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Towards Robotic-Assisted Subretinal Injection:
A Hybrid Parallel-Serial Robot System
Design and Preliminary Evaluation
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Abstraci—Subretinal injection is a delicate and complex
microsurgery. The main surgical difficulties come from the
surgeon’s hand tremor, dexterous motion, and insufficient
visual feedback. In order to begin addressing these chal-
lenges, this article presents a robot system for subretinal
insertion integrated with intraoperative optical coherence
tomography (OCT). The surgical workflow using this sys-
tem consists of two main parts. The first part is the manual
robot control, which aims the target before approaching the
retinal surface, while considering the remote center of mo-
tion (RCM) constraint. When the injection area has been
located precisely, needle is inserted into retina. To ensure
surgical safety, needle insertion depth is estimated using
OCT images on a continuous basis. A soft RCM control
method is designed and integrated for the controller of our
hybrid parallel-serial surgical robot. Safety and accuracy
performance evaluation with a 15-ms control loop shows
that the worst-case RCM deviation error is within 1 mm. Ex-
perimental results demonstrated that the proposed system
has the ability to improve surgical outcomes by surgeons
overcoming their physical limitations in order to enable a
better dexterous motion, and furthermore enhancing their
visual feedback for a better intraocular perception.

Index Terms—Biomedical optical imaging, medical

control systems, motion control, surgical robot.

[. INTRODUCTION

UBRETINAL injection has been successfully used in clin-
ical trials to deliver therapeutic cargos of proteins, viral
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Fig. 1. Conventional subretinal injection setup. The incision ports are
made by trocars at the sclera in a circle, which is 3.5 mm away from the
limbus, to provide an entrance for surgical tools: Light source, surgical
tool, and irrigation line [6]. The light source is used to illuminate the
intended area on the retina, allowing its planar view to be analyzed by
the surgeon through the ophthalmic microscope. The irrigation line is
used for liquid injection to maintain appropriate intraocular pressure.

agents, and cells to the interphotoreceptor or subretinal com-
partment that has direct exposure to photoreceptors and the reti-
nal pigment epithelium (RPE) [1], [2]. This intervention has the
potential to create effective outcomes for well-known retinal
diseases including age-related macular degeneration (AMD),
which is the leading cause of blindness in developed coun-
tries [3]. The predicted population with AMD in 2020 is 196
million and will increase to 288 million by 2040 according to [4],
due to demographic changes and aging. Subretinal injection is
a form of vitreoretinal surgery. In this operation, convention-
ally, the surgeon is required to inject a microcannula into a
specific area of the translucent retina to a certain depth. This
area is a target that is normally defined preoperatively by the
ophthalmologist (see Fig. 1).

Subretinal injection is known as a delicate and complex pro-
cedure for a surgeon to perform. The surgeon needs several years
of training on phantom and clinical trials in order to handle the
hand tremor and gain proper dexterous motion, e.g., precision
intraocular manipulation, while taking into account remote cen-
ter of motion (RCM) control to reduce the trauma on the sclera.
In addition, the surgeon has to control the depth of the needle
tip precisely. Because a shallow injection will not effectively
release drug to the subretinal area [5] and an overly deep injec-
tion may result in irreparable damage to the RPE and causing
vessel rupture. Due to the fact that the retina is a transparent
tissue with limited illumination from conventional intraocular
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light sources, it is difficult for the surgeon to judge the insertion
depth from the traditional microscopic view alone, when the
needle tip is under the retinal surface.

