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Zusammenfassung

Es wird die Erzeugung eines geheimen Schlüssels an zwei Datenendgeräten betrach-
tet. Jedes Datenendgerät beobachtet dabei jeweils einen Ausgang einer Quelle mit zwei
korrelierten Komponenten. Zusätzlich kann eine Hilfsnachricht vom ersten Datenend-
gerät zum zweiten Datenendgerät über einen rauschfreien, öffentlichen Kanal gesen-
det werden. Es wird angenommen, dass die Hilfsnachricht bzw. die privacy leakage
ratenbeschränkt ist. Es wird die maximale geheime Schlüsselrate bestimmt, die erreicht
werden kann, so dass der Schlüssel gleichverteilt und perfekt sicher ist. Damit ist der
Schlüssel unabhängig von der Hilfsnachricht. Entsprechende Resultate werden für ver-
schiedene Quellenmodelle bewiesen. Dazu zählen ein Compoundmodell und verschiedene
Szenarien mit Störsendern, bei denen die Quelle von einem aktiven Angreifer manipuliert
wird.

Abstract

Secret key generation at two terminals is considered. Each terminal observes one of the
outputs of a source with two correlated components. Additionally one terminal can send
a helper message to the second terminal via a noiseless public channel. It is assumed
that this message or the privacy leakage respectively is rate constrained. The maximum
secret key rate, that can be achieved such that the key is uniformly distributed and meets
the perfect secrecy requirement, is determined. So the key is independent of the helper
message. Corresponding results are established for different source models, comprising
a compound model and various jamming scenarios, where the source is manipulated by
an active attacker.
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Notation

We use standard notation, comparable to the notation introduced in [26] or [47]. For the
convenience of the reader we repeat some of these conventions used in this work. For
n P N we define rns � t1, � � � , nu. The convex hull of a set A is denoted by convpAq. For
x P R we define |x|� :� maxtx, 0u whereas txu and rxs denote the largest integer k with
k ¤ x and the smallest integer l with l ¥ x respectively. We write log for the logarithm
to base 2 and exppxq for 2x. The natural logarithm to base e is denoted by ln. For a set
X and a subset A � X we write Ac for X zA and we denote the indicator function of A
by 1A : X Ñ t1, 0u . So for x P X we have 1Apxq � 1 if and only if x P A. We denote
the set of all distributions on X by PpX q and define the set of all channels from X to Y
(i.e. stochastic matrices)

PpY|X q � tpW p�|xqqxPX : W p�|xq P PpYq @x P X u.

Let P,Q P PpX q. We define the total variation distance between P and Q such that

}P �Q}1 �
¸
xPX

|P pxq �Qpxq|.

For P P PpX q and Q P PpYq we define P bQ P PpX � Yq by

pP bQqpx, yq � P pxqQpyq

for all px, yq P X � Y. For n P N we define Pbn P PpX nq by

Pbnpxnq �
n¹
i�1

P pxiq

for all xn P X n. For W P PpY|X q and V P PpȲ|X̄ q we define W b V P PpY � Ȳ|X � X̄ q
by

pW b V qpy, ȳ|x, x̄q �W py|xqV pȳ|x̄q

for all px, x̄, y, ȳq P X � X̄ �Y � Ȳ. Consider random variables X, Y and Z. We denote
the entropy of X by HpXq, the conditional entropy of X given Y by HpX|Y q and the
mutual information of X and Y by IpX ^ Y q. X � Y � Z means that these random
variables form a Markov chain in this order.





1 Introduction

1.1 Motivation

Lately, considerable effort has been devoted to deriving information theoretic results
that can be applied in communication scenarios where low delay is an essential require-
ment [40]. For many of these applications, the communication task should be performed
securely due to the presence of eavesdroppers. Examples for such applications in the con-
text of the Tactile Internet are discussed in [27]. These applications range from vehicle
to vehicle communications to automation in industry. The authors of [27] also discuss
the infrastructure requirements to realize these applications. The Tactile Internet is
considered a promising forthcoming innovation and motivated considerable fundamental
research. Currently the Tactile Internet is in the process of standardization and the cor-
responding results can contribute fundamentally to the fifth generation mobile network
5G and systems beyond, especially 6G [1]. As discussed in [27], information theoretic
security can contribute significantly to realize communication systems that combine low
latency and security. Encryption algorithms that exploit the limited computing power
of an eavesdropper to achieve secure communication are implemented at higher proto-
col layers. So the low delay constraints imposed by the applications that we want to
realize can not be met using such encryption algorithms. In contrast, security should
be implemented together with error correction on the physical layer. By not separa-
ting encryption from error correction information theoretic security allows for secure
communication with low delay.

A well known model in information theoretic security is the source model for secret
key (SK) generation with one way public communication where we study the problem of
establishing a SK at two terminals. We consider SK generation based on the correlated
outputs of a source with two components where one of the outputs is available at each
terminal. Additionally information can be transmitted from one terminal to the other
via a noiseless public channel. So in this work we consider SK generation from a two
component source with one way forward communication which is a special case of the
general problem of SK generation from a source. We are interested in the largest possible
SK that can be generated from the source output.

The problem of SK generation was introduced by Maurer in [36] and by Ahlswede &
Csiszár in [5]. There it is allowed that the message sent over the noiseless public channel
is arbitrarily large. In [25] various extensions of the model are studied. In particular the
authors consider the setting where the public message is rate constrained. In [46] the
source is replaced by a compound source, thus taking uncertainty on the source statistics
into account, while also assuming that the public message is rate constrained. (For an
introduction to SK generation see the standard reference for physical layer security [20].)
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In a different line of research Ignatenko & Willems study SK generation from a bio-
metric source in [32]. They analyse the source model described in [5] but they regard
the privacy leakage of the SK generation process. The privacy leakage is the information
on the source output observed at the first terminal contained in the public message. In
[32] the privacy leakage is rate constrained. In [29] the corresponding compound setting
is studied.

In the literature different secrecy requirements and different requirements on the key
distribution are considered. In [5] Ahlswede & Csiszár prove their results for perfect
secrecy and uniform key distribution. In [25], [29], [32] and [46] the authors allow for
weaker secrecy conditions and weaker requirements on the key distributions.

The SK generated from the source can for example be used for secure storage. For this
purpose the SK is used as a one time pad. The model for SK generation further serves
as the basis for an information theoretic treatment of authentication when an additional
privacy leakage rate constraint on the source observations is imposed [32].

1.2 Contributions

In this work we consider generalizations of the source model for SK generation. In
contrast to a lot of the literature on source models for SK generation we describe pro-
tocols for this model that achieve perfect secrecy and uniform distribution of the SK.
As discussed, in large parts of the literature protocols for SK generation meet weaker
requirements such as weak secrecy or strong secrecy and near uniform distribution of the
SK. Determining the largest possible SK that can be generated from the source output
under the strongest requirements, that is perfect secrecy and uniform key distribution,
has only been achieved for the unconstrained public communication case.

We generalize the source model by taking source uncertainty into account. In particu-
lar we study the compound source model and a jammed source that is modeled by means
of an arbitrarily varying channel (AVC). For the latter model we distinguish between the
case where the jammer knows the public message and the case where the public message
is only known to the eavesdropper but not to the jammer. For all of these settings
we consider SK generation with a privacy leakage rate constraint. The corresponding
capacity results are derived in Chapter 3 (and auxiliary results needed for the proofs in
Chapter 2). Parts of the results are published in [7], [8], [9] and [10].

We also consider the case where the public message is rate constrained. Again we
study a compound model and an AVC based model. Various jamming constellations are
taken into account. That is a jammer that has access to the public message and a jammer
without access to the public message. In the context of AVCs common randomness (CR)
is known to be an important resource. Thus we also consider jamming scenarios where
CR is available to the legitimate users. Capacity results for these scenarios are proved
in Chapter 4. These results are published in [12] and [13].
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Contributions

Further Results

During my time as a research assistant at the Technische Universität München we obtai-
ned further interesting results not included in this thesis:

• Ahlswede & Dueck introduced identification via channels as a new paradigm in
information theory. They showed that the number of messages that can reliably
be identified over a noisy channel grows doubly exponentially with the block length.
In [14] we also consider identification, but we assume that messages are stored on
a database such that they can be identified. Additionally the legitimate users have
access to the output of a source. This source allows us to store messages securely.
It is also used to increase the number of messages that can be stored securely on
the database and identified reliably. We define a protocol for secure storage for
identification such that the number of stored messages that can be identified grows
doubly exponentially with the number of symbols read from the source and the
number of storage cells available respectively. We also consider the privacy leakage
of the protocols used for identification. So it makes sense to consider two sources.
We assume one source is public whereas the other source only is available to the
legitimate users. The public source is used to increase the number of messages
that can be identified while the second source is used to guarantee secrecy. Using
the public source does not increase the privacy leakage. So we can possibly achieve
a higher number of messages that can be identified while the privacy leakage does
not increase using two sources. As a by-product we also get new results on common
randomness generation.

• In [11] a scenario related to the source model for SK generation is considered where
instead of SK generation, the goal is to securely store data in a public database.
The database allows for error-free storing of the data, but is constrained in its
size which imposes a rate constraint on the storing. The corresponding capacity
for secure storage is known and it has been shown that the capacity-achieving
strategy satisfies the strong secrecy criterion. Then the case when the storage in
the public database is subject to errors is considered and the corresponding capa-
city is characterized. Additionally, the continuity properties of the two capacity
functions are analyzed. These capacity functions are continuous as opposed to the
discontinuous secret key capacity with rate constraint. It is shown that for secure
storage the phenomenon of super activation can occur. Finally, it is discussed how
the results differ from previous results on super activation.

A complete list of publications is given at the end of the thesis.

Copyright Information

Parts of this thesis have already been published in the journals and conference pro-
ceedings [7–14]. The parts, which are, up to minor modifications, identical with the
corresponding scientific publication, are copyrighted by the publisher of the correspon-
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ding journal or conference proceedings. The publications [7, 9, 11, 14] are c©2017–2019
IEEE. Passages are reprinted with permission.
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2 Preliminaries

In this chapter we briefly review the source model for SK generation. We present various
definitions of achievability for this model and motivate our interest in protocols for SK
generation that achieve perfect secrecy. We also explain how the source model for SK
generation can be interpreted as a model for secure storage of cryptographic keys using
physical unclonable functions (PUFs). As mentioned above this allows the source model
for SK generation to provide a basis for an information theoretic study of authentication.

In the second part of this chapter we summarize fundamental results of information
theory that will prove to be useful in later parts of this work.

2.1 Source model for SK generation and perfect secrecy

In [25] several scenarios for SK generation from a source are considered. One of these
is the basis for the settings that we consider in this work. It is depicted in Figure 2.1.
As described before, a SK K should be generated at two terminals. SK generation is
based on the correlated source outputs Xn and Y n, where at each terminal one of these
source outputs is available. Additionally a helper message M can be transmitted from
one terminal to the other via a noiseless public channel.

Consider the RVs X and Y . The source puts out RVs Xn � pX1, � � � , Xnq observed
at one terminal and Y n � pY1, � � � , Ynq observed at the other terminal, both of block
lengths n P N. We assume PXnY n � Pbn

XY , i.e., the source is a discrete memoryless
multiple source (DMMS) with two components. As in [25] we represent the terminals
by the symbol of the corresponding alphabet. Terminal X represents the terminal that
sends the helper message, whereas terminal Y represents the terminal that receives the
helper message. So the RV M that represents the helper message and the RV K that

Encoder Decoder

Xn Y n

K K̂

Source

M

Eavesdropper

Figure 2.1: SK generation with one way public communication as in [25].
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represents the SK are generated at terminal X (making use of Xn). The RV K̂ that
represents the reconstruction of the SK is generated at terminal Y (making use of M
and Y n).

In [25] it is assumed that pK,Mq � fpXnq and K̂ � gpM,Y nq are generated from the
data available at X and Y respectively using deterministic functions (i.e., no randomiza-
tion is used to generate these RVs) and that K and K̂ take values in the same alphabet
K. We call the pair pf, gq with f : X n Ñ K �M and g : Yn �MÑ K a SK generation
protocol.

The considerations above establish the joint distribution of K, M and K̂ as follows.
For all pk,m, k̂q P K �M�K we have

PKMK̂pk,m, k̂q �
¸

xnPXn

ynPYn

Pbn
XY px

n, ynq1f�1ppk,mqqpx
nq1g�1pk̂qppy

n,mqq.

A SK generation protocol should have certain properties, specified in the following
definition, to be considered a good SK generation protocol. (This definition is equivalent
to the corresponding definition in [25], cf. [25, Definition 1.2].)

Definition 2.1. Let L ¥ 0. We call R ¥ 0 an achievable secret key rate with rate
constraint L if for any ε ¡ 0 and sufficiently large n there is a SK generation protocol
such that

PrpK � K̂q ¤ ε (2.1)
1
nIpK ^Mq ¤ ε (2.2)
1
nHpKq ¥

1
n log |K| � ε (2.3)

1
n log |K| ¥ R� ε (2.4)
1
n log |M| ¤ L� ε. (2.5)

The SK capacity with rate constraint L is the largest achievable secret key rate with
rate constraint L and is denoted by CSKpLq.

According to this definition the RVs K and K̂ represent a SK for the terminals X and
Y if it holds that the SK can be reconstructed at terminal Y with high probability which
follows from (2.1), the weak secrecy requirement (2.2) is met and K is nearly uniformly
distributed which follows from (2.3). Moreover the rate of the SK is 1

n log |K| (cf. (2.4))
and the noiseless public channel from terminal X to terminal Y is rate constrained (cf.
(2.5)).

CSKpLq (which corresponds to CSKp0, Lq in [25]) is characterized in [25, Theorem 2.4].

Theorem 2.1 ([25]). It holds that

CSKpLq � max
U

IpU ^ Y q

10
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where the maximization is over all RVs U such that U �X � Y and

IpU ^Xq � IpU ^ Y q ¤ L.

In fact it is shown in [25] that replacing each ε in Definition 2.1 by expp�nαq with some
α ¡ 0 small enough but independent of n (which means replacing (2.1) - (2.5) by stronger
constraints for n sufficiently large) does not reduce CSKpLq. As mentioned in [25] the
fact that stronger constraints often do not reduce capacity has been demonstrated for
various models in information theoretic security. In [37] it has been pointed out that it
is desirable to strengthen the (secrecy) conditions under which a given performance is
achievable. This is one of the motivations of this work.

In [5] Ahlswede & Csiszár consider a simplified version of the setting studied in [25]
described above in the sense that the public channel is not rate constrained. They cha-
racterize the corresponding capacity. Interestingly the authors of [5] show that replacing
ε in (2.2) and (2.3) by 0 does not reduce the capacity for the unconstrained public com-
munication setting. (It is pointed out in [5] that this can not be expected for a model
where the eavesdropper has access to a third correlated output of the source. Thus
we do not assume that the eavesdropper has such side information in our work.) This
naturally motivates the problem of characterizing CSKpLq when ε is replaced by zero in
(2.2) and (2.3).

IpK ^Mq � 0, i.e., K and M are independent, is known as the perfect secrecy requi-
rement and log |K| � HpKq means the SK is uniformly distributed. (The combination of
both requirements is equivalent to the requirement HpK|Mq � log |K|.) Our interest in
characterizing CSKpLq when these requirements are met has an additional motivation.
Perfect secrecy in SK generation and uniform distribution of the SK are optimal in the
sense described in [26, Proposition 17.1] and [20, Lemma 3.1]. There the generated SK is
used as a one time pad to encrypt a message. The encrypted message then is transmitted
via a public channel together with the helper message corresponding to SK generation.
Then it is shown that perfect secrecy and uniform distribution of the SK allow for the
best possible properties of this protocol in terms of secrecy. In order to achieve perfect
secrecy and uniform distribution of the SK we allow for randomization at terminal X in
contrast to the protocols used in [25].

2.2 Secure storage of cryptographic keys using PUFs

As described in [43, Chapter 13] variations in the manufacturing process of physical
circuits lead to unpredictable variations of certain properties of the circuits (e.g. different
run times). These variations can be exploited to construct PUFs. This means these PUFs
are constructed from standard circuit components. Thus they can easily be integrated
in the manufacturing process. The PUFs can be used to bind a SK to a physical device
without storing the SK in secured non-volatile memory [43, Chapter 13]. So PUFs offer

11
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a low cost alternative to storing a SK in secured non-volatile memory which is not always
available.

We now describe how SK storage with PUFs can be realized according to [43, Chap-
ter 13]. The PUF puts out a PUF response (by using a certain challenge as input to
the PUF). This is a sequence of symbols from a finite alphabet after quantization (e.g.
a sequence of bits). The PUF response can be generated whenever needed but it is
influenced by noise. So the PUF response is not used as a SK directly. Instead error
correction is used to generate a reliable SK. For this purpose after manufacturing the
PUF a helper message, that is generated from a PUF response, is stored in non-secured
non-volatile memory. This helper message is used for error correction. So all following
PUF responses generated from the PUF can be mapped on the same SK making use of
the helper message. As the helper message is stored in non-secured memory it should
not reveal information about the SK as we have to assume that an attacker interested
in the SK has access to the helper message. Additionally the helper message should be
small such that the size of the non-volatile memory needed to store the helper message is
small. This is important as the non-volatile memory is an expensive resource compared
to the PUF construction.

We can interpret the source model for SK generation as a model for SK storage with
PUFs. The PUF response used to generate the helper message is modeled by Xn. It is
a RV as the manufacturing process is subject to unpredictable variations. The helper
message corresponds to M and the corresponding SK is modeled by K. The noisy PUF
response is modeled by Y n and K̂ models the reconstruction of the SK from Y n and M .

In [32] the same model is used for a treatment of SK generation from a biometric
source. In this model the source represents a biometric source, thus Xn models biometric
data. Here the authors consider an additional quantity that is the privacy leakage. The
privacy leakage represents the information about Xn contained in M . Motivated by the
information theoretic interpretation of mutual information it is defined as IpXn ^Mq.
The privacy leakage should be as small as possible because an eavesdropper should not
learn a lot about the biometric data. In the context of SK storage with PUFs we can
also try to minimize the privacy leakage (or more precisely the privacy leakage rate). As
stated in [28] the privacy leakage should be minimized so that an eavesdropper cannot
obtain information about a second SK stored using a second helper message but using
the same PUF response.

In the remainder of this work we call the source in the source model for SK generation
a PUF source or biometric source when we want to consider SK generation protocols
that meet requirements (2.1)-(2.4) but where (2.5) is replaced by the privacy leakage rate
constraint 1

nIpX
n ^Mq ¤ L � δ. Denote the corresponding SK capacity with privacy

leakage rate constraint L by CPLSKpLq. From IpXn ^Mq ¤ log |M| it is clear that a
constraint on the rate of the helper message at the same time is a constraint on the
privacy leakage rate. So CPLSKpLq ¥ CSKpLq for all L ¥ 0. In [32, Theorem 3.1] it is
shown that CPLSKpLq � CSKpLq for all L ¥ 0.

12
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2.3 Fundamentals, types and typical sequences

In this work we make use of some fundamental results in information theory which can
for the most part be found in the corresponding textbooks like [26]. For the convenience
of the reader we state some of these results. We also present proofs for some of the
results for reasons of completeness.

Lemma 2.2 (Pinsker inequality [26]). Let P,Q P PpX q. It holds that

DpP }Qq ¥ 1
2 ln 2}P �Q}21.

Lemma 2.3 (Continuity of entropy [26]). Let P,Q P PpX q and }P �Q}1 � δ ¤ 1
2 .

It holds that

|HpP q �HpQq| ¤ �δ log δ
|X | .

Definition 2.2 ([26]). Let xn P X n and yn P Yn, n P N. We define

Npa|xnq � |ti P rns : xi � au|

and

Npa, b|xn, ynq � |ti P rns : xi � a^ yi � bu|

where pa, bq P X � Y.

Definition 2.3 (Type and joint type [26]). The type of a sequence xn P X n is the
empirical probability Pxn where Pxnpaq �

1
nNpa|x

nq for all a P X . We denote the set
of all sequences of type P by T nP . We denote the set of all types of sequences in X n by
Ppn,X q.

Correspondingly the joint type of a tuple of sequences pxn, ynq P X n � Yn is the
empirical probability Pxn,yn where Pxn,ynpa, bq �

1
nNpa, b|x

n, ynq for all pa, bq P X � Y.
We denote the set of all tuples of sequences of joint type P by T nP . We denote the set of
all joint types of tuples of sequences in X n � Yn by Ppn,X � Yq.

Lemma 2.4 ([26]). It holds that |Ppn,X q| ¤ pn�1q|X | and correspondingly |Ppn,X �
Yq| ¤ pn� 1q|X ||Y|.

Lemma 2.5 ([4]). Let P P Ppn,X q. It holds that

1
pn�1q|X | exppnHpP qq ¤ |T nP | ¤ exppnHpP qq.

13
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Lemma 2.6 ([26]). Let P P Ppn,X q and Q P PpX q. It holds that

Qbnpxnq � expp�npHpP q �DpP }Qqqq

for all xn P T nP and

1
pn�1q|X | expp�nDpP }Qqq ¤ QbnpT nP q ¤ expp�nDpP }Qqq.

Definition 2.4 ([26]). Let P P PpX q, n P N and δ ¡ 0. We define

T nP,δ �
¤

QPPpn,X q :
|Qpaq�P paq|¤δ@aPX
^Qpaq¡0ñP paq¡0

T nQ .

If xn P T nP,δ we say xn is P -typical with constant δ.

Lemma 2.7 ([45,50]). Let δ ¡ 0, n P N and P P PpX q. It holds that

PbnpT nP,δq ¥ 1� pn� 1q|X | expp�n 1
2 ln 2δ

2q.

Proof. Consider

pT nP,δqc � txn P X n : Da P X : |Pxnpaq � P paq| ¡ δu

Y txn P X n : Da P X : Pxnpaq ¡ 0^ P paq � 0u

� txn P X n : }Pxn � P }1 ¡ δu Y txn P X n : Da P X : Pxnpaq ¡ 0^ P paq � 0u.

We define

A � txn P X n : }Pxn � P }1 ¡ δu

B � txn P X n : Da P X : Pxnpaq ¡ 0^ P paq � 0u.

It holds that

PbnpBq �
¸
xnPB

¹
iPrns

P pxiq �
¸
xnPB

¹
aPX

P paqNpa|xnq � 0.

Moreover we have

A �
¤

QPPpn,X q :
}P�Q}1¡δ

T nQ .

14
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So

PbnpAq � Pbnp
¤

QPPpn,X q :
}P�Q}1¡δ

T nQ q �
¸

QPPpn,X q :
}P�Q}1¡δ

PbnpT nQ q ¤
¸

QPPpn,X q :
}P�Q}1¡δ

expp�nDpQ}P qq

where we use Lemma 2.6 for the last step. With the Pinsker inequality we can upper
bound this expression by¸

QPPpn,X q :
}P�Q}1¡δ

expp�n 1
2 ln 2}P �Q}21q ¤

¸
QPPpn,X q :
}P�Q}1¡δ

expp�n 1
2 ln 2δ

2q

¤ pn� 1q|X | expp�n 1
2 ln 2δ

2q.

So we have

PbnpT nP,δq � 1� PbnppT nP,δqcq ¥ 1� PbnpAq � PbnpBq

¥ 1� pn� 1q|X | expp�n 1
2 ln 2δ

2q.

Lemma 2.8 ([26]). Let δ ¡ 0 with δ   1
2|X | and P P PpX q. It holds for all n P N large

enough that

exppnpHpP q�p�δ|X | log δqqq
pn�1q|X | ¤ |T nP,δ| ¤ pn� 1q|X | exppnpHpP q � p�δ|X | log δqqq.

Proof. We have

T nP,δ �
¤

QPPpn,X q :
|Qpaq�P paq|¤δ@aPX
^Qpaq¡0ñP paq¡0

T nQ �
¤

QPPpn,X q :
}P�Q}1¤δ|X |

T nQ

and thus

|T nP,δ| ¤
¸

QPPpn,X q :
}P�Q}1¤δ|X |

|T nQ | ¤
¸

QPPpn,X q :
}P�Q}1¤δ|X |

exppnHpQqq

where the last step follows from Lemma 2.5. From the continuity of entropy it follows
from }P �Q}1 ¤ δ|X | that HpQq ¤ HpP q � p�δ|X | log δq. So we can upper bound the
expression above by¸
QPPpn,X q :
}P�Q}1¤δ|X |

exppnpHpP q � p�δ|X | log δqqq ¤ pn� 1q|X | exppnpHpP q � p�δ|X | log δqqq.
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Let T nP,δ � H (for n large enough this follows from Lemma 2.7). So there is a Q P Ppn,X q
such that }P �Q}1 ¤ δ|X | and T nQ � T nP,δ, i.e.,

|T nP,δ| ¥ |T nQ | ¥ 1
pn�1q|X | exppnHpQqq

where the last step follows from Lemma 2.5. From the continuity of entropy we can
lower bound this expression by

1
pn�1q|X | exppnpHpP q � p�δ|X | log δqqq.

Remark 2.9 ([26]). We can write joint types as

Pxn,ynpx, yq � PxnpxqV py|xq

for all px, yq P X � Y where V P PpY|X q. V py|xq is not uniquely determined given
Pxn,ynpx, yq for the x P X that do not occur in xn.

Definition 2.5 (Conditional type and V-shell [26]). The sequence yn P Yn has
conditional type V P PpY|X q given xn P X n if

Npx, y|xn, ynq � Npx|xnqV py|xq (2.6)

for all px, yq P X �Y. For xn P X n and stochastic matrix V P PpY|X q we call the set of
all sequences yn P Yn with conditional type V given xn the V-shell of xn and denote it
by TV pxnq (or T nV pxnq).

Remark 2.10 ([26]). The conditional type of yn given xn is not determined uniquely
if there is a x P X that does not occur in xn, but the set TV pxnq that contains yn is
determined uniquely. (This set is the same for all choices of V py|xq for the x P X that
do not occur in xn, because (2.6) is independent of these V py|xq.)

Lemma 2.11 ([26]). For xn P X n and V P PpY|X q such that TV pxnq � H it holds
that

pn� 1q�|X ||Y| exppnHpV |Pxnqq ¤ |TV pxnq| ¤ exppnHpV |Pxnqq.

Lemma 2.12 ([26]). Let n P N, xn P X n and V,W P PpY|X q such that TV pxnq � H.
It holds that

Wbnpyn|xnq � expp�npDpV }W |Pxnq �HpV |Pxnqqq

for yn P TV pxnq and

1
pn�1q|X ||Y| expp�npDpV }W |Pxnqqq ¤WbnpTV pxnq|xnq ¤ expp�nDpV }W |Pxnqq.
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Definition 2.6 ([26]). Let W P PpY|X q, n P N, xn P X n and δ ¡ 0. We define

TW,δpxnq �
¤

QPPpn,X�Yq :°
bPY Qpa,bq�Pxn paq@aPX

^|Pxn paqW pb|aq�Qpa,bq|¤δ@pa,bqPX�Y
^W pb|aq�0ñQpa,bq�0

TV pQqpxnq,

where V pQq P PpY|X q with

V pQqpb|aq �

#
Qpa,bq°
bPY Qpa,bq

°
bPY Qpa, bq ¡ 0

1
|Y| otherwise

.

Lemma 2.13 ([45,50]). Let δ ¡ 0, n P N, xn P X n and W P PpY|X q. It holds that

WbnpTW,δpxnq|xnq ¥ 1� pn� 1q|X ||Y| expp�n 1
2 ln 2δ

2q.

Proof. We show

WbnppTW,δpxnqqc|xnq ¤ pn� 1q|X ||Y| expp�n 1
2 ln 2δ

2q.

We know

pTW,δpxnqqc � tyn P Yn : Dpa, bq P X � Y : |Pxn,ynpa, bq � PxnpaqW pb|aq| ¡ δu

Y txn P X n : Dpa, bq P X � Y : Pxn,ynpa, bq ¡ 0^W pb|aq � 0u

� tyn P Yn :
¸

pa,bqPX�Y
|Pxn,ynpa, bq � PxnpaqW pb|aq| ¡ δu

Y tyn P Yn : Dpa, bq P X � Y : Pxn,ynpa, bq ¡ 0^W pb|aq � 0u.

We define

A � tyn P Yn :
¸

pa,bqPX�Y
|Pxn,ynpa, bq � PxnpaqW pb|aq| ¡ δu

B � tyn P Yn : Dpa, bq P X � Y : Pxn,ynpa, bq ¡ 0^W pb|aq � 0u.

It holds that

WbnpB|xnq �
¸
ynPB

¹
iPrns

W pyi|xiq �
¸
ynPB

¹
pa,bqPX�Y

W pb|aqNpa,b|xn,ynq � 0.

17
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Moreover we have

A �
¤

QPPpn,X�Yq :°
bPY Qpa,bq�Pxn paq@aPX

^
°
pa,bqPX�Y |Pxn paqW pb|aq�Qpa,bq|¡δ

TV pQqpxnq

Thus

WbnpA|xnq �Wbnp
¤

QPPpn,X�Yq :°
bPY Qpa,bq�Pxn paq@aPX

^
°
pa,bqPX�Y |Pxn paqW pb|aq�Qpa,bq|¡δ

TV pQqpxnq|xnq

�
¸

QPPpn,X�Yq :°
bPY Qpa,bq�Pxn paq@aPX

^
°
pa,bqPX�Y Pxn paq|W pb|aq�V pQqpb|aq|¡δ

WbnpTV pQqpxnq|xnq

¤
¸

QPPpn,X�Yq :°
bPY Qpa,bq�Pxn paq@aPX

^
°
pa,bqPX�Y Pxn paq|W pb|aq�V pQqpb|aq|¡δ

expp�nDpV pQq}W |Pxnqq

where we use Lemma 2.12 for the last step. As

DpV pQq}W |Pxnq �
¸

pa,bqPX�Y
PxnpaqV pQqpb|aq log V pQqpb|aqPxn paq

W pb|aqPxn paq

we can use the Pinsker inequality to upper bound this expression by¸
QPPpn,X�Yq :°

bPY Qpa,bq�Pxn paq@aPX
^
°
pa,bqPX�Y Pxn paq|W pb|aq�V pQqpb|aq|¡δ

expp�n 1
2 ln 2

¸
aPX

Pxnpaq}W p�|aq � V pQqp�|aq}21q

¤
¸

QPPpn,X�Yq :°
bPY Qpa,bq�Pxn paq@aPX

^
°
pa,bqPX�Y Pxn paq|W pb|aq�V pQqpb|aq|¡δ

expp�n 1
2 ln 2δ

2q ¤ pn� 1q|X ||Y| expp�n 1
2 ln 2δ

2q.

So we have

WbnpTW,δpxnq|xnq � 1�WbnppTW,δpxnqqc|xnq
¥ 1�WbnpA|xnq �WbnpB|xnq
¥ 1� pn� 1q|X ||Y| expp�n 1

2 ln 2δ
2q.

Lemma 2.14 ([26]). Let δ ¡ 0 with δ   1
2|X ||Y| and W P PpY|X q, xn P X n. It holds
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for all n P N large enough that

pn� 1q|X ||Y| exppnpHpW |Pxnq � εqq ¤ |T nW,δpxnq| ¤ pn� 1q|X ||Y| exppnpHpW |Pxnq � εqq,

where ε � εpδ, |X |, |Y|q � �δ|X ||Y| log δ. For xn P TP,δ, P P PpX q, it holds that

pn� 1q|X ||Y| exppnpHpW |P q � ε̄qq ¤ |T nW,δpxnq| ¤ pn� 1q|X ||Y| exppnpHpW |P q � ε̄qq,

where ε̄ � ε� δ|X | log |Y|.

Proof. We have

TW,δpxnq �
¤

QPPpn,X�Yq :°
bPY Qpa,bq�Pxn paq@aPX

^|Pxn paqW pb|aq�Qpa,bq|¤δ@pa,bqPX�Y
^W pb|aq�0ñQpa,bq�0

TV pQqpxnq.

Thus it holds that

|TW,δpxnq| ¤ pn� 1q|X ||Y| max
QPPpn,X�Yq :°

bPY Qpa,bq�Pxn paq@aPX
^|Pxn paqW pb|aq�Qpa,bq|¤δ@pa,bqPX�Y

^W pb|aq�0ñQpa,bq�0

|TV pQqpxnq|

¤ pn� 1q|X ||Y| max
QPPpn,X�Yq :°

bPY Qpa,bq�Pxn paq@aPX
^|Pxn paqW pb|aq�Qpa,bq|¤δ@pa,bqPX�Y

^W pb|aq�0ñQpa,bq�0

exppnHpV pQq|Pxnqq.

It holds that

HpV pQq|Pxnq � �
¸

pa,bqPX�Y
PxnpaqV pQqpb|aq logpPxnpaqV pQqpb|aqq �HpPxnq

and form the continuity of entropy it follows from¸
pa,bqPX�Y

|PxnpaqV pQqpb|aq � PxnW pb|aq| ¤ δ|X ||Y|

that

HpV pQq|Pxnq ¤ HpW |Pxnq � p�δ|X ||Y| log δq, (2.7)

so we can upper bound |TW,δpxnq| by

pn� 1q|X ||Y| exppnpHpW |Pxnq � p�δ|X ||Y| log δqqq.

Moreover, we have for n large enough that TW,δpxnq � H and thus for a V pQq P PpY|X q
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(with corresponding Q)

|TW,δpxnq| ¥ |TV pQqpxnq| ¥ pn� 1q�|X ||Y| exppnHpV pQq|Pxnqq

¥ pn� 1q�|X ||Y| exppnpHpW |Pxnq � p�δ|X ||Y| log δqqq,

where the last step follows from the continuity of entropy. For the case xn P T nP,δ the
result follows from

|HpW |Pxnq �HpW |P q| � |
¸
aPX

HpW p�|aqqpPxnpaq � P paqq|

¤
¸
aPX

HpW p�|aqq|Pxnpaq � P paq|

¤ log |Y|
¸
aPX

|Pxnpaq � P paq| ¤ δ|X | log |Y|.

Lemma 2.15 ([26]). Consider δ1, δ2 ¡ 0, n P N, P P PpX q and W P PpY|X q. Let
xn P T nP,δ1 and yn P TW,δ2pxnq. It holds that pxn, ynq P T nQ,δ1�δ2 with Q P PpX � Yq,
Qpx, yq � P pxqW py|xq for all px, yq P X � Y and yn P TPW,pδ1�δ2q|X | with PW P PpYq,
PW pyq �

°
xPX P pxqW py|xq for all y P Y.

Lemma 2.16. Let n P N, W P PpY|X q,P P PpX q and δ1, δ2 ¡ 0. Let xn P T nP,δ1
and yn P T nW,δ2px

nq. It holds that PWbnpynq ¤ expp�npHpPW q � θ log |X |
θ qq where

θ � pδ1 � δ2q|X ||Y|.

Proof. With Lemma 2.15, xn P T nP,δ1 and yn P T nW,δ2px
nq we have yn P T nPW,pδ1�δ2q|X |.

Thus

}Pyn � PW }1 ¤ pδ1 � δ2q|X ||Y|. (2.8)

It holds that

PWbnpynq � expp�npDpPyn}PW q �HpPynqqq ¤ expp�nHpPynqq.

With (2.8) and Lemma 2.3 it holds that

HpPynq ¥ HpPW q � θ log |Y|
θ .

Lemma 2.17. Let n P N, δ ¡ 0, 0   η   1
2 ln 2δ

2 and P P PpX q. Let A � X n such that
PbnpAq ¥ expp�nηq. It holds for all n large enough that

1
n log |A| ¥ HpP q � δ|X | log δ � η � 1

n �
|X |
n logpn� 1q.
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Proof. We have with Lemma 2.7

PbnpAX T nP,δq ¥ PbnpAq � PbnpT nP,δq � 1

¥ expp�nηq � pn� 1q|X | expp�n 1
2 ln 2δ

2q ¥ expp�nηq{2

for n large enough. It holds that

AX T nP,δ � AX
¤

QPPpn,X q :
|Qpaq�P paq|¤δ@aPX
^Qpaq¡0ñP paq¡0

T nQ � AX
¤

QPPpn,X q :
}P�Q}1¤δ|X |

T nQ

Thus

expp�nηq{2 ¤ PbnpAX T nP,δq ¤ PbnpAX
¤

QPPpn,X q :
}P�Q}1¤δ|X |

T nQ q

�
¸

xnPAX
�

QPPpn,X q :
}P�Q}1¤δ|X |

T nQ

Pbnpxnq.

For all xn P T nQ we know that Pbnpxnq is constant, so we have for

xn P AX
¤

QPPpn,X q :
}P�Q}1¤δ|X |

T nQ

that

Pbnpxnq ¤ max
QPPpn,X q :
}P�Q}1¤δ|X |

1
|T nQ |

.

With Lemma 2.3 and Lemma 2.5 it follows for xn P AX
�

QPPpn,X q :
}P�Q}1¤δ|X |

T nQ that

Pbnpxnq ¤ pn� 1q|X | expp�npHpP q � δ|X | log δqq.

Thus we have

expp�nηq{2 ¤ |A|pn� 1q|X | expp�npHpP q � δ|X | log δqq

and consequently

1
n log |A| ¥ HpP q � δ|X | log δ � η � 1

n �
|X |
n logpn� 1q.

Theorem 2.18 (Fano’s inequality [26]). For RVs X and Y on the alphabet X it
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holds that

HpX|Y q ¤ PrpX � Y q logp|X | � 1q � hpPrpX � Y qq.

Theorem 2.19. Let A,B,C and D be jointly distributed RVs. It holds that

A�B � C ô C �B �A (2.9)

AB � C �D ñ B � C �D (2.10)

AB � C �D ñ A�BC �D (2.11)

PABCpa, b, cq � PABpa, bqPCpcq @pa, b, cq P A� B � C
^A�BC �D ñ A�B � CD. (2.12)

Proof. We give a proof for each of the statements.

• We have

PABCpa, b, cq
aq
� PA|Bpa|bqPBCpb, cq

� PA|Bpa|bqPC|Bpc|bqPBpbq � PABpa, bqPC|Bpc|bq

for all pa, b, cq P A� B � C. Here aq follows from A�B � C. So we see that (2.9)
is true.

• We have PABCDpa, b, c, dq � PAB|Cpa, b|cqPCDpc, dq for all pa, b, c, dq P A�B�C�D
from AB � C �D. Summing both sides over all b P B we get (2.10).

• We have

PABCDpa, b, c, dq
aq
� PAB|Cpa, b|cqPCDpc, dq

� PB|Cpb, cqPA|BCpa|b, cqPCDpc, dq

bq
� PA|BCpa|b, cqPB|CDpb|c, dqPCDpc, dq

� PA|BCpa|b, cqPBCDpb, c, dq

for all pa, b, c, dq P A� B� C �D, where aq follows from AB �C �D and bq from
(2.10). This means (2.11) is true.

