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Abstract. This paper presents a novel algorithm for extracting the pose
and dimensions of cargo boxes in a large measurement space of a robotic
gantry, with sub-centimetre accuracy using multiple low cost RGB-D
Kinect sensors. This information is used by a bin-packing and path-
planning software to build up a pallet. The robotic gantry workspaces
can be up to 10 m in all dimensions, and the cameras cannot be placed
top-down since the components of the gantry actuate within this space.
This presents a challenge as occlusion and sensor noise is more likely.

This paper presents the system integration components on how point
cloud information is extracted from multiple cameras and fused in real-
time, how primitives and contours are extracted and corrected using RGB
image features, and how cargo parameters from the cluttered cloud are
extracted and optimized using graph based segmentation and particle
filter based techniques. This is done with sub-centimetre accuracy irre-
spective of occlusion or noise from cameras at such camera placements
and range to cargo.

1 Introduction

Motivation for this work was realized from having to build a fully automated
palletizing/depalletizing gantry robot for the Air Cargo Terminal. Packing Cargo
shipment into standardized containers/pallets is critical. One such pallet is the
P6P (Fig. 1) measuring approx. (3 x 2.5)m, and other pallets can be found in
Boeing documentation [2]. Cargo primarily consists of block-shaped shipments
ranging from (0.3 to 2.0)m in 3 dimensions made of different materials from
cardboard to wood, and are traditionally built up by hand onto the pallet. Our
system aims to automate this process, by making use of a 4 axis Gantry Robot
(Fig. 1) with approx. workspace dimensions (7.5 x 5 x 7.5)m, that can be further
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extended if needed be. The end effector (EF) has 4 degrees of freedom X,Y,Z, θ
and can lift cargo using a vacuum suction gripper.

1.1 Robot Workspace

Cargo is placed in a measurement space (Yellow) of the robot, where it is mea-
sured/weighed before being placed in the pallet (Grey). A bin packing and path-
planning software work together to palletize and depalletize the robot. However,
this component requires sub-centimetre level precision in order to optimize it’s
packing and prevent collision as is evident in many bin packing planners [3].
Cargo boxes are introduced at random into this space, and we do not know the
dimensions of these beforehand. This is why a robust vision system with a focus
in precise measurement is required. This process is not trivial as the cameras
cannot be placed vertically overhead as the actuation mechanism works along
that area as with most gantry robots. Hence, multiple cameras have to be placed
in an inclined manner along the pillars of the robot, so as to capture maximum
possible information, from which depth and color information is sent to a server
for processing.

Fig. 1. Gantry Robot and P6P Pallet to be built up used in the Air Cargo Industry

Our objective in this paper, is to extract the measurements of unknown
cuboid shaped cargo in the measurement space as accurately as possible, irre-
spective of occlusion due to the camera placement, or highly similar boxes being
in close contact. Solving the problem of occlusion requires information from mul-
tiple sensors, hence having industry grade sensors may be too costly, hence we
had to tailor design our method to work with commercial grade sensors that
may have significant noise.

There has been not much prior work on achieving centimetre level precision
of unknown models at ranges beyond 3 to 4 m using commercial grade sensors
before this, with the constraint of not having top-down cameras. Hence we aim
to fill this gap to achieve our objectives above. Our algorithm works with Kinect
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2 RGBD cameras, by fusing point cloud data from multiple cameras, fitting
models to this data, segmenting it using graph based approaches and refining
this further by using edge information from the RGB cameras. This is further
improved by using a 9DOF particle filter approach. Results from these are then
used by the bin-packing and path-planning software to optimize and build up
the pallet. The system may also be used to depalletize the pallet.

2 Related Work

2.1 Industrial Applications

There are already a significant number of industry players/systems in the
automation space, such as Bosch, Universal Robotics and Z Automation. A
simple search on PackExpo would give a hundred more. However, most of these
systems have been designed for conveyor line scanning, where the object’s model
can be extracted (Fig. 2). Universal Robotic’s [4] solution works with unknown
models, but it’s commercially available solutions advertise small workspaces,
with robots having an eye-in-hand configuration (Fig. 2). There is no known
solution for large gantry workspaces, where cargo can be placed anywhere in the
workspace for palletization.

