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Abstract

Developments in Intelligent Transportation Systems (ITS), navigation devices

and traffic sensors make it possible for traffic participants to not just access

real time information regarding the traffic situation but, at the same time, also

provide data back to the transportation system. This creates a feedback loop

that can have significant consequences on the system performance in terms of

total average travel time. In the current paper, the effect that different types

of information inaccuracy can have on the system performance is investigated.

The different sources of inaccuracy are categorised into there groups: sparsity

of data sources, collection and presentation inaccuracy. Subsequently, an agent-

based microscopic traffic simulation is used to explore the effects that each

type of inaccuracy can have on the transportation system. Experiments reveal

certain interesting observations. Firstly, less than twenty percent of the traffic

participants need to be data sources for optimal system performance. It was

also discovered that lower precision of information presented to participants is

sufficient and, in certain cases, better for system performance. This can have

important implications on how information is displayed on navigation devices.

Keywords: Information Uncertainty, Participatory Sensing, Human Complex

Systems, Information Propagation, Dynamical Information, Traffic Dynamics,

Transportation Systems, Congestion,
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1. Introduction

Novel technologies and applications on smart devices not only enable com-

muters to access real time information, forecasts and navigation guidance but

also to contribute with their traffic data. Surveys show that, in most cases,

drivers trust traffic information from smart devices and follow navigation rec-5

ommendations provided to them [1]. Even when this information is highly

detailed and accurate, complex and unexpected dynamics can emerge in such

transportation systems. This is due to the massive participation of commuters

as both sources for collecting data and consumers of the traffic information [2].

However, uncertainty, sometimes called inaccuracy or noise, can arise in the10

information either at the time of collection, processing or presentation. In the

current paper, we explore the different kinds of noise and the effect that they

can have on an Intelligent Transportation Systems (ITS) of the future.

In the kind of ITS discussed above, information is collected from different

types of sensors more or less distributed over the traffic network. This informa-15

tion is then aggregated and processed to recreate a model of the traffic state.

Eventually, the relevant parts of this traffic state information is transmitted

to commuters through their in-vehicle information systems or personal smart-

devices. There are several points in this process in which information inaccuracy

may occur either because the collected data produces incomplete information20

or because the information loses some of the precision during processing and

display. This is discussed in more detail in Section 3. It is important to under-

stand the effects that inaccuracy can have as it can affect not just the actions

of a few individual commuters but also the performance of the transportation

system as a whole.25

There have been several studies of the impact of noise on different complex

systems. It is interesting to note that there have been some counter-intuitive

discoveries suggesting that noise can have a potentially beneficial effect in many

non-linear systems - both artificial or natural. An example of the former is

the constructive effect of inaccuracy shown in technical systems where noise30
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enhances the information transfer efficiency [3]; similar examples in natural

systems include discoveries in brain function, carrier signals, animal avoidance

and feeding [4]. Section 2 provides a more detailed discussion of some of these

studies. The objective of this paper is to analyse whether such effects of feedback

loops can be found in transportation systems.35

Traditionally, when building ITS systems and navigation devices, the effort

consists in providing faster and more accurate traffic recommendations and real

time predictions [5]. In general, improving the accuracy comes at a certain cost.

For example, in order to get more accurate information, either more sensors

have to be installed or more high-quality sensors have to be used. Both of these40

come at a financial cost. In another example, consider the information that is

displayed on a traditional navigation device. The designer has to take care to

present information in a way that can be easily understood [6][7]and within the

constraints of the display device. This generally means that trade-offs have to

be made in terms of what roads are displayed and what information regarding45

these roads is displayed (elevation, speed, etc.). To make these decisions in areas

ranging from sensor infrastructure development to navigation device design, it

is important to understand the acceptable levels of noise in traffic information.

There are several more examples of the kinds of errors that can occur in

data-processing and creating a comprehensive list of such errors would be diffi-50

cult. Moreover, considering the pace of technological development, any specific

list that is made would quickly become obsolete. Therefore, in this paper, our

first contribution is a general source based classification of different kinds of

inaccuracy that can occur in data collection, processing and information pre-

sentation in an intelligent transportation system. Secondly, this classification55

is used in a microscopic simulation based analysis to study the impact of these

different sources of inaccuracies and their implications on the system design.

