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Shared cache interference in multi-core architectures has been recognized as one of major factors

that degrade predictability of a mixed-critical real-time system. Due to the unpredictable cache

interference, the behavior of shared cache is hard to predict and analyze statically in multi-core
architectures executing mixed-critical tasks, which will not only result in di±culty of estimating

the worst-case execution time (WCET) but also introduce signi¯cant worst-case timing pen-

alties for critical tasks. Therefore, cache management in mixed-critical multi-core systems has
become a challenging task. In this paper, we present a dynamic partitioned cache memory for

mixed-critical real-time multi-core systems. In this architecture, critical tasks can dynamically

allocate and release the cache resourse during the execution interval according to the real-time

workload. This dynamic partitioned cache can, on the one hand, provide the predicable cache
performance for critical tasks. On the other hand, the released cache can be dynamically used by

non-critical tasks to improve their average performance. We demonstrate and prototype our

system design on the embedded FPGA platform. Measurements from the prototype clearly

demonstrate the bene¯ts of the dynamic partitioned cache for mixed-critical real-time multi-
core systems.
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1. Introduction

Multi-core systems have become one of the preferable choices in modern embedded

systems to achieve more powerful computing ability while reducing the cost of the

system at the same time. Safe-critical real-time embedded systems, such as electronic

vehicles,15 are also one of the promising domains which use the multi-core systems as

their computing platforms, because growing number of applications require more

powerful computing platform to provide more computing power. For example, the

driver assistant system in modern automotive systems needs to process high-reso-

lution video in real-time to track objects, which requires signi¯cant computing

power.27

The multi-core architecture, however, poses a signi¯cant challenge in designing a

safe-critical real-time embedded system due to timing unpredictability caused by

shared resource interference. The shared cache has been recognized as one of the

most important sources of unpredictability in multi-core systems.6 The main prob-

lem of the shared cache is that the behavior of shared cache is hard to predict and

analyze statically in multi-core architectures. For instance, a task running on one

core may unpredictably evict useful cache space, which is used by one task in another

core. These inter-core cache interferences are extremely di±cult to analyze accu-

rately, thus resulting in di±culty of estimating the worst-case execution time

(WCET) of the application program.

Integrating tasks with di®erent levels of safety requirements on a common com-

puting platform has increasingly become a common trend in the design of real-time

embedded systems. In general, not all tasks in embedded system are equally critical

for the system.1 In one computing platform where multiple tasks are executed, the

typical case is that some of these tasks may be more critical to the entire system than

others. For instance, in the system of unmanned aerial vehicles (UAV), the correct

behavior on °ight-control tasks is more important than photo capturing tasks and

multimedia applications. One of the main problems brought by such a new design

paradigm is that tasks with di®erent criticalities running on the same computing

platform will compete for shared resources. This competition will result in unpre-

dictable resource interference on critical tasks. Shared cache in mixed criticality

systems is one such source of interference that can increase the response time of

critical tasks.5 In the mixed criticality real-time systems, the timing predictability of

critical tasks should be ensured for the correctness of the entire system. To achieve

this, the cache resources of critical tasks should be strictly isolated to prevent the

cache interference from non-critical tasks. At the same time, we also should maximize

the average cache utilization of non-critical tasks to improve the quality-of-service

(QoS) for the system.

In this paper, we present a dynamic partitioned cache memory for mixed-critical

real-time multi-core system, in which cache resources are dynamically allocated to

critical tasks. In this cache architecture, the cache resources of critical tasks are
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strictly isolated to prevent the cache interference of non-critical tasks. Therefore, the

proposed cache can provide predictable cache performance for critical tasks. In ad-

dition, the proposed cache memory allows the critical tasks to dynamically occupy

the cache resources from non-critical tasks according to real-time workload. To

minimize the impacts of this dynamic cache resource occupation on the performance

degradation of non-critical tasks, we proposed one scheme to determine the cache

con¯gurations of critical tasks. The generated solution can guarantee that the timing

constraints of critical tasks are met, while trying to minimize the dynamic cache

resource occupation. The main contributions of this paper can be summarized as

follows:

. We present a dynamic partitioned cache memory for mixed-critical real-time

multi-core systems and prototyped it on FPGA. The developed cache can provide

predicable performance for critical tasks. Compared to the existing cache archi-

tectures,24,29,13 the dynamic partitioned cache memory allows critical tasks to

dynamically allocate the cache resources according to the real-time workload and

leave as much as cache resources to non-critical tasks for their performance im-

provement, which enables us to utilize the cache resources more e±ciently.

