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Abstract

�is thesis explores the reconstruction of high-quality 3D models of real-world scenes
from low-cost commodity RGB-D sensors such as the Microso� Kinect. State-of-the-
art methods accurately estimate the camera motion and subsequently fuse the obtained
depth maps in real-time into volumetric Signed Distance Fields (SDF) in order to handle
the strong noise characteristics of the depth measurements.

While the generated dense 3D models are geometrically accurate, the `2-regulariza-
tion property involved in the depth and color fusion results in oversmooth 3D surface
geometry and blurry per-voxel surface colors. Firstly, we introduce an e�ective practical
method for reconstructing sharp model textures by deblurring and fusing low-resolution
RGB-D input frames in super-resolution keyframes and subsequently texture mapping
them onto the reconstructed 3D meshes. Secondly, we propose a surface reconstruction
approach that jointly optimizes for surface geometry encoded in a SDF, surface material
properties and textures from keyframes along with their camera poses. �e employed
Shape-from-Shading technique utilizes spatially-varying lighting estimation to recover
�ne-scale geometric details; joint optimization of both geometry and image formation
model leads to sharp and consistent surface textures as a by-product.

State-of-the-art 3D reconstruction frameworks estimate globally consistent camera
motion in real-time even for larger scenes by detecting loop closures and continuously
performing a global pose graph optimization. However, dense 3D model fusion is mostly
designed as a post-process since it is computationally demanding and the �nal camera
poses are required in advance. We present an e�cient surface correction method for up-
dating 3D reconstructions of large-scale scenes on-the-�y on pose graph updates to en-
able up-to-date model previews during the reconstruction process. Consecutive RGB-D
frames are fused locally into keyframes, which are incorporated directly into a sparse
SDF volume on the GPU. As the RGB-D SLAM system detects loop closures and glob-
ally optimizes the camera poses, the SDF volume is corrected online using an intelligent
keyframe re-integration strategy with reduced GPU-host streaming.

Extensive quantitative and qualitative evaluations show the e�ectiveness and practi-
cality of the proposed methods for high-quality geometry and appearance reconstruction
and e�cient on-the-�y surface correction.





Zusammenfassung

Diese Arbeit befasst sich mit der Rekonstruktion hochau�ösender 3D-Modelle realer
Szenen mit kostengünstigen RGB-D Sensoren wie der Microso� Kinect. Moderne Ver-
fahren schätzen die Kamerabewegung und fusionieren die ausgelesenen Tiefenkarten in
Echtzeit in volumetrische vorzeichenbeha�ete Distanzfunkionen (SDF) zum Reduzieren
des charakteristischen Rauschens der Tiefenmessungen.

Während die generierten 3D-Modelle geometrisch genau sind, führt die `2-Regula-
risierung der Tiefen- und Farbfusion zu überglä�eter Ober�ächengeometrie und ver-
schwommenen Voxel-Farben. Zuerst führen wir eine praktische Methode zur Rekon-
struktion scharfer Modelltexturen ein. Hierbei werden RGB-D Eingabe-Frames niedriger
Au�ösung geschär� und in hochau�ösende Keyframes fusioniert, die anschließend mit
Texture Mapping auf die rekonstruierten Dreiecksnetze abgebildet werden. Des Weite-
ren stellen wir einen neuen Ansatz zur Ober�ächenrekonstruktion vor, der gleichzei-
tig die in einer SDF gespeicherte Ober�ächengeometrie, Materialeigenscha�en sowie
Texturen von Keyframes und deren Kameraposen optimiert. Die verwendeten Shape-
from-Shading-Techniken verwenden eine räumlich variierende Beleuchtungsschätzung
zum Wiedergewinnen feiner geometrischer Details; die gemeinsame Optimierung von
Geometrie und Abbildungsmodell führt zu scharfen und konsistenten Texturen als Bei-
produkt.

Moderne 3D-Rekonstruktionsverfahren sind in der Lage, global konsistente Kame-
rabewegungen sogar für groß�ächige Szenen in Echtzeit zu schätzen, indem sie Schlei-
fenschlüsse erkennen und eine kontinuierliche globale Optimierung des Posengraphes
durchführen. Da die Fusion eines dichten 3D-Modells jedoch mit einem hohen Berech-
nungsaufwand einhergeht und die �nalen Kameraposen im Vorhinein bekannt sein
müssen, ist diese hauptsächlich als Post-Prozess konzipiert. Zum Bereitstellen einer ak-
tuellen Voransicht des Modells während des Rekonstruktionsvorgangs präsentieren wir
eine e�ziente Ober�ächenkorrektur, mit der 3D-Rekonstruktionen von großen Szenen
bei Änderungen des Posengraphs zur Laufzeit aktualisiert werden. Hierbei werden auf-
einanderfolgende RGB-D Frames lokal in Keyframes fusioniert und anschließend direkt
in ein speichere�zientes SDF-Volumen auf der GPU integriert. Nach dem Erkennen
von Schleifenschlüssen und der globalen Optimierung der Kameraposen wird das SDF-
Volumen zur Laufzeit korrigiert unter Verwendung einer intelligenten Strategie zum Re-
Integrieren von Keyframes durch reduzierte Kommunikation zwischen GPU und Host.

Umfassende Experimente demonstrieren die E�ektivität der vorgestellten Methoden
für hochau�ösende 3D-Rekonstruktion und e�ziente Ober�ächenkorrektur.
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Vladimir Golkov, Björn Häfner, Philip Häusser, Caner Hazirbas, Mariano Jaimez Tar-
ifa, Christian Kerl∗, Maria Klodt, Georg Kuschk∗, Zorah Lähner, Emanuel Laude, Laura
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Chapter 1

Introduction

Recent advances in Augmented Reality (AR) and Virtual Reality (VR) hardware have led
from originally futuristic and bulky prototypes to portable and practical head-mounted
displays (HMDs). �is development has recently manifested itself in commercially avail-
able devices such as the Microso� Hololens 21 or the Oculus �est2, which also contain
advanced resource-e�cient multi-camera setups. Herein, 3D reconstruction methods,
along with other Computer Vision algorithms, play an essential role and drive key in-
novations in this �eld. In AR on the one hand, it is crucial to coarsely reconstruct the
observed surface geometry using the cameras integrated in the device. �is allows to
augment the scene by overlaying additional information in a physically correct manner
in order to facilitate a smooth interaction of users with the scene, and to potentially en-
able super-human capabilities. On the other hand, VR applications require substantially
more photo-realistic 3D models of real-world objects to facilitate a realistic perception
of virtual environments. �e generated 3D reconstructions need to exhibit a high level
of photo-realism for faithful rendering into an opaque high-resolution display, which
serves as the main source of visual input to the person.

While humans can e�ortlessly perceive the three-dimensional environment around
them, it is highly challenging for machines such as AR/VR devices to obtain a dense
3D representation of the world from captured 2D images. �is sophisticated inverse
problem of reconstructing 3D scene geometry from visual data has been investigated by
researchers for decades and is considered as one of the classical problems in Computer
Vision. While this research has resulted in the discovery of many underlying fundamen-
tal principles, there are still many open problems to be solved.