2.2 Research Applications

Significant work has already been done in the space of extracting known objects
through feature/template matching either in the point cloud or image space,
and is a well-defined problem. This is evident in many robotic depalletizing and
bin packing papers, such Drost’s [5] and Holz’s paper [6], where he proposes
comparing object surfel models with sensor data for object/pose detection, in a
small constrained workspace. The objects studied there are geometrically feature
rich as well, unlike our cargo boxes.

For unknown objects, Ryan Lloyd [7] suggests the use of a single RGB-D
sensor, by extracting the top surface of a point cloud, after applying euclidean

Fig. 2. SICK LMS Line Scanning and Universal Robotic’s Depalletization
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clustering and point cloud smoothing with Moving Least Squares (MLS) [8]. Fea-
tures of the top surface are then extracted and used to train an SVM to classify
different primitives, including quads. Dimensions are extracted using a Minimum
Volume Bounding Box (MVBB) projected to the ground, and centimetre level
precision is achieved. In this paper however, experiments are carried out with an
organized point cloud due to the single camera metrology, at ranges below 1m.

Also, in Richtsfeld’s seminal paper [9], he uses a combination of SVM and
graph cut based segmentation to segment and get dimensions of primitive objects
in cluttered scenes. The focus of this paper was not measurement, but rather
precise segmentation of objects based on their color and shape information irre-
spective of occlusion. Much of the experiments were also conducted at ranges
below 1 m with a single camera, hence spurious point cloud noise was not much
of an issue.

Alternatives to SVM/Graphcuts such as SIFT matching [10] and Primitive
Shape Matching [11] were also studied. Many similar papers including those
above performed pose estimation using an initial SVD/PCA based seed, with an
iterative refinement step. In all of these papers, a single structured light based
RGB-D camera such as the Asus Xtion or Kinect 1 is used, and were generally
designed for smaller workspaces such as tabletops. Many of these algorithms
were also designed for single camera inputs with organized point clouds. Our
workspace exceeded 5 m, and an unorganized point cloud was generated due to
multiple cameras. At such ranges, the depth image also had significant Z noise,
resulting in noisy point clouds, hence noisy edges.

This meant that the above methods of using MVBB, SVD/PCA to per-
form pose and dimension estimation or using Richtsfeld’s method to perform
model fitting and segmentation were challenging. To solve this issue, edge based
fusion methods were also studied. Anwer’s [12] paper describes using depth image
refinement techniques such as depth normalization and bilateral filters. Aouada’s
[13] paper describes using RGB images as guidance images, where holes are filled
referencing edges found in the higher resolution RGB image. These techniques
are later referenced and implemented in our paper.

Lastly, large scale point cloud acquisition and measurement techniques are
also studied in the form of LIDAR and Aerial Imagery fusion. It is challenging
to find large scale point cloud processing methods without exploring the LIDAR
domain. In Wang’s [14] paper, he describes how a graph is constructed from
the noisy aerial LIDAR data, how edges are extracted using iterative RANSAC
techniques, and how these edges are further refined by projecting these points
into the 2D Aerial camera and corrected them to edges and corners found.

3 Sensors and Systems

3.1 Camera System

A range of commercial and industrial 3D systems were explored. Industrial solu-
tions consisted of Structured Light systems by GOM and SICK, Laser systems
by Faro and Osela, and Time of Flight (TOF) systems by Basler. The GOM,
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SICK and Faro systems had sub-millimetre accuracy, but had a limited range
of below 1m, and were costly in large numbers. The Basler TOF system was
reasonably priced, touted centimetre accuracy, and had a range of up to 5 m
but it was yet to begin sales during testing time. Commercial systems tested
included the Asus Xtion Pro, Intel RealSense, Microsoft Kinect 1 and 2. In the
end, we decided to go with the Kinect 2, which is a TOF system with a range of
up to 4.5 m, and could output 512 x 424 pixel Depth images and Full HD RGB
images.

3.2 Experimental Setup

Our experimental setup consists of 4 NUC/Kinect units with a measurement
space of approximately (4 x 3.5)m, with the Kinects at a height of 2.5 angled at
45 degrees. The highly reflective P6P pallet is placed in the centre of the setup
and cargo boxes ranging from 30 cm to 1 m in either dimension, consisting of
cardboard, styrofoam and shrink-wrapped boxes were used. Our objective is to
simultaneously measure and track the boxes that are initially placed flat against
the ground (though they may be in close contact), to simulate the situation
where a cargo item of unknown dimensions or pose has been introduced into a
robot workspace, and needs to be worked upon.