• We have

PABCDpa, b, c, dq
aq
� PA|BCpa|b, cqPBCDpb, c, dq

� PA|BCpa|b, cqPD|BCpd|b, cqPBCpb, cq

bq
� PABpa, bqPCpcqPD|BCpd|b, cq

� PA|Bpa|bqPBpbqPCpcqPD|BCpd|b, cq

cq
� PA|Bpa|bqPBCpb, cqPD|BCpd|b, cq

� PA|Bpa|bqPBCDpb, c, dq
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Encoder Channel Decoder

Figure 2.2: Message transmission over point-to-point channel.

for all pa, b, c, dq P A� B � C �D, where aq follows from A�BC �D and bq and
cq follow as C is independent of AB. So we have (2.12).

2.4 Channel coding

A discussion on the noisy channel coding problem for the discrete memoryless channel
(DMC) can be found in the standard textbooks on information theory, e.g. [26]. In
Figure 2.2 we see a block diagram of the setting. Here a message from a set M should
be transmitted over a channel where we assume this channel is the DMC Wbn with
W P PpY|X q. For this purpose we use an encoder f : M Ñ X n to map the message to
a codeword that serves as the input of the DMC. After transmission we use a decoder
g : Yn ÑM to reconstruct the message. We call pf, gq a channel code.

Consequently, for this scenario of message transmission the probability that message
m PM is reconstructed correctly is Wbnpg�1pmq|fpmqq. The set of possible messages
M and the probability to correctly reconstruct the message should be as large as possible.
This suggests the following definition.

Definition 2.7. We call R ¥ 0 an achievable rate if for all δ ¡ 0 there is an N P N and
a c ¡ 0 such that for all n ¡ N there is a channel code pf, gq with

min
mPM

Wbnpg�1pmq|fpmqq ¥ 1� expp�ncq

1
n log |M| ¥ R� δ.

We call the supremum of all achievable rates the channel capacity CpW q.

According to this definition the error probability decays exponentially with the block
length n for n large enough. The error probability that we consider is the maximum
probability of error. We can prove the following achievability result.

Theorem 2.20. It holds that CpW q ¥ maxPPPpX q IpP,W q.

This result is well known and one can find various proofs in the literature. Nevertheless
we present a proof below. After presenting this proof we add an additional requirement
to the achievability requirements in Definition 2.7. Then we can use the same proof
technique to prove a corresponding achievability result. The following proof is based on
the proof of [26, Lemma 6.3].
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Proof. Let δ1, δ2, c ¡ 0 small enough and P P PpX q. We construct the code for all n
large enough using an iterative procedure. (Assume w.l.o.g. that M � rks, k P N.) In
the first step choose fp1q P T nP,δ1 and g�1p1q � T nW,δ2pfp1qq such that

Wbnpg�1p1q|fp1qq ¥ 1� expp�ncq

holds true. We know from Lemma 2.13 that this is possible with 0   c   1
2 ln 2δ

2
2 for

n large enough. We choose c � δ2
2{2 and n large enough. In the m-th step choose

fpmq P T nP,δ1zfprm� 1sq and g�1pmq � T nW,δ2pfpmqqz
�
m̄Prm�1s g

�1pm̄q such that

Wbnpg�1pmq|fpmqq ¥ 1� expp�ncq

holds true. After the k-th step we can not find an additional code word with an appropri-
ate decoding set. (As the sets that we choose the code words and the decoding sets from
are finite, the procedure will terminate.) For the remaining yn P Ynz

�
mPM g�1pmq we

choose for gpynq an arbitrary m PM. Assume the procedure terminates because we can
not find an additional decoding set. Then for all xn P T nP,δ1zfpMq it holds that

WbnpT nW,δ2px
nqz

¤
mPM

g�1pmq|xnq   1� expp�ncq (2.13)

as otherwise the procedure would not have terminated yet. For fpmq, m PM, it holds
that

WbnpT nW,δ2pfpmqqz
¤
m̄PM

g�1pm̄q|fpmqq ¤WbnpT nW,δ2pfpmqqzg
�1pmq|fpmqq

¤Wbnppg�1pmqqc|fpmqq ¤ expp�ncq,

so (2.13) holds true for all xn P T nP,δ1 for n large enough. For the left hand side of (2.13)
we can write

WbnpT nW,δ2px
nq X p

¤
mPM

g�1pmqqc|xnq

which equals

WbnpT nW,δ2px
nq|xnq � 1�Wbnp

¤
mPM

g�1pmq|xnq

�WbnpT nW,δ2px
nq Y p

¤
mPM

g�1pmqqc|xnq

¥WbnpT nW,δ2px
nq|xnq �Wbnp

¤
mPM

g�1pmq|xnq.
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With Lemma 2.13 we get

Wbnp
¤
mPM

g�1pmq|xnq ¥ 1� pn� 1q|X ||Y| expp�n 1
2 ln 2δ

2
2q

�WbnpT nW,δ2px
nq X p

¤
mPM

g�1pmqqc|xnq

¥ expp�nδ2
2{2q � pn� 1q|X ||Y| expp�n 1

2 ln 2δ
2
2q ¥ expp�nδ2

2q,

where for the second to last inequality we use (2.13). The last step holds for all n large
enough. Furthermore with Lemma 2.7 it holds that

PWbnp
¤
mPM

g�1pmqq �
¸

ynP
�
mPM g�1pmq

n¹
i�1

¸
xPX

P pxqW pyi|xq

aq
�

¸
xnPXn

PbnpxnqWbnp
¤
mPM

g�1pmq|xnq

¥
¸

xnPT nP,δ1

PbnpxnqWbnp
¤
mPM

g�1pmq|xnq (2.14)

¥ p1� pn� 1q|X | expp�n 1
2 ln 2δ

2
1qq expp�nδ2

2q. (2.15)

Here we can prove aq for all n P N by induction. Now consider

PWbnp
¤
mPM

g�1pmqq �
¸

ynP
�
mPM g�1pmq

PWbnpynq

�
¸

ynP
�
mPMpg�1pmqXT nW,δ2 pfpmqqq

PWbnpynq

¤
¸

ynP
�
mPMpg�1pmqXT nW,δ2 pfpmqqq

expp�npHpPW q � θ log |X |
θ qq

�
¸

ynP
�
mPM g�1pmq

expp�npHpPW q � θ log |X |
θ qq

� |
¤
mPM

g�1pmq| expp�npHpPW q � θ log |X |
θ qq

where we use Lemma 2.16 for the third step and define θ accordingly. Note that here
we also use that fpmq P T nP,δ1 for all m PM. So we get

|
¤
mPM

g�1pmq| ¥ p1� pn� 1q|X | expp�n 1
2 ln 2δ

2
1qq expp�nδ2

2q exppnpHpPW q � θ log |X |
θ qq.
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With Lemma 2.14 it holds that

|
¤
mPM

g�1pmq| ¤ |
¤
mPM

T nW,δ2pfnpmqq| ¤
¸
mPM

|T nW,δ2pfnpmqq|

¤ |M| exppnpHpW |P q � |X ||Y|δ2 logp1{δ2q � δ1|X | log |Y|qqpn� 1q|X ||Y|.

Thus overall we obtain

|M| ¥
1�pn�1q|X | expp�n

1
2 ln 2 δ

2
1q

pn�1q|X ||Y|

� exppnpIpP,W q � δ2
2 � θ log |X |

θ � |X ||Y|δ2 logp1{δ2q � δ1|X | log |Y|qq.

If the procedure terminates because we can not choose an additional code word from the
set of possible code words we have with Lemma 2.8

|M| ¥ 1
pn�1q|X | exppnpHpP q � εqq

for ε ¡ 0 and n large enough.

As mentioned above we want to add a requirement to the achievability requirements in
Definition 2.7. We want to consider channel codes such that the code words are elements
of a set A with a certain property (which guarantees that A is large enough).

Definition 2.8. Let P P PpX q. We call R ¥ 0 an achievable rate given P if for all
δ ¡ 0 there is an N P N, a c ¡ 0 and η ¡ 0 such that for all n ¡ N , given A � X n with
PbnpAq ¡ expp�nηq, there is a channel code pf, gq with

min
mPM

Wbnpg�1pmq|fpmqq ¥ 1� expp�ncq

1
n log |M| ¥ R� δ

and fpMq � A.

We prove the following theorem (which is very similar to [26, Theorem 6.10]).

Theorem 2.21. Let P P PpX q. The rate IpP,W q is achievable given P .

Proof. To prove this result we change the iterative procedure for the code construction
such that in the m-th step fpmq is not chosen from T nP,δ1zfprm� 1sq anymore but from
pA X T nP,δ1qzfprm � 1sq. At first we consider the case where the procedure terminates
because we can not find an appropriate decoding set. So after the procedure terminates
we have (2.13) for all xn P A X T nP,δ1 for all n large enough. Moreover with Lemma 2.7
we have

PbnpAX T nP,δ1q ¥ 1� pn� 1q|X | expp�n 1
2 ln 2δ

2
1q � expp�nηq � 1 ¥ expp�nηq{2

26



Compound channels

for all n large enough. In (2.14), instead of summing over T nP,δ1 we take the sum over
AX T nP,δ1 and get instead of (2.15) that

PWbnp
¤
mPM

g�1pmqq ¥ expp�nηq expp�nδ2
2q{2

and thus overall

|M| ¥ 1{2
pn�1q|X ||Y|

� exppnpIpP ;W q � δ2
2 � η � θ log |X |

θ � |X ||Y|δ2 logp1{δ2q � δ1|X | log |Y|qq.

Lemma 2.17 implies that if the procedure terminates because we can not choose a code
word anymore we have

|M| ¥ exppnpHpP q � εqq

for ε ¡ 0 and all n large enough if we choose η small enough.

Note that the encoders constructed in the proofs above are injective.

2.5 Compound channels

The compound channel is introduced in [17]. It is used to incorporate channel uncertainty
in the model for message transmission over a point-to-point channel. The compound
channel is also discussed for example in [26].

In the block diagram depicted in Figure 2.2 the channel is now assumed to not be
known perfectly. A message from a setM should be transmitted over the channel which
is one of the DMCs of the set tWbn

s usPS , Ws P PpY|X q for all s P S. Again an encoder
f : M Ñ X n and a decoder g : Yn Ñ M are used to map the message on a codeword
and to reconstruct the message from the channel output respectively. We call pf, gq a
compound channel code.

A compound channel code should allow for reliable reconstruction of the message sent
for all possible DMCs i.e. the compound channel codes should be robust against channel
uncertainty. This suggests the following definition.

Definition 2.9. We call R ¥ 0 an achievable rate if for all δ ¡ 0 there is an N P N and
a c ¡ 0 such that for all n ¡ N there is a compound channel pf, gq code with

inf
sPS

min
mPM

Wbn
s pg�1pmq|fpmqq ¥ 1� expp�ncq

1
n log |M| ¥ R� δ.

We call the supremum of all achievable rates the compond channel capacity CptWsusPSq.

27



Chapter 2 – Preliminaries

So the error probability decays exponentially with the block length n for n large enough
for all DMCs in the compound set and again we consider the maximum probability of
error.

We now assume that |S|   8. We can prove the following achievability result.

Theorem 2.22. It holds that CptWsusPSq ¥ maxPPPpX q minsPS IpP,Wsq.

This result is well known, see for example [26, Corollary 10.10]. We prove a result that
implies Theorem 2.22. Similarly to the channel coding problem we add the requirement
that the code words of the compound channel codes are elements of a set A with a
certain property. (For the following definition we do not assume |S|   8.)

Definition 2.10. Let P P PpX q. We call R ¥ 0 an achievable rate given P if for all
δ ¡ 0 there is an N P N, a c ¡ 0 and η ¡ 0 such that for all n ¡ N , given A � X n with
PbnpAq ¡ expp�nηq, there is a compound channel code pf, gq with

inf
sPS

min
mPM

Wbnpg�1pmq|fpmqq ¥ 1� expp�ncq

1
n log |M| ¥ R� δ

and fpMq � A.

We prove the following theorem.

Theorem 2.23. Let P P PpX q. The rate minsPS IpP,Wsq is achievable given P .

The proof again is based on the proof of [26, Lemma 6.3].

Proof. Let δ1, δ2, c ¡ 0 small enough and P P PpX q. We construct the code for all n
large enough using an iterative procedure. (We assume w.l.o.g. that M � rks, k P N.)

In the first step choose fp1q P T nP,δ1 XA and g�1p1q �
�
sPS T nWs,δ2

pfp1qq such that for
all s P S

Wbn
s pg�1p1q|fp1qq ¥ 1� expp�ncq

holds true. We know from Lemma 2.13 that this is possible with 0   c   1
2 ln 2δ

2
2 for

n large enough. We choose c � δ2
2{2 and n large enough. In the m-th step choose

fpmq P pT nP,δ1 XAqzfprm�1sq and g�1pmq �
�
sPS T nWs,δ2

pfpmqqz
�
m̄Prm�1s g

�1pm̄q such
that for all s P S

Wbn
s pg�1pmq|fpmqq ¥ 1� expp�ncq

holds true. After the k-th step we can not choose an additional code word with appro-
priate decoding set. (As the set the code words and decoding sets are chosen form are
finite the procedure terminates.) For the remaining yn P Ynz

�
mPM g�1pmq we choose

for gpynq an arbitrary m P M. Assume the procedure terminates because we can not
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find an additional appropriate decoding set. Then for all xn P pT nP,δ1 X AqzfpMq there
is an s P S such that

Wbn
s p

¤
s̄PS
T nWs̄,δ2px

nqz
¤
mPM

g�1pmq|xnq   1� expp�ncq (2.16)

as otherwise the procedure would not have terminated yet. For fpmq, m PM, we have
for all s P S

Wbn
s p

¤
s̄PS
T nWs̄,δ2pfpmqqz

¤
m̄PM

g�1pm̄q|fpmqq ¤Wbn
s p

¤
s̄PS
T nWs̄,δ2pfpmqqzg

�1pmq|fpmqq

¤Wbn
s ppg�1pmqqc|fpmqq ¤ expp�ncq,

so (2.16) holds true for all xn P T nP,δ1 X A for all n large enough for at least one s P S.
Moreover with Lemma 2.7 it holds that

PbnpT nP,δ1 XAq ¥ PbnpAq � PbnpT nP,δ1q � 1 ¥ expp�nηq{2

for all n large enough. (Similarly to the proof without channel uncertainty.) Now
consider for all s P S the set

AWs : � txn P T nP,δ1 XA : Wbn
s p

¤
s̄PS
T nWs̄,δ2px

nqz
¤
mPM

g�1pmq|xnq   1� expp�ncqu.

It is clear that
�
sPS AWs � T nP,δ1 XA as for all xn P T nP,δ1 XA there is at least one s P S

such that (2.16) holds true. Thus we have

expp�nηq{2 ¤ PbnpT nP,δ1 XAq � Pbnp
¤
sPS
AWsq ¤

¸
sPS

PbnpAWsq ¤ |S|max
sPS

PbnpAWsq.

So there is an s̃ P S such that for all xn P AWs̃ it holds that

Wbn
s̃ p

¤
sPS
T nWs,δ2px

nqz
¤
mPM

g�1pmq|xnq   1� expp�ncq (2.17)

and

PbnpAWs̃q ¥ expp�nηq{p2|S|q. (2.18)
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Moreover for the left hand side of (2.17) we have

Wbn
s̃ p

¤
sPS
T nWs,δ2px

nq X p
¤
mPM

g�1pmqqc|xnq

�Wbn
s̃ p

¤
sPS
T nWs,δ2px

nq|xnq � 1�Wbn
s̃ p

¤
mPM

g�1pmq|xnq

�Wbn
s̃ p

¤
sPS
T nWs,δ2px

nq Y p
¤
mPM

g�1pmqqc|xnq

¥Wbn
s̃ pT nWs̃,δ2

pxnq|xnq �Wbn
s̃ p

¤
mPM

g�1pmq|xnq.

With Lemma 2.13 we get

Wbn
s̃ p

¤
mPM

g�1pmq|xnq ¥ 1� pn� 1q|X ||Y| expp�n 1
2 ln 2δ

2
2q

�Wbn
s̃ p

¤
sPS
T nWs,δ2px

nq X p
¤
mPM

g�1pmqqc|xnq

¥ expp�nδ2
2{2q � pn� 1q|X ||Y| expp�n 1

2 ln 2δ
2
2q,

where for the last inequality we use (2.17). So we have

Wbn
s̃ p

¤
mPM

g�1pmq X
¤

x̄nPT nP,δ1

T nWs̃,δ2
px̄nq|xnq

¥Wbn
s̃ p

¤
mPM

g�1pmq|xnq �Wbn
s̃ p

¤
x̄nPT nP,δ1

T nWs̃,δ2
px̄nq|xnq � 1

¥ expp�nδ2
2{2q � 2pn� 1q|X ||Y| expp�n 1

2 ln 2δ
2
2q ¥ expp�nδ2

2q

where for the second to last inequality we use Lemma 2.13. The last step holds true for
all n large enough. Moreover, with (2.18) it holds that

PWbn
s̃ p

¤
mPM

g�1pmq X
¤

x̄nPT nP,δ1

T nWs̃,δ2
px̄nqq

�
¸

ynP
�
mPM g�1pmqX

�
x̄nPT n

P,δ1

T nWs̃,δ2 px̄
nq

n¹
i�1

¸
xPX

P pxqWs̃pyi|xq

�
¸

xnPXn

PbnpxnqWbn
s̃ p

¤
mPM

g�1pmq X
¤

x̄nPT nP,δ1

T nWs̃,δ2
px̄nq|xnq

¥
¸

xnPAWs̃

PbnpxnqWbn
s̃ p

¤
mPM

g�1pmq X
¤

x̄nPT nP,δ1

T nWs̃,δ2
px̄nq|xnq

¥ expp�nηq{p2|S|q expp�nδ2
2q.
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Now consider

PWbn
s̃ p

¤
mPM

g�1pmq X
¤

x̄nPT nP,δ1

T nWs̃,δ2
px̄nqq

�
¸

ynP
�
mPM g�1pmqX

�
x̄nPT n

P,δ1

T nWs̃,δ2 px̄
nq

PWbn
s̃ pynq

¤
¸

ynP
�
mPM g�1pmqX

�
x̄nPT n

P,δ1

T nWs̃,δ2 px̄
nq

expp�npHpPWs̃q � θ log |X |
θ qq

� |
¤
mPM

g�1pmq X
¤

x̄nPT nP,δ1

T nWs̃,δ2
px̄nq| expp�npHpPWs̃q � θ log |X |

θ qq

where we use Lemma 2.16 for the third step and define θ correspondingly. So we get

|
¤
mPM

g�1pmq X
¤

x̄nPT nP,δ1

T nWs̃,δ2
px̄nq|

¥ expp�nηq{p2|S|q expp�nδ2
2q exppnpHpPWs̃q � θ log |X |

θ qq.

Furthermore we have

|
¤
mPM

g�1pmq X
¤

x̄nPT nP,δ1

T nWs̃,δ2
px̄nq| � |

¤
mPM

pg�1pmq X
¤

x̄nPT nP,δ1

T nWs̃,δ2
px̄nqq|

¤
¸
mPM

|g�1pmq X
¤

x̄nPT nP,δ1

T nWs̃,δ2
px̄nq|

¤
¸
mPM

|
¤
sPS
T nWs,δ2pfpmqq X

¤
x̄nPT nP,δ1

T nWs̃,δ2
px̄nq|.

We define for all m PM

S�m � ts P S : T nWs,δ2pfpmqq X
¤

xnPT nP,δ1

T nWs̃,δ2
pxnq � Hu.
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So we have

|
¤
mPM

g�1pmq X
¤

x̄nPT nP,δ1

T nWs̃,δ2
px̄nq|

¤
¸
mPM

¸
sPS�m

|T nWs,δ2pfpmqq X
¤

x̄nPT nP,δ1

T nWs̃,δ2
px̄nq|

¤
¸
mPM

max
sPS�m

|T nWs,δ2pfpmqq||S|

¤ |S|
¸
mPM

max
sPS�m

exppnpHpWs|P q � |X ||Y|δ2 logp1{δ2q � δ1|X | log |Y|qqpn� 1q|X ||Y|

¤ |S||M| max
mPM

max
sPS�m

exppnpHpWs|P q � |X ||Y|δ2 logp1{δ2q � δ1|X | log |Y|qqpn� 1q|X ||Y|.

For all m PM it holds that for all s P S�m there is a yn P Yn such that yn P T nWs,δ2
pfpmqq

and yn P T nWs̃,δ2
pxnq for a xn P T nP,δ1 . With Lemma 2.15 it follows that yn P T nPWs,pδ1�δ2q|X |

and yn P T nPWs̃,pδ1�δ2q|X |. So we have

}PWs � PWs̃}1 �
¸
yPY

|PWspyq � PWs̃pyq|

�
¸
yPY

|PWspyq �Npy|ynq{n�Npy|ynq{n� PWs̃pyq|

¤
¸
yPY

|PWspyq �Npy|ynq{n| � |Npy|ynq{n� PWs̃pyq| ¤ 2|Y|pδ1 � δ2q|X |.

With Lemma 2.3 it follows that

|HpPWsq �HpPWs̃q| ¤ 2|Y|pδ1 � δ2q|X | log 1
2pδ1�δ2q|X |

for all m PM and all s P S�m. (We assume δ1 and δ2 are small enough.) So altogether
we have

|M| ¥ exppnpHpPWs̃q � θ log |X |
θ � η � |X ||Y|δ2 logp1{δ2q � δ1|X | log |Y|qq

� 1
2|S|2pn�1q|X ||Y| expp�nδ2

2q expp�npmin
mPM

min
sPS�m

HpWs|P qqq

� exppnpHpPWs̃q �HpWs� |P q � θ log |X |
θ � η � |X ||Y|δ2 logp1{δ2q � δ1|X | log |Y|qq

� 1
2|S|2pn�1q|X ||Y| expp�nδ2

2q,

for a s� P
�
mPM S�m. So we have

|M| ¥ exppnp�2|Y|pδ1 � δ2q|X | log 1
2pδ1�δ2q|X | � θ log |X |

θ � η � |X ||Y|δ2 logp1{δ2qqq

� 1
2|S|2pn�1q|X ||Y| expp�nδ2

2 � nδ1|X | log |Y|q exppnIpP,Ws�qq.

The result follows as IpP,Ws�q ¥ minsPS IpP,Wsq. (If the procedure terminates because
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we can not choose an additional code word we get the same bound as in the case without
channel uncertainty.)

Now we consider the case of an arbitrary compound channel, i.e. |S|   8 does not
necessarily hold true. We use the following theorem which essentially is [17, Lemma 4].
(We omit one statement of [17, Lemma 4] in the theorem presented here.) The proof
can also be found in [17].

Theorem 2.24 ([17]). Let M P N, M ¥ 2|Y|2 and tWsusPS with Ws P PpY|X q for
all s P S. We can construct tVtutPT with Vt P PpY|X q for all t P T such that |T | ¤
pM � 1q|X ||Y| and for all s P S there is a t P T with

|Wspy|xq � Vtpy|xq| ¤
|Y|
M

Wspy|xq ¤ e2|Y|2{MVtpy|xq

for all px, yq P X � Y.

Similarly to the approach in [17] we use Theorem 2.24 to prove the following achieva-
bility result for arbitrary compound channels.

Theorem 2.25. Let P P PpX q. The rate infsPS IpP,Wsq is achievable given P .

Proof. Consider the smallest possible set tVtutPT as described in Theorem 2.24 (where
M is determined below and chosen large enough). For all s P S we denote the t P T
corresponding to s by tpsq. From Theorem 2.23 we know that given δ ¡ 0, for all n large
enough there is a compound channel code pf, gq, such that

1
n log |M| ¥ min

tPT
IpP, Vtq � δ

min
tPT

min
mPM

V bn
t pg�1pmq|fpmqq ¥ 1� expp�ncq

for a c ¡ 0. Let t� � arg mintPT IpP, Vtq and s� such that

}Ws�p�|xq � Vt�p�|xq}1 ¤
|Y|2
M

for all x P X . (The existence of such an s� follows as we consider the smallest possible
set tVtutPT .) Thus it holds that

|IpP,Ws�q � IpP, Vt�q| � |HpWs� |P q �HpVt� |P q|

� |
¸
xPX

P pxqpHpWs�p�|xqq �HpVt�p�|xqqq|

¤
¸
xPX

P pxq|HpWs�p�|xqq �HpVt�p�|xqq| ¤
|Y|2
M log M

|Y| .
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Moreover we have

inf
sPS

IpP,Wsq ¤ IpP,Ws�q ¤ IpP, Vt�q �
|Y|2
M log M

|Y| � min
tPT

IpP, Vtq �
|Y|2
M log M

|Y| .

For all s P S and m PM Theorem 2.24 implies

Wbn
s ppg�1pmqqc|fpmqq �

¸
ynPpg�1pmqqc

Wbn
s pyn|fpmqq

¤
¸

ynPpg�1pmqqc

e2|Y|2n{MV bn
tpsqpy

n|fpmqq

� e2|Y|2n{MV bn
tpsqppg

�1pmqqc|fpmqq ¤ e2|Y|2n{M expp�ncq.

Now we choose M � n2. Thus the desired result follows.

Note that the encoders constructed in the proofs above are injective.

2.6 Arbitrarily varying channels

The AVC is presented for the first time in [18]. It is another model that allows to
include channel uncertainty in the scenario of message transmission over a point-to-point
channel. A discussion on AVCs can for example be found in [26].

Compared to the compound channel the AVC is a more pessimistic model in the
following sense. As described in [26, Chapter 12], for the compound channel the unknown
parameter is constant during the transmission of a codeword, whereas for the AVC the
parameter can vary from symbol to symbol.

So again consider Figure 2.2 where this time the channel is an AVC. A code word is
generated from a message that should be transmitted over the channel using an encoder
f : M Ñ X n. This code word serves as the channel input. For each of the n symbols
of the code word the channel is represented by one of the stochastic matrices in the
set tWsusPS , Ws P PpY|X q for all s P S. So the channel for the whole transmission is
one of the stochastic matrices in the set tWsnusnPSn where we define Wsn �

Ân
i�1Wsi

for sn P Sn. Then we use a decoder g : Yn ÑM to reconstruct the message from the
channel output. We assume that S is finite and we call the tuple pf, gq an AVC code.

For the DMC and the compound channel achievability is defined with respect to the
maximum probability of error. For the AVC we consider the average probability of error.
(For a discussion on these two possibilities to measure the performance of AVC codes
see for example [26, Chapter 12].) Consequently we arrive at the following definition.

Definition 2.11. We call R ¥ 0 an achievable rate if for all δ ¡ 0 there is an N P N
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such that for all n ¡ N there is an AVC code pf, gq with

max
snPSn

1
|M|

¸
mPM

Wsnppg
�1pmqqc|fpmqq ¤ δ

1
n log |M| ¥ R� δ.

We call the supremum of all achievable rates the AVC capacity CptWsusPSq.

It is well known that the best possible transmission rate for reliable communication
over an AVC (evaluated in terms of average error probability) strongly depends on
whether the AVC is symmetrizable. An AVC corresponding to tWsusPS , Ws P PpY|X q,
is symmetrizable if there is a U P PpS|X q such that¸

sPS
Wspy|xqUps|x

1q �
¸
sPS

Wspy|x
1qUps|xq

for all x, x1, y P X 2 � Y [24, Definition 2].

In order to illustrate the concept of symmetrizability of AVCs we present an example
of a symmetrizable AVC. (This example is also discussed in [18] and [2, Example 1], cf.
[21].) Assume |X | � |S| � 2 and |Y| � 3. We define

W1p�|1q �

�
�1

0
0

�
, W2p�|1q �

�
�0

0
1

�


W1p�|2q �

�
�0

1
0

�
, W2p�|2q �

�
�1

0
0

�
.

We can easily check that for all y P Y

W1py|1qq1 �W2py|1qp1� q1q

�W1py|2qq2 �W2py|2qp1� q2q

holds true for q1 � 1 and q2 � 0. So the corresponding AVC is symmetrizable which is
illustrated in Figure 2.3.

Now we can state an achievability result for AVCs which is proved in [24].

Theorem 2.26. If the AVC corresponding to tWsusPS is not symmetrizable then

CptWsusPSq ¥ max
PPPpX q

min
W̄PW̄

IpP, W̄ q

where we define W̄ � convptWsusPSq.

Similarly to the previous models we now want to add the requirement that the code
words corresponding to the AVC code are elements of a set A with a specific property.
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(1,0,0)

p0, 0, 1q

(0,1,0)

Figure 2.3: The simplex is the set of all distributions on Y. W1p�|1q, W1p�|2q, W2p�|1q
and W2p�|2q correspond to extreme points. It can be seen that the two sets
of convex combinations (represented by the black lines) intersect at p1, 0, 0q.

To prove this achievability result we use the following lemma, which basically is [24,
Lemma A1]. We give the complete proof from [24] for the reader’s convenience.

Lemma 2.27 ([24]). Let Z1 � � �ZN be arbitrary (discrete) RVs (on a finite alphabet)
and let fipZ1 � � �Ziq be arbitrary with 0 ¤ fi ¤ 1, i � 1, � � �N . Then¸

ziPZi

PZi|Z1���Zi�1
pzi|z1 � � � zi�1qfipz1 � � � ziq ¤ a (2.19)

for all z1 � � � zi�1 P Z1 � � � � � Zi�1 and all i P t1 � � �Nu implies

Prp 1
N

Ņ

i�1

fipZ1 � � �Ziq ¡ tq ¤ expp�Npt� a log eqq.

Proof. We have

Prp 1
N

Ņ

i�1

fipZ1 � � �Ziq ¡ tq � Prpexp
Ņ

i�1

fipZ1 � � �Ziq ¡ exppNtqq

¤ expp�NtqEpexp
Ņ

i�1

fipZ1 � � �Ziqq

where for the last inequality we use Markov’s inequality. The expectation in the last
line equals

¸
z1���zN�1

PZ1�����ZN�1

PZ1���ZN�1
pz1 � � � zN�1q expp

N�1̧

i�1

fipz1 � � � ziqq

�
¸

zNPZN

PZN |Z1���ZN�1
pzN |z1 � � � zN�1q exppfN pz1 � � � zN qq.
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As 0 ¤ f ¤ 1 implies exp f ¤ 1 � f we use (2.19) to bound the second factor by
1 � a ¤ ea � exppa log eq. Repeating this procedure N � 1 times we get the desired
result.

Using Lemma 2.27 we prove the next lemma that is similar to [24, Lemma 3] (see also
[23, Lemma V.1]). Compared to [24, Lemma 3], the code words are contained in a more
restricted set. We also show how to choose the code words such that they are distinct.

Lemma 2.28 ([24]). Let 1 ¡ η ¡ 0, δ ¡ 0 and P P Ppn,X q. Choose real numbers R, ε
that satisfy 0   ε ¤ R ¤ HpP q. There is a n0pε, η, |X |, |S|q P N such that for all n ¥ n0

it holds that given A � T nP with PbnpAq ¡ η
pn�1q|X | and N � expprnRsq there exist (not

necessarily distinct) codewords xn1 � � �x
n
N P A such that for every xn P X n, sn P Sn and

PXX̄S P Ppn,X � X � Sq we have

|tj : pxn, xnj , s
nq P T nPXX̄Su| ¤ exppnp|R� IpX̄ ^XSq|� � εqq (2.20)

1
N |ti : px

n
i , s

nq P T nPX̄Su| ¤ expp�nε{2q if IpX̄ ^ Sq ¡ ε (2.21)

1
N |ti : px

n
i , x

n
j , s

nq P T nPXX̄S for some j � iu| ¤ expp�nε{2q

if IpX ^ X̄Sq � |R� IpX̄ ^ Sq|� ¡ ε. (2.22)

Assume R ¡ ε. Then we can choose a set of at least tN expp�npε� δqqu sequences from
xn1 � � �x

n
N which are all distinct.

The proof relies on the probabilistic method. It basically differs from the proof of
[24, Lemma 3] in the set the codewords are randomly chosen from. We also add a
requirement such that most of the code words can be chosen distinct.

In short, for the proof we randomly choose the codewords from A. For an arbitrary xn,
sn and PX|XS we use Chernoff bounds to show that (2.20), (2.21) and (2.22) hold with
probabilities going to 1 doubly exponentially with respect to n. (An additional property
used to have distinct codewords is proved similarly.) As Sn, X n and Ppn,X � X � Sq
depend at most exponentially on n the union bound gives the desired result for the
probabilistic method.

Proof. As in [24, Proof of Lemma 3] let Z1 � � �ZN be independent RVs each uniformly
distributed on A. For PXS � Pxn,sn or PX̄ � P (2.20) holds trivially. Now we consider
PXS � Pxn,sn and PX̄ � P . As done in [24, Proof of Lemma 3] define for all i P t1 � � �Nu

fipZ1 � � �Ziq �

#
1 if Zi P T nPX̄|XS

pxn, snq

0 otherwise
. (2.23)

It holds that

ηpn� 1q�|X | ¤ PbnpAq � |A|Pbnpxnq � |A| expp�nHpP qq.
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We see that (2.19) is fulfilled with

a � PrpZj P T nPX̄|XS
pxn, snqq �

|T nPX̄|XS
pxn,snqXA|

|A|

¤ exppnHpX̄|XSqq
pn�1q�|X |η exppnHpP qq

� pn�1q|X |

η expp�nIpX̄ ^XSqq

where the last step follows fromHpP q � HpX̄q. Now we continue as in [24, Proof of Lemma 3],
i.e., we choose

t � 1
N exppnp|R� IpX̄ ^XSq|� � εqq.

Thus Npt� a log eq ¥ exppnεq{2 if n ¥ n1pε, η, |X |q, where

n1pε, η, |X |q � minpn : pn�1q|X |

η log e   1
2 exppnεqq.

Lemma 2.27 implies

Prp|tj : Zj P T nPX̄|XS
pxn, snqu| ¡ exppnp|R� IpX̄ ^XSq|� � εqqq   expp�1

2 exppnεqq.

By the same argumentation, replacing T nPX̄|XS
pxn, snq by T nPX̄|X

pxnq in (2.23), we get

Prp|tj : Zj P T nPX̄|X
pxnqu| ¡ exppnp|R� IpX̄ ^Xq|� � εqqq   expp�1

2 exppnεqq (2.24)

for PX̄ � P .

Now it is clear that using the same argumentation as in [24, Proof of Lemma 3] we
also get

Prp 1
N |tj : Zj P T nPX̄|S

psnqu| ¡ expp�nε{2qq   expp�1
2 exppnε{2qq.

if IpX̄ ^ Sq ¡ ε and

Prp 1
N |ti : Zi P TPX|X̄S

pZj , s
nq for some j � iu| ¡ expp�nε

2 qq   4 expp�1
2 exppnε4 qq

if IpX ^ X̄Sq ¡ |R� IpX̄ ^ Sq|� � ε and n ¥ n1pε{4, η, |X |q.

Now we use the same argumentation as in [24, Proof of Lemma 3]. The number of
all possible combinations of xn P X n, sn P Sn and PXX̄S P Ppn,X � X � Sq grows
exponentially in n. Thus the doubly exponential probability bounds ensure that with
probability close to 1 the above inequalities hold simultaneously if n is sufficiently large.
So there are codewords xn1 , � � � , x

n
N with the desired properties.

As done in the proof of [22, Lemma 2] we can now select a set of at least tN expp�npε�
δqqu sequences from xn1 � � �x

n
N which are all distinct (if we assume R ¡ ε). This works as

follows. We know from (2.24) that for all xn P X n and all PXX̄ P Ppn,X � X q
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|tj : xnj P T nPX̄|X
pxnqu| ¤ exppnp|R� IpX̄ ^Xq|� � εqq. (2.25)

Assume Ipxni ^ xnj q   R for i � j. Now assume xni � xnj . This implies HpP q   R
which contradicts our assumption R ¤ HpP q. So if we keep only the codewords with
Ipxni ^ xnj q   R we know that they are all distinct. Now (2.25) implies that

|tj : xnj P T nPX̄|X
pxnqu| ¤ exppnεq

if IpP, PX̄|Xq ¥ R. As |Ppn,X � X q| ¤ pn� 1q|X |2 this implies for all i ¤ N

|tj : Ipxnj ^ xni q ¥ Ru| ¤ exppnεqpn� 1q|X |2 . (2.26)

Now successively choose sequences from xn1 � � �x
n
N such that for these sequences it holds

that Ipxni ^ xnj q   R for i � j. Assume we have q such sequences and can not find an
additional one. Then from (2.26) we know

q exppnεqpn� 1q|X |2 ¡ N.

This means q ¡ N expp�nεq

pn�1q|X |2
¥ tN expp�npε� δqqu for n large enough.

Now we can prove the result on channel codes for arbitrarily varying channels. This
is a slight variation of [24, Theorem 1]. The main difference again is that the codewords
are taken from a more restricted set. Additionally we consider injective encoders.

Lemma 2.29 ([24]). Let 1 ¡ η ¡ 0, ε ¡ 0, 1
2|Y| ¡ δ ¡ 0, τ ¡ 0, PX P PpX q with

min
xPX

PXpxq ¡ δ

and D a finite set. Consider the AVC corresponding to tWsusPS , Ws P PpY|X q for
all s P S and assume it is not symmetrizable. There is an n0pε, η, τ, |X |, |S|, |Y|q P N
such that for all n ¥ n0 for all A � T nPX̄ , PX̄ P Ppn,X q with }PX̄ � PX}1 ¤ δ (thus

minxPX PX̄pxq ¡ β ¡ 0) and

Pbn
X pAq ¡ η

pn�1q|X | expp�nDpPX̄}PXqq

there is a pair of mappings pfn, φnq, fn : D Ñ X n, φn : Yn Ñ D, fnpDq � A, such that

1
n log |D| ¥ min

W̄PW̄
IpPX , W̄ q � τ � ρpδq
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where ρ : R� Ñ R, ρpδq � �|Y|δ log δ|Y|
|X | � log |Y|δ, W̄ � convptWsusPSq and

max
snPSn

1
|D|

¸
dPD

Wsnppφ
�1
n pdqqc|fnpdqq ¤ ε. (2.27)

We call such tuples pfn, φnq constant composition pn, εq-codes for the AVC corresponding
to tWsusPS . Additionally fn is injective.

For the proof we use Lemma 2.28 and [24, Lemma 4]. The proof then follows the same
argumentation as the proof of [24, Lemma 5]. Additionally we use [26, Lemma 2.7]. So
the result above follows from Lemma 2.28 exactly as in [24]. We only need an additional
continuity argument.