As an alternative to classical o�ine Structure-from-Motion (SfM) methods [9, 34,
93, 99], modern real-time 3D reconstruction algorithms are o�en based on Simultane-
ous Localization and Mapping (SLAM) approaches. Visual SLAM tackles the ill-posed

1https://www.microsoft.com/en-us/hololens/
2https://www.oculus.com/quest/

https://www.microsoft.com/en-us/hololens/
https://www.oculus.com/quest/
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(a) Input depth (normals rendering) (b) Input color

Figure 1.1: Input frame acquired from a low-cost RGB-D sensor. �e depth map (a) exhibits
strong noise without �ne details, the associated low-quality color image (b) o�en shows motion
blur. �is dissertation contributes methods for obtaining high-�delity 3D reconstructions from
such de�cient input data.

problem of simultaneously building a map of an unknown environment and localization
relative to this map from a 2D image stream, usually in a real-time se�ing. Low-cost
commodity RGB-D cameras such as the Microso� Kinect have proven to be especially
useful in SLAM and 3D reconstruction and have led to a signi�cant boost of research
in recent years. �is resulted in a large number of impactful scienti�c publications that
revisited and adopted classical 3D reconstruction methods. Such active depth sensors
capture color images along with metric per-pixel depth at real-time frame rates, which
simpli�es various challenging Computer Vision tasks. Compared to Visual SLAM from
2D images, the available depth information removes the scale ambiguity and allows to
estimate the relative camera motion in absolute metric world coordinates. By fusing
incoming frames in a common dense volumetric surface representation, it has become
possible to automatically reconstruct dense 3D models of large-scale scenes of unprece-
dented quality in real-time. In addition to AR/VR applications, these generated 3D scans
have also shown great potential in robotics, e.g. for autonomous navigation of �ying
drones, as well as in industrial inspection scenarios.

1.1 Motivation

State-of-the-art RGB-D based 3D reconstruction methods [28, 53, 84, 86, 120] accurately
track the camera motion in real-time. �e frames captured by the RGB-D sensor are fused
in a volumetric Signed Distance Function (SDF) using their estimated camera poses to
generate a full 3D model from multiple views and to cope with the noise in the depth
measurements. For illustration, Figure 1.1 visualizes the strong noise characteristics of
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(a) Oversmooth 3D surface geometry (b) Blurry surface colors

Figure 1.2: Example 3D reconstruction generated by fusing RGB-D frames in a volumetric Signed
Distance Function using Voxel Hashing [86]. Despite its metric accuracy, the fused 3D surface
geometry (a) is oversmooth without �ne details. Furthermore, volumetric averaging leads to
blurry per-voxel surface colors (b) that impair the overall visual 3D model appearance.

input depth maps and the low quality of color images that additionally o�en su�er from
motion blur.

�e 3D reconstructions produced from such input data are geometrically accurate,
but the `2-regularization property in the depth and color fusion inherently leads to over-
smooth surface geometry and blurry surface colors (Figure 1.2). �e blurry per-voxel
colors are a consequence of averaging inconsistent color samples from the input images
due to slightly erroneous surface geometry and marginally inaccurate camera poses, sub-
stantially impairing the visual appearance of the 3D model. We approach this research
gap in Chapters 4 and 5 and present methods for reconstructing both sharp model tex-
tures and high-quality surface geometry from low-quality RGB-D input data.

Since pure camera tracking methods inevitably accumulate dri� over time, e�cient
global optimization methods have been developed to reduce dri� whenever loop clo-
sures are detected, resulting in globally consistent camera poses even for large-scale
scenes. However, as incoming RGB-D frames are integrated immediately into the SDF
volume using their estimated poses, the fused model becomes outdated when camera
poses are updated by the global camera pose optimization. Because the integration of
RGB-D frames is computationally demanding, it is not possible to entirely re-fuse the
SDF volume with the new poses during the scanning process. As a consequence, glob-
ally consistent dense 3D reconstructions are usually generated in an o�ine model fu-
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(a) Without surface correction (b) With on-the-�y surface correction

Figure 1.3: In dense real-time 3D reconstruction, RGB-D frames are immediately integrated into
an SDF volume. However, the fused 3D model becomes outdated whenever camera poses are
optimized for global consistency on loop closures. Without 3D surface correction, the 3D re-
construction becomes increasingly inconsistent during scanning (a). Computationally e�cient
methods for correcting the surface of large-scale scenes on-the-�y (e.g. Chapter 6) enable up-to-
date 3D model previews in real-time (b).

sion once the �nal camera poses are determined. Chapter 6 e�ectively addresses the
research gap of enabling consistent previews of dense SDF volumes on updated cam-
era poses. Figure 1.3 compares real-time visualizations of a 3D reconstruction during
scanning without and with the proposed on-the-�y surface correction.

1.2 Literature Overview

In the following, we provide a literature overview of the state-of-the-art in high-quality
3D reconstruction from commodity RGB-D cameras, with a particular focus on the re-
search gaps identi�ed above. We �rst present related works on dense RGB-D based
3D surface reconstruction and relevant fundamentals. A�erwards, we detail modern
approaches for obtaining high-quality model textures, as well as Shape-from-Shading
techniques for recovering �ne-scale geometry. Finally, we reference related work for
on-the-�y surface correction of large environments during scanning.
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1.2.1 Dense RGB-D based 3D Reconstruction

In recent years, many impressive dense 3D reconstruction frameworks have been devel-
oped that are usually composed of an RGB-D SLAM system for estimating camera poses
and a common 3D model for fusing the input data. For a detailed literature overview on
this topic, we refer the interested reader to the survey presented in [136].

1.2.1.1 RGB-D SLAM

By de�nition, a SLAM system incrementally builds and maintains a map of the environ-
ment, which it simultaneously uses for localizing itself. With RGB-D data, the 3D map
can be determined in metric coordinates and the problem of scale dri� in the monoc-
ular case vanishes. Modern RGB-D SLAM methods accurately estimate the absolute
motion of the sensor from a continuous stream of input frames. �ese approaches usu-
ally combine incremental frame-to-frame tracking (odometry) with a continuous global
camera pose optimization in the background. Speci�cally, e�cient Pose Graph Opti-
mization (PGO) or Bundle Adjustment (BA) techniques are used to reduce accumulated
dri� and to establish global consistency on loop closures, i.e. when places are re-visited.

Dense RGB-D SLAM methods use dense direct odometry for aligning two frames.
Herein, all image pixels are leveraged to minimize a photometric [58, 104, 105] or com-
bined photometric and geometric objective [57, 79] using projective data association.
Robust norms (e.g. Huber norm) and Iteratively Reweighted Least-Squares (IRLS) e�ec-
tively suppress the in�uence of outliers [58]. Various state-of-the-art frameworks such
as RGBD-SLAM [32] or DVO-SLAM [57] use the computed relative poses as constraints
in an e�cient continuous PGO, which is feasible in real-time for even large-scale scenes.

Sparse SLAM systems [28, 32, 82] extract and match color image features, e.g.
SIFT [76] or ORB [89], and integrate them in global BA schemes. O�ine BA meth-
ods are able to achieve high accuracy, but o�en also exhibit unpractical runtimes [23,
7]. Advanced schemes and trade-o�s (e.g. sparse keyframes only, �xed intervals, lo-
cal optimization) have been developed in order to approach real-time performance with
comparable accuracy [22, 45, 82]. �e well-engineered GPU-based framework Bundle-
Fusion [28] achieves state-of-the-art pose estimation accuracy; its combined local and
hierarchical global BA scheme allows to cope even with large-scale scenes in real-time.
�e dense direct BA proposed in BAD-SLAM [94] has photometric and geometric con-
straints and runs for smaller environments in real-time on a CPU.

