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Abstract We present for the first time a model-independent
anatomy of the ratio ε′/ε in the context of the �S = 1 effec-
tive theory with operators invariant under QCD and QED
and in the context of the standard model effective field the-
ory (SMEFT) with the operators invariant under the full SM
gauge group. Our goal is to identify the new physics scenarios
that are probed by this ratio and which could help to explain
a possible deviation from the SM that is hinted by the data.
To this end we derive a master formula for ε′/ε, which can
be applied to any theory beyond the standard model (BSM)
in which the Wilson coefficients of all contributing operators
have been calculated at the electroweak scale. The relevant
hadronic matrix elements of BSM operators are from the
Dual QCD approach and the SM ones from lattice QCD.
Within SMEFT, the constraints from K 0 and D0 mixing as
well as electric dipole moments limit significantly potential
new physics contributions to ε′/ε. Correlations of ε′/ε with
K → πνν̄ decays are briefly discussed. Building on our EFT
analysis and the model-independent constraints, we discuss
implications of a possible deviation from the SM in ε′/ε for
model building, highlighting the role of the new scalar and
tensor matrix elements in models with scalar mediators.
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1 Introduction

One of the stars of flavour physics since the early 1980s
has been the ratio ε′/ε that measures the size of direct CP
violation in KL → ππ relative to the indirect CP violation
described by εK . On the experimental side, the world average
from the NA48 [1] and KTeV [2,3] collaborations reads

(ε′/ε)exp = (16.6 ± 2.3) × 10−4. (1)

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-019-6715-6&domain=pdf
mailto:jason.aebischer@tum.de
mailto:christoph.bobeth@tum.de
mailto:andrzej.buras@tum.de
mailto:david.straub@tum.de


219 Page 2 of 28 Eur. Phys. J. C (2019) 79 :219

On the theory side, a long-standing challenge in making pre-
dictions for ε′/ε within the standard model (SM) has been
the significant cancellation between QCD and electroweak
penguin contributions to this ratio. In the SM, QCD pen-
guins give a positive contribution and electroweak penguins
a negative one. Therefore, in order to obtain an accurate pre-
diction, both the short-distance contributions to this ratio,
represented by Wilson coefficients of penguin operators, as
well as the long-distance hadronic matrix elements of these
operators have to be accurately known.

As far as the short-distance contributions are concerned,
they have been known already for 25 years at next-to-
leading order (NLO) [4–9]. First steps towards next-to-next-
to-leading order (NNLO) predictions for ε′/ε have been
made in [10–13] and further progress towards a complete
NNLO result is under way [14].

The situation with hadronic matrix elements is another
story and even if significant progress on their evaluation has
been made over the last 25 years, the present status is far from
satisfactory. The situation of ε′/ε in the SM can be briefly
summarized as follows:

• The analysis of ε′/ε by the RBC-UKQCD collaboration
based on their lattice QCD calculation of K → ππ

matrix elements [15,16], as well as the analyses per-
formed in [17,18] that are based on the same matrix ele-
ments but also include isospin breaking effects, find ε′/ε
in the ballpark of (1 − 2)× 10−4. This is by one order of
magnitude below the data, but with an error in the ball-
park of 5×10−4. Consequently, based on these analyses,
one can talk about an ε′/ε anomaly of at most 3σ .

• An independent analysis based on hadronic matrix ele-
ments from the Dual QCD (DQCD) approach [19,20]
gives a strong support to these values and moreover pro-
vides an upper bound on ε′/ε in the ballpark of 6×10−4.

• A different view has been expressed in [21] where, using
ideas from chiral perturbation theory, the authors find
ε′/ε = (15 ± 7) × 10−4. While in agreement with
the measurement, the large uncertainty, that expresses
the difficulties in matching long distance and short dis-
tance contributions in this framework, does not allow
for clear-cut conclusions. Consequently, values above
2 × 10−3, that are rather unrealistic from the point of
view of lattice QCD and DQCD, are not excluded in this
approach.

Here, we would like to point out that all the existing esti-
mates of ε′/ε at NLO suffer from unaccounted-for short-
distance renormalization scheme uncertainties in the elec-
troweak penguin contributions that are removed in the NNLO
matching at the electroweak scale [11]. In the naive dimen-
sional regularization (NDR) scheme, used in all recent anal-
yses, these corrections enhance parts of the electroweak

penguin contribution by roughly 16%, thereby leading to
a negative shift of −1.3 × 10−4 decreasing the value of
ε′/ε, similarly to isospin breaking effects. This could appear
small in view of other uncertainties. However, on the one
hand, potential scale and renormalization scheme uncertain-
ties have been removed in this manner and on the other
hand, one day such corrections could turn out to be rele-
vant. Finally, the fact that this correction further decreases
ε′/ε within the SM gives another motivation for the search
for new physics responsible for it, and thus for the present
analysis.

Based on the results from RBC-UKQCD and the DQCD
approach of 2015 and without the inclusion of NNLO cor-
rections mentioned above, a number of analyses have been
performed in specific models beyond the SM (BSM) with
the goal to obtain a sufficient upward shift in ε′/ε and
thereby its experimental value. These include in particu-
lar tree-level Z ′ exchanges with explicit realization in 331
models [22,23] or models with tree-level Z0 exchanges
[24,25] with explicit realization in models with mixing of
heavy vector-like fermions with ordinary fermions [26] and
the Littlest Higgs model with T-parity [27]. Also simpli-
fied Z ′ scenarios [28,29], the MSSM [30–34], the type-III
Two-Higgs Doublet model (2HDM) [35,36], a SU (2)L ⊗
SU (2)R ⊗ U (1)B−L model [37,38] and the one based on
SU(8) symmetry [39] are of help here. On the other hand,
as demonstrated in [40], it is very unlikely that leptoquarks
are responsible for the ε′/ε anomaly when the constraints
from rare semi-leptonic and leptonic K decays are taken into
account.

An important limitation of the recent literature is that it
addressed the ε′/ε anomaly only in models in which new
physics (NP) entered exclusively through modifications of
the Wilson coefficients of SM operators. However, gener-
ally, BSM operators with different Dirac structures – like the
ones resulting from tree-level scalar exchanges and leading
to scalar and tensor operators – or chromo-magnetic dipole
operators could play a significant role in ε′/ε. Until recently,
no quantitative judgment of the importance of such operators
was possible because of the absence of even approximate cal-
culations of the relevant hadronic matrix elements in QCD.
This situation has been changed through the calculation of the
matrix elements in question for the chromo-magnetic dipole
operators by lattice QCD [41] and DQCD [42] and in partic-
ular through the calculation of matrix elements of all four-
quark BSM operators, including scalar and tensor operators,
by DQCD [43]. The first application of these new results for
chromo-magnetic dipole operators can be found in [36] and
in the present paper we will have a closer look at all BSM
operators.

Another important question is which of the operators
in the low-energy effective theory can be generated in a
short-distance BSM scenario. A powerful tool for this pur-
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pose is the standard model effective field theory (SMEFT)
[44,45], where the SM Lagrangian above the electroweak
scale μew ∼ 100 GeV and below the scale of new physics
μ� � μew is supplemented by all dimension five and
six operators that are invariant under the SM gauge group
GSM = SU (3)c⊗SU (2)L⊗U (1)Y . As we will show, match-
ing the SMEFT at tree level on the �S = 1 effective field
theory (EFT) at μew, not all operators that are allowed by
the QCD and QED gauge symmetry SU (3)c ⊗ U (1)Q are
generated.

The goal of the present paper is to perform a general BSM
analysis of ε′/ε, taking into account all possible operators
and exploiting the SMEFT to single out the operators that
can be generated in high-scale BSM scenarios. In this man-
ner, one can obtain a general view on possible BSM physics
behind the emerging ε′/ε anomaly and point out promising
directions to be explored in concrete models and exclude
those in which the explanation of the data in (1) is unlikely.
In the context of SMEFT, constraints from other processes,
in particular from εK , D0-D̄0 mixing, and electric dipole
moments, play an important role and we will discuss them
in the present paper.

One of the highlights of our paper is the derivation of a
master formula for ε′/ε, recently presented in [46], which
can be applied to any theory beyond the SM in which the
Wilson coefficients of the operators have been calculated
at the electroweak scale. The relevant hadronic matrix ele-
ments of BSM operators entering this formula are taken
from the DQCD approach and for the SM ones from lattice
QCD.

The outline of our paper is as follows. In Sect. 2 we present
a complete model-independent anatomy of ε′/ε from the
point of view of the �S = 1 EFT and provide the master
formula of ε′/ε beyond the SM. We give also the tree-level
matching of SMEFT on the �S = 1 EFT relevant for ε′/ε. In
Sect. 3 we discuss correlations that arise in SMEFT between
ε′/ε and other processes, in particular εK , D0-D̄0 mixing,
the electric dipole moment of the neutron, and the decays
KL → π0νν̄ and K+ → π+νν̄. Based on the previous
section, we derive lessons for model building in Sect. 4 to
facilitate the identification of classes of models that are con-
strained by ε′/ε as well as singling out prime candidates for
new physics scenarios behind the ε′/ε anomaly. We summa-
rize the main virtues of our analysis in Sect. 5. In several
appendices we collect our conventions, recall useful defini-
tions, and provide the necessary material for the numerical
analysis of ε′/ε beyond the SM.

2 Model-independent anatomy of ε′/ε

The parameter ε′/ε measures the ratio of direct over indirect
CP violation in KL → ππ decays. Using the precisely mea-

sured εK from experiment and neglecting isospin breaking
corrections,1 it can be written as2

ε′

ε
= − ω√

2|εK |
[

ImA0

ReA0
− ImA2

ReA2

]
, (2)

where A0,2 are the K → ππ isospin amplitudes

A0,2 =
〈
(ππ)I=0,2

∣∣∣ H(3)
�S=1(μ)

∣∣∣ K 〉
, (3)

and the ratio ω = ReA2/ReA0 ≈ 1/22 expresses the
enhancement of ReA0 over ReA2 known as the �I = 1/2
rule.H(3)

�S=1 denotes the effective Hamiltonian of the�S = 1
EFT taken at the low-energy scale μ ∼ 1 GeV with only
the three lightest quarks, q = u, d, s being dynamical. It is
obtained by decoupling the heavy W±, Z0, and h0 bosons
and the top quark at the electroweak scale μew and the bot-
tom and charm quarks at their respective mass thresholds μb

and μc, respectively [49].
The values of the Wilson coefficients in this effective

Hamiltonian encode all possible NP effects in ε′/ε. How-
ever, when considering a NP model at a scale μ�, much
larger than the electroweak scale μew, these low-energy Wil-
son coefficients are only the final step in a series of effective
theories. At μ� � μew, integrating out the heavy new par-
ticles leads to the SMEFT Lagrangian with dimension five
and six operators invariant under the full SM gauge group.
Using the SMEFT renormalization group (RG) equations,
these can be evolved to μew and matched onto H(5)

�S=1 with
five active quark flavours. This hierarchy of effective theories
is sketched in Fig. 1 and the remainder of this section will be
devoted to discussing the individual steps in detail, starting
from the lowest scale:

• Section 2.1 discusses the relevant operators in H(3)
�S=1

and their K → ππ matrix elements.
• Section 2.2 discusses the RG evolution between the low-

est scaleμ and μew and the additional operators inH(5)
�S=1

that can play a role.
• Section 2.3 summarizes the results of Sects. 2.1 and 2.2

in the form of a convenient master formula of ε′/ε.

1 Isospin breaking corrections have been considered in [47,48] and
have been taken into account in the SM analyses in [17,18]. There they
play a significant role in suppressing the ImA0 contribution relatively to
the ImA2 one, making the cancellation between these two contributions
stronger. However, in BSM scenarios, such a strong cancellation is not
expected and typically contributions to ImA2 dominate as they are not
suppressed by the factor 1/ω ≈ 22 in contrast to ImA0. Therefore, the
inclusion of isospin breaking effects in the BSM contributions calcu-
lated by us is insignificant and it is justified to neglect them in view of
the remaining uncertainties in hadronic matrix elements that affect the
dominant contributions to ImA2.
2 It is common to omit the subscript K on ε ≡ εK when writing the
ratio ε′/ε.
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Fig. 1 Sketch of the different contributions to ε′/ε discussed in Sect. 2,
starting from Wilson coefficients of SMEFT operators at a high scale
μ�, evolved to the electroweak scale μew with the SMEFT RG equa-
tions, matched onto the 5-flavour �S = 1 effective Hamiltonian
(Sect. 2.4), evolved to the hadronic scale μ (Sect. 2.2), and multiplied

by the K → ππ matrix elements (Sect. 2.1). In the SMEFT running,
the arrows indicate operator mixing arising from top-quark Yukawa
or gauge couplings. The matching is performed at tree level. We have
omitted semi-leptonic and electro-magnetic dipole operators

• Section 2.4 discusses the matching of SMEFT onto
H(5)

�S=1 at μew, singling out the operators that arise at
the dimension-six level, and briefly discusses RG effects
in SMEFT above μew.

Figure 1 can serve as a map guiding through this anatomy
and already anticipates some of the findings of this section.

2.1 K → ππ matrix elements

Given the values of the Wilson coefficients in the effective
Hamiltonian

H(3)
�S=1 = −

∑
i

Ci (μ) Oi , (4)

at the low-energy scale μ, the K → ππ isospin amplitudes
can be calculated by means of (3) if the matrix elements

〈Oi (μ)〉I ≡ 〈(ππ)I |Oi |K 〉 (μ), (5)

are known at the scale μ. Neglecting electro-magnetic cor-
rections, only chromo-magnetic dipole operators

O(′)
8g = ms(s̄ σμνT APL(R)d)GA

μν, (6)

and four-quark operators

Oq
X AB =

(
s̄i
X PAd

i
) (

q̄ j
X PBq
j
)

,

Õq
X AB =

(
s̄i
X PAd

j
) (

q̄ j
X PBq
i
)

, (7)

can contribute. Here i, j are colour indices, A, B = L , R,
and X = S, V, T with 
S = 1, 
V = γ μ, 
T =
σμν .3 Throughout it is sufficient to consider the case A =
L , whereas results for the chirality-flipped case A = R
(obtained by interchange of L ↔ R for both A, B) follow
analogously due to parity conservation of QCD and QED:
the K → ππ matrix elements of chirality-flipped operators
have just opposite sign.