Proof. From Pbn
X pAq ¡ η expp�nDpPX̄}PXqq

pn�1q|X | we have

|A| ¡ η exppnHpPX̄qq

pn�1q|X | .

So we have

Pbn
X̄
pAq � |A| expp�nHpPX̄qq ¡

η
pn�1q|X | .

So from Lemma 2.28 and [24, Lemma 4] we can show in the same way as in the proof
of [24, Lemma 5] that pfn, φnq with

1
n log |D| ¥ min

W̄PW̄
IpPX̄ , W̄ q � τ

and (2.27) exist for all n large enough. The corresponding decoder is the decoder descri-
bed in [24, Definition 3], which can be chosen such that the decoding rule is unambiguous
as shown in [24, Lemma 4]. (fn is injective as the codewords can be chosen distinct as
described in Lemma 2.28.) Now consider

|IpPX , W̄ q � IpPX̄ , W̄ q| � |IpX ^ Y q � IpX̄ ^ Ȳ q|

¤ |HpY q �HpȲ q| � |HpY |Xq �HpȲ |X̄q|

where PXY px, yq � PXpxqW̄ py|xq and PX̄Ȳ px, yq � PX̄pxqW̄ py|xq for all px, yq P X � Y.
We have

}PY � PȲ }1 �
¸
yPY

|
¸
xPX

pPXpxq � PX̄pxqqW̄ py|xq|

¤
¸
yPY

¸
xPX

W̄ py|xq|PXpxq � PX̄pxq| ¤ |Y|δ.

So [26, Lemma 2.7] implies

|HpY q �HpȲ q| ¤ �|Y|δ log δ|Y|
|X |
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for δ   1
2|Y| . We also have

HpY |X � xq � HpW̄ p�|xqq � HpȲ |X̄ � xq

for all x P X . So

|HpY |Xq �HpȲ |X̄q| � |
¸
xPX

PXpxqHpY |X � xq � PX̄pxqHpȲ |X̄ � xq|

¤
¸
xPX

|PXpxqHpY |X � xq � PX̄pxqHpȲ |X̄ � xq|

�
¸
xPX

HpY |X � xq|PXpxq � PX̄pxq| ¤ log |Y|δ.

Now let minW̄PW̄ IpPX̄ , W̄ q � IpPX̄ , W̄ q. We have

IpPX̄ , W̄ q � τ ¥ IpPX , W̄ q � τ � ρpδq ¥ min
W̄PW̄

IpPX , W̄ q � τ � ρpδq.
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3 SK Generation with Constrained Privacy
Leakage Rate

In this chapter we consider SK generation from a PUF source, i.e. the source model
for SK generation with a rate constraint on the privacy leakage cf. Section 2.2. As
described in Section 2.2 we can study secure storage of a key using a PUF with this
model. Motivated by the discussion in Section 2.1 we consider generation of a uniformly
distributed SK such that perfect secrecy is achieved. In the course of this chapter we
vary the model inasmuch as we weaken the assumptions on our knowledge of the PUF
source statistics. For all three settings that we consider we derive corresponding capacity
results.

3.1 SK generation from a PUF source

The scenario for SK generation from a PUF source is depicted in Figure 3.1. As discussed
in Section 2.1 and Section 2.2 a SK (represented by the RV K) is generated at one
terminal and reconstructed at a second terminal (where the reconstruction is represented
by the RV K̂). A message (represented by the RV M) can be sent from one terminal to
the other via a noiseless public channel. The PUF source, represented by a DMMS with
generic RVs X and Y , puts out RVs Xn and Y n. Xn is observed at the first terminal
whereas Y n is observed at the second terminal.

As mentioned in Section 2.1 we consider a randomized encoder F . So pK,Mq are
generated from Xn using a randomized encoder F and K̂ � gpM,Y nq where we call the
tuple pF, gq with F P PpK �M|X nq and g : Yn �MÑ K a SK generation protocol.

Encoder Decoder

Xn Y n

K K̂

PUF Source

M

Eavesdropper

Figure 3.1: SK generation from a PUF source (or equivalently from a biomatric source
as considered in [32], cf. Section 2.2).
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This model establishes the joint distribution of K, M and K̂. For all pk,m, k̂q P
K �M�K we have

PKMK̂pk,m, k̂q �
¸

xnPXn

ynPYn

Pbn
XY px

n, ynqF pk,m|xnq1g�1pk̂qppy
n,mqq.

A SK generation protocol should have certain properties to be considered a good SK
generation protocol which are specified in the following definition.

Definition 3.1. A tuple pR,Lq, R,L ¥ 0, is an achievable SK generation/privacy le-
akage rate pair if for all δ ¡ 0 there is an n0 P N and a c ¡ 0 such that for all n ¥ n0

there is a SK generation protocol pF, gq such that

PrpK � K̂q ¤ expp�ncq

IpK ^Mq � 0

HpKq � log |K|
1
n log |K| ¥ R� δ
1
nIpM ^Xnq ¤ L� δ.

We call the set of all such achievable rate pairs the capacity region RPLSK .

In particular we want to control the privacy leakage rate of the protocols as we consider
a PUF source, cf. Section 2.2, and we want that the protocols meet the perfect secrecy
requirement and that the SK is uniformly distributed, cf. Section 2.1.

We now want to characterize RPLSK .

Theorem 3.1. It holds that

RPLSK �
¤
U

tpR,Lq : 0 ¤ R ¤ IpU ^ Y q, L ¥ IpU ^Xq � IpU ^ Y qu

where the union is taken over all RVs U with U �X � Y .

The proof technique is based on [5, Proof of Proposition 1a)].

Proof. Let δ ¡ 0. Choose η ¡ 0 and c ¡ 0 small enough. Choose the RV U such
that U �X � Y . For all n large enough construct the set J � tuk,mupk,mqPK�M where
uk,m P Un and

|K| � exppnpIpU ^ Y q � δ � ξqq (3.1)

where 0 ¤ ξ ¤ 1
n such that npIpU ^Y q� δ� ξq is an integer. Moreover J is chosen such

that it holds that

Pbn
U pJ q ¡ 1� expp�nηqpn� 1q|U |
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and for all m PM there is a gm : Yn Ñ K such that

Pbn
Y |U pg

�1
m pkq|uk,mq ¥ 1� expp�ncq (3.2)

for all k P K and for all m PM there is a P P Ppn,Uq such that for all k P K it holds
that uk,m P T nP .

We can construct J as follows. First choose a P P Ppn,Uq. Then choose an arbitrary
set A1 � T nP with Pbn

U pA1q ¥ expp�nηq. For η small enough and all n large enough we
can choose a channel code for the DMC Pbn

Y |U corresponding to puk,1, g
�1
1 pkqqkPK such

that (3.2) and (3.1) hold true and tuk,1ukPK � A1. This follows from Theorem 2.21. In
the i-th step choose Ai � T nP z

�
jPri�1stuk,jukPK with Pbn

U pAiq ¥ expp�nηq. If this is not
possible anymore (that is this choice of Ai) do the same procedure for all P P Ppn,Uq.
Thus after this procedure terminates it holds that Pbn

U pJ q ¡ 1� expp�nηqpn� 1q|U |.

Now define pF, gq as follows.

F pk,m|xnq � Pbn
U |Xpuk,m|x

nq � Pbn
U |XpJ

c|xnq 1
|K||M|

gpyn,mq � gmpy
nq

It holds that

PrpK � K̂q �
¸
mPM

¸
k,k̂PK
k�k̂

¸
xn,yn

Pbn
XY px

n, ynqF pk,m|xnq1g�1pk̂qpy
n,mq

�
¸
mPM

¸
k,k̂PK
k�k̂

¸
xn,yn

Pbn
XY px

n, ynqPbn
U |Xpuk,m|x

nq1g�1
m pk̂qpy

nq

�
¸
mPM

¸
k,k̂PK
k�k̂

¸
xn,yn

Pbn
XY px

n, ynqPbn
U |XpJ

c|xnq 1
|K||M|1g�1

m pk̂qpy
nq.

For the second summand we have¸
mPM

¸
kPK

¸
xn,yn

Pbn
XY px

n, ynqPbn
U |XpJ

c|xnq 1
|K||M|

¸
k̂PK :
k̂�k

1g�1
m pk̂qpy

nq

¤
¸
mPM

¸
kPK

¸
xn,yn

Pbn
XY px

n, ynqPbn
U |XpJ

c|xnq 1
|K||M|

as
°
k̂PK :
k̂�k

1g�1
m pk̂qpy

nq ¤ 1 for all k P K. This expression equals

¸
mPM

¸
kPK

Pbn
U pJ cq 1

|K||M| ¤ expp�nηqpn� 1q|U |.
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For the first summand we have¸
mPM

¸
k,k̂PK
k�k̂

¸
yn
Pbn
Y |U py

n|uk,mqP
bn
U puk,mq1g�1

m pk̂qpy
nq

�
¸
mPM

¸
kPK

Pbn
U puk,mq

¸
yn

¸
k̂PK :
k̂�k

1g�1
m pk̂qpy

nqPbn
Y |U py

n|uk,mq

�
¸
mPM

¸
kPK

Pbn
U puk,mqP

bn
Y |U ppg

�1
m pkqqc|uk,mq

¤
¸
mPM

¸
kPK

Pbn
U puk,mq expp�ncq ¤ expp�ncq.

Now consider

PrpK � k,M � mq �
¸
k̂

¸
xn,yn

Pbn
XY px

n, ynqF pk,m|xnq1g�1pk̂qpy
n,mq

�
¸
xn
Pbn
X pxnqPbn

U |Xpuk,m|x
nq �

¸
xn
Pbn
X pxnqPbn

U |XpJ
c|xnq 1

|K|
1

|M|

and

PrpM � mq �
¸
kPK

¸
xn
Pbn
X pxnqPbn

U |Xpuk,m|x
nq �

¸
xn
Pbn
X pxnqPbn

U |XpJ
c|xnq 1

|M| .

Consider a permutation π on rns (and we also denote by π the corresponding permutation
on e.g. X n). So we have π�1pX nq � X n. It holds that¸

xnPXn

Pbn
X pxnqPbn

U |Xpπpuk,mq|x
nq �

¸
x̄nPπ�1pXnq

Pbn
X pπpx̄nqqPbn

U |Xpπpuk,mq|πpx̄
nqq

�
¸

x̄nPπ�1pXnq

Pbn
X px̄nqPbn

U |Xpuk,m|x̄
nq �

¸
x̄nPXn

Pbn
X px̄nqPbn

U |Xpuk,m|x̄
nq.

For the second step we use the product structure of the distribution. As according to
our construction there is a P P Ppn,Uq such that uk,m P T nP for all k P K we have¸

kPK

¸
xn
Pbn
X pxnqPbn

U |Xpuk,m|x
nq � |K|

¸
xn
Pbn
X pxnqPbn

U |Xpuk,m|x
nq

for an arbitrary k P K. Thus we get

PrpK � k|M � mq � PrpK�k,M�mq
PrpM�mq

�

°
xn P

bn
X pxnqPbn

U |X
puk,m|x

nq�
°
xn P

bn
X pxnqPbn

U |X
pJ c|xnq

1
|K|

1
|M|

|K|
°
xn P

bn
X pxnqPbn

U |X
puk,m|xnq�

°
xn P

bn
X pxnqPbn

U |X
pJ c|xnq

1
|M|

� 1
|K|

which means HpK|Mq � log |K|.
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Moreover, using Fano’s inequality, we get HpK|MY nq ¤ F for a F ¡ 0 arbitrarily
small for all n large enough. So it holds that

IpM ^Xnq ¤ IpM ^Xnq �HpK|MY nq � F

� IpMK ^Xnq �HpK|MY nq � F � IpK ^Xn|Mq.

With IpK ^Xn|Mq � HpK|Mq �HpK|MXnq and HpK|Mq � log |K| it follows that

IpM ^Xnq ¤ IpMK ^Xnq � log |K| �HpK|MY nq �HpK|MXnq � F.

It is obvious that KM �Xn � Y n. This implies K �MXn � Y n. So it holds that

HpK|MXnq � HpK|MXnY nq ¤ HpK|MY nq

and as log |K| � npIpU ^ Y q � δ � ξq we have

IpM ^Xnq ¤ IpMK ^Xnq � npIpU ^ Y q � δ � ξq � F.

Now consider the mapping q : K�MÑ Un, qpk,mq � uk,m. This mapping is injective.
So it holds that IpKM ^Xnq � IpqpK,Mq ^Xnq. Furthermore we have

PqpK,Mq|Xnpun|xnq �
¸

pk,mqPK�M
F pk,m|xnq1tuk,mupu

nq.

Now consider

}PqpK,MqXn � Pbn
UX}1 �

¸
xnPXn

Pbn
X pxnq

¸
pk,mqPK�M

Pbn
U |XpJ

c|xnq 1
|K||M| � Pbn

U pJ cq

� 2Pbn
U pJ cq ¤ 2 expp�nηqpn� 1q|U |.

From the continuity of entropy it follows that

IpqpK,Mq ^Xnq ¤ IpUn ^Xnq � δ

for all n large enough and the RV Un such that PUnXn � Pbn
UX . Altogether we thus have

1
nIpM ^Xnq ¤ IpU ^Xq � IpU ^ Y q � F {n� δ � ξ � δ{n.

Now we prove the converse result.

Theorem 3.2. It holds that

RPLSK �
¤
U

tpR,Lq : 0 ¤ R ¤ IpU ^ Y q, L ¥ IpU ^Xq � IpU ^ Y qu

where the union is taken over all RVs U with U �X � Y .
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Proof. It holds that

log |K| � HpKq � IpK ^ K̂q �HpK|K̂q ¤ IpK ^MY nq � F

where we use Fano’s inequality and thus F is arbitrarily small for all n large enough (and
K �MY n � K̂). Additionally it holds that IpK ^ Y nMq � IpK ^Mq � IpK ^ Y n|Mq
and IpK ^ Y n|Mq ¤ IpY n ^MKq. We also have

log |K| ¤ IpY n ^MKq � F �
ņ

i�1

IpKMY i�1 ^ Yiq � F.

We know that MK � Xn � Y n. This implies KM � Xi�1XiYi � Y i�1. Thus we get
KMYi �Xi�1 � Y i�1 and consequently Yi �KMXi�1 � Y i�1. This means

IpKMY i�1 ^ Yiq ¤ IpKMY i�1Xi�1 ^ Yiq � IpKMXi�1 ^ Yiq.

So

log |K| ¤
ņ

i�1

IpKMXi�1 ^ Yiq � F �
ņ

i�1

IpUi ^ Yiq � F

where for the last step we define Ui � KMXi�1. From KM �Xn � Y n it follows that
KM �Xi�1Xi � Yi and thus KMXi�1 �Xi � Yi, so Ui �Xi � Yi. Moreover we have

IpXn ^Mq � HpMq �HpM |Xnq ¥ HpM |Y nq �HpKM |Xnq

� HpKM |Y nq �HpK|Y nMq �HpKM |Xnq ¥ IpKM ^Xnq � IpKM ^ Y nq � F,

where for the last step we again use Fano’s inequality (and K �MY n � K̂). Following
the same argumentation as above we thus have

IpXn ^Mq ¥
ņ

i�1

IpUi ^Xiq �
ņ

i�1

IpUi ^ Yiq � F.

Define U � QUQ and consider XQ and YQ where Q is a RV uniformly distributed on rns
and independent of XnY nUn. It is clear that PXQYQ � PXY as XnY n are i.i.d. random
vectors. So we have

PUXQYQppq, uq, x, yq � PQUqXqYqpq, u, x, yq � PQpqqPUq |Xqpu|xqPXqYqpx, yq

where the last step follows from Uq �Xq � Yq. As PXqYq � PXY we have

PUXQYQppq, uq, x, yq � PQpqqPUq |Xqpu|xqPXY px, yq � PU |XQppq, uq|xqPXQYQpx, yq
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Figure 3.2: SK generation from a compound PUF source.

with PU |XQppq, uq|xq � PQpqqPUq |Xqpu|xq (i.e. U �XQ � YQ). Finally consider

ņ

i�1

1
nIpUi ^ Yiq �

ņ

q�1

PQpqqIpUQ ^ YQ|Q � qq � IpUQ ^ YQ|Qq

� HpYQ|Qq �HpYQ|UQQq � HpYQq �HpYQ|Uq � IpU ^ YQq

and

ņ

i�1

IpUi ^Xiq �
ņ

i�1

IpUi ^ Yiq � IpUQ ^XQ|Qq � IpUQ ^ YQ|Qq

� HpXQ|Qq �HpYQ|Qq �HpXQ|Uq �HpYQ|Uq

� HpXQq �HpYQq �HpXQ|Uq �HpYQ|Uq � IpU ^XQq � IpU ^ YQq.

3.2 SK generation from a compound PUF source

Now we consider SK generation from a PUF source where the source statistics are not
known exactly. Instead we know a set of distributions the actual distribution belongs
to. We call this PUF source with source uncertainty a compound PUF source. These
considerations not only generalize our results, but they also make sense from a practical
point of view. When a probabilistic model is used in practice, it might be hard to
determine the corresponding distributions with measurements. By incorporating the
possible measurement errors into our model we get SK generation protocols that are
robust against these errors. Good system performance has to be guaranteed for all
possible source statistics.

The scenario for SK generation from a PUF source is depicted in Figure 3.2. So
for the model for SK generation from a compound PUF source we replace the PUF
source by a compound PUF source. This means we consider the RVs tXsYsusPS and the
random vectors tXn

s Y
n
s usPS with PXn

s Y
n
s
� Pbn

XsYs
for all s P S. Xn

s and Y n
s represent

the source output observed at terminal X and terminal Y respectively when the actual

49



Chapter 3 – SK Generation with Constrained Privacy Leakage Rate

source statistics are determined by the parameter s P S. Correspondingly the RVs
pKs,Msq model the SK and the helper message and K̂s represents the reconstruction
of the SK. Again we consider a randomized encoder F P PpK �M|X nq and a decoder
g : Yn�MÑ K. In the context of SK generation from a compound PUF source we call
pF, gq a compound SK generation protocol. Thus we get the joint distributions of the
RVs KsMsK̂s

PKsMsK̂s
pk,m, k̂q �

¸
xn,ynPXn�Yn

Pbn
XsYs

pxn, ynqF pk,m|xnq1g�1pk̂qpy
n,mq

for all pk,m, k̂q P K �M�K and s P S.

We also define the set

Ipŝq � ts P S :
¸
yPY

PXsYspx, yq � PXŝpxq for all x P X u

for ŝ P S. We choose an arbitrary set of representatives corresponding to the equivalence
relation �� S � S defined by this partition of S and denote it by Ŝ. Additionally we
define fŜ : S Ñ S, fŜpsq � ŝ if and only if s � ŝ for all s P S, ŝ P Ŝ. For the RVs tXŝuŝPŜ
we now define PYs|XfŜ psq

� PYs|Xs (for s � fŜpsq). Thus it holds that PXsYs � PXfŜ psqYs
for all s P S.

In the following we assume that |Ŝ|   8.

A compound SK generation protocol should have certain properties despite the source
uncertainty. These properties are determined by the following definition.

Definition 3.2. A tuple pR,Lq, R,L ¥ 0, is an achievable SK generation/privacy le-
akage rate pair if for all δ ¡ 0 there is an n0 P N and a c ¡ 0 such that for all n ¥ n0

there is a compound SK generation protocol pF, gq such that

sup
sPS

PrpKs � K̂sq ¤ expp�ncq

sup
sPS

IpKs ^Msq � 0

inf
sPS

HpKsq � log |K|
1
n log |K| ¥ R� δ

sup
sPS

1
nIpMs ^Xn

s q ¤ L� δ.

We call the set of all such achievable rate pairs the capacity region RPL,compSK .

So for the compound model we also want to control the privacy leakage rate of the
protocols and we require perfect secrecy and uniform key distribution.

In the following we want to characterize RPL,compSK .
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Theorem 3.3. It holds that

RPL,compSK �
£
ŝPŜ

¤
Uŝ

tpR,Lq : 0 ¤ R ¤ inf
sPIpŝq

IpUŝ ^ Ysq,

L ¥ IpUŝ ^Xŝq � inf
sPIpŝq

IpUŝ ^ Ysqu

where for all ŝ P Ŝ the union is taken over all RVs Uŝ with Uŝ�Xŝ�Ys for all s P Ipŝq.

Again the proof technique is based on [5, Proof of Proposition 1a)].

Proof. Let δ ¡ 0. Choose η ¡ 0 and c ¡ 0 small enough. Choose RVs tUŝuŝPŜ such
that Uŝ � Xŝ � Ys for all s P Ipŝq. For all n large enough construct the sets Jŝ �
tuk,mupk,mqPKŝ�Mŝ

with uk,m P Un for all ŝ P Ŝ,

|Kŝ| � exppnp inf
sPIpŝq

IpUŝ ^ Ysq � δ � ξŝqq (3.3)

with 0 ¤ ξŝ ¤
1
n such that the npinfsPIpŝq IpUŝ ^ Ysq � δ � ξŝq are integers and disjoint

sets Mŝ, ŝ P Ŝ. Moreover for Jŝ it should hold that

Pbn
Uŝ
pJŝq ¡ 1� expp�nηqpn� 1q|U |

and for all m PMŝ there is a gm : Yn Ñ K such that

inf
sPIpŝq

Pbn
Ys|Uŝ

ppgmq
�1pkq|uk,mq ¥ 1� expp�ncq (3.4)

for all k P Kŝ and for all m PMŝ there is a P P Ppn,Uq such that for all k P Kŝ it holds
that uk,m P T nP . Additionally we define M �

�
ŝPŜMŝ.

We choose for all ŝ P Ŝ the set Jŝ as follows. At first choose a P P Ppn,Uq. Then
choose an arbitrary set Ap1,ŝq � T nP with Pbn

Uŝ
pAp1,ŝqq ¥ expp�nηq. For η small enough

and all n large enough we can choose a compound channel code for the compound channel
tPYs|UŝusPIpŝq corresponding to puk,p1,ŝq, pgp1,ŝqq

�1pkqqkPKŝ such that (3.4) and (3.3) hold
true with tuk,p1,ŝqukPKŝ � Ap1,ŝq. This follows from Theorem 2.25. In the i-th step choose

Api,ŝq � T nP z
�
jPri�1stuk,pj,ŝqukPKŝ with Pbn

Uŝ
pApi,ŝqq ¥ expp�nηq. If this is not possible

anymore (that is this choice of Api,ŝq) repeat this procedure for all P P Ppn,Uq. So at

the end of the procedure it holds that Pbn
Uŝ
pJŝq ¡ 1� expp�nηqpn� 1q|U |.

Moreover we define K � rminŝPŜ |Kŝ|s and for all ŝ P Ŝ mappings hŝ : Kŝ Ñ K Y tk̃u

with k̃ R K such that for all k P K it holds that |h�1
ŝ pkq| � t |Kŝ||K| u. Thus it holds for

|Kŝ| ¡ |K| that |h�1
ŝ pk̃q|   |K| and |h�1

ŝ pk̃q| � 0 for |Kŝ| � |K|.
We have ¸

mPMŝ

¸
kPKŝ

Pbn
Uŝ
puk,mq ¤ 1.

51



Chapter 3 – SK Generation with Constrained Privacy Leakage Rate

Moreover, for all k, k̄ P Kŝ, k � k̄, there is a permutation π on X n such that uk,m �
πpuk̄,mq. Thus we have

Pbn
Uŝ
puk,mq � Pbn

Uŝ
pπpuk̄,mqq � Pbn

Uŝ
puk̄,mq

which follows from the product structure of Pbn
Uŝ

. So it holds that

¸
kPKŝ

Pbn
Uŝ
puk,mq � |Kŝ|Pbn

Uŝ
puk,mq

for an arbitrary k P Kŝ. Thus we have¸
mPMŝ

Pbn
Uŝ
puk,mq ¤

1
|Kŝ| .

Now we have the bound¸
mPMŝ

¸
kPh�1

ŝ pk̃q

Pbn
Uŝ
puk,mq �

¸
kPh�1

ŝ pk̃q

¸
mPMŝ

Pbn
Uŝ
puk,mq ¤

1
|Kŝ| |h

�1
ŝ pk̃q|.

If |K|   |Kŝ| we can upper bound this expression by

|K|
|Kŝ| ¤ expp�np inf

sPIpŝq
IpUŝ ^ Ysq � ξŝ �min

ŝPŜ
inf
sPIpŝq

IpUŝ ^ Ysqqq   expp�np2ε� ξŝqq

with ε ¡ 0 and thus for all n large enough we have the upper bound expp�nεq. If
|K| � |Kŝ| we have 0 as an upper bound.

(Additionally define h : KYtk̃u Ñ K, hpkq � k for k P K and hpk̃q � k for an arbitrary
k P K and ŝ : MÑ Ŝ, ŝpmq � ŝ for m PMŝ.)

Consider RVs tK 1
susPS , tM 1

susPS and tK̂ 1
susPS with PK1

sM
1
sK̂

1
s
P PpKfŜpsq �MfŜpsq

�

KfŜpsqq and

PK1
sM

1
sK̂

1
sX

n
s Y

n
s
pk,m, k̂, xn, ynq � Pbn

XsYs
pxn, ynqFfŜpsqpk,m|x

nq1g�1
fŜ psq

pk̂qpy
n,mq

where for all pk,m, xn, ynq P Kŝ �Mŝ � X n � Yn it holds that

Fŝpk,m|x
nq � Pbn

Uŝ|Xŝ
puk,m|x

nq � Pbn
Uŝ|Xŝ

pJ cŝ |xnq 1
|Mŝ||Kŝ|

gŝpy
n,mq � gmpy

nq.

Using the same argumentation as in the proof of Theorem 3.1 we can show that the
following properties hold for these RVs. (In order to show this we use the properties of
the sets Jŝ.) For all s P S it holds for all n large enough that
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PrpK 1
s � K̂ 1

sq ¤ expp�ncq

HpK 1
s|M

1
sq � log |KfŜpsq|

1
nIpM

1
s ^Xn

s q ¤ IpUfŜpsq ^XfŜpsq
q � inf

s̄PIpfŜpsqq
IpUfŜpsq ^ Ys̄q � δ.

Now define pF, gq as follows. (For δ small enough such that the sets T nPXŝ ,δ are disjoint

for all ŝ P Ŝ.)

F pk,m|xnq �
¸
ŝPŜ

p
¸

kŝPh
�1
ŝ pkq

Fŝpkŝ,m|x
nq �

¸
kŝPh

�1
ŝ pk̃q

Fŝpkŝ,m|x
nq 1

|K|q1Mŝ
pmq1T nPXŝ ,δ

pxnq

� 1
|K||M|1p

�
ŝPŜ T nPXŝ ,δ

qcpx
nq

which is equivalent to

F pk,m|xnq �
¸
ŝPŜ

p
¸

kŝPh
�1
ŝ pkq

Pbn
Uŝ|Xŝ

pukŝ,m|x
nq �

¸
kŝPh

�1
ŝ pk̃q

Pbn
Uŝ|Xŝ

pukŝ,m|x
nq 1

|K|

� Pbn
Uŝ|Xŝ

pJ cŝ |xnq 1
|K||Mŝ|

q1Mŝ
pmq1T nPXŝ ,δ

pxnq � 1
|K||M|1p

�
ŝPŜ T nPXŝ ,δ

qcpx
nq

and

gpyn,mq � hphŝpmqpgmpy
nqqq

Now consider for s P S the mapping qs : MfŜpsq
ÑM, qspmq � m. This mapping is

injective so we have IpM 1
s ^Xn

s q � IpqspM
1
sq ^Xn

s q. It is clear that for all s P S

}PMsXn
s
� PqspM 1

sqX
n
s
}1 ¤

¸
xnPT nPXfŜ psq

,δ

Pbn
XfŜ psq

pxnq}PMs|Xn
s
p�|xnq � PqspM 1

sq|X
n
s
p�|xnq}1

� 2pn� 1q|X | expp�n 1
2 ln 2δ

2q

� 2pn� 1q|X | expp�n 1
2 ln 2δ

2q.

So for all n large enough we have

1
nIpMs ^Xn

s q ¤
1
nIpqspM

1
sq ^Xn

s q � ε � 1
nIpM

1
s ^Xn

s q � ε

¤ IpUfŜpsq ^XfŜpsq
q � inf

s̄PIpfŜpsqq
IpUfŜpsq ^ Ys̄q � δ � ε

for all s P S. This implies

1
nIpMs ^Xn

s q ¤ max
ŝPŜ

IpUŝ ^Xŝq � inf
s̄PIpŝq

IpUŝ ^ Ys̄q � δ � ε.
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Moreover note that

pphphŝpmqpgmqqq
�1pkqqc � pg�1

m ph�1
ŝpmqph

�1pkqqqqc

� pg�1
m ph�1

ŝpmqpkqqq
c � pg�1

m pkŝqq
c

with kŝ P h
�1
ŝpmqpkq. We have for all s P S that

PrpKs � K̂sq �
¸
mPM

¸
k,k̂PK
k�k̂

¸
pxn,ynqPXn�Yn

Pbn
XsYs

pxn, ynqF pk,m|xnq1g�1pk̂qpy
n,mq

¤
¸
mPM

¸
k,k̂PK
k�k̂

¸
xn,yn

Pbn
XfŜ psq

Ys
pxn, ynq

�
¸
ŝPŜ

¸
kŝPh

�1
ŝ pkq

Pbn
Uŝ|Xŝ

pukŝ,m|x
nq1Mŝ

pmq1T nPXŝ ,δ
pxnq1g�1pk̂qpy

n,mq

�
¸
mPM

¸
k,k̂PK
k�k̂

¸
xn,yn

Pbn
XfŜ psq

Ys
pxn, ynq

�
¸
ŝPŜ

¸
kŝPh

�1
ŝ pk̃q

Pbn
Uŝ|Xŝ

pukŝ,m|x
nq 1

|K|1Mŝ
pmq1T nPXŝ ,δ

pxnq1g�1pk̂qpy
n,mq

�
¸
mPM

¸
k,k̂PK
k�k̂

¸
xn,yn

Pbn
XfŜ psq

Ys
pxn, ynq

�
¸
ŝPŜ

Pbn
Uŝ|Xŝ

pJ cŝ |xnq1Mŝ
pmq 1

|K||Mŝ|
1T nPXŝ ,δ

pxnq1g�1pk̂qpy
n,mq

�
¸
mPM

¸
k,k̂PK
k�k̂

¸
xn,ynPXn�Yn

Pbn
XfŜ psq

Ys
pxn, ynq 1

|K||M|1p
�
ŝPŜ T nPXŝ ,δ

qcpx
nq1g�1pk̂qpy

n,mq.

We can rewrite the first summand as¸
mPMfŜ psq

¸
k,k̂PK
k�k̂

¸
xnPT nPXfŜ psq

,δ

¸
ynPYn

Pbn
XfŜ psq

Ys
pxn, ynq

�
¸

kŝPh
�1
fŜ psq

pkq

Pbn
UfŜ psq

|XfŜ psq
pukŝ,m|x

nq1g�1pk̂qpy
n,mq

�
¸
k,k̂PK
k�k̂

¸
xnRT nPXfŜ psq

,δ

¸
ynPYn

Pbn
XfŜ psq

Ys
pxn, ynq

�
¸
ŝPŜ

¸
mPMŝ

¸
kŝPh

�1
ŝ pkq

Pbn
Uŝ|Xŝ

pukŝ,m|x
nq1T nPXŝ ,δ

pxnq1g�1pk̂qpy
n,mq
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where again we consider both summands separately. At first we have¸
mPMfŜ psq

¸
k,k̂PK
k�k̂

¸
xnPT nPXfŜ psq

,δ

¸
ynPYn

Pbn
XfŜ psq

Ys
pxn, ynq

�
¸

kŝPh
�1
fŜ psq

pkq

Pbn
UfŜ psq

|XfŜ psq
pukŝ,m|x

nq1g�1pk̂qpy
n,mq

¤
¸

mPMfŜ psq

¸
kPK

¸
kŝPh

�1
fŜ psq

pkq

¸
ynPYn

¸
k̂PK :
k̂�k

¸
xnPXn

Pbn
XfŜ psq

Ys
pxn, ynq

� Pbn
UfŜ psq

|XfŜ psq
pukŝ,m|x

nq1g�1pk̂qpy
n,mq

�
¸

mPMfŜ psq

¸
kPK

¸
kŝPh

�1
fŜ psq

pkq

Pbn
UfŜ psq

pukŝ,mq

�
¸

ynPYn

¸
k̂PK : k̂�k

Pbn
Ys|UfŜ psq

pyn|ukŝ,mq1g�1
m ph�1

ŝpmq
ph�1pk̂qqqpy

nq

�
¸

mPMfŜ psq

¸
kPK

¸
kŝPh

�1
fŜ psq

pkq

Pbn
UfŜ psq

pukŝ,mqP
bn
Ys|UfŜ psq

ppg�1
m ph�1

ŝpmqph
�1pkqqqqc|ukŝ,mq

¤
¸

mPMfŜ psq

¸
kPK

¸
kŝPh

�1
fŜ psq

pkq

Pbn
UfŜ psq

pukŝ,mqP
bn
Ys|UfŜ psq

ppg�1
m pkŝqqq

c|ukŝ,mq

¤
¸

mPMfŜ psq

¸
kPK

¸
kŝPh

�1
fŜ psq

pkq

Pbn
UfŜ psq

pukŝ,mq expp�ncq ¤ expp�ncq.
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Furthermore it holds that¸
k,k̂PK
k�k̂

¸
xnRT nPXfŜ psq

,δ

¸
ynPYn

Pbn
XfŜ psq

Ys
pxn, ynq

�
¸
ŝPŜ

¸
mPMŝ

¸
kŝPh

�1
ŝ pkq

Pbn
Uŝ|Xŝ

pukŝ,m|x
nq1T nPXŝ ,δ

pxnq1g�1pk̂qpy
n,mq

¤
¸
kPK

¸
xnRT nPXfŜ psq

,δ

¸
ynPYn

Pbn
XfŜ psq

Ys
pxn, ynq

�
¸
ŝPŜ

¸
mPMŝ

¸
kŝPh

�1
ŝ pkq

Pbn
Uŝ|Xŝ

pukŝ,m|x
nq1T nPXŝ ,δ

pxnq

¤
¸

xnRT nPXfŜ psq
,δ

Pbn
XfŜ psq

pxnq
¸
ŝPŜ

¸
kŝPKŝ

¸
mPMŝ

Pbn
Uŝ|Xŝ

pukŝ,m|x
nq1T nPXŝ ,δ

pxnq

¤
¸

xnRT nPXfŜ psq
,δ

Pbn
XfŜ psq

pxnq ¤ pn� 1q|X | expp�n 1
2 ln 2δ

2q,

where the first step follows as
°
k̂PK :
k̂�k

1g�1
m pk̂qpy

nq ¤ 1 for all k P K and the second to last

step follows because the T nPXŝ ,δ, ŝ P Ŝ, are disjoint.

Now we consider the second summand, that is¸
mPM

¸
k,k̂PK
k�k̂

¸
xn,yn

Pbn
XfŜ psq

Ys
pxn, ynq

�
¸
ŝPŜ

¸
kŝPh

�1
ŝ pk̃q

Pbn
Uŝ|Xŝ

pukŝ,m|x
nq 1

|K|1Mŝ
pmq1T nPXŝ ,δ

pxnq1g�1pk̂qpy
n,mq

�
¸

mPMfŜ psq

¸
k,k̂PK
k�k̂

¸
xnPT nPXfŜ psq

,δ

¸
ynPYn

Pbn
XfŜ psq

Ys
pxn, ynq

�
¸

kŝPh
�1
ŝ pk̃q

Pbn
UfŜ psq

|XfŜ psq
pukŝ,m|x

nq 1
|K|1g�1pk̂qpy

n,mq

�
¸
k,k̂PK
k�k̂

¸
xnRT nPXfŜ psq

,δ

¸
ynPYn

Pbn
XfŜ psq

Ys
pxn, ynq

�
¸
ŝPŜ

¸
mPMŝ

¸
kŝPh

�1
ŝ pk̃q

Pbn
Uŝ|Xŝ

pukŝ,m|x
nq 1

|K|1T nPXŝ ,δ
pxnq1g�1pk̂qpy

n,mq.

