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Abstract

We propose a full 3D benchmark problem for brittle fracture based on experiments as well as a
validation in the context of phase-field models. The example consists of a series of four-point bending
tests on graphite specimens with sharp V-notches at different inclination angles. This simple setup
leads to a mixed mode (I + II + III) loading which results in complex yet stably reproducible
crack surfaces. The proposed problem is well suited for benchmarking numerical methods for brittle
fracture and allows for a quantitative comparison of failure loads and propagation paths as well
as initiation angles and the fracture surface. For evaluation of the crack surfaces image-based 3D
models of the fractured specimen are provided along with experimental and numerical results. In
addition, measured failure loads and computed load-displacement curves are given. To demonstrate
the applicability of the benchmark problem, we show that for a phase-field model based on the Finite
Cell Method and multi-level hp-refinement the complex crack surface as well as the failure loads can
be well reproduced.
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1 Introduction

Numerical simulation of crack propagation is of major engineering importance and a challenging
problem. The main difficulty stems from the inherently discontinuous nature of the crack impos-
ing difficulties to numerical treatment. Consequently, a large number of numerical approaches for
fracture simulation have been proposed ranging from extended finite element methods (Moës et al.
[1999], Belytschko and Black [1999]) and cohesive zone models Ortiz and Pandolfi [1999] to diffusive
approaches including phase-field models (Francfort and Marigo [1998], Bourdin et al. [2000]) while
research on new methods is continuing.
The phase-field approach to fracture overcomes the challenges faced by numerical modeling of crack
propagation in a conventional finite element setting by replacing the discontinuous crack with a
smoothed approximation. The crack is represented using a continuous scalar-variable, the so-called
phase-field, which interpolates smoothly between fully broken and undamaged regions. This regular-
ization of the sharp crack is based on a length-scale parameter which governs the extent of diffusion
and determines the numerical width of the crack. For small length-scale parameters, a very fine
mesh is needed in the vicinity of the crack to fully resolve the high gradients in the crack profile. For
large domains and complex crack patterns in three dimensions this quickly becomes computationally
expensive if a fixed mesh is used. Consequently, a range of numerical frameworks for phase-field
brittle fracture have been developed which implement adaptive refinement to reduce the computa-
tional effort. Within the isogeometric analysis framework different adaptive formulations based on
hierarchical B-splines or NURBS have been proposed by e.g. Borden et al. [2014], Hennig et al. [2016]
and Hesch et al. [2016]. An alternative approach based on multi-level hp-refinement using integrated
Legendre polynomials was presented in Nagaraja et al. [2018].
To compare and evaluate different numerical approaches for simulating complex 3D crack scenarios,
benchmark problems are of great importance. In the brittle fracture community, popular benchmark
examples include the single-edge notched tension (mode I) and shear test (mode II). These problems
are particularly appealing due to their simple setup and thus often used for a first two-dimensional
verification of newly implemented methods (Bourdin et al. [2000], Miehe et al. [2010a], Ambati et al.
[2015]). For a more complex mixed-mode I + II crack propagation Gálvez et al. [1998] proposed a
four-point bend of notched beams under the action of two independent actuators. Réthoré [2018]
presented a mixed mode crack propagation experiment on PMMA providing comprehensive data ob-
tained by digital image correlation (DIC). Further 2D validations with experiments can be found in
Dally and Weinberg [2017], Nguyen et al. [2015]. Complex, however in-plane 3D loading tests are pre-
sented in Carpiuc-Prisacari et al. [2017] performed on specimen with a single notch under combined
tensile shear and in-plane rotation inspired by the Nooru-Mohamed test (Nooru-Mohamed [1993],
Nooru-Mohamed et al. [1993]). Three-point bending tests on a skew notched beam were investigated
in Citarella and Buchholz [2008] and recently in Shao et al. [2019]. Nguyen et al. [2016] performed
compression tests on concrete samples to compare 3D micro-cracking initiation and propagation in
heterogeneous materials based on XR-µCt images.
To the best of our knowledge, no 3D benchmark problem for brittle fracture has been proposed which