Since the number of active quark flavours is N f = 3,
in principle the four-quark operators with q = u, d, s are
present in (7). However, we expect the contribution to K →
ππ matrix elements from operators with flavour structure
(s̄d)(s̄s) to be strongly suppressed4 and we will neglect them.

Using Fierz relations to eliminate redundant operators
(see “Appendix A” for details), it then follows that there are
only 10 + 10′ (s̄d)(ūu) and 5 + 5′ (s̄d)(d̄d) linearly inde-
pendent four-quark operators that contribute to ε′/ε via a
non-vanishing K → ππ matrix element and in addition the
chromo-magnetic dipole operators (1 + 1′). In the amplitude

3 For 
T there is only PA = PB in four dimensions but not PA 
= PB .
4 The N f = 3 lattice results [15,16] of the K → ππ matrix elements in
principle include these contributions but from these results they cannot
be disentangled from the (s̄d)(ūu) and (s̄d)(d̄d) ones. In this regard it
is desirable that lattice collaborations provide in the future separately
the matrix element for each (s̄d)(q̄q) operator for q = u, d, s.
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A0, there are then in total 16 independent matrix elements,
seven of which are the ones of the SM four-quark operators
and one the chromo-magnetic dipole matrix element. In the
amplitude A2, further simplifications arise as the chromo-
magnetic dipole operator cannot generate a �I = 3/2 tran-
sition, neither can an operator of the form Ou

X AB + Od
X AB ,

leaving only five linearly independent matrix elements, three
of which are present in the SM. We write the number of total
matrix elements in the I = 0, 2 amplitudes as 160 + 52. In
“Appendix B”, we specify a non-redundant basis for them.

By now these matrix elements are known with varying
accuracy:

• First lattice calculations for the 70 +32 matrix elements5

generated in the SM have recently been performed by the
RBC-UKQCD collaboration [15,16]. These results are in
good agreement with the pattern of matrix elements of
the relevant QCD and QED penguin operators obtained
in the DQCD approach [19,50–52].

• The K → ππ matrix element of the chromo-magnetic
dipole operator is presently not accessible directly on
the lattice, but can only be estimated by relating it to
the analogous K → π matrix element via SU (3) chiral
symmetry [41]. Recently, the K → ππ matrix element
of this operator has been calculated directly for the first
time in the DQCD approach in the SU (3) chiral limit
[42]. Both results are in good agreement with each other
and show that the relevant matrix element is by a factor of
three to four smaller than previously expected in the chiral
quark model [53], thereby decreasing the impact of these
operators on ε′/ε. Nevertheless there are NP scenarios
where they play an important role (see e.g. [36,54]).

• The matrix elements of the remaining 80 + 22 linearly
independent BSM four-quark matrix elements in Table 5
have only been calculated very recently in DQCD in the
SU (3) chiral limit [43] and it will still take some time
before corresponding results in lattice QCD will be avail-
able. Yet already these approximate results from DQCD
can teach us a lot about the relevance of various opera-
tors. The scalar and tensor operators X = S, T belong to
this group and their matrix elements cannot be expressed
in terms of the SM ones.

We give the numerical values of all matrix elements in
“Appendix B”.

To summarize, there are three classes of matrix elements
that can play a role in ε′/ε,

• the matrix elements present in the SM,

5 Note that the 10 operators in the traditional SM basis are not linearly
independent and correspond only to 7 linearly independent operators
for N f = 3 [8].

• the chromo-magnetic dipole matrix element,
• the matrix elements of BSM scalar and tensor operators.

These three classes are indicated at the bottom of the sketch
in Fig. 1.

2.2 Renormalization group evolution below the
electroweak scale

In the previous subsection, we have seen that 15 + 15′ four-
quark operators in H(3)

�S=1 can contribute to K → ππ at the
scale μ. However, additional four-quark operators are present
in the five-flavour Hamiltonian H(5)

�S=1 at μew, namely the
four-quark operators with flavour structures (s̄d)(q̄q) where
q = c and b. They can contribute to ε′/ε indirectly if they
undergo QCD and/or QED RG mixing with q = u, d oper-
ators. The same is true for the operators with q = s that
were already present for N f = 3, but did not contribute
directly (at least in our approximation). In principle, also
semi-leptonic operators can contribute, since they mix under
QED into four-quark operators, but we will neglect them in
the following, since they are typically strongly constrained
from semi-leptonic kaon decays (as demonstrated for lepto-
quark models in [40]).

To evolve the Wilson coefficients from μew down to the
scale μ where the matrix elements are evaluated, the anoma-
lous dimension matrices (ADMs) are required. The QCD
and QED one-loop ADMs for the linearly independent set
of four-quark and dipole operators can be extracted from
the literature [55–57] and we have implemented them in the
open source tool wilson [58] that allows to solve the RG
equations numerically.

Inspection of the RG mixing reveals that

• The vector operators Oc,b
V AB and their colour-flipped

counterparts, as well as the operators Os,d
SAB with A 
= B,

mix into Ou,d
V AB at one loop in QCD and QED, specifi-

cally into the QCD and QED penguin operators present
in the SM.

• For scalar and tensor operators Oq
X AA (X = S or T ) there

is instead no mixing among operators with different q.
This implies in particular that the operators Os,c,b

X AA cannot
mix into four-quark operators that have non-vanishing
K → ππ matrix elements. However, they do mix at one
loop in QCD into the chromo-magnetic dipole operators
O(′)

8g and in QED into the electro-magnetic ones.

Taking these observations into account, we can identify
for a given chirality five qualitatively different classes of NP
models where different K → ππ matrix elements are rele-
vant:
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Class A Models with NP represented by the operators

Oq
V LL , Õq

V LL , Oq
V LR, Õq

V LR, (q = u, c, b) (8)

and

Oq
V LL , Oq

V LR, Oq
SLR, (q = d, s) (9)

as well as their chirality-flipped counterparts at the elec-
troweak scale contribute to ε′/ε via operators whose matrix
elements can be written as linear combinations of the matrix
elements of SM operators that were calculated in lattice QCD.
Note that operators with q = s, c, b contribute via RG mix-
ing into operators with q = u, d and only the matrix ele-
ments of the latter are related to matrix elements of the SM
operators. Therefore NP contributions in this class of models
presently rely on lattice QCD calculations [15,16], which are
supported by DQCD results.

Class B Models with NP represented by the operators

Oc,b
SLL , Õc,b

SLL , Oc,b
T LL , Õc,b

T LL (10)

and

O8g, Os
SLL , Os

T LL , (11)

as well as their chirality-flipped counterparts only contribute
to ε′/ε through RG mixing into the chromo-magnetic dipole
operators.6 The relevant matrix element has been calculated
recently by lattice QCD [41] and DQCD [42].

Class C Models with NP represented by the operators with
the flavour structure (s̄d)(ūu)

Ou
SLL , Õu

SLL , Ou
T LL , Õu

T LL (12)

as well as their chirality-flipped counterparts contribute via
BSM matrix elements [43] or the chromo-magnetic dipole
matrix elements [41,42]. None of these matrix elements can
be expressed in terms of the ones of SM four-quark operators.

Class D Models with NP represented by the operators with
the flavour structure (s̄d)(d̄d)

Od
SLL , Od

T LL , (13)

as well as their chirality-flipped counterparts contribute via
BSM matrix elements [43] or the chromo-magnetic dipole
matrix element [41,42].

Class E Models with NP represented by the operators with
the flavour structure (s̄d)(ūu)

Ou
SLR, Õu

SLR, (14)

as well as their chirality-flipped counterparts contribute
exclusively via BSM matrix elements [43] to the I = 0
amplitude. The I = 2 matrix elements can instead be
expressed in terms of the SM ones.

6 As stated above, we neglect electro-magnetic dipole operators.

There are 37 + 37′ operators in Classes A–E. The only
remaining 4 + 4′ operators in H(5)

�S=1, namely

Oc,b
SLR, Õc,b

SLR, (15)

and their chirality-flipped counterparts, have been omitted
since they neither contribute directly nor via RG mixing to
ε′/ε at the level considered.

2.3 Master formula for ε′/ε beyond the SM

Having both the RG evolution and all matrix elements at
the low-energy scale μ for the first time at hand allowed
us recently [46] to present in a letter a master formula for
(ε′/ε)BSM that exhibits its dependence on each Wilson coef-
ficient at the scale μew and consequently is valid in any theory
beyond the SM that is free from non-standard light degrees
of freedom below the electroweak scale. We will now dis-
cuss various ingredients and technical details which led to
this formula.

The numerical analysis in [46] has been performed with
the public codes flavio [59,60] and wilson [58]. In the
evaluation of ε′/ε we set Re A0,2 in (2) to the measured values
[61]

Re A0 = 27.04(1) × 10−8 GeV,

Re A2 = 1.210(2) × 10−8 GeV, (16)

accounting thus for potential new physics. We use here the
same convention for the normalization (h = 1) of the ampli-
tudes as has been chosen for the calculation of the matrix
elements of BSM operators in [42,43], which differs from
the one (h = √

3/2) used by RBC-UKQCD [15,16]. We
fix μew = 160 GeV, close to the top-quark mass, and
μ = 1.3 GeV. Writing ε′/ε as a sum of the SM and BSM
contributions,

ε′

ε
=

(
ε′

ε

)
SM

+
(

ε′

ε

)
BSM

, (17)

the master formula of [46] for the BSM part then reads7

(
ε′
ε

)
BSM

=
∑
i

Pi (μew) Im
[
Ci (μew) − C ′

i (μew)
] × (1 TeV)2,

(18)

where

Pi (μew) =
∑
j

∑
I=0,2

p(I )
i j (μew, μ)

[ 〈Oj (μ)〉I
GeV3

]
, (19)

7 Note that here we have the convention of dimensionful Wilson coef-
ficients in (4) and (61) in contrast to [46]. Both are related by simple
rescaling Chere

i = Ci/(1 TeV)2, which is taken care of in (18), such that

Pi and p(I )
i j are the same.
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with the sum over i extending over the Wilson coefficients
Ci of all operators in Classes A–E and their chirality-flipped
counterparts, that is 36+36′ linearly independent four-quark
operators and 1 + 1′ chromo-magnetic dipole operators. The
C ′
i are the Wilson coefficients of the corresponding chirality-

flipped operators obtained by interchanging PL ↔ PR . The
relative minus sign accounts for the fact that their K → ππ

matrix elements differ by a sign. Among the contributing
operators are also operators present already in the SM but
their Wilson coefficients in (18) include only BSM contribu-
tions.

The dimensionless coefficients p(I )
i j (μew, μ) include the

QCD and QED RG evolution from μew to μ for each Wilson
coefficient as well as the relative suppression of the contri-
butions to the I = 0 amplitude due to ReA2/ReA0 � 1
for the matrix elements 〈Oj (μ)〉I of all the operators Oj

present at the low-energy scale, see “Appendix B”. The index
j includes also i so that the effect of self-mixing is included.
The Pi (μew) do not depend on μ to the considered order,
because the μ-dependence cancels between matrix elements
and the RG evolution operator. Moreover, it should be empha-
sized that their values are model-independent and depend
only on the SM dynamics below the electroweak scale, which
includes short distance contributions down to μ and the long
distance contributions represented by the hadronic matrix
elements. The BSM dependence enters our master formula
in (18) only through the Wilson coefficients Ci (μew) and
C ′
i (μew). That is, even if a given Pi is non-zero, the fate of

its contribution depends on the difference of these two coeffi-
cients. In particular, in models with exact left-right symmetry
this contribution vanishes as first pointed out in [62].

The numerical values of the Pi (μew) are collected in the
tables in “Appendix C”. As seen in (19), the Pi depend on
the hadronic matrix elements 〈Oj (μ)〉I and the RG evolution

factors p(I )
i j (μew, μ). The numerical values of the hadronic

matrix elements rely on lattice QCD in the case of SM opera-
tors and DQCD in the case of BSM operators as summarized
above. Consequently, the uncertainties of the Pi are of the
order of 5–7% resulting from SM matrix elements and at the
level of 20% coming from BSM matrix elements.

Inspecting the results in the tables in “Appendix C” the
following comments are in order.

• The large Pi values for operators with flavour content
(s̄d)(ūu) and (s̄d)(d̄d) in Class A can be traced back
to the large values of the matrix elements 〈Q7,8〉2, the
dominant electroweak penguin operators in the SM, and
the enhancement of the I = 2 contributions relative to
I = 0 ones by ω ≈ 22.

• The small Pi values in Class B are due to the fact that
they are all proportional to 〈O8g〉0, which has recently
been found to be much smaller than previously expected

[41,42]. Moreover, as 〈O8g〉2 = 0, all contributions in
this class are suppressed by the factor 1/ω relative to
contributions from other classes.

• The large Pi values in Classes C–D can be traced back to
the large hadronic matrix elements of scalar and tensor
operators calculated recently in [43]. Due to the small-
ness of 〈O8g〉0, the contribution of the chromo-magnetic
dipole operator in Classes C–D is negligible.

• While the I = 0 matrix elements of the operators in Class
E cannot be expressed in terms of SM ones, the I = 2
matrix elements can, and the large Pi values can be traced
back to the large SM matrix elements 〈Q7,8〉2.