To overcome the surgeon’s hand tremor and to achieve dex-
terous motion and precise RCM control, in recent years many
researchers have introduced robotic setups with high precision in
different scales and design mechanisms [6]—[13]. These robots
can be classified into four main categories: 1) Hand-held surgi-
cal instruments, which have the benefits of tremor suppression
and intuitive operation [14], [15]. 2) Cooperatively controlled
systems [9], which focus on tremor filtering with a stable robotic
arm, normally equipped with force sensors. Cooperatively con-
trolled systems can be operated intuitively, due to the fact that
the surgical tool is held by the robot and the surgeon’s hand
simultaneously. The use of force sensors in the system allows
to have a motion “scaling” in the admittance control scheme.
However, they introduce inertial and frictional forces that may
limit their application in dynamic tasks. 3) Teleoperation sys-
tems, which are often embodied within a console-based setting
to provide tremor filtering and motion scaling. These systems
are known to be the most successful in the commercial prod-
ucts, e.g., the da Vinci surgical robot (Intuitive Surgical Inc.).
However, quite apart from their significant footprints, robots
designed for general surgery do not have sufficient precision
for retinal surgery [16]. 4) Magnetically controlled microrobots
could provide an alternative surgical approach, but their current
systems are in a very early stage and lack most of the benefits of
robot assistance [17], e.g., safety consideration and haptic feed-
back [18], [19]. In recent years, ophthalmic robots have matured
sufficiently to enter clinical trials. The robotic retinal dissection
device with teleoperation functionality performed the world’s
first robotic subretinal injection in 2016 [17] proving the fea-
sibility and safety concept of the robot-assisted eye surgery. It
is still difficult for surgeon to estimate the needle tip position
under retina, even though the robot is introduced. The reason
is that the system kinematics are not suitable for estimating the
needle-tip position accurately, due to a thin, long, and flexible
needle body [20] with heterogeneous deformations. Therefore,
additional imaging modality is necessary.

In order to tackle the aforementioned challenges, in this arti-
cle, we designed a hybrid parallel—serial robot integrated with
intraoperative optical coherence tomography (OCT) imaging to
assist ophthalmologists in performing the subretinal injection
with enhanced precision and proper visualization. The robot
proposed originally [21] has two parallel units and one pris-
matic joint. Unlike the mechanical hardware-based RCM mech-
anisms [22]-[25]; to realize precise and robust software-based
RCM control. The benefit of our proposed method is that this
kind of mechanism gives rise to a very compact robot (the
current functional prototype which weighs 315 grams and its
volume is equivalent to the size of an average human hand).
This would be easier to integrate in a conventional ophthalmic
operation room that is already occupied by several machines.
However, the main challenge from this configuration is that
the RCM control has to be designed in the “soft” way which
means that the robot controller should be able to synchronize
all the joint positions in a proper and timely manner with proper

constraints. Serious consideration must be given to a safe and
critical application scenario in which the RCM point should be
controlled within the clinical-grade tolerance so that the trauma
to the sclera is minimized. The main contributions of this article
are summarized as follows.

1) A light-weight and safety-concerned software RCM con-
trol method are designed and verified on the proposed
hybrid parallel-serial robot. The overall control loop of
the system is within 15 ms. Our results show a tradeoff be-
tween the robot moving speed and RCM control accuracy
by the proposed method. The worst case of RCM devia-
tion is limited to 1 mm, which is within clinical tolerance
referred to 3 mm free-hand error performance [26].

2) A commercial intraoperative OCT is integrated into the
robotic system and used to track the needle insertion
depth by unitizing the needle localization algorithm from
Zhou et al. [27]. Preliminary evaluation is performed
on the ex-vivo pig eye and phantom tissue to verify the
feasibility of the workflow.

The rest of this article is organized as follows. Section II
introduces the related work. Section III details the mechani-
cal design of the robot, control as well as OCT integration.
Section IV presents the verification of the overall system, in-
cluding the RCM performance and needle insertion tracking
with the robot. Section V concludes this article.

Il. RELATED WORK

We consider two respects of related work regarding the main
contributions of this article. One is the RCM control method
and the other is the OCT integration into the robotic system.

The RCM control concept has been investigated by many
researchers in multirobot-assisted surgical applications. In par-
ticular, the seminal work from Taylor et al. [22] proposed the
classical design of orthogonally decoupled mechanical struc-
ture and also the concept of software-based method to realize
the RCM control. The RCM control realization is depended on
the selection of the mechanical design. The hardware RCM is
ensured by the mechanical structure, while the software RCM
depends on the control system design. He et al. [28] measured
that the steady hand robot has a maximum error of 0.52 mm
hardware RCM control accuracy by introducing a specifically
designed mechanical roll-tilt mechanism. Kim et al. [23] pro-
posed a modified hardware RCM by setting the gear ratio in
the ball screw driving mechanism. Compared with the hard-
ware RCM, software RCM has the benefit of more freedom
in mechanical design, or even using the available platform.
Wei [24] proposed a software RCM control method based on
the Stewart—-Gough platform which has the benefit of rigid and
compact design. Nakano e al. [6] proposed a parallel robot
design on Stewart—Gough platform to enhance the workspace.
They applied the software RCM method to achieve a maximum
control error of 1.4 mm. However, these mentioned software
RCM can not be directly implemented on our proposed hybrid
parallel-serial robot, because of the different design structure.
Furthermore, the mentioned work does not consider the safety
consideration of the software RCM implantation, e.g., how to
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ensure the worst-case deviation of RCM control, which should
be serious, considering the medical application.