2



allows for a quantitative comparison of crack nucleation and propagation featuring a simple geometry
and problem setup. To fill this gap, we propose a benchmark example based on a range of mixed
mode I + II + III loading tests conducted in Yosibash and Mittelman [2016], where rectangular
bars containing a sharp V-notch at different inclination angles were loaded to fracture and fracture
inclination angles as well as fracture loads were measured. We extend this data by 3D models of the
fractured specimen in form of image-based point clouds, which allows for a 3D surface comparison of
the whole crack surface. First numerical results for the proposed problem are presented which have
been obtained using a phase-field model for simulation of brittle fracture. The model extends the
2D implementation presented in Nagaraja et al. [2018] to 3D and combines the Finite Cell Method
with multi-level hp-refinement for an efficient implementation which can easily be applied to complex
geometries.
The paper is organized as follows: in Section 2 setup and experimental results of the proposed bench-
mark problem are presented along with the definition of comparison quantities. Section 3 introduces
the phase-field model for brittle fracture and its numerical implementation, followed by the numerical
results in Section 4. Finally, a summary is given in Section 5. We provide geometric models of the
fractured specimen together with the results of our simulations as supplementary data for download.

2 The Benchmark: V-notched Specimen

The validation example presented in this section is based on experiments and results presented
in Yosibash and Mittelman [2016] who developed a three-dimensional failure initiation criterion
for brittle materials containing a V-notch. In a series of four-point bending experiments PMMA,
Graphite and Macor V-notched specimen of different geometry were fractured under mixed mode
loading and failure loads as well as fracture initiation angles were measured. For the proposed
benchmark only the Graphite specimens are considered.

2.1 Experimental Setup

Four-point bending experiments were conducted on specimens with an inserted V-notch at three
different inclination angles γ = 0°, 30° and 45°. The geometry of the specimen and the experimental
setup are shown in Fig. 1 and Fig. 2, respectively. The specimen are manufactured from graphite

Fig. 1: Geometry and Boundary conditions for V-notched specimen following Yosibash and Mittel-
man [2016], (all dimensions in mm)
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Fig. 2: Experimental setup for the four-point bending experiments (Yosibash and Mittelman [2016]).

with dimensions of 80 × 20 × 10 mm and a notch height of h = 6 mm. The notch has an opening
angle of 45° and was manufactured with a width of 2 mm and a tip radius of ρ = 50µm. Placed on
two cylinders the specimen were loaded under a constant displacement rate of 1 mm/min. Material
properties have been determined as E = 12.44 kN/mm2, Gc = 1.18× 10−4 kN/mm, ν = 0.2 and
σc = 48 MPa as described in Yosibash and Mittelman [2016].

2.2 Comparison Quantities

In order to assess quality of the simulation results the critical load to failure, fracture initiation angles
and the resulting fracture surface are compared to the experimental observations.

2.2.1 Failure Loads

The experimental failure loads are summarized in Tab. 1. A total number of eleven graphite spec-
imens have been fractured including one specimen with γ = 0°, five with γ = 30° and five with
γ = 45°. The average value of all experiments for one geometry will be used as the reference value.
The relative deviation in percentage is given as the average deviation divided by the mean: 2.64 %
for the γ = 30° geometry and 1.03 % for the γ = 45° case. As pointed out in Yosibash and Mittelman
[2016], due to the difference in loading modes for the three geometries for higher inclination angles
γ the load to fracture increases which is clearly visible in the experiments. The numerical results for
the failure load will be obtained from a load-displacement curve in a quasi-static simulation as the
force associated to the first local maximum, see Section 4.2.

2.2.2 Fracture Initiation Angles

Fracture initiation is compared by means of two rotation angles, α and θ∗, which describe the
orientation of the fracture surface along the notch. Both angles are defined relative to the V-notch

γ [°] avg. force [kN] mean deviation [%] #spec.

0 0.668 - 1

30 0.846 2.64 5

45 1.028 1.03 5

Tab. 1: Experimental results for the failure loads from Yosibash and Mittelman [2016].
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bisector plane with respect to a rotated coordinate system, which is chosen for each geometry such
that the z-axis is aligned with the notch tip edge. The rotation angles are evaluated for different
z-coordinates along the crack initiation curve s(t) as visualized in Fig. 3, left. For each point on
s(t) a tangential plane to the fracture surface can be defined. α and θ∗ are then obtained as the
angles which describe the rotation of the tangential plane with respect to the V-notch bisector plane,
see Fig. 3, right. The first angle, θ∗, describes a counter-clockwise rotation around the z-axis, while
the second angle, α, describes a counter-clockwise rotation of the fracture surface around the y-axis.
For a crack initiating straight along the notch tip parallel to the y-axis it holds α = 0 and θ∗ = 0.
Experimental observations are presented along the numerical results in Figure 12 and discussed in
detail in Section 4.4.