3
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2. Related Work

Previous research has analysed the effect of traffic information on a trans-

portation system. It has been shown that the information content, for example60

consisting of certain routes proposed for the traffic participants [8, 9] to achieve

either individual or global social optimum performance or using local or global

details of the traffic network when determining the routes [10, 11], has an effect

on the traffic. In the case of large dynamic congestion games, learning by play-

ers ensures low social cost even with a dynamically changing player population65

[12]. Providing inappropriate information to the traffic participants sometimes

leads to undesirable situations such as one-sided congestion [13]. In [14], the

authors analyse how the information quality and its accuracy influences traffic,

unlike the other mentioned studies where information is error free. It was shown

that drivers using forecast information, even with inaccuracy, produces a better70

impact on the traffic performance than present information. When predicted in-

formation containing errors is presented to a larger share of traffic participants,

an even bigger improvement in performance is observed. In the current paper,

this issue is further explored by first categorizing different errors and analysing

the effect that each error can have.75

There are several studies that challenge the traditional view in information

processing that noise degrades efficiency, and show that controllable noise can

even be considered an additional engineering tool [15]. Such findings correspond

to Stochastic Resonance (SR), a nonlinear phenomenon in which the transmis-

sion of a coherent signal by certain systems can be improved by the addition of80

noise to the system [16] [17].

The influence of noise from information transmitted in the form of packages

shipped between nodes of hierarchical networks is presented in [18]. The ex-

periments were performed on artificial tree networks, scale-free networks and

in a real network formed by email addresses of employees. Two types of noise85

are considered and shown to have a positive influence: one type dealing with a

random part of packets paths and one originating from random changes in the

4
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initial network topology. In a similar vein, we deconstruct the different kinds of

noise that can arise in a transportation system and analyse both their positive

and negative implications.90

SR is possible also in discrete-time dynamical threshold-crossing systems

driven by the subthreshold periodic signal which is too weak to cause the system

to cross the assumed threshold [19]. In the case of a nonlinear second order

dynamic system, feedback control is applied to change conditions of a noise-

induced transition. It is found that, under conditions when the noise is effective95

in determining the destructive dynamics of the system without control, a proper

feedback control can suppress the role of noise. The control efficiency depends

on the amplitude of control signal in a non-monotonic way, demonstrating a

resonance-like regularity [20].

Besides artificial systems, noise affects the natural complex systems as well.100

An example of noise influencing pedestrian movement simulation is presented

in [21]. The authors describe the formation of pedestrians lanes. The number

of lanes depends on the width of the street, on the pedestrian density, and also

on the noise level. In techno-socio-economic environmental systems, a large

noise or fluctuations usually has a destructive influence on a system, but small105

noise intensities can actually trigger structure formation or increase system per-

formance [17]. For example, besides the ability for strategic interactions and

learning, the ability to move has played a crucial role for the evolution of large-

scale cooperation and social behaviour. Noise can trigger frequent cooperation,

even if individuals would behave selfishly in the vast majority of interaction110

[22]. Animal behaviour is also influenced by the existence of noise, as explained

in [23], [24] and [25]. Counter-intuitively, locusts increase the noisiness of their

movements in response to a loss of alignment by the group.

In [4], it is shown that Stochastic Resonance is compatible also with neural

models and brain functions. In [26], the potential benefits of noise in nervous115

systems (human motor behaviour) was examined. Neural networks formed in

the presence of noise are more robust and explore more states; this facilitates

learning and adaptation. Moreover, noise induces stochastic facilitations in
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auditory brainsteam neuron models [27]. In [28] the authors discuss how nature

has actively exploited the beneficial effect of noise by creating noise-assisted120

processes for achieving robust and efficient energy transfer.

A review of existing literature shows that errors and noise present in com-

plex systems can have significant effects on its performance. Inspired by such

observations, [15] introduced a new paradigm of noise-engineering. In the fol-

lowing sections, we explore how noise can be introduced in the information that125

passes through a transportation system and the impact that it can have.