3.3 Data Extraction

RGB and Depth imagery is extracted via the libfreenect2 [15] driver through
the iai-kinect2 [16] ROS (Robot Operating System) [17] interface. This driver
performs several pre-processing steps. Firstly, it allows one to perform intrinsic
and extrinsic calibration of the Kinect sensor by solving for intrinsics and radial
distortion using Zhang’s checkerboard method [18], and solving for the trans-
formation between the IR and RGB sensors. Secondly, edge aware and bilateral
filters are used to enhance the depth image. Finally, a registration step is per-
formed to generate a depth image in the RGB frame. All of this is performed on
a 6th Generation Intel NUC i5 with GPU optimization on the registration step,
allowing image rates of up to 20 Hz. Each camera sends a 16 bit upscaled (540 x
960) depth image and full HD JPEG compressed RGB image to the main server
via a gigabit switch.

3.4 Point Cloud Fusion

We use the approximate time scheduling policy implemented in ROS to extract a
joint set of data from all cameras. Since, RTW is known, points can be generated
on the server, and transformed to the world frame, after which thresholding can
be applied to eliminate points outside the scope of the workspace. This is done
on all 2 million over points at once on the GPU. Since there are redundant points
due to overlapping views, a Voxel Grid filter is applied with a distance threshold.
Euclidean clustering is then applied to eliminate spacial noise, and to break
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Fig. 3. ROS Integration and Experimental Setup

the point cloud into chunks that can be analysed in parallel for performance
boost. These steps are done using PCL (Point Cloud Library) [20]. Finally,
a Moving Least Squares (MLS) filter is applied on these chunks [8]. This is
a good pre-processing step [7], as it allows for better thresholding based on
normal vector values, and smoothes out noise in the point cloud spatially. Bruce
Merry’s GPU implementation of MLS [21] is used. This allows us to generate
clean (R,G,B,X, Y, Z, nx, ny, nz) point clouds of the entire 3D scene at up to
10 Hz, where (nx, ny, nz) represents the point surface normals (Fig. 3).

4 Algorithm

4.1 Model Extraction

With the point cloud made available, we are able to extract pose, dimensions
and features from this. The items we are dealing with are primarily cuboid
shaped cargo, that are placed against the floor of the workspace initially. These
constitute 80 % of the cargo, and allows for the best packing density.

ax + by + cz + d = 0 (Plane) (x, y, z) = (x0, y0, z0) + t(a, b, c) (Line) (1)

m =
1
N

N∑

i=1

(pi) c =
1
N

N∑

i=1

(
(pi − c)(pi − c)T

)
(2)

C =

⎛

⎝
N∑

j=1

λjpj : λj ≥ 0 for all j and

N∑

j=1

(λj = 1)

⎞

⎠ (3)

There are several methods to extract the pose and dimensions from cuboid
objects. Applying Iterative RANSAC works for ellipsoids, cylinders, planes and
lines, but not for cuboids since there is no mathematical model for it. Iteratively
finding planes (Eq. 1) and their intersections through a least squares approach
fails in our case as boxes being densely packed removes outward facing planes.
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Applying methods such as PCA (Principle Component Analysis) by computing
the mean/covariance of a set of points pi and extracting it’s min/max eigenvec-
tors (Eq. 2), or MVBB (Minimum Volume Bounding Box) [1] by optimizing a
bounding box based on various heuristics as used in [6,7] works poorly in our
case (Fig. 4). This is because such methods optimize for all points, including
outliers, and don’t take the object model into account. Measurements derived
through this method had an μ error of up to 5 cm from the ground truth, which
is unacceptable for the bin packing algorithm.

Fig. 4. Contour extraction and PCA/MVBB fitting

Hence, we use a top surface contour extraction approach, to simplify mea-
surement and pose extraction. We select only top surface points (nz > 0.5), fit
a plane to it via RANSAC, and compute the convex hull C for points pi (Eq. 3).
A Sobel operator is applied over sections of the RGB image that C projected
onto each RGB image occupies, and it’s contours Cproj are extracted where
Cproj ⊆ C. We then iteratively fit these to 3D line models (Eq. 1). Working in a
multi-camera point cloud domain ensures that occlusion is not much of an issue
(Fig. 5).