. We detail a hardware/software co-design approach to determine cache allocation

for critical tasks that satis¯es schedulabilty of critical tasks while minimizes per-

formance impacts of non-critical tasks.

. We demonstrate the applicability of our technique by implementing a hardware–

software prototype on FPGA and executing a set of memory-intensive real-time

benchmarks. Compared to the existing techniques24,29,13 which are devoted to

analyze theoretical proposals and the simulation of caches design, we o®er the

physical implementation to verify the proposed cache. Measurements from the

prototype clearly demonstrate the bene¯ts for the multi-core system equipped

with dynamic partitioned cache memory.

The rest of the paper is organized as follows. Section 2 reviews related work in the

literature. Section 3 presents some background principles and the de¯nition of the

studied problem. Section 4 provides the details on the dynamic partitioned cache

memory for mixed-critical multi-core system and cache resource management

scheme for critical tasks. Experimental evaluation is presented in Sec. 5 and Sec. 6

concludes the paper.

2. Related Work

Cache partitioning techniques have been considered as one of promising techniques

to improve the performance and predictability of embedded systems. By allocating

private cache space to each task, cache interferences can be prevented. Much

work has been done in general-purpose computing system to optimize di®erent

Dynamic Partitioned Cache Memory for Real-Time MPSoCs with Mixed Criticality
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performance objectives by cleverly partitioning shared cache, including cache per-

formance21,22 and energy consumption.31

In the context of real-time systems, cache partitioning techniques have been ex-

plored mostly by using software-based page coloring techniques.26,12,23 Software

cache partitioning for uniprocessor real-time systems was proposed by Wolfe.28,18

The o®-chip memory mapping of the tasks is altered to guarantee the spatial isola-

tion in the cache by using compiler technology. Bui et al.2 exploited cache parti-

tioning techniques to minimize the worst-case system utilization while considering

the cache capacity constraint. For multi-core real-time systems, Kim et al.12 pro-

posed a coordinated cache management scheme to provide predictable cache per-

formance. In this work, a portion of cache partitions is statically reserved for each

core to prevent the inter-core cache interference. Tasks on each core share the re-

served cache partitions and this sharing will result in intra-core cache interference.

When performing the schedulability analysis, the penalties due to the sharing of

cache partitions are bounded by accounting for cache warm-up delay and cache-

related preemption delay (CPRD). Mancuso et al.16 proposed a two-phase solution,

which is based on page coloring technique, to prevent cache sharing interference. In

the ¯rst phase, the real-time tasks are pro¯led to determine the memory access

patterns. Cache resources are allocated to real-time tasks in the second phase by

using colored lockdown allocation strategy. By using page coloring and real-time

multiprocessor locking protocols together, Ward et al.26 proposed a shared cache

management scheme within the MC 2 scheduling framework17 for mixed criticality

real-timemulti-core systems. In above state-of-the-art studies,26,12,16 the shared cache

is partitioned at OS-level by using page coloring techniques. Therefore, cooperating

OS timing overhead also needs to be carefully considered in real-time systems. Besides,

the research works26,12,16 implement and evaluate the proposed approaches in a gen-

eral-purpose operating system Linux (OS) patched with real-time extensions. Due to

the complexity of the Linux kernel, the impacts of kernel activities, which have a

considerable e®ect on real-time tasks, are hard to be predicted and evaluated.8Distinct

to using software-based cache partitioning techniques, we present a dynamic parti-

tioned cache architecture, which can execute dynamic cache partitioning at hardware

level with minimal overhead, for mixed criticality real-time multi-core systems.