2.4 Matching from SMEFT onto �S = 1 EFT

The SMEFT is a convenient description of BSM scenarios
that feature a large gap between the NP and the electroweak
scales, μ� � μew. This implies that there are only the known
SM fields below μ� and it is assumed that the Higgs dou-
blet is in the linear representation. The SM dimension-four
Lagrangian is supplemented by a tower of local operators

LSMEFT = Ldim−4 +
∑
k

CkOk, (20)

that are invariant under the SM gauge group GSM =
SU (3)c ⊗ SU (2)L ⊗ U (1)Y to describe physics below μ�

around μew.
The SMEFT operators and accordingly their Wilson coef-

ficients are defined in terms of the gauge and fermion fields
in the unbroken phase of the SM, see also “Appendix D” for
notation and definitions. In contrast to the �S = 1 EFT dis-
cussed above, there is no preferred weak basis for the (mass-
less) fermion fields in SMEFT and the would-be mass basis
is not SU (2)L invariant. Instead, in the following we use the
freedom of SU (3)-flavour rotations to work in a weak basis
where the running down-type quark mass matrix is diagonal
at the electroweak scale (cf. [63]).

At the electroweak scale μew, the matching of SMEFT
at the dimension-six level will only generate a subset of the
�S = 1 operators introduced in “Appendix A”, because the
SM gauge group GSM is more restrictive than SU (3)c ⊗
U (1)Q . Since flavour is not conserved by the RG mixing
under the SU (2)L -gauge and Higgs-Yukawa interactions the
SMEFT operators cannot be classified in terms of flavour
quantum numbers. Nevertheless, it is instructive to consider
which operators in SMEFT contribute to �S = 1 transitions
when matched at tree level onto H(5)

�S=1 at the scale μew.
The matching of SMEFT onto the �S = 1 EFT with

five active quark flavours yields relations between Wilson
coefficients8 of both EFTs [64,65]. Here we focus on effects
from three classes of operators:

8 We denote Wilson coefficients of SMEFT by caligraphic Ck and of
low-energy EFTs by Ck .
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Table 1 Number of linearly independent four-quark operators with
flavour content (s̄d)(ūi ui ) and (s̄d)(d̄i di ) in the �S = 1 EFT with
N f = 5 that contribute to ε′/ε (first row). Number of non-vanishing

matching contributions from SMEFT due to four-quark operators and
modified right-handed W± couplings for dimension-six operators at
tree level (second row)

ui = u ui = c di = d di = s di = b �

�S = 1 EFT 10 + 10′ 8 + 8′ 5 + 5′ 5 + 5′ 8 + 8′ 36 + 36′

SMEFT 9 + 9′ 8 + 8′ 3 + 3′ 3 + 3′ 4 + 4′ 27 + 27′

• four-quark operators,
• ψ2H2D operators describing modified Z0 or W± cou-

plings, and
• chromo-magnetic dipole operators.

The matching conditions for these operators are collected
in “Appendix E”. We omit the effects from semi-leptonic
operators that have been analysed in the context of leptoquark
models [40] and are expected to be constrained more strongly
by semi-leptonic kaon decays rather than ε′/ε. Furthermore
we omit effects of purely bosonic operators, which can induce
a sizable contribution to ε′/ε through RG effects as discussed
in [66].

A non-trivial consequence of SMEFT is that none of the
operators Oui

SLR , Odi
SLL , Odi

T LL , or their chirality- and colour-
flipped counterparts, are generated in the low-energy EFT in
the tree-level matching of SMEFT four-quark operators. The
reason is that these operators conserve only electric charge,
but not hypercharge. Only the operator Õu

SLR eventually
contributes to ε′/ε, namely through the right-handed W±
coupling discussed in “Appendix E.2”. This contribution is
not subject to the hypercharge constraint, as it only arises
after electroweak symmetry breaking. Below μew this leads
to vanishing Wilson coefficients of 9 + 9′ linearly indepen-
dent operators in the �S = 1 EFT with N f = 5, reducing
the number of non-redundant �S = 1 four-quark opera-
tors that contribute to ε′/ε from 36 + 36′ to 27 + 27′.9 At
the one-loop level, QCD and QED running from μew down
to μ does not re-generate these operators. This is summa-
rized in Table 1. Consequently, in SMEFT the number of lin-
early independent operators that contribute directly to ε′/ε
via non-vanishing K → ππ matrix elements is reduced from
15+15′ to 12+12′, out of which only 5+5′ are non-standard.
The chromo-magnetic dipole operators are not subject to
these considerations and their number equals in SMEFT and
�S = 1 EFT.

Consequently, in SMEFT only the operators in Classes A–
C in (8)–(12) contribute to ε′/ε through four-quark operators,
and a single operator from Class E in (14) (and its chirality-
flipped counterpart) through the right-handed W± coupling.

9 Note that (76)–(92) contain operators that are related by Fierz trans-
formations. These allow to remove 12 of the 68 operators for N f = 5
appearing on the left-hand side of these equations.

Inspecting the matching relations listed in “Appendix E”,
these three classes, expressed in terms of the SMEFT opera-
tors of Tables 11 and 12, are as follows

Class A

O(1,3)
qq , O(1,8)

qu , O(1,8)
qd , O(1,8)

ud , Odd ,

O(1,3)
Hq , OHd . (21)

Class B and C

OdG, O(1,8)
quqd . (22)

Class E

OHud . (23)

It should be noted that while the matching conditions in
Sect. 2.4 are at the electroweak scale, the SMEFT operators
are generated by some BSM dynamics at a much higher scale
μ� and in explicit models RG evolution in the SMEFT from
μ� to μew has to be considered [67–69]. The RG evolution
does not only change the values of the Wilson coefficients
through self-mixing of a given operator but also through mix-
ing of other operators, in particular those that do not con-
tribute directly to ε′/ε at tree-level. The mixing is further
complicated due to the flavour structure of the ADMs and can
give rise to complex correlation patterns between observables
of various quark and lepton flavour sectors. In “Appendix F”,
we list the classes of operators that mix into operators con-
tributing to the tree-level matching onto the �S = 1 EFT
and can thus be relevant for ε′/ε.

3 Model-independent constraints in SMEFT

In specific NP models, CP-violating effects that can manifest
themselves in ε′/ε are constrained by other CP-odd observ-
ables, such as in �S = 2 (K 0-K̄ 0 mixing), �C = 2 (D0-
D̄0 mixing), in electric dipole moments (EDM), or in semi-
leptonic kaon decays. In the low-energy EFT, such effects
cannot be discussed on a model-independent basis, since the
operators with different flavour quantum numbers are com-
pletely independent. In SMEFT however, such correlations
can arise in two different ways,
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Table 2 Effective scales of SMEFT operators contributing to εK and
CP violation in D0-D̄0 mixing, defined as in (25) and (31), respectively.
These scales give an indication of the sensitivity to the individual oper-

ators. Note however that the normalization is different for �S = 2 and
�C = 2

Ci σi �i Ci σi �i Ci σi �i

�S = 2[C(1)
qq

]
2121 − 13.3 PeV

[C(1)
qd

]
2121 + 104.6 PeV

[Cdd]2121 − 13.3 PeV[C(3)
qq

]
2121 − 13.3 PeV

[C(8)
qd

]
2121 + 126.5 PeV

�C = 2[Ĉ (1)
qq

]
1212 − 14.1 PeV

[Ĉ (1)
qu

]
1212 + 29.2 PeV

[Ĉuu]1212 − 14.1 PeV[Ĉ (3)
qq

]
1212 − 14.1 PeV

[Ĉ (8)
qu

]
1212 + 33.3 PeV

• by SU (2)L relations between operators involving left-
handed quark doublets that require a CKM rotation to go
to the mass basis for the up- or down-type quarks,

• by flavour-dependent RG effects due to the mixing of
operators in SMEFT given in Sect. 2.4.

In this section, we concentrate on effects of the first type,
leading to model-independent constraints on Wilson coeffi-
cients of operators contributing to ε′/ε.

3.1 �S = 2

The parameter εK measures indirect CP violation in the
�S = 2 process of K 0-K̄ 0 mixing. At the electroweak scale
only four linear combinations of the five10 SMEFT operators

[O(1)
qq ]2121, [O(3)

qq ]2121, [O(1)
qd ]2121, [O(8)

qd ]2121, [Odd ]2121,

(24)

match onto the �S = 2 EFT at tree level in the weak basis
in which the down-type quark mass matrix is diagonal. The
other four operators present in the �S = 2 EFT violate
hypercharge and are thus not generated at tree level [64].

The quantitative effect of these operators can be under-
stood by writing εK as a function of their Wilson coefficients
with approximate numerical coefficients,

εK

εSM
K

≈ 1 +
∑
i

σi �
2
i Im Ci (μew), (25)

where σi = ±1. Similarly to the Pi in the master formula
(18) for ε′/ε, the effective scales �i give an indication of
the sensitivity of εK to each Wilson coefficient; we list their

10 We do not count redundant operators such as [O(1,8)
qd ]1212 ≡

[O(1,8)
qd ]†

2121, but adopt the basis of non-redundant operators defined

in [70]. Contributions from ψ2H2D operators corresponding to mod-
ified Z0 and W± couplings arise at one-loop from top-quark Yukawa
mixing [24] and those from h0 couplings count as beyond dimension
six [65].

numerical values in Table 2. They have been obtained with
flavio [59] and wilson [58] using the �S = 2 hadronic
matrix elements from lattice QCD by RBC-UKQCD [71,72]
(cf. results from the ETM [73] and SWME [74] collabora-
tions), which are supported by DQCD results [75].

As the SM describes the experimental value of εK rather
well, Im Ci (μew) corresponding to the largest �i must be sup-
pressed most strongly, thereby probing the largest NP scales.
Given the experimental measurement and theory uncertainty
of this ratio (25) can be used to constrain SMEFT Wilson
coefficients from εK in phenomenological analyses.

Given these huge scales probed by εK , any model predict-
ing sizable direct CP violation in �S = 1 can only be viable
if it does not induce too large contributions to indirect CP
violation in �S = 2.

As discussed above, an important source of constraints are
SU (2)L relations between operators with left-handed quark
fields, involving a CKM rotation between the mass bases for
up- and down-type quarks. The first four operators in Table 2
are a prime example of this effect.

[C(1,3)
qq

]
2121 contribute

to the matching of Cui
V LL and

[C(1,8)
qd

]
2121 to the matching of

Cui
V RL , as seen from the matching conditions in Sect. 2.4. For

both cases i = 1, 2, the suppression by the Cabibbo angle
VusV

∗
ud ∼ VcsV

∗
cd ∼ 0.23 is of first order in ε′/ε and fur-

thermore the operators with i = 2 have no direct K → ππ

matrix elements, which introduces for them another suppres-
sion of αs,e/(4π) from RG mixing in ε′/ε compared to i = 1.
When considering NP effects in only a single operator, clearly
the strong constraint from εK excludes any visible effect in
ε′/ε induced by imaginary parts of these Wilson coefficients.

We finally note that, as emphasized in [29], new phases
could have an impact not only on εK , but also on the mass
difference in K 0-K̄ 0 mixing, �MK . The point is that �MK

is proportional to the real part of the square of a complex
coefficient Ci , so a new phase modifying its imaginary part
will quite generally decrease the value of �MK relative to
the SM estimate simply because
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(�MK )BSM
i = c

[
(ReCi )

2 − (ImCi )
2
]
, (26)

with c being positive. The uncertainty in the SM estimate of
�MK is unfortunately still very large [76] so that we cannot
presently decide whether a positive or negative NP contribu-
tion to �MK – if any – is required and the constraints on the
NP scale are weaker than for εK . Future lattice QCD calcu-
lations of long distance contributions to �MK could help in
this respect [77,78]. In DQCD they are found to amount to
20 ± 10% of the measured �MK [52,79]. In the case of εK
such long distance contributions to εK are below 10% and
have been reliably calculated in [16,80,81].

3.2 �C = 2

Although the SM contribution to the D0-D̄0 mixing ampli-
tude is dominated by poorly known long-distance contribu-
tions, the structure of the CKM matrix implies that the SM
contribution to CP violation in mixing can at most reach the
percent level [82]. This fact can be used to constrain the
imaginary part of the mixing amplitude.

For processes with external up-type quarks, it is more
convenient to use a weak basis for SMEFT Wilson coeffi-
cients where the up-type rather than the down-type quark
mass matrix is diagonal.11 We will denote the Wilson coeffi-
cients in this basis with a hat. The hatted Wilson coefficients
are related to the unhatted ones by CKM rotations of indices
corresponding to left-handed quark doublets,

[Ĉ (1,3)
qq

]
i jkl = Via V

∗
jb Vkc V

∗
ld

[C(1,3)
qq

]
abcd ,[Ĉ (1,8)

qu

]
i jkl = Via V

∗
jb

[C(1,8)
qu

]
abkl ,[Ĉuu]i jkl = [Cuu]i jkl .

(27)

Then, analogously to εK , at the electroweak scale four linear
combinations of five SMEFT operators contribute to �C = 2
transitions, namely

[Ô(1)
qq ]1212, [Ô(3)

qq ]1212, [Ô(1)
qu ]1212,

[Ô(8)
qu ]1212, [Ôuu]1212. (28)

A correlation of ε′/ε and D0-D̄0 mixing arises only for the
operators O(1,3)

qq and O(1,8)
qu as can be seen from (76)–(92).

From a global fit to D0 decays, the HFLAV collaboration
directly determines the physical parameters of the D0-D̄0

mixing amplitude,

x12 = 2|M12|



, y12 = |
12|



, φ12 = arg
M12


12
. (29)

11 This basis is denoted Warsaw up in the WCxf standard [63].

Their fit result can be expressed as an approximately Gaus-
sian constraint on the purely CP-violating parameter [83]

x Im
12 ≡ x12 sin φ12 = (0 ± 2.4) × 10−4. (30)

Similarly to the discussion of εK above, we can write x Im
12 as

a linear function of SMEFT Wilson coefficients at μew,

x Im
12

10−4 ≈
∑
i

σi�
2
i Im Ĉi . (31)

The effective sensitivity scales �i are given in Table 2. They
have been evaluated with flavio [59] and wilson [58]
using the �C = 2 hadronic matrix elements from lattice
QCD by the ETM collaboration [73].