Instead of optimizing camera poses using PGO or BA, it is also possible to establish
global model consistency through map deformation of the underlying surface [120, 123].
Herein, the 3D reconstruction implicitly moves with its a�ached deformation pose graph
that can be e�ciently optimized on loop closures.
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1.2.1.2 3D Surface Representations

In order to reconstruct a complete model of a real-world scene, it is necessary to fuse
the noisy input RGB-D frames from multiple views in a common surface representation
using the camera poses estimated by the SLAM system. �is 3D data structure should
e�ectively regularize out the depth noise and simultaneously enable real-time perfor-
mance for practical applicability.

RGB-D Keyframes �e depth maps of keyframes are memory e�cient 2.5D repre-
sentations of three-dimensional surfaces. While this limits their ability to represent oc-
cluded surfaces, keyframes are highly suitable for fusing multiple consecutive RGB-D
frames locally and reducing depth noise. Keyframe Fusion (KF) has consequently shown
its potential for reducing camera tracking dri�, e.g. in [57, 78, 79].

Signed Distance Functions Volumetric SDFs [26, 84] are the most popular represen-
tation for fusing dense 3D models from RGB-D data and for compensating depth noise.
�ese volumetric grids partition space into small voxels that store the surface implicitly
using the signed distance to the closest surface. While real-time performance is achieved
using General Purpose GPU (GPGPU) programming, scarce GPU memory limits the size
and resolution of regular dense volumetric grids. Voxel Hashing [86] enables large-scale
3D reconstruction with improved memory e�ciency by only allocating smaller �xed-
size voxel blocks close to the surface. Sparse hierarchical SDF representations based on
octrees [104, 106, 129] provide a memory e�cient alternative for large-scale environ-
ments. For SDF-based models, the Marching Cubes algorithm [75] extracts a triangle
mesh at the zero-crossing of the SDF.

Other 3D Representations In point-based [22, 56] and surfel-based [87, 109, 123]
3D models, memory is only allocated at the surface in the form of points with varying
radius, or oriented disks respectively. OctoMap [47] uses an octree to map occupied and
unoccupied space and is focused on robotic applications.

1.2.1.3 3D Reconstruction using Signed Distance Functions

Since the KinectFusion approach [84], researchers have demonstrated that dense uni-
form SDF voxel grids are highly suitable for reconstruction of objects and small
workspaces of limited dimensions [21, 110]. �e camera poses of incoming RGB-D
frames are estimated using frame-to-model camera tracking, o�en against a raycasted
view of the fused 3D model [84, 86, 119, 120] using the Iterative Closest Point (ICP)
algorithm [18].
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�ese methods have been extended to large-scale environments. In [120], the �xed-
sized SDF volume on the GPU is shi�ed along with the camera motion while inactive
parts are streamed to CPU memory. [53, 86] employ a voxel-hashed sparse 3D volume to
be�er exploit limited GPU memory. While frame-to-model tracking accumulates dri�,
global consistency can be established by coupling dense 3D surface fusion with more
advanced RGB-D SLAM systems that include global pose optimization. For example,
Steinbrücker et al. [104] combine DVO-SLAM [57] with an octree-based 3D model.
BundleFusion [28] performs real-time large-scale BA on a GPU and fuses the RGB-D
frames in a voxel-hashed SDF, resulting in impressive large-scale reconstructions.

In scans of indoor environments, a semantic scene analysis may help to detect pla-
nar surfaces such as walls or �oor; these plane priors can be exploited to denoise and
complete room geometry [2] or even to virtually relight, remove and add furniture [130].

While the above 3D reconstruction frameworks assume static scenes, methods for
dealing with dynamic objects in the scene [90, 91, 96, 108] and for the complex scenario
of non-rigid template-free 3D reconstruction [50, 85, 97, 98] have been proposed.

Useful RGB-D benchmark datasets have been provided in order to quantitatively
evaluate the localization accuracy of RGB-D SLAM systems [23, 42, 111]. �e (aug-
mented) ICL-NUIM benchmarks [23, 42] also contain synthetic ground truth 3D geom-
etry, additionally allowing to evaluate the dense surface reconstruction quality.

1.2.2 High-�ality Surface Textures

�e 3D models generated by fusing RGB-D frames in SDF volumes exhibit high met-
ric accuracy with reduced noise. However, they also su�er from a lack of photo-realism,
since the problem of reconstructing high-quality surface colors is mostly not approached
appropriately. Per-voxel colors are computed using a weighted average of observations
in the RGB input images, with simple weights proportional to (1) viewing angle, (2)
inverse squared depth and (3) proximity to depth discontinuities [84, 110, 119]. In com-
bination with the low color image quality of RGB-D sensors, this commonly leads to an
overall blurry visual appearance.

Texture Mapping and Super-Resolution In Computer Graphics, methods for map-
ping high-resolution textures onto simpli�ed meshes with low geometric complexity
have been studied extensively over the last decades. Texel colors are computed either
by blending observations from multiple input color images [24, 83, 103], including op-
tical �ow corrections [30], or by selecting the best per-face input views with minimal
seams between views [36, 66, 116]. �e complex variational super-resolution method
in [39] achieves impressive texturing results in a controlled and well-calibrated setup.



10 Chapter 1. Introduction

[79] investigates super-resolution keyframe fusion using RGB-D sensors, while [62] uses
screen space color �ltering techniques.

Color Map Optimization Zhou and Koltun [133] optimize the mapping between
color images and 3D mesh geometry for consistent surface colors. An alternating op-
timization of camera poses and non-rigid 2D image deformations accounts for (other-
wise inexplicable) inaccuracies in the geometric image formation model. �e use of per-
vertex colors of an upsampled mesh is a practical limitation due to increased geometric
complexity compared to texture mapping. Jeon et al. [51] present a texture coordinate
optimization to maximize the photometric consistency of multiple blended keyframes
projected onto a texture map of the 3D model. [35] follows a similar objective by op-
timizing per-vertex transformations on chart boundaries. A variational framework for
jointly optimizing geometry and color in a SDF using its associated raw RGB-D input
frames is presented in [55].

Most recently, visually compelling large-scale 3D reconstructions with an unprece-
dented level of photo-realism have been demonstrated in [107, 118]. However, instead
of using low-cost commodity RGB-D sensors, a well-calibrated custom camera rig was
integrated into a state-of-the-art dense 3D reconstruction framework, with extensions
for reconstructing mirror and glass surfaces.

1.2.3 Shading-based Geometry Re�nement

�e individual depth maps acquired by commodity RGB-D sensors are characterized by
strong noise. �is problem of noise is successfully addressed by fusing the depth maps
in a common volumetric 3D representation such as a SDF volume successfully. However,
both the input depth maps as well as the over-smoothed fused 3D model do not exhibit
�ne-scale geometry details.

While Shape-from-Shading (SfS) [46, 131] is highly ill-posed in general, it is pos-
sible to elegantly integrate the depth maps of RGB-D frames as priors for guiding the
under-constrained SfS process. Shading-based Re�nement (SBR) methods are based on
SfS and re�ne an initial coarse geometry estimate using the input color images in order
to reconstruct �ne-scale surface details. In particular, the depth maps help to di�eren-
tiate between illumination, geometry and albedo and to resolve the Bas-Relief ambigu-
ity [17]. Recent RGB-D based approaches o�en follow a pipeline that �rst estimates the
scene lighting using Spherical Harmonics (SH) [88] and subsequently optimizes surface
geometry and material albedo.