Little work has been done in the topic of cache architecture design for mixed-

critical real-time multi-core system. A prioritized cache architecture is proposed in

Refs. 24 and 29, where the access authorization of cache line is determined by the

priority of tasks. The cache lines occupied by tasks with high priority cannot be

evicted by tasks with low priority, while the cache lines owned by tasks with low

priority can be evicted by tasks with high priority. Hence, the higher the task priority

is, the less it su®ers from inter-task con°icts. The prioritized cache can also be

applied to critical and non-critical tasks. However, the prioritized cache is apt to the

trashing of the whole cache by real-time critical tasks, which may result in bad

G. Chen et al.
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performance of non-critical tasks. To avoid the trash of the whole cache, PRETI, a

partitioned real-time cache scheme is presented in Ref. 13, reserves a ¯xed number of

cache ways for critical tasks across all the sets based on prioritized cache scheme.

How to determine this ¯xed number is not discussed in this proposal. Within the sets,

data from each critical task can reside in any way. Based on this scheme, authors

assume that the associated private space can be released when the task is terminated.

This assumption is not realistic because it is di±cult to release such distributed cache

lines across all the sets. Above approaches are all evaluated by simulation and none

of them is veri¯ed by a real hardware.

More recently, Chetan Kumar et al.5 presented one cache design for mixed crit-

icality real-time systems. The proposed cache design was implemented with a soft-

core processor and veri¯ed in FPGA platform. Similar to prioritized cache archi-

tecture in Refs. 24, 29 and 13, the core of this cache design is based on the least

critical cache replacement policy, in which critical cache lines cannot be evicted when

there are non-critical or empty cache lines in one cache set. One di®erent point

comparing to prioritized cache architecture is that critical cache lines can be evicted

only when all lines in a cache set are critical. Due to using similar cache replacement

policy in prioritized cache architecture, most of cache lines are also easy to be oc-

cupied by real-time critical tasks, which will degrade the performance of non-critical

tasks. Besides, this cache design is only designed for uniprocessor systems.

In contrast to existing work, we present dynamic way-based cache partitioning

scheme and enforce data way-alignment for real-time critical tasks. Figure 1 gives an

example of how our approach di®ers from existing work. As shown in Fig. 1(a), the

prioritized cache24,29 is opted to allocate the major cache lines to critical tasks. Thus,

a few of cache lines can be used for non-critical tasks, which will degrade the per-

formance of non-critical tasks. In addition, cache lines belonging to di®erent tasks are

entirely mixed across sets and ways in the prioritized cache. In Fig. 1(b), PRETI,13

which is based on the prioritized cache, has been applied so that the number of ways

0
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(a) Unmanaged Data Isolation (b) Managed Data Isolation (c) Managed Data Isolation
and Way-aligned Data

Fig. 1. Data isolation among critical and non-critical tasks.
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owned by each critical task is upper-bounded by a constant across all sets. However,

within the sets, cache lines occupied by critical tasks are distributed in any way.

These scattered cache lines are di±cult to release for non-critical tasks' reusing. Our

approach is shown in Fig. 1(c). We enforce data way-alignment so that a way is

owned entirely by a critical task at a time. The main bene¯t is that the cache ways

occupied by critical tasks can be dynamically allocated and released according to

real-time workload. The released ways can be reused by non-critical tasks to further

improve their performance. Besides, we physically implement and verify the pro-

posed cache architecture on FPGA.

3. Background

This section introduces the notations and assumptions used in this paper. The

characteristics of the mixed-critical multi-core architecture as well as the recon¯-

gurable cache and real-time tasks are presented.

3.1. Mixed-critical multicore system

In this paper, we consider a multiprocessor architecture as shown in Fig. 2, where the

cache subsystem is shared by every two cores. This multiprocessor architecture has

been widely accepted by chip vendors. For example, in Intel Core 2 Quad Q8400

processor,11 core 0 and core 1 share one cache and core 2 and core 3 share another

cache. In each group of two cores which share the caches, we specify one core as

critical core and another core as non-critical core. Critical and non-critical tasks are

executed on critical cores and non-critical cores, respectively. This kind of mixed-

critical hardware architecture has been widely adopted in much previous research

work.7,29,30 The DRAM controller is connected to the system bus. In this paper, we

adopt real-time multi-core architecture presented in Ref. 19, where the accesses to