4.2 Segmentation Using Node Graphs

If cargo boxes are separated spatially, or have different heights, the above clus-
tering and segmentation approaches work. However, if they are packed closely,
have the same height and the same color (very likely scenario in depalletization
situations), they end up getting clustered together (Fig. 6). In both cases, the
contours were extracted from the same euclidean cluster. Hence splitting them
requires some kind of geometric analysis.

We solve this problem graphically. First, a bi-directional connected graph
Gc = (E, V ) is constructed. Gc contains vertices (vi...vn), where each vertex vi
contains a corresponding point pi, where deg(vi) ≥ 1. To construct this graph,
we begin with our edges represented as vectors (−→ei ...−→en) with a point passing
through them defined through the line model (x, y, z) = (x0, y0, z0) + t(a, b, c).
An edge −→ei has it’s min/max points p

(min)
i , p

(max)
i . We construct nodes ni by

intersecting every edge −→ei
⋂ −→ej (i �= j). Repeat nodes are inevitable, so these
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Fig. 5. Boxes here are spatially classified into one cluster due to proximity, hence
requiring methods to split them up

are eliminated by averaging neighbours using a Oct-Tree search. A node vi is
created if the distance between it’s parent edges −→ei ,−→ej is minimized, and if the
angle between them are either close to 90 or 0 degrees (Eq. 4).

Gc =

⎛

⎝
N∑

i=0

N∑

j=i+1

(
vi = −→ei

⋂−→ej (i �= j)
)

where min (f(vi,−→ei ,−→ej ))
⎞

⎠

f(vi,−→ei ,−→ej ) =
(
‖vi, closer(p

(min)
i , p

(max)
i ))‖2 − 0.1

)

+
(
‖vi, closer(p

(min)
j , p

(max)
j ))‖2 − 0.1

)
+ min ((∠(−→ei ,−→ej ) − 90) , (∠(−→ei ,−→ej )− 0))

(4)

Once this graph has been constructed, we simply have to locate inner cycles
cyclesc within it. Such a problem can result in exponential search time, but with
geometric constraints this is no longer true. This is done in a Depth-First-Search
(DFS) approach. Given a set of searched connected cycles where each set Ni

contains a set of nodes Niε(n0
i ...n

n
i ) that contain their edges Eiε(

−→
e0i ...

−−→
en−1
i ), we

ensure that the angle between them are close to 90 or 0 degrees, their l2norm is
maximized, the vectors move in a consistent clockwise/counter-clockwise direc-
tion and that they are connected (Eq. 5).

cyclesc = min

⎛

⎝
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i )

)⎞

⎠
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(

0.1 − ‖
−→
eji ‖2

)
+ min

((
∠(

−→
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−−→
ej+1
i ) − 90

)
,

(
∠(

−→
eji ,

−−→
ej+1
i ) − 0

))

+
(−→

(eji ×
−−→
ej+1
i ).z −

−−−→
(ej+1

i ×
−−→
ej+2
i ).z

)
(5)

This is done by using cross-product and normalized dot-product of a set of
connected edges generated from the nodes as a constraint. Strongly connected
component algorithms from Tarjan, Tiernan and elementary circuit discovery
methods from Johnson [22] were studied and integrated for the search steps.
These graph generation and analysis steps can be visualized (Fig. 6). In the left
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Fig. 6. Graph construction and Analysis (Color figure online)

image, one observes how a node isn’t created if it’s intersection with another edge
isn’t close enough, or it’s angle doesn’t satisfy the above constraints (in red).
Nodes created that are too close are fused together (in green). In the right image,
we can see how the search occurs, and how cycles are detected. Measurements
derived through this method had an μ error of up to 2 cm from the ground truth,
which is unacceptable for the bin packing algorithm.

4.3 RGB Camera Sobel Edge Fusion

One can observe the above error in measurements by projecting the fitted line
into one of the camera RGB images (Fig. 7). You can see that the line doesn’t
fall exactly on the edges found on the box. This results in deviations from the
ground truth measurement. Hence, it is observed that it might be worth using the
RGB image to “correct” the contour points before fitting line models to it. This
method is inspired by Wang’s paper [14], where the initial model is superimposed
onto a sobel edge image from the RGB camera, and then corrected. However,
his solution is constrained to working from a top down view, but our scenario
involves sensors that are placed inclined to the workspace, since downward facing
cameras cannot be used due to obstruction with the robotic gantry components.
This means that selecting a sensor to correct these contour points is not trivial,
due to occlusion, and distance to the sensor. Such occlusions can be observed
(Fig. 7).