3. Information in the context of transportation systems

Figure 1: Overview of a schema of an Information Control System interacting with a Trans-

portation System where information is affected by uncertainty due to sparsity inaccuracy,

collection inaccuracy and presentation inaccuracy.

In a transportation system, traffic information is obtained from data col-

lected by sensors. These sensors can be fixed (e.g. inductive loop detectors,

radars, infra-red or acoustic) or mobile devices (e.g. smart phones, naviga-130

tion devices, etc.) within vehicles. This information is aggregated and pro-

cessed, some times through several layers, before it is presented back to the

6



Page 7 of 27

Acc
ep

te
d 

M
an

us
cr

ip
t

commuters on their different information systems (in-vehicle entertainment sys-

tem or smart-phones). This forms a feedback loop since commuters are both

consumers and producers of the information.135

Figure 1 presents the feedback loop. On the left side of the image, we

illustrate the front-end of a human complex system (HCS ) (in this case a trans-

portation system with roads, traffic participants, vehicles sensors and so on).

On the right side, we illustrate the information control system (ICS ) that works

at the back-end of the transportation system. HCS provides data to the ICS140

and also eventually utilizes the information that the ICS provides. The ICS is

responsible for cleaning the raw data from the HCS, aggregating it, processing

it and present it to the traffic participants. It is important to note that in our

categorization, the processing system of the information presentation devices

like smart phones or in-vehicle information displays are also part of the ICS as145

they determine how information is received by the user.

As discussed briefly in the introduction, information inaccuracy can occur

in different forms. The information in this system can be seen to flow through

three stages: input, processing and output. Information inaccuracy can arise in

any or all of these stages. In this paper, we classify uncertainty based on the150

stage of the data processing that the inaccuracy originates from to enable a more

general analysis. Based on their most common underlying cause, uncertainty is

classified as: inaccuracy due to sparsity, processing and display.

During the input stage, the real world traffic status is converted into raw

data by the different kinds of sensors. It would be practically impossible to155

observe every single point of the real world system due to the large number of

high quality sensors that would be required. We term the inaccuracy that arise

due to this lack of coverage of sensor networks as sparsity inaccuracy. Sparsity

inaccuracy would be impossible to avoid completely in practice; however, it is

useful, even vital, to discover the minimum coverage required for optimal system160

performance.

Raw data is collected from the sensors and sent to the preprocessing and

processing block. Further inaccuracy may appear from low resolution sensors,

7
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improper cleaning and inefficient algorithms for aggregation or traffic state re-

construction. During the processing stage, the raw data is converted into infor-165

mation that can be used to reconstruct the traffic state and, eventually, to a

form that is presented back to the HCS. Each type of sensor presents specific

error causes. For example, in the case of GPS, there are many sources of errors

such as: dilution of precision, satellite geometry, multipath, ionosphere delays,

signal reflected by objects etc. [29]. Besides deviations in the sensor records,170

data may be affected by inefficient traffic state estimation for solving the miss-

ing data problem [30]. The processing block can introduce inaccuracy among

other by the using an oversimplified or even wrong model of the transportation

system, inefficient algorithms for matching traffic patterns [30] or not enough

processing power that can delay the real time forecast.175

Since the uncertainty manifests in the information system in the same way

as inaccurate traffic state reconstruction, we classify them together as collection

inaccuracy. This uncertainty is difficult to avoid but they become smaller over

time as technology advances.

In the final step of the process, this traffic state information is presented180

back to the commuters through their smart devices. It would be impossible

to display the state of the complete traffic system to the user. Thus design

decisions have to be taken as to what information is displayed and in what

resolution. For example, when displaying a map for navigation with congestion

information, the roads with a range of high speeds may be marked in green and185

others in red; or there could even be a color gradient from red to green for a

range of speeds. Lower resolution information may mean that it is easier for the

user to process a larger amount of information (several roads at the same time)

and it would probably also be technically easier to display this information. We

term these types or errors due to trade-offs in how information is presented as190

presentation inaccuracy. It is crucial to understand these in order to create

better smart devices for ITS.