C Core NC Core

Shared Cache

C Core NC Core

Shared Cache

Off-Chip Memory

Bus

Core Group Core Group

Fig. 2. Mixed-critical multi-core architecture.
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shared memory bus are controlled by hierarchical arbiters. This architecture employs

round-robin as the shared bus arbitration policy, thus the maximum bus access delay

is bounded by the number of cores in a system.19

Note that, our cache design can also support a general case that several critical

cores and non-critical cores can share one cache. In this general case, the system

validation should be carefully considered. At any time, the sum of cache resources

allocated to concurrently running tasks should be less than the cache capacity. To

guarantee this property, we need to use complex cache-aware scheduling algorithms4

to compute the cache allocations and scheduling. In this paper, we aim at demon-

strating the applicability and e®ectiveness of dynamic partitioned cache memory in

real-time multi-core systems with mixed criticality. To reduce the analysis com-

plexity, we limit two cores as one group to share one cache in our multiprocessor

architecture.

3.2. Recon¯gurable real-time cache

Unlike traditional mixed-critical cache architectures which are based on priority

cache,24,29,13 our recon¯gurable real-time cache supports dynamic way-based cache

partitioning. As shown in Fig. 3, the shared L2 cache is partitioned in the ways. The

cores can dynamically tune the number of ways at runtime. For example, core 2 can

select the third and sixth ways by calling the cache recon¯guration APIs. This mix-

critical real-time cache only allows critical cores to dynamically regulate their cache

size according to real-time workload. We use the proposed recon¯gurable real-time

cache to provide performance isolation for the critical core running critical tasks and

prevent unpredictable cache interference from the non-critical core running poten-

tially unpredictable workload. Thus, this cache can prevent cache interference be-

tween the critical tasks and non-critical tasks and o®er predicable cache behavior for

the critical tasks.

In this work, we implement cache partitioning on the customized recon¯gurable

cache component and dynamically assign cache ways to tasks. The key di®erence

between our cache and the existing priority cache for mix-critical systems is that our

approach allows to borrow cache space from non-critical tasks when critical tasks are

active and return the cache space of critical tasks back to non-critical tasks when

critical tasks are terminated. In contrast, the cache space cannot be easily released

due to distributed cache lines across sets in the priority cache architecture. This will

Core1 Core2 Core3 Core4

Fig. 3. Way-based cache partitioning.
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result in bad performance of non-critical tasks, because the most part of cache space

is seized by critical tasks.

3.3. Task characteristics

In this paper, we consider scheduling a set of n independent frame-based real-time

tasks �c ¼ f� c
1; �

c
2; . . . ; �

c
ng on critical cores. The tasks share a common deadline D,

which is also the period (or frame) of the task set. For example, in one period T which

equals D, the tasks in kth frame are released at the same time instant ðk� 1Þ � T and

share a common deadline k � T . This task model has been widely used in Refs. 14, 25

and 20 and is a typical one which re°ects various practical applications.14 Note that

we consider non-preemptive scheduling as it is widely used in industry practice,

especially in the case of hard real-time systems.10 Furthermore, non-preemptive

scheduling eliminates CPRDs, and thus alleviates the need for complex and

pessimistic CRPD estimation methods. The WCET of task � c
i under j ways of cache

assignment is denoted as wij, which can be obtained from static analysis9 or

measurement-based approach.12 On non-critical cores, the non-critical tasks are

executed in a loop manner to achieve better performance, e.g., high-throughput.

4. Dynamic Partitioned Cache with Criticality Awareness

In this section, we present dynamic partitioned cache scheme for mixed criticality

real-time systems. Our cache scheme allows cache accesses from critical and non-

critical tasks to coexist. On the one hand, our cache scheme can guarantee the cache

resources of critical tasks are strictly isolated to prevent the cache interference from

non-critical tasks. Therefore, the timing predictability of critical tasks can be

achieved. One the other hand, our cache scheme can dynamically control the release

of the cache resources of the critical tasks according to real-time workload. These

released cache resources can be reused by non-critical tasks to improve the average

performance. Therefore, our cache scheme can minimize the slowdown of non-critical

tasks by improving cache usages of non-critical tasks.

In the following, we ¯rst introduce system-level design of dynamic partitioned

cache architecture which is presented in our previous research work in Ref. 3. Based

on this description of dynamic partitioned cache, we present how the dynamic

partitioned cache design can be extended for real-time multi-core systems with mixed

criticality. Finally, we discuss how to determine cache con¯gurations for the critical

real-time tasks such that the predictability and timing constraints can be guaranteed

while maximizing cache usages of non-critical tasks.