Similarly to the �S = 2 case, we see that the four Wilson
coefficients

[Ĉ (1,3)
qq

]
1212 and

[Ĉ (1,8)
qu

]
1212 individually can-

not give a visible effect in ε′/ε without generating excessive
contributions to CP violation in �C = 2.

3.3 Interplay of �S = 2 and �C = 2

While individually, �S = 2 and �C = 2 only constrain
seven linear combinations of SMEFT Wilson coefficients
contributing to the �S = 1 matching, combining them leads
to a much more powerful constraint. This is because the Wil-
son coefficients

[C(1,3)
qq

]
1212 and

[Ĉ (1,3)
qq

]
1212 are related by

CKM rotations:

[Ĉ (1,3)
qq

]
1212 = Vui V

∗
cj Vuk V

∗
cl

[C(1,3)
qq

]
i jkl , (32)[C(1,3)

qq

]
1212 = V ∗

id Vjs V
∗
kd Vls

[Ĉ (1,3)
qq

]
i jkl . (33)

Consequently, for any given operator of this type, it is impos-
sible to avoid both the contribution to �S = 2 and �C = 2
at the same time (cf. the general discussion in [84]). Indeed,
switching on individual operators in either of the two bases
at μew, it turns out they all lead to an excessive contribution
to either εK or x Im

12 when generating a visible effect in ε′/ε.
This is illustrated in Fig. 2, showing the suppression scales
�i for εK and x Im

12 (as defined in (25), (31)) and comparing
it to the analogous scale for ε′/ε, defined as

(ε′/ε)BSM

10−3 ≈
∑
i

σi�
2
i Im

[C(1,3)
qq

]
i , (34)

in the two different bases where either the down-type or the
up-type quark mass matrix is diagonal. While in the former
basis εK and in the latter basis x Im

12 is only sensitive to a
single coefficient, the other observable probes all the other
coefficients, always being much more sensitive than ε′/ε.

We finally note that, in principle, since each of the observ-
ables only probes a single direction in the space of Wil-
son coefficients, cancellations could be arranged that remove
these constraints. In view of the severeness of the constraints
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Fig. 2 Effective scales �i of the Wilson coefficients C(1)
qq for εK

(orange), D0-D̄0 mixing (green) and the NP contribution to ε′/ε (blue),
parametrized as in (25), (31), and (34), respectively. The left panel shows
the values in the “unhatted” basis where the down-type quark mass
matrix is diagonal, the right panel in the “hatted” basis where the up-

type quark mass matrix is diagonal. Only non-redundant flavour-index
combinations are shown. Coefficients that do not generate a visible
effect in either observable have been omitted. The scales corresponding
to C(3)

qq are not shown but are very similar

and the fact that delicate cancellations are not invariant under
the RG evolution, we consider such cancellations unrealistic.

3.4 Neutron electric dipole moment

Since ε′/ε probes CP violation associated to the first two
generations of quarks, it is natural to ask whether there is
any constraint from the electric dipole moment (EDM) of
the neutron, which is a sensitive probe of flavour-diagonal
CP violation involving up and down quarks. In principle,
CP-violating four-quark operators can directly induce a neu-
tron EDM. Correlations of the neutron EDM with ε′/ε from
these operators have been considered recently in [37,85];
they require the knowledge of the matrix elements of these
operators, which are relatively poorly known.

Here we focus instead on CP violation induced by dipole
operators, i.e. the EDMs and chromo-EDMs (CEDMs) of the
up and down quarks. Their contribution to the neutron EDM
can be written as12

dn = guT du + gdT dd + ρ̃ud̃u + ρ̃d d̃d . (35)

The tensor charges gu,d
T are nowadays accessible in lat-

tice QCD with an accuracy of (5–10)% [86–89], while the
matrix elements ρ̃u,d of the CEDMs are only known roughly
from methods like light-cone sum rules [90,91]. The quark

12 We neglect a numerically subleading part from the strange quark,
since gsT � gu,d

T , and assume that the contribution from the strange
quark CEDM can be neglected as well.

(C)EDMs are simply the imaginary parts of the Wilson coeffi-
cients of the flavour-diagonal dipole operators at the hadronic
scale,13

dq = 2mq ImCqq
7γ , gs d̃q = 2mq ImCqq

8g , (36)

with the effective Hamiltonian

H�F=0 = −
∑
q=u,d

[
Cqq

7γ mq(q̄σμν PRq)Fμν

+Cqq
8g mq(q̄σμν PRT

Aq)GA
μν + h.c.

]
. (37)

Below the electroweak scale, the dipole operators receive
RG-induced contributions via QCD and QED penguin dia-
grams from operators with chirality structure LRLR,

Oqqpp
X AA = (q̄i
X PAq

i )( p̄ j
X PA p
j ),

Õqqpp
X AA = (q̄i
X PAq

j )( p̄ j
X PA p
i ), (38)

where X = S, T and A = L , R. In tree-level matching from
SMEFT at μew, such operators are only generated from the
SMEFT operators O(1,8)

quqd , similarly to the operators Cui
SAA

and Cui
T AA in the �S = 1 matching in Sect. 2.4. Via CKM

rotations, many of the operators in (38) are thus related to
�S = 1 operators.

13 Note that the signs on the right-hand sides of (36) depend on the sign
convention for the covariant derivative. We use Dμ = ∂μ + ieQ f Aμ +
igsGa

μT
a . Our convention for σμν is σμν = i

2 [γμ, γν ].
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Fig. 3 Effective scales �i for the neutron EDM [orange] and the NP
contribution to ε′/ε [blue], parametrized as in (39) and (41), respec-
tively. Only non-redundant index combinations are shown. Coefficients

that do not generate a visible effect in either observable have been omit-
ted. The scales corresponding to C(1)

quqd are shown with a lighter shading

than C(8)
quqd and are always higher

Analogously to the discussion of εK and D0-D̄0 mix-
ing, the constraints on the operators O(1,8)

quqd from dn can be
illustrated by writing dn as a linear combination of Wilson
coefficients at μew,

dn
d lim
n

≈
∑
i

σi�
2
i Im

[C(1,8)
quqd

]
i , (39)

where i stands for a 4-tuple of flavour indices and d lim
n is the

current 90% confidence-level upper bound on the neutron
EDM [92],

d lim
n = 3 × 10−26 e cm ≈ 4.6 × 10−13 GeV−1. (40)

In Fig. 3, we show the values of �i for the neutron EDM
(obtained with flavio [59] and wilson [58]) as well as
for ε′/ε, parametrized analogously as

(ε′/ε)BSM

10−3 ≈
∑
i

σi�
2
i Im

[C(1,8)
quqd

]
i . (41)

The chart shows that several of the operators would lead to an
excessive contribution to dn when leading to a visible effect
in ε′/ε; some of them do not contribute to ε′/ε; and yet others
can generate ε′/ε without being constrained by dn . We have
omitted the operators that do not contribute to either of the
observables.

We stress again that the correlation discussed here arises
simply from CKM rotations when moving between the mass
bases of up and down quarks and we have considered SMEFT

Wilson coefficients at μew. When considering the coefficients
at a high scale μ�, there are also RG effects in SMEFT that
induce mixing between O(1,8)

quqd with different flavour indices
that can lead to additional dangerous contributions to dn .
Whether a visible NP effect in ε′/ε generated by any of the
operators O(1,8)

quqd is viable in view of the EDM constraint has
to be checked carefully in specific NP models taking into
account both effects.

We finally note that beyond the neutron EDM, also the
EDMs of diamagnetic atoms are sensitive to CP violation
in dipole operators and four-quark operators, in addition to
leptonic and semi-leptonic CP violation. In principle a global
analysis of the various EDM measurements to disentangle
the different short-distance sources of CP violation would
be useful, but currently suffers from many unknown long-
distance contributions, see [93] for a recent review.

3.5 K → πνν̄ and K → π�+�−

In specific NP models one often finds correlations between
BSM contributions to ε′/ε and rare kaon decays, in particular
with K+ → π+νν̄ and KL → π0νν̄. In fact in all papers
that addressed the ε′/ε anomaly listed in the introduction
[22–40] such correlations have been investigated. Such cor-
relations will play an important role in distinguishing various
models when the theoretical status of ε′/ε improves and the
branching ratios for rare kaon decays will be well measured.
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Fig. 4 Correlation between ε′/ε, K+ → π+νν̄, KL → π0νν̄, KL → π0eē, and KS → μ+μ− from imaginary NP effects in individual SMEFT
operators of type ψ2H2D inducing flavour-changing Z0 couplings. The flavour index “12” has been suppressed

Here we would like to confine our discussion to possible
model-independent correlations within a pure EFT analysis.
Correlations between ε′/ε and semi-leptonic decays can then
in principle arise in three different ways,

• modified Z0 or W± couplings contributing to ε′/ε and
neutral or charged current semi-leptonic decays, respec-
tively,

• semi-leptonic operators that contribute directly to semi-
leptonic decays and mix into �S = 1 four-quark oper-
ators by QED or electroweak RG effects, thereby con-
tributing indirectly to ε′/ε,

• four-quark operators mixing into semi-leptonic opera-
tors by QED or electroweak RG effects and contributing
directly to ε′/ε.

The latter two effects are strongly suppressed by the small-
ness of the electroweak gauge couplings; consequently ε′/ε
typically dominates constraints on CP violation in four-quark
operators, while semi-leptonic decays dominate constraints
on semi-leptonic operators.

Relevant model-independent correlations could thus arise
from the modified Z0 or W± couplings induced by the
SMEFT operators of type ψ2H2D discussed in Sect. E.2.
From the discussion in that section, it was concluded that
imaginary parts of the following SMEFT Wilson coefficients
at μew can lead to effects in ε′/ε,[CHd

]
12,

[C(1)
Hq

]
12,

[C(3)
Hq

]
12, (42)[C(3)

Hq

]
13,

[C(3)
Hq

]
23, (43)[CHud

]
12,

[CHud

]
11. (44)

The coefficients of right-handed W± couplings in (44) con-
tribute at tree-level only to charged-current semi-leptonic
decays like K → �ν�, K → π�ν�, and beta decays (see e.g.
[94–96]) and the effects in ε′/ε are essentially unconstrained
at present.

The coefficients in (43), which contribute to ε′/ε only
via modified left-handed W± couplings, contribute also to
FCNC B decays via modified Z0 couplings. Barring unre-

alistic cancellations, visible effects in ε′/ε induced by these
couplings are excluded since they would lead to excessive
effects e.g. in the decays Bs → μ+μ− and B0 → μ+μ−.

The coefficients in (42) contribute to the FCNC kaon
decays of type K → πνν̄ and K → π�+�−. These decays
are sensitive to a single linear combination, namely

[C(3)
Hq

]
12 + [C(1)

Hq

]
12 + [CHd

]
12, (45)

while the leptonic FCNC decays of type K → �+�− are
sensitive to

[C(3)
Hq

]
12 + [C(1)

Hq

]
12 − [CHd

]
12. (46)

Inspecting our master formula and matching conditions, ε′/ε
is instead sensitive approximately to the imaginary part of the
linear combination

[C(3)
Hq

]
12 + 1.1

[C(1)
Hq

]
12 + 3.7

[CHd

]
12 (47)

of these three Wilson coefficients atμew. Numerically, it turns
out that a purely CP violating contribution to any of these
three coefficients that would lead to a visible effect in ε′/ε
only leads to a very small modification of the K+ → π+νν̄,
KL → π0��̄, and KS → �+�− branching ratios, as demon-
strated in Fig. 4 (see also [24,26]). In the CP violating decay
KL → π0νν̄, a NP effect in ε′/ε in the ballpark of 10−3

would instead lead to a suppressed branching ratio. Seeing
such suppression would however require an experimental
sensitivity better than the SM branching ratio, which is at
the level of 3 × 10−11, still two orders of magnitude away
from the recent preliminary bound from the KOTO collabo-
ration [97],

BR(KL → π0νν̄) < 3.0 × 10−9 @ 90% C.L. (48)

We conclude that CP-violating new physics in the opera-
tors with modified Z0 couplings in (42) or right-handed W±
couplings in (44) can lead to sizable effects in ε′/ε without
appreciable constraints from semi-leptonic kaon decays.
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3.6 �C = 1

Eventually we mention that similarly to �C = 2 pro-
cesses, also CP violation in �C = 1 decays is correlated
to ε′/ε in SMEFT. The interesting observables are CP asym-
metries in Cabbibo-favoured (CF) and singly-Cabbibo sup-
pressed (SCS) D → M1M2 decays. They are governed by
the �C = 1 EFT

H�C=1 = −
∑
i

Ci Oi , (49)

with operators

Oqq ′
X AB = (ūi
X PAc

i )(q̄ j
X PBq
′ j ),

Õqq ′
X AB = (ūi
X PAc

j )(q̄ j
X PBq
′i ), (50)

with qq ′ = sd (CF) and qq ′ = dd, ss or qq ′ = uu (SCS).
The correlations enter then via the SMEFT four-quark oper-
ators

O(1)
qq , O(3)

qq , O(1)
qu , O(8)

qu , O(1)
qd , O(8)

qd , O(1)
quqd , O(8)

quqd ,

(51)

as well as modified Z0 and W± couplings.
The correlation of ε′/ε and CP asymmetries in CF decays

D0 → K−π+, D+
s → ηπ+ and D+

s → η′π+ has been
discussed [38] in the framework of a SU (2)L ⊗ SU (2)R ⊗
U (1)B−L symmetric model. The correlation with CP asym-
metries in the SCS decays D0 → K+K− and D0 → π+π−
has been discussed in a general EFT framework in [98]. The
rich potential to distinguish among various BSM scenarios
with the help of these correlations is hampered by the lack
of knowledge of hadronic matrix elements in non-leptonic
charm decays and we will therefore not investigate this sub-
ject further.