Again we consider the summands separately. So starting with the first summand we
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have ¸
mPMfŜ psq

¸
k,k̂PK
k�k̂

¸
xnPT nPXfŜ psq

,δ

¸
ynPYn

Pbn
XfŜ psq

Ys
pxn, ynq

�
¸

kŝPh
�1
ŝ pk̃q

Pbn
UfŜ psq

|XfŜ psq
pukŝ,m|x

nq 1
|K|1g�1pk̂qpy

n,mq

¤
¸

mPMfŜ psq

¸
xnPXn

Pbn
XfŜ psq

pxnq
¸

kŝPh
�1
ŝ pk̃q

Pbn
UfŜ psq

|XfŜ psq
pukŝ,m|x

nq

�
¸

mPMfŜ psq

¸
kŝPh

�1
ŝ pk̃q

Pbn
UfŜ psq

pukŝ,mq ¤ expp�nεq,

where the last step follows as described above. Furthermore it holds that¸
k,k̂PK
k�k̂

¸
xnRT nPXfŜ psq

,δ

¸
ynPYn

Pbn
XfŜ psq

Ys
pxn, ynq

�
¸
ŝPŜ

¸
mPMŝ

¸
kŝPh

�1
ŝ pk̃q

Pbn
Uŝ|Xŝ

pukŝ,m|x
nq 1

|K|1T nPXŝ ,δ
pxnq1g�1pk̂qpy

n,mq

¤
¸
kPK

¸
xnRT nPXfŜ psq

,δ

¸
ynPYn

Pbn
XfŜ psq

Ys
pxn, ynq

�
¸
ŝPŜ

¸
mPMŝ

¸
kŝPh

�1
ŝ pk̃q

Pbn
Uŝ|Xŝ

pukŝ,m|x
nq 1

|K|1T nPXŝ ,δ
pxnq

�
¸

xnRT nPXfŜ psq
,δ

Pbn
XfŜ psq

pxnq
¸
ŝPŜ

¸
mPMŝ

¸
kŝPh

�1
ŝ pk̃q

Pbn
Uŝ|Xŝ

pukŝ,m|x
nq1T nPXŝ ,δ

pxnq

¤
¸

xnRT nPXfŜ psq
,δ

Pbn
XfŜ psq

pxnq ¤ pn� 1q|X | expp�n 1
2 ln 2δ

2q.
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For the third summand we have¸
mPM

¸
k,k̂PK
k�k̂

¸
xn,ynPXn�Yn

Pbn
XfŜ psq

Ys
pxn, ynq

�
¸
ŝPŜ

Pbn
Uŝ|Xŝ

pJ cŝ |xnq1Mŝ
pmq 1

|K||Mŝ|
1T nPXŝ ,δ

pxnq1g�1pk̂qpy
n,mq

�
¸

mPMfŜ psq

¸
k,k̂PK
k�k̂

¸
xnPT nPXfŜ psq

,δ

¸
ynPYn

Pbn
XfŜ psq

Ys
pxn, ynq

� Pbn
UfŜ psq

|XfŜ psq
pJ cfŜpsq|x

nq 1
|K||MfŜ psq

|1g�1pk̂qpy
n,mq

�
¸
k,k̂PK
k�k̂

¸
xnRT nPXfŜ psq

,δ

¸
ynPYn

Pbn
XfŜ psq

Ys
pxn, ynq

�
¸
ŝPŜ

¸
mPMŝ

Pbn
Uŝ|Xŝ

pJ cŝ |xnq 1
|K||Mŝ|

1T nPXŝ ,δ
pxnq1g�1pk̂qpy

n,mq

and again we consider both summands separately. At first we again have¸
mPMfŜ psq

¸
k,k̂PK
k�k̂

¸
xnPT nPXfŜ psq

,δ

¸
ynPYn

Pbn
XfŜ psq

Ys
pxn, ynq

� Pbn
UfŜ psq

|XfŜ psq
pJ cfŜpsq|x

nq 1
|K||MfŜ psq

|1g�1pk̂qpy
n,mq

¤
¸

mPMfŜ psq

¸
kPK

¸
xnPT nPXfŜ psq

,δ

¸
ynPYn

Pbn
XfŜ psq

Ys
pxn, ynq

� Pbn
UfŜ psq

|XfŜ psq
pJ cfŜpsq|x

nq 1
|K||MfŜ psq

|

which we upper bound by¸
mPMfŜ psq

¸
kPK

¸
xnPXn

¸
ynPYn

Pbn
XfŜ psq

Ys
pxn, ynqPbn

UfŜ psq
|XfŜ psq

pJ cfŜpsq|x
nq 1

|K||MfŜ psq
|

� Pbn
UfŜ psq

pJ cfŜpsqq ¤ pn� 1q|U | expp�ηnq.
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Additionally it holds that¸
k,k̂PK
k�k̂

¸
xnRT nPXfŜ psq

,δ

¸
ynPYn

Pbn
XfŜ psq

Ys
pxn, ynq

�
¸
ŝPŜ

¸
mPMŝ

Pbn
Uŝ|Xŝ

pJ cŝ |xnq 1
|K||Mŝ|

1T nPXŝ ,δ
pxnq1g�1pk̂qpy

n,mq

¤
¸
kPK

¸
xnRT nPXfŜ psq

,δ

¸
ynPYn

Pbn
XfŜ psq

Ys
pxn, ynq

�
¸
ŝPŜ

¸
mPMŝ

Pbn
Uŝ|Xŝ

pJ cŝ |xnq 1
|K||Mŝ|

1T nPXŝ ,δ
pxnq

�
¸

xnRT nPXfŜ psq
,δ

Pbn
XfŜ psq

pxnq
¸
ŝPŜ

Pbn
Uŝ|Xŝ

pJ cŝ |xnq1T nPXŝ ,δ
pxnq

and as the T nPXŝ ,δ, ŝ P Ŝ, are disjoint we can upper bound this expression by

¸
xnRT nPXfŜ psq

,δ

Pbn
XfŜ psq

pxnq ¤ pn� 1q|X | expp�n 1
2 ln 2δ

2q.

For the fourth summand we have¸
mPM

¸
k,k̂PK
k�k̂

¸
xn,ynPXn�Yn

Pbn
XfŜ psq

Ys
pxn, ynq 1

|K||M|1p
�
ŝPŜ T nPXŝ ,δ

qcpx
nq1g�1pk̂qpy

n,mq

¤
¸
mPM

¸
kPK

¸
xn,ynPXn�Yn

Pbn
XfŜ psq

Ys
pxn, ynq 1

|K||M|1p
�
ŝPŜ T nPXŝ ,δ

qcpx
nq

�
¸

xnPXn

Pbn
XfŜ psq

pxnq1p
�
ŝPŜ T nPXŝ ,δ

qcpx
nq ¤ Pbn

XfŜ psq
ppT nPXfŜ psq ,δ

qcq

¤ pn� 1q|X | expp�n 1
2 ln 2δ

2q.

So for n large enough we upper bounded all four summands by expp�ndq for a d ¡ 0
and thus the sum by expp�nbq for a b ¡ 0. Thus we have

sup
sPS

PrpKs � K̂sq ¤ expp�nbq,
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because expp�nbq is an upper bound. Now consider

PrpKs � k,Ms � mq �
¸
k̂

¸
xn,yn

Pbn
XsYs

pxn, ynqF pk,m|xnq1g�1pk̂qpy
n,mq

�
¸
xn
Pbn
Xs
pxnqp

¸
ŝPŜ

p
¸

kŝPh
�1
ŝ pkq

Pbn
Uŝ|Xŝ

pukŝ,m|x
nq �

¸
kŝPh

�1
ŝ pk̃q

Pbn
Uŝ|Xŝ

pukŝ,m|x
nq 1

|K|

� Pbn
Uŝ|Xŝ

pJ cŝ |xnq 1
|K||Mŝ|

q1Mŝ
pmq1T nPXŝ ,δ

pxnq � 1
|K||M|1p

�
ŝPŜ T nPXŝ ,δ

qcpx
nqq

�
¸

xnPXn

Pbn
Xs
pxnq

¸
ŝPŜ

¸
kŝPh

�1
ŝ pkq

Pbn
Uŝ|Xŝ

pukŝ,m|x
nq1Mŝ

pmq1T nPXŝ ,δ
pxnq

�
¸

xnPXn

Pbn
Xs
pxnq

¸
ŝPŜ

¸
kŝPh

�1
ŝ pk̃q

Pbn
Uŝ|Xŝ

pukŝ,m|x
nq 1

|K|1Mŝ
pmq1T nPXŝ ,δ

pxnq

�
¸

xnPXn

Pbn
Xs
pxnq

¸
ŝPŜ

Pbn
Uŝ|Xŝ

pJ cŝ |xnq 1
|K||Mŝ|

1Mŝ
pmq1T nPXŝ ,δ

pxnq

�
¸

xnPXn

Pbn
Xs
pxnq 1

|K||M|1p
�
ŝPŜ T nPXŝ ,δ

qcpx
nq.

and

PrpMs � mq

�
¸
kPK

¸
xn
Pbn
Xs
pxnqp

¸
ŝPŜ

p
¸

kŝPh
�1
ŝ pkq

Pbn
Uŝ|Xŝ

pukŝ,m|x
nq �

¸
kŝPh

�1
ŝ pk̃q

Pbn
Uŝ|Xŝ

pukŝ,m|x
nq 1

|K|

� Pbn
Uŝ|Xŝ

pJ cŝ |xnq 1
|K||Mŝ|

q1Mŝ
pmq1T nPXŝ ,δ

pxnq � 1
|K||M|1p

�
ŝPŜ T nPXŝ ,δ

qcpx
nqq

�
¸
kPK

¸
xnPXn

Pbn
Xs
pxnq

¸
ŝPŜ

¸
kŝPh

�1
ŝ pkq

Pbn
Uŝ|Xŝ

pukŝ,m|x
nq1Mŝ

pmq1T nPXŝ ,δ
pxnq

�
¸

xnPXn

Pbn
Xs
pxnq

¸
ŝPŜ

¸
kŝPh

�1
ŝ pk̃q

Pbn
Uŝ|Xŝ

pukŝ,m|x
nq1Mŝ

pmq1T nPXŝ ,δ
pxnq

�
¸

xnPXn

Pbn
Xs
pxnq

¸
ŝPŜ

Pbn
Uŝ|Xŝ

pJ cŝ |xnq 1
|Mŝ|

1Mŝ
pmq1T nPXŝ ,δ

pxnq

�
¸

xnPXn

Pbn
Xs
pxnq 1

|M|1p
�
ŝPŜ T nPXŝ ,δ

qcpx
nq.

Consider permutations tπkŝukŝPKŝ on rns (and we denote by πkŝ the corresponding per-
mutation on e.g. X n). As π�1

kŝ
pX nq � X n, it holds that

¸
xnPXn

Pbn
Xs
pxnq

¸
ŝPŜ

¸
kŝPh

�1
ŝ pkq

Pbn
Uŝ|Xŝ

pukŝ,m|x
nq1Mŝ

pmq1T nPXŝ ,δ
pxnq

�
¸

kŝPh
�1
ŝ pkq

¸
xnPπ�1

kŝ
pXnq

Pbn
Xs
pxnq

¸
ŝPŜ

Pbn
Uŝ|Xŝ

pukŝ,m|x
nq1Mŝ

pmq1T nPXŝ ,δ
pxnq.
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Given the product structure of Pbn
Xs

and Pbn
Uŝ|Xŝ

(and as 1T nPXŝ ,δ
pxnq is invariant to per-

mutations of xn) this expression equals¸
kŝPh

�1
ŝ pkq

¸
xnPπ�1

kŝ
pXnq

Pbn
Xs
pπkŝpx

nqq
¸
ŝPŜ

Pbn
Uŝ|Xŝ

pπkŝpukŝ,mq|πkŝpx
nqq1Mŝ

pmq1T nPXŝ ,δ
pπkŝpx

nqq

�
¸
x̄PXn

Pbn
Xs
px̄nq

¸
ŝPŜ

¸
kŝPh

�1
ŝ pkq

Pbn
Uŝ|Xŝ

pπkŝpukŝ,mq|x̄
nq1Mŝ

pmq1T nPXŝ ,δ
px̄nq.

According to our construction there is a P P Ppn,Uq such that ukŝ,m P T nP for all
kŝ P Kŝ. So for all k̄ P K we can choose the permutations tπkŝukŝPh�1

ŝ pk̄q such that

tπkŝpukŝ,mqukŝPh�1
ŝ pk̄q � tukŝ,mukŝPh�1

ŝ pkq for an arbitrary k P K. Thus it holds that

¸
kPK

¸
xnPXn

Pbn
Xs
pxnq

¸
ŝPŜ

¸
kŝPh

�1
ŝ pkq

Pbn
Uŝ|Xŝ

pukŝ,m|x
nq1Mŝ

pmq1T nPXŝ ,δ
pxnq

� |K|
¸

xnPXn

Pbn
Xs
pxnq

¸
ŝPŜ

¸
kŝPh

�1
ŝ pkq

Pbn
Uŝ|Xŝ

pukŝ,m|x
nq1Mŝ

pmq1T nPXŝ ,δ
pxnq

for an arbitrary k P K. So we have

PrpKs � k|Ms � mq � PrpKs�k,Ms�mq
PrpMs�mq � 1

|K|

which means HpKs|Msq � log |K| for all s P S and accordingly

inf
sPS

HpKs|Msq � log |K|.

So we showed that

RcompSK �
¤

tUŝuŝPŜ

tpR,Lq : 0 ¤ R ¤ min
ŝPŜ

inf
sPIpŝq

IpUŝ ^ Ysq,

L ¥ max
ŝPŜ

IpUŝ ^Xŝq � inf
sPIpŝq

IpUŝ ^ Ysqu

�
¤

tUŝuŝPŜ

£
ŝPŜ

RŝpUŝq

where we define

RŝpUŝq � tpR,Lq : 0 ¤ R ¤ inf
sPIpŝq

IpUŝ ^ Ysq, L ¥ IpUŝ ^Xŝq � inf
sPIpŝq

IpUŝ ^ Ysqu.

It holds that ¤
tUŝuŝPŜ

£
ŝPŜ

RŝpUŝq �
¤
Uŝ1

¤
tUŝuŝPŜztŝ1u

� £
ŝPŜztŝ1u

RŝpUŝq XRŝ1pUŝ1q
�
.
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Now we apply the distributive law two times, so¤
Uŝ1

¤
tUŝuŝPŜztŝ1u

� £
ŝPŜztŝ1u

RŝpUŝq XRŝ1pUŝ1q
�

�
¤
Uŝ1

�� ¤
tUŝuŝPŜztŝ1u

£
ŝPŜztŝ1u

RŝpUŝq
�
XRŝ1pUŝ1q

	

�
� ¤
tUŝuŝPŜztŝ1u

£
ŝPŜztŝ1u

RŝpUŝq
�
X
� ¤
Uŝ1

Rŝ1pUŝ1q
�
.

If we repeat these steps for all ŝ P Ŝ we arrive at¤
tUŝuŝPŜ

£
ŝPŜ

RŝpUŝq �
£
ŝPŜ

¤
Uŝ

RŝpUŝq.

Now consider the converse.

Theorem 3.4. It holds that

Rcomp,PLSK �
£
ŝPŜ

¤
Uŝ

tpR,Lq : 0 ¤ R ¤ inf
sPIpŝq

IpUŝ ^ Ysq,

L ¥ IpUŝ ^Xŝq � inf
sPIpŝq

IpUŝ ^ Ysqu

where for all ŝ P Ŝ the union is taken over all RVs Uŝ with Uŝ�Xŝ�Ys for all s P Ipŝq.

Proof. Using the same steps as in the proof of Theorem 3.2 we can show that for δ ¡ 0
and RVs tUsusPS with Us � QUs,Q, where Us,i � KsMsX

i�1
s and Q uniformly distributed

on rns and independent of tXn
s Y

n
s U

n
s usPS , it holds that

PUsXs,QYs,Qppq, uq, x, yq � PQpqqPUs,q |Xs,qpu|xqPXsYspx, yq

for all s P S,

1
n log |K| ¤ IpUs ^ Ys,Qq � δ

and

1
nIpMs ^Xn

s q ¥ IpUs ^Xs,Qq � IpUs ^ Ys,Qq � δ.

It holds that

PUsXs,Qppq, uq, xq � PQpqqPUs,qXs,qpu, xq

� P
KsMsX

q�1
s Xs,q

pu, xqPQpqq � P
KsMsX

q�1
s Xs,q

ppk,m, xq�1q, xqPQpqq

� PQpqq
¸

xnq�1PXn�q

Pbn
XfŜ psq

ppxq�1, x, xnq�1qqF pk,m|px
q�1, x, xnq�1qq,
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which only depends on s via fŜpsq. (We introduce u � pk,m, xq�1q above to access
the components of u.) Correspondingly we can consider the RVs tUŝuŝPŜ and define for
s � fŜpsq

PYs,Q|UfŜ psqXfŜ psq,Q
� PYs,Q|UsXs,Q .

Then it holds that PUfŜ psqXfŜ psq,QYs,Q
� PUsXs,QYs,Q for all s P S and UfŜpsq �XfŜpsq,Q

�

Ys,Q. Additionally we have for all s P S

1
n log |K| ¤ IpUfŜpsq ^ Ys,Qq � δ

and

sup
sPS

1
nIpMs ^Xn

s q ¥ IpUfŜpsq ^XfŜpsq,Q
q � IpUfŜpsq ^ Ys,Qq � δ.

So

1
n log |K| ¤ inf

sPS
IpUfŜpsq ^ Ys,Qq � δ

� inf
ps,ŝqPS�Ŝ :
ŝ�fŜpsq

IpUŝ ^ Ys,Qq � δ � min
ŝPŜ

inf
sPJ pŝq

IpUŝ ^ Ys,Qq � δ

and

sup
sPS

1
nIpMs ^Xn

s q ¥ sup
sPS

IpUfŜpsq ^XfŜpsq,Q
q � IpUfŜpsq ^ Ys,Qq � δ

� max
ŝPŜ

IpUŝ ^Xŝ,Qq � inf
sPJ pŝq

IpUŝ ^ Ys,Qq � δ.

This implies

RcompSK �
¤

tUŝuŝPŜ

£
ŝPŜ

RŝpUŝq �
£
ŝPŜ

¤
Uŝ

RŝpUŝq.

3.3 SK generation from a jammed PUF source

In information theoretic security a very basic channel model is the wiretap channel
introduced in [49]. In this scenario we assume that additionally to a legitimate receiver
there is an eavesdropper. A sender wants to send a message reliably to the legitimate
receiver. The eavesdropper gets the messages from the sender via a channel different
from the channel to the legitimate receiver. Nevertheless the eavesdropper should not
be able to decode the message correctly from his received signal. One problem of this
model is that we assume perfect knowledge of the channel to the eavesdropper, which
obviously is an unrealistic assumption. We can improve the model by considering channel
uncertainty [44]. Accordingly in [16, 35] the authors consider the compound wiretap
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channel to account for the channel uncertainty. This means we assume that the channels
the model comprises are not known perfectly. Instead, for each channel we know a set
of channels the actual channel belongs to. This channel is used for the whole duration
of transmission which means for all channel uses. In [15, 39] the authors consider the
arbitrarily varying wiretap channel. This is a different way to model channel uncertainty.
Again we do not know the channels in the model but a set of channels to the legitimate
receiver and the eavesdropper respectively. For each channel use the actual channels are
elements of the corresponding sets. So the channels do not necessarily remain constant
during the whole duration of transmission. These models also allow for modeling an
active attacker who jams the communication.

The standard scenario for SK generation from a PUF source described in Section 3.1
is very restrictive as it only allows for passive attacks where an eavesdropper who is
interested in K gets to know M . If we want to model more powerful attackers we have
to expand the standard scenario by considering active attacks. After the first phase
the active attacker could try to manipulate the statistics of the PUF source. We call
such an active attacker a jammer. In general, incorporating a jammer in models for
information theoretic security is natural, as active attacks fit the scenarios considered
in this context. As discussed for the wiretap channel, a compound model can be used
to model an active attacker. So a compound PUF source can be interpreted as a PUF
source that is jammed by an active attacker. It is discussed in [43, Chapter 13] that such
a scenario, where an active attacker jams the PUF source is relevant from a practical
point of view. An active attacker could for example use electromagnetic waves to jam
the PUF. As mentioned in [43, Chapter 13] the active attacker could also tamper with
the environmental parameters like temperature to influence the PUF.

So now we look at SK generation from a PUF source where we want to incorporate
an active attacker in the model. In our model we allow for very general active attacks.
They are more powerful than the jamming attacks modeled by a compound PUF source
as we will see later.

From a practical and especially from a cryptanalytic point of view we should assume
that the jammer knows the encoder F and the decoder g, i.e. the algorithm for generating
K, M and K̂. We denote the set of all possible encoding and decoding algorithms by F
and G. Then all functions

A : F � G Ñ Sn

are possible jamming strategies, where A P MapppF � G,Snq. This scenario is depicted
in Figure 3.3. (There is an additional eavesdropper interested in K with access to M .)

The most powerful jamming attack results from a jammer choosing sn while additio-
nally knowing M . Then all functions

B : F � G �MÑ Sn

are possible jamming strategies, where B P MapppF � G �M,Snq. This scenario is
depicted in Figure 3.4. (Again there is an additional eavesdropper interested in K with
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Encoder F Decoder g

Xn Y n

K K̂

PUF Source

M

Jammer

Eavesdropper

sn � ApF, gq

Figure 3.3: SK generation process under jamming attacks where the jammer knows F
and g.

Encoder F Decoder g

Xn Y n

K K̂

PUF Source

M

Jammer

Eavesdropper

sn � BpF, g,Mq

Figure 3.4: SK generation process under jamming attacks where the jammer knows M ,
F and g.

access to M .)

We will see that (in our model) the knowledge of the jammer has a substantial influence
on his potential of preventing a successful SK generation. It turns out that when the
jammer knows M in some cases no successful SK generation is possible at all. This is
the case when the PUF source has a property that is strongly connected to the property
of symmetrizability of AVCs.

Similarly to the model of a compound PUF source we could interpret our model of
a jammed PUF source as a model for source uncertainty. This directly makes sense for
the case where the jammer does not know M . For the case where the jammer knows M
we can still interpret the model as a model for source uncertainty but now the publicly
transmitted helper message influences the environment and simultaneously the PUF
source. So our models are not restricted to the case where a jammer is present.

For the model for SK generation from a jammed PUF source we consider the RVs
X and tYsusPS with PXYspx, yq � PXpxqWspy|xq for all px, yq P X � Y, PX P PpX q,
Ws P PpY|X q for all s P S, i.e. tWsusPS corresponds to an AVC. Consider the random
vectors Xn and Y n

sn with

PrpXnY n
snq � pxn, ynqq � Pbn

X pxnqWsnpy
n|xnq
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for all pxn, ynq P X n � Yn and sn P Sn, where Wsn �
Ân

i�1Wsi for sn P Sn. Xn and
Y n
sn represent the source output observed at terminal X and terminal Y respectively

when the actual source statistics are determined by sn P Sn. Correspondingly the RVs
pK,Mq model the SK and the helper message and K̂sn represents the reconstruction
of the SK. Again we consider a randomized encoder F P PpK �M|X nq and a decoder
g : Yn �M Ñ K. In the context of SK generation from a jammed PUF source we call
pF, gq a SK generation protocol. The RVs K and M are generated from Xn using F and
the RVs K̂sn are generated from Y n

sn and M using g for all sn P Sn.

Thus we get the joint distributions of the RVs KMK̂sn

PKMK̂sn
pk,m, k̂q �

¸
xn,ynPXn�Yn

Pbn
X pxnqWsnpy

n|xnqF pk,m|xnq1g�1pk̂qpy
n,mq

for all pk,m, k̂q P K �M�K and sn P Sn.

Again we want to specify properties that the SK generation protocols should have.
The SK should be reconstructed correctly with high probability in spite of the possible
jamming attacks. Again we want to construct protocols that achieve perfect secrecy and
uniform distribution of the SK.

This motivates the following definitions of achievability for the source model.

Definition 3.3. We call the tuple pR,Lq, R,L ¥ 0, an achievable SK versus privacy
leakage rate pair for the source model if for all δ ¡ 0 there is an n0 � n0pδq such that
for all n ¥ n0 there is a SK generation protocol such that

min
snPSn

PpK � K̂snq ¥ 1� δ (3.5)

HpKq � log |K|,
IpM ^Kq � 0
1
n log |K| ¥ R� δ,
1
nIpM ^Xnq ¤ L� δ.

We call the set of all rate pairs that are achievable using such SK generation protocols
the capacity region R1

AV C .

Definition 3.4. We call the tuple pR,Lq, R,L ¥ 0, an achievable SK versus privacy
leakage rate pair for the source model when the jammer knows the helper message if
for all δ ¡ 0 there is an n0 � n0pδq such that for all n ¥ n0 there is a SK generation
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protocol such that ¸
mPM

PM pmq min
snPSn

PpK � K̂sn |M � mq ¥ 1� δ (3.6)

HpKq � log |K| (3.7)

IpM ^Kq � 0 (3.8)
1
n log |K| ¥ R� δ,
1
nIpM ^Xnq ¤ L� δ.

We call the set of all rate pairs that are achievable using such SK generation protocols
the capacity region RAV C .

We have two definitions of achievability, one for the case where the jammer does not
know M , that is Definition 3.3, and one for the case where the jammer has access to M ,
that is Definition 3.4.

Note that in Definition 3.3 the mapping A does not appear explicitly. It is clear that
the reconstructed SK depends on the jamming strategy that is used for the correspon-
ding SK generation protocol pF, gq, i.e. K̂ � K̂pApF, gqq. Thus in the definition of
achievability one could expect that (3.5) is replaced by

min
A

PrpK � K̂pApF, gqqq ¥ 1� δ.

But this is equivalent to (3.5). Correspondingly in Definition 3.4 the mapping B does not
appear explicitly. Here we have K̂ � K̂pBpF, g, �qq and in the definition of achievability
one could expect that (3.6) is replaced by

min
B

PrpK � K̂pBpF, g, �qqq ¥ 1� δ,

which is equivalent to (3.6).

We are interested in characterizing RAV C and R1
AV C . It is clear that

RAV C � R1
AV C . (3.9)

Given a jammed PUF source described by RVs X and tYsusPS as described above we
define R as the set

¤
U

tpR,Lq : R ¤ min
W̄PW̄

IpPU , W̄ q

L ¥ IpPX , PU |Xq � min
W̄PW̄

IpPU , W̄ qu,

where the union is over all RVs U such that

PUXYspu, x, yq �Wspy|xqPU |Xpu|xqPXpxq
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for all pu, x, yq P U � X � Y, PU |X P PpU |X q and all s P S and W̄ � convptPYs|UusPSq.
In this work we will prove two central results.

Theorem 3.5. It holds that R1
AV C � R.

In the scenario corresponding to Theorem 3.5 the jammer can freely choose the state
of the system sn P Sn, but he has no knowledge about the helper message. As discussed
the jammer knows the protocol, i.e. the encoding and decoding algorithm F and g,
because they are assumed to be standardized in our application scenario of a public
communication system.

When analyzing R we see that the presence of the jammer, who is able to suitably
choose the system state, has an influence on the capacity region R1

AV C .
R is a single letter characterization of the capacity region R1

AV C which in principle
can be computed and analyzed easily. It is interesting that it is not clear if there is such
a single letter characterization of the capacity of the compound wiretap channel or the
arbitrarily varying wiretap channel [16,39,48].

Remark 3.6. As mentioned before, in [32,33] the authors consider protocols with wea-
ker secrecy requirements. For example in [32] they replace (3.7) and (3.8) by

log |K| �HpKq ¤ δ, 1
nIpM ^Kq ¤ δ.

We will see that one might show that weakening our secrecy requirements in such a way
does not increase the corresponding capacity region. So in this sense we do not pay a
prize for requiring perfect secrecy and a uniform distribution of the secret key instead
of the weaker requirements.

Now we consider the case where the jammer knows the helper message.

Theorem 3.7. If the AVC corresponding to tWsusPS is symmetrizable then RAV C �
tpR,Lq : R ¤ 0, L ¥ 0u. If the AVC is not symmetrizable then RAV C � R.

Thus we get the following corollary.

Corollary 3.8. It holds that RAV C � R1
AV C if and only if the AVC corresponding to

tWsusPS is not symmetrizable.

Theorem 3.5, 3.7 and Corollary 3.8 show the influence of the presence of a jammer
with knowledge of the helper message compared to a jammer without this knowledge.
We remember that the jammer is absolutely adversarial, i.e. he tries to make SK genera-
tion impossible. If the jammer knows the helper message, he can succeed if the channel
corresponding to the PUF source is symmetrizable. This means if the corresponding
channel is symmetrizable there is a denial of service attack for each possible SK gene-
ration protocol pF, gq. We will explicitly prove the existence of such denial of service
attacks. If the channel is not symmetrizable the jammer has no additional benefit from
knowing the helper message, because in this case it holds that RAV C � R1

AV C .
For our considerations we also need the following result which can for example be

found in [41].
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Lemma 3.9 ([41]). Consider the RV XnY n. If PXn �
Ân

i�1 PXi then IpXn ^ Y nq ¥°n
i�1 IpXi ^ Yiq.

For the construction of the SK generation protocol that we use in the achievability
proof, we use the following observation which can also be found in [39].

Lemma 3.10 ([39]). Consider the AVC corresponding to tWsusPS , Ws P PpY|X q for
all s P S, which we suppose is not symmetrizable and the AVC corresponding to tVsusPS ,
Vs P PpY|Uq for all s P S. Let m P N. The AVC corresponding to tVsm�1 bWsmusmPSm is
not symmetrizable as well.

Proof. Assume tVsm�1 bWsmusmPSm is symmetrizable. Then there exists a stochastic
matrix U P PpSm|Um�1 � X q such that for all ym, um�1, xm, u

m�1,1, x1m¸
sm
Vsm�1pym�1|um�1,1qWsmpym|x

1
mqUps

m|um�1, xmq

�
¸
sm
Vsm�1pym�1|um�1qWsmpym|xmqUps

m|um�1,1, x1mq.

Taking the sum over all ym�1 on both sides we get¸
sm

Wsmpym|x
1
mqŪpsm|u

m�1xmq

�
¸
sm

Wsmpym|xmqŪpsm|u
m�1x1mq

for all ym, xm, x
1
m (and an arbitrary choice of um�1) where Ū P PpS|Um�1 � X q such

that

Ūpsm|u
m�1, xq �

¸
sm�1

Upsm�1, sm|u
m�1, xq.

This contradicts the assumption that the AVC corresponding to tWsusPS is not symme-
trizable.

The following theorem is one of our main achievability results. This theorem is equi-
valent to the achievability part of Theorem 3.7.

Theorem 3.11. If the AVC corresponding to tWsusPS is non symmetrizable it holds
that RAV C � R.

For the proof we use a technique similar to the one that is used for the direct proof of
[5, Proposition 1a)]. For this proof the set, the first output of the source is distributed
on, is exhausted by subsequently choosing channel codes with codewords from this set.
For our achievability proof we use the first output of the source to generate a sequence
from a set Un. We use the technique discussed above to exhaust Un. As we use a
randomized encoder we use blocking to guarantee that the corresponding channel is non
symmetrizable, cf. Lemma 3.10.
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Proof. Let τ ¡ 0. (We can assume minxPX PXpxq ¥ β ¡ 0. If this is not the case we
construct our protocol for the support of PX . This protocol has the desired performance
as entropy only depends on the support of the corresponding distributions.) Choose the
RV U (where we again can assume minuPU PU puq ¥ β ¡ 0) such that U �X � Ys for all
s P S. Choose l P N large enough such that ε1plq and ε4plq are both less than δ{2 (where
the functions ε1, ε4 : N Ñ R will be determined later). For all t large enough, construct

constant composition pt, εq-codes tpfm,lt , φm,lt qumPM, fm,lt : KÑ pU l�1�X qt, φm,lt : Y lt Ñ
K, for the AVC corresponding to t

Âl�1
i�1 PYsi |UbPYsl |XuslPSl with fm,lt pKqXfm

1,l
t pKq � H

for all m,m1 PM, m � m1 and

|K| � texpptp min
W̄ lPW̄l

IpPbl�1
U b PX , W̄

lq � τqqu

for W̄ l � convpt
Âl�1

i�1 PYsi |U b PYsl |XuslPSlq.

For this purpose choose these codes iteratively for each P̄ P Ppt,U l�1 � X q with

}P̄ � Pbl�1
U b PX}1 ¤ δ,

1
2|Y| ¡ δ ¡ 0, δ ¤ βl. (Note that minpul�1,xlqPU l�1�X P

bl�1
U b PXpu

l�1, xlq ¥ βl ¡ 0.)

Start by choosing Am1 � T tP̄ , m1 PM, with

pPbl�1
U b PXq

btpAm1q ¡
η expp�tDpP̄ }Pbl�1

U bPXqq

pt�1q|Ul�1�X |
.

Now choose pfm1,l
t , φm1,l

t q such that fm1,l
t pKq � Am1 . This is possible for δ small enough,

as follows from Lemma 3.10 and Lemma 2.29. Now choose Am2 � T tP̄ zf
m1,l
t pKq, m2 PM,

such that

pPbl�1
U b PXq

btpAm2q ¡
η expp�tDpP̄ }Pbl�1

U bPXqq

pt�1q|Ul�1�X |

and choose pfm2,l
t , φm2,l

t q such that fm2,l
t pKq � Am2 . In the mi-th step choose Ami �

T t
P̄
z
�
jPt1���i�1u f

mj ,l
t pKq, mi PM, such that

pPbl�1
U b PXq

btpAmiq ¡
η expp�tDpP̄ }Pbl�1

U bPXqq

pt�1q|Ul�1�X |

and choose pfmi,lt , φmi,lt q such that fmi,lt pKq � Ami .

When we can not find a set Ami�1 � T tP̄ z
�
jPt1���iu f

mj ,l
t pKq, mi�1 PM, with

pPbl�1
U b PXq

btpAmi�1q ¡
η expp�tDpP̄ }Pbl�1

U bPXqq

pt�1q|Ul�1�X |

anymore, we continue with the next type.
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We repeat the procedure for all types P̄ P Ppt,U l�1 � X q such that

}P̄ � Pbl�1
U b PX}1 ¤ δ.

We denote the set of indices m PM corresponding to type P̄ byMP̄ , i.e. M �
�
P̄MP̄ ,

where the union is over all P̄ P Ppt,U l�1 � X q such that }P̄ � Pbl�1
U b PX}1 ¤ δ.

So we have

pPbl�1
U b PXq

btpp
¤
mPM

fm,lt pKqqcq

� pPbl�1
U b PXq

btppT t
Pbl�1
U bPX ,δ{|U l�1�X |

qcq

� pPbl�1
U b PXq

btpT t
Pbl�1
U bPX ,δ{|U l�1�X |

z
¤
mPM

fm,lt pKqq

where the first summand can be upper bounded by ξ ¡ 0 arbitrarily small for t large
enough. We also have

T t
Pbl�1
U bPX ,δ{|U l�1�X |

z
¤
mPM

fm,lt pKq �
� ¤

P̄PPpt,U l�1�X q :

}P̄�Pbl�1
U bPX}1¤δ

T tP̄
	
z
¤
mPM

fm,lt pKq

�
¤

P̄PPpt,U l�1�X q :

}P̄�Pbl�1
U bPX}1¤δ

�
T tP̄ z

¤
mPMP̄

fm,lt pKq
	
.

So the second summand can be upper bounded by¸
P̄PPpt,U l�1�X q :

}P̄�Pbl�1
U bPX}1¤δ

pPbl�1
U b PXq

btpT tP̄ z
¤

mPMP̄

fm,lt pKqq

¤
¸

P̄PPpt,U l�1�X q :

}P̄�Pbl�1
U bPX}1¤δ

η expp�tDpP̄ }Pbl�1
U bPXqq

pt�1q|Ul�1�X |
¤ η

and thus altogether we have

pPbl�1
U b PXq

btpp
¤
mPM

fm,lt pKqqcq ¤ ξ � η. (3.10)

Define vt,l : X tl � U tl Ñ pU l�1 � X qt, vt,lpxtl, utlq � ul�1xlu
2l�1
l�1 x2l � � �u

tl�1
pt�1ql�1xtl.

Consider the independent RV Z1 uniformly distributed on K and the mappings f̄tl : X tl�
U tl � Z1 Ñ K �M and φ̄tl : Ytl �MÑ K

f̄tlpx
tl, utl, z1q �

#
ppfm,lt q�1pvt,lpx

tl, utlqq,mq vt,lpx
tl, utlq P fm,lt pKq

pz1, m̄q else
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φ̄tlpy
tl,mq � φm,lk pytlq

for all m P M and an arbitrary m̄ P M. Note that f̄tlpx
tl, utl, z1q is well defined as

the fm,lt are injective. (Above we introduce the following notation. Given a sequence
xn P X n and 1 ¤ i ¤ j ¤ n we write xji for the subsequence xi, � � � , xj .)

Consider the RV Un with

PrpUnXnY n
sn � pun, xn, ynqq � Pbn

X pxnqPbn
U |Xpu

n|xnqWsnpy
n|xnq

for all pun, xn, ynq P Un � X n � Yn and all sn P Sn. We define

F pk,m|xnq � Prpf̄tnl ulpx
lt
n
l u, U lt

n
l u, Z1q � pk,mqq

gpyn,mq � φ̄t
n
l ulpy

lt
n
l u,mq

for all pk,m, xn, ynq P K�M�X n�Yn and we have n � tnl ul� r with r P N, 0 ¤ r   l.

We now analyse the performance of this SK generation protocol. For notational con-
venience we define

Vt
n
l u,l � vtnl u,lpX

lt
n
l u, U lt

n
l uq.

We have

PrpK � k|M � mq

� PrpK � k|M � m,Vt
n
l u,l P f

m,l

t
n
l u
pKqqPrpVt

n
l u,l P f

m,l

t
n
l u
pKq|M � mq

� PrpK � k|M � m,Vt
n
l u,l R f

m,l

t
n
l u
pKqqPrpVt

n
l u,l R f

m,l

t
n
l u
pKq|M � mq � 1

|K| .

For the last step consider

PrpK � k|M � m,Vt
n
l u,l P f

m,l

t
n
l u
pKqq

� PrpK � k|Vt
n
l u,l P f

m,l

t
n
l u
pKqq

� Prppfm,l
t
n
l u
q�1pVt

n
l u,lq � k|Vt

n
l u,l P f

m,l

t
n
l u
pKqq

�
PrpV

t
n
l u,l

�fm,l

t
n
l u
pkq^V

t
n
l u,l

Pfm,l

t
n
l u
pKqq

PrpV
t
n
l u,l

Pfm,l

t
n
l u
pKqq

�
PrpV

t
n
l u,l

�fm,l

t
n
l u
pkqq

PrpV
t
n
l u,l

Pfm,l

t
n
l u
pKqq

�
pPbl�1
U bPXq

bt
n
l u
pfm,l

t
n
l u
pkqq

PrpV
t
n
l u,l

Pfm,l

t
n
l u
pKqq

� 1
|K| , (3.11)
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where the last step follows as the type P
fm,l

t
n
l u
pkq

is the same for all k P K,

PrpVt
n
l u,l R f

m,l

t
n
l u
pKq|M � mq � 0

for m � m̄ and

PrpK � k|M � m̄, Vt
n
l u,l R f

m̄,l

t
n
l u
pKqq � PrpZ1 � kq � 1

|K| .

We have for all m PM

min
snPSn

PrpK � K̂sn |M � mq

¥ PrpVt
n
l u,l P f

m,l

t
n
l u
pKq|M � mq min

snPSn
PrpK � K̂sn |M � m,Vt

n
l u,l P f

m,l

t
n
l u
pKqq.

This equals

PrpVt
n
l u,l P f

m,l

t
n
l u
pKq|M � mq

� min
snPSn

¸
kPK

PrpK � k|M � m,Vt
n
l u,l P f

m,l

t
n
l u
pKqq

� PrpK � K̂sn |M � m,K � k, Vt
n
l u,l P f

m,l

t
n
l u
pKqq

� PrpVt
n
l u,l P f

m,l

t
n
l u
pKq|M � mq min

snPSn
1
|K|

¸
kPK

Wsn�rppφ
m,l

t
n
l u
q�1pkq|fm,l

t
n
l u
pkqq, (3.12)

where we use (3.11) and the definition of the SK generation protocol. So¸
mPM

PM pmq min
snPSn

PrpK � K̂sn |M � mq

¥
¸
mPM

PrpVt
n
l u,l P f

m,l

t
n
l u
pKq,M � mq min

snPSn
1
|K|

¸
kPK

Wsn�rppφ
m,l

t
n
l u
q�1pkq|fm,l

t
n
l u
pkqq

�
¸
mPM

PrpVt
n
l u,l P f

m,l

t
n
l u
pKqq min

snPSn
1
|K|

¸
kPK

Wsn�rppφ
m,l

t
n
l u
q�1pkq|fm,l

t
n
l u
pkqq

¥ p1� εqPrpVt
n
l u,l P

¤
mPM

fm,l
t
n
l u
pKqq

¥ p1� εqp1� ξ � ηq ¥ 1� δ

for n large enough, where we use (3.12), (2.27) and (3.10).