Three-dimensional ultrasound and MRI imaging, which
are typically used in nonmicrosurgical scenarios, are not
precise enough for subretinal interventions. These imaging
modalities normally offer a needle localization error of around
500 pm [29], while the retina, with an average thickness of
around 250 pm [30], requires operational accuracy with a
maximum error of 25 pm [31]. OCT was originally used
for ophthalmic diagnosis, and has since been modified for
intraoperative procedures by offering a suitable resolution with
noninvasive radiation entailing the minimum risk of toxication
for the ocular tissue. Currently, there are two methods to intra-
operatively deploy OCT data for intraocular needle localization.
The first method proposed by Cheon ef al. [32] is to detect
the distance of the target surface from the OCT probe using
A-scans. Afterwards, the insertion depth can be calculated con-
sidering the distance of the needle tip and OCT probe is known.
The limitation of this method is that the needle tip needs to be
perpendicular to the target surface. Furthermore, the integration
of OCT probe into the needle makes the instrument more
complicated in process and maintenance. Instead of integrating
OCT probe in surgical instrument, the microscope-integrated
intraoperative OCT, which share the same path with microscope
to capture volumetric images, is used to estimate the needle tip
position. The benefit of this method is to avoid using modified
needles but utilizing conventional subretinal cannulas. Based
on microscope-integrated intraoperative OCT, Zhou et al. [27]
proposed an algorithm to estimated the needle insertion depth
with an maximum error of 16.5 pm. In this article, we integrate
this method in our proposed robot system to preliminary verify
the overall operation workflow.

IIl. METHOD AND MATERIALS
A. Robot Design

In order to design a compact and lightweight robot for intu-
itive integration in the ophthalmic clinical routine, we propose
a platform based on the hybrid parallel-serial mechanism de-
signed by prismatic and rotation joints, and realized by using
linear stick—slip piezo actuators. The design is originally based
on the first prototype [21]. The driving force for choosing this
mechanism is the reduction in backdriving effect caused by the
gear or the tendon. This effect will be significantly reduced in
our mechanism while the joint is directly driven by the motor.
The detailed parallel mechanical unit is shown in Fig. 2. The
piezo motors M; and M, with the prismatic joints J; and Jo
are mounted in parallel back-to-back which is used to reduced
the friction from gravity compared to the previous design [21].
The rotation joints Js, J;, and prismatic joint J; are used to
close the kinematics loop of the unit. The synergetic control of
two prismatic joints can be transferred into a virtual prismatic
qo and rotation joint ¢, which can be calculated as

qo =Ly (D

q1 = atan <L2dLl> 2)

Fig. 2. Parallel mechanical unit. (a) Oblique view of the unit. (b) Struc-
ture diagram of the unit. (c) Rotation effect with the front view of the unit
with main dimensions.

Fig. 3.  (a) CAD model of the robot with two identical parallel mechanical
units A, B. C is the final prismatic joint, used for decoupled injection. Iy, lo,
I3, 1y, l5, and lg are the Denavit—Hartenberg parameters. (b) Simplified
kinematics structure of the robot. (¢) and (d) Real entity of designed
robot in different view.

where L; is the position of joint .J; from the initial position,
and Ly is the position of joint J, from the initial position. The
positive direction of rotation joint ¢; is clockwise.

The robot consists of two parallel mechanical units and a nee-
dle slider, comprising a five degree-of-freedom (DoF) manip-
ulator, shown in Fig. 3. Its Denavit-Hartenberg parameters are
obtained via the CAD model. A key feature is that its workspace
is free of singularities as the mapping between joint vectors and
needle poses is one-to-one. Due to this advantage and the plain
forward kinematics, spatial coordinates can be stored as joint
vectors q for the purpose of a virtual fixture constraint, where q
is presented as

qa=1[q,90,0,0,0) (3)

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on July 27,2022 at 10:44:10 UTC from IEEE Xplore. Restrictions apply.