4 Implications for model building

Having discussed the general model-independent anatomy
of ε′/ε below the electroweak scale and the consequences of
SU (2)L ⊗ U (1)Y gauge invariance within SMEFT, we are
now in a position to discuss the implications for the possible
effects in BSM scenarios with new sources of CP violation
where BSM effects in ε′/ε are encoded in the imaginary part
of Wilson coefficients of dimension-six SMEFT operators.

The size of the coefficients Pi in our master formula pre-
sented in Sect. 2.3, together with the matching conditions in
Sect. 2.4, already indicate which scenarios are more promis-
ing than others to explain a deviation from the SM in ε′/ε.
However, in a concrete BSM scenario, the Wilson coefficients

with the highest values of Pi could vanish or be suppressed
by small couplings. Consequently without additional dynam-
ical assumptions or specific models no clear-cut conclusions
can be made. While a comprehensive discussion of models is
beyond the scope of this paper, in the following subsections
we will discuss a number of general implications on the basis
of simplified models with a single tree-level mediator.

A generic challenge in explaining sizable NP effects in
ε′/ε is to avoid the constraint from εK . Roughly speaking,
the �S = 1 CP-odd observable ε′/ε typically probes the
quantity Im δ/μ�

2, where δ is a flavour-violating parameter,
while the �S = 2 observable εK typically probes Im δ2/μ�

2

(cf. [31]). Given the strong constraints from εK (see Table 2),
barring a tuning of the phase of δ or fine-tuned cancellations,
a visible effect in ε′/ε then seemingly requires very low NP
scales μ� � 1 TeV. In the literature, this problem has been
avoided in four different ways,

• through contributions from chromo-magnetic dipole
operators to ε′/ε that do not affect εK [36],

• through contributions from modified Z0 couplings to ε′/ε
[25–27] that only enter εK through top-quark Yukawa RG
effects [24],

• through contributions from modified right-handed W±
couplings to ε′/ε that do not affect εK [85],

• through loop-induced contributions to ε′/ε in conjunc-
tion with an accidental suppression of the contributions
to εK arising in models with Majorana fermions like the
MSSM [31].

In Sect. 4.2, we will present a new solution: tree-level scalar
exchange can mediate �S = 1 transitions at tree level with-
out generating �S = 2, since a dimension six operator of
the form (q̄d)2 is not allowed by hypercharge invariance.

We start by listing all the possible tree-level models in
Sect. 4.1. After discussing the scalar scenario in Sect. 4.2,
we will comment on the challenges of models with vector
mediators in Sect. 4.3 and discuss the generation of modified
Z0 and W± couplings in Sect. 4.4.

4.1 Tree-level mediators

The simplest models giving rise to a NP contribution to ε′/ε
are models with a single tree-level mediator generating a
four-quark operator. Given the large scales probed by ε′/ε,
clearly also models without tree-level FCNCs can give a siz-
able contribution to ε′/ε. Nevertheless, the tree-level models
can serve as benchmark cases exhibiting generic features of
larger classes of models.

In Table 3, we list all the possible tree-level mediators
that can generate any of the four-quark operators that give
a matching contribution to �S = 1 at μew [99]. We have
omitted states that permit baryon number violating cou-
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Table 3 Four-quark SMEFT operators containing down-type quarks generated by the exchange of scalar or vector mediators at tree level. The
second column gives the representation under GSM = SU (3)c ⊗ SU (2)L ⊗U (1)Y

Spin Rep. O(1)
qq O(3)

qq O(1)
qu O(8)

qu O(1)
qd O(8)

qd O(1)
ud O(8)

ud Odd O(1)
quqd O(8)

quqd

0 (1, 2) 1
2

× × × × ×
(8, 2) 1

2
× × × × ×

1 (1, 1)0 × × × × ×
(1, 1)1 × ×
(8, 1)0 × × × × × ×
(8, 1)1 × ×
(1, 3)0 ×
(8, 3)0 × ×

plings.14 These states are either SU (3)c triplets (leptoquarks)
or sextets (diquarks), and the former are popular scenarios
to explain current anomalies in semi-leptonic B decays. Fur-
ther we omitted the possibility of a heavy vector doublet
(1, 2) 1

2
. For a scalar mediator, the SM gauge quantum num-

bers then only allow two possible representations: a heavy
Higgs-like doublet under SU (2)L that is either a singlet or an
octet under SU (3)c. For a vector mediator, there are six pos-
sibilities, SU (3)c singlets or octets that are SU (2)L singlets
or triplets.

Further tree-level contributions to ε′/ε can arise from
models inducing modified W± or Z0 couplings and will be
discussed in Sect. 4.4.

4.2 Scalar operators from scalar mediators

The novel feature after the calculation of hadronic matrix
elements of BSM operators in [43] is the importance of scalar
and tensor four-quark operators. As indicated in Fig. 1 and
shown in Sect. 2.4, these matrix elements are relevant in
scenarios that generate the SMEFT operators O(1,8)

quqd at the
electroweak scale. Table 3 shows that these operators can
be mediated at tree level by heavy Higgs doublets, either a
colour-singlet or a colour-octet Higgs.

Focusing on the colour-octet case (and thereby avoid-
ing discussions of a modified SM Higgs potential), the
Lagrangian necessary to generate the O(1,8)

quqd operators can
be written as

L = −Xi j
d q̄i T

Ad j �
A − Xi j

u q̄i T
Au j �̃

A + h.c. (52)

Integrating out the heavy scalar leads to the following tree-
level matching conditions for the four-quark SMEFT opera-

14 Even though not all of them mediate proton decay at tree level, see
e.g. [100,101].

tors at the matching scale μ� [99]

[C(1)
qu(qd)

]
i jkl = −4

3

[C(8)
qu(qd)

]
i jkl = −2

9

X jk∗
u(d)X

il
u(d)

M2
φ

,

[C(8)
quqd

]
i jkl = Xi j

u Xkl
d

M2
φ

. (53)

Importantly, to generate C(8)
quqd , the presence of both

Yukawa-like couplings Xu and Xd is necessary. The model
can thus contribute to ε′/ε both through the left-right vec-
tor operators O(1,8)

qu,qd and through the scalar operators; which
one is more relevant depends on the hierarchies of the CP-
violating couplings.

Some of the operators in (53) are also constrained by the
�F = 2 or �F = 0 processes discussed in Sect. 3. In the
basis where the down-type quark mass matrix is diagonal,
εK is sensitive to

[C(1)
qd

]
2121. As seen from (53), this Wil-

son coefficient is proportional to X12∗
d X21

d . Interestingly, this
means that an imaginary part in one of the couplings X12

d or
X21
d is not constrained by εK at all, but could well generate a

visible effect in ε′/ε. Similar comments apply to the �C = 2
constraint on flavour off-diagonal couplings in Xu .

Since the operators of type O(1,8)
quqd can be generated, in

models with scalar mediators also the neutron EDM, induced
at the one-loop level as discussed in Sect. 3.4, can be a rele-
vant constraint.

We leave a detailed analysis of the interesting scalar sce-
narios to the future.

4.3 Models with vector mediators

As shown in Sect. 3.3, the operators O(1,3)
qq are strongly con-

strained by CP violation in K 0-K̄ 0 and D0-D̄0 mixing, pre-
cluding any visible effect in ε′/ε, barring unrealistic can-
cellations that are not stable under RG evolution. Conse-
quently, models with a heavy mediator that only couples to
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Table 4 SMEFT operators of type ψ2H2D inducing corrections to W± and Z0 couplings, generated by the tree-level mixing of SM fields with
heavy vector-like quarks or vector fields. The second column gives the representation under GSM = SU (3)c ⊗ SU (2)L ⊗U (1)Y

Spin Rep. O(1)
Hq O(3)

Hq OHd OHud

1
2 (3, 1) 2

3
× ×

(3, 1)− 1
3

× ×
(3, 3)− 1

3
× ×

(3, 3) 2
3

× ×
(3, 2) 1

6
× ×

(3, 2)− 5
6

×
1 (1, 1)0 × ×

(1, 1)1 ×
(1, 3)0 ×

left-handed quark doublets are not among the prime candi-
dates to explain a possible deviation from the SM in ε′/ε.

In view of these constraints, the most attractive scenarios
in the case of a tree-level vector mediator are those that can
generate the left-right operators O(1,8)

qu, qd . This is even more
so given that these operators eventually contribute to ε′/ε
via matrix elements that are chirally enhanced. As seen from
Table 3, the only possibilities in this case are a SM singlet
Z ′ or a heavy gluon G ′, that have already been explored in
the literature (see e.g. [102]), described schematically by the
following Lagrangian for Z ′

LZ ′ =
[
λ
i j
q (q̄iγμq j ) + λ

i j
u (ūiγμu j ) + λ

i j
d (d̄iγμd j )

]
Z ′μ,

(54)

and analogously for G ′

LG ′ =
[
λ
i j
q (q̄iγ

μT Aq j ) + λ
i j
u (ūiγ

μT Au j )

+λ
i j
d (d̄iγ

μT Ad j )
]
G ′A

μ . (55)

In the case of the operators O(1,8)
qu , only two flavour index

combinations15 contribute to the �S = 1 matching at μew,
namely [O(1,8)

qu ]1211 and [O(1,8)
qu ]1222. Neglecting SMEFT RG

effects, this corresponds to a product of one of the real-valued
couplings λ11

u or λ22
u and the complex-valued coupling λ12

q .
The square of the latter coupling also generates a contribu-
tion to εK . Barring a fine-tuning of the phase to π/2, this
requires |λ12

q |/MZ ′ to be below (13 PeV)−1, as seen from
Table 2. A visible effect in ε′/ε is then only possible for a
coupling |λ11

u |/MZ ′ not smaller than (10 TeV)−1. For masses
within reach of the LHC, this implies a large cross section
pp → j j , and the pp → j j angular distribution allows
to constrain operators with flavour structure (ūu)(ūu) even
beyond resonance production. Whether such a model remains

15 We again omit redundant operators.

viable in view of these stringent bounds deserves a dedicated
study.

In the case of the operators O(1,8)
qd , more flavour index

combinations contribute to the �S = 1 matching at μew as
seen in Sect. 2.4, since they can also contribute via right-
handed down-type quarks and left-handed up-type quarks.
Nevertheless, a contribution to εK is generated either by the
12-coupling16 to right-handed or to left-handed down-type
quarks. Consequently, comparably stringent bounds as in the
case of O(1,8)

qu apply.
We finally note that models where a vector mediator dom-

inantly contributes to ε′/ε via the purely right-handed four-
quark operators O(1,8)

ud or Odd are subject to similar con-
straints from �F = 2 and dijets, but their contributions to
ε′/ε are not chirally enhanced, as shown in Sect. 2.3, such
that a sizable contribution to ε′/ε is even more difficult to
attain.

4.4 Models with modified electroweak couplings

Apart from a tree-level exchange of heavy scalar or vector
bosons, ε′/ε can also arise at tree level in the SMEFT from the
operators of type ψ2H2D that induce modified couplings to
the Z0 and W± bosons. In the broken phase of the SM, these
contributions can be seen as arising from the mixing between
SM fermion or boson fields with heavy vector-like fermions
or vector bosons after electroweak symmetry breaking. In
Table 4, we list all the possible vector-like fermion or vector
boson representations that generate any of the ψ2H2D oper-
ators that give a matching contribution to �S = 1 at μew [99].

The vector-like fermion representations have already been
discussed in detail in the context of ε′/ε in [26], with

16 The only way to generate a �S = 1 operator at μew without a
12-coupling is via the operators [O(1,8)

qd ]1332; however, they match onto

Cb
SLR and C̃b

SLR , which contribute to ε′/ε neither directly nor indirectly,
as shown in Sect. 2.2.
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the exception of the state (3, 1)2/3 that transforms like a
right-handed up-type quark singlet. In this case, one gets
C (1)
Hq = −C (3)

Hq , such that there is no flavour-changing Z0

coupling and thus no contribution to semi-leptonic FCNCs
(cf. Sect. 3.5), but a contribution to ε′/ε can nevertheless
arise from a modified left-handed W± coupling.

The three spin-1 models in Table 4 already appeared in
Table 3; these states can contribute both through tree-level
exchange leading to a four-quark SMEFT operator or through
modified W± or Z0 couplings. Which contribution domi-
nates depends on the size of the couplings. Given the strong
constraints from εK on contributions from four-quark oper-
ators in models with vector mediators discussed in Sect. 4.3,
it is an interesting question how important this constraint is
when ε′/ε is dominantly generated through flavour-changing
Z0 couplings. In the (1, 1)0 model, i.e. with a SM singlet Z ′,
there are two relevant couplings for this discussion [99],

L ⊃
[
λ21
q (q̄2γμq1) + λH (H†i DμH)

]
Z ′μ + h.c. (56)

Rescaling the couplings as �i ≡ λi/mZ ′ , the Wilson coeffi-
cients relevant for �S = 1 and �S = 2 read [99]

[C(1)
Hq

]
12 = −�q Re�H ,

[C(1)
qq

]
1212 = −1

2
�2

q . (57)

In addition, a contribution to the Wilson coefficient of the
purely bosonic operator OHD is generated,

CHD = −2(Re�H )2. (58)

This Wilson coefficient is related to the electroweak T param-
eter as

T = −2πv2 g
2 + g′2

g2g′2 CHD. (59)

This allows to write the magnitude of the BSM effect in
ε′/ε induced by C(1)

Hq in terms of the shifts in εK and the T
parameter as

103
∣∣∣∣ε

′

ε

∣∣∣∣
BSM

≈ 0.1

∣∣∣∣
[
(εK )BSM

10−3

] [
TBSM

0.1

] [
Im�q

Re�q

]∣∣∣∣
1
2

. (60)

Given that the measurement of εK agrees with the SM at the
level of 0.5 × 10−3 and the T parameter at the level of 0.05,
barring cancellations, this shows that the Z0-mediated effect
is strongly constrained unless the phase of �q is tuned close
to π/2.