We have

1
t
n
l u

log |K| ¥ min
W̄ lPW̄l

IpPbl�1
U b PX , W̄

lq � τ � 1
t
n
l u

for n large enough. Consider W̄ l P W̄ l corresponding to PSl P PpS lq with marginals PSi P
PpSq, i P t1 � � � lu. Define W̄i P PpY|Uq such that W̄ipy|uq �

°
sPS PSipsqPYs|U py|uq,
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i P t1 � � � l � 1u, and W̄l P PpY|X q such that W̄lpy|xq �
°
sPS PSlpsqPYs|Xpy|xq for all

px, y, uq P X � Y � U . As according to Lemma 3.9

IpPbl�1
U b PX , W̄

lq ¥
l�1̧

i�1

IpPU , W̄iq � IpPX , W̄lq

we have

min
W̄ lPW̄l

IpPbl�1
U b PX , W̄

lq ¥ min
W̄ lPW̄l

l�1̧

i�1

IpPU , W̄iq � IpPX , W̄lq

� pl � 1q min
W̄PW̄

IpPU , W̄ q � min
W̄PW̄l

IpPX , W̄ q

where W̄ � convptPYs|UusPSq and W̄l � convptWsusPSq. So

1
l min
W̄ lPW̄l

IpPbl�1
U b PX , W̄

lq ¥ l�1
l min
W̄PW̄

IpPU , W̄ q

¥ min
W̄PW̄

IpPU , W̄ q � τ̃

for τ̃ ¡ 0 (where τ̃ depends on l such that τ̃plq Ñ 0 for lÑ8). So we have

1
n log |K| � 1

t
n
l ul�r

log |K| � 1
1�

r
t
n
l ul

1
t
n
l ul

log |K|

¥ 1

1�
1

t
n
l u

pmin
W̄PW̄

IpPU , W̄ q � τ̃ � τ
l �

1
nq ¥ min

W̄PW̄
IpPU , W̄ q � ε1plq � ε2pl, nq

for ε1plq, ε2pl, nq ¡ 0 and ε1plq Ñ 0 for lÑ8 and ε2pl, nq Ñ 0 for nÑ8 for all l P N.

Note that

HpUn|Mq � HpUnXlX2l � � �Xt
n
l ul|Mq �HpXlX2l � � �Xt

n
l ul|MUnq

¥ HpVt
n
l u,l|Mq � log |X |nl .

Now we consider

HpVt
n
l u,l|Mq ¥ HpVt

n
l u,l|M1�

mPM fm,l

t
n
l u
pKqpVt

n
l u,lqq

¥
¸
mPM

PrpVt
n
l u,l P

¤
mPM

fm,l
t
n
l u
pKqq

� PrpM � m|Vt
n
l u,l P

¤
mPM

fm,l
t
n
l u
pKqqHpVt

n
l u,l|M � m,1�

mPM fm,l

t
n
l u
pKqpVt

n
l u,lq � 1q
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As fm,l
t
n
l u

is injective we have

HpVt
n
l u,l|M � m,1�

mPM fm,l

t
n
l u
pKqpVt

n
l u,lq � 1q � HpVt

n
l u,l|1fm,l

t
n
l u
pKqpVt

n
l u,lq � 1q

� Hppfm,l
t
n
l u
q�1pVt

n
l u,lq|1fm,l

t
n
l u
pKqpVt

n
l u,lq � 1q

� log |K|.

It follows that

HpUn|Mq ¥ log |K|PrpVt
n
l u,l P

¤
mPM

fm,l
t
n
l u
pKqq � log |X |nl

¥ p1� ξ � ηq log |K| � log |X |nl . (3.13)

and (for an arbitrary sn P Sn)

HpUnq �HpM |Xnq � IpUn ^Xnq � HpUn|Xnq �HpM |Xnq

� HpUnM |Xnq �HpM |Xnq

� HpUn|MXnq � HpUn|MXnY n
snq

¤ HpVt
n
l u,l|MY n

snq � log |U |ptnl u� rq

¤ log |U |pnl � lq � ε3, (3.14)

where ε3 ¡ 0 arbitrarily small for n large enough which follows from HpM |UnXnq � 0
[26, Problem 3.1], UnM�Xn�Y n

sn which implies Un�MXn�Y n
sn and Fano’s inequality

[26, Lemma 3.8] in combination with

PrpVt
n
l u,l � fM,l

t
n
l u
pgpY n

sn ,Mqqq ¥ PrpVt
n
l u,l P

¤
mPM

fM,l

t
n
l u
pKq ^ gpY n

sn ,Mq � Kq

which can be lower bounded by

PrpVt
n
l u,l P

¤
mPM

fM,l

t
n
l u
pKqq � PrpgpY n

sn ,Mq � Kq � 1 ¥ 1� 2ξ � 2η � ε

for n large enough.

Thus we get

IpM ^Xnq � IpM ^ Unq �HpM |Xnq �HpM |Unq

¤ HpUnq �HpUn|Mq �HpM |Xnq � log |X |pnl � lq

¤ nIpU ^Xq � p1� ξ � ηq log |K| � ε3 � log |X 2 � U |pnl � lq,
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where we use

HpM |Unq

� HpM |UnpXl, X2l, � � � , Xt
n
l ulqq

�HpXl, X2l, � � � , Xt
n
l ul|U

nq �HpXl, X2l, � � � , Xt
n
l ul|U

nMq

¤ log |X |nl

together with [26, Problem 3.1] and (3.13) and (3.14) for the last inequality.

So

1
nIpM ^Xnq ¤ IpPX , PU |Xq � min

W̄PW̄
IpPU , W̄ q � ε4plq � ε5pl, nq,

for ε4plq, ε5pl, nq ¡ 0 and ε4plq Ñ 0 for lÑ8 and ε5pl, nq Ñ 0 for nÑ8 for all l P N.

Our second achievability result is the following theorem. This theorem is equivalent
to the achievability part of Theorem 3.5.

Theorem 3.12. It holds that R1
AV C � R.

For the proof we use the Ahlswede robustification that is for example applied in [3].
This means we can use a result for compound sources to prove our result.

Proof. Given δ ¡ 0 there is an n0 P N and a c ¡ 0 such that for all n ¥ n0 and pR,Lq P R
we can find pFc, gcq, where Fc P PpKc �Mc|X nq and gc : Yn �Mc Ñ Kc, such that for
RVs Kc and Mc with

PKcMcpk,mq �
¸

xnPXn

Pbn
X pxnqFcpk,m|x

nq

for all pk,mq P Kc �Mc it holds that

max
W̄P

convptWsusPSq

¸
xn,yn

¸
k,k̂ :

k�k̂

¸
mPMc

Pbn
X pxnqW̄bnpyn|xnqFcpk,m|x

nq1g�1
c pk̂qpy

n,mq ¤ expp�ncq

HpKcq � log |Kc|
IpKc ^Mcq � 0
1
n log |Kc| ¥ R� δ
1
nIpMc ^Xnq ¤ L� δ,

as follows from Theorem 3.3.

We now define tpF π, gπquπPΠn , F π P PpKc �Mc|X nq and gπ : Yn �Mc Ñ Yn for all
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π P Πn, by

F πpk,m|xnq � Fcpk,m|πx
nq

gπpyn,mq � gcpπy
n,mq

for all pxn, yn, k,mq P X n � Yn � Kc �Mc, where Πn is the set of all permutations on
t1 � � �nu. (With a slight abuse of notation we write πxn for xπ�1p1q � � �xπ�1pnq so in this
sense π induces a bijection on X n.)

Now we define h : Sn Ñ r0, 1s

hpsnq �
¸

xnPXn

ynPYn

¸
kPKc
mPMc

Pbn
X pxnqWsnpy

n|xnqFcpk,m|x
nq1g�1

c pkqpy
n,mq.

For all P P PpSq we have¸
snPSn

hpsnqPbnpsnq

�
¸

snPSn
Pbnpsnq

¸
xnPXn

ynPYn

¸
kPKc
mPMc

Pbn
X pxnqWsnpy

n|xnqFcpk,m|x
nq1g�1

c pkqpy
n,mq

which equals

¸
xnPXn

ynPYn

¸
kPKc
mPMc

Pbn
X pxnq

¸
snPSn

n¹
i�1

Wsipyi|xiqP psiqFcpk,m|x
nq1g�1

c pkqpy
n,mq

�
¸

xnPXn

ynPYn

¸
kPKc
mPMc

Pbn
X pxnq

n¹
i�1

¸
sPS

Wspyi|xiqP psqFcpk,m|x
nq1g�1

c pkqpy
n,mq.

So for W̄ such that W̄ py|xq �
°
sPS Wspy|xqP psq for all px, yq P X � Y (i.e. W̄ P

convptWsusPSq) we have¸
snPSn

hpsnqPbnpsnq �
¸

xnPXn

ynPYn

¸
kPKc
mPMc

Pbn
X pxnqW̄bnpyn|xnqFcpk,m|x

nq1g�1
c pkqpy

n,mq.

From our choice of pFc, gcq we thus know that¸
snPSn

hpsnqPbnpsnq ¡ 1� expp�ncq.

Using [3, Theorem RT] we get

1
n!

¸
πPΠn

hpπsnq ¡ 1� expp�ncqpn� 1q|S|. (3.15)
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Now we consider for π P Πn

hpπsnq �
¸

xnPXn

ynPYn

¸
kPKc
mPMc

Pbn
X pxnqWπsnpy

n|xnqFcpk,m|x
nq1g�1

c pkqpy
n,mq.

This equals

¸
xnPXn

ynPYn

¸
kPKc
mPMc

n¹
i�1

PXpxπpiqqWsipyπpiq|xπpiqqFcpk,m|x
nq1g�1

c pkqpy
n,mq.

As π is a bijection and we take the sum over all pxn, ynq this equals

¸
xnPXn

ynPYn

¸
kPKc
mPMc

n¹
i�1

PXpxiqWsipyi|xiqFcpk,m|πx
nq1g�1

c pkqpπy
n,mq

�
¸

xnPXn

ynPYn

¸
kPKc
mPMc

Pbn
X pxnqWsnpy

n|xnqF πc pk,m|x
nq1pgπc q�1pkqpy

n,mq.

So considering (3.15) we conclude that the SK generation protocol pF, gq, F P PpKc �
pMc � Πnq|X nq and g : Yn � pMc � Πnq Ñ Kc, achieves an arbitrarily small error
probability for n large enough when used to generate a SK from tPXYsusPS , where for
all pxn, yn, k,m, πq P X n � Yn �Kc �Mc �Πn

F pk, pm,πq|xnq � 1
n!F

πpk,m|xnq

gpyn, pm,πqq � gπpyn,mq.

Correspondingly we define K � Kc and M �Mc � Πn. It holds for pk,m, πq P K �M
that

PKM pk, pm,πqq �
¸

xnPXn

PbnpxnqF pk, pm,πq|xnq

�
¸

xnPXn

1
n!P

bnpxnqF πpk,m|xnq

� 1
n!

¸
xnPXn

PbnpxnqFcpk,m|πx
nq

� 1
n!

¸
xnPXn

PbnpxnqFcpk,m|x
nq � 1

n!PKcMcpk,mq. (3.16)

So we have

PK|M pk|m,πq �
PKM pk,pm,πqq°
kPK PKM pk,pm,πqq � PKc|Mc

pk|mq � 1
|K|
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which is equivalent to IpK ^Mq � 0 and HpKq � log |K|. Finally consider

PMXnppm,πq, xnq �
¸
kPK

PbnpxnqF pk, pm,πq|xnq

�
¸
kPK

1
n!P

bnpxnqF πpk,m|xnq

�
¸
kPK

1
n!P

bnpxnqFcpk,m|πx
nq. (3.17)

It holds that

IpM ^Xnq �
¸

pm,πqPM

¸
xnPXn

PMXnppm,πq, xnq log PMXn ppm,πq,x
nq

PM pm,πqPXn pxnq
.

Using (3.16) and (3.17) we see that this expression equals¸
pm,πqPM

¸
xnPXn

PMXnppm,πq, xnq log
°
kPK Fcpk,m|πxnq

PMc pmq

�
¸

pm,πqPM

¸
xnPXn

PMXnppm,πq, π�1xnq log
°
kPK Fcpk,m|xnq
PMc pmq ,

where we make use of the summation over all xn P X n. Again using (3.17) this equals

¸
pm,πqPM

¸
xnPXn

¸
kPK

1
n!P

bnpπ�1xnqFcpk,m|x
nq log

PMc|Xn pm|xnq

PMc pmq

�
¸

pm,πqPM

¸
xnPXn

¸
kPK

1
n!P

bnpxnqFcpk,m|x
nq log

PMc|Xn pm|xnq

PMc pmq

�
¸

mPMc

¸
xnPXn

¸
kPK

PbnpxnqFcpk,m|x
nq log

PMc|Xn pm|xnq

PMc pmq

� IpMc ^Xnq ¤ npL� δq.

Now we prove converse results, complementing our achievability results. The first
converse result is equivalent to the first part of the converse part of Theorem 3.7, that
is the part where the corresponding AVC is symmetrizable.

Theorem 3.13. If the AVC corresponding to tWsusPS is symmetrizable, then RAV C �
tpR,Lq : R ¤ 0, L ¥ 0u.

Here we proof the existence of a jamming strategy sn for all m PM such that reliable
SK generation can be prevented using the probabilistic method, cf. [24].

Proof. Consider the SK generation protocol pF, gq. We want to show that¸
mPM

PM pmq max
snPSn

PrpK � K̂sn |M � mq ¥ ε
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for an ε ¡ 0. For this purpose we show

max
snPSn

PrpK � K̂sn |M � mq ¥ ε (3.18)

for all m PM. So let m PM. Consider RVs tSkukPK, such that

PrpSk � snq �
¸

xnPXn

PXn|MKpx
n|m, kqPbn

S|Xps
n|xnq

where PS|X symmetrizes tWsusPS .We have for all k̄ P K
¸

snPSn
PrpSk̄ � snqPrpK̂sn � K|M � mq

� 1
|K|

¸
kPK

¸
snPSn

PrpSk̄ � snqPrpK̂sn � k|M � m,K � kq

� 1
|K|

¸
kPK

¸
ynPYn

1pg�1pkqqcpy
n,mq

¸
snPSn

PrpSk̄ � snq
¸

xnPXn

PXn|MKpx
n|m, kqWsnpy

n|xnq.

We have¸
snPSn

PrpSk̄ � snq
¸

xnPXn

PXn|MKpx
n|m, kqWsnpy

n|xnq

�
¸

snPSn

¸
xn1 PXn

xn2 PXn

PXn|MKpx
n
2 |m, k̄qP

bn
S|Xps

n|xn2 qPXn|MKpx
n
1 |m, kqWsnpy

n|xn1 q

which is equal to

¸
xn1 PXn

xn2 PXn

PXn|MKpx
n
2 |m, k̄qPXn|MKpx

n
1 |m, kq

¸
snPSn

n¹
i�1

PS|Xpsi|x2,iqWsipyi|x1,iq

�
¸

xn1 PXn

xn2 PXn

PXn|MKpx
n
2 |m, k̄qPXn|MKpx

n
1 |m, kq

n¹
i�1

¸
sPS

PS|Xps|x2,iqWspyi|x1,iq

where the last step can be shown by induction. Now we use that the AVC corresponding
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to tWsusPS is symmetrizable and get

¸
xn1 PXn

xn2 PXn

PXn|MKpx
n
2 |m, k̄qPXn|MKpx

n
1 |m, kq

n¹
i�1

¸
sPS

PS|Xps|x1,iqWspyi|x2,iq

�
¸

xn1 PXn

xn2 PXn

PXn|MKpx
n
2 |m, k̄qPXn|MKpx

n
1 |m, kq

¸
snPSn

n¹
i�1

PS|Xpsi|x1,iqWsipyi|x2,iq

which equals¸
snPSn

¸
xn1 PXn

xn2 PXn

PXn|MKpx
n
2 |m, k̄qP

bn
S|Xps

n|xn1 qPXn|MKpx
n
1 |m, kqWsnpy

n|xn2 q

�
¸

snPSn
PrpSk � snq

¸
xnPXn

PXn|MKpx
n|m, k̄qWsnpy

n|xnq.

So it holds that¸
ynPYn

1pg�1pk̄qqcpy
n,mq

¸
snPSn

PrpSk � snq
¸

xnPXn

PXn|MKpx
n|m, k̄qWsnpy

n|xnq

�
¸

ynPYn
1pg�1pkqqcpy

n,mq
¸

snPSn
PrpSk̄ � snq

¸
xnPXn

PXn|MKpx
n|m, kqWsnpy

n|xnq

can be lower bounded by¸
ynPYn

¸
snPSn

PrpSk � snq
¸

xnPXn

PXn|MKpx
n|m, k̄qWsnpy

n|xnq � 1

for k � k̄ and for all h : K2 Ñ r0, 1s with hpk, k̄q � hpk̄, kq ¥ 1 for k � k̄ we have

1
|K|2

¸
k,k̄PK

hpk, k̄q ¥
¸
k,k̄PK
k�k̄

hpk, k̄q ¥ 1
|K|2

|K|�1¸
i�1

p|K| � iq

� |K|p|K| � 1q � p|K|�1q2�p|K|�1q
2 � |K|�1

2|K| .

Thus we get

1
|K|

¸
k̄PK

¸
snPSn

PrpSk̄ � snqPrpK̂sn � K|M � mq ¥ |K|�1
2|K| ¥

1
4

for |K| ¥ 2. So for all m PM there is at least one strategy sn of the attacker such that

PrpK � K̂sn |M � mq ¥ ε
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which implies (3.18) for all m PM (with ε � 1{4).

Remark 3.14. The jamming strategy the existence of which we prove above is a denial
of service attack which consequently exists for all SK generation protocols if the jammer
knows M and the PUF source is such that the corresponding channel is symmetrizable.

Now we prove our second converse result. This result is equivalent to the converse
part of Theorem 3.5. Together with (3.9) it implies the second converse part of Theorem
3.7, that is the part where the corresponding AVC is not symmetrizable.

Theorem 3.15. It holds that R1
AV C � R.

Proof. Consider a SK generation protocol pF, gq for tPXYsusPS . We have

max
sn

PrpK � K̂snq � max
sn

¸
xnPXn

ynPYn

¸
mPM
kPK

Pbn
X pxnqWsnpy

n|xnqF pk,m|xnq1pg�1pkqqcpy
n,mq

¥ max
PS1

���PSn
PPpSq

¸
sn

n¹
i�1

PSipsiq
¸

xnPXn

ynPYn

¸
mPM
kPK

Pbn
X pxnqWsnpy

n|xnqF pk,m|xnq1pg�1pkqqcpy
n,mq

which equals

max
PS1

���PSn
PPpSq

¸
xnPXn

ynPYn

¸
mPM
kPK

Pbn
X pxnqF pk,m|xnq1pg�1pkqqcpy

n,mq
n¹
i�1

¸
sPS

PSipsqWspyi|xiq

¥ max
PSPPpSq

¸
xnPXn

ynPYn

¸
mPM
kPK

Pbn
X pxnqF pk,m|xnq1pg�1pkqqcpy

n,mq
n¹
i�1

¸
sPS

PSpsqWspyi|xiq.

This implies that a rate pair pR,Lq that is achievable according to Definition 3.3 is
also achievable according to Definition 3.2, using the same SK generation protocol
for the compound source tPW uWPconvptWsusPSq, PW P PpX � Yq , where PW px, yq �
PXpxqW py|xq for all px, yq P X � Y. So from Theorem 3.4 we have

R1
AV C �

¤
U

tpR,Lq : R ¤ inf
PY |XP

convptWsusPSq

IpU ^ Y q

L ¥ IpU ^Xq � inf
PY |XP

convptWsusPSq

IpU ^ Y qu

for RVs U and Y with U �X � Y . As the mutual information is continuous, PpU |X q
and convptWsusPSq are compact and

min
PY |XP

convptWsusPSq

IpU ^ Y q � min
W̄PW̄

IpPU , W̄ q
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we get the result.

Remark 3.16. In [30] the authors prove a capacity result for SK generation from a
compound PUF source with weaker secrecy requirements. We can also use the converse
part of this result instead of Theorem 3.4, cf. Remark 3.6.

We have derived a single letter characterization of the capacity regions RAV C and
R1
AV C . We have seen that the performance of the SK generation protocols strongly

depends on whether the AVC corresponding to the source tPXYsusPS is symmetrizable
or not given the jammer knows the helper message. For the symmetrizable case we have
proved the existence of a denial of service attack for all SK generation protocols. If the
jammer does not know the helper message we can use a common randomness assisted
protocol. Then symmetrizability does not decrease the performance.
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4 SK Generation with Constrained Public
Communication Rate

In this chapter we consider SK generation with a rate constraint on the helper message.
As done for SK generation from a PUF source, we require perfect secrecy and uniform
distribution of the SK. We study various models that differ in the assumptions on the
source uncertainty and we prove corresponding capacity results.

4.1 Results for the compound source

In addition to strengthening the achievability requirements of the protocols for SK gene-
ration we consider a more general setting for SK generation in this section compared to
the setting of [25] described in Section 2.1. As in Section 3.2 we assume that the source
used for SK generation is not perfectly known. Thus now we consider the RVs X and
tYsusPS (where S is a possibly infinite set). The source puts out RVs Xn � pX1, � � � , Xnq
observed at terminal X and Y n

s � pYs,1, � � � , Ys,nq observed at terminal Y for a s P S
and we assume PXnY ns � Pbn

XYs
. This means we still consider a DMMS but now the

distribution of the corresponding generic RVs is not known. Instead we know that this
distribution is an element of the set tPXYsusPS . This is called a compound DMMS.

Taking into account that we now allow for randomized encoders the generation of
the SK K and the helper message M from Xn is described by a stochastic matrix
F P PpK �M|X nq. For the reconstruction of the SK we have to consider a set of RVs
tK̂susPS that represent the reconstruction for each possible source statistic. The decoder
is assumed to be a deterministic function g : Yn �M Ñ K, i.e., K̂s � gpY n

s ,Mq for all
s P S. So here the pair pF, gq is a SK generation protocol.

The joint distributions of K, M and tK̂susPS are as follows. For all pk,m, k̂q P K �
M�K and s P S we have

PKMK̂s
pk,m, k̂q �

¸
xnPXn

ynPYn

Pbn
XYs

pxn, ynqF pk,m|xnq1g�1pk̂qppy
n,mqq.

We adjust Definition 2.1 accordingly.

Definition 4.1. Let L ¥ 0. We call R ¥ 0 an achievable compound secret key rate
with rate constraint L if for any ε ¡ 0 and sufficiently large n there is a SK generation
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protocol such that

sup
sPS

PrpK � K̂sq ¤ ε (4.1)

HpK|Mq � log |K|
1
n log |K| ¥ R� ε
1
n log |M| ¤ L� ε. (4.2)

The compound SK capacity with rate constraint L is the largest achievable compound
secret key rate with rate constraint L and is denoted by CcompSK pLq.

As discussed in Chapter 3 models that take source uncertainty into account are impor-
tant from a practical point of view and can also be interpreted as models for a jammed
source.

Our first result is the following characterization of CcompSK pLq.

Theorem 4.1. It holds that

CcompSK pLq � max
U

inf
sPS

IpU ^ Ysq

where the maximization is over all RVs U such that U � X � Ys and IpU ^ Xq �
infsPS IpU ^ Ysq ¤ L for all s P S .

Proof. The converse follows from Theorem 3.4. There SK generation protocols are con-
sidered that instead of (4.2) meet the requirement

1
nIpX

n ^Mq ¤ L� δ.

From IpXn^Mq ¤ log |M| it is clear that the corresponding converse result implies the
converse part of Theorem 4.1.

The achievability follows directly from Lemma 4.4 below.

For the special case where |tPXYsusPS | � 1 Theorem 4.1 shows that replacing (2.2) and
(2.3) by the requirementHpK|Mq � log |K| does not decrease CSKpLq (cf. Theorem 2.1).

As explained, we can assume that the source statistics are chosen by a jammer. As
the helper message is transmitted publicly we could assume that the jammer knows the
helper message. So the jammer can choose the source statistics based on the helper
message. (This attack scenario makes sense because the marginal distribution of the
source output available at terminal X , which is used to generate K and M , is the same
for all distributions that the jammer can choose.) So we can replace (4.1) by the stronger
requirement ¸

mPM
PM pmq sup

sPS
PrpK � K̂s|M � mq ¤ ε.
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Encoder Decoder

Xn Y n

K K̂

Source

M

Eavesdropper

Jammer
s

Figure 4.1: SK generation from a jammed source, where the jammer knows the helper
message.

The setting that we consider is depicted in Figure 4.1. We denote the corresponding
capacity by Ccomp,mSK pLq. Our next result is the characterization of Ccomp,mSK pLq.

Theorem 4.2. It holds that

Ccomp,mSK pLq � CcompSK pLq.

So the SK capacity does not decrease, even if the jammer knows the helper message
and chooses the source statistics based on the helper message.

Proof. The achievability part of the proof follows directly from Lemma 4.5 below. The
converse part is clear from the converse part of Theorem 4.1.

4.2 Achievability proofs for the compound source

In order to prove Lemma 4.4 (which basically is the achievability part of Theorem 4.1)
we need the following lemma.

Lemma 4.3. Let U , X be RVs with PUX P Ppn̄,U � X q for some n̄ P N such that
HpU |Xq ¡ 0. Choose a δ ¡ 0 such that δ   HpU |Xq. Choose real numbers ε, R
satisfying R, ε ¡ 0. For any n P N, define integers K, L, M satisfying

L � KM � expprnpIpU ^Xq � δqsq

K � expprnRsq.

Then there exist constants c1, c2 ¡ 0 such that for every sufficiently large multiple n of
n̄ there is a set J � tuk,mupk,mqPrKs�rMs � T nU satisfying

p1� expp�nc1qq
|T n
U |X

pxnq|

|T nU |
L   |J X T nU |Xpx

nq|   p1� expp�nc1qq
|T n
U |X

pxnq|

|T nU |
L (4.3)
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for all xn P T nX . Moreover, let Y be any additional RV with

PUXY pu, x, yq � PUXpu, xqPY |Xpy|xq

for all pu, x, yq P U � X � Y and R   IpU ^ Y q � ε. For k P rKs, m P rM s we define

Dk,m :�
¤
qPrKs
q�k

tyn : Ipyn ^ uk,mq ¤ Ipyn ^ uq,mqu.

Then

ēm :� 1
K

¸
kPrKs

Pbn
Y |U pDk,m|uk,mq ¤ expp�nc2q, (4.4)

for all m P rM s.

The proof technique is based on [23, Poof of Theorem IV.1] and [24, Proof of Lemma 3].

Proof. It is clear that PUX P Ppn,U � X q. We randomly choose u1, � � � , uL from T nU
without replacement according to a uniform distribution and let uk,m � uKpm�1q�k

for all pk,mq P rKs � rM s. Denote the corresponding RVs by U1, � � � , UL. Consider
xn P T nX and the RV Zxn �

°
lPrLs Z

l
xn with Z lxn � 1T n

U |X
pxnqpUlq for l P rLs. So Zxn

is hypergeometrically distributed such that Zxn � Hp|T nU |, |T nU |Xpx
nq|, Lq. From [38] we

know that for 0   ζ   1

Prp|Zxn �
|T n
U |X

pxnq|

|T nU |
L| ¥ ζ

|T n
U |X

pxnq|

|T nU |
Lq ¤ 2e

�ζ2
|T n
U |X

pxnq|

|T nU |
L{4
.

This can be upper bounded by

2e�
ζ2

4 expp�nIpU^Xqqpn�1q�|X ||U| expprnpIpU^Xq�δqsq

¤ 2e�
ζ2

2 pn�1q�|X ||U| exppnδq

using the definition of L and bounds on the corresponding type classes, cf. [26]. So we
can choose ζ � expp�nc1q for

0   c1  
1
2pδ �

|X ||U |
n logpn� 1qq,

e.g. c1 �
δ
4 for n large enough such that

δ
2 ¡

|X ||U |
n logpn� 1q,

and get

Prp|Zxn �
|T n
U |X

pxnq|

|T nU |
L| ¥ ζ

|T n
U |X

pxnq|

|T nU |
Lq ¤ 2e� exppnδ{4q{2.

88



Achievability proofs for the compound source

Now consider un P T nU and the RV Ū such that PUŪ P Ppn,U �Uq and PŪ � PU . We
define

f
pPUŪ ,u

nq
k,m pU1,m, � � � , Uk,mq � 1T n

Ū |U
punqpUk,mq

for all k P rKs and m P rM s. Consider¸
uk,mPT nU

f
pPUŪ ,u

nq
k,m pu1,m, � � � , uk,mq

� PUk,m|U1,m,��� ,Uk�1,m
puk,m|u1,m, � � � , uk�1,mq (4.5)

which equals¸
uk,mPT nU

¸
uK,m�1

1,1

PpT nU q
Kpm�1q

1T n
Ū |U

punqpuk,mqPUk,m|U1,1,��� ,Uk�1,m
puk,m|u1,1, � � � , uk�1,mq

� P
UK,m�1

1,1 |Uk�1,m
1,m

puK,m�1
1,1 |uk�1,m

1,m q,

where we introduce the notation

UK,m�1
1,1 � pU1,1, � � � , UK,m�1q

Uk�1,m
1,m � pU1,m, � � � , Uk�1,mq

uK,m�1
1,1 � pu1,1, � � � , uK,m�1q

uk�1,m
1,m � pu1,m, � � � , uk�1,mq (4.6)

We can exchange the sums and get¸
uK,m�1

1,1

PpT nU q
Kpm�1q

P
UK,m�1

1,1 |Uk�1,m
1,m

puK,m�1
1,1 |uk�1,m

1,m q

¸
uk,mPT nU

1T n
Ū |U

punqpuk,mqPUk,m|U1,1,��� ,Uk�1,m
puk,m|u1,1, � � � , uk�1,mq

which equals

¸
uK,m�1

1,1

PpT nU q
Kpm�1q

P
UK,m�1

1,1 |Uk�1,m
1,m

puK,m�1
1,1 |uk�1,m

1,m q
|T n
Ū |U

punqztu1,1,��� ,uk�1,mu|

|T nU |�pKpm�1q�k�1q

¤
|T n
Ū |U

punq|

|T nU |�KM
¤ expp�nIpŪ^Uqqpn�1q|U|

1�2 exppnp�HpU |Xq�δqqpn�1q|U|
. (4.7)
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So we can apply Lemma [24, Lemma A 1] with

a � expp�nIpŪ^Uqqpn�1q|U|

1�2 exppnp�HpU |Xq�δqqpn�1q|U|
.

We thus get for all m P rM s and

ZmpPUŪ ,unq �
¸
kPrKs

f
pPUŪ ,u

nq
k,m pU1,m, � � � , Uk,mq

that

PrpZmpPUŪ ,unq ¡ Ktq ¤ expp�Kpt� a log eqq.

Choose

t � 1
K exppnp|R� IpŪ ^ Uq|� � εqq.

So Kpt� a log eq ¥ exppnεq{2 if n ¥ n1pεq where n1pεq is defined as

mintn : 0   2pn�1q|U| log e

1�2 exppnp�HpU |Xq�δqqpn�1q|U|
  1

2 exppnεqu.

As |T nU | , |T nX |, |Ppn,U�Uq| and M only increase exponentially with respect to n we can
use the union bound to show that the probability that J has the following properties
is greater than 0. This follows as we showed that the probabilities of the corresponding
complementary events each go to 0 doubly exponentially with respect to n. So for all n
large enough there is a J such that (4.3) holds for all xn P T nX and for all m P rM s, all
un P T nU and all PUŪ P Ppn,U � Uq we have

|tk : uk,m P T nŪ |U pu
nqu| ¤ exppnp|R� IpŪ ^ Uq|� � εqq. (4.8)

For each yn P Yn there is a RV Ŷ such that puk,m, y
nq P T n

UŶ
. So there is a set of RVs

tŶ1, � � � , ŶP u with P ¤ |Ppn,U � Yq| such that tT n
Ŷp|U

puk,mqupPrP s forms a partition of

Yn. So for each m P rM s we can write ēm defined in (4.4) as

1
K

¸
kPrKs

Pbn
Y |U p

¤
pPrP s

T n
Ŷp|U

puk,mq XDk,m|uk,mq

�
¸
pPrP s

1
K

¸
kPrKs

Pbn
Y |U pT

n
Ŷp|U

puk,mq XDk,m|uk,mq

�
¸
pPrP s

1
K

¸
kPrKs

expp�npDpPŶp|U}PY |U |PU q �HpŶp|Uqq|T nŶp|U puk,mq XDk,m|.

For each

yn P T n
Ŷp|U

puk,mq X tyn : Ipyn ^ uk,mq ¤ Ipyn ^ uq,mqu,
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q P rKs and q � k, there is a RV Ū with IpŶp ^Uq ¤ IpŶp ^ Ūq and PŪ � PU such that
pyn, uk,m, uq,mq P T nŶpUŪ . So there is a set of RVs tŪp1 , � � � , Ū

p
Op
u with

Op ¤ |Ppn,Y � U � Uq|

such that tT n
Ŷp|UŪ

p
o
puk,m, uq,mquoPrOps forms a partition of

T n
Ŷp|U

puk,mq X tyn : Ipyn ^ uk,mq ¤ Ipyn ^ uq,mqu

and IpŶp ^ Uq ¤ IpŶp ^ Ūpo q, PŪpo � PU . We can write

T n
Ŷp|U

puk,mq XDk,m �
¤
qPrKs
q�k

pT n
Ŷp|U

puk,mq X tyn : Ipyn ^ uk,mq ¤ Ipyn ^ uq,mquq

�
¤
qPrKs
q�k

¤
oPrOps

T n
Ŷp|UŪ

p
o
puk,m, uq,mq

�
¤

oPrOps

¤
qPrKs
q�k

T n
Ŷp|UŪ

p
o
puk,m, uq,mq.

So

ēm ¤
¸
pPrP s

expp�npDpPŶp|U}PY |U |PU qqq
¸

oPrOps

1
K

¸
kPrKs

|
�
qPrKs,q�k T nŶp|UŪpo

puk,m,uq,mq|

exppnHpŶp|Uqqq
.

It is clear that an upper bound for

|
�
qPrKs,q�k T nŶp|UŪpo

puk,m,uq,mq|

exppnHpŶp|Uqqq

is 1. So we have

ēm ¤
¸
pPrP s

expp�npDpPŶp|U}PY |U |PU qqq

�
¸

oPrOps

1
K

¸
kPrKs

mint
|
�
qPrKs,q�k T nŶp|UŪpo

puk,m,uq,mq|

exppnHpŶp|Uqqq
, 1u.

As T n
Ŷp|UŪ

p
o
puk,m, uq,mq � H for puk,m, uq,mq R T nUŪpo we have

¤
qPrKs,q�k

T n
Ŷp|UŪ

p
o
puk,m, uq,mq �

¤
qPrKs : q�k

^puk,m,uq,mqPT n
UŪ

p
o

T n
Ŷp|UŪ

p
o
puk,m, uq,mq
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and thus

|
¤

qPrKs,q�k

T n
Ŷp|UŪ

p
o
puk,m, uq,mq| ¤

¸
qPrKs : q�k

^puk,m,uq,mqPT n
UŪ

p
o

|T n
Ŷp|UŪ

p
o
puk,m, uq,mq|. (4.9)

As

|T n
Ŷp|UŪ

p
o
puk,m,uq,mq|

exppnHpŶp|Uqq
¤

exppnHpŶp|UŪ
p
o qq

exppnHpŶp|Uqq
� expp�npIpŪpo ^ UŶpq � IpU ^ Ūpo qqq

we can upper bound (4.9) by

|tq�k : puk,m,uq,mqPT n
UŪ

p
o
u|

exppnpIpŪpo^UŶpq�IpU^Ū
p
o qqq

and thus

ēm ¤
¸
pPrP s

expp�npDpPŶp|U}PY |U |PU qqq

�
¸

oPrOps

1
K

¸
kPrKs

mint
|tq�k : puk,m,uq,mqPT n

UŪ
p
o
u|

exppnpIpŪpo^UŶpq�IpU^Ū
p
o qqq

, 1u

which can be upper bounded by¸
pPrP s

expp�npDpPŶp|U}PY |U |PU qqq

� p
¸

oPrOps :
IpU^Ūpo q¡R

1
K

¸
kPrKs

|tq�k : puk,m,uq,mqPT n
UŪ

p
o
u|

exppnpIpŪpo^UŶpq�IpU^Ū
p
o qqq

�
¸

oPrOps :
IpU^Ūpo q¤R

1
K

¸
kPrKs

mint
|tq�k : puk,m,uq,mqPT n

UŪ
p
o
u|

exppnpIpŪpo^UŶpq�IpU^Ū
p
o qqq

q, 1uq.

We have with (4.8)

|tq � k : puk,m, uq,mq P T nUŪpo u| ¤ exppnp|R� IpU ^ Ūpo q|
� � εqq.

For IpU ^ Ūpo q ¡ R this equals exppnεq and for IpU ^ Ūpo q ¤ R it equals R� IpU ^ Ūpo q,
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so

ēm ¤
¸
pPrP s

expp�npDpPŶp|U}PY |U |PU qqq

� p
¸

oPrOps :
IpU^Ūpo q¡R

mint exppnεqq

exppnpIpŪpo^UŶpq�IpU^Ū
p
o qqq

q, 1u

�
¸

oPrOps :
IpU^Ūpo q¤R

mint exppnpR�IpU^Ūpo q�εqq

exppnpIpŪpo^UŶpq�IpU^Ū
p
o qqq

q, 1uq.

For IpU ^ Ūpo q ¡ R we have

exppnεq expp�npIpŪpo ^ UŶpq � IpU ^ Ūpo qqq

¤ expp�npIpŪpo ^ Ŷpq � IpU ^ Ūpo q � εqq

  expp�npIpŪpo ^ Ŷpq �R� εqq.