2.2.3 Fracture Surface

To assess the quality of the computed crack surface, image-based 3D representations of the fractured
specimens are created. Based on a sequence of images recorded along a circular path a modified
bundle adjustment algorithm (Triggs et al. [1999], Kudela et al. [2018]) is used to generate a 3D
point cloud of the specimen. Using a suitable metric the distances between the obtained reference
point set and the 3D surface model from the simulation can be evaluated and compared. For two
non-empty sets of points A and B, we define the distance between a point a ∈ A and the set B as

d(a,B) = min
b∈B
‖a− b‖ , (1)

Fig. 3: Half broken specimen with definition of the initiation angles α and θ∗. Rotated coordinate
system and crack initiation curve s(t) with two evaluation points a and b, left. Tangential
planes in a and b (blue) and definition of α and θ∗ with respect to the V-notch bisector plane
(orange), right.
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where ‖·‖ denotes the L2-norm. A commonly used distance measure is the Hausdorff distance which
is defined as

H(A,B) = max (h(A,B), h(B,A)) , (2)

where
h(A,B) = max

a∈A
d(a,B) , (3)

is the directed Hausdorff distance. The modified Hausdorff distance (MHD) as proposed by Dubuisson
and Jain [1994] promises superior properties for object matching and is obtained as the arithmetic
mean of all nearest neighbor distances following

HMHD(A,B) = max (hMHD(A,B), hMHD(B,A)) , (4)

where

hMHD(A,B) =
1

Na

∑
a∈A

d(a,B) (5)

and Na is the number of points in set A. For evaluating the distances d(a,B) the software Cloud-
Compare [2019] is used.

2.3 Provided Data for Benchmarking

Tables containing failure loads and fracture initiation angles for all specimen can be found in Yosibash
and Mittelman [2016]. Point clouds of specimen no. 6 (γ = 30°) and specimen no. 8 (γ = 45°) are
available at Mendeley Data (http://dx.doi.org/xyz) as ’.ply’ files. In addition, the crack surfaces
obtained with the phase-field model presented in Section 4 are provided for all three inclination
angles as ’.stl’ files as well as the numerical load-displacement data.

3 Phase-Field Formulation

The basic theories of brittle fracture were first introduced by Griffith and Eng [1921] and later
Irwin [1958], who formulated a criterion for crack propagation based on an energy balance: A crack
propagates as soon as the elastic strain energy which is released in the process of crack extension
exceeds a critical energy, the so-called fracture toughness Gc. Following Griffith’s theory, Gc describes
the resistance of a material to crack formation and is equal to the surface energy required to form
new crack surfaces. These theories only provide a criterion for crack propagation. A variational
approach based on energy minimization has been introduced by Francfort and Marigo [1998] and
later regularized by Bourdin et al. [2000] to enable efficient numerical treatment.

Fig. 4: Photo of the fractured specimen (a) and constructed point cloud (b) for the 30° geometry.
The specimen was sprinkled with white color to enhance surface perception for the feature
extraction algorithm.
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3.1 Energy Functional and Variational Problem

In the following, let Ω ⊂ Rd, d = 2, 3 be an open bounded domain with boundary ∂Ω, which is
cut by a set of discrete cracks Γc as shown in Fig. 5, left. Furthermore, ΓD and ΓN refer to the
non-overlapping parts of ∂Ω on which Dirichlet and Neumann boundary conditions are prescribed.
A point in Ω is denoted by x and u(x), ε(x) and σ(x) ∈ Rd are the displacement, strain and stress
fields, respectively. Small deformations are assumed with the strain tensor given as ε = 1

2
(∇u+∇Tu)

and the elastic strain density as Ψ(ε) = 1
2
λ tr2(ε) + µ tr(ε2), where λ and µ are the Lamé constants.