�e methods in [16, 124, 125] leverage shading cues in a single-view or multi-view
color video stream to (track and) enhance a coarse 3D shape model, leading to high-
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quality surfaces. Single-frame methods for SBR recover �ne-scale geometry from an
initial dense depth map obtained from an RGB-D sensor [14, 15, 41, 128], which has
been shown to be feasible even in real-time [31, 126]. Häfner et al. [40] combine SfS
and single-frame depth super-resolution within a variational framework for generating
high-�delity depth maps. �ere are also methods for additionally reconstructing ad-
vanced material re�ectance with specularities, e.g. for an acquired shape template in a
dynamic se�ing [72], or for RGB-D input [127]. Langguth et al. [64] propose a combined
shading-aware Multi-View Stereo (MVS) approach, successfully demonstrating the com-
plementary nature of both techniques.

Volumetric Shading-based Re�nement [135] allows to re�ne even full 3D models
stored in an SDF volume, leading to visually impressive reconstruction quality. �e ap-
proach is limited by its very simple lighting estimation using only nine SH parameters
for the entire scene, and by a sequential pipeline that potentially cannot recover from
bundle adjusted, but possibly imperfect initial camera poses.

A detailed survey on techniques for 3D reconstruction of both surface geometry and
re�ectance properties is given in [117].

1.2.4 Large-scale Online Surface Correction

Modern 3D reconstruction methods estimate globally consistent camera poses for large-
scale scenes in real-time. RGB-D frames are immediately fused into a common SDF
volume, which in most approaches is not corrected on poses updates on loop closures
due to the high computational demands. Instead, a full integration pass in a separate
post-processing step �nally fuses all RGB-D frames again into the SDF with the �nal
camera poses. Only few methods manage to correct the dense 3D surface fused in Signed
Distance Functions on-the-�y during the reconstruction process.

In [33], dense SDF subvolumes of �xed size are fused locally and globally registered
in a global optimization of subvolume poses. �e surfaces in the subvolumes are up-
dated on subvolume shi�s using volume blending. �e lack of an explicit loop closure
detection fails to compensate for dri� in large-scale se�ings. Similarly, the method of
Kähler et al. [52] relies on subvolumes that are updated online during raycasting. �e
camera is tracked against multiple submaps independently and the estimated poses are
used as constraints in a global pose optimization. However, the runtime of subvolume-
based methods does generally not scale well with an increasing number of subvolumes.

Some approaches a�ach the reconstructed surface to a deformation graph, e.g. dense
SDF models [121, 122] or a dense surfel map [95, 123]. On loop closures, the model is
corrected online along with the pose graph using an as-rigid-as-possible map deforma-
tion. Problematically, it is not possible to recover surface information that has been lost
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through inconsistent fusion, for example due to signi�cant dri� in the camera poses
before loop closures are detected.

BundleFusion [28] has a sparse voxel-hashed SDF volume at its core, which is cor-
rected on-the-�y on pose graph updates by re-integrating RGB-D frames. To gradually
adapt the 3D model to the pose changes, frames are �rst de-integrated and then re-
integrated with their new poses. �e framework is computationally very demanding,
since (1) almost all of the previous RGB-D frames possibly need to be re-integrated on
loop closures, while (2) they simultaneously have to be kept in limited GPU memory. �e
RKD-SLAM system [71] follows the main idea of our keyframe re-integration method
proposed in Chapter 6.

1.3 Outline of the �esis

�is cumulative dissertation is structured into four parts as follows:
Part I introduces the research problem motivating this thesis and provides the un-

derlying theoretical background and methodology. In particular, Chapter 1 gives an
introductory motivation of the research topic as well as a detailed literature overview of
the state-of-the-art in RGB-D based 3D reconstruction and online surface correction. In
Chapter 2, the main contributions of this work are presented along with an overview of
the respective peer-reviewed publications. Chapter 3 establishes the mathematical tools
and fundamental concepts for 3D reconstruction from RGB-D sensors.

Part II presents the three peer-reviewed publications that form the cumulative con-
tent of this thesis. Firstly, Chapter 4 presents a method for improving the visual appear-
ance of SDF-based 3D models [6] by combining modern texture mapping approaches
with advanced �ltering techniques to obtain consistent and sharp surface textures. Sec-
ondly, a joint surface reconstruction approach [4] based on Shape-from-Shading tech-
niques is introduced in Chapter 5; it improves the color sampling in the input frames by
simultaneously optimizing for geometry encoded in an SDF, textures from keyframes,
and their camera poses along with material and spatially-varying scene lighting. Lastly,
Chapter 6 proposes an e�cient online surface correction method for updating dense 3D
reconstructions of large-scale scenes on-the-�y on pose graph updates [5].

Part III provides a summary of the thesis in Chapter 7. Finally, Chapter 8 discusses
the limitations of the proposed approaches and shows future research directions.

Part IV contains the supplementary material for two of the included publications
in Chapters A and B, as well as the original versions of the papers [4, 5, 6] along with
detailed disclaimers in Chapter C.



Chapter 2

Contributions

�e general aim of this thesis is to develop novel methods for high-quality 3D recon-
struction of real-world objects and scenes from low-cost RGB-D sensors. In this chapter,
we summarize the detailed contributions of the publications that investigate this prob-
lem and form the cumulative content of this dissertation.

2.1 List of Publications

�e main contributions of this cumulative thesis are based on the three full-length pub-
lications [4, 5, 6] included in Chapters 4, 5 and 6. �ese peer-reviewed papers are joint
work with Daniel Cremers, Jan Kautz, Kihwan Kim, Ma�hias Nießner, Raphael Schaller
and Jörg Stückler and were published in highly ranked international conferences. Ta-
ble 2.1 provides a full list of the peer-reviewed publications that contribute to this dis-
sertation. Additionally, the table contains other co-authored papers published while
pursuing this degree, which are however not included as a contribution.

�e research in [4] was in most parts conducted during a research internship at
NVIDIA in Santa Clara, CA. �e paper [5] includes results of Raphael Schaller’s Master’s
thesis [92], which was supervised by the author of this dissertation. �e publication [7] is
based on the Master’s thesis [77]. �e paper [1] received the Honourable Mention award
at the Scandinavian Conference on Image Analysis (SCIA) 2019.
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Submap-based Bundle Adjustment for 3D Reconstruction from RGB-D Data.
Robert Maier, Jürgen Sturm and Daniel Cremers. In: German Conference on Pa�ern
Recognition (GCPR) 2014 [7].

Super-Resolution Keyframe Fusion for 3D Modeling with High-�ality Tex-

tures. Robert Maier, Jörg Stückler and Daniel Cremers. In: International Conference
on 3D Vision (3DV) 2015 [6] (Chapter 4).

De-noising, Stabilizing and Completing 3D Reconstructions On-the-go using

Plane Priors. Maksym Dzitsiuk, Jürgen Sturm, Robert Maier, Lingni Ma and Daniel
Cremers. In: International Conference on Robotics and Automation (ICRA) 2017 [2].

E�cient Online Surface Correction for Real-time Large-Scale 3D Reconstruc-

tion. Robert Maier, Raphael Schaller and Daniel Cremers. In: British Machine Vision
Conference (BMVC) 2017 [5] (Chapter 6).

Multiframe Scene Flow with Piecewise Rigid Motion. Vladislav Golyanik, Kih-
wan Kim, Robert Maier, Ma�hias Nießner, Didier Stricker and Jan Kautz. In: Interna-
tional Conference on 3D Vision (3DV) 2017 [3].

Intrinsic3D: High-�ality 3D Reconstruction by Joint Appearance and Ge-

ometry Optimization with Spatially-Varying Lighting. Robert Maier, Kihwan
Kim, Daniel Cremers, Jan Kautz and Ma�hias Nießner. In: International Conference
on Computer Vision (ICCV) 2017 [4] (Chapter 5).

