regions. The regions are: A topological Spatial Pooler
(SP) region (n = 20 - 20), an untopological SP region
(n = 256), and finally a Temporal Pooler region (n =
256; cells PerColumn = 5).

Additionally, a Scalar Encoder (w = 31; radius = 5) is
used to encode the grey value center x,y. It is inserted to
feed-forward into the untopological SP region.



C. Prediction Outputs

For evaluation, we calculate the euclidian distance as a
distance score between the binary image matrices of the
current input and the predicted image extracted 5 steps
earlier. Due to high variance in the accuracy of the motion
prediction, a rolling average is calculated. An average
distance score of 0 is considered as an optimal prediction.

IV. VIRTUAL MOTIONS

In the first series of experiments, visual motion patterns
are generated virtually to allow for simple and fixed in-
terval repetitive prediction tasks and therefore controlled
evaluation. During this series, we successfully confirm the
capability of the network to handle tasks requiring stateful
machines.

Different steps of the experiment. Blue: Input Data; Red: Prediction 5 steps earlier
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Fig. 2: Prediction of an animated running horse, image pixel input
(blue), prediction output (purple) and accuracy over learning time.

In a first experiment motions of an animated running
horse are predicted. Frames are extracted from Muybridges
”"The Horse in Motion” [13] and cycled forwards and
backwards, serving as input for the system. The network’s
prediction accuracy increases exponentially over time and
reaches a distance score of about 1 after 700 steps (Fig-
ure 2).

V. UNIFORM HUMAN HAND MOTIONS

In this series of experiments, a human performer is
instructed to move according to a specific protocol. The
protocol outlines the kind of motion and cycle speed of
iterations. This ensures an easily predictable input, though
it is not machine guided - no timer or mechanical help is
used to ensure the exact action timing. The captured data is
thus completely subjected to human motion.

Fig. 3: Example of a captured hand image through the pre-
computation steps.

To capture image data, an RGB camera mounted to a
stand and pointed down towards a white table. A hand is
then moved closely to the table, and the image pre-computed
for the hand to finally be represented as white pixels in a
black screen space.

To that end, the captured image is blurred with a 32 - 32
filter, a threshold difference to a background image is
computed. The result is finally rescaled and color channels
combined to encode the final network input (Figure 3).
Images are captured at 5 frames per second.

Different steps of the experiment. Blue: Input Data; Red: Prediction 5 steps earlier
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Fig. 4: HTM Prediction accuracy on a human hand in linear
motion.

The first human motion experiment analyses linear hand
motions. A hand is moved through the frame at a set speed.
The network is able to predict the motion quite well and over
time reaches an average distance score of about 6 (Figure 4).

In a next step circular hand motions are investigated: The
participant is instructed to move his hand in circular motions
inside the frame. The Network can predict these motions
up to a distance score of about 7 after 300 steps only. High
motion overlaps and variances in motion execution reduce
prediction accuracy in contrast to the linear hand motions
experiment (Figure 5).
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Fig. 5: Setup and prediction error over time of the circular hand
motion experiment.

VI. COMPLEX HAND MANIPULATION

In a next step the human participant is instructed to per-
form varying tasks without a protocol to follow. Compared
to the previous series of experiments hereby the variability
of motions increases, which leads to less predictability in
the motion patterns. Here we find the capability limits of
the presented system.
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Fig. 6: Setup and prediction error over time of the varying hand
speeds experiment.

As a first variation we introduce variation in speed: The
participant executes linear hand motions through the frame
with varying speeds (Figure 6. It is an adaption of the
previous hand motion task (Figure 4) in which the network
performed very well. While the network never quite reaches
a stable prediction and prediction accuracy oscillates, we
still find a a noticeable improvement in prediction accuracy
over time.
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Fig. 7: Setup and prediction error over time of the simplified
industrial assembly experiment.

Arguably the most challenging situation for motion pre-
diction is posed by prediction of a simplified industrial
assembly task (Figure 7) conducted as a final experiment.
Here, three different object types need to be placed on
certain spots and brought back afterwards. The task includes
high variance in motion execution in terms of speed and
location as well as multibody prediction. Over a learning

period of about 900 steps including repeated manipulation
iterations, the prediction is still oscillating in its accuracy
and no strong improvements can be observed.

A. Network Setup Evaluation

Over the course of the experiments, we created sev-
eral iterations of networks over the 3 experiment series.
Network 1 consists of, in addition to the sensory and
classifier regions, only a topological SP (n = 32), thus
lacking a temporal component entirely. Network 2 includes
a topological SP (n = 20 - 20) and a Temporal Pooler
(n = 400; cellsPerColumn = 6). Network 3 is the final
iteration and thus the one presented in the network setup
described above.
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Fig. 8: Influence of Network Architecture on the prediction accu-
racy: We compare three architectures on the task of a virtual bar,
horse animation and linear hand motion prediction. Although there
is a trade-off between specialized problem solving and general
applicability, we see a clear improvement of network 3 over the
others.

To validate whether the network has indeed improved its
general applicability in the field of visual motion pattern
prediction, we test the networks on the tasks of linear bar,
animated horse and linear hand motion prediction. Figure 8
demonstrates the result and indicates improvements in gen-
eral applicability throughout the network setup iterations.

VII. CONCLUSION

We presented an experimental setup making use of a
Hierarchical Temporal Memory network that demonstrates
the capability for visual predicting of highly variable hu-
man motion tasks. Real world participant hand motions
experiments show that the system presented in this paper
is capable of predicting a number of different tasks within
the problem space of real-world visual human motion pre-
diction. These tasks include linear motion of a hand over
the input space at semi-constant or varying speeds, and



rotating the hand inside the frame without a set pivot point.
The system surpasses simple baselines such as the 1-second
constant pose predictor [3] in these tasks and confirms
Zhang et al.’s [14] and Ugolotti et al.’s [15] findings that
systems using HTM are viable approaches to human action
observation. We find limits of motion prediction for complex
assembly tasks, that introduce high motion and execution
variance. The system does not require specific adjustments
such as expert knowledge or complex algorithms modifying

the input data for reasonable predictions for each task. This
proves HTM networks to be well-suited for use in the
problem space of visual motion pattern prediction as the
primary logical component of a system.
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