4.1. Dynamic partitioned cache memory

The implementation of dynamic partitioned cache scheme is based on our previous

research work in Ref. 3. Currently, the dynamic partitioned cache in Ref. 3 can only

G. Chen et al.

1650062-8

J 
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P 
20

16
.2

5.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 W

E
IZ

M
A

N
N

 I
N

ST
IT

U
T

E
 O

F 
SC

IE
N

C
E

 o
n 

04
/0

1/
16

. F
or

 p
er

so
na

l u
se

 o
nl

y.



be applicable for real-time multi-core systems. In this paper, we extend the dynamic

partitioned cache in Ref. 3 into real-time multi-core systems with mixed criticality.

In this subsection, we present an overview of dynamic partitioned cache in Ref. 3.

Figure 4 depicts the system-level design on the architecture of a typical multipro-

cessor system equipped with dynamic partitioned shared cache memory. As depicted

in Fig. 4, the cache memory consists of cache ways management unit (CWMU), cache

control unit (CCU), core to cache switch (CCS) and cache ways block (CWB). In the

architecture, CWMU controls the cache ways allocation according to the recon¯g-

uration request of the cores. CCU manages the cache memory accesses by instanti-

ating N cache controllers for a N -core system. CCS can dynamically connect cores to

CWBs according to ways mask register of each core, which is maintained by CWMU

according to the private cache ways pool of the cores. CWBs are memory blocks used

for tag and data storage.

4.2. Recon¯guration strategy between critical and non-critical cores

As we mentioned in Sec. 3.2, to guarantee the predicable performance of the critical

task, the dynamic partitioned cache memory only allows critical cores to dynamically

manage the cache resources during the runtime. Non-critical cores can dynamically

use the unassigned cache ways left in CWMU to improve the average performance.

Thus, the recon¯guration ports of CWMU are only connected with critical cores, as

shown in Fig. 4. In the dynamic partitioned cache memory, we only allow one critical

Cache
Controller

Cache
Controller

…

CWMU

Core-Cache-Sw
itch(CCS)

Way S-1

Way S-2

Way 1

Way 0

…
…

CWB
Dynamic Par��oned Cache Memory

To SDRAM 
Non-Cri�cal 

Core

Co
re

Co
re

Cri�cal 
Cores

Fig. 4. System-level block diagram.
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core to regulate the cache resources occupied by itself. When one critical task on one

critical core is scheduled to run, the critical core at ¯rst releases a certain number of

cache resources from non-critical core for the execution of the critical task. Then, the

critical core allocates itself the released cache resources to achieve the predicable

execution of the critical task. After the critical task ends, the critical core releases the

occupied cache resources from itself and reallocates these cache resources back to

non-critical core. By using this recon¯guration strategy, we can, on the one hand,

guarantee cache interference-free for critical tasks. On the other hand, the average

performance of non-critical cores can be improved by reusing the dynamically re-

leased cache resources from critical cores.

4.3. Implementation of recon¯guration strategy

To illustrate how the cache recon¯guration strategy is implemented on the critical

core, we list the example code as described in Listing 1. When the critical tasks are

scheduled to execute in the critical core, the API function EXE CT(void (*func)

(void), int way num) in List 1 is called to implement cache recon¯guration strategy.

The API function EXE CT has two parameters: func and way num. func parameter

denotes the function pointer of the critical task routine, while way num parameter

denotes the number of cache ways allocated to critical tasks. In this API function,

task routine is wrapped with cache con¯guration instructions (lines 3 and 4 and lines

6 and 7). Before the execution, FreeWaysNC(way num) is called to ask non-critical

core to release some ways (line 3) and AlloWaysC(way num) is called to allocate the

released ways for the critical core (line 4). Then, the critical task is called to execute

under such isolated cache environment (line 5), in which cache interference can be

prevented for the predicable execution. After the task is terminated, the critical core

releases the occupied ways by calling FreeWaysC(way num) (line 6) and reallocates

these ways back to non-critical cores by calling AlloWaysNC(way num) (line 7).