Previously [14], traffic errors in the case of predicted information have been

categorised as: routes not precisely estimated, simulation model imperfection,

8
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current traffic condition not exactly monitored, driver’s route choice behaviour195

not understood. We believe that the new categorization of inaccuracy based on

sources proposed in this paper is essential to study the impact of information

uncertainty and noise on modern transportation systems that consist of mobile

sensors, ITS and smart navigation devices. Furthermore, this categorization can

help in gaining a better understanding of the modern and future transportation200

systems. Engineering solutions can eventually be developed that leverage on

information as a control tool integrated in ITS. In the following section, we

present a methodology for exploring in more detail the different types of impact

that each of these systems can have.

4. Computational Model205

A real world scenario for studying the impact of noise is difficult to implement

as it requires, among others, a massive rate of participation of the drivers both as

sources and users of traffic information. It would also be difficult to study each

of the different types of errors in isolation. For this, we use a simulation based

approach suited for transportation or socio-economic systems. The traffic flow210

is simulated using an agent-based microscopic traffic simulation for a bottom-

up approach. This methodology is appropriate for the type of problem we are

tackling as it has been successful in reproducing the observed collective, self-

organized traffic dynamics such as breakdowns of traffic flow, the propagation

of stop-and-go waves, the capacity drop, and different spatio-temporal patterns215

of congested traffic due to instabilities and nonlinear interactions [31].

The computational model that we use for the traffic flow, congestion for-

mation, data collection and information dissemination has been described in

detail in our previous study [2]. Here, first a brief overview of this model is

presented and subsequently the new components of the computational model220

are described (i.e. how the different types of information inaccuracy sources or

noise are simulated).

The agents know the road network, perform route calculations and move

9
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forward on their route with a certain speed and acceleration determined by a

time-stepped car following model (Intelligent Driver Model IDM [32], [31] in our225

particular case).

A road Y , is characterised by a tuple of minimum speed, maximum speed

and road length: RoadY =< vmin
Y , vmax

Y , LY >. Our objective is to analyse the

effect of inaccurate information dissemination in the presence of congestion. For

this, as in the previous study, we introduce repeated stochastic disturbances in230

the traffic flow to create a controlled scenario with persistent congestion.

Each agent uses Dijkstra’s algorithm to determine the route from the source

to destination. The estimated speed on each road is used as the weight for

the Dijkstra’s algorithm. Informed and uninformed agents are contrasted by

modifying this estimated speed. Uninformed agents use the maximum speed235

on the road (thus assuming free flowing traffic); while informed agents use, for

each lane, the current average speed on the road, calculated as the average of

speeds reported by the agents currently on that road. The agents who report the

speed are selected to be sources for data collection. In this way, congested roads

tend to have a lower priority in the informed driver’s choice. The percentage of240

informed agents in a scenario is denoted by the letter p.

Additionally, we simulate the effect of the three types of inaccuracy intro-

duced in Section 3. Sparsity inaccuracy are simulated by varying the percentage

s of agents that provide information about their current situation. Collection

inaccuracy and presentation inaccuracy generally manifest in the form of lower245

resolution information. We simulate this by dividing the speed range [0, vmax]

into n bins and reporting the middle value of the chosen bin rather than the

actual value. As the number of bins increases the information resolution and ac-

curacy increases. We call the collection inaccuracy bins nc and the presentation

inaccuracy bins np.250

An example of how the real values are affected by 2 error bins is presented

in Figure 2. First, we identify the interval (bin) in which the real value belongs.

Instead of using the real value, a value equal to the bin center is used. For

instance, in a real world example, consider how information about average speed

10
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on roads is reflected on a traffic map. For values corresponding to the first bin,255

the roads are coloured in red and for values in the second bin, the roads are

coloured green.