Francfort and Marigo [1998] introduced the variational formulation of brittle fracture as a mini-
mization problem of the energy functional

E(u,Γc) =

∫
Ω

Ψ(ε)dx +

∫
Γc

Gcds . (6)

Here, the total potential energy consists of the energy stored in the solid and the surface energy
dissipated in the fracture process creating the crack set Γc. To facilitate numerical solution of
(6), a regularized formulation (Bourdin et al. [2000], Bourdin et al. [2008]) was proposed which
approximates the surface integral as a volume term yielding

El0(u, s) =

∫
Ω

g(s) Ψ(ε)dx +
Gc

cw

∫
Ω

(
1

2 l0
w(s) + 2 l0|∇s|2

)
dx (7)

Here, a regularization length l0 and a continuous scalar-variable s ∈ [0, 1], the phase-field parameter,
are introduced. The sharp crack is smoothed and modeled as a continuous field which attains a
value of one in undamaged regions and is zero along the crack (cf. Fig. 5). The width of the
transition zone is governed by the length-scale parameter l0. In the limit l0 → 0 the regularized
functional (7) converges to the original formulation (6) in the sense of Γ-convergence, i.e. the global
minimizers of El0(u, s) converge to those of E(u,Γc) (Alberti [2000]). The degradation function
g(s) models the loss of stiffness in the damaged material and cw is a scaling parameter related to
the energy dissipation function w(s). As formulation (7) may result in non-physical crack patterns
and interpenetration of crack surfaces in compression, additive splitting of the elastic strain energy
density Ψ(ε) = Ψ+(ε) + Ψ−(ε) was proposed by several authors, including Amor et al. [2009] and
Miehe et al. [2010b]. Degradation acts only on the positive part of the energy density resulting in
the slightly altered energy functional

El0(u, s) =

∫
Ω

g(s) Ψ+(ε) + Ψ−(ε)dx +
Gc

cw

∫
Ω

(
1

2 l0
w(s) + 2 l0|∇s|2

)
dx . (8)

In this contribution, the spectral split by Miehe et al. [2010b] is used.

Fig. 5: Sharp crack topology (left) and phase-field regularized crack surface (right) after Gerasimov
and De Lorenzis [2018].
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3.2 Governing Equations

Following the variational principle minimizers of the functional Eq. (8) can be found by solving the
associated set of Euler-Lagrange equations. The strong form of the coupled system is obtained as

div(σ) + ρ b = 0, where σ = g(s)
∂Ψ+(ε)

∂ε
+
∂Ψ−(ε)

∂ε
(9a)

−4 l20 ∆s +
1

2
w′(s) = −cw

2

l0
Gc

g′(s)H (9b)

subject to the boundary conditions

u = ūn on ΓD, (10)

σ · n = t̄n on ΓN , (11)

∇d · n = 0 on ΓD ∪ ΓN . (12)

Following the approach proposed by Miehe et al. [2010b] irreversibility of the phase-field is ensured
by introducing a history variable H defined as

H(x, t) := max
t∈[0,T ]

Ψ+(ε(x, t)) , (13)

which replaces the positive part of the elastic strain density in the phase-field equation. That way, the
equations are decoupled and the system of equations can be solved alternately applying a staggered
solution scheme. Different choices for the degradation and energy dissipation functions are possible.
Commonly used are the quadratic functions

g(s) = (1− η)s2 + η ,

w(s) = (1− s)2 , cw = 2
(14)

where η ≈ 0 is a small parameter ensuring numerical stability in case of a fully degraded material.
An alternative choice is a cubic degradation function (Borden [2012]) given as

g(s) = φ (s3 − s2) + 3 s2 − 2 s3 , (15)

where φ determines the slope of the degradation function for s = 1.0 and is chosen as 10−4 for
all computations. Higher order degradation functions have the desirable property to lead to an
approximately linear elastic behavior prior to fracture at the cost of solving a non-linear equation for
the phase-field.

3.2.1 The Hybrid Model

The hybrid formulation was introduced by Ambati et al. [2015] to reduce the computational demand
stemming from the non-linearity of the elastic equation in the anisotropic model. In comparison to
the fully anisotropic model, the split is accounted for only in the phase-field equation. The elastic
equation takes the classic isotropic form with the stress tensor being defined as

σ = g(s)
∂Ψ(ε)

∂ε
, (16)

which results in a linear elastic equation. Thus, the hybrid model promises comparable results to
the anisotropic model while being computationally much cheaper (Ambati et al. [2015]). Jeong et al.
[2018] pointed out, that under combined tensile and shear loading the anisotropic formulation suffers
from physically unrealistic behavior including further crack growth after complete failure and an
overestimation of failure loads. In these cases, the hybrid formulation leads to improved results.