ANon-invasive 3D Body Scanner and So�ware Tool towards Analysis of Scol-

iosis. Susmita Roy, Alexander T. D. Grünwald, Ana Alves-Pinto, Robert Maier, Daniel
Cremers, Daniela Pfei�er and Renee Lampe. In: BioMed Research International (BMRI)
2019 [8].

Combining Depth Fusion and Photometric Stereo for Fine-Detailed 3D Mod-

els. Erik Bylow, Robert Maier, Fredrik Kahl and Carl Olsson. In: Scandinavian Con-
ference on Image Analysis (SCIA) 2019 [1].

Table 2.1: Full list of peer-reviewed publications done within the course of this degree, in chrono-
logical order. �e three publications that contribute to this cumulative dissertation are listed in
black, with references to the respective chapters. Research papers not included in this thesis are
marked in gray.
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2.2 Major Contributions

�e key contributions of this cumulative dissertation are twofold. First, we explore al-
gorithms for recovering high-quality textures and �ne-scale geometric details from 3D
models fused in Signed Distance Fields with oversmooth geometry and blurry per-voxel
surface colors. Second, we present an e�cient real-time surface correction method that
re-integrates keyframes to update dense 3D reconstructions of large-scale scenes on-the-
�y on loop closures, enabling up-to-date model previews already during 3D scanning.

2.2.1 Recovering High-�ality Textures and Geometric Details

In order to reduce the strong noise in the depth data from consumer-grade RGB-D sen-
sors, state-of-the-art approaches commonly fuse multiple depth maps in a volumetric
Signed Distance Function (SDF). While the reconstructed 3D models are geometrically
accurate, their oversmooth 3D surface geometry lacks �ne-scale details. Furthermore,
the fused per-voxel colors are blurry and consequently not photorealistic enough for
many real-world use cases (e.g. AR/VR).

Chapter 4 is based on [6] and presents a novel fast and robust color mapping technique
to obtain 3D models with high-quality visual appearance. To achieve this, it combines
modern texture mapping approaches with super-resolution keyframe fusion. During the
scan, a direct keyframe-based SLAM frontend [57] estimates a globally consistent camera
trajectory. A�er fusing the input RGB-D frames into a global dense SDF volume [26],
a 3D triangle mesh is extracted. In parallel, these low-resolution RGB-D frames are
�rst deblurred using advanced �ltering techniques and then fused into super-resolution
keyframes. Finally, a texture mapping method [67] textures the reconstructed 3D mesh
from these high-quality keyframes, resulting in consistent and sharp model colors. �e
experimental evaluation proves that the proposed method is highly e�ective and that the
obtained visual model appearance has superior quality compared to the state-of-the-art.

Chapter 5 is based on [4] and introduces a joint surface reconstruction approach that
achieves both high quality geometry and appearance. We follow established Shape-
from-Shading techniques and �rst introduce a novel lighting estimation method that
estimates spatially-varying spherical harmonics from subvolumes of the reconstructed
scene. A shading-based re�nement then simultaneously optimizes for per-voxel geom-
etry and material albedo stored in a sparse SDF, and for camera poses (and camera in-
trinsics) of the utilized input keyframes. �e keyframes are selected automatically from
all input frames based on a blurriness measure in order to discard harmful frames with
motion blur or other artifacts. Since the joint optimization recovers �ne-scale geometry
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details and also re�nes the camera poses in the image formation model, we implicitly
obtain consistent high-quality surface textures as a by-product through the improved
color sampling in the input frames. An extensive evaluation demonstrates that the de-
veloped lighting estimation be�er approximates complex global scene illumination and
that the proposed joint surface optimization generates impressive results with �ne-scale
details of scene geometry along with sharp surface textures.

2.2.2 E�cient On-the-�y Surface Correction

As the methods for recovering �ne geometry and sharp textures presented in Sec-
tion 2.2.1 are designed as a post-processing step, there are no practical hard constraints
w.r.t. runtime or memory e�ciency. However, reconstructing globally consistent dense
3D reconstructions becomes signi�cantly more challenging in real-time scenarios. Mod-
ern real-time RGB-D based 3D reconstruction frameworks such as [57] detect loop clo-
sures and use a continuous pose graph optimization to reduce dri� and accurately esti-
mate the global camera motion even for larger scenes. As the fusion of the input RGB-D
frames in a dense SDF is very costly, it is highly challenging to maintain a correct 3D
model whenever camera poses are updated on loop closures. As a consequence, dense
surface fusion is o�en implemented as a post-process using only the �nal camera poses.

Chapter 6 is based on [5] and investigates an e�cient method for correcting the recon-
structed surface on-the-�y on pose updates computed by the SLAM framework. Updat-
ing large-scale dense 3D reconstructions in real-time immediately increases the global
consistency of the geometry, e.g. for collision detection in AR or in robotic scenarios,
and enhances the visual quality of online model previews. As frames are streamed from
the RGB-D sensor, the real-time RGB-D SLAM system [57] estimates the respective cam-
era poses. In a background thread, a continuous pose graph optimization compensates
for global dri� on loop closures. We directly fuse consecutive input RGB-D frames into
keyframes, similar to Chapter 4, and integrate them into a sparse SDF volume on the GPU
based on Voxel Hashing [86]. As the SLAM system detects loop closures and updates the
keyframe poses, the dense SDF-based 3D model becomes outdated. We therefore cor-
rect the SDF volume on-the-�y by de-integrating keyframes using their previous poses
and re-integrating them again using their updated camera poses. To improve e�ciency
and enable real-time performance, we introduce a novel intelligent keyframe selection
and re-integration strategy, which signi�cantly reduces streaming between GPU and
host. A quantitative evaluation shows that our method outperforms the state-of-the-art
w.r.t. runtime e�ciency (up to 93%) and memory requirements. �is allows to perform
large-scale online surface correction in real-time using only a single GPU, while simul-
taneously maintaining a comparable surface quality.



Chapter 3

Fundamentals

�is chapter establishes the fundamental concepts and mathematical tools for dense 3D
reconstruction from RGB-D data. We therefore �rst introduce the mathematical prelim-
inaries used throughout this dissertation, derived from standard literature such as [43,
112]. Additionally, we present the technical principles of RGB-D sensors as well as the-
oretical background on camera tracking, dense 3D surface reconstruction and Shape-
from-Shading techniques.

3.1 Mathematical Preliminaries

Notation �roughout this work, scalars are denoted as s ∈ Rwith regular (lowercase)
le�ers, while vectors x ∈ Rn (lowercase) and matricesM ∈ Rm×n (uppercase) are writ-
ten in bold le�ers. If not speci�ed otherwise, we denote 3D points as p = (x, y, z)> ∈ R3

and 2D pixels as x = (u, v)> ∈ R2; their respective homogenous coordinates are
p̃ = (x, y, z, 1)> ∈ R4 and x̃ = (u, v, 1)> ∈ R3.