According to implementation routines presented in List 1, the critical core can dy-

namically borrow ways from the non-critical core to guarantee the execution

predictability of critical task on the critical core and return the borrowed cache ways

back to non-critical cores to improve the performance of non-critical tasks when

critical task ends.

1 void EXE CT(void (∗func)(void), i n t way num)
2 {
3 FreeWaysNC(way num);
4 AlloWaysC(way num); //borrow ways
5 (∗func)( ) ;
6 FreeWaysC(way num); // return ways
7 AlloWaysNC(way num);
8 }

Listing 1. Example code for cache recon¯guration.

G. Chen et al.
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4.4. Determine cache con¯gurations

This subsection discusses how to decide cache con¯guration for critical real-time

tasks to guarantee their real-time constraints while minimizing performance impact

for non-critical tasks. As we mentioned in Sec. 3.1, we limit two cores in one group to

share one cache in our multiprocessor architecture. In a core-group, one core is

speci¯ed as critical core to execute real-time tasks and another core is speci¯ed as

non-critical core to execute non-critical tasks. Because there is only one critical core

in a core-group, we do not need to consider concurrent cache resources occupation

from other critical tasks. Thus, the task schedule also do not correlate with cache size

allocation, which reduces the complexity of system validation analysis. We consider

the mapping speci¯cation that describes how critical tasks are mapped on core-

groups is known as prior. In the following, we will present one light-weight cache

allocation scheme to determine cache con¯gurations for critical real-time tasks in one

core-group. The generated cache con¯gurations should guarantee the predictability

and timing constraints of critical tasks while maximizing cache usages of non-critical

tasks to improve the average performance.

To leave as much as cache resources to non-critical tasks for performance opti-

mization, we use cache sensitivity index CSI� c to represent how the WCETs of

critical task � c are sensitive to the allocated caches. Cache sensitivity index CSI� c is

de¯ned as follows:

CSI� cði; jÞ ¼ W� cðiÞ �W� cðjÞ
j� i

; i < j � s ; ð1Þ

where W� cðiÞ denotes the WCET of the critical task � c when i cache ways are

allocated and s denotes the total number of ways of the shared cache. From the

de¯nition of CSI� c in (1), we can see that the bigger the CSI� c is, the more e®ective

the cache allocation is on WCET reduction. In this scheme, cache sensitivity index

CSI� c is used to guide us to allocate the cache ways.

The pseudocode of the algorithm is depicted in Algorithm 1, which computes the

cache con¯gurations for critical real-time tasks under deadline constraints. The

scheme starts to explore the cache con¯gurations by assigning each critical task

with one cache way (lines 1–4 in Algorithm 1). Considering that cache sensitivity

index CSI� c can be used to represent how e±cient a cache con¯guration is, we

greedily assigned the cache ways to critical tasks according to cache sensitivity

index CSI� c (lines 6–14 in Algorithm 1). In each iteration, we ¯rst ¯nd the max-

imum cache sensitivity index CSI max
� c
i

and the corresponding index ImðCSImax
� c
i

Þ for
each critical task � c

i . Then, we compute the corresponding cache increase �max
� c
i

for

each critical task � c
i . Comparing CSI max

� c
i

among all critical tasks, the critical task

� c
max with maximum cache sensitivity index CSI max

� c
i

is selected to increase its cache

ways by �max
� c
i

(lines 15 and 16 in Algorithm 1). When the sum of WCETs of

Dynamic Partitioned Cache Memory for Real-Time MPSoCs with Mixed Criticality
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critical tasks � c is less than its deadline D, the iteration process ends and returns

the minimal cache allocation to critical tasks to meet the deadline constraints. If

the cache allocation of each critical task reaches the cache capacity s, the iteration

process also ends and reports no cache con¯guration can be found because the

process has explored all possible cache con¯gurations in the searching space

(lines 18–20 in Algorithm 1).

5. Experimental Evaluations

In this section, we show the e®ectiveness of our criticality-aware cache design in a

real hardware platform. We ¯rst describe our experimental setup and then present

the results obtained from the physical implementation.