For the vector triplet (1, 3)0, the analogous contribution to
the T parameter is absent, so the Z0-mediated contribution
to ε′/ε could be sizable.

The SU (2)L singlet charged gauge boson (1, 1)1 could
arise as the low-energy limit of a broken left-right symmetry
(see e.g. [103]). In this case, the contribution to ε′/ε is medi-
ated by a right-handed W± coupling, such that εK gives no
constraint.

4.5 Models with dipole operators

The chromomagnetic dipole operators O(′)
8g can arise in vari-

ous BSM scenarios. While the corresponding matrix element
and thus the value of Pi in our master formula is small, the
absence of model-independent constraints on this contribu-
tion makes it nevertheless interesting.

Since the SMEFT dipole operator OdG does not receive
tree-level matching contributions, the dipole operators at the
low-energy scale μ can arise either from four-quark operators
mixing into it through RG evolution or from loop-induced
matching contributions at the UV scale μ�. Concerning the
former effect, in Sects. 2.2 and 2.4, we have shown that
SMEFT scalar operators of type O(1,8)

quqd can induce such a
contribution. Whether this contribution is relevant depends
on the structure of the couplings (cf. Sect. 4.2):

• If they dominantly match onto the scalar �S = 1 opera-
tors with flavour (s̄d)(ūu) in Class C, these have them-
selves also non-vanishing K → ππ matrix elements and
contribute directly to ε′/ε, such that the indirect contri-
bution via the dipole operator is negligible.

• If they dominantly match onto the scalar �S = 1 oper-
ators with flavour (s̄d)(c̄c) in Class B, they indeed con-
tribute to ε′/ε exclusively via the dipole Wilson coeffi-
cient at the low-energy scale.

• If the scalars couple dominantly to top quarks (see e.g.
[36]), these operators do not match at tree-level onto the
�S = 1 EFT (where top quarks have already been inte-
grated out), but RG evolution above μew (cf. Sect. 2.4)
will generate the SMEFT dipole operator OdG .

In models with heavy scalars (but no heavy fermions), also
one-loop matching contributions at the scale μ� exist. How-
ever, in the SMEFT, where SM quarks are massless, these
contributions are IR-divergent by themselves. The diver-
gence is cancelled by the RG-induced contribution of the
scalar four-quark operators O(1,8)

quqd .
In models with heavy vectors but no heavy fermions, we

expect that typically four-quark operator contributions are
more important than loop-induced dipole operator contribu-
tions, again with the possible exception of top quarks, where
RG-induced effects above μew are relevant.

In models with new heavy vector-like fermions that cou-
ple to the Higgs doublet, sizable contributions to the dipole
operator can be generated from a diagram with a SM Higgs
in the loop. This gives an important constraint in models with
partial quark compositeness [54,104–107].

Finally, there can of course also be loop contributions
at μ� with only new heavy particles in the loop. This has
been for example studied in MSSM [30–34], where scalar
operators are usually omitted because they are suppressed by
light-quark Yukawa couplings, although some might be tan β
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enhanced, whereas the one-loop contribution to the dipole
operator is not suppressed.

5 Summary

We have presented for the first time a model-independent
anatomy of the ratio ε′/ε in the context of the �S = 1 EFT
with operators invariant under QCD and QED and in the con-
text of the SMEFT with the operators invariant under the full
SM gauge group. This was only possible thanks to the very
recent calculations of the K → ππ matrix elements of BSM
operators, namely of the chromo-magnetic dipole operators
by lattice QCD [41] and DQCD [42] and in particular through
the calculation of matrix elements of all four-quark BSM
operators, including scalar and tensor operators, by DQCD
[43]. Even if the latter calculations have been performed in
the chiral limit, they offer for the first time a look into the
world of BSM operators contributing to ε′/ε.

Our main goal was to identify those new physics scenarios
which are probed by ε′/ε and which could help to explain the
emerging anomaly in ε′/ε, which is signalled both by lattice
QCD results and results from the DQCD approach. To this
end we have derived a master formula for ε′/ε, presented
already in [46], which can be applied to any theory beyond
the SM in which the Wilson coefficients of all contributing
operators have been calculated at the electroweak scale. The
relevant hadronic matrix elements of BSM operators are from
the DQCD approach and the SM ones from lattice QCD.

In the last three years a number of analyses, addressing the
ε′/ε anomaly in concrete models, appeared in the literature
(see list at the beginning of our paper) but they concentrated
on models in which NP entered exclusively through modifi-
cations of the Wilson coefficients of SM operators. In par-
ticular the Wilson coefficient of the dominant electroweak
penguin operator Q8 plays an important role in this con-
text as its hadronic matrix element is chirally enhanced and
in contrast to the QCD penguin operator Q6 this contribu-
tion is not suppressed by the factor 1/ω ≈ 22 related to the
�I = 1/2 rule. While we confirm these findings through the
analysis of models that generate operators of Class A, this is
a significant limitation if one wants to have a general view
of possible BSM scenarios responsible for the ε′/ε anomaly.
In particular, in the absence of even approximate values of
hadronic matrix elements of BSM operators, no complete
model-independent analysis was possible until recently.

The recent calculations of BSM K → ππ matrix ele-
ments, in particular of those of scalar and tensor operators in
[43], combined with the EFT and in particular SMEFT anal-
yses presented in our paper, widened significantly our view
on BSM contributions to ε′/ε.

Our analysis has two main virtues:

• It opens the road to the analyses of ε′/ε in any theory
beyond the SM and allows with the help of the mas-
ter formula in (18) [46], with details presented here,
to search very efficiently for BSM scenarios behind the
ε′/ε anomaly. In particular the values of Pi collected in
“Appendix C” indicate which routes are more promising
than others, both in the context of the low-energy EFT
and SMEFT. By implementing our results in the open
source code flavio [59], testing specific BSM theories
becomes particularly simple.

• Through our SMEFT analysis we were able to identify
correlations between ε′/ε and various observables that
depend sensitively on the operators involved. Here �S =
2, �C = 2 and electro-magnetic dipole moments (EDM)
play a prominent role but also correlations with �S = 1
and �C = 1 provide valuable informations.

Our take-home messages are:

• Tree-level vector exchanges, like Z ′ andG ′ contributions,
discussed already by various authors, can be responsible
for the observed anomaly. In these scenarios one has to
face in general important constraints from �S = 2 and
�C = 2 transitions as well as direct searches and often
some fine tuning is required. Here the main role is played
by the electroweak operator Q8 with its Wilson coeffi-
cient significantly modified by NP.

• Models with tree-level exchange of heavy colourless or
coloured scalars are a new avenue, opened by the results
for BSM operators from DQCD in [43]. In particular
scalar and tensor operators, having chirally enhanced
matrix elements and consequently large coefficients Pi ,
are candidates for the explanation of the anomaly in ques-
tion. Moreover, some of these models, in contrast to mod-
els with tree-level Z ′ and G ′ exchanges, are free from
both �S = 2 and �C = 2 constraints. The EDM of
the neutron is an important constraint for these models,
depending on the couplings, but does not preclude a siz-
able NP effect in ε′/ε.

• Models with modified W± or Z0 couplings can induce
sizable effects in ε′/ε without appreciable constraints
from semi-leptonic decays such as K+ → π+νν̄ or
KL → π0��̄. In the case of a SM singlet Z ′ mixing
with the Z0, sizable Z0-mediated contributions are dis-
favoured by electroweak precision tests.

The future of ε′/ε in the SM and in the context of searches
for NP will depend on how accurately it can be calculated.
This requires improved lattice calculations not only of the
matrix elements of SM operators but also of the BSM ones,
which are known presently only from the DQCD approach
in the chiral limit. It is also hoped that lattice QCD will be
able to take into account isospin breaking corrections and that
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other lattice collaborations will attempt to calculate hadronic
matrix elements of all relevant operators. In this context we
hope that the new analysis of the RBC-UKQCD collaboration
with improved matrix elements to be expected this year will
shed new light on the hinted anomaly. Such future updates
can be easily accounted for by the supplementary details on
the master formula in “Appendix C”.

On the short-distance side the NNLO results for QCD pen-
guins should be available soon [14]. The dominant NNLO
corrections to electroweak penguins have been calculated
almost 20 years ago [11] and, as we have pointed out, play
a significant role in removing the scale uncertainty in mt (μ)

and the uncertainty due to renormalization scheme depen-
dence. Moreover, as we have seen, its inclusion increases the
size of the ε′/ε anomaly. With present technology a com-
plete NNLO calculation, using the results in [12], should be
feasible in a not too distant future. As far as BSM opera-
tors are concerned, a NLO analysis of their Wilson coeffi-
cients is in progress, but its importance is not as high as of
hadronic matrix elements due to significant additional para-
metric uncertainties residing in any NP model. In any case,
in the coming years the ratio ε′/ε is expected to play a sig-
nificant role in the search for NP. In this respect, the results
presented here will be helpful in disentangling potential mod-
els of new CP violating sources beyond the SM as well as
constraining the magnitude of their effects.
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A. �S = 1 EFT operators

In full generality, the �S = 1 dimension-six effective Hamil-
tonian with N f active quark flavours,

H(N f )

�S=1 = −
∑
i

Ci Oi , (61)

contains three classes of operators relevant to K → ππ

decays:

four-quark operators

Oq
X AB = (s̄i
X PAd

i )(q̄ j
X PBq
j ), (62)

Õq
X AB = (s̄i
X PAd

j )(q̄ j
X PBq
i ), (63)

electro- and chromo-magnetic dipole operators

O(′)
7γ = ms(s̄σ

μν PL(R)d)Fμν, (64)

O(′)
8g = ms(s̄σ

μνT APL(R)d)GA
μν, (65)

semi-leptonic operators

O�
X AB = (s̄ 
X PAd)(�̄ 
X PB�). (66)

Here i, j are colour indices, A, B = L , R, and X = S, V, T
with 
S = 1, 
V = γ μ, 
T = σμν . The semi-leptonic oper-
ators can contribute to ε′/ε only via QED RG mixing and we
neglect them throughout. Likewise, we neglect the electro-
magnetic dipole operators O(′)

7γ . This is justified because the
electro- and chromo-magnetic dipole operators mix under
QCD and therefore UV complete models always generate
both operators with a suppression of αe/αs for the electro-
magnetic dipole operator in ε′/ε with respect to the chromo-
magnetic one.

The number of �S = 1 four-quark operators is sizable.
For N f = 5, there are 10+10′ (the prime denotes the number
of chirality-flipped operators) linearly independent operators
for each q = u, c, b:

Oq
V LL , Oq

V LR, Oq
SLR, Oq

T LL , (67)

as well as their colour-flipped (Õ) and chirality-flipped
(L ↔ R) counterparts. For q = d, s, Fierz symmetry allows
to eliminate half of them, leaving only 5 + 5′ linearly inde-
pendent ones. As our �S = 1 reference basis we choose to
eliminate Õd,s

i through the relations

Õd,s
V LL = Od,s

V LL ,

Õd
V LR = −2 Od

SRL ,

Õd
SLR = −1

2
Od
V RL ,

Õs
V LR = −2 Os

SLR,

Õs
SLR = −1

2
Os
V LR,

Õd,s
SLL = −1

2
Od,s

SLL − 1

8
Od,s
T LL ,

Õd,s
T LL = −6 Od,s

SLL + 1

2
Od,s
T LL ,

(68)

and likewise for their chirality-flipped counterparts. Hence
in total there are 40 + 40′ linearly independent four-quark
operators in H(5)

�S=1, 30 + 30′ in H(4)
�S=1, and 20 + 20′ in

H(3)
�S=1.
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We note that this reference basis coincides with the
“flavio” basis defined in the Wilson coefficient exchange for-
mat (WCxf) [63] and used in the flavio [59] and wilson
[58] packages up to two differences,

• the normalization of the operators differs,
• the operators in the “flavio” basis have the flavour struc-

ture (d̄s) rather than (s̄d).

The complete basis can be inspected on the WCxf web site
[108].

B. K → ππ matrix elements

The K → ππ matrix elements 〈Oi 〉I , see (5), of the oper-
ators Oi in the �S = 1 effective Hamiltonian are a crucial
input to the prediction of ε′/ε in the SM and beyond. In
this appendix we count the number of irreducible matrix ele-
ments (i.e. which cannot be related to other matrix elements
by exact or nearly exact symmetries like parity and isospin)
and relate the matrix elements in our operator basis to the
traditional SM operator basis.

As discussed in Sect. 2, the �S = 1 effective Hamiltonian
with three active quark flavours (4) contains 40 four-quark
operators, half of which are related to the other ones by parity,
leaving at most 20 irreducible matrix elements for each of the
two isospin amplitudes. Since the operators with flavour con-
tent (s̄d)(s̄s) are expected to be strongly suppressed and we
neglect them, this number reduces to the 15 matrix elements

〈Õu
XLB〉I , 〈Ou

XLB〉I , 〈Od
XLB〉I , (69)

where XLB = V LL , V LR, SLL , SLR, or T LL (note that
the operators Õd

XLB are Fierz-redundant). In addition, isospin
relations can be used to show that17

〈Ou
XLB〉2 + 〈Od

XLB〉2 = 0,

〈Õu
XLB〉2 + 〈Õd

XLB〉2 = 0.
(70)

These 10 relations allow to remove 10 of the 15 I = 2 matrix
elements. In summary, assuming strong isospin symmetry,
there are in total 15 irreducible matrix elements for I = 0
and 5 for I = 2. Of these, 7 and 3 are relevant in the SM,
respectively.

17 In the second line, the Fierz-redundant operators Õd
XLB are used for

the sake of notational brevity.