3.1.1 Rigid Body Motion

3D reconstruction tries to recover geometry and appearance of objects in a three-
dimensional world. Di�erent rigid objects are hereby spatially related through rigid
body motions, which preserve both distance and orientation for any point pair on a rigid
body and are consequently highly relevant for all 3D reconstruction methods. �e space
of all rigid body motions forms a Lie group, which is also known as Special Euclidean
group SE(3). A 3D Euclidean transform with 6 Degrees-of-Freedom (DoF) consists of a
3-DoF translation and a 3-DoF rotation. We discuss di�erent relevant representations in
the following.
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Transformation Matrix We commonly use a 4×4 transformation matrix TB
A ∈

SE(3) to transform a 3D point pA from coordinate frame A into frame B. �e Special
Euclidean group SE(3) is formally de�ned as follows:

SE(3) =

{ [
R t

0> 1

] ∣∣∣∣ R ∈ SO(3), t ∈ R3

}
, (3.1)

where t ∈ R3 is a 3D translation vector and the orthonormal 3×3 rotation matrix R
belongs to the Special Orthogonal group SO(3) with 3 DoF:

SO(3) =
{
R ∈ R3×3

∣∣ R>R = I3 ∧ det(R) = +1
}
. (3.2)

More concretely, we can write the full homogenous 4×4 transformation matrix TB
A from

frame A to frame B as

TB
A =

[
RB
A tBA

0> 1

]
, (3.3)

and the respective inverse transformation T A
B ∈ SE(3), which maps back from frame B

to frame A, as

T A
B = (TB

A )-1 =

[
RB
A
> −RB

A
>
tBA

0> 1

]
. (3.4)

�is matrix representation allows to easily transform a 3D point pA in frame A to the
respective 3D point pB in coordinate frame B:

pB = RB
ApA + tBA, (3.5)

or through matrix-vector-multiplication using homogenous coordinates:

p̃B = TB
A p̃A. (3.6)

Analogously, two (or more) transformation matrices TB
A and T C

B can be concatenated to
transform from frame A to frame C :

T C
A = T C

B T
B
A . (3.7)

While the translation vector t ∈ R3 is already a minimal representation with 3 parame-
ters for the 3 translational DoF, the rotation matrixR ∈ SO(3) with 9 parameters is an
over-parametrization of the underlying 3 rotational DoF. �is can lead to problems dur-
ing numerical optimization of transformations, as additional constrains need to ensure
the mathematical properties of the orthonormal rotation matrix.
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Twist Coordinates �e theory of Lie Groups yields an elegant minimal representa-
tion for 3D Euclidean transformations. Concretely, the Special Euclidean group SE(3)

and Special Orthogonal group SO(3) introduced above are Lie groups, which are smooth
di�erentiable manifolds with group operations that are compatible with the smooth
structure. Every Lie group has a corresponding Lie algebra that de�nes the tangent space
around the group’s identity element I . We loosely follow the tutorial in [19] to explain
the Lie algebras so(3) and se(3) associated with the groups SO(3) and SE(3) respec-
tively. With only 6 parameters for 6 DoF, the so-called twist coordinates ξ ∈ R6 in the
Lie algebra se(3) are highly suitable for numerical optimization:

ξ = (v1,v2,v3,ω1,ω2,ω3)> =
(
v>,ω>

)> ∈ R6, (3.8)

where v = (v1,v2,v3)> encodes the linear velocity and ω = (ω1,ω2,ω3)> determines
the angular velocity. With the operator [·]×, which generates the skew-symmetric matrix
of a vector, we can describe the twist as follows:

ξ̂ =




0 −ω3 ω2 v1

ω3 0 −ω1 v2

−ω2 ω1 0 v3

0 0 0 0


 =

[
[ω]× v

0> 0

]
. (3.9)

�e tangent space so(3) of the Special Orthogonal group SO(3) is de�ned as the set of
all skew-symmetric matrices:

so(3) =
{

[ω]× ∈ R3×3
∣∣ ω ∈ R3

}
. (3.10)

�e set of all twist coordinates forms the tangent space se(3) of the group SE(3):

se(3) =

{
ξ̂ =

[
[ω]× v

0> 0

] ∣∣∣∣∣ [ω]× ∈ so(3),v ∈ R3

}
. (3.11)

�e logarithm map and the exponential map transform elements from a Lie group to
its associated Lie algebra and vice versa; i.e. in the case of a transformation matrix
T ∈ SE(3) and its twist ξ ∈ se(3):

T = exp(ξ) : se(3)→ SE(3) (3.12)
ξ = log(T ) : SE(3)→ se(3) (3.13)
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Close to the identity (i.e. for small motions with ξ ≈ 0), the exponential map can be
approximated such that T ≈ I4 + ξ̂. We obtain a closed-form solution for the rotation
R ∈ SO(3) and the translation t ∈ R3 using the Rodrigues’ formula (with the angle
θ = ‖ω‖):

R = exp([ω]×) = I3 +
sin θ

θ
[ω]× +

1− cos θ

θ2
[ω]2× (3.14)

t =

(
I3 +

1− cos θ

θ2
[ω]× +

θ − sin θ

θ3
[ω]2×

)
v. (3.15)

�e logarithm map for obtaining the twist (v>,ω>)> ∈ R6 from R and t has the fol-
lowing closed-form expression:

θ = arccos

(
tr(R)− 1

2

)
(3.16)

log(R) =
θ

2 sin θ

(
R−R>

)
(3.17)

ω = [log(R)]∨ (3.18)

v =


I3 −

1

2
[ω]× +

(
1− θ cos(θ/2)

2 sin(θ/2)

)

θ2
[ω]2×


t, (3.19)

where the vee operator [·]∨ extracts the underlying generating 3D vector from a skew-
symmetric 3×3 matrix.

3.1.2 Pinhole Camera Model

As cameras capture information of real objects in an image, it is crucial to accurately
model the imaging process that relates the 3D scene with the 2D image. On the one
hand, the extrinsic camera parameters describe the pose, i.e. 3-DoF orientation and 3-DoF
position (Section 3.1.1), of the camera relative to a global reference coordinate frame. On
the other hand, the intrinsic camera parameters describe the mapping of 3D points in the
local camera coordinate frame to 2D pixels using a projection function π : R3 → R2.

All methods presented in this work are based on the well-known pinhole camera
model as projection function, which assumes an in�nitely small aperture (i.e. only a
single point) without a lens for focusing light.
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Projection Function In the basic pinhole camera model, a 3D point p = (x, y, z)>

is �rst projected onto a plane located at z = 1 using the general perspective projection
πg : R3 → R3:

πg(p) =



u

v

1


 =

1

z



x

y

z


 . (3.20)

�is is followed by an a�ne mapping with the so-called intrinsic camera calibration
matrix K ∈ R3×3:

K =



fx 0 cx
0 fy cy
0 0 1


 , (3.21)

where fx, fy describe the focal length and cx, cy describe the principal point (image cen-
ter pixel) of the camera in x- and y-direction respectively, expressed in pixel units. �e
homogenous 2D pixel position x̃ of a 3D point is then given by:

x̃ =



u

v

1


 = Kπg(p). (3.22)

We combine equations 3.20, 3.21 and 3.22 into the projection function π : R3 → R2:

x = π(p) =

(
fx

x
z

+ cx

fy
y
z

+ cy

)
(3.23)

Inverse Projection With the associated depth z for a 2D pixel x = (u, v)> given, e.g.
as it is usually the case for RGB-D sensors, we can re-project the pixel back to 3D with
the inverse projection π-1 : R2 × R→ R3 (back-projection):

p =



x

y

z


 = π-1(x, z) = K-1(p)



u

v

1


 z =




(u−cx)
fx

z
(v−cy)

fy
z

z


 . (3.24)