Hence, the following correction algorithm is proposed. This is applied before
the iterative RANSAC line search and graph generation. Given a contour
Cε{pi..pm} with a set of points, a set of hypothesis for each pi is generated with
a 2D normal constraint in the search space (Eq. 6), where t varies to generate
piε(p0i ...p

n
i ).

piε
(
{pji ..p

m
i } for all j (p0i + pji .normal ∗ t)

)
(6)

min

⎛

⎝
M∑

j=0

1
N

C∑

c=0

(
255 − intensity(pji , I

RGB
c ) + distance(pji , I

Depth
c )

)
⎞

⎠ (7)
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Fig. 7. Before and After Sobel Edge Fusion, and Correction of points along contour
normals

Each hypothesis pji is transformed and projected into both the RGB Sobel
Edge IRGB

c and Depth Images IDepth
c for each camera. We then attempt to

select the best pji to replace pi that minimizes the distance to the camera, the Z
value on IDepth

c to prevent converging on a edge/solution that is being occluded,
and maximize a point falling on a edge on IRGB

c (Eq. 7). We can observe the
correction in (Fig. 7). Measurements derived through this method had an μ error
of up to 0.5 cm from the ground truth, which is deemed suitable. You will notice
that the height of the box wouldn’t be optimized this way, but we found this
was already made accurate during the planar RANSAC fit.

4.4 Model Constrained Pose and Sobel Edge Refinement

At this point, one can already extract the measurements from the various cargo
boxes. However, we found that there were situations where several points on
the contour may converge at a highly deviant position, leading to a failure
in RANSAC line fitting. This is because we corrected each point individually
instead of constraining it to a line model. We needed to further refine the pose
in 6D and measurements and make use of the Sobel Edge information to do
that in a box model constrained manner, while also making use of multiple
cameras and accounting for occlusion. We also needed to track small perturba-
tions/movements in the cargo boxes in case a worker may shift them. We found
that the ideal solution to this would be a particle filter based optimization app-
roach [23] (Fig. 8).

A particle filter with a 9 dimensional state X
(k)
n|n−1 is setup to repre-

sent a cuboid with position (xw, yw, zw) about the centre of mass, dimensions
(lw, ww, hw) and 6-dof orientation (αw, βw, γw) in the world frame for a given
particle k with 500 particles. A Brownian motion model based based on additive
gaussian noise wn−1 is used (Eq. 8). Our weights described later are calculated
using a multi-variate gaussian distribution model represented in a log-likelihood
function for faster computation (Eq. 9).

X
(k)
n|n−1 = [xw yw zw lw ww hw αw βw γw] (8)
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Fig. 8. Cargo Particle Filter based State optimization

X
(k
n|n−1 = X

(k)
n−1|n−1 + wn−1

P (Yn|X(k)
n|n−1) =

1√
2πσ2

· exp(− d2

2σ2
)

log(P (Yn|X(k)
n|n−1)) = −log(σ

√
2π) − 0.5

σ2
· d2 (9)

We have our nodes which were generated from the previous step represented
as ni

sensor. We generate a box model from a given hypothesis k, and we extract
4 nodes from it represented as ni

state. We then attempt to minimize the l2norm
distance from each node i to a matching nearest neighbouring node, with the
graph constraints in place (Eq. 10). This is done by reducing the weight through
a multiplier βl2 of a particle whose set of matches don’t belong to the same inner
cycle set.

q
(k)
l2W =

N∑

i

(
−log(σl2

√
2π) − 0.5

σ2
I2

· ‖(ni
state, n

i
sensor)‖22

)
∗ βl2 (10)

We wished to also integrate the edge information from the sobel edge images
IRGB
c of each camera in our particle filter step in case there were errors in the

Sobel Fusion step, or if we wanted to avoid that step. This is done by sampling
the top surface contour of a box Cε{pi..pm} generated from a given particle
k, and projecting it into each camera since RTW is known. We then attempt to
maximize the intensity of each projected point in the sobel image space (Eq. 11).
We reference the depth image IDepth

c and penalize the weights of points which
are occluded by other boxes through a multiplier βI .