8



3.2.2 Dynamic Fracture

In Borden et al. [2012], the quasi-static model introduced above was extended to the dynamic case.
The energy functional additionally accounts for the kinetic energy of the body and yields the following
coupled system of equations

div(σ) + ρ b = ρ ü, where σ = g(s)
∂Ψ(ε)

∂ε
(17a)

−4 l20 ∆s +
1

2
w′(s) = −cw

2

l0
Gc

g′(s)H . (17b)

Here ρ denotes the density of the material and the hybrid formulation introduced in Section 3.2.1 is
used.

3.3 Numerical Description

The numerical framework extends the 2D implementation presented in Nagaraja et al. [2018] to 3D
and combines a phase-field model with the FCM (Parvizian et al. [2007]) and multi-level hp-adaptive
refinement (Zander et al. [2015]). The adaptive refinement technique makes it possible to efficiently
resolve the locally occurring high gradients in the phase-field even in the case of small length-scale
parameters. Implementation in terms of the FCM allows to simulate complex geometries without
the need to generate a boundary conforming mesh.

3.3.1 The Finite Cell Method

As an immersed boundary method, the basic idea of FCM consists in embedding the physical domain
Ωphy into a geometrically larger domain of simple shape, Ω∪ = Ωphy ∪Ωfict, see Fig. 6. This domain
can easily be meshed using a structured grid which shifts the task of representing the actual geometry
from discretization to the integration. In order to differentiate between Ωphy and the added fictitious
part Ωfict an indicator function α(x) is introduced:

α(x) =

{
1.0 , ∀x ∈ Ωphy,

αFCM , ∀x ∈ Ωfict,
(18)

where αFCM is a small parameter greater than but unequal to zero to avoid ill-conditioning of the
stiffness matrix and ensure numerical stability (Parvizian et al. [2007]). By multiplying the weak
form with α(x) contributions of the fictitious domain are penalized imitating the behavior of a very
soft material. A crucial point is accurate numerical integration of the cells cut by the boundary of
the original domain which feature a discontinuity. As Gauss quadrature shows poor convergence for
non-smooth functions a number of alternative integration schemes has been proposed in the context
of FCM, see Hubrich et al. [2017]. In this contribution the octree subdivision approach is used which

Fig. 6: Embedding concept of the Finite Cell Method following Parvizian et al. [2007].
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Fig. 7: Conceptual idea of the multi-level hp-FEM for 1D (left) and 2D (right) following Zander
et al. [2015].

was first combined with FCM in Düster et al. [2008]. Here, integration accuracy is improved by a
successive subdivision of cut cells up to a fixed partitioning depth.

3.3.2 Multi-level hp-FEM

First introduced in Zander et al. [2015], the basic idea of this refinement technique is to replace
the refine-by-replacement paradigm with a superposition approach. As visualized for a 1D and 2D
example in Fig. 7, the base mesh is superposed with high-order overlay meshes in regions of interest,
where k is the refinement depth and p refers to the ansatz order. This allows to avoid hanging nodes
and the related implementational difficulties while the same approximation quality as in conventional
hp-FEM is achieved (Di Stolfo et al. [2016]). To this end, two requirements need to be fulfilled:
the compatibility and linear independence of the shape functions. Homogeneous Dirichlet boundary
conditions are imposed on each layer of the superposed overlay mesh to maintain global C0-continuity
and thus compatibility of the basis functions. This is achieved by deactivating all nodal, edge and
face modes on the boundaries of the overlay meshes. In addition, to guarantee linear independence
of basis functions all topological components with active sub-components are deactivated. Both
procedures are illustrated in Fig. 7. The multi-level hp-refinement technique allows for a flexible and
dynamic update of the discretization throughout the simulation.

3.3.3 Weak Form and Solution of the Coupled Problem

Choosing test functions w(x) ∈ H1
0 (Ω) and q ∈ H1(Ω) for the elastic and phase-field problem,

respectively, the weak form of the coupled quasi-static problem (Eq. 16 ) for FCM is derived as

(σ,∇w)Ωphy
+ (αFCM σ,∇w)Ωfict

+ (β u,w)ΓD
= (ρ b,w)Ωphy

+ (h,w)ΓD
+ (β g,w)ΓD

, (19a)