Radial and Tangential Lens Distortion In practice, the pinhole camera model is not
su�cient to fully model the behavior of imperfect real-world lenses. To this end, non-
linear functions γ : R3 → R3 have been developed to remove radial and tangential lens
distortion. �e distorted 2D pixel coordinates x̃d = (ud, vd, 1)> = πg(p̃d) of a distorted
3D point pd are mapped to undistorted coordinates x̃ = (u, v, 1)> as follows:

x̃ = Kγ(x̃d). (3.25)
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�ere are various closed-form approximations of γ that approximate the distortion of
real lenses using polynomials. While higher-degree approximations are more expressive,
they become more di�cult to calibrate and are o�en numerically unstable. �e following
distortion function is very common and e�ective for consumer-grade cameras, with 6
coe�cients κ1, . . . , κ6 for radial distortion, 2 coe�cients ρ1, ρ2 for tangential distortion
and r2

d = u2
d + v2

d:

γ0(x̃) =




ud
1+κ1r2d+κ2r4d+κ3r6d
1+κ4r2d+κ5r4d+κ6r6d

+ 2ρ1udvd + ρ2(r2
d + 2u2

d)

vd
1+κ1r2d+κ2r4d+κ3r6d
1+κ4r2d+κ5r4d+κ6r6d

+ ρ1(r2
d + 2v2

d) + 2ρ2udvd

1


 . (3.26)

However, there is no closed-form inverse function for γ0.
In Chapter 5, we use the following simple and yet e�ective distortion model

γ1(x̃) =



ud(1 + κ1r

2
d + κ2r

4
d) + 2ρ1udvd + ρ2(r2

d + 2u2
d)

vd(1 + κ1r
2
d + κ2r

4
d) + ρ1(r2

d + 2v2
d) + 2ρ2udvd

1


 , (3.27)

which is incorporated into the overall camera projection function π : R3 → R2:

x̃′ = (u′, v′, 1)> = γ1(πg(p)) (3.28)

x = π(x̃′) =

(
fxu

′ + cx

fyv
′ + cy

)
. (3.29)

As a remark, the distortion coe�cients are invariant w.r.t. upscaling and downscaling of
images. All intrinsic camera parameters above (i.e. focal length, center pixel, radial and
tangential distortion coe�cients) are in practice estimated using a calibration rig.

3.1.3 Non-Linear Least-Squares Optimization

Non-Linear Least-Squares (NLS) is a commonly used mathematical tool to solve inverse
problems in Computer Vision, o�en with the goal of �nding parameters for a best �t
between a given model and noisy measurements. In particular, we want to �nd unknown
model parameters θ ∈ Rm that minimize an energy function:

θ̂ = arg min
θ

E(θ). (3.30)
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At the core of the energy is a vector-valued function r : Rm → Rn:

E(θ) =
1

2

∑

i

ri(θ)2 =
1

2
‖r(θ)‖2 , (3.31)

where the n residuals are de�ned using the vector function ri(θ) : Rm → R. We mainly
deal with non-linear and non-convex functions ri(θ) in this thesis. �e non-convexity
of the energy function requires a good initial estimate of the optimization parameters in
order to avoid convergence to local minima.

Linearization In the case of a linear cost function r(θ) (Linear Least-Squares), there
are e�cient methods to solve for the parameters θ. Depending on the number of param-
eters and the structure of the problem, numerical techniques such as the Moore-Penrose
Pseudoinverse, Singular Value Decomposition, or Cholesky Decomposition can be applied.

However, in the non-linear case, a common strategy is to iteratively linearize the
non-linear function r(θ) around the current parameter state and approximate the energy
E(θ) quadratically. Starting with an initial estimate θ0, the parameters are iteratively
updated through incremental updates ∆ in a way that θk+1 = θk + ∆ minimizes the
linearized objective function at each iteration k.

Gauss-Newton �e Gauss-Newton (GN) algorithm is an iterative method to solve NLS
problems that uses a linear approximation of the vector function r(θ). It makes use of
the Jacobian matrix Jr, which contains the function’s partial derivatives (i.e. gradient)
evaluated at θ:

Jr := Jr(θ) =
[
J(θ)ij

]
=

[
∂ri
∂xj

(θ)

]
∈ Rn×m (3.32)

We employ the �rst-order Taylor expansion to approximate the objective function lin-
earized around θ:

E(θ + ∆) =
1

2
‖r(θ + ∆)‖2 (3.33)

≈ 1

2
‖r(θ) + Jr∆)‖2 (3.34)

=
1

2
r(θ)>r(θ) + ∆>J>r r(θ) +

1

2
∆>J>r Jr∆. (3.35)

In order to obtain the optimal value of ∆ that minimizes the energy in Equation (3.35),
we set its derivative to zero. �is gives rise to the so-called update equation of the Gauss-
Newton algorithm:

J>r Jr∆ = −J>r r(θ). (3.36)
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We solve these normal equations above for the parameter update ∆ and increment the
estimate of the optimization parameters:

θk+1 = θk + ∆. (3.37)

To obtain the �nal parameter estimate θ̂, the steps above are iterated until convergence.

Levenberg-Marquardt While the Gauss-Newton algorithm has fast quadratic con-
vergence close to the local minimum, it can also show unstable behaviour for poor pa-
rameter initializations. On the other hand, Gradient Descent (GD) shows slow linear
convergence, but always decreases the function for a su�ciently small step size. To
overcome the weaknesses of both GN and GD, the Levenberg-Marquardt (LM) algorithm
smoothly switches between both methods through an adaptive dampening parameter
λ > 0. Automatically adjusting λ from iteration to iteration makes the method highly
adaptive. �e update equation of the LM algorithm is wri�en as:

(J>r Jr + λ diag(J>r Jr))∆ = −J>r r(θ), (3.38)

where the diagonal matrix diag(J>r Jr) contains the diagonal entries of J>r Jr.
For estimates far from the local minimum, the normal equations are approximated

by the GD update step through a large λ. Despite slower convergence, this allows to
decrease the cost also in problematic situations. For small λ, the method behaves like
GN with fast convergence close to the optimum. �ere are di�erent, mostly problem-
speci�c algorithms for adjusting the dampening parameter. Generally, if the obtained
parameter update ∆ reduces the overall error, λ is decreased before the next iteration.
Otherwise, if the computed ∆ leads to an increased error, we repeatedly increase λ and
solve again for ∆ until the error is decreased. �e dynamic adjustment hence involves
solving the augmented normal equations multiple times for di�erent values of λ.

We use the Levenberg-Marquardt implementation in Ceres Solver [10] to tackle the
large-scale optimization problem developed in Chapter 5.

Iteratively Reweighted Least-Squares �e `2-norm in least-squares problems as-
sumes Gaussian distributed measurements, which is however unrealistic in practice. To
mitigate this insu�ciency and additionally cope with problematic large outlier residuals,
robust optimization uses robust error norms to resemble more suitable residual distri-
butions. For example, the Huber norm e�ectively penalizes outlier residuals linearly,
instead of quadratic costs associated with the `2-norm.

In Iteratively Reweighted Least-Squares (IRLS), the robust norm is used to pre-compute
�xed per-residual weights in every iteration. While this implies that the Jacobian is
computed without dependency of the robust weight on the residual, the problem then
becomes a simple-to-solve weighted least-squares problem.
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3.2 RGB-D Sensing

Low-cost commodity RGB-D sensors have led to a major boost in research in the �elds of
SLAM and 3D surface reconstruction over the last decade. �ey combine an RGB color
camera with a depth camera that additionally provides dense per-pixel depth measure-
ments of the observed 3D scene geometry. �is simpli�es many tasks in the application
�elds mentioned above. �is dissertation fundamentally evolves around dense 3D recon-
struction from consumer-grade RGB-D cameras. We will therefore explain the technical
working principles of these range sensors more in-depth in the following.