In terms of the traditional SM operator basis [8], the matrix
elements of operators in our basis can be written as Class A

〈Ou
V LL〉I = 1

12
〈Q3〉I + 1

6
〈Q9〉I ,

〈Ou
V LR〉I = 1

12
〈Q5〉I + 1

6
〈Q7〉I ,

〈Õu
V LL〉I = −1

6
〈Q3〉I + 1

6
〈Q9〉I + 1

4
〈Q4〉I ,

〈Õu
V LR〉I = 1

12
〈Q6〉I + 1

6
〈Q8〉I ,

〈Od
V LL〉I = 1

6
〈Q3〉I − 1

6
〈Q9〉I ,

〈Od
V LR〉I = 1

6
〈Q5〉I − 1

6
〈Q7〉I ,

〈Od
SRL〉I = − 1

12
〈Q6〉I + 1

12
〈Q8〉I .

(71)

The isospin relations (70) in this case simply imply the van-
ishing of I = 2 matrix elements of QCD penguin operators,
〈Q3,4,5,6〉2 = 0.

For the remaining 10 irreducible matrix elements, we use
the results from the so-called “SD-basis” in Tables 4 and 5
of [43]. They are related to the matrix elements of operators
in our basis as follows: Class C

〈Ou
SLL 〉I = 〈QSLL,u

2 〉I , 〈Ou
T LL〉I = −〈QSLL,u

4 〉I ,
〈Õu

SLL 〉I = 〈QSLL,u
1 〉I , 〈Õu

T LL〉I = −〈QSLL,u
3 〉I .

(72)

Class D

〈Od
SLL 〉I = 〈QSLL,d

2 〉I , 〈Od
T LL 〉I = 〈QSLL,d

1 〉I . (73)

Class E

〈Ou
SLR〉I = 〈QSLR,u

2 〉I , 〈Õu
SLR〉I = 〈QSLR,u

1 〉I . (74)

The isospin relations (70) allow to eliminate the I = 2 matrix
elements in (72) and (74).

In Table 5, we show the numerical values of the K → ππ

matrix elements of all operators entering our analysis. The
ones of the SM operators are obtained from lattice QCD with
RG evolution to μ = 1.3 GeV used in our numerical analysis.

C. ε′/ε Master formula for new physics

For the convenience of the reader, in this appendix we provide
the details to the semi-numerical master formula (18) for the
BSM contributions to ε′/ε in terms of the �S = 1 Wilson
coefficients at the scale μew = 160 GeV and the matrix ele-
ments. We reiterate that we perform the RG evolution of NP
Wilson coefficients only at the one-loop level in QCD and
QED, so we do not take into account contributions that only
arise at two-loop level. The numerical values of the p(I )

i j and
Pi corresponding to the five classes of operators introduced
in Sect. 2.2 are listed in the following tables.
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Table 5 Numerical values of K → ππ hadronic matrix elements used
in our analysis. The matrix elements of the operators in the traditional
SM basis Q3...9 are based on lattice QCD [15,16], the ones of the BSM
operators and the chromo-magnetic dipole operator on DQCD [42,43].
All matrix elements are given in the MS scheme at μ = 1.3 GeV and

in units of GeV3. The normalization convention is chosen as h = 1
(at variance with Refs. [15,16]). The values in square brackets are not
needed since they can be expressed in terms of the others by isospin and
Fierz relations. Note that the chromo-magnetic matrix element refers to
our convention, see (6)

Qi 〈Qi 〉0 〈Qi 〉2 Refs.

Q3 −0.0399(652)(118) 0 [15]

Q4 0.267(93)(65) 0 [15]

Q5 −0.179(48)(46) 0 [15]

Q6 −0.339(97)(91) 0 [15]

Q7 0.155(37)(53) 0.1220(52)(71) [15,16]

Q8 1.54(6)(41) 0.838(28)(31) [15,16]

Q9 −0.197(54)(49) 0.0162(3)(6) [15,16]

QSLL,u
1 −0.005(1) [−0.003] [43]

QSLL,u
2 −0.044(9) [−0.031] [43]

QSLL,u
3 −0.371(74) [−0.262] [43]

QSLL,u
4 −0.214(43) [−0.151] [43]

QSLL,d
1 0.0070(14) −0.002 [43]

QSLL,d
2 −0.088(18) 0.031 [43]

QSLR,u
1 −0.015(3) [0.003] [43]

QSLR,u
2 −0.141(28) [0.050] [43]

O8g −0.013(4) 0 [41,42]

• Table 6 contains the contributions from the Wilson coef-
ficients from Class A that multiply SM matrix elements
only.

• Table 7 contains the contributions from the Wilson coef-
ficients from Class B that only enter via RG mixing into
the chromo-magnetic dipole operator.

• Table 8 contains the contributions from the RLRL type
operators of Class C with flavour structure (s̄d)(ūu)

that contribute via BSM matrix elements or the chromo-
magnetic dipole matrix element.

• Table 9 contains the contributions from the RLRL type
operators from Class D with flavour structure (s̄d)(d̄d)

that contribute via BSM matrix elements or the chromo-
magnetic dipole matrix element.

• Table 10 contains the contributions from the RLLR type
operators from Class E with flavour structure (s̄d)(ūu)

that contribute via matrix elements of SM operators Q7,8

and BSM matrix elements.

Besides the p(I )
i j and Pi , we provide in the last column

of each table the suppression scale � that would generate
(ε′/ε)BSM = 10−3 for Ci = 1/�2.

In these tables we restrict ourselves to listing the Wilson
coefficients Cq

X AB with A = L since parity invariance of

QED and QCD implies that the p(I )
i j are symmetric under the

interchange of all L and R. However, the K → ππ matrix

elements flip their sign [109]

〈(ππ)I |Oi |K 〉 = −〈(ππ)I |[Oi ]L↔R |K 〉. (75)

In the master formula (18), this is accounted for by the relative
sign between the primed and unprimed Wilson coefficients.

The Wilson coefficientsCb,c
SLR and C̃b,c

SLR do not contribute
at all at the level considered, since they do not mix at one-loop
level into any of the operators with non-vanishing K → ππ

matrix element.

D. SMEFT operators

In general, the following classes of SMEFT operators can
contribute to the matching onto the �S = 1 EFT at μew:

• The ψ2HX dipole operators OdB, OdW , OdG .

• The ψ4 non-leptonic operators Odd , O(1,8)
ud ,

O(1,8)
qu , O(1,8)

qd , O(1,3)
qq , O(1,8)

quqd .

• Contributions from modified W± and Z0 couplings are
generated by ψ2H2D operators O(1,3)

Hq and OHd that
mediate both non- and semi-leptonic transitions. The
ψ2H3 operator OdH parametrizes modified h0 cou-
plings and contributes via tree-level h0 exchange, but for
light quark- and lepton-Yukawa couplings such exchange
counts as a dimension-eight contribution [65].
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Table 6 Coefficients p(I )
i j and Pi of the master formula (18)–(19) as well as suppression scale � (last column) from Wilson coefficients of operators

in Class A multiplying SM matrix elements only. Empty entries correspond to coefficients < 0.05

〈Q3〉0 〈Q4〉0 〈Q5〉0 〈Q6〉0 〈Q7〉0 〈Q8〉0 〈Q9〉0 〈Q7〉2 〈Q8〉2 〈Q9〉2 Pi
�

TeV

Cu
V LL 10.7 − 7.4 − 0.0 0.2 − 0.07 − 0.04 6.32 1.6 0.8 − 141.8 −4.3 ± 1.0 1.0 65

Cu
V LR 0.1 − 0.2 3.7 3.6 7.28 7.73 − 0.06 − 163.4 − 173.4 1.4 −125.8 ± 9.4 9.4 354

C̃u
V LL − 13.6 16.4 0.2 − 1.2 − 0.01 6.37 0.3 0.1 − 143.0 1.5 ± 1.7 1.7 38

C̃u
V LR 0.7 − 1.3 0.4 13.4 − 0.04 30.62 − 0.04 1.0 − 687.4 0.9 −435.5 ± 33.6 33.6 659

Cd
V LL 6.6 − 0.6 0.1 − 0.9 0.04 0.03 − 6.26 − 0.9 − 0.6 140.6 2.3 ± 0.6 0.6 48

Cd
V LR 0.1 − 0.3 7.5 7.5 − 7.41 − 7.84 0.03 166.4 176.1 − 0.7 122.9 ± 10.0 10.0 350

Cd
SLR − 0.3 0.7 − 0.2 − 14.5 − 0.01 15.51 − 0.01 0.2 − 348.2 0.2 −214.4 ± 19.0 19.0 462

Cs
V LL 0.3 − 0.6 0.1 − 0.9 0.04 0.03 0.03 − 0.9 − 0.6 − 0.8 −0.4 ± 0.1 0.1 18

Cs
V LR 0.1 − 0.3 0.1 − 0.3 0.03 0.02 0.03 − 0.8 − 0.4 − 0.7 −0.3 ± 0.0 0.0 17

Cs
SLR 0.3 − 0.7 0.2 − 1.0 0.01 0.01 0.01 − 0.2 − 0.2 − 0.2 −0.0 ± 0.1 0.1 6

Cc
V LL − 0.1 0.2 − 0.0 0.2 − 0.07 − 0.04 − 0.06 1.6 0.8 1.4 0.7 ± 0.1 0.1 25

Cc
V LR 0.1 − 0.2 0.1 − 0.3 − 0.07 − 0.03 − 0.06 1.6 0.8 1.4 0.7 ± 0.1 0.1 26

C̃c
V LL 0.4 − 0.7 0.2 − 1.2 − 0.01 − 0.01 0.3 0.1 0.2 0.2 ± 0.2 0.2 13

C̃c
V LR 0.7 − 1.3 0.4 − 1.9 − 0.04 − 0.01 − 0.04 1.0 0.2 0.9 0.4 ± 0.2 0.2 20

Cb
V LL − 0.0 0.0 − 0.0 0.1 0.02 0.02 0.02 − 0.6 − 0.4 − 0.5 −0.3 ± 0.0 0.0 17

Cb
V LR 0.0 − 0.1 0.0 − 0.1 0.02 0.02 0.02 − 0.6 − 0.4 − 0.5 −0.3 ± 0.0 0.0 16

C̃b
V LL 0.3 − 0.4 0.1 − 0.8 0.01 − 0.1 − 0.2 − 0.1 −0.0 ± 0.1 0.1 4

C̃b
V LR 0.4 − 0.6 0.1 − 1.1 0.01 0.01 0.01 − 0.2 − 0.3 − 0.2 −0.1 ± 0.1 0.1 8

Table 7 Coefficients p(I )
i j and Pi of the master formula (18)–(19) as well as suppression scale � (last column) from Wilson coefficients of Class

B only entering via RG mixing into the chromo-magnetic dipole operator

〈O8g〉0 Pi
�

TeV

C8g − 105.5 −0.4 ± 0.1 0.1 18

Cs
SLL − 15.5 −0.0 ± 0.0 0.0 7

Cs
T LL 44.4 0.2 ± 0.0 0.0 12

Cc
SLL 72.9 0.2 ± 0.1 0.1 15

Cc
T LL 42.6 0.1 ± 0.0 0.0 11

C̃c
SLL 62.5 0.2 ± 0.1 0.1 14

C̃c
T LL 1621.3 5.4 ± 1.8 1.8 73

Cb
SLL 106.2 0.4 ± 0.1 0.1 18

Cb
T LL 32.4 0.1 ± 0.0 0.0 10

C̃b
SLL 103.7 0.3 ± 0.1 0.1 18

C̃b
T LL 4093.5 13.5 ± 4.3 4.3 116

Table 8 Coefficients p(I )
i j and Pi of the master formula (18)–(19) as well as suppression scale � (last column) from RLRL type operators of Class

C with flavour structure (s̄d)(ūu)

〈O8g〉0 〈QSLL,u
1 〉0 〈QSLL,u

2 〉0 〈QSLL,u
3 〉0 〈QSLL,u

4 〉0 〈QSLL,d
1 〉2 〈QSLL,d

2 〉2 Pi
�

TeV

Cu
SLL 0.2 − 14.3 − 206.4 13.9 − 4.5 119.0 − 2541.5 −74.1 ± 15.9 15.9 272

Cu
T LL 0.1 − 163.3 50.3 7.9 36.6 3625.2 5846.8 161.8 ± 36.3 36.3 402

C̃u
SLL 0.1 − 62.8 − 62.0 10.8 − 0.5 − 534.9 496.7 15.6 ± 3.3 3.3 124

C̃u
T LL 3.5 − 350.0 − 475.8 176.7 − 38.6 1075.2 17591.7 508.6 ± 107.6 107.6 713
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Table 9 Coefficients p(I )
i j and Pi of the master formula (18)–(19) as well as suppression scale � (last column) from RLRL type operators of Class

D with flavour structure (s̄d)(d̄d)

〈O8g〉0 〈QSLL,d
1 〉0 〈QSLL,d

1 〉2 〈QSLL,d
2 〉0 〈QSLL,d

2 〉2 Pi
�

TeV

Cd
SLL − 0.8 6.1 − 137.4 − 111.1 2493.8 87.4 ± 15.9 15.9 295

Cd
T LL 2.2 162.6 − 3649.5 254.3 − 5708.9 −190.9 ± 35.4 35.4 436

Table 10 Coefficients p(I )
i j and Pi of the master formula (18)–(19) as well as suppression scale � (last column) from RLLR type operators of

Class E with flavour structure (s̄d)(ūu). Empty entries correspond to vanishing coefficients

〈Q7〉2 〈Q8〉2 〈QSLR,u
1 〉0 〈QSLR,u

2 〉0 Pi
�

TeV

Cu
SLR 350.6 − 187.4 266.2 ± 20.7 20.7 515

C̃u
SLR −84.1 88.8 −45 − 47.5 59.7 ± 5.0 5.0 244

Table 11 List of the dimension-six four-fermion (ψ4) operators in
SMEFT that contribute to s → d transitions at tree level or via mixing.
Flavour indices on the quark and lepton fields are i jkl

(L̄ R)(R̄L) or (L̄ R)(L̄ R) (L̄ L)(L̄ L)

O�edq (�̄ai e j )(d̄kq
a
l ) O(1)

qq (q̄iγμq j )(q̄kγ μql )

O(1)
quqd (q̄ai u j )εab(q̄bk dl ) O(1)

�q (�̄iγμ� j )(q̄kγ μql )

O(8)
quqd (q̄ai T

Au j )εab(q̄bk T
Adl ) O(3)

qq (q̄iγμτ I q j )(q̄kγ μτ I ql )

(L̄ L)(R̄R) O(3)
�q (�̄iγμτ I � j )(q̄kγ μτ I ql )

O�u (�̄iγμ� j )(ūkγ μul )

O�d (�̄iγμ� j )(d̄kγ μdl ) (R̄R)(R̄R)

Oqe (q̄iγμq j )(ēkγ μel) Odd (d̄iγμd j )(d̄kγ μdl )

O(1)
qu (q̄iγμq j )(ūkγ μul ) Oeu (ēiγμe j )(ūkγ μul )

O(1)
qd (q̄iγμq j )(d̄kγ μdl ) Oed (ēiγμe j )(d̄kγ μdl )

O(8)
qu (q̄iγμT Aq j )(ūkγ μT Aul ) O(1)

ud (ūiγμu j )(d̄kγ μdl )

O(8)
qd (q̄iγμT Aq j )(d̄kγ μT Adl ) O(8)

ud (ūiγμT Au j )(d̄kγ μT Adl )

• The ψ4 semi-leptonic operators O(1,3)
�q , Oqe, O�d ,

Oed , O�edq .