6620

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 67, NO. 8, AUGUST 2020

B. Robot Control and RCM Constraint

The robot is designed to have three types of movement by a
master control device. (a) Unconstrained movement: The robot
is controlled by a master device without any motion constraint.
The movement type (a) is activated when the needle is placed
outside of the eye and the robot is controlled to align the nee-
dle with the trocar to be introduced inside the eye. (b) RCM
control when the needle is inside the eye: as soon as the needle
tip approaches the trocar entrance with the correct orientation,
normally perpendicular to the scleral surface, the needle-tip po-
sition is registered as the RCM point and movement type (b)
is activated. The RCM movement type is to reduce the incision
point trauma. (c) Insertion mode for needle injection: movement
type (c) is enabled when the needle approaches very close to the
retina typically around 0.5 mm from needle tip to retina distance.
During the injection, only the last degree of freedom, slider g5, is
enabled. The three type of movements can be switched manually
by the switch button on the control panel by the surgeon.

The robot movement types (a) and (c) can be directly executed
using the PID controller of the master interface. Here we mainly
introduce the RCM control algorithm design for our specifically
designed robot. To achieve RCM motion, the joint parameters
sent to the robot must be such that the end-effector (i.e., the
needle) moves through a point in space with minimum deviation.
If the operative part of the needle is represented by a unit vector
1 connecting the needle tip @, to a needle “base” Tpqge (a point
remaining outside the eye), the constraint is expressed as

Amtip n= Ambase n (€]
Axbase X (wrcm - a:lip) = A:L'tip X (ajrcm - wbase) (5)

where Ay and Az, are the movement for base and tip point
in a small time interval, Az, is obtained from master control
signal, = [ ' | is the current position of the base and needle
tip point, which can be calculated from the forward kinemat-
ics of the robot, x,.,, is the registered RCM point in space, as
shown in Fig. 4. The equations state that the tip and the base ve-
locity components along the needle must be equal (conservation
of needle length), whereas those perpendicular to the needle are
coplanar, in opposite directions, and with magnitudes propor-
tional to the distance from the RCM point to the base point, and
the RCM point to the tip point, respectively. These requirements
can be integrated when the inverse kinematics are solved in or-
der to control the robot with a two-point kinematic scheme. The
needle state is taken as a vector comprising the tip and the base
positions, and the translational part of the respective Jacobians
is used to iteratively solve

Am[ip

:| — wtarg —x (6)

to update the joints difference Aq, where J = [jb“"(&)) |, Jip(q)

and Jyase(q) are the Jacobians for Tip and Ty, TESpeECtively.
Tpase can be calculated based on x, and @,., with the
assumption of a straight needle, as follows:

)‘(wbase - xtip) = Tbase — Lrem @)

-

_-~“surface™™~._

target

mmm———
- -

pose

_____

Fig. 4. Schematic showing the change in a straight needle pose as a
result of the tip displacement in RCM mode.

Fig. 5. Forward kinematics and needle detection are used to obtain an
estimation for the RCM control error (exaggerated for visual purposes
here), proportional to the ratio between the highlighted area and the
length of the needle’s operative segment.

where A is the ratio factor that starts from one when the needle
tip enters into the trocar. Afterwards, A will change based on the
movement of the needle tip and will be updated with a difference
Al

A)\. = Amtip N ?L (8)

A target state based on desired tip displacement can be
constructed

Tiip + Ay
wtarg — P P (9)
M(wtip + Awlipa Lrem )‘)

where M (mtip, Tyem, ) is a function refining from (6) for cal-
culating @pase. An RCM deviation error, shown in Fig. 5, can
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Algorithm 1: RCM Control Algorithm.