So we have

ēm ¤
¸
pPrP s

expp�npDpPŶp|U}PY |U |PU qqq

� p
¸

oPrOps :
IpU^Ūpo q¡R

mintexpp�npIpŪpo ^ Ŷpq �R� εqq, 1u

�
¸

oPrOps :
IpU^Ūpo q¤R

mintexpp�npIpŶpU ^ Ūpo q �R� εqq, 1uq

which can be upper bounded by¸
pPrP s

expp�npDpPŶp|U}PY |U |PU qqq
¸

oPrOps

mintexpp�npIpŪpo ^ Ŷpq �R� εqq, 1u

¤
¸
pPrP s

expp�npDpPŶp|U}PY |U |PU qqq
¸

oPrOps

mintexpp�npIpU ^ Ŷpq �R� εqq, 1u

which is less or equal than

pn� 1q|Y||U |
2
¸
pPrP s

expp�npDpPŶp|U}PY |U |PU qqq expp�n|IpŶp ^ Uq �R� ε|�q

¤ pn� 1q|Y|
2|U |3 max

pPrP s
expp�npDpPŶp|U}PY |U |PU qqq expp�n|IpŶp ^ Uq �R� ε|�q

¤ pn� 1q|Y|
2|U |3 max

V PPpY|Uq
expp�npDpV }PY |U |PU qqq expp�n|IpPU , V q �R� ε|�q
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This implies that for all PY |U such that IpY ^ Uq � ε ¡ R we have ēm ¤ expp�nc2q.

Now we can prove Lemma 4.4.

Lemma 4.4. Consider the RVs X̃ and tỸsusPS with PX̃Ỹs P PpX �Yq for all s P S and

a RV Ũ such that Ũ � X̃� Ỹs for all s P S, PŨ P PpUq. Let δ ¡ 0. For all n large enough
there is a stochastic matrix F P PpK � M̄|X nq and a mapping g : Yn � M̄ Ñ K such
that for the RVs K, M̄ , tK̂susPS and X̃n with PKM̄K̂sX̃n P PpK� M̄�K� X nq for all
s P S defined by

PKM̄K̂sX̃npk, m̄, k̂, x
nq �

¸
ynPYn

Pbn
X̃Ỹs

pxn, ynqF pk, m̄|xnq1g�1pk̂qppy
n, m̄qq

for pk, m̄, k̂, xnq P K � M̄�K � X n it holds that

sup
sPS

PrpK � K̂sq ¤ δ (4.10)

HpK|M̄q � log |K| (4.11)

1
n log |K| ¥ inf

sPS
IpŨ ^ Ỹsq � δ

1
n log |M̄| ¤ IpŨ ^ X̃q � inf

sPS
IpŨ ^ Ỹsq � δ.

Proof. Assume first that HpŨ |X̃q ¡ 0. The case HpŨ |X̃q � 0 is treated at the end of
the proof. We can also assume that infsPS IpŨ ^ Ỹsq ¡ 0, because the result follows
trivially for infsPS IpŨ ^ Ỹsq � 0. Let δ1, δ2 ¡ 0 small enough.

Consider sets of RVs tXtutPrT s and tUtutPrT s with T ¤ |Ppn,X q| such that PUtXtỸs P
PpU �X �Yq and PUtXt P Ppn,U �X q, PUtXtỸspu, x, yq � PỸs|X̃py|xqPUtXtpu, xq for all

pu, x, yq P U �X �Y for all s P S and t P rT s while tT nXtutPrT s forms a partition of T n
X̃,δ1

and

|PUtXtpu, xq � PŨX̃pu, xq| ¤ δ1 � δ2

for all pu, xq P U � X for all t P rT s. Such RVs exist which can be seen as follows. First
choose tXtutPrT s. Then consider txtutPrT s with xt P T nXt for all t P rT s. For each t P rT s
choose a ut P T nŨ |X̃,δ2pxtq. Define the RVs tUtutPrT s with PUtXt � Put,xt P Ppn,U � X q.
(This choice of PUtXt is possible for n large enough, cf. [26, Chapter 2].)

From [26, Lemma 2.7] we know that for all t P rT s it holds that HpUt|Xtq ¡ 0 and
infsPS IpUt ^ Ỹsq ¡ 0 for δ1, δ2 small enough.

For each t P rT s generate the set Jt according to Lemma 4.3 with

R � min
tPrT s

inf
sPS

IpUt ^ Ỹsq � δ{2,
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(and the corresponding K, Mt and Lt). For all t P rT s define for all un P Jt

Q̃tpu
nq �

¸
xnPXn

1
|T nXt |

1JtXT n
Ut|Xt

pxnqpu
nq

|JtXT n
Ut|Xt

pxnq|

�
¸

xnPXn

1
|T nXt |

1T n
Ut|Xt

pxnqpu
nq

|JtXT n
Ut|Xt

pxnq|

�
¸

xnPT n
Xt|Ut

punq

1
|T nXt ||JtXT n

Ut|Xt
pxnq|

and Qt � minunPJt Q̃tpu
nq. From (4.3) we know that for t P rT s and all un P Jt

1
1�expp�nc1q

1
Lt
  Q̃tpu

nq   1
1�expp�nc1q

1
Lt
. (4.12)

Here we also use that

|T nUt ||T
n
Xt|Ut

punq| � |T nXt ||T
n
Ut|Xt

pxnq| � |T nUtXt |

for un P T nUt and xn P T nXt . Let u� P Unz
�
tPrT s Jt. Consider the RV Un, PUn P PpUnq.

We define Un such that for all t P rT s it holds that

PUn|X̃npu
n|xnq � Qt

Q̃tpunq
1

|JtXT n
Ut|Xt

pxnq|

for xn P T nXt and un P Jt X T nUt|Xtpx
nq,

PUn|X̃npu
n|xnq � 1�

¸
uPJtXT n

Ut|Xt
pxnq

Qt
Q̃tpuq

1
|JtXT n

Ut|Xt
pxnq|

for xn P T nXt and un � u� and

PUn|X̃npu
n|xnq � 0

for xn P T nXt and all other un P Un. For xn P X nz
�
tPrT s T nXt define

PUn|X̃npu
n|xnq �

#
1 un � u�

0 else
.
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We have for t P rT s and all un P Jt

PrpUn � un|X̃n P T nXtq �
¸

xnPT nXt

PrpUn � un|X̃n � xnqPrpX̃n � xn|X̃n P T nXtq

�
¸

xnPT nXt

PrpUn � un|X̃n � xnq 1
|T nXt |

�
¸

xnPXn

Qt
Q̃tpunq

1JtXT n
Ut|Xt

pxnqpu
nq

|JtXT n
Ut|Xt

pxnq|
1

|T nXt |
� Qt. (4.13)

For t P rT s and all xn P T nXt we have by (4.12)

PrpUn � u�|X̃n � xnq �
¸

uPJtXT n
Ut|Xt

pxnq

Qt
Q̃tpuq

1
|JtXT n

Ut|Xt
pxnq|

¡ Ltp1� expp�nc1qqQt

¡ 1�expp�nc1q
1�expp�nc1q

� 1� 2 expp�nc1q
1�expp�nc1q

. (4.14)

Now we consider for t P rT s, un P Jt and pxn, unq P T nXtUt

PrpX̃n � xn|X̃n P T nXt , Un � unq �
PrpX̃n�xn,Un�un|X̃nPT nXt q

PrpUn�un|X̃nPT nXt q

which equals

PrpX̃n�xn|X̃nPT nXt qPrpUn�un|X̃n�xnq

Qt
� Qt

Q̃tpunq
1

|JtXT n
Ut|Xt

pxnq|
1

Qt|T nXt |

� 1
|T nXt ||JtXT n

Ut|Xt
pxnq|Q̃tpunq

.

From (4.3) and (4.12) this implies

PrpX̃n � xn|X̃n P T nXt , Un � unq   1�expp�nc1q
1�expp�nc1q

1
|T n
Xt|Ut

punq| . (4.15)

We also know PrpX̃n � xn|X̃n P T nXt , Un � unq � 0 for xn P X nzT nXt|Utpu
nq. Define

K � rKs, M � rmaxtPrT sMts and M̄ �M � rT s. Let xn P T nXt , t P rT s. We define for
k P K and m P rMts

F pk, pm, tq|xnq � PrpUn � utk,m|X̃
n � xnq � PrpUn � u�|X̃n � xnq 1

Lt
,

where we denote the elements in Jt by utk,m for all k P rKs and m P rMts. For Mt  
m ¤ maxtPrT sMt and k P K we define

F pk, pm, tq|xnq � 0.
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For t̄ P rT s, t̄ � t we define for pk,mq P K �M

F pk, pm, t̄q|xnq � 0.

Let xn P X nz
�
tPrT s T nXt . We define

F pk, pm, tq|xnq � 1
K
°
tPrT sMt

for all pk,m, tq P K�M� rT s with m ¤Mt. For pk,m, tq P K�M� rT s with m ¡Mt

we define

F pk, pm, tq|xnq � 0.

We have not defined g yet, but nevertheless start analyzing the properties of F . We in-
troduce the definition of g when needed. We start the analysis with the error probability.
Let s P S. We have

PrpK � K̂sq ¤
¸
tPrT s

PrpK � K̂s|X̃
n P T nXtqPrpX̃n P T nXtq � PrpX̃n R T n

X̃,δ1
q. (4.16)

Thus we now consider PrpK � K̂s|X̃
n P T nXtq for t P rT s.

PrpK � K̂s|X̃
n P T nXtq �

¸
pm,t̄qPM�rT s

¸
k,k̂PK
k�k̂

¸
ynPYn

¸
xnPT nXt

1
|T nXt |

Pbn
Ỹs|X̃

pyn|xnq

� F pk, pm, t̄q|xnq1g�1pk̂qpy
n, pm, t̄qq

�
¸

mPrMts

¸
k,k̂PK
k�k̂

¸
ynPYn

¸
xnPT nXt

1
|T nXt |

Pbn
Ỹs|X̃

pyn|xnq

� F pk, pm, tq|xnq1g�1pk̂qpy
n, pm, tqq,

where we make use of the definition of F pk, pm, tq|xnq. With our choice of F pk, pm, tq|xnq
this equals¸
mPrMts

¸
k,k̂PK
k�k̂

¸
ynPYn

¸
xnPT nXt

1
|T nXt |

Pbn
Ỹs|X̃

pyn|xnqPrpUn � utk,m|X̃
n � xnq1g�1pk̂qpy

n, pm, tqq

�
¸

mPrMts

¸
k,k̂PK
k�k̂

¸
ynPYn

¸
xnPT nXt

1
|T nXt |

Pbn
Ỹs|X̃

pyn|xnqPrpUn � u�|X̃n � xnq 1
Lt
1g�1pk̂qpy

n, pm, tqq.
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Using (4.14) the second summand can be upper bounded by

2 expp�nc1q
1�expp�nc1q

¸
mPrMts

¸
k,k̂PK
k�k̂

¸
ynPYn

¸
xnPT nXt

1
|T nXt |

Pbn
Ỹs|X̃

pyn|xnq 1
Lt
1g�1pk̂qpy

n, pm, tqq

¤ 2 expp�nc1q
1�expp�nc1q

¸
mPrMts

¸
k̂PK

¸
ynPYn

¸
xnPT nXt

1
|T nXt |

Pbn
Ỹs|X̃

pyn|xnq 1
Mt
1g�1pk̂qpy

n, pm, tqq

� 2 expp�nc1q
1�expp�nc1q

¸
mPrMts

¸
ynPYn

¸
xnPT nXt

1
|T nXt |

Pbn
Ỹs|X̃

pyn|xnq 1
Mt

� 2 expp�nc1q
1�expp�nc1q

.

The first summand equals¸
mPrMts

¸
k,k̂PK
k�k̂

¸
ynPYn

¸
xnPT nXt

Pbn
Ỹs|X̃

pyn|xnq

� PrpUn � utk,m, X̃
n � xn|X̃n P T nXtq1g�1pk̂qpy

n, pm, tqq

�
¸

mPrMts

¸
k,k̂PK
k�k̂

¸
ynPYn

¸
xnPT nXt

Pbn
Ỹs|X̃

pyn|xnq

� PrpX̃n � xn|Un � utk,m, X̃
n P T nXtqPrpUn � utk,m|X̃

n P T nXtq1g�1pk̂qpy
n, pm, tqq.

Using (4.15) and (4.13) this can be upper bounded by

1�expp�nc1q
1�expp�nc1q

¸
mPrMts

¸
k,k̂PK
k�k̂

¸
ynPYn

¸
xnPT nXt

Pbn
Ỹs|X̃

pyn|xnq 1
|T n
Xt|Ut

putk,mq|
Qt1g�1pk̂qpy

n, pm, tqq.

It is clear (cf. [26]) that for n large enough and xn P T nXt
1

|T n
Xt|Ut

putk,mq|
¤ 1

exppnpHpXt|Utq�ξqq
� exppnξqPbn

Xt|Ut
pxn|utk,mq (4.17)

for ξ ¡ 0. So we get the upper bound

1�expp�nc1q
1�expp�nc1q

exppnξq
¸

mPrMts

¸
k,k̂PK
k�k̂

¸
ynPYn

¸
xnPT nXt

Pbn
Ỹs|X̃

pyn|xnq

� Pbn
Xt|Ut

pxn|utk,mqQt1g�1pk̂qpy
n, pm, tqq. (4.18)

We now define for yn P Yn, t P rT s and m P rMts the mapping g such that gpyn, pm, tqq �
k (for k P K) satisfies

Iputm,k ^ ynq � max
kPK

Iputm,k ^ ynq.
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So using (4.12) we can upper bound (4.18) by

1�expp�nc1q
p1�expp�nc1qq2

exppnξq 1
Mt

¸
mPrMts

1
K

¸
kPK

¸
xnPXn

Pbn
Ỹs|X̃

pDtk,m|xnqPbn
Xt|Ut

pxn|utk,mq, (4.19)

where

Dtk,m �
¤

qPK,q�k
tyn : Ipyn ^ utk,mq ¤ Ipyn ^ utq,mqu.

This equals

1�expp�nc1q
p1�expp�nc1qq2

exppnξq 1
Mt

¸
mPrMts

1
K

¸
kPK

Pbn
Ỹs|Ut

pDtk,m|utk,mq (4.20)

From our choice of R we can upper bound this expression for all s P S and t P rT s by

1�expp�nc1q
p1�expp�nc1qq2

exppnξq expp�nc2q � expp�nc3q

for a c3 ¡ 0, n large enough and an appropriate choice of ξ. So¸
tPrT s

PrpK � K̂s|X̃
n P T nXtqPrpX̃n P T nXtq

¤ expp�nc3q
¸
tPrT s

PrpX̃n P T nXtq ¤ expp�nc3q.

Thus with (4.16) and [26, Lemma 2.12] overall the error probability goes to 0 expo-
nentially with respect to n. Now we consider the secrecy requirement. For k P K and
pm, tq PM� rT s such that m P rMts consider

PrpK � k, M̄ � pm, tqq

�
¸
t̄PrT s

PrpK � k, M̄ � pm, tq|X̃n P T nXt̄qPrpX̃n P T nXt̄q

� PrpK � k, M̄ � pm, tq|X̃n P X nz
¤
t̄PrT s

T nXt̄qPrpX̃n P X nz
¤
t̄PrT s

T nXt̄q

� PrpK � k, M̄ � pm, tq|X̃n P T nXtqPrpX̃n P T nXtq �
1

K
°
tPrT sMt

PrpX̃n P X nz
¤
t̄PrT s

T nXt̄q

99



Chapter 4 – SK Generation with Constrained Public Communication Rate

where we use the properties of F pk, pm, tq|xnq for the last step. We have

PrpK � k, M̄ � pm, tq|X̃n P T nXtq

�
¸

xnPT nXt

1
|T nXt |

PrpK � k, M̄ � pm, tq|X̃n � xnq

�
¸

xnPT nXt

1
|T nXt |

PrpUn � utk,m|X̃
n � xnq �

¸
xnPT nXt

1
|T nXt |

1
Lt

PrpUn � u�|X̃n � xnq.

The first summand equals¸
xnPT nXt

PrpX̃n � xn|X̃n P T nXtqPrpUn � utk,m|X̃
n � xn, X̃n P T nXtq

�
¸

xnPT nXt

PrpX̃n � xn|Un � utk,m, X̃
n P T nXtqPrpUn � utk,m|X̃

n P T nXtq � Qt.

For the second summand we have

1
Lt

¸
xnPT nXt

PrpUn � u�|X̃n P T nXtqPrpX̃n � xn|Un � u�, X̃n P T nXtq.

As ¸
uPJtYtu�u

PrpUn � u|X̃n � xnq � 1

we have

PrpUn � u�|X̃n P T nXtq � 1� LtQt.

So we have

PrpK � k, M̄ � pm, tq|X̃n P T nXtq � Qt �
1
Lt
�Qt �

1
Lt
. (4.21)

Thus

PrpK � k, M̄ � pm, tqq � 1
Lt

PrpX̃n P T nXtq �
1

K
°
tPrT sMt

PrpX̃n P X nz
¤
t̄PrT s

T nXt̄q

and consequently

PrpM̄ � pm, tqq � 1
Mt

PrpX̃n P T nXtq �
1°

tPrT sMt
PrpX̃n P X nz

¤
t̄PrT s

T nXt̄q
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which implies

PrpK � k|M̄ � pm, tqq �

1
Lt

PrpX̃n P T nXtq �
1

K
°
tPrT sMt

PrpX̃n P X nz
�
t̄PrT s T nXt̄q

1
Mt

PrpX̃n P T nXtq �
1°

tPrT sMt
PrpX̃n P X nz

�
t̄PrT s T nXt̄q

� 1
K .

So HpK|M̄q � log |K|.
Finally we consider the cardinalities of K and M̄. From our choice of PUtXt we know

that for all t P rT s it holds that

}PUtXt � PŨX̃}1 ¤ pδ1 � δ2q|U ||X |.

This also implies for all t P rT s and all s P S that

}PUtỸs � PŨ Ỹs}1 ¤ pδ1 � δ2q|U ||X |.

Consequently [26, Lemma 2.7] implies for δ1 and δ2 small enough that

max
tPrT s

IpUt ^Xtq � inf
sPS

IpUt ^ Ỹsq ¤ IpŨ ^ X̃q � inf
sPS

IpŨ ^ Ỹsq � τ

and

min
tPrT s

inf
sPS

IpUt ^ Ỹsq ¥ inf
sPS

IpŨ ^ Ỹsq � τ

for a τ ¡ 0 arbitrarily small. So from our choice of R we know

1
n log |K| ¥ inf

sPS
IpŨ ^ Ỹsq � τ

and

1
n log |M̄| ¤ IpŨ ^ X̃q � inf

sPS
IpŨ ^ Ỹsq � τ � |X |

n logpn� 1q,

where the last summand is an upper bound for 1
n log T .

We still have to consider the case HpŨ |X̃q � 0. It holds that IpŨ ^ X̃q � HpŨq. For
the protocol constructed in the proof of Theorem 3.3 we know

1
n log |M| ¤ HpŨq � inf

sPS
IpŨ ^ Ỹsq � δ.

This proves the result for the case HpŨ |X̃q � 0.

Thus Theorem 4.1 is proved. Note that we actually have shown that the error pro-
bability decreases exponentially with n. For the achievability part of Theorem 4.2 we
adjust the analysis of the error probability in the achievability proof of Theorem 4.1.
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Lemma 4.5. Lemma 4.4 holds true even when we replace (4.10) by¸
m̄PM̄

PM̄ pm̄q sup
sPS

PrpK � K̂s|M̄ � m̄q ¤ δ.

Proof. In order to prove this result we rewrite the analysis of the error probability
starting from (4.16) and implement the necessary adjustments. We have¸

pm,tqPM̄

PM̄ pm, tq sup
sPS

PrpK � K̂s|M̄ � pm, tqq

�
¸

pm,tqPM̄

PM̄ pm, tqpsup
sPS

¸
t̄PrT s

PrpX̃n P T nXt̄ |M̄ � pm, tqq

� PrpK � K̂s|M̄ � pm, tq, X̃n P T nXt̄q

� PrpK � K̂s|M̄ � pm, tq, X̃n R T n
X̃,δ1

q

� PrpX̃n R T n
X̃,δ1

|M̄ � pm, tqqq

which can be upper bounded by¸
pm,tqPM̄

PM̄ pm, tqpsup
sPS

PrpK � K̂s|M̄ � pm, tq, X̃n P T nXtq

� PrpX̃n P T nXt |M̄ � pm, tqq

� sup
sPS

PrpK � K̂s|M̄ � pm, tq, X̃n R T n
X̃,δ1

q

� PrpX̃n R T n
X̃,δ1

|M̄ � pm, tqqq

which is smaller or equal than¸
pm,tqPM̄

PM̄ pm, tqpsup
sPS

PrpK � K̂s|M̄ � pm, tq, X̃n P T nXtq

� PrpX̃n P T nXt |M̄ � pm, tqq

� PrpX̃n R T n
X̃,δ1

|M̄ � pm, tqqq (4.22)

�
¸

pm,tqPM̄

PM̄ pm, tq sup
sPS

PrpK � K̂s|M̄ � pm, tq, X̃n P T nXtq

� PrpX̃n P T nXt |M̄ � pm, tqq

� PrpX̃n R T n
X̃,δ1

q. (4.23)
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Thus we now consider PrpK � K̂s|M̄ � pm, tq, X̃n P T nXtq for pm, tq P M̄ and s P S.

PrpK � K̂s|M̄ � pm, tq, X̃n P T nXtq �
PrpK�K̂s^M̄�pm,tq|X̃nPT nXt q

PrpM̄�pm,tq|X̃nPT nXt q

�MtPrpK � K̂s ^ M̄ � pm, tq|X̃n P T nXtq

which follows from (4.21). This expression equals

Mt

¸
k,k̂PK
k�k̂

¸
ynPYn

¸
xnPT nXt

1
|T nXt |

Pbn
Ỹs|X̃

pyn|xnqF pk, pm, tq|xnq1g�1pk̂qpy
n, pm, tqq.

Similar to the corresponding steps in the proof of Lemma 4.4, with our choice of
F pk, pm, tq|xnq this equals

Mt

¸
k,k̂PK
k�k̂

¸
ynPYn

¸
xnPT nXt

1
|T nXt |

Pbn
Ỹs|X̃

pyn|xnqPrpUn � utk,m|X̃
n � xnq1g�1pk̂qpy

n, pm, tqq

�Mt

¸
k,k̂PK
k�k̂

¸
ynPYn

¸
xnPT nXt

1
|T nXt |

Pbn
Ỹs|X̃

pyn|xnqPrpUn � u�|X̃n � xnq 1
Lt
1g�1pk̂qpy

n, pm, tqq.

The second summand can be upper bounded by

2 expp�nc1q
1�expp�nc1q

Mt

¸
k,k̂PK
k�k̂

¸
ynPYn

¸
xnPT nXt

1
|T nXt |

Pbn
Ỹs|X̃

pyn|xnq 1
Lt
1g�1pk̂qpy

n, pm, tqq

¤ 2 expp�nc1q
1�expp�nc1q

Mt

¸
k̂PK

¸
ynPYn

¸
xnPT nXt

1
|T nXt |

Pbn
Ỹs|X̃

pyn|xnq 1
Mt
1g�1pk̂qpy

n, pm, tqq

� 2 expp�nc1q
1�expp�nc1q

Mt

¸
ynPYn

¸
xnPT nXt

1
|T nXt |

Pbn
Ỹs|X̃

pyn|xnq 1
Mt

� 2 expp�nc1q
1�expp�nc1q

.

The first summand equals

Mt

¸
k,k̂PK
k�k̂

¸
ynPYn

¸
xnPT nXt

Pbn
Ỹs|X̃

pyn|xnq

� PrpUn � utk,m, X̃
n � xn|X̃n P T nXtq1g�1pk̂qpy

n, pm, tqq

�Mt

¸
k,k̂PK
k�k̂

¸
ynPYn

¸
xnPT nXt

Pbn
Ỹs|X̃

pyn|xnqPrpUn � utk,m|X̃
n P T nXtq1g�1pk̂qpy

n, pm, tqq

� PrpX̃n � xn|Un � utk,m, X̃
n P T nXtq
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Using (4.15) and (4.13) this can be upper bounded by

1�expp�nc1q
1�expp�nc1q

Mt

¸
k,k̂PK
k�k̂

¸
ynPYn

¸
xnPT nXt

Pbn
Ỹs|X̃

pyn|xnq 1
|T n
Xt|Ut

putk,mq|
Qt1g�1pk̂qpy

n, pm, tqq.

With (4.17) we get the upper bound

1�expp�nc1q
1�expp�nc1q

exppnξqMt

¸
k,k̂PK
k�k̂

¸
ynPYn

¸
xnPT nXt

Pbn
Ỹs|X̃

pyn|xnq

� Pbn
Xt|Ut

pxn|utk,mqQt1g�1pk̂qpy
n, pm, tqq. (4.24)

We use the same definition for g as in the proof of Lemma 4.4. So together with (4.12)
we can upper bound (4.24) by

1�expp�nc1q
p1�expp�nc1qq2

exppnξq 1
Mt
Mt

1
K

¸
kPK

¸
xnPXn

Pbn
Ỹs|X̃

pDtk,m|xnqPbn
Xt|Ut

pxn|utk,mq.

This equals

1�expp�nc1q
p1�expp�nc1qq2

exppnξq 1
K

¸
kPK

Pbn
Ỹs|Ut

pDtk,m|utk,mq

Again, from our choice of R we can upper bound this expression for all s P S and t P rT s
by

1�expp�nc1q
p1�expp�nc1qq2

exppnξq expp�nc2q � expp�nc3q

for a c3 ¡ 0, n large enough and an appropriate choice of ξ. We thus have¸
pm,tqPM̄

PM̄ pm, tq sup
sPS

PrpK � K̂s|M̄ � pm, tq, X̃n P TXtqPrpX̃n P T nXt |M̄ � pm, tqq

¤ expp�nc3q
¸

pm,tqPM̄

PrpX̃n P T nXtqPrpM̄ � pm, tq|X̃n P T nXtq,

which equals

expp�nc3q
¸
tPrT s

PrpX̃n P T nXtq
¸

mPrMts

PrpM̄ � pm, tq|X̃n P T nXtq

¤ expp�nc3q
¸
tPrT s

PrpX̃n P T nXtq ¤ expp�nc3q.

Thus with (4.23) and [26, Lemma 2.12] altogether the error probability goes to 0 expo-
nentially with respect to n.
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Encoder Decoder

Xn Y n

K K̂

Source

M

Eavesdropper

Jammer

sn

Figure 4.2: SK generation from a jammed source. The jammer does not know the helper
message and can choose an attack strategy sn P Sn.

4.3 Results for the jammed source

As described in Chapter 3, besides the compound DMMS, there is another possibility
of modeling jammers in our setting for SK generation. We again consider RVs X and
tYsusPS , but now we assume that |S|   8. The jammer can choose a sequence sn P Sn
(which we call an attack strategy) and the source puts out RVs Xn � pX1, � � � , Xnq
observed at terminal X and Y n

sn � pYs1,1, � � � , Ysn,nq observed at terminal Y and we
assume PXnY nsn

�
Ân

i�1 PXYsi . In contrast to the compound DMMS here the jammer
can choose the source statistics for each pair of symbols read from the source. For the
compound DMMS the distribution is chosen once, i.e., it is fixed for the whole block
length n. Obviously a jammer who can choose the source distribution for each pair of
symbols read from the source is more powerful.

We also note that the set of conditional distributions tPYs|XusPS determines an AVC.
Again we allow for randomized encoders, i.e., the SK K and the helper message M

are generated from Xn which is described by a stochastic matrix F P PpK �M|X nq.
For the reconstruction of the SK we now have to consider a set of RVs tK̂snusnPSn that
represent the reconstruction for each possible attack strategy sn P Sn. The decoder
again is assumed to be a deterministic function g : Yn �MÑ K, i.e., K̂sn � gpY n

sn ,Mq
for all sn P Sn. As before the tuple pF, gq is a SK generation protocol.

It follows that for all sn P Sn the joint distribution of K, M and K̂sn is

PKMK̂sn
pk,m, k̂q �

¸
xnPXn

ynPYn

n¹
i�1

PXYsi pxi, yiqF pk,m|x
nq1g�1pk̂qppy

n,mqq

for all pk,m, k̂q P K �M�K.
At first we assume that the jammer does not read the helper message from the public

database. The setting is depicted in Figure 4.2.
Again we determine desirable properties for SK generation protocols in this setting.

Definition 4.2. Let L ¥ 0. We call R ¥ 0 an achievable AVC secret key rate with rate
constraint L if for any ε ¡ 0 and sufficiently large n there is a SK generation protocol
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such that

max
snPSn

PrpK � K̂snq ¤ ε

HpK|Mq � log |K|
1
n log |K| ¥ R� ε
1
n log |M| ¤ L� ε.

The AVC SK capacity with rate constraint L is the largest achievable compound secret
key rate with rate constraint L and is denoted by CAV CSK pLq.

CAV CSK pLq can be characterized as follows.

Theorem 4.6. It holds that

CAV CSK pLq � max
U

min
WPconvptPYs|U usPSq

IpPU ,W q

where the maximization is over all RVs U such that U �X � Ys and

IpU ^Xq � min
WPconvptPYs|U usPSq

IpPU ,W q ¤ L

for all s P S .

Proof. The converse is a consequence of Theorem 3.15. It follows in the same way as
the converse part of Theorem 4.1 follows from Theorem 3.4.

Achievability follows from Lemma 4.10 below.

As mentioned before, tPYs|XusPS corresponds to an AVC. When considering this AVC
we assume that, given the block length n, the probability of receiving yn P Yn at the
channel output is given by

n¹
i�1

PYsi |Xpyi|xiq

where xn P X n is the channel input and sn P Sn is a state sequence. In [31] list decoding
with fixed list size L is considered for communication over an AVC (see also [19]). This
means the receiver does not necessarily try to decode the channel output. Instead the
receiver tries to construct a list of size at most L that should contain the message sent
over the channel. L is independent of n.

As described in [31] the best possible transmission rate for reliable communication
(with respect to the average probability of error criterion) over an AVC with list decoding
and a given list size strongly depends on the symmetrizability of the AVC.
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Figure 4.3: SK generation from a jammed source. The jammer chooses an attack strategy
sn P Sn based on the helper message M .

Definition 4.3 ([31]). For m̂ ¥ 1 the AVC corresponding to tWsusPS , Ws P PpY|X q is
m̂- symmetrizable if there is a stochastic matrix U P PpS|X m̂q such that¸

sPS
Wspy|xqUps|x1, � � � , xm̂q

is invariant over all permutations of x, x1, � � � , xm̂ for all py, x, x1, � � � , xm̂q P Y � X m̂�1

[31, Definition 2]. We also say¸
sPS

Wspy|xqUps|x1, � � � , xm̂q

is symmetric in x, x1, � � � , xm̂.

All AVCs are said to be 0-symmetrizable. The symmetrizability of the AVC denoted
by M̂ is the largest integer m̂ such that the AVC is m̂-symmetrizable. If no such m̂
exists, we take M̂ � 8 [31, Definition 3].

In the following we make use of the notion of symmetrizability for our model of SK
generation from a jammed source.

As done for the compound source we now assume that the jammer has access to the
helper message from the public database and thus can choose the attack strategy sn

based on the helper message. The setting is depicted in Figure 4.3.

We also generalize the SK generation protocols as we now consider list decoding with
fixed list size L̂ at terminal Y. Again we allow for randomized encoders F P PpK �
M|X nq. Instead of the reconstruction of the SK we now consider a set of RVs tK̂L̂

snusnPSn

distributed on the set of all subsets of K with cardinality at most L̂, which we denote

by P̂L̂. K̂L̂
sn represents the list of size at most L̂ generated at terminal Y for attack

strategy sn P Sn. The decoder is a deterministic function gL̂ : Yn �M Ñ P̂L̂, i.e.,

K̂L̂
sn � gL̂pY

n
sn ,Mq for all sn P Sn. The tuple pF, gL̂q is a SK generation protocol.
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So for all sn P Sn the joint distribution of K, M and K̂L̂
sn is

P
KMK̂L̂

sn
pk,m, k̂q �

¸
xnPXn

ynPYn

n¹
i�1

PXYsi pxi, yiqF pk,m|x
nq1g�1

L̂
pk̂qppy

n,mqq

for all pk,m, k̂q P K �M� P̂L̂.
The following definition again determines the properties we want the SK generation

protocols to have.

Definition 4.4. Let L ¥ 0 and L̂ ¡ 0. We call R ¥ 0 an achievable AVC SK rate with
rate constraint L and list decoding with list size L̂ if for any ε ¡ 0 and sufficiently large
n there is a SK generation protocol such that¸

mPM
PM pmq max

snPSn
PrpK R K̂L̂

sn |M � mq ¤ ε

HpK|Mq � log |K|
1
n log |K|

L̂
¥ R� ε

1
n log |M| ¤ L� ε.

The AVC SK capacity with rate constraint L and list decoding with list size L̂ is the
largest achievable AVC SK rate with rate constraint L and list decoding with list size L̂

and is denoted by CAV C,L̂SK pLq.

Our next result is the following lower bound on CAV C,L̂SK pLq.

Theorem 4.7. Denote the symmetrizability of the AVC corresponding to tPYs|XusPS

by M̂ and assume M̂   8. Let L̂ � M̂ � 1. It holds that CAV C,L̂SK pLq ¥ CAV CSK pLq.

Corollary 4.8. It holds that CAV C,1SK pLq � CAV CSK pLq if the AVC corresponding to

tPYs|XusPS is not symmetrizable (i.e., has symmetrizability 0), otherwise CAV C,1SK pLq � 0.

Proof. Theorem 4.7 follows from Lemma 4.13 below. The achievability part of the
corollary is a direct consequence of Theorem 4.7.

The converse part of the corollary follows from the converse part of Theorem 3.7 in
the same way as the converse part of Theorem 4.1 follows from Theorem 3.4.

Finally we consider the setting depicted in Figure 4.4. Here we do not consider list
decoding (or equivalently, only lists of size 1) i.e., the SK is reconstructed at terminal Y.
We still assume the jammer knows the helper message, but now there is CR available at
both terminals. We assume the jammer does not know the CR while the eavesdropper
knows the CR. This means both terminals have access to a RV Γ which we assume is
uniformly distributed on a set G and independent of Xn and Y n

sn . Again we allow for
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Encoder Decoder

Xn Y n

K K̂

Source

M

Eavesdropper

CR

Γ

Γ Γ

Jammer

sn

Figure 4.4: SK generation from a jammed source. The jammer chooses an attack strategy
sn P Sn based on the helper message M . CR not known to the jammer is
available at terminal X and Y and known to the eavesdropper.

randomized encoders, i.e., the SK K and the helper message M are generated from
Xn and Γ which is described by a stochastic matrix F P PpK �M|X n � Gq. For the
reconstruction of the SK we again consider a set of RVs tK̂snusnPSn . The decoder is
assumed to be a deterministic function g : Yn �M � G Ñ K, i.e., K̂sn � gpY n

sn ,M,Γq
for all sn P Sn. The tuple pF, gq is a SK generation protocol.

It follows that for all sn P Sn the joint distribution of K, M , K̂sn and Γ is

PKMK̂snΓpk,m, k̂, γq �
¸

xnPXn

ynPYn

n¹
i�1

PXYsi pxi, yiqF pk,m|x
n, γq1g�1pk̂qppy

n,m, γqqPΓpγq

for all pk,m, k̂, γq P K �M�K � G.

We want to consider the case where the amount of CR available is small. So the SK
generation protocols should have the properties specified by the following definition.

Definition 4.5. Let L ¥ 0. We call R ¥ 0 an achievable CR assisted AVC secret
key rate with rate constraint L if for any ε ¡ 0 and sufficiently large n there is a SK
generation protocol such that¸

mPM
PM pmq max

snPSn
PrpK R K̂sn |M � mq ¤ ε

HpK|MΓq � log |K|
1
n log |K| ¥ R� ε
1
n log |M| ¤ L� ε
1
n log |G| ¤ ε.

The CR assisted AVC SK capacity with rate constraint L is the largest achievable CR
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assisted AVC secret key rate with rate constraint L and is denoted by CAV C,CRSK pLq.

The following theorem characterizes CAV C,CRSK pLq.

Theorem 4.9. It holds that CAV C,CRSK pLq � CAV CSK pLq.

Proof. Achievability follows from Lemma 4.15. When the helper message is not known
to the jammer, the CR can be made available to both terminals by generating Γ at
terminal X and appending it to the helper message. As 1

n log |G| ¤ ε this does not
increase the rate of the helper message. This argumentation implies the converse, as
CAV CSK pLq is the capacity where the jammer does not know the helper message.

Note that the achievability proof provides an application for identification codes. One
could expect that it is possible to prove the achievability part of Theorem 4.9 using
Theorem 4.2 and Ahlswede robustification with elimination of correlation. This does
not work as expected because the union bound as used e.g. to get from (4.30) to (4.31)
does not work for this case. So instead, motivated by [34] and [42], we use list decoding
with a constrained list size at terminal Y and an identification code to find out which of
the keys in the list is the actual key generated at terminal X . Additionally we encrypt
the part of the helper message corresponding to the identification code with two keys.
One key is unknown to the eavesdropper (this key is generated using some CR), the
other key is unknown to the jammer (for this key we can directly use some CR).

Assume that the amount of CR is arbitrarily large. Theorem 3.15 implies that this
does not increase the corresponding capacity compared to CAV C,CRSK pLq, i.e. the case
with small amount of CR.

4.4 Achievability proofs for the jammed source

Lemma 4.10, which proves the achievability part of Theorem 4.6, is proved with the
Ahlswede robustification technique.

Lemma 4.10. Consider the RVs X̃ and tỸsusPS , |S|   8 with PX̃Ỹs P PpX � Yq
for all s P S and a RV Ũ such that Ũ � X̃ � Ỹs for all s P S, PŨ P PpUq. Let
δ ¡ 0. For all n large enough there is a stochastic matrix FCR P PpK � M̄|X nq
and a mapping gCR : Yn � M̄ Ñ K such that for RVs K, M̄ and tK̂snusnPSn with
PKM̄K̂sn

P PpK � M̄�Kq for all sn P Sn defined by

PKM̄K̂sn
pk, m̄, k̂q �

¸
xnPXn

ynPYn

n¹
i�1

PX̃Ỹsi
pxi, yiqFCRpk, m̄|x

nq1g�1
CRpk̂q

ppyn, m̄qq
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for pk, m̄, k̂q P K � M̄�K it holds that

max
snPSn

PrpK � K̂snq ¤ δ

HpK|M̄q � log |K|
1
n log |K| ¥ min

WPconvptPỸs|Ũ usPSq
IpPŨ ,W q � δ

1
n log |M̄| ¤ IpŨ ^ X̃q � min

WPconvptPỸs|Ũ usPSq
IpPŨ ,W q � δ.