We follow the SMEFT conventions of Ref. [45] and provide
the definitions of the above operators in tables 11 and 12, as
well as those operators that mix into Classes A–C operators
listed in tables 13 and 14.

E. SMEFT matching conditions

E.1 Four-quark operators

The tree-level matching of the SMEFT four-quark operators
yields the following non-vanishing matching conditions for
the Wilson coefficients in the �S = 1 EFT (61),

Table 12 Dimension-six electro- and chromo-magnetic dipole
(ψ2HX ) and ψ2H2D operators in SMEFT

ψ2XH ψ2H2D

OuB (q̄iσμνu j )H̃ Bμν O(1)
Hq (H†i

←→
DμH)(q̄iγ μq j )

OdB (q̄iσμνd j )HBμν O(3)
Hq (H†i

←→
D I

μ H)(q̄i τ I γ μq j )

OuW (q̄iσμνu j )τ
I H̃W I

μν OHu (H†i
←→
DμH)(ūiγ μu j )

OdW (q̄iσμνd j )τ
I HW I

μν OHd (H†i
←→
DμH)(d̄iγ μd j )

OuG (q̄iσμνT Au j )H̃GA
μν OHud (H̃†i DμH)(ūiγ μd j )

OdG (q̄iσμνT Ad j )HGA
μν

Cdi
V LL = [C(1)

qq

]
21i i + [C(3)

qq

]
21i i ,

C̃di
V LL = [C(1)

qq

]
2i i1 + [C(3)

qq

]
2i i1, (76)

Cui
V LL =

∑
jk

Vi j V
∗
ik

([C(1)
qq

]
21 jk + [C(1)

qq

]
jk21

−[C(3)
qq

]
21 jk − [C(3)

qq

]
jk21

)
, (77)

C̃ui
V LL = 2

∑
jk

Vi j V
∗
ik

([C(3)
qq

]
j12k + [C(3)

qq

]
2k j1

)
, (78)

Cdi
V RR = [Cdd]21i i , C̃

di
V RR = [Cdd]2i i1, (79)

Cui
V RR = [C(1)

ud

]
i i21 − 1

6

[C(8)
ud

]
i i21, C̃

ui
V RR = 1

2

[C(8)
ud

]
i i21,

(80)

Cui
V LR = [C(1)

qu

]
21i i − 1

6

[C(8)
qu

]
21i i , C̃

ui
V LR = 1

2

[C(8)
qu

]
21i i ,

(81)

Cui
V RL =

∑
jk

Vi j V
∗
ik

([C(1)
qd

]
jk21 − 1

6

[C(8)
qd

]
jk21

)
,

C̃ui
V RL = 1

2

∑
jk

Vi j V
∗
ik

[C(8)
qd

]
jk21, (82)
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Table 13 List of four-quark operators in Classes A–C that receive at
one-loop in SMEFT contributions from non-leptonic ψ4 and ψ2H2D
operators through mixing via the top-quark Yukawa coupling. Self-
mixing is included. We have omitted OHud (Class E) that only mixes
with itself through the top Yukawa coupling

Class A non-leptonic ψ4 ψ2H2D

O(1)
qq O(1)

qq , O(1,8)
qu O(1)

Hq

O(3)
qq O(3)

qq , O(8)
qu O(3)

Hq

O(1)
qu O(1,8)

qu , O(1,3)
qq , Ouu O(1)

Hq , OHu

O(8)
qu O(1,8)

qu , O(1,3)
qq , Ouu −

O(1)
qd O(1)

ud , O(1)
qd OHd

O(8)
qd O(8)

ud , O(8)
qd −

O(1)
ud O(1)

ud , O(1)
qd OHd

O(8)
ud O(8)

ud , O(8)
qd −

Odd − −
O(1)

Hq O(1,3)
qq ,O(1)

qu O(1)
Hq

O(3)
Hq O(1,3)

qq O(3)
Hq

OHd O(1)
qd , O(1)

ud OHd

Class B + C non-leptonic ψ4 ψ2HX

OdG O(1,8)
quqd OdG

O(1)
quqd O(1,8)

quqd

O(8)
quqd O(8)

quqd

Cdi
V LR = [C(1)

qd

]
21i i − 1

6

[C(8)
qd

]
21i i , C̃

di
V LR = 1

2

[C(8)
qd

]
21i i ,

(83)

Cdi
V RL = [C(1)

qd

]
i i21 − 1

6

[C(8)
qd

]
i i21, C̃

di
V RL = 1

2

[C(8)
qd

]
i i21,

(84)

Cdi
SRL = −[C(8)

qd

]
2i i1, C̃

di
SRL = −2

[C(1)
qd

]
2i i1 + 1

3

[C(8)
qd

]
2i i1,

(85)

Cdi
SLR = −[C(8)

qd

]
i12i , C̃

di
SLR = −2

[C(1)
qd

]
i12i + 1

3

[C(8)
qd

]
i12i ,

(86)

Cui
SRR =

∑
j

Vi j

([C(1)
quqd

]
j i21 + 1

4

[C(8)
quqd

]
2i j1

−1

6

[C(8)
quqd

]
j i21

)
, (87)

C̃ui
SRR =

∑
j

Vi j

(
1

2

[C(1)
quqd

]
2i j1 − 1

12

[C(8)
quqd

]
2i j1

+1

2

[C(8)
quqd

]
j i21

)
, (88)

Cui
SLL =

∑
j

V ∗
i j

([C(1)
quqd

]∗
j i12 + 1

4

[C(8)
quqd

]∗
1i j2

−1

6

[C(8)
quqd

]∗
j i12

)
, (89)

C̃ui
SLL =

∑
j

V ∗
i j

(
1

2

[C(1)
quqd

]∗
1i j2 − 1

12

[C(8)
quqd

]∗
1i j2

+1

2

[C(8)
quqd

]∗
j i12

)
, (90)

Cui
T RR = 1

16

∑
j

Vi j
[C(8)

quqd

]
2i j1,

C̃ui
T RR =

∑
j

Vi j

(
1

8

[C(1)
quqd

]
2i j1 − 1

48

[C(8)
quqd

]
2i j1

)
, (91)

Cui
T LL = 1

16

∑
j

V ∗
i j

[C(8)
quqd

]∗
1i j2,

C̃ui
T LL =

∑
j

V ∗
i j

(
1

8

[C(1)
quqd

]∗
1i j2 − 1

48

[C(8)
quqd

]∗
1i j2

)
. (92)

where V is the CKM matrix and we have explicitly written
the sum over j on the right-hand side where necessary, while
i is not to be summed over.

E.2 Modified Z0 and W± couplings

In addition to the direct matching of four-quark SMEFT oper-
ators onto four-quark �S = 1 EFT operators, the latter also
receive dimension-six matching contributions from diagrams
with tree-level Z0 or W± exchange, with one SM coupling
and the other from a SMEFT ψ2H2D operator of modified
Z0 or W± coupling.

The Z0 exchanges lead to the following additional match-
ing contributions to vector operators,

Cui
V L A = 2 ζuA

[
C(1)
Hq + C(3)

Hq

]∗
12

, Cui
V RA = 2 ζuA

[CHd

]∗
12,

Cdi
V L A = 2 ζdA

[
C(1)
Hq + C(3)

Hq

]∗
12

, Cdi
V RA = 2 ζdA

[CHd

]∗
12,

(93)

where we have written the SM Z0 coupling to quarks q =
u, d and A = L , R, as

LSM ⊃ g

cos θW
ζqA

(
q̄γ μPAq

)
Z0

μ, (94)
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Table 14 List of SMEFT operators that mix in SMEFT at one-loop with the ones in Classes A–C through gauge couplings. Self-mixing is included.
We have omitted OHud (Class E) that only mixes with itself through gauge couplings

Class A non-leptonic ψ4 semi-leptonic ψ4 ψ2H2D

O(1)
qq O(1,3)

qq , O(1,8)
qu , O(1,8)

qd O(1)
�q , Oqe O(1)

Hq

O(3)
qq O(1,3)

qq , O(8)
qu , O(8)

qd O(3)
�q O(3)

Hq

O(1)
qu O(1,3)

qq , O(1,8)
qu , O(1)

qd , O(1)
ud , Ouu O(1)

�q , Oqe, O�u , Oeu O(1)
Hq , OHu

O(8)
qu O(1,3)

qq , O(1,8)
qu , O(8)

qd , O(8)
ud , Ouu

O(1)
qd O(1,3)

qq , O(1)
qu , O(1,8)

qd , O(1)
ud , Odd O(1)

�q , Oqe, O�d , Oed O(1)
Hq , OHd

O(8)
qd O(1,3)

qq , O(8)
qu , O(1,8)

qd , O(8)
ud , Odd

O(1)
ud O(1,8)

ud , O(1)
qu , O(1)

qd , Ouu , Odd O�u , O�d , Oeu , Oed OHu , OHd

O(8)
ud O(8)

qu , O(8)
qd , O(1,8)

ud , Ouu , Odd

Odd O(1,8)
qd , O(1,8)

ud , Odd O�d , Oed OHd

O(1)
Hq O(1,3)

qq ,O(1)
qu ,O(1)

qd O(1)
�q , Oqe O(1)

Hq

O(3)
Hq O(1,3)

qq O(3)
�q O(3)

Hq

OHd O(1)
qd , O(1)

ud ,Odd ,O(1)
ud O�d ,Oed OHd

Class B+C non-leptonic ψ4 ψ2HX

OdG OdG , OdB , OdW

O(1)
quqd O(1,8)

quqd OuG , OdG , OuB , OuW , OdB , OdW

O(8)
quqd O(1,8)

quqd OuG , OdG , OuB , OuW , OdB , OdW

with

ζqL = T q
3 − Qq sin2 θW , ζqR = −Qq sin2 θW , (95)

and the SU (2)L coupling g.
In the case of W± exchange, there are two qualitatively

different contributions. The first involves a modifiedW± cou-
pling to left-handed quarks induced by the operator O(3)

Hq and

affects the matching contribution of C̃ui
V LL ,

C̃ui
V LL = −2

∑
j

([C(3)
Hq

]∗
j2VidV

∗
i j + [C(3)

Hq

]∗
1 j Vi j V

∗
is

)
, (96)

where again the sum over j has been made explicit and i
is not to be summed over. Here only the terms with Wilson
coefficients

[C(3)
Hq

]
kl with kl = 12, 13, 23 are relevant for

ε′/ε,18 because for k = l the
[C(3)

Hq

]
kl is manifestly real-

valued whereas the accompanying CKM factor is also real-
valued (k = 1) or has a negligible phase (k = 2), such that
there is no contribution to ε′/ε.

The second contribution originates from the W± coupling
to right-handed quarks induced by the operator OHud . In this

18 Omitting coefficients that are redundant due to C(3)
Hq being hermitian.

case the only non-vanishing matching conditions are

C̃ui
SLR = 2 Vid

[CHud

]∗
i2, C̃ui

SRL = 2 V ∗
is

[CHud

]
i1. (97)

Since the operators C̃c
SLR,SRL do not contribute to ε′/ε at the

one-loop level as discussed in Sect. 2.2, only the case i = 1
is relevant.

The effect of the right-handed W± coupling on ε′/ε has
been discussed recently in [85,103] and of the other ψ2H2D
operators in [24–26].

E.3 Dipole operators

Since we neglect the electro-magnetic dipole operators, the
only relevant matching conditions are those of the chromo-
magnetic operators, that trivially read

C8g = v√
2ms

[CdG]∗
12, C ′

8g = v√
2ms

[CdG]
21, (98)

taking into account our normalization in (6). Here v ≈
246 GeV is the Higgs vacuum expectation value.
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F. RG evolution in SMEFT

In Table 13 all operators are listed that mix through the
large top-quark Yukawa coupling into the four-quark SMEFT
operators in Classes A–C. For Class A, these are either four-
quark operators or ψ2H2D operators describing modified
W± and Z0 couplings whereas in the case of Classes B–C
only scalar four-quark operators contribute. The correspond-
ing mixing through gauge couplings is given in Table 14. For
Class A, there are four-quark and semi-leptonic operators and
again ψ2H2D operators, whereas in the case of Classes B–C
scalar four-quark and dipole operators ψ2HX contribute.
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