INPUT1: Az, - Displacement of needle tip
INPUT2: z,.,, - Fixed position of RCM point
OUTPUT: Aq - Movement for each joint
getJoints() < Get all the joints’ positions
fwdKinematics() < Update x using forward kinematics
calcTarget() < Update **"9 using (9)
caleJacobian() <« Update Jacobian for (6)
errorRCM () < Update RCM deviation error with (10)
1: function rcmstep(Axip, Trem )
2: q — getJoints(), Aq — 0

3: x — fwdKinematics(q)

4: x99 — calcTarget(x, Ay, Trem )

5: while true do

6: J — calcJacobian(q)

7: Aq «— Ag+ J'- (2% — x)

8: x — fwdKinematics(q + Aq)

9: €rem < €rrorRCM (Zyem, Tiips Thase)
10: if || — || <= £;then
11: if €., > €2 then
12: Aq «—RCMSTEP(Axip/2, Ty e )
13: else
14: break
15: end if
16: else
17: Aq < 0, break
18: end if

19: end while
20: return Aq
21: end function

also be derived using the cross-product-area identity as

1

€rem = 77
| mtip — Tpase ‘

‘ (wrcm - wtip) X (wtip - wbase) |

(10)
which is to be used for step-size control.

Forward kinematics are employed to evaluate (13) between
steps to ensure that the RCM control error is within an al-
gorithm control tolerance €; and €y for needle tip and RCM
point positions. Combining the aforementioned equations, Al-
gorithm 1, shown below recursively updates joint target posi-
tions with given tip displacements. The tolerance ; and &,
are dependent on actuator precision and are a tradeoff between
the displacement of the needle tip in small time intervals, and
the quality of virtual-fixture adherence. The algorithm will first
check whether the target position can be reached by the move-
ment of joints. Then, a check is performed on the mid-step
RCM deviation, resulting in a recursive decrease in step size or
execution of the update if e, ., is within tolerance.

C. Master and Slave Control Design

The control signal from the master controller can be treated
as m = [my, my, m3, my, ms), where my, my, and mg are the
translation speed input, and my and ms are the rotation speed
input. We use the joystick as the master controller. Due to the fact

that some random unintentional movements are made in other
directions while motion is controlled by the joystick, the input
signal is taken from the maximum value in m. The speed and
acceleration for the translation and rotation of the needle need
to be constrained within the range of motor dynamic character,
shown as follows:

max(m),if max(m) < Vi

s = (1)
Vinax, if max(m) > Vg
s,if s — 8" < At Anax

s= (12)
s+ AtApax, if s — 8 > At A

where s is the input for slave robot, s’ is the input for slave
robot in the previous step, V. and A, are the maximum
translation and rotation speed and acceleration constraints for
the needle mounted on the robot when the RCM is set on the
needle tip, and At is the overhead for one control loop.

The intended difference in needle pose can be calculated
as Atm. It should be taken into account that different instru-
ments with different loads influence the motor dynamic charac-
ter. Moreover, the different RCM point location on the needle
with the same rotational speed will lead to different speeds for
the piezo motor. In order to ensure that each of the motor joints
are running on the safety critical mode within the fault tolerance,
the position of joints obtained from the optical encoder sensors
are used to check the deviation of the RCM. This deviation is
calculated as

13)

d7’cm = |wrcm - prcml

where p,..,, is the RCM position calculated from the joint posi-
tion with forward kinematics. The V ,,x will be reset online if
the deviation exceeds the potential tolerance

V max, if dren < ke
Vmax =

max(m),if d,cp, > ke

(14)

where x € [0,1] is the security coefficient, and ¢ is the tolerance
defined by clinic requirements.

D. Needle Insertion Depth Prediction

With the RCM control constraint, the needle will be relo-
cated and will approach the subretinal target area. After the
needle tip has approached the retinal surface, the control mode
will be switched manually to needle insertion mode when only
one DoF is moving. The needle insertion depth prediction is
triggered when the injection movement starts. The OCT helps
to capture a volume to track the needle insertion depth. The
algorithm from Zhou et al. [27] is used to predict the needle
tip depth under the retina with an accuracy of 16.5 pym. As
shown in Fig. 6(a), the needle for subretinal injection has multi-
ple segments with various geometrical features. While the OCT
scanner is set to obtain the volumetric images (including the
target area and the needle), the needle (32 G x 3 mm subretinal
cannula from Eagle Labs Inc.) is segmented and reconstructed
to eliminate the errors arising from the manufacture and trans-
portation [27]. In order to archive robust calibration results,
several OCT volumes are captured and averaged with estimated
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Tip part Joint Main body

Fig. 6.  OCT scan setup during needle insertion. (a) Needle is recon-
structed when the needle is above the retina. (b) Needle tip is predicted
during the insertion. The needle used has four main parts: tip part, thin
part, joint, and main body.

confidence interval evaluation with reference to the dimension
of the needle. During the insertion, as shown in Fig. 6(b), the
needle-tip position will be predicted based on the needle seg-
ment information above the retina. The distance between the
retinal surface and the needle tip will also be calculated.