Algorithm 1 Determine cache configurations
Input: Deadline constraint D; a set of critical tasks Γc = {τc

1 , τc
2 , . . . , τc

n}, each
of which has WCETs specifications Wτc

i
= {Wτc

i
(1), Wτc

i
(2), . . . , Wτc

i
(s)} under

different cache configurations.
Output: Cache configurations A = {Aτc

1
, Aτc

2
, . . . , Aτc

n
}

1: for Each critical task τc
i ∈ Γc do

2: Aτc
i

= 1;
3: end for
4: Compute Total WCET = n

i=1 Wτc
i
(Aτc

i
)

5: while Total WCET > D do
6: for critical task τc

i ∈ Γc do
7: if Aτc

i
== S then

8: CSImax
τc

i
= 0;

9: ∆max
τc

i
= 0;

10: else
11: Find CSImax

τc
i

= maxs
j=Aτc

i
+1(CSIτc(Aτc

i
, j)) and the corresponding

index Im(CSImax
τc

i
);

12: ∆max
τc

i
= Im(CSImax

τc
i

) − Aτc
i
;

13: end if
14: end for
15: Find the task τc

max which has maximum CSImax
τc

i
;

16: Aτc
max

= Aτc
max

+ ∆max
τc

i
;

17: Update Total WCET = n
i=1 Wτc

i
(Aτc

i
);

18: if cache allocation of each task reaches s then
19: Report no cache configuration can be found;
20: end if
21: end while

G. Chen et al.

1650062-12

J 
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P 
20

16
.2

5.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 W

E
IZ

M
A

N
N

 I
N

ST
IT

U
T

E
 O

F 
SC

IE
N

C
E

 o
n 

04
/0

1/
16

. F
or

 p
er

so
na

l u
se

 o
nl

y.



5.1. Experimental setup

We implement the proposed cache recon¯gurable multi-core system on the Altera

DE2-115 board equipped with Cyclone IV FPGA, which is based on the NIOS II

multi-core. Two cores in a core-group are shared with the uni¯ed cache, which is an

instance of the dynamic partitioned cache memory proposed in Ref. 3. In our eval-

uation, the dynamic partitioned cache memory is con¯gured as 16KB cache with

eight con¯gurable cache ways. In our physical implementation, each NIOS core runs

at 50MHz.

To evaluate the performance of the dynamic partitioned cache memory, we use 10

benchmark programs as critical real-time tasks, which are selected from CHStone

(Adpcm, Sha), MiBench (Crc, FFT), DSPstone (N complex update, LMS), Ver-

abench (Corner turn) and other research work (Sobel, ACC, Fdct). To avoid the

selected task from saturating fast, we make some adaptations to the input scales of

some benchmarks, such that they comply with the speci¯ed cache size. Table 1 lists

the real-time task sets used in our experiments for one core-group, which are com-

binations of the selected benchmarks. Regarding the non-critical task, we use the

same experiment settings in Ref. 31. The same program in Ref. 31 is used as non-

critical task and is executed in a loop manner.

Due to hardware resource limitation, we are only allowed to put one core-group

into FPGA platform. Therefore, the two-core system with one core-group is inves-

tigated in this experiment. Considering the hardware architecture presented in

Sec. 3.1, the cache is shared in one core-group which contains a critical core and a

non-critical core. Therefore, core-group can be considered as an independent research

unit for the evaluation. We think the investigation on one core-group is enough to

demonstrate the concept of applying dynamic partitioned cache into mixed-critical

multi-core systems.

5.2. Results

To evaluate the performance of dynamic partitioned cache memory in real-time

multi-core systems with mixed criticality, we compare our proposed cache design with

static cache partitioning scheme. Static cache partitioning scheme uses the similar

experiment settings as PRETI cache,13 where multiple real-time tasks mapped on the

same critical core have the same number of cache partitions. However, since cache

Table 1. Benchmark sets for critical

real-time tasks.

Set 1 LMS, Crc, ACC

Set 2 Sobel, ACC, Fdct
Set 3 Adpcm, Crc, N complex update

Set 4 Corner turn, Sha, Fdct, ACC

Set 5 FFT, N complex update, Crc

Dynamic Partitioned Cache Memory for Real-Time MPSoCs with Mixed Criticality
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lines in PRETI cache13 are distributed across all the sets, it is di±cult to release these

scattered cache lines in practice. In this experiment, we use this static cache parti-

tioning scheme to emulate PRETI cache.13 We use the similar approach in Ref. 13 to

determine the cache allocation for each core. To evaluate the performance of non-

critical tasks, we record both cache miss numbers and execution time for 300 task

invocations and report the average performance for both approaches. All benchmark

codes are executed on the constructed multi-core system which is implemented on

FPGA and the results are collected from this FPGA implementation.