0 (m/s) 9.5 (m/s) 19 (m/s)

4.25

Bin 1 Bin 2

Bin center

13.75

Bin center

m/s m/s

8
m/s

Precise speed

Figure 2: Example of information uncertainty introduced by using 2 error bins. The precise

speed value is approximated with a value from the corresponding bin (Bin1 in this case).

5. Experimental Setup

The experimental setup is similar to the one described in our previous

study [2]. We consider a simplified scenario using a road network as shown in260

Figure 3. Agents move from origin to destination. They have two route choices:

RoadA =< 11[m/s], 19[m/s], 500[m] > and RoadB =< 11[m/s], 19[m/s], LB >.

Figure 3: Agents select either Route A or Route B at the decision point. Congestion is

obtained by introducing disturbances on disturbance area (the last 150[m] of Road A). LA

is fixed to 500[m], while LB varies between 625[m] to 1250[m].

We simulate a constant level of congestion generated by local disturbances.

To create a disturbance, a random vehicle i driving on the disturbance segment

of the road is chosen every 2[s] and forced to brake (vi = 0[m/s]). The car265

accelerates gradually and once again reaches full speed, thus causing congestion.

Agents are created by a Poisson process (a technique traditionally used in

simulations for traffic generation [33]) with a mean inter arrival time of 1700[ms].

We simulate 40 minutes (approximately 1000 agents simulated). From this

amount, we consider the last 800 trips, giving a warm-up period of 10 min-270

11
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parameter description min value max value

s percentage of sources 0% 100%

nc number of bins for collection inaccuracy 1[bin] 19[bins]

np number of bins for presentation inaccuracy 1[bin] 19[bins]

p percentage of informed agents 0% 100%

LB length of Road B 625[m] 1250[m]

Table 1: Main parameters used in the experiments.

utes. The specific values of the parameters were chosen empirically so that the

congestions remains localised on RoadA.

In Table 1 we present the main parameters of the experiments. Each exper-

iment is repeated 10 times.

To quantify the effect of information dissemination, we define the network275

performance T as the average travel time of all agents in one experiment.

T =
1

Ft

Ft∑
i=0

ti, (1)

where ti is the trip duration of agent i, Ft is the fraction of agents (last 800

agents) that complete their trip.

We define an information impact indicator to quantify the impact that each

of the three types of inaccuracy produce on T . We consider that information is280

affected only by one type of inaccuracy at a time.

ILB
= max(Tref (LB)− Ti,p(LB)), (2)

where i ∈ (imin, imax], p ∈ (0, 100]. In the case of sparsity errors, collection

errors and presentation errors e refers to s, nc and np, respectively. For each LB

we calculate the maximum impact across all levels of informed agents and all

values of e. Tref (LB) is calculated for i = imin and p = 0%. ILB
quantifies the285

maximum change on T when compared to Tref . For sparsity errors, imin = 0%

(no sources) and imax = 100% (every vehicle is a source). For collection and

12
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Figure 4: Inaccurate information impact on T when varying LB (ILB
defined in equation 2,

where i refers to s, nc or np depending on the type of inaccuracy considered).

presentation errors, imin = 19[bins] (information is error free) and imax = 1[bin].

The case with no noise corresponds to 19[bins] as the maximum speed on roads

is 19[m/s].290

6. Results

In this section, we use the metrics introduced in Section 5 to analyse the

impact that different types of inaccuracy have on the traffic performance. First,

we show how variation in the network topology (varying the length of the alter-

native road LB) can impact the different types of inaccuracy. Next we explore295

how the different kinds of errors influence the traffic performance.

In our previous study [2], we evaluated the impact that route recommen-

dation based on accurate information can have on the traffic. In particular,

we evaluated the impact that a range of values of LB have on performance.

Here, we do a similar analysis to find the impact of introducing inaccuracy to300

information.

It is interesting to note that, all three types of inaccuracy produce an effect

on T (defined in Equation 1) for these particular values of LB , as illustrated in

Figure 4. For this we calculate the information impact indicator ILB
(defined

in Equation 2). We observe that the information impact is decreasing for bigger305

lengths of the alternative road for all types of error. Sparsity inaccuracy produce

13
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a bigger impact on performance than presentation and collection inaccuracy. It

is surprising to note that collection and presentation inaccuracy have a similar

impact on the traffic situation. However, this is only natural as both these types

of inaccuracy manifest in the same way i.e. the speed based on which decision310

is made is quantised (just to different degrees).