Proof. Given δ ¡ 0 there is a c ¡ 0 such that for all n large enough we can find
F P PpK �M|X nq and g : Yn �MÑ K such that for RVs K 1 and M 1 with

PK1M 1pk,mq �
¸

xnPXn

Pbn
X̃
pxnqF pk,m|xnq

for all pk,mq P K �M it holds that

max
WPconvptPỸs|X̃usPSq

¸
xn,yn

¸
k,m

Pbn
X̃
pxnqWbnpyn|xnq

� F pk,m|xnq1g�1pkqppy
n,mqq ¤ expp�ncq (4.25)

HpK 1|M 1q � log |K| (4.26)

1
n log |K| ¥ inf

tPT
IpŨ ^ Ytq � δ (4.27)

1
n log |M| ¤ IpŨ ^ X̃q � inf

tPT
IpŨ ^ Ytq � δ (4.28)

where the RVs tYtutPT are such that tPYt|X̃utPT � convptPỸs|X̃usPSq and Ũ � X̃ � Yt for
all t P T . This follows from the achievability proof of Lemma 4.4.

Define h : Sn Ñ r0, 1s such that for all sn P Sn

hpsnq �
¸

xnPXn

ynPYn

¸
k,mP
K�M

n¹
i�1

PX̃Ỹsi
pxi, yiqF pk,m|x

nq1g�1pkqppy
n,mqq.

It holds for all P P Ppn,Sq that¸
snPSn

hpsnqPbnpsnq

�
¸

snPSn
Pbnpsnq

¸
xnPXn

ynPYn

¸
k,mPK�M

n¹
i�1

PX̃Ỹsi
pxi, yiqF pk,m|x

nq1g�1pkqppy
n,mqq

�
¸

xnPXn

ynPYn

¸
k,mPK�M

¸
snPSn

n¹
i�1

PX̃Ỹsi
pxi, yiqP psiqF pk,m|x

nq1g�1pkqppy
n,mqq
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which equals

¸
xnPXn

ynPYn

¸
k,mPK�M

n¹
i�1

¸
sPS

PX̃Ỹsi
pxi, yiqP psqF pk,m|x

nq1g�1pkqppy
n,mqq

�
¸

xnPXn

ynPYn

¸
k,mPK�M

Pbn
X̃
pxnqWbnpyn|xnqF pk,m|xnq1g�1pkqppy

n,mqq

with W P convptPỸs|X̃usPSq defined appropriately. So from our choice of F and g we
know that ¸

snPSn
hpsnqPbnpsnq ¡ 1� expp�ncq,

cf. (4.25) According to [3, Theorem RT] this implies for all sn P Sn

1
n!

¸
πPΠn

hpπsnq ¡ 1� expp�ncqpn� 1q|S|

where Πn is the set of all permutations on rns and we write for π P Πn πxn for
xπ�1p1q, � � � , xπ�1pnq, i.e. π is a bijection on X n. Now consider (equivalently to the
proof of [47, Lemma 5.11]) independent RVs P1, � � � , PN , N � rn1�ηs, η ¡ 0, each dis-
tributed uniformly on Πn. We want to show that there is a realization p1, � � � , pN such
that (for n large enough)

1
N

Ņ

i�1

hppis
nq ¥ 1� 3λ, (4.29)

λ ¡ 0, for all sn P Sn. For this purpose we show (similar to the proof of [47, Lemma 5.11])

Prp 1
N

Ņ

i�1

hpPis
nq ¥ 1� 3λ for all sn P Snq ¡ 0. (4.30)

As |Sn| grows exponentially with respect to n it is sufficient to show that

Prp 1
N

Ņ

i�1

hpPis
nq   1� 3λq

or equivalently

Prp 1
N

Ņ

i�1

p1� hpPis
nqq ¡ 3λq (4.31)

is superexponentially small for all sn P Sn. According to [47, Lemma 5.12] (4.31) is
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smaller than

expp�p3λ� eEp1� hpP1s
nqqqNq.

As for n large enough and sn P Sn

Ep1� hpP1s
nqq � 1� 1

n!

¸
πPΠn

hpπsnq   λ

the exponent is negative and as N � rn1�ηs this yields the superexponential bound we
need. We define for all π P Πn and all pk,m, xnq P K �M� X n

F πpk,m|xnq � F pk,m|πxnq

gπpyn,mq � gpπyn,mq.

We can write for all sn P Sn and π P Πn

hpπsnq �
¸

xnPXn

ynPYn

¸
k,mPK�M

n¹
i�1

PX̃Ỹs
π�1piq

pxi, yiqF pk,m|x
nq1g�1pkqppy

n,mqq

�
¸

xnPXn

ynPYn

¸
k,mPK�M

n¹
i�1

PX̃Ỹsi
pxπpiq, yπpiqqF pk,m|x

nq1g�1pkqppy
n,mqq.

As π is a bijection on X n and Yn respectively and we sum over all elements of these sets
this equals

¸
xnPXn

ynPYn

¸
k,mPK�M

n¹
i�1

PX̃Ỹsi
pxi, yiqF pk,m|πx

nq1g�1pkqppπy
n,mqq

�
¸

xnPXn

ynPYn

¸
k,mPK�M

n¹
i�1

PX̃Ỹsi
pxi, yiqF

πpk,m|xnq1pgπq�1pkqppy
n,mqq. (4.32)

Define the distribution Γ P PpΠnq such that for all π P Πn

Γpπq �
Ņ

i�1

1tpiupπq{N.

Define M̄ � M � supppΓq. We now define for all pk,m, pq P K �M � supppΓq and
xn P X n

FCRpk, pm, pq|x
nq � F ppk,m|xnqΓppq

gCRpy
n, pm, pqq � gppyn,mq.
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This means the permutation p is chosen randomly according to the distribution Γ at
terminal X . Then p is made available to terminal Y as a part of the helper message.
The encoder and decoder are chosen form a set of encoders and decoders according to
p.

From (4.29) and (4.32) it follows that PrpK � K̂snq ¤ 3λ for all sn P Sn. Now consider
for pk,m, pq P K � M̄

PKM̄ pk,m, pq �
¸

xnPXn

Pbn
X̃
pxnqF ppk,m|xnqΓppq

�
¸

xnPXn

Pbn
X̃
pxnqF pk,m|xnqΓppq

which follows as p is a bijection on X n and we sum over all xn P X n. So we get

PK|M̄ pk|m, pq �
°
xnPXn P

bn

X̃
pxnqF pk,m|xnqΓppq

°
kPK

°
xnPXn P

bn

X̃
pxnqF pk,m|xnqΓppq

�
°
xnPXn P

bn

X̃
pxnqF pk,m|xnq

°
kPK

°
xnPXn P

bn

X̃
pxnqF pk,m|xnq

� 1
|K|

where we use the corresponding property (4.26) of F for the last step.

Consider t P T . There is a P P PpSq such that for all pu, yq P U � Y

PYt|Ũ py|uq �
¸
xPX

PYt|X̃py|xqPX̃|Ũ px|uq

�
¸
xPX

p
¸
sPS

P psqPỸs|X̃py|xqqPX̃|Ũ px|uq

�
¸
sPS

P psq
¸
xPX

PỸs|X̃py|xqPX̃|Ũ px|uq

�
¸
sPS

P psqPỸs|Ũ py|uq,

where we use Ũ � X̃ � Yt for all t P T and Ũ � X̃ � Ỹs for all s P S. So tPYt|ŨutPT �

convptPỸs|ŨusPSq. Thus it follows that

inf
tPT

IpŨ ^ Ytq � inf
tPT

IpPŨ , PYt|Ũ q ¥ inf
WPconvptPỸs|Ũ usPSq

IpPŨ ,W q.

Accordingly we have with (4.27) and (4.28)

1
n log |K| ¥ inf

WPconvptPỸs|Ũ usPSq
IpPŨ ,W q � δ

and

1
n log |M| ¤ IpŨ ^ X̃q � inf

WPconvptPỸs|Ũ usPSq
IpPŨ ,W q � δ.
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The bound on 1
n log |M̄| � 1

n log |M| � 1
n log |supppΓq| follows for n large enough as

1
n log |supppΓq| ¤ 1

n logN ¤ 1
np2� ηq log n.

The infimum can be replaced by a minimum as convptPỸs|ŨusPSq is compact and IpPŨ ,W q
is continuous in W .

We have thus shown the achievability part of Theorem 4.6. Now we turn to the achie-
vability proof of Theorem 4.7. For this purpose we prove Lemma 4.13 below. We need
the following auxiliary results.

Lemma 4.11. Consider RVs X, tYsusPS , U and U 1 such that

}PUXYs � PU 1XYs}1 ¤ ε

for ε ¡ 0 and all s P S and minuPU PU puq ¡ 0, minuPU PU 1puq ¡ 0. It holds that

| min
WPW

IpPU ,W q � min
WPW 1

IpPU 1 ,W q| ¤ δpεq

with δpεq Ñ 0 for ε Ñ 0 and δpεq ¡ 0, where W � convptPYs|UusPSq and W 1 �
convptPYs|U 1usPSq.

Proof. Let W PW, so there is a P P PpSq such that for all py, uq P Y � U it holds that

W py|uq �
¸
sPS

P psqPYs|U py|uq.

We have

W py|uq �
¸
sPS

PYsU py,uq
PU puq

¤
¸
sPS

PYsU 1 py,uq�ε|X |

PU 1 puq�ε|X ||Y|

�
¸
sPS

P psqpPYs|U 1py|uq
PU 1 puq

PU 1 puq�ε|X ||Y|q �
ε|X |

PU 1 puq�ε|X ||Y|

¤
¸
sPS

P psqPYs|U 1py|uq � δ1pεq,

where we define δ1pεq ¡ 0 appropriately and it is clear that δ1pεq Ñ 0 for εÑ 0. In the
same way we can show

W py|uq ¥
¸
sPS

P psqPYs|U 1py|uq � δ1pεq.

So for all W PW there is a W 1 PW 1 such that

|W py|uq �W 1py|uq| ¤ δ1pεq
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for all py, uq P Y � U . From [26, Lemma 2.7] we thus get

min
WPW

IpPU ,W q ¥ IpPU ,W
1q � δ2pεq ¥ min

WPW 1
IpPU ,W q � δ2pεq ¥ min

WPW 1
IpPU 1 ,W q � δpεq,

where we define δ2pεq ¡ 0 appropriately and it is clear that δ2pεq Ñ 0 for ε Ñ 0. The
last step follows as minWPW 1 IpPU ,W q is continuous in PU , as discussed in the context
of [24, Lemma 5]. Using similar steps we can show

min
WPW

IpPU ,W q ¤ min
WPW 1

IpPU 1 ,W q � δpεq.

Lemma 4.12. Let U , X be RVs with PUX P Ppn̄,U � X q for some n̄ P N such that
HpU |Xq ¡ 0 and minuPU PU puq ¥ β ¡ 0. Choose a δ ¡ 0 such that δ   HpU |Xq.
Additionally consider RVs tYsusPS , |S|   8, with Ys �X � U for all s P S. Denote the
symmetrizability of tPYs|UusPS by M̂ and assume M̂   8. Let L̂ � M̂ � 1. Assume PU
is such that minWPconvptPYs|U usPSq

IpPU ,W q ¡ 0. Choose real numbers τ , R satisfying
τ ¡ 0 and

min
WPconvptPYs|U usPSq

IpPU ,W q � τ   R   min
WPconvptPYs|U usPSq

IpPU ,W q � 2τ{3.

For any n P N, define integers K, L, M satisfying

L � KM � expprnpIpU ^Xq � δqsq

K � expprnRsqL̂.

Then there exist constants c1, c2 ¡ 0 such that for every sufficiently large multiple n of
n̄ there is a set J � tuk,mupk,mqPrKs�rMs � T nU satisfying

p1� expp�nc1qq
|T n
U |X

pxnq|

|T nU |
L   |J X T nU |Xpx

nq|   p1� expp�nc1qq
|T n
U |X

pxnq|

|T nU |
L (4.33)

for all xn P T nX . Additionally we can choose sets Lpyn,mq � rKs with |Lpyn,mq| ¤ L̂
for all yn P Yn and m P rM s such that for all m P rM s we have

ēmps
nq � 1

K

¸
kPrKs

¸
yn : kRLpyn,mq

n¹
i�1

PYsi |U pyi|puk,mqiq ¤ expp�nc2q, (4.34)

for all sn P Sn.

The first part of the proof is based on [31, Proof of Lemma 1]. There the probabilistic
method is used. Sequences are chosen randomly from a set with replacement according
to a uniform distribution. In contrast we choose the sequences without replacement. We
also prove additional properties compared to [31, Proof of Lemma 1]. The second part
of the proof essentially is [31, Proof of Lemma 3].
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Proof. We randomly choose u1, � � � , uL from T nU without replacement according to a
uniform distribution. Denote the corresponding RVs by U1, � � � , UL. Consider xn P T nX
and the RV Zxn �

°
lPrLs Z

l
xn with Z lxn � 1T n

U |X
pxnqpUlq for l P rLs. We can show as in

the proof of Lemma 4.3 that for xn P T nX and n large enough

Prp|Zxn �
|T n
U |X

pxnq|

|T nU |
L| ¥ ζ

|T n
U |X

pxnq|

|T nU |
Lq ¤ 2e� exppnδ{4q{2

where ζ � expp�nc1q with c1 �
δ
4 .

Now consider the RVs S and Ū L̂ � Ū1 � � � ŪL̂ such that P
SŪ L̂U

P Ppn,S � U L̂ � Uq
and PŪk � PU for all k P rL̂s. Let psn, unq P T nSU . Similarly to [31, Proof of Lemma 1],
for each m P rM s we first estimate the size of the sets

tk : pun, Unk,m, s
nq P T nUŪlSu

for 1 ¤ l ¤ L̂. As in [31, Proof of Lemma 1], define for all 1 ¤ l ¤ L̂ and pk,mq P
rKs � rM s

f
pPUŪlS

,un,snq

k,m pU1,m, � � � , Uk,mq � 1T n
Ūl|US

pun,snqpUk,mq.

Using the steps from (4.5) to (4.7) but replacing T n
Ū |U

punq by T n
Ūl|US

pun, snq we can upper

bound¸
uk,mPT nU

f
pPUŪlS

,un,snq

k,m pu1,m, � � � , uk,mqPUk,m|U1,m,��� ,Uk�1,m
puk,m|u1,m, � � � , uk�1,mq

by

|T n
Ūl|US

pun,snq|

|T nU |�KM
¤ expp�nIpŪl^USqqpn�1q|U|

1�2L̂ exppnp�HpU |Xq�δqqpn�1q|U|
.

So we can apply Lemma [24, Lemma A 1] with

a � expp�nIpŪl^USqqpn�1q|U|

1�2L̂ exppnp�HpU |Xq�δqqpn�1q|U|
.

We thus get for all 1 ¤ l ¤ L̂, m P rM s and

Zm,lpPUŪlS
,un,snq �

¸
kPrKs

f
pPUŪlS

,un,snq

k,m pU1,m, � � � , Uk,mq

that

PrpZm,lpPUŪlS
,un,snq ¡ Ktq ¤ expp�Kpt� a log eqq. (4.35)
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Choose an ε satisfying 0   ε   R and

t � 1
K exppnp|R� IpŪl ^ USq|� � εqq.

So Kpt� a log eq ¥ exppnεq{2 if n ¥ n1pε, L̂q, where we define n1pε, L̂q as

mintn : 0   2pn�1q|U|L̂ log e

1�2L̂ exppnp�HpU |Xq�δqqpn�1q|U|
  1

2 exppnεqu.

If T n
Ūl|US

pun, snq is replaced by T n
Ūl|S

psnq then analogously we get for

f
pPŪlS

,snq

k,m pU1,m, � � � , Uk,mq � 1TŪl|Sps
nqpUk,mq

and Zm,lpPŪlS
,snq �

°
kPrKs f

pPŪlS
,snq

k,m pU1,m, � � � , Uk,mq

PrpZm,lpPŪlS
,snq ¡ exppnp|R� IpŪl ^ Sq|� � εqqq ¤ expp�1

2 exppnεqq

for n ¡ n1pε, L̂q. Equivalently, as done in [31, Proof of Lemma 1], if T n
Ūl|S

psnq is replaced

by T nU |Sps
nq and ε with ε

2 � logpL̂q{n we get for

f
pPUS ,s

nq
k,m pU1,m, � � � , Uk,mq � 1TU |SpsnqpUk,mq

and ZmpPUS ,snq �
°
kPrKs f

pPUS ,s
nq

k,m pU1,m, � � � , Uk,mq

PrpZmpPUS ,snq ¡ L̂ exppnp|R� IpU ^ Sq|� � ε{2qqq ¤ expp� L̂
2 exppnε{2qq

for n ¡ n1pε{2, 1q. If IpU ^ Sq ¥ ε then

|R� IpU ^ Sq|� � R�mintR, IpU ^ Squ ¤ R� ε

(as R ¥ ε). So

Prp 1
KZ

m
pPUS ,snq

¡ expp�nε{2qq   expp� L̂
2 exppnε{2qq.

As in [31] denote by PL̂ the set of all subsets of rKs with cardinality L̂ and by PL̂,k,
k P rKs, the collection of sets in PL̂ that do not contain k. Now it is clear that continuing,
using the same steps as in [31, Proof of Lemma 1], we also get for all m P rM s

Prp|tJ P PL̂ : pun, UJ,m, s
nq P T n

UŪ L̂S
u| ¡ exppnεqq   L̂ expp�1

2 exppnε{L̂qq

for R   minlPrL̂s IpŪl ^ Sq and n ¥ n1pε{L̂, L̂q. (Here we use the notation from [31,

Proof of Lemma 1]. For J P PL̂, J � tj1, � � � , jL̂u we denote by UJ,m the ordered L̂-tuple
pUj1,m, � � � , UjL̂,mq where the indices are ordered as j1   j2   � � �   jL̂.) Still using the
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steps from [31, Proof of Lemma 1] we additionally get

PrpK�1|tk : pUk,m, UJ,m, s
nq P T n

UŪ L̂S
for some J P PL̂,ku| ¡ expp�nε{2qq

¤ pL̂� 1q exppnε{6� 1
2 exppnε{4L̂qq.

for IpU^Ū L̂Sq ¥ ε, R   minlPrL̂s IpŪl^Sq and allm P rM s, n ¡ maxtn1pε{p12L̂q, 1q, logp2L̂qu
and n large enough such that

npL̂� 1q2plog |U | � 1q ¤ exppnε{6q

and finally

PrpK�1|tk : pUk,m, Ui,m, s
nq P T nUŪlS for some i P P1,ku| ¡ expp�nε{2qq

¤ 2 exppnε{6� 1
2 exppnε{4qq.

for IpU ^ ŪlSq � |R� IpŪl ^ Sq|� ¥ ε and all l P rL̂s, m P rM s and n ¡ n1pε{12, 1q and
n large enough such that

n4plog |U | � 1q ¤ exppnε{6q.

As |T nU | , |T nX |, |Sn|, |Ppn,U � U L̂ � Sq| and M increase exponentially with respect
to n we can use the union bound to show that the probability that J has the following
properties is greater than 0. This follows as we showed that the probabilities of the
corresponding complementary events each go to 0 doubly exponentially with respect to
n. So for all n large enough there is a J such that (4.33) holds for all xn P T nX and for

all m P rM s, all un P T nU , all sn P Sn and all P
UŪ L̂S

P Ppn,U � U L̂ � Sq we have

K�1|tk : uk,m P T nU |Sps
nqu| ¤ expp�nε{2qq

for IpU ^ Sq ¥ ε

K�1|tk : puk,m, ui,m, s
nq P T nUŪlS for some i � ku| ¤ expp�nε{2q

for IpU ^ ŪlSq ¥ |R� IpŪl ^ Sq|� � ε and all l P rL̂s

|tk : pun, uk,m, s
nq P T nUŪlSu| ¤ exppnp|R� IpŪl ^ USq|� � εqq

for all l P rL̂s

|tJ P PL̂ : pun, uJ,m, s
nq P T n

UŪ L̂S
u| ¤ exppnεq

for R   min
lPrL̂s

IpŪl ^ Sq
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K�1|tk : puk,m, uJ,m, s
nq P T n

UŪ L̂S
for some J P PL̂,ku| ¤ expp�nε{2q

for R   min
lPrL̂s

IpŪl ^ Sq and IpU ^ Ū L̂Sq ¥ ε.

Comparing the properties above and our choice of R with [31, Proof of Lemma 3] it
is clear that we can show for each m P rM s that (4.34) holds by following the steps
in [31, Proof of Lemma 3]. |Lpyn,mq| ¤ L̂ for all yn P Yn and m P rM s follows from
[31, Lemma 2].

Now we can prove Lemma 4.13.

Lemma 4.13. Consider the RVs X̃ and tỸsusPS , |S|   8 with PX̃Ỹs P PpX � Yq for

all s P S and a RV Ũ such that Ũ � X̃ � Ỹs for all s P S, PŨ P PpUq. Denote the

symmetrizability of the AVC corresponding to tPỸs|X̃usPS by M̂ and assume M̂   8.

Let L̂ � M̂ � 1 and δ ¡ 0. For all n large enough there is a stochastic matrix F P
PpK � M̄|X nq and a mapping g : Yn � M̄ Ñ P̂L̂ such that for RVs K, M̄ , tK̂snusnPSn

and X̃n with PKM̄K̂snX̃n P PpK � M̄� P̂L̂ � X
nq for all sn P Sn defined by

PKM̄K̂snX̃npk, m̄, k̂, x
nq �

¸
ynPYn

n¹
i�1

PX̃Ỹsi
pxi, yiqF pk, m̄|x

nq1g�1pk̂qppy
n, m̄qq

for pk, m̄, k̂, xnq P K � M̄�K � X n it holds that¸
m̄PM̄

PrpM̄ � m̄q max
snPSn

PrpK R K̂sn |M̄ � m̄q ¤ δ (4.36)

HpK|M̄q � log |K| (4.37)

1
n log |K|

L̂
¥ min

WPconvptPỸs|Ũ usPSq
IpPŨ ,W q � δ (4.38)

1
n log |M̄| ¤ IpŨ ^ X̃q � min

WPconvptPỸs|Ũ usPSq
IpPŨ ,W q � δ. (4.39)

Proof. Assume first that HpŨ |X̃q ¡ 0. The case HpŨ |X̃q � 0 is treated at the end of
the proof. Additionally assume that minuPU PŨ puq,minxPX PX̃pxq ¥ β̄ ¡ 0 for β̄ small
enough. (Note that (4.36) - (4.39) depend on X and U only via the support of PŨ and
PX̃ .) We can also assume that

min
WPconvptPỸs|Ũ usPSq

IpPŨ ,W q ¡ 0,

because otherwise the result follows trivially. Choose δ1, δ2 ¡ 0 and q P N such that
ε1pqq�ε3pqq�τ2pq, δ1�δ2q{q   δ{2 where the functions ε1, ε3 : NÑ R and τ2 : N�RÑ R
are determined at the end of the proof. So n � tnq uq � r for 0 ¤ r   q. Consider RVs
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tUtutPrT s, tXtutPrT s and tYsqusqPSq with T ¤ |Pptnq u,X
qq| such that

PUtXtYsq P PppU
q�1 � X q � X q � Yqq

and PUtXt P Pptnq u, pU
q�1 � X q � X qq,

PUtXtYsq ppu
q�1, xq, xq, yqq � PUtXtppu

q�1, xq, xqq

q¹
i�1

PỸsi |X̃
pyi|xiq

for all ppuq�1, xq, xq, yqq P pUq�1 � X q � X q � Yq for all sq P Sq and t P rT s while

tT
t
n
q u

Xt
utPrT s forms a partition of T

t
n
q u

Xq ,δ1
and

|PUtXtpu, xq � PUqXqpu, xq| ¤ δ1 � δ2 (4.40)

for all pu, xq P pUq�1�X q�X q, where UqXq are RVs such that PUqXq P PppUq�1�X q�
X qq with

PUqXqppu
q�1, xq, xqq � Pbq�1

ŨX̃
b PX̃pu

q�1, xq�1, xqq1txupxqq.

Such RVs exist which can be seen as follows. First choose tT
t
n
q u

Xt
utPrT s. Then consider

txtutPrT s with xt P T
t
n
q u

Xt
for all t P rT s. For each t P rT s choose a ut P T

t
n
q u

Uq |Xq ,δ2
pxtq

(which implies that the qj-th component of ut equals the qj-th component of xt, for all
j P rtnq us). Define the RVs tUtutPrT s with PUtXt � Put,xt . (This construction of PUtXt is
possible for n large enough, cf. [26, Chapter 2].)

Denote the symmetrizability of W̄ :� tPYsq |UtusqPSq by M̃ and assume M̃ ¡ M̂ . This

means there exists a stochastic matrix U P PpSq|pUm�1 � X qM̃ q such that¸
sqPSq

PYsq |Utpy
q|puq�1, xqqUpsq|puq�1

1 , x1q, � � � , pu
q�1

M̃
, xM̃ qq

�
¸
sqPSq

¸
x̄qPX q

q¹
i�1

PỸsi |X̃
pyi|x̄iqPXt|Utpx̄

q|puq�1, xqqUpsq|puq�1
1 , x1q, � � � , pu

q�1

M̃
, xM̃ qq

is symmetric in puq�1, xq, puq�1
1 , x1q, � � � , pu

q�1

M̃
, xM̃ q. Summing over all yq�1 P Yq�1 we

get with Ū P PpS|pUm�1 � X qM̃ q,

Ūpsq|pu
q�1
1 , x1q, � � � , pu

q�1

M̃
, xM̃ qq �

¸
sq�1PSq�1

Upsq|puq�1
1 , x1q, � � � , pu

q�1

M̃
, xM̃ qq
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that¸
sqPS

¸
x̄qPX

PỸsq |X̃
pyq|x̄qq

¸
x̄q�1PX q�1

PXt|Utpx̄
q|puq�1, xqqŪpsq|pu

q�1
1 , x1q, � � � , pu

q�1

M̃
, xM̃ qq

�
¸
sqPS

PỸsq |X̃
pyq|xq

¸
x̄qPX q

PXt|Utpx̄
q|puq�1, xqqŪpsq|pu

q�1
1 , x1q, � � � , pu

q�1

M̃
, xM̃ qq

where the last step follows as ¸
x̄q�1PX q�1

PXt|Utpx̄
q|puq�1, xqq � 0

for x̄q � x. This equals¸
sqPS

PỸsq |X̃
pyq|xqŪpsq|pu

q�1
1 , x1q, � � � , pu

q�1

M̃
, xM̃ qq.

Thus this expression is symmetric in x, x1, � � � , xM̃ for an arbitrary choice of uq�1
1 , � � � , uq�1

M̃
.

It follows that W̄ :� tPYsq |UtusqPSq has symmetrizability M̃ ¤ M̂ .

From minxPX PX̃pxq ¥ β̄ we have for all t P rT s that for δ1 � δ2 small enough

min
u
PUtpuq ¥ β̃ ¡ 0.

It is also clear from [26, Lemma 2.7] that for δ1 � δ2 small enough

HpUt|Xtq ¡ 0

and

min
WPconvpW̄q

IpPUt ,W q ¡ 0.

This can be seen as follows. Define RVs tỸsqusqPSq such that for all sq P Sq

PỸsqUqXqpy
q, puq�1, xq, xqq �

q¹
i�1

PỸsi |X̃
pyi|xiqPUqXqppu

q�1, xq, xqq

for all pyq, puq�1, xq, xqq P Yq � pUq�1 � X q � X q. From (4.40) and [26, Lemma 2.7] we
have for ζ ¡ 0

min
WPconvpW̄q

IpPUt ,W q ¡ min
WPconvptPỸsq |Uq

usqPSq q
IpPUq ,W q � ζ, (4.41)

which is also discussed more explicitly in Lemma 4.11. For all convex combinations
W P convptPỸsq |Uqus

qPSqq consider the corresponding PSq P PpSqq with marginals PSi P

PpSq, i P t1, � � � , qu. Define Wi P PpY|Uq such that Wipy|uq �
°
sPS PSipsqPỸs|Ũ py|uq,
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i P t1, � � � , q � 1u, and Wq P PpY|X q such that Wqpy|xq �
°
sPS PSqpsqPỸs|X̃py|xq for all

px, y, uq P X � Y � U . According to Lemma 3.9 we have

min
WPconvptPỸsq |Uq

usqPSq q
IpPUq ,W q ¥ min

WPconvptPỸsq |Uq
usqPSq q

q�1̧

i�1

IpPŨ ,Wiq � IpPX̃ ,Wqq

� pq � 1q min
WPconvptPỸs|Ũ uqsPS

IpPŨ ,W q

� min
WPconvptPỸs|X̃uqsPS

IpPX̃ ,W q. (4.42)

For each t P rT s generate the set Jt accoding to Theorem 4.12 with

min
WPconvpW̄q

IpPUt ,W q � τ   R   min
WPconvpW̄q

IpPUt ,W q � 2τ{3,

with τ ¡ 0 (and the corresponding K, Mt and Lt), where the RVs corresponding to U ,
X and tYsusPS are Ut, Xt and tYsqusqPSq and the block length (corresponding to n in
Theorem 4.12) is tnq u.

We define for all t P rT s

TX,t :� T
t
n
q u

Xt

and for xn�r P X n�r

TU |X,tpxn�rq :� T
t
n
q u

Ut|Xt
pxn�rq.

For all t P rT s define for all uq P Jt

Q̃tpuqq �
¸

xn�rPXn�r

1
|TX,t|

1JtXTU |X,tpxn�rq
puqq

|JtXTU |X,tpxn�rq|

�
¸

xn�rPXn�r

1
|TX,t|

1TU |X,tpxn�rq
puqq

|JtXTU |X,tpxn�rq|

�
¸

xn�rPTX|U,tpuqq

1
|TX,t||JtXTU |X,tpxn�rq|

and Qt � minuqPJt Q̃tpuqq. From (4.33) we know that for t P rT s and all uq P Jt

1
1�expp�t

n
q uc1q

1
Lt
  Q̃tpuqq  

1
1�expp�t

n
q uc1q

1
Lt
. (4.43)

Let u� P pUq�1 � X qt
n
q u
z
�
tPrT s Jt. Consider the RV Un�r, PUn�r P PppUq�1 � X qt

n
q u
q,

123



Chapter 4 – SK Generation with Constrained Public Communication Rate

such that for xn�r P TX,t, t P rT s

PUn�r|X̃n�rpuq|x
n�rq � Qt

Q̃tpuqq
1

|JtXTU |X,tpxn�rq|

for uq P Jt X TU |X,tpxn�rq,

PUn�r|X̃n�rpuq|x
n�rq � 1�

¸
uPJtXTU |X,tpxn�rq

Qt
Q̃tpuq

1
|JtXTU |X,tpxn�rq|

for uq � u� and

PUn�r|X̃n�rpuq|x
n�rq � 0

else and for xn�r P X n�rz
�
tPrT s TX,t

PUn�r|X̃n�rpuq|x
n�rq �

#
1 uq � u�

0 else
.

We have for t P rT s and all uq P Jt

PrpUn�r � uq|X̃
n�r P TX,tq

�
¸

xn�rPTX,t

PrpUn�r � uq|X̃
n�r � xn�rqPrpX̃n�r � xn�r|X̃n�r P TX,tq

�
¸

xn�rPTX,t

PrpUn�r � uq|X̃
n�r � xn�rq 1

|TX,t|

�
¸

xn�rPXn�r

Qt
Q̃tpuqq

1JtXTU |X,tpxn�rq
puqq

|JtXTU |X,tpxn�rq|
1

|TX,t| � Qt. (4.44)

For t P rT s and all xn�r P TX,t we have

PrpUn�r � u�|X̃n�r � xn�rq �
¸

uPJtXTU |X,tpxn�rq

Qt
Q̃tpuq

1
|JtXTU |X,tpxn�rq|

¡ Ltp1� expp�tnq uc1qqQt

¡
1�expp�t

n
q uc1q

1�expp�t
n
q uc1q

� 1�
2 expp�t

n
q uc1q

1�expp�t
n
q uc1q

.

Now we consider for t P rT s, xn�r P TX,t and uq P Jt X TU |X,tpxn�rq

PrpX̃n�r � xn�r|X̃n�r P TX,t, Un�r � uqq �
PrpX̃n�r�xn�r,Un�r�uq |X̃n�rPTX,tq

PrpUn�r�uq |X̃n�rPTX,tq
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which equals

PrpX̃n�r�xn�r|X̃n�rPTX,tqPrpUn�r�uq |X̃n�r�xn�rq
Qt

� Qt
Q̃tpuqq

1
|JtXTU |X,tpxn�rq|

1
Qt|TX,t|

� 1
|TX,t||JtXT n

U |X,t
pxn�rq|Q̃tpuqq

.

From (4.33) and (4.43) this implies

PrpX̃n�r � xn�r|X̃n�r P TX,t, Un�r � uqq  
1�expp�t

n
q uc1q

1�expp�t
n
q uc1q

1
|TX|U,tpuqq|

, (4.45)

where TX|U,tpuqq � T
t
n
q u

Xt|Ut
puqq. We also know PrpX̃n�r � xn�r|X̃n�r P TX,t, Un�r �

uqq � 0 for uq R TU |X,tpxn�rq. Define K � rKs, M � rmaxtPrT sMts and M̄ �M� rT s.
Let xn�r P TX,t, t P rT s. We define for k P K and m P rMts

F pk, pm, tq|xnq �PrpUn�r � utk,m|X̃
n�r � xn�rq � PrpUn�r � u�|X̃n�r � xn�rq 1

Lt
,

where we denote the elements in Jt by utk,m for all k P rKs and m P rMts. For

Mt   m ¤ max
tPrT s

Mt

and k P K we define

F pk, pm, tq|xnq � 0.

For t̄ P rT s, t̄ � t we define for pk,mq P K �M

F pk, pm, t̄q|xnq � 0.

Let xn�r P X n�rz
�
tPrT s TX,t. We define

F pk, pm, tq|xnq � 1
K
°
tPrT sMt

for all pk,m, tq P K �M� rT s with m ¤Mt. (Here xn � pxn�r, xrq with and arbitrary
xr P X r.) For pk,m, tq P K �M� rT s with m ¡Mt we define

F pk, pm, tq|xnq � 0.
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For k P K and pm, tq PM� rT s such that m P rMts consider

PrpK � k, M̄ � pm, tqq

�
¸
t̄PrT s

PrpX̃n�r P TX,t̄qPrpK � k, M̄ � pm, tq|X̃n�r P TX,t̄q

� PrpK � k, M̄ � pm, tq|X̃n�r P X n�rz
¤
t̄PrT s

TX,t̄q

� PrpX̃n�r P X n�rz
¤
t̄PrT s

TX,t̄q

� PrpK � k, M̄ � pm, tq|X̃n�r P TX,tqPrpX̃n�r P TX,tq

� 1
K
°
tPrT sMt

PrpX̃n�r P X n�rz
¤
t̄PrT s

TX,t̄q

where we use the properties of F pk, pm, tq|xnq for the last step. We have

PrpK � k, M̄ � pm, tq|X̃n�r P TX,tq

�
¸

xn�rPTX,t

1
|TX,t|PrpK � k, M̄ � pm, tq|X̃n�r � xn�rq

�
¸

xn�rPTX,t

1
|TX,t|PrpUn�r � utk,m|X̃

n�r � xn�rq

�
¸

xn�rPTX,t

1
|TX,t|

1
Lt

PrpUn�r � u�|X̃n�r � xn�rq.

The first summand equals¸
xn�rPTX,t

PrpX̃n�r � xn�r|X̃n�r P TX,tqPrpUn�r � utk,m|X̃
n�r � xn�r, X̃n�r P TX,tq

�
¸

xn�rPTX,t

PrpUn�r � utk,m|X̃
n�r P TX,tqPrpX̃n�r � xn�r|Un�r � utk,m, X̃

n�r P TX,tq

� Qt.

For the second summand we have

1
Lt

¸
xn�rPTX,t

PrpUn�r � u�|X̃n�r P TX,tqPrpX̃n�r � xn�r|Un�r � u�, X̃n�r P TX,tq.

As ¸
uPJtYtu�u

PrpUn�r � u|X̃n�r � xn�rq � 1
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we have

PrpUn�r � u�|X̃n�r P TX,tq � 1� LtQt.

So we have

PrpK � k, M̄ � pm, tq|X̃n�r P TX,tq � Qt �
1
Lt
�Qt �

1
Lt
. (4.46)

Thus

PrpK � k, M̄ � pm, tqq � 1
Lt

PrpX̃n�r P TX,tq � 1
K
°
tPrT sMt

PrpX̃n�r P X n�rz
¤
t̄PrT s

TX,t̄q

and consequently

PrpM̄ � pm, tqq � 1
Mt

PrpX̃n�r P TX,tq � 1°
tPrT sMt

PrpX̃n�r P X n�rz
¤
t̄PrT s

TX,t̄q

which implies

PrpK � k|M̄ � pm, tqq �

1
Lt

PrpX̃n�rPTX,tq�
1

K
°
tPrT sMt

PrpX̃n�rPXn�rz
�
t̄PrT s TX,t̄q

1
Mt

PrpX̃n�rPTX,tq�
1°

tPrT sMt
PrpX̃n�rPXn�rz

�
t̄PrT s TX,t̄q

� 1
K .

So HpK|M̄q � log |K|.

Now consider¸
pm,tqPM̄

PM̄ pm, tq max
snPSn

PrpK R K̂sn |M̄ � pm, tqq �

¸
pm,tqPM̄

PM̄ pm, tqpmax
snPSn

¸
t̄PrT s

PrpX̃n�r P TX,t̄|M̄ � pm, tqq

� PrpK R K̂sn |M̄ � pm, tq, X̃n�r P TX,t̄q

� PrpK R K̂sn |M̄ � pm, tq, X̃n�r R T
t
n
q u

X̃q ,δ1
qPrpX̃n�r R T

t
n
q u

X̃q ,δ1
|M̄ � pm, tqqq

which can be upper bounded by¸
pm,tqPM̄

PM̄ pm, tqpmax
snPSn

PrpX̃n�r P TX,t|M̄ � pm, tqq

� PrpK R K̂sn |M̄ � pm, tq, X̃n�r P TX,tq

� max
snPSn

PrpK R K̂sn |M̄ � pm, tq, X̃n�r R T
t
n
q u

X̃q ,δ1
q

� PrpX̃n�r R T
t
n
q u

X̃q ,δ1
|M̄ � pm, tqqq
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which is less or equal than¸
pm,tqPM̄

PM̄ pm, tqpmax
snPSn

PrpX̃n�r P TX,t|M̄ � pm, tqq

� PrpK R K̂sn |M̄ � pm, tq, X̃n�r P TX,tq

� PrpX̃n�r R T
t
n
q u

X̃q ,δ1
|M̄ � pm, tqqq.