([
4 l

Gc

(1− η)H+ 1

]
s, q

)
Ωphy

+

(
αFCM

[
4 l

Gc

(1− η)H+ 1

]
s, q

)
Ωfict

+
(
4 l2∇s,∇q

)
Ωphy

+
(
αFCM 4 l2∇s,∇q

)
Ωfict

= (1, q)Ωphy
,

(19b)

where (· , ·) denotes the L2 scalar product. Dirichlet boundary conditions for the elastic problem are
imposed weakly using the penalty method with β being the penalty parameter. For the discretiza-
tion integrated Legendre polynomials are used as basis functions for the FE test and trial spaces (see
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Babuska et al. [1981]), alternative formulations for FCM include B-splines (Schillinger et al. [2012])
and implementations in the framework of isogeometric analysis. The discretized problem is solved
using a staggered solution approach. To control the number of staggered iterations in each displace-
ment step an energy-based criterion similar to the one proposed in Gerasimov and De Lorenzis [2016]
is implemented. The iterative procedure is stopped if for displacement step i the number

Stol,i =
Ei−1 − Ei

Einit − Ei

(20)

falls below a certain threshold value εstag, or alternatively, if a set maximum number of staggered

iterations nmax, stag is reached. Here, Ei =
√

1
ndof

∑ndof

j=1
1
2
uiKi ui .

4 Numerical Results

In this section, the proposed benchmark problem is analyzed using a phase-field model for brittle
fracture based on the FCM and multi-level hp-refinement. Two different hybrid models will be used:
the quasi-static model presented in Section 3.2.1 and the dynamic model introduced in Section 3.2.2.
The quasi-static model is used to obtain the failure loads in Section 4.2, while a dynamic simulation
is used to extract the fracture surface analyzed in Sections 4.3 and 4.4. The quasi-static model allows
for a straight forward extraction of the load-displacement curves, while only the dynamic model is
able to produce a fully cracked specimen under the present loading conditions.

4.1 Problem Setup

Setups for the quasi-static and the dynamic simulation are shown in Fig. 8. In both cases, the domain
sized 80 mm × 20 mm ×10 mm is initially discretized with 20 × 5 ×2 elements and refined towards
the notch and the boundary conditions with a refinement depth of k = 4. Note here, that the notch
geometry is not resolved explicitly with the grid but represented using the FCM. In order to properly
resolve the phase-field length scale parameter l0 in the case of crack nucleation, in the quasi-static
setup the upper part of the notch is additionally refined such that the element size equals l0. For the
dynamic case a resolution of h = 2 l0 proves sufficient, as crack propagation is independent of l0 if
the latter is chosen small enough and geometrically meaningful. With this resolution the tip radius

Fig. 8: Domain with initial refinement and boundary conditions for the quasi-static (a) and the
dynamic model (b).
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model E [ kN
mm2 ] Gc [ kN

mm ] σc [MPa] ν [−] ρ [kg
m ] l0 [m] αFCM [−] εstag [−] nstag [−]

(a)
12.44

{
10−3 if 35.0 ≤ x ≤ 55.0

1000 else
48.0 0.2

−
0.125 10−4 5−3

35

(b) 1.066 18

Tab. 2: Parameters for the quasi-static (a) and dynamic model (b).

is neglected and a sharp notch is assumed. The mesh is refined dynamically in each load step based
on the local phase-field solution using a threshold value of 0.7, i.e. an element is refined if s ≤ 0.7.
Material and numerical parameters for both setups are listed in Tab. 2. The material parameters
are adopted from Yosibash and Mittelman [2016]. In order to prevent nucleation of cracks where the
boundary conditions are applied, Gc is increased by a factor of 106 in these regions. The tolerance
parameter εstag was chosen small enough such that influence on the results was negligible.

4.2 Failure Loads

Quasi-static simulations are used to generate load-displacement curves for the three geometries. A
cubic degradation function (Eq. 15) is used which leads to an approximately elastic limit prior
to the onset of fracture. Displacement steps ∆uy are applied on top of the domain on two straps
19.75 mm ≤ x ≤ 20.0 mm and 60.0 mm ≤ x ≤ 60.25 mm which are refined accordingly. On
the bottom side of the specimen, the y− and z−displacements are fixed at x = 4 mm and x =
76 mm while the x−displacements are set to zero only at x = 4 mm. Coarse displacement steps of
size 5 × 10−3 mm are applied up to crack nucleation when the step size is decreased to a value of
5× 10−4 mm. Following the discussion about the meaning of l0 and its interpretation as a material
parameter (Tanné et al. [2018]), the length-scale parameter l0 is chosen to reproduce the failure load
for the γ = 0° specimen. In this case, a value l0 = 0.125 mm was found to lead to satisfying results.