Figure 5 shows average cache miss number and average execution time of non-

critical tasks for both approaches. From the result measured by real hardware, we

can see that dynamic partitioned cache memory can improve system performance of

non-critical tasks for all benchmark sets when compared to static cache partitioning

scheme. This is expected due to the following reasons: (i) Real-time tasks might have

di®erent requirements and sensitivities to the allocated cache ways. Dynamic par-

titioned cache memory can e±ciently assign the cache ways according to these dif-

ferent requirements of tasks, which could meet the features of the tasks better when

compared to static cache partitioning scheme. (ii) In dynamic partitioned cache

memory, cache ways occupied by critical tasks can be dynamically released when

critical tasks are terminated. The released ways can be reused by non-critical tasks to

further improve their performance. Comparing to static cache partitioning scheme,

dynamic partitioned cache can on average achieve 13.8% on cache miss reduction

and 7.62% on execution time reduction for non-critical tasks, respectively.

Next, we will show how the performance of non-critical tasks is dynamically

varied under two-cache architectures. Figure 6 shows measured execution time and

cache miss behavior for the non-critical task invocation under two-cache archi-

tectures while the critical core runs critical tasks in task set 4. From the results, we

can make the following observations: (i) Cache miss behavior of non-critical task on

static partitioned cache is steady. This is caused by the reason that the number

of cache ways allocated to the non-critical core remains constant during the run-

time due to static partition policy. (ii) As a comparison, cache miss behavior of

(a) Average cache miss number. (b) Average execution time.

Fig. 5. Performance improvement of non-critical tasks.

G. Chen et al.
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non-critical task on dynamic partitioned cache varies signi¯cantly. This is expected

due to the cache recon¯guration strategy we used. According to the cache recon-

¯guration strategy presented in Sec. 4.3, the critical core can dynamically occupy

the cache ways from the non-critical core according to real-time workload. The

remaining cache resources which are not used by the critical core are dynamically

used by the non-critical core. This dynamical usage of cache resources results in

this signi¯cant performance °uctutation on non-critical core. (iii) As shown in

Fig. 6, most of non-critical task invocations on dynamic partitioned cache can

bene¯t from the features of dynamic partition policy during the runtime. Most of

task invocations on dynamic partitioned cache can achieve less cache miss and

execution time when compared to static partition policy.

6. Conclusion

Nowadays, the integration of tasks with di®erent criticalities into a common com-

puting platform is becoming an important trend in the design of real-time embedded

systems. Cache management in multi-core systems executing tasks with di®erent

criticalities has become a challenging task due to inter-core cache interference. To

guarantee the timing predictability of safety-critical tasks, the cache management

policy should provide performance isolation for safety-critical tasks and prevent

cache interference from non-critical tasks with unpredictable workload. At the same

time, we should maximize the average cache utilization of non-critical tasks to ensure

high performance.

In this paper, we present a dynamic partitioned cache memory for mixed-critical

real-time multi-core systems. By using the proposed cache memory, the cache re-

source of critical tasks can be strictly isolated to prevent the cache interference from

non-critical tasks. Furthermore, compared to the existing cache architectures in

Ref. 24, 29 and 13, the proposed cache memory allows the critical task to dynamically

allocate and release the cache resources according to the real-time workload. The

remaining cache resources which are not used by critical tasks are dynamically used

(a) Cache miss number. (b) Execution time.

Fig. 6. Performance improvement of non-critical tasks.

Dynamic Partitioned Cache Memory for Real-Time MPSoCs with Mixed Criticality
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by non-critical tasks. Based on this cache design, we also present one cache man-

agement scheme to determine cache con¯gurations for critical tasks such that cache

usages of non-critical tasks can be maximized. Experimental results obtained from

the physical FPGA implementation demonstrate the e®ectiveness of the proposed

cache design.
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