IV. EXPERIMENTS AND RESULTS

We performed two sets of experiments with the proposed
system. The first experiment is designed to verify the accuracy
and safety performance of RCM, which is critical for any min-
imally invasive teleoperation system. The second experiment
is the needle tracking during insertion when the needle is re-
constructed and the needle tip is predicted under the retina to
give the reference of the needle depth during the insertion. The
ex-vivo pig eyes are obtained from the slaughter house directly
before around three hours of experiments starting. All the eyes
are preserved in the fresh water at the indoor temperature.

A. RCM Control Performance Evaluation

The performance of the RCM control is one of the most crit-
ical features to be evaluated for the system. The accuracy of the
RCM control is directly related to the movement of each control
loop. The control loop is decided by two factors, one is the con-
trol loop time and the other is the motor speed. The control loop
time is critical since it influences the position accuracy of the
robot and also adds the extra delay of human hand-eye reaction
loop. The low interface of PID speed and position servo control
runs on the firmware of the FPGA board with 10 KHz frequency.
The joystick is connected to a host computer with a 2.8 GHz
17-7700HQ processor and 16 GB memory. To ensure the pro-
posed system’s real-time property, we implemented the control
framework in C++ in Ubuntu 16.04 with real-time patches. The
host computer communicates with FPGA low control board via
an Ethernet connection to update the joint position and send the
speed and position command. In order to test the control loop
time of the designed system, we performed the experiments in a
time period of 750 s with 50 000 control loops under two condi-
tions: 1) idle mode, for which there is no input signal from the
joystick; and 2) busy mode with continuous input signal from
the joystick. The busy mode simulates the subretinal injection
on the ex-vivo pig eye shown in Fig. 7. Fig. 8 shows that the idle

iIRAMIS.

Fig. 7. Subretinal injection trail on the ex-vivo pig eye for busy mode
control loop test. (a) Overall setup. The RCM control point will be regis-
tered with a button triggered on the joystick when the needle is inserted
into the trocar. The trocar is placed on the sclera on the ex-vivo pig
eye. (b) Needle is inserted into the ex-vivo eye. (c) Needle is pivoted
around the insertion point to relocate the target area. (d) Final joint is
only activated for high accuracy injection.

busy mode
- idle mode

Acutal loop time/ ms

Running time/ s

Fig. 8. Actual loop time with two modes test under 750 s.

mode control loop time is less than busy loop time because, in
idle mode, no signal is updated and the motor control function
is not called upon. The time for both of the two control loop
modes is less than 14 ms which means we can fix the control
loop time as 15 ms. This is significantly less than the surgeon’s
hand-eye reaction time which is around 200 ms [33].

Since each part of the robot is manufactured by a precision
computer numerical control machine, the manufacturing accu-
racy of the parts can be considered to be within 5 pm. Therefore,
we could infer the accuracy of RCM by calculating the forward
kinematics with the joint positions of the robot. The optical
encoder integrated into our piezo motors has a resolution of
0.05 pm. The algorithm control tolerance ; and e, are set to
1 pm to ensure accuracy from an algorithm calculation perspec-
tive. We tested various RCM positions along the needle with
different 1 to see the correlation of the motor speed and the
RCM control deviation. The maximum rotation speed for the
needle in RCM control is set to 12° per second. The RCM con-
trol error was 3 mm (maximum) with the suggestion from the
medical doctor in the previous reference [6], [26]. However, due
to the fact that the needle and trocar diameter are continuously
decreasing for minimally invasive surgery, we set the error toler-
ance € in (14) to 1 mm and the safety coefficient « to 0.8. In order
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to show the effectiveness of the proposed method, two groups
of experiment are preformed. One is the proposed method and
the other one is the reference method without step size decrease
and max speed update. The needle is pivoted around the RCM

by 30°.
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The time-lapse photography with different A and whisker
plots for RCM deviation using two different methods are shown
in Figs. 9 and 10, respectively. As shown in the figures, A
higher rotation speed under the same A will lead to a greater