0
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0.8

1

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

Fig. 9: Load-displacement curve for graphite specimen with different inclination angles and experi-
mental failure loads for ansatz oders p = 2 and p = 3.
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The results for all three inclination angles using the same set of parameters are shown in Fig. 9 for
ansatz orders p = 2 and p = 3. The load-displacement curves show the expected shape and with
p = 3 and a maximum refinement depth k = 5 the phase-field seems to be sufficiently resolved. As
observed in the experiments, with higher inclination angle the failure load increases. The phase-
field model is able to capture this trend although the difference in loads is underestimated. The
failure load is determined as the first local maximum of the load-displacement curve, which leads to
a deviation of 0.33% for the 0° specimen, a deviation of 8.85% for the 30° specimen and a deviation
of 10.55% for the 45° case. For the latter two cases, the average of all experiments has been taken as
reference value. The computations were done on a cluster node with 28 cores, 64 GB RAM and 2.6
GHz processor taking 57h 58min for the 0° case and 62h 27min for the 30° case (p = 3).

0° 30° 45°

p = 2
comp. load [kN] 0.70094 0.78098 0.9209

deviation [%] 4.69 7.68 10.4

p = 3
comp. load [kN] 0.67021 0.77719 0.91955

deviation [%] 0.33 8.13 10.55

Tab. 3: Computed failure loads and deviation from experiments in percentage.

4.3 Fracture Surface

As setup (a) results in unreasonable crack patterns when the dynamic model is used, different bound-
ary conditions need to be applied. In contrast to the quasi-static setup the y− and z−displacements
are set to zero at the lower surface on two straps 3.75 ≤ x ≤ 4.0 and 76.0 ≤ x ≤ 76.25, while
x−displacements are not restrained on the bottom. For the dynamic simulation the computationally
cheaper quadratic degradation function (Eq. 14) is used as the crack path is independent of this
choice. In a similar manner to the quasi-static simulation, coarse time steps of size ∆t = 1 × 10−4

s are followed by finer time steps of size ∆t = 2 × 10−5 s as soon as the crack initiates. A con-
stant compressive load σ = 2 Pa is applied on the two boundary straps on top of the specimen. A
length-scale parameter l0 = 0.125 with refinement depth h = 4 and ansatz order p = 3 results in a
smooth fracture surface. In Fig. 10, initial crack growth is visualized for the 45° geometry. Here,
the crack has been extracted for three different time steps as an iso-volume for a phase-field value of
s ≤ 0.03. As can be seen, crack nucleation starts towards the ends of the notch. In order to evaluate
the distances to the point cloud crack surfaces need to be extracted from the numerical results. To
this end, iso-volumes for s ≥ 0.03 are created resulting in two fractured parts of the specimen. In
Fig. 11, the left half of the specimen, i.e. the one connected to corner x = 0.0 mm, is visualized

Fig. 10: Initial evolution of the fracture surface for the 45° specimen. To visualize the fracture an
iso-volume for s ≤ 0.03 is extracted from the simulation results and shown in red.
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γ [°] hHD(A,B) [mm] hHD(B,A) [mm] hMHD(A,B) [mm] hHD(B,A) [mm]

30 1.731 1.906 0.2101 0.2388

45 2.663 3.588 0.2751 0.3588

Tab. 4: One-sided distance measures Eq. (3) and Eq. (5) for the 30° and 45° geometry, where A
is the set of vertices in the numerically obtained crack surface and B are the points in the
reference point cloud.