0 20 40 60 80 100
s %

92

94

96

98

100

102
T
 (
s)

p=20%

p=40%

p=60%

p=80%

p=100%

Figure 5: The average travel T (performance defined in Equation 1) depending on s. It

reflects the effect of sparsity inaccuracy on the traffic situation. LB = 875(m). No collection

or presentation errors are considered.

Next, we choose the case of LB = 875[m] to further analyse the effect of

information uncertainty as this case provides a significant improvement when

we vary s, nc and np (as shown in Figure 4). These values are plotted in Figure

5. We discover that, in most cases, having more than 20% agents as sources315

produces marginal to no improvement. The only exception is when p=100%

where we see the surprising effect that decreasing the inaccuracy produces a

reduction in traffic performance. We refer to the former as Case A and the

latter as Case B.

In the previous study, we observed that the biggest effect on performance320

was seen for p = 40% of the drivers using information (error free in that case).

Thus, to explain Case A, we choose the same scenario where p = 40%. We define

FA and FB as the fraction of agents that select either Road A or Road B. In

Figure 6a we notice that for s = 0% (when it is assumed that the speed on the

roads is maximum) most of the traffic participants select Road A. As s increases,325

14
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(a) FA and FB depending on s for p = 40%.

FA and FB represent the fraction of agents that

select RoadA or RoadB.
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s (%)

1

2

3
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6
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8

S
T
D
F
A
,S
T
D
F
B
(n
u
m
b
e
r 
o
f 
ca

rs
)

STDFA
STDFB

(b) STD (standard deviation) of FA and FB de-

pending on s for p = 100%.

Figure 6: Explanation of the effect of information sparsity inaccuracy on T for p = 40% and

p = 100%.

the accuracy of the recommendations increase and more drivers are redirected

to Road B; this results in improving T. As the percentage of sources increases

above 20%, there is only marginal improvement in the additional information

gained and as such T does not change much.

In order to explain Case B, we calculate the standard deviation (STD) of330

FA and FB . In Figure 6b we notice that STD of FA and FB increases with an

increasing number of sources. A higher STD for FA and FB is reflected in a

destabilisation of the transportation system; this is due to an extensive use of

information. The higher STD means that the recommendations from Dijkstra’s

algorithm change more frequently for a higher level of resolution. Some informed335

agents are recommended to select Road B, even though this recommendation

becomes invalid very soon. Nevertheless, despite receiving newer information,

agents that are already on Road B are unable to change to Road A. So, there

are too many agents that are stuck on the long route, resulting in a negative

impact on T .340

To summarise, modifying the amount of sources for data collection affects

data precision and this is reflected in traffic recommendations. The recom-
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mendations determine the number of agents that select one route or the other

thus influencing T . The fact that a massive number of drivers use navigation

recommendations produces a destabilization of the system and a decrease in T .345

5 10 15
nc  ( number of bins ) 

90

92

94

96

98

100

102

T
 (
s)

p=20%

p=40%

p=60%

p=80%

p=100%

(a) T depending on nc (collection inaccuracy).

5 10 15
np  ( number of bins ) 

90

92

94

96

98

100

102

T
 (
s)

p=20%

p=40%

p=60%

p=80%

p=100%

(b) T depending on np (presentation inaccu-

racy).

Figure 7: The average travel T (performance defined in Equation 1) depending on the inac-

curacy or noise introduced either at collection or display, LB = 875(m), s = 100%.