RCM deviation, since we fixed the control loop time to a
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Fig. 11.  RCM control performance of Human vs Robot. Time-lapse

photography of the human (a) and robot (b) operation. (c) and (e) are
the RCM points in two orthogonal camera in 90 s. (d) and (f) are the
movement of RCM point with the interval of 1 sin 90 s.

certain value. Even though the pivoted speed is the same,
the variance of A will contribute to the different speed on the
prismatic joint. This shows that with the same rotational speed,
with a larger A we observe larger deviation in average. Fig. 9
shows that the maximum RCM deviation can reach 5.5 mm for
the reference method. However, Fig. 9 shows that the worst case
of RCM deviation for the proposed method is restricted within
1.0 mm to ensure the safety and accuracy of RCM control. We
can also observe tradeoff between the robot moving speed and
RCM control accuracy, which the less RCM control could be
also achieved with a slower moving speed of robot.

In order to verify the RCM performance further, we perform
the test on the ex-vivo pig eye with the orthogonal camera setup.
Two microscope cameras are placed in the orthogonal position
related to the trocar. The RCM point is defined as the entry point
of the trocar. To demonstrate the superiority of the robot RCM
control, an experienced surgeon was asked to perform the same
motion manually which tracks a vessel on the retinal. Fig. 11
demonstrates the RCM point tracking results of the human ver-
sus robot. The time-lapse photography for the human is more
blur than the robot due to inaccuracy RCM control and tremor
from surgeon’s hand. The largest RCM control deviation is 2.11
and 0.39 mm for the human and robot operation, respectively.
During the test, the robot has the rotation speed lower than 6°
per second which means that the RCM deviation in theoretical
is less than 0.1 mm as shown in Fig. 10. This contradiction
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Fig. 13. Needle insertion tracking using the robot on the tissue

phantom three times.

0 3
- —6— 1stinsertion
§ —+— 2nd insertion
200 - o ard insertion | 1
~ rd insertion
=
o
o
< -400
2
g}
o
£ 600 -
-800 , , , , ,
0 200 400 600 800 1000
Piezo motor movement,/ pm
Fig. 14. Needle insertion tracking using the robot on the ex-vivo pig

eye three times.

could mainly come from the interaction of trocar and needle
during the movement. Due to the fact that the trocar is a cylin-
der, the contact of needle and trocar is not a single point which
will cause drag force and distortion of tissue and needle during
needle pivoting around RCM point.

B. Experiment of Injection Depth Tracking

After verifying the accuracy and safety performance of RCM
control, we performed experiments for needle insertion depth
tracking with OCT volumetric images. The experimental setup
is shown in Fig. 12. The robot is mounted on an adjustment
bracket and the motion of the robot is controlled by a robot
controller with input from the joystick. The OPMI LUMERA
700 with integrated RESCAN 700 intraoperative OCT engine is
fixed on the optical table to reduce the influence of the ambient
vibration. The adjustment bracket is also rigidly connected to
the optical table to minimize the relative movement of the robot
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Needle insertion using the robot on the tissue phantom: (a) motor advances 60 um; (b) motor advances 380 um. (1) is the microscope

view. (2) is the original OCT cube with rendering the surface point cloud. (3) is the predicted needle pose and position by using method from [27].
The needle CAD model is fitted to the needle point cloud in blue color. The phantom tissue surface is segmented as red color. The needle tip point
is marked as the purple point. @) is the needle insertion depth tracking between the motor movements and needle tip insertion prediction.
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Needle insertion using the robot on the ex-vivo pig eye: (a) motor advances 20 pm; (b) motor advances 360 pm. (1) is the microscope

view. (2) is the original OCT cube with rendering the surface point cloud of retina on the ex-vivo pig eye. (3) is the predicted needle pose and position
by using method from [27]. The needle CAD model is fitted to the needle point cloud in blue color. The retina surface is segmented as red color.
The needle tip point is marked as the purple point. (4) is the needle insertion depth tracking between the motor movements and needle tip insertion

prediction.

base and the OCT engine. A foot panel is used to relocate the
OCT scan area. The OCT is set to operate with the maximum
available scanning speed (27 000 A-scans per second), in a cube
resolution of 128 x 512 x 1024 pixels. The implementation of
our approach is executed on the CALLISTO eye assistance
computer system with an Intel Core i7 CPU and an NVIDIA
GeForce GTX 9801 GPU with an average speed of 0.4 s for each
cube with parallel programming.