This expression equals¸
pm,tqPM̄

PM̄ pm, tq max
snPSn

PrpX̃n�r P TX,t|M̄ � pm, tqq

� PrpK R K̂sn |M̄ � pm, tq, X̃n�r P TX,tq

� PrpX̃n�r R T
t
n
q u

X̃q ,δ1
q. (4.47)

Thus we now consider

PrpK R K̂sn |M̄ � pm, tq, X̃n�r P TX,tq

for pm, tq P M̄ and sn P Sn.

PrpK R K̂sn |M̄ � pm, tq, X̃n�r P TX,tq

�
PrpKRK̂sn^M̄�pm,tq|X̃n�rPTX,tq

PrpM̄�pm,tq|X̃n�rPTX,tq

�MtPrpK R K̂sn ^ M̄ � pm, tq|X̃n�r P TX,tq

which follows from (4.46). We will define g such that it only depends on yn�r. So for
all x1 P X r and y1 P Yr this expression equals

Mt

¸
kPK
k̂PP̂L̂
kRk̂

¸
yn�rPYn�r

¸
xn�rPTX,t

1
|TX,t|

n�r¹
i�1

PỸsi |X̃
pyi|xiq

� F pk, pm, tq|xnq1g�1pk̂qpy
n, pm, tqq,
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where xn � pxn�r, x1q and yn � pyn�r, y1q. With our choice of F pk, pm, tq|xnq this equals

Mt

¸
kPK
k̂PP̂L̂
kRk̂

¸
yn�rPYn�r

¸
xn�rPTX,t

1
|TX,t|

n�r¹
i�1

PỸsi |X̃
pyi|xiq

� PrpUn�r � utk,m|X̃
n�r � xn�rq1g�1pk̂qpy

n, pm, tqq

�Mt

¸
kPK
k̂PP̂L̂
kRk̂

¸
yn�rPYn�r

¸
xn�rPTX,t

1
|TX,t|

n�r¹
i�1

PỸsi |X̃
pyi|xiq

� PrpUn�r � u�|X̃n�r � xn�rq1g�1pk̂qpy
n, pm, tqq.

The second summand can be upper bounded by

2 expp�t
n
q uc1q

1�expp�t
n
q uc1q

Mt

¸
kPK
k̂PP̂L̂
kRk̂

¸
yn�rPYn�r

¸
xn�rPTX,t

1
|TX,t|

n�r¹
i�1

PỸsi |X̃
pyi|xiq

1
Lt
1g�1pk̂qpy

n, pm, tqq

¤
2 expp�t

n
q uc1q

1�expp�t
n
q uc1q

Mt

¸
k̂PP̂L̂

¸
yn�r

PYn�r

¸
xn�rPTX,t

1
|TX,t|

n�r¹
i�1

PỸsi |X̃
pyi|xiq

1
Mt
1g�1pk̂qpy

n, pm, tqq

which equals

2 expp�t
n
q uc1q

1�expp�t
n
q uc1q

Mt

¸
yn�rPYn�r

¸
xn�rPTX,t

1
|TX,t|

n�r¹
i�1

PỸsi |X̃
pyi|xiq

1
Mt

� 2 expp�nc1q
1�expp�nc1q

.

The first summand equals

Mt

¸
kPK
k̂PP̂L̂
kRk̂

¸
yn�rPYn�r

¸
xn�rPTX,t

n�r¹
i�1

PỸsi |X̃
pyi|xiq

� PrpUn�r � utk,m, X̃
n�r � xn�r|X̃n�r P TX,tq1g�1pk̂qpy

n, pm, tqq
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which equals

Mt

¸
kPK
k̂PP̂L̂
kRk̂

¸
yn�rPYn�r

¸
xn�rPTX,t

n�r¹
i�1

PỸsi |X̃
pyi|xiq

� PrpUn�r � utk,m|X̃
n�r P TX,tq1g�1pk̂qpy

n, pm, tqq

� PrpX̃n�r � xn�r|Un�r � utk,m, X̃
n�r P TX,tq

Using (4.45) and (4.44) this can be upper bounded by

1�expp�t
n
q uc1q

1�expp�t
n
q uc1q

Mt

¸
kPK
k̂PP̂L̂
kRk̂

¸
yn�r

PYn�r

¸
xn�r
PTX,t

n�r¹
i�1

PỸsi |X̃
pyi|xiq

1
|TX|U,tpu

t
k,mq|

Qt1g�1pk̂qpy
n, pm, tqq.

It is clear (cf. [26]) that for n large enough and xn�r P TX,t

1
|TX|U,tpu

t
k,mq|

¤ 1
exppt

n
q upHpXt|Utq�ξqq

� expptnq uξqP
bt
n
q u

Xt|Ut
pxn�r|utk,mq

for ξ ¡ 0. So we get the upper bound

1�expp�t
n
q uc1q

1�expp�t
n
q uc1q

expptnq uξqMt

¸
kPK
k̂PP̂L̂
kRk̂

¸
yn�rPYn�r

¸
xn�rPTX,t

n�r¹
i�1

PỸsi |X̃
pyi|xiq

� P
bt
n
q u

Xt|Ut
pxn�r|utk,mqQt1g�1pk̂qpy

n, pm, tqq. (4.48)

We now define for yn P Yn, t P rT s andm P rMts the mapping g such that k P gpyn, pm, tqq
(for k P K) if and only if

k P Ltyn�r,m.

(It is clear that |Ltyn�r,m| ¤ L̂.) So together with (4.43) we can upper bound (4.48) by

1�expp�t
n
q uc1q

p1�expp�t
n
q uc1qq2

expptnq uξq
1
Mt
Mt

1
K

�
¸
kPK

¸
yn�r :

kRLt
yn�r,m

¸
xn�rPXn�r

n�r¹
i�1

PỸsi |X̃
pyi|xiqP

bt
n
q u

Xt|Ut
pxn�r|utk,mq. (4.49)

130



Achievability proofs for the jammed source

This equals

1�expp�t
n
q uc1q

p1�expp�t
n
q uc1qq2

expptnq uξq
1
K

�
¸
kPK

¸
yn�r : kRLt

yn�r,m

t
n
q u¹
i�1

PYpsn�rqi |Ut
ppyn�rqi|pu

t
k,mqiq. (4.50)

Here we use the notation

psn�rqi � pspi�1qq�1, � � � , siqq

pyn�rqi � pypi�1qq�1, � � � , yiqq

putk,mqi � pupi�1qq�1, � � � , uiqq,

where un�r � utk,m, for the corresponding projections. (Note that utk,m denotes a se-

quence in Jt and thus we introduce this notation to access the components of utk,m.)
From our choice of R we can upper bound this expression for all sn P Sn and t P rT s by

1�expp�t
n
q uc1q

p1�expp�t
n
q uc1qq2

expptnq uξq expp�tnq uc2q � expp�tnq uc3q

for a c3 ¡ 0, n large enough and an appropriate choice of ξ. We thus have¸
pm,tqPM̄

PM̄ pm, tq max
snPSn

PrpX̃n�r P TX,t|M̄ � pm, tqq

� PrpK R K̂sn |M̄ � pm, tq, X̃n�r P TX,tq
¤ expp�tnq uc3q

�
¸

pm,tqPM̄

PrpX̃n�r P TX,tqPrpM̄ � pm, tq|X̃n�r P TX,tq,

which equals

expp�tnq uc3q
¸
tPrT s

PrpX̃n�r P TX,tq
¸

mPrMts

PrpM̄ � pm, tq|X̃n�r P TX,tq

� expp�tnq uc3q
¸
tPrT s

PrpX̃n�r P TX,tq ¤ expp�tnq uc3q.

So considering (4.47), altogether the error probability goes to 0 exponentially with re-
spect to tnq u.
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From our choice of R, (4.41) and (4.42) we know that

1
n log |K|

L̂
¥

t
n
q u

t
n
q u�1

p q�1
q min

WPconvptPỸs|Ũ usPSq
IpPŨ ,W q

� 1
q min
WPconvptPỸs|X̃usPSq

IpPX̃ ,W q � pτ � ζq{qq

¥ min
WPconvptPỸs|Ũ usPSq

IpPŨ ,W q � ε1pqq � ε2pq, nq,

where ε1pqq, ε2pq, nq ¡ 0, ε1pqq Ñ 0 for q Ñ8 and ε2pq, nq Ñ 0 for nÑ8 for all q P N.
We also have

T ¤ ptnq u� 1q|X |q�1|U |

and (from continuity of entropy [26, Lemma 2.7] and (4.40)) for τ2pq, δ1 � δ2q ¡ 0

1
q IpUt ^Xtq ¤

1
q pIpUq ^Xqq � τ2pq, δ1 � δ2qq

� IpŨ ^ X̃q � ε3pqq � τ2pq, δ1 � δ2q{q.

where ε3pqq ¡ 0, ε3pqq Ñ 0 for q Ñ8 and τ2pq, δ1� δ2q Ñ 0 for δ1� δ2 Ñ 0 for all q P N.
So

1
n log |M̄| ¤ IpŨ ^ X̃q � min

WP
convptPỸs|Ũ usPSq

IpPŨ ,W q � ε1pqq

� τ2pq, δ1 � δ2q{q � ε3pqq � ε2pq, nq �
|X |q�1|U |

n logpnq.

For the case HpŨ |X̃q � 0 we define a RV Ũ 1 with PŨ 1 P PpU Y tu1uq for a u1 R U such
that

}PỸsX̃bpŨq � PỸsX̃Ũ 1}1 ¤ ε

for an ε ¡ 0 arbitrarily small, where b : U Ñ U Y tu1u, bpuq � u. We can choose Ũ 1 such
that at the same time HpŨ 1|X̃q ¡ 0. For this purpose define for all x P X

PŨ 1|X̃pu
1|xq � ε{2

and

PŨ 1|X̃pu|xq � PŨ |X̃pu|xq � ε{2

for the unique u P U with PŨ |X̃pu|xq � 1. We then construct the protocol for this new

RV Ũ 1. The corresponding rates of this protocol are arbitrarily close to the desired rates
which follows from [26, Lemma 2.7], cf. Lemma 4.11.
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For the achievability part of Theorem 4.9 we now want to prove Lemma 4.15. For the
proof we use the following auxiliary result.

Lemma 4.14. Consider the RVs X̃ and tỸsusPS , |S|   8 with PX̃Ỹs P PpX � Yq for

all s P S, the RV Ũ such that Ũ � X̃ � Ỹs for all s P S, PŨ P PpUq and the RV Γ,
PΓ P Pprn!sq with PΓpγq �

1
n! for all γ P rn!s. Let δ ¡ 0. For all n large enough there is a

stochastic matrix FCR P PpK� M̄|X n � rn!sq and a mapping gCR : Yn � M̄� rn!s Ñ K
such that for RVs K, M̄ , tK̂snusnPSn and X̃n with PKM̄K̂snX̃n P PpK � M̄ � K � X nq
for all sn P Sn defined by

PKM̄K̂snX̃nΓpk, m̄, k̂, x
n, γq �

¸
ynPYn

n¹
i�1

PX̃Ỹsi
pxi, yiqFCRpk, m̄|x

n, γq

� 1g�1
CRpk̂q

ppyn, m̄, γqqPΓpγq

for pk, m̄, k̂, xn, γq P K � M̄�K � X n � rn!s it holds that¸
m̄PM̄

PM̄ pm̄q max
snPSn

PrpK � K̂sn |M̄ � m̄q ¤ δ

HpK|M̄Γq � log |K|
1
n log |K| ¥ min

WPconvptPỸs|Ũ usPSq
IpPŨ ,W q � δ

1
n log |M̄| ¤ IpŨ ^ X̃q � min

WPconvptPỸs|Ũ usPSq
IpPŨ ,W q � δ.

Proof. We again use Ahlswede robustification to prove this result. Given δ, δ1 ¡ 0
there is a c ¡ 0 such that for all n large enough we can find F P PpK � M̄|X nq and
g : Yn � M̄Ñ K such that for RVs K 1, M̄ 1 and tK̂ 1

vuvPV with

PK1M̄ 1K̂1
vX̃

npk, m̄, k̂, x
nq �

¸
ynPYn

Pbn
X̃Yv

pxn, ynqF pk, m̄|xnq1g�1pk̂qppy
n, m̄qq

for all pk, m̄, k̂, xnq P K � M̄�K � X n it holds that

sup
vPV

PrpK 1 � K̂ 1
v|M̄

1 � m̄, X̃n P T n
X̃,δ1

q ¤ expp�ncq (4.51)

HpK 1|M 1q � log |K| (4.52)

1
n log |K| ¥ inf

vPV
IpŨ ^ Yvq � δ (4.53)

1
n log |M| ¤ IpŨ ^ X̃q � inf

vPV
IpŨ ^ Yvq � δ (4.54)

where the RVs tYvuvPV are such that tPYv |X̃uvPV � convptPỸs|X̃usPSq and Ũ � X̃�Yv for

all v P V. This follows from the achievability proof of Lemma 4.5, (cf. (4.22) for (4.51)).
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Define hm̄ : Sn Ñ r0, 1s for all m̄ P M̄ such that for all sn P Sn

hm̄ps
nq �

°
xnPXn

ynPYn
°
kPK

±n
i�1 PX̃Ỹsi

pxi,yiqF pk,m̄|xnq1g�1pkqppy
n,mqq

°
xnPXn

°
kPK P

bn

X̃
pxnqF pk,m̄|xnq

.

It holds for all Pm̄ P Ppn,Sq, m̄ P M̄, that¸
snPSn

hm̄ps
nqPbn

m̄ psnq

�
¸

snPSn
Pbn
m̄ psnq

°
xnPXn

ynPYn
°
kPK

±n
i�1 PX̃Ỹsi

pxi,yiqF pk,m̄|xnq1g�1pkqppy
n,m̄qq

°
xnPXn

°
kPK P

bn

X̃
pxnqF pk,m̄|xnq

which equals

°
xn,yn

°
k

°
sn
±n
i�1 PX̃Ỹsi

pxi,yiqPm̄psiqF pk,m̄|xnq1g�1pkqppy
n,m̄qq

°
xnPXn

°
kPK P

bn

X̃
pxnqF pk,m̄|xnq

This expression equals

°
xn,yn

°
k

±n
i�1

°
sPS PX̃Ỹsi

pxi,yiqPm̄psqF pk,m̄|xnq1g�1pkqppy
n,m̄qq

°
xnPXn

°
kPK P

bn

X̃
pxnqF pk,m̄|xnq

�

°
xnPXn

ynPYn
°
kPK P

bn

X̃
pxnqWbn

m̄ pyn|xnqF pk,m̄|xnq1g�1pkqppy
n,mqq

°
xnPXn

°
kPK P

bn

X̃
pxnqF pk,m̄|xnq

with Wm̄ P convptPỸs|X̃usPSq defined appropriately. This expression equals

PrpK 1 � K̂ 1
v|M̄

1 � m̄q ¥ PrpK 1 � K̂ 1
v|M̄

1 � m̄, X̃n P T n
X̃,δ1

q

� PrpX̃n P T n
X̃,δ1

|M̄ 1 � m̄q

for the v P V corresponding to Pm̄. So from our choice of F and g we know that¸
snPSn

hm̄ps
nqPbn

m̄ psnq ¡ p1� expp�ncqqPrpX̃n P T n
X̃,δ1

|M̄ 1 � m̄q

¥ 1� pexpp�ncq � PrpX̃n R T n
X̃,δ1

|M̄ 1 � m̄qq.

Now we use the Ahlswede robustification as seen before, so according to [3, Theorem RT]
this implies for all sn P Sn

1
n!

¸
πPΠn

hm̄pπs
nq ¡ 1� pexpp�ncq � PrpX̃n R T n

X̃,δ1
|M̄ 1 � m̄qqpn� 1q|S|

where Πn is the set of all permutations on rns and again we write for π P Πn πx
n for

xπ�1p1q, � � � , xπ�1pnq, i.e. π induces a bijection on X n. We define for all π P Πn and all
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pk, m̄, xnq P K � M̄� X n

F πpk, m̄|xnq � F pk, m̄|πxnq

gπpyn, m̄q � gpπyn, m̄q.

We can write for all sn P Sn and π P Πn

hm̄pπs
nq �

°
xnPXn

ynPYn
°
kPK

±n
i�1 PX̃Ỹs

π�1piq
pxi,yiqF pk,m̄|xnq1g�1pkqppy

n,m̄qq

°
xnPXn

°
kPK P

bn

X̃
pxnqF pk,m̄|xnq

�

°
xn,yn

°
k

±n
i�1 PX̃Ỹsi

pxπpiq,yπpiqqF pk,m̄|xnq1g�1pkqppy
n,m̄qq

°
xnPXn

°
kPK P

bn

X̃
pxnqF pk,m̄|xnq

.

As π is a bijection on X n and Yn respectively and we sum over all elements of these sets
this equals

°
xnPXn

ynPYn
°
kPK

±n
i�1 PX̃Ỹsi

pxi,yiqF pk,m̄|πxnq1g�1pkqppπy
n,m̄qq

°
xnPXn

°
kPK P

bn

X̃
pxnqF pk,m̄|xnq

which equals

°
xnPXn

ynPYn
°
kPK

±n
i�1 PX̃Ỹsi

pxi,yiqF
πpk,m̄|xnq1pgπq�1pkqppy

n,m̄qq

°
xnPXn

°
kPK P

bn

X̃
pxnqF pk,m̄|xnq

.

So we get

1
n!

¸
πPΠn

¸
m̄PM̄

PM̄ 1pm̄qhm̄pπs
n
m̄q ¡ 1� pexpp�ncq � PrpX̃n R T n

X̃,δ1
qqpn� 1q|S| (4.55)

for all psn1 , � � � , s
n
|M̄|

q P pSnq|M̄|. Note that PrpX̃n R T n
X̃,δ1

q decreases exponentially with

n. We now define for all pk, m̄q P K � M̄, tπγuγPrn!s � Πn, and xn P X n

FCRpk, m̄|x
n, γq � F πγ pk, m̄|xnq

gCRpy
n, m̄, γq � gπγ pyn, m̄q.

We thus have ¸
m̄PM̄

PM̄ pm̄qPrpK � K̂snm̄ |M̄ � m̄q

� 1
n!

¸
πPΠn

¸
m̄PM̄

hm̄pπs
n
m̄q

¸
xnPXn

¸
kPK

Pbn
X̃
pxnqF πpk, m̄|xnq

� 1
n!

¸
πPΠn

¸
m̄PM̄

hm̄pπs
n
m̄q

¸
xnPXn

¸
kPK

Pbn
X̃
pxnqF pk, m̄|xnq

� 1
n!

¸
πPΠn

¸
m̄PM̄

PM̄ 1pm̄qhm̄pπs
n
m̄q,
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and with (4.55) this expression is arbitrarily small for all n large enough for all psn1 , � � � , s
n
|M̄|

q P

pSnq|M̄|. Now consider for pk, m̄, γq P K � M̄� rn!s

PKM̄Γpk, m̄, γq �
¸

xnPXn

Pbn
X̃
pxnqF πγ pk, m̄|xnqPΓpγq

�
¸

xnPXn

Pbn
X̃
pxnqF pk, m̄|xnqPΓpγq

which follows as πγ is a bijection on X n, Pbn
X̃
pxnq � Pbn

X̃
pπγx

nq and we sum over all
xn P X n. So we get

PK|M̄Γpk|m̄, γq �
°
xnPXn P

bn

X̃
pxnqF pk,m̄|xnqPΓpγq

°
kPK

°
xnPXn P

bn

X̃
pxnqF pk,m̄|xnqPΓpγq

�
°
xnPXn P

bn

X̃
pxnqF pk,m̄|xnq

°
kPK

°
xnPXn P

bn

X̃
pxnqF pk,m̄|xnq

� 1
|K|

where we use the corresponding property (4.52) of F for the last step.
Consider v P V. There is a P P PpSq such that for all pu, yq P U � Y

PYv |Ũ py|uq �
¸
xPX

PYv |X̃py|xqPX̃|Ũ px|uq

�
¸
xPX

p
¸
sPS

P psqPỸs|X̃py|xqqPX̃|Ũ px|uq

�
¸
sPS

P psq
¸
xPX

PỸs|X̃py|xqPX̃|Ũ px|uq

�
¸
sPS

P psqPỸs|Ũ py|uq

where we use Ũ � X̃ � Yv for all v P V and Ũ � X̃ � Ỹs for all s P S. So tPYv |ŨuvPV �

convptPỸs|ŨusPSq. Thus it follows that

inf
vPV

IpŨ ^ Yvq � inf
vPV

IpPŨ , PYv |Ũ q ¥ inf
WPconvptPỸs|Ũ usPSq

IpPŨ ,W q.

Accordingly we have with (4.53) and (4.54)

1
n log |K| ¥ inf

WPconvptPỸs|Ũ usPSq
IpPŨ ,W q � δ.

and

1
n log |M̄| ¤ IpŨ ^ X̃q � inf

WPconvptPỸs|Ũ usPSq
IpPŨ ,W q � δ.

Now we can prove Lemma 4.15.

Lemma 4.15. Consider the RVs X̃ and tỸsusPS , |S|   8 with PX̃Ỹs P PpX �Yq for all
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s P S, the RV Ũ such that Ũ � X̃� Ỹs for all s P S, PŨ P PpUq and the RV Γ, PΓ P PpGq
with PΓpγq �

1
|G| for all γ P G. Let δ ¡ 0. For all n large enough there is a stochastic

matrix FCR P PpK � M̄|X n � Gq and a mapping gCR : Yn � M̄� G Ñ K such that for
RVs K, M̄ and tK̂snusnPSn with PKM̄K̂sn

P PpK � M̄�Kq for all sn P Sn defined by

PKM̄K̂snΓpk, m̄, k̂, γq �
n¹
i�1

PX̃Ỹsi
pxi, yiqFCRpk, m̄|x

n, γq

� 1g�1
CRpk̂q

ppyn, m̄, γqqPΓpγq

for pk, m̄, k̂, γq P K � M̄�K � G it holds that¸
m̄PM̄

PM̄ pm̄q max
snPSn

PrpK � K̂sn |M̄ � m̄q ¤ δ

HpK|M̄Γq � log |K|
1
n log |K| ¥ min

WPconvptPỸs|Ũ usPSq
IpPŨ ,W q � δ

1
n log |M̄| ¤ IpŨ ^ X̃q � min

WPconvptPỸs|Ũ usPSq
IpPŨ ,W q � δ

1
n log |G| ¤ δ.

Proof. Let Γ � pΓ1,Γ2,Γ3q where Γ1, Γ2, Γ3 are independent RVs uniformly distributed
on G1, G2 and G3 respectively. Let G1 � rexpprc1 log ns � lqs where c1 ¡ 1 and l P N
(independent of n).

Given a DMC V P PpY|X q in [6] an identification (ID) code pn1, N, λ1, λ2q is defined
as a family tpQp�|iq,DiquiPrNs with Qp�|iq P PpX n1q, Di � Yn

1
for all i P rN s. The ID

code also satisfies bounds on the probabilities of an error of the first kind and an error
of the second kind respectively such that¸

xnPXn

Qpxn
1
|iqV bn1pDci |xn

1
q ¤ λ1

¸
xnPXn

Qpxn
1
|jqV bn1pDi|xn

1
q ¤ λ2

for all i, j P rN s, i � j.

We are interested in ID codes for the noiseless binary channel. In the proof of [6,
Theorem 1 a)] the authors construct an ID code for the binary noiseless channel. They
consider a family A1, � � � ,AN of subsets of t0, 1un

1
with

N � expp�n1q exppexppn1 � lqq � 1.
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Each subset has cardinality exppn1 � lq. l is chosen large enough such that

λ logpexpplq � 1q ¡ 2 expplq ¡ 6

for a λ P p0, 1q. Additionally it holds that

|Ai XAj | ¤ λ exppn1 � lq

for i � j. Such a family exists according to [6, Proposition 1]. The pn1, N, 0, λq ID code
for the noiseless binary channel is defined such that

Qpxn
1
|iq � 1

exppn1�lq1Aipx
n1q

for all xn
1
P X n1 and Di � Ai for i P rN s.

Accordingly we know that there is a prc1 log ns, |K|, 0, λq ID code for the noiseless
binary channel with

|K| � expp�rc1 log nsq exppexpprc1 log ns� lqq � 1.

So there is a mapping T : K � G1 Ñ rexpprc1 log nsqs such that

1
|G1|

¸
γ1PG1

1tT pk,γ1qupT pk̄, γ1qq ¤ λ

for all k, k̄ P K with k � k̄. More explicitly we can define

T pk, γ1q � dpc�1
Akpγ1qq

for all k P K (and for convenience we assume w.l.o.g. that K � r|K|s) where cAk : Ak Ñ
G1 is an arbitrary bijection for allAk and d : t0, 1urc1 logns Ñ rexpprc1 log nsqs is a bijection
too. For n large enough we have

1
n log |K| ¥ nc1�12�l � rc1 logns

n ¥ α

for an arbitrary choice of α ¡ 0. (We could also use different constructions for identifi-
cation protocols in this step.)

Consider pF!, g!q as described in Lemma 4.14 with block length n1 � rc2 log ns, c2 ¡ 0,
for all n large enough and we choose the corresponding Ũ! � X̃. For the corresponding
set K! we have

|K!| ¥ expprc2 log nsεq

for an ε ¡ 0. (If such a lower bound does not hold the theorem we want to prove is
trivially true.) So for an appropriate choice of c2 we have

expprpc1 � εq log nsq ¥ |K!| ¥ expprc1 log nsq.
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We also have for an appropriate choice of c3 ¡ 0

M̄! ¤ expprc2 log nsc3q

and n1! ¤ prc2 log nsqrc2 logns. So for an appropriate choice of c4 ¡ 0 we have

1
n logpn1!q ¤ c4plogpnqq2

n .

We choose G2 � rn1!s and G3 � K!.

Finally choose pFL, gLq as described in Lemma 4.13 with block length n�n1 and choose
the corresponding ŨL � Ũ . We can assume that the symmetrizability of tPỸs|X̃usPS is

M̂   8. Otherwise the lemma we want to prove holds trivially [31, Theorem 1]. So we
have the corresponding list size L̂   8.

Choose K � KL. Define (for an arbitrary injective mapping b : rexpprc1 log nsqs Ñ K!)
for all pk, k̃, m̄L, m̄!q P K�K!�M̄L�M̄!, pγ1, γ2, γ3q P G1�G2�G3 and pxn1 , xn�n1q P X n

FCRpk, pk̃, m̄L, m̄!q|px
n1 , xn�n1q, pγ1, γ2, γ3qq

� F!ppbpT pk, γ1qqq
�1 � k̃ � γ�1

3 , m̄!|x
n1 , γ2qFLpk, m̄L|x

n�n1q,

where � is a commutative group operation on K! and for k! P K! we denote the cor-
responding inverse element by k�1

! . (This definition makes sense as f : K! Ñ K!,

fpk̃q � pbpT pk, γ1qqq
�1 � k̃ � γ�1

3 is a bijection for all k P K, γ1 P G1 and γ3 P G3.)
So we have M̄ � K! � M̄L � M̄!.

We also define for all pk, k̃, m̄L, m̄!q P K � K! � M̄L � M̄!, pγ1, γ2, γ3q P G1 � G2 � G3

and pyn1 , yn�n1q P Yn

gCRppy
n1 , yn�n1q, pk̃, m̄L, m̄!q, pγ1, γ2, γ3qq P

tq P gLpy
n�n1 , m̄Lq : b

�1pk̃ � γ�1
3 � pg!py

n1 , m̄!, γ2qq
�1q � T pq, γ1qu

if the set on the right hand side has cardinality 1. So for this case the decoder is
specified. If this cardinality is not 1, an arbitrary element from K is chosen. Here we
define b�1pk!q � 1 for all k! R bprexpprc1 log nsqsq.

It holds that

PK|M̄Γpk|m̄L, m̄!, k̃, γ1, γ2, γ3q �
°
xn FCRpk,pk̃,m̄L,m̄!q|x

n,pγ1,γ2,γ3qqP
bn

X̃
pxnq

°
xn
°
k FCRpk,pk̃,m̄L,m̄!q|xn,pγ1,γ2,γ3qqP

bn

X̃
pxnq

.

In the following we use the notation xn � pxn1 , xn�n1q. The numerator of the fraction
above equals ¸

xn1

F!ppbpT pk, γ1qqq
�1 � k̃ � γ�1

3 , m̄!|x
n1 , γ2qP

bn1

X̃
pxn1q

¸
xn�n1

FLpk, m̄L|x
n�n1qPbn�n1

X̃
pxn�n1q,
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for the denominator we have¸
k

¸
xn1

F!ppbpT pk, γ1qqq
�1 � k̃ � γ�1

3 , m̄!|x
n1 , γ2q

Pbn1

X̃
pxn1q

¸
xn�n1

FLpk, m̄L|x
n�n1qPbn�n1

X̃
pxn�n1q.

Now we use the properties of pF!, g!q and get¸
xn1

F!ppbpT pk, γ1qqq
�1 � k̃ � γ�1

3 , m̄!|x
n1 , γ2qP

bn1

X̃
pxn1q

� 1
|K!|

¸
k!PK!

¸
xn1

F!pk!, m̄!|x
n1 , γ2qP

bn1

X̃
pxn1q

which is independent of k. So the complete fraction equals

°
xn�n1 FLpk,m̄L|x

n�n1 qP
bn�n1
X̃

pxn�n1 q
°
xn�n1

°
k FLpk,m̄L|x

n�n1 qP
bn�n1
X̃

pxn�n1 q
� 1

|K|

where the last step follows from the properties of pFL, gLq.

Now we consider¸
m̄PM̄

PM̄ pm̄q max
snPSn

PrpK � K̂sn |M̄ � m̄q

�
¸
m̄PM̄

PM̄ pm̄q max
snPSn

¸
kPK

Prpk � K̂sn |M̄ � m̄,K � kq

�
¸
γPG

PK|M̄Γpk|m̄, γqPΓ|M̄ pγ|m̄q

�
¸
m̄PM̄

PM̄ pm̄q max
snPSn

1
|K|

¸
kPK

Prpk � K̂sn |M̄ � m̄,K � kq

The term Prpk � K̂sn |M̄ � m̄,K � kq for pk, m̄q P K � M̄ and sn P Sn can be written
as the fraction with numerator

¸
k̂PK :
k̂�k

¸
xn,yn
γ1,γ2,γ3

n¹
i�1

PX̃Ỹsi
pxi, yiqFLpk, m̄L|x

n�n1q

� 1
|G|F!ppbpT pk, γ1qqq

�1 � k̃ � γ�1
3 , m̄!|x

n1 , γ2q1g�1
CRpk̂q

pyn, pk̃, m̄L, m̄!q, pγ1, γ2, γ3qq (4.56)
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and denominator

¸
xn,yn
γ1,γ2,γ3

n¹
i�1

PX̃Ỹsi
pxi, yiqFLpk, m̄L|x

n�n1q 1
|G|F!ppbpT pk, γ1qqq

�1 � k̃ � γ�1
3 , m̄!|x

n1 , γ2q.

(4.57)

For all k P K and pyn, pk̃, m̄L, m̄!q, pγ1, γ2, γ3qq P Yn � M̄� G it holds that¸
k̂PK :
k̂�k

1g�1
CRpk̂q

pyn, pk̃, m̄L, m̄!q, pγ1, γ2, γ3qq

¤ 1pg�1
! ppbpT pk,γ1qqq�1�k̃�γ�1

3 qqcpy
n1 , m̄!, γ2q

� 1pg�1
L pkqqcpy

n�n1 , m̄Lq

� 1 tpyn�n1 ,m̄L,k,γ1q :
DqPgLpy

n�n1 ,m̄Lq :
q�k^T pq,γ1q�T pk,γ1qu

pyn�n1 , m̄L, k, γ1q,

where we use yn � pyn1 , yn�n1q.

Thus we can upper bound the fraction with numerator (4.56) and denominator (4.57)
by the sum of the three fractions with the same denominator and the numerators

¸
xn,yn
γ1,γ2,γ3

n¹
i�1

PX̃Ỹsi
pxi, yiqFLpk, m̄L|x

n�n1q

� 1
|G|F!ppbpT pk, γ1qqq

�1 � k̃ � γ�1
3 , m̄!|x

n1 , γ2q

� 1pg�1
! ppbpT pk,γ1qqq�1�k̃�γ�1

3 qqcpy
n1 , m̄!, γ2q, (4.58)

¸
xn,yn
γ1,γ2,γ3

n¹
i�1

PX̃Ỹsi
pxi, yiqFLpk, m̄L|x

n�n1q

� 1
|G|F!ppbpT pk, γ1qqq

�1 � k̃ � γ�1
3 , m̄!|x

n1 , γ2q

� 1pg�1
L pkqqcpy

n�n1 , m̄Lq (4.59)
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and

¸
xn,yn
γ1,γ2,γ3

n¹
i�1

PX̃Ỹsi
pxi, yiqFLpk, m̄L|x

n�n1q

� 1
|G|F!ppbpT pk, γ1qqq

�1 � k̃ � γ�1
3 , m̄!|x

n1 , γ2q

� 1 tpyn�n1 ,m̄L,k,γ1q :
DqPgLpy

n�n1 ,m̄Lq :
q�k^T pq,γ1q�T pk,γ1qu

pyn�n1 , m̄L, k, γ1q. (4.60)

At first consider the fraction with numerator (4.58). This numerator can be rewritten
as

¸
xn1 ,yn1

γ1,γ2,γ3

n1¹
i�1

PX̃Ỹsi
pxi, yiq

1
|G|F!ppbpT pk, γ1qqq

�1 � k̃ � γ�1
3 , m̄!|x

n1 , γ2q

� 1pg�1
! ppbpT pk,γ1qqq�1�k̃�γ�1

3 qqcpy
n1 , m̄!, γ2q

�
¸

xn�n1 ,yn�n1

n¹
i�n1�1

PX̃Ỹsi
pxi, yiqFLpk, m̄L|x

n�n1q

while the denominator can be rewritten as

¸
xn1 ,yn1

γ1,γ2,γ3

n1¹
i�1

PX̃Ỹsi
pxi, yiq

1
|G|F!ppbpT pk, γ1qqq

�1 � k̃ � γ�1
3 , m̄!|x

n1 , γ2q

�
¸

xn�n1 ,yn�n1

n¹
i�n1�1

PX̃Ỹsi
pxi, yiqFLpk, m̄L|x

n�n1q.

We can again rewrite this fraction and get

°
xn1 ,yn1

γ2,γ3

±n1
i�1 PX̃Ỹsi

pxi,yiqF!pγ3,m̄!|x
n1 ,γ2q1pg�1

!
pγ3qq

c py
n1 ,m̄!,γ2q

°
xn1 ,yn1 ,γ2

°
γ3

±n1
i�1 PX̃Ỹsi

pxi,yiqF!pγ3,m̄!|x
n1 ,γ2q

.

This is possible because f : G3 Ñ G3, fpγ3q � pbpT pk, γ1qqq
�1 � k̃ � γ�1

3 is a bijection.
(Note that this expression does not depend on k̃, k and m̄L.) Now we consider the
fraction with numerator (4.59). This numerator can be rewritten as

¸
xn1 ,yn1

γ1,γ2,γ3

n1¹
i�1

PX̃Ỹsi
pxi, yiq

1
|G|F!ppbpT pk, γ1qqq

�1 � k̃ � γ�1
3 , m̄!|x

n1 , γ2q

�
¸

xn�n1 ,yn�n1

n¹
i�n1�1

PX̃Ỹsi
pxi, yiqFLpk, m̄L|x

n�n1q1pg�1
L pkqqcpy

n�n1 , m̄Lq
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while the denominator can be rewritten as before. We can again rewrite this fraction
and get the fraction with numerator

¸
xn�n1

yn�n1

n¹
i�n1

PX̃Ỹsi
pxi, yiqFLpk, m̄L|x

n�n1q

� 1pg�1
L pkqqcpy

n�n1 , m̄Lq

and denominator

¸
xn�n1

yn�n1

n¹
i�n1

PX̃Ỹsi
pxi, yiqFLpk, m̄L|x

n�n1q. (4.61)

(This expression does not depend on m̄! and k̃.) Now we consider the the fraction with
numerator (4.60). Using the same steps as for the second fraction this fraction can be
rewritten as the fraction with numerator

¸
xn�n1

yn�n1

n¹
i�n1

PX̃Ỹsi
pxi, yiqFLpk, m̄L|x

n�n1q

� 1
|G1|

¸
γ1

1 tpyn�n1 ,m̄L,k,γ1q :
DqPgLpy

n�n1 ,m̄Lq :
q�k^T pq,γ1q�T pk,γ1qu

pyn�n1 , m̄L, k, γ1q

and denominator (4.61). We have

1
|G1|

¸
γ1

1 tpyn�n1 ,m̄L,k,γ1q :
DqPgLpy

n�n1 ,m̄Lq :
q�k^T pq,γ1q�T pk,γ1qu

pyn�n1 , m̄L, k, γ1q

¤ 1
|G1|

¸
γ1

¸
qPgLpy

n�n1 ,m̄Lq :
q�k

1tT pk,γ1qupT pq, γ1qq

�
¸

qPgLpy
n�n1 ,m̄Lq :
q�k

1
|G1|

¸
γ1

1tT pk,γ1qupT pq, γ1qq

¤ pL̂� 1qλ.

So the third fraction can be upper bounded by pL̂� 1qλ. Now we write F1pm̄!, s
n1q for

the first fraction and F2pk, m̄L, s
n�n1q for the second fraction (and we use the notation
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sn � psn1 , sn�n1q). Consequently we have¸
m̄PM̄

PM̄ pm̄q max
snPSn

PrpK � K̂sn |M̄ � m̄q

¤
¸
m̄PM̄

PM̄ pm̄q max
sn1PSn1

1
|K|

¸
kPK

F1pm̄!, s
n1q

�
¸
m̄PM̄

PM̄ pm̄q max
sn�n1PSn�n1

1
|K|

¸
kPK

F2pk, m̄L, s
n�n1q

�
¸
m̄PM̄

PM̄ pm̄q max
snPSn

1
|K|

¸
kPK

pL̂� 1qλ.

The first and second summand are arbitrarily small for n large enough, which follows
from our choice of pF!, g!q and pFL, gLq respectively. Thus the error probability of the
whole protocol is arbitrarily small for n large enough.

Finally consider

1
n log |K| � p1� rc2 logns

n qp 1
n�n1

log |KL|q

and

1
n log |M̄| � 1

nplog |M̄!| � log |M̄L| � log |K̄!|q

¤ 1
n�n1

log |M̄L| �
1
nprc2 log nsc3 � rpc1 � εq log nsq

and thus the desired results for 1
n log |K| and 1

n log |M̄| follow from the properties of
pFL, gLq. We also have

1
n log |G| � 1

nplog |G1| � log |G2| � log |G3|q

¤ 1
nprc1 log ns� l � c4plogpnqq2 � rpc1 � εq log nsq.
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