Next we consider the effect of collection inaccuracy and presentation inaccu-

racy on T . We consider the case of s = 100% for LB = 875[m]. In Figure 7 we

show that, increasing precision or the number of bins nc and np for the collected

data and for the displayed information. In most of the cases, the increase in

precision produces either a small improvement (< 2s) or it has no effect on T .350

However for the case of p = 100% where there is a massive usage of in-

formation, we notice some counter-intuitive behaviour: for a better precision

in information (less inaccuracy) T decreases. This means that when most par-

ticipants have access to information, then a better precision (in both nc and

np) reduces system performance (T increases). It is also interesting to observe355

that, for collection inaccuracy, increasing the precision beyond a certain value

(i.e. nc > 4[bins]) has almost no effect on the system performance. In the

case of presentation inaccuracy the same effect appears only for np > 10[bins].

The higher value of this threshold for presentation errors is because the same

level of resolution or precision in information that is used by the participant360
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is obtained for fewer numbers of bins in the case of collection inaccuracy. To

understand this, consider the case of there being two bins for collection, i.e.

the processing stage gives a value of either NC1 or NC2. The speed that is

reported to and used by an informed participant is the average of this value

across all participants with sensors. Thus, if there are two drivers, the value365

of np for the informed driver would be three, as there are three values NC1,

NC2 or NC1+NC2
2 that may be reported. Thus, a collection inaccuracy of nc

translates to a much smaller presentation inaccuracy.
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Figure 8: Explanation of the effect of collection and presentation inaccuracy on T (performance

defined in Equation 1) for p = 100%.

To explain the counter-intuitive effect of noise for the case of p = 100%, we

define FA and FB as the fraction of agents that select either Road A or Road B370

in the entire simulation. In Figure 8 we present that standard deviation (STD)

of FA and FB . We notice that STD increases with increasing the number of

bins. This means that, the right level of noise produces stabilization in the

overall traffic situation, this having a positive effect on the overall performance.

7. Conclusions and Future Work375

New advancements in ITS systems and navigation devices enable commuters

to access real time traffic recommendations and at the same time provide data

about their trips. This creates a feedback loop that can introduce new unex-

pected dynamics into the transportation system. ITS systems process collected
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traffic data and provide information to drivers as navigation recommendations.380

Each step of this feedback process can be affected by different kinds of errors,

this having an additional impact on the overall traffic performance. Starting

with the collection of data, data processing and the way the information is pre-

sented to the traffic participants it can be affected by different levels of errors

or uncertainty.385

In this study, we first classify the data and the information inaccuracy

present in modern transportation systems as sparsity, collection and presen-

tation inaccuracy. We analyse how each type of inaccuracy source affects the

overall performance of a transportation system. Also, we investigate how the

amount of traffic participants that use inaccurate information can influence the390

overall performance. This reveals an interesting insight into how information

dissemination strategies and smart devices should be developed.

Interestingly, our results show that in most of the cases, only a small fraction

(<20%) of the traffic participants is necessary to provide data for collection

in order to have the best traffic performance. For the case when there is a395

massive participation both as sources and consumers of information, the traffic

performance actually decreases. In general, noise in the form of collection or

presentation inaccuracy decreases the traffic performance. However, when the

traffic participants massively use the navigation recommendations, we show that

noise can actually produce an improvement in the traffic situation. Beyond a400

certain limit, increased precision of information does not have a corresponding

increase in traffic performance.

Our findings are relevant in the context of ITS, where a major effort is

invested in providing information with higher precision. Such systems are ex-

pected to play a key role in solving major traffic problems in cities [34, 35]. Our405

study helps improve ITS systems by offering relevant insights on how different

levels of information inaccuracy can impact the overall traffic performance. Our

experiments reveal the amount of sensors or probe vehicles necessary to collect

data that provides the best traffic performance. We determined the acceptable

level of inaccuracy during information processing. The study on presentation410
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inaccuracy gives a target for improving the design of information dissemination

devices. In future studies, more advanced experiments dealing with information

and uncertainty can be performed using realistic traffic networks and travel pat-

terns. Also, more detailed human behaviour models may reveal the exact way

in which people choose to use traffic recommendations.415
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We investigate the effect of inaccurate traffic information on transportation systems 

We first identify three types of uncertainty that can arise in transportation system 

We use an agent-based microscopic simulation to explore the effects of inaccuracy 

In some cases the massive use of inaccurate information is beneficial for the system  
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