for each geometry. Here, the distances d(a,B), where a is a vertex in the numerical fracture surface
and B is the set of points in the reference point cloud (Eq. 1), are evaluated for the 30° and 45°
geometry. For the 0° case no specimens were available to create a point cloud. Considering the
results for the 30° and 45° specimen, one can clearly observe how crack initiation is captured in
both cases. One effect which increases the error in the initiation region is non-physical widening
of the crack path at later time steps when crack propagation speed decreases. This phenomenon
is even more pronounced when a fully anisotropic formulation is used and might also be attributed
to the introduction of the history variable which can lead to overestimation of the fracture surface
energy (Gerasimov and De Lorenzis [2018]). In the upper part we see a deviation of the fracture
path from the experimental one. While the phase-field model results in a fracture surface parallel
to the y-z-plane, the experiment shows a clear curvature which is even more pronounced for the
45° specimen. Consequently, a higher deviation is observed in the latter case. It should be noted,
that in one out of five experiments for the 30° specimen an orthogonal crack as in the simulation
could be observed. A different choice of tension-compression split could help to capture the curved
crack path in the upper part of the specimen and needs further investigations. We conclude that
the spectral split by Miehe et al. [2010b] shows clear deficits under the present loading conditions,
as it moreover leads to saturation of phase-field propagation as soon as the crack propagates up to a
height of y = 8 mm if the quasi-static model is used. In Tab. 4, the one-sided Hausdorff and modified
Hausdorff distances are listed for both geometries. The resulting Hausdorff distances HHD(A,B) and
HMHD(A,B) are obtained following Eq. (2) and Eq. (4) and correspond to the values marked in bold.
For the computation of the distances only the front part of the specimen and, respectively, the point
cloud has been considered, cf. Fig. 11. For the 30° geometry a Hausdorff distance of 1.906 mm and a

Fig. 11: Distance to the reference point cloud evaluated on the computed fracture surface for the
30° and 45° specimen. The distance is normalized by the length of the notch, which is 11.55
mm for the 30° and 14.14 mm for the 45° geometry
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modified (average) Hausdorff distance of 0.2388 mm are obtained. Due to the more complex fracture
surface higher deviations are obtained in the 45° case resulting in a Hausdorff distance of 3.588 mm
and a modified Hausdorff distance of 0.3588 mm.

4.4 Initiation Angles

To determine the initiation angles, the computed fracture surface up to a height of y = 6.5 mm has
been extracted and evaluated using a 3D modeling tool. The results for the three geometries are found
along the experimental results by Yosibash and Mittelman [2016] in Figure 12, where the initiation
angles are plotted over the z-axis. The initiation angle α has been determined as the approximated
angle over a notch length of ∆z = 0.5 mm, while θ∗ is measured point-wise every ∆z = 0.5 mm. For
the 0° specimen, experimental values for both initiation angles are approximately zero due to the
straight crack surface nucleating directly on the notch tip for all z. This nucleation surface is clearly
captured by the numerical simulation. In the two other cases almost exclusively negative values for
α are observed, which corresponds to an initiation plane rotated clockwise around the y-axis. This
implies that the crack nucleates on the tip of the notch only in the center of the specimen (z = 5
mm) shifting the initiation point in negative x-direction for increasing and in positive x-direction for
decreasing z-values. The second inclination angle θ∗ shows a point-symmetric trend developing from
a negative angle θ∗30°

= −31.5° and θ∗45°

= −45.5° for z = 0 mm to a similar absolute, however, positive
angle toward the other end of the notch. This reflects the curvature of the fracture surface which
becomes more pronounced with higher inclination angle. Comparing the results for the phase-field
model with the experimental data further strengthens the observations in Section 4.3 in the light of
several experiments. The presented model is able to accurately capture nucleation of the fracture
surface and lies within the range of experiments.

5 Conclusions

In this contribution, a quantitative benchmark problem for brittle fracture under mixed mode I +
II + III loading has been presented. In the experiments, four-point bending tests were conducted
on graphite specimens containing a sharp V-notch at different inclination angles. Experimentally
obtained failure loads and initiation angles along with 3D representations of the fractured specimens
allow for a detailed and quantitative comparison of fracture nucleation and propagation observed
numerically.
The proposed benchmark is used to validate a phase-field model for brittle fracture based on FCM
and multi-level hp-refinement. The phase-field model is able to reproduce the geometry dependent
failure loads although the difference in loads between the 0° and 30°, as well as the 30° and 45° case
are slightly underestimated. Here, the maximum deviation from experimental average is ∼ 10% for
all geometries. Evaluation of the fracture surface shows that the initial crack path in the lower half
of the specimen can be reproduced almost exactly. This is confirmed by the geometric information
measured in terms of two initiation angles, where the phase-field results lie almost exclusively within
the range of experiments. The evolving upper part of the crack surface deviates from the experiments.
Here, the phase-field simulations predict a straight surface for the 30° and 45° geometries while the
actual surface shows a curvature. This might be related to the choice of tension-compression split
and requires further investigation.
All data is provided for download along with the numerical results and a detailed description of
evaluation processes to invite and enable validation of different numerical frameworks.
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