q
(k)
IW =

N∑

i

(
−log(σI

√
2π) − 0.5

σ2
I

· (picontour − pisobel)
2

)
∗ βI (11)

To do this, once a particle k has reached a state where ‖(ni
state, n

i
sensor)‖2

is less than 1 cm for all ni
state, we turn on additional weights that make use of

the edge information. We found that this made our measurements more robust
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to occlusion from other cargo boxes. We then add up the weights from both
q
(k)
l2W and q

(k)
IW , apply the exponential operation on them and resample with

replacement (Eq. 13).

qn =
P (Yn|X(k)

n|n−1)
∑

k P (Yn|X(k)
n|n−1)

kεN (12)

X
(k)
n+1|n = h(X(k)

n|n|qn) kεN (13)

Once the dimensions of the box have been optimized, we can simply lock
(lw, ww, hw) in place if we want to track pose. This can be applied for multiple
boxes in the scene.

5 Results

5.1 Experimental Setup

Testing was conducted on 3 different types of cargo boxes (Fig. 9), a standard
cardboard box (0.665 x 0.445 x 0.370)m, a styrofoam box with rounded edges
(0.460 x 0.605 x 0.300)m and a shiny shrink wrapped box (0.360 x 0.370 x
0.440)m. They were placed in the centre of the measurement workspace [4 x
3.5]m where the kinect cameras were 2.5 m high and at a 45 degree angle. Several
boxes were also placed around this to simulate occlusion (Fig. 9) where at least
one camera had the box covered partially.

Fig. 9. Test boxes used and tracking of multiple boxes in a pallet

In the first experiment, we generated the corner nodes ni
sensor for all 3 boxes

using the MVBB method, the Node Graph Construction method with line model
fitting, and the Node Graph + Sobel Edge Fusion method. We then extracted 60
samples from the most deviant dimension from the ground truth (was always in
the length/breath domain) for all 3 methods. In the second experiment, we ran
our particle filter algorithm on all 3 cargo boxes initialized with data extracted
from the Graph Node step, one with edge fusion turned on and one without, and
extracted the dimensions from the filter.
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5.2 Measurement Results

For the first experiment, from (Fig. 10), we are able to see that the MVBB
approaches on our system produced mean results that deviated from the ground
truth by up to 5 cm, and had significant noise especially in the plastic shrink-
wrapped cargo possibly due to reflectivity from the Kinect sensor. Using a
RANSAC line fitting and node graph construction approach reduced that both
error and noise down significantly, but still had up to a 2 cm error in some cases.
Finally, the Sobel Edge Fusion pre-processing step before application of the node
graph step, reduced the error down to 0.5 cm for all types of cargo, and noise to
even lower levels. This level of precision is within the bounds of allowance of the
gantry robot bin-packing algorithm, and can aid in further algorithms that may
track the state of boxes while they are in the pallet.
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Fig. 10. Histogram of 60 samples extracted from the various methods described

For the second experiment, from (Fig. 11), you can see that for the Cardboard
and Plastic cargo boxes, we see an improvement in the measurement from the
ground truth in both length and breath (height was found to be always accurate).
For the Styrofoam box, it was not as noticeable, possibly due to the fact that
the box did not have as distinct edges in the sobel edge image. In all 3 cases
however, we were able to achieve our accuracy requirement of 1 cm or below.
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Fig. 11. Running particle filter optimization with and without edge fusion

5.3 Conclusion and Future Work

While using the Node Graph + Sobel Edge Fusion step was more accurate with
enough samples taken, the Node Graph + Particle Filter with Edge fusion was
more robust. Our solution allows one to place unknown cargo boxes of various
materials inside a scene, and achieve sub-centimetre level precision pose and
dimension extraction even with commercial grade sensors at a range of over
3.5 m, and allows a gantry robot and bin packing software to work with minimal
constraints. These algorithms were run on an Intel Core i7-4790 with 4 physical
cores and a NVIDIA Geforce 760 Ti. We were able to optimize up to 12 boxes
in the scene at approximately 4 Hz. In the future, it may be possible to extract
features from the cargo boxes, and use that to track the cargo box pose more
robustly.
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