In the first phase of the experiments, the robot is adjusted
manually by the adjustment bracket and is then controlled by
the joystick for approaching the needle tip to the retina. During
the injection, only the motor that is holding the syringe is enabled
for needle positioning. In the beginning, we captured five OCT
cubes for needle reconstruction and calibration [27]. Each scan
takes 1.5 and 0.3 s for processing a single cube. Thereafter,
the motor is programmed to move exactly 20 ym in each step
and the OCT cube is captured after each movement. Each step
takes 2.5 s including motor movement, cube scan, and process.
When the predicted needle tip distance to the surface is less than
20 pum we assume that the needle starts puncturing the tissue,
then the motor advances an additional 50 steps. Each step takes

3.0 s including motor movement, cube scan, and process. The
whole insertion process will cost around 5 minutes. We repeated
the same workflow for the tissue phantom (40% fat cheese) and
ex-vivo pig eyes three times each. Figs. 13 and 14 show the
tracking for the needle tip to the retinal surface distance on
phantom tissue and ex-vivo pig eye three times, respectively.
Both images show that there is an approximately linear increase
between motor movement and insertion depth. However, the
tissue phantom has a better linear performance than the pig eyes.
During the needle insertion, the interaction between the needle
and tissue is very complicated, causing stochastic deformation
of the tissue. This deformation has a larger impact on the retina
in the pig eye, since retina tissue (with an elastic constant around
2.0 mm/N [34]) is greater elastic than the phantom tissue (with
an elastic constant around 0.67 mm/N [35]) which is made of soft
cheese. Therefore, the fluctuation of the insertion depth during
tracking is more on the biotissue, in addition to the influence of
the result of distance measurement errors.

Figs. 15 and 16 show sequences of the insertion progress.
The reconstruction results appropriately match with the
needle tip status in the en-face image from the microscope.
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In the microscopic image, it is almost impossible to estimate
the needle tip position. However, with the proposed system, we
show that using the robot as the assistant as well as with the
OCT volumetric imaging, the needle tip can be visualized and
injection depth calculated precisely. The degree of deformation
can also be visualized. Since the robot is holding the needle
with RCM control, the surgeon is free from the dexterous mo-
tion and hand tremor. The precision of the robot can also help
surgeons break through their physical limitations for performing
impossible tasks, and open up new interventional possibilities.
The visualization has the potential to assist surgeons in mak-
ing more efficient decisions during the subretinal injection, and
may also make it possible to investigate how much insertion is
appropriate for the best outcome.

V. CONCLUSION

This article presented our novel system for assisting ophthal-
mologists in performing the difficult task of subretinal injection
using soft RCM with 5 DoF robot with the hybrid parallel—serial
mechanism. In this article, intraoperative OCT volumetric
imaging was used to enhance the visual feedback. The safety
and accuracy of RCM was evaluated on the robot with tissue
phantom and ex-vivo pig trials. The evaluation results showed
that the single control loop of the system is executed in
15 ms and the RCM control accuracy could be ensured within
1 mm, both of which were within the clinical range. Finally,
we tested the robotic subretinal insertion on the ex-vivo pig eye
and phantom tissue to verify the visualization benefits for the
surgeon. With the help of the robot, surgeons could put more
effort to be the decision makers during the operation rather
than spending too much time on improving their surgical skills
to cope with hand tremors and dexterous motion. Our future
work will focus on an injection path planning and trajectory
design in a way that allows the drug to be delivered directly
and precisely to subretinal target areas defined preoperatively,
avoiding critical obstacles like retinal vessels and the RPE layer.
Further work will also consider the challenges from the in-vivo
retinal surgery.
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