RGB-D Cameras An RGB-D sensor produces frames at real-time rates of 30 Hz or
more. A single RGB-D frame consists of a dense depth map Z : ΩZ → R with usually
640×480 pixels and an associated three-channel color image C : ΩC → R3 of 640×480

pixels or higher. BothZ and C within a frame are taken (almost) simultaneously in time,
we neglect the small time o�sets due to missing hardware synchronization. �e esti-
mated depth maps have metric scale and contain acceptably accurate per-pixel distance
values for each color image pixel.

Color and depth images are captured by separate lenses at di�erent spatial locations,
which are both described using the pinhole camera model. To align color and depth
for direct pixel correspondences, their calibrated relative pose is used to warp the depth
map to the color image. We rely on the usually slightly inaccurate factory calibration,
commonly leading to small RGB-D misalignments.

Passive vs. Active Passive depth sensing techniques are based on stereo systems and
perform well in highly textured scene parts. When enough color and intensity features
are present, detected correspondences allow to reliably estimate depth values, even in
challenging outdoor scenarios. However, unsuccessful correspondence search in fea-
tureless regions makes the depth estimation fail.

In contrast, modern low-cost commodity depth sensors actively illuminate the scene
with infrared IR light. �is successfully addresses the challenging problem of recon-
structing even uniformly colored regions and allows to obtain more complete depth mea-
surements for indoor environments. Please note that both passive and active methods
generally capture more accurate depth measurements for close range, while the depth
uncertainty increases for larger distance. In the following, we will discuss the two main
technical working principles for active depth sensing, namely Structured Light and Time-
of-Flight (ToF) sensors.
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Structured Light Cheap range sensors based on the Structured Light principle have
been omnipresent in research since the release of the Microso� Kinect V1 in 2010.
�roughout this thesis, we mainly used the similar Asus Xtion Pro Live and the Oc-
cipital Structure Sensor.

In Structured Light, an IR projector projects a known unique structured pa�ern
onto the scene. �ese additional arti�cial features signi�cantly alleviate correspondence
matching and remove the dependency on natural texture features. �e detected corre-
spondences between the projected pa�ern and the deformed observed IR pa�ern are
then used to compute depth values using triangulation.

Structured Light sensors can only be applied in indoor scenarios, as the IR radiation
in strong sunlight oversaturates the IR camera. �is renders the projected pa�ern imper-
ceivable and leads to missing depth estimates. Additionally, thin structures smaller than
the pa�ern resolution, partial occlusions close to object boundaries as well as dark or
re�ective surfaces are problematic. Nonetheless, the ability to robustly estimate dense
depth maps in real-time in almost arbitrary indoor scenes has largely alleviated these
limitations. Within the working range (∼0.3−5.0m), the depth error increases quadrati-
cally with the distance. A detailed analysis of the noise characteristics is provided in [59].

Time-of-Flight ToF sensors such as the Microso� Kinect V2 were initially less com-
mon than Structured Light devices, but have recently received more a�ention. Pulsed
ToF cameras emit an IR light pulse and measure the travel time to the object and back
to the sensor using rapid shu�ers and a high-precision clock. With knowledge of the
constant speed of light, we can compute the distance as the half of the measured round
trip distance. Modulated ToF devices emit a time-modulated IR signal and employ a phase
detector to measure the phase shi� of the returning light pulse. �e distance to the scene
is obtained from the phase shi� and the known modulation frequency.

As in Structured Light, the IR camera in ToF devices is heavily in�uenced by sun ra-
diation and by dark materials that do not re�ect light. Furthermore, spurious measure-
ments (“�ying pixels”) occurring at discontinuities deteriorate the depth map quality.

DepthMap Processing While the depth maps acquired from RGB-D sensors with the
working principles above are su�ciently accurate, they exhibit strong noise character-
istics and lack �ne-scale geometric features. Firstly, a bilateral �lter [114] smoothes the
noisy depth maps, with a special treatment of depth discontinuities. Secondly, we com-
pute a vertex map by back-projecting the per-pixel depth values using Equation (3.24) of
the pinhole camera model. A normal map is obtained from the vertex map using �nite
di�erences. Per-pixel weights encode the uncertainty of depth measurements, in particu-
lar the frontoparallelity of observations and their inverse squared depth are considered.
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3.3 Camera Motion Estimation

Online and o�ine dense 3D reconstruction methods require accurate camera motion
estimates as input to generate a high-quality 3D model. To track the 6-DoF camera poses,
RGB-D SLAM systems employ input frames to simultaneously build and update a metric
3D map of an environment and localize relative to it. RGB-D odometry robustly estimates
the absolute camera pose of the current frame relative to the previous (key)frame or
relative to a fused model. As these camera tracking strategies inevitably accumulate
dri� over time, a global map optimization achieves global consistency when loop closures
are detected.

In the following, we exemplarily present the core components of the DVO-SLAM
system [57], since it is tightly coupled with Chapter 6. It combines robust camera track-
ing with a global pose graph optimization and reconstructs a highly accurate camera
motion in real-time on a CPU. For the rest of this section, we assume that color and
depth in a frame have the same image resolution and are pre-aligned.

3.3.1 Dense RGB-D Odometry

�e robust dense visual odometry approach used in [57] robustly estimates the relative
camera motion T ∈ SE(3) between two input RGB-D frames (I1,Z1) and (I2,Z2) by
minimizing the photometric and geometric error of all pixels. Pixel correspondences
between the frames are found dynamically through projective data association. We
�rst de�ne a function g(ξ,p) = Rp+ t that transforms a 3D point p using its pose
T = (R, t) = exp(ξ) into another frame. �e warp function τ(x, ξ) : R2 × R6 → R2

back-projects a pixelx in the original frame to 3D using its associated depth and projects
it, a�er transforming, onto the 2D image plane in the second frame:

τ(x, ξ) = π(g(π-1(x,Z1(x)), ξ)) (3.39)

�e photometric error measures the intensity di�erences between corresponding pixels
and avoids tracking failure in planar but textured scenes:

rI(ξ) = I2(τ(x, ξ))− I1(x) (3.40)

�e geometric error ensures robust tracking even in textureless scenes, as long as geo-
metric features are su�ciently present:

rZ(ξ) = Z2(τ(x, ξ))−
[
g(π-1(x,Z1(x)), ξ)

]
z
, (3.41)
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where [·]z extracts the z-coordinate of a 3D point. For each pixel, we combine photomet-
ric and geometric error in a stacked residual ri(ξ) = (rI,i(ξ), rZ,i(ξ))>. Large outlier
residuals are mitigated by integrating a robust loss function ρ : R → R, for example
based on Huber weights or t-distribution, resulting in the �nal optimization problem:

ξ̂ = arg min
ξ

n∑

i

ρ(ri(ξ)). (3.42)

We minimize this energy with the Iteratively Reweighted Least-Squares algorithm,
where the per-residual weights are re-computed a�er each iteration. To improve con-
vergence, the optimization is embedded in a coarse-to-�ne pyramid scheme. As a side-
product, we obtain an estimate for the pose’s covariance Σ = (J>rWJr)

-1 ∈ R6×6, with
the matrixW containing robust per-residual weights.

To regularize the e�ect of noisy depth maps and limit odometry dri�, we perform
camera tracking against the previous keyframe with incrementally fused depth maps. A
new keyframe is created whenever (1) alignment of a new frame against the previous
keyframe fails, (2) a speci�ed pose distance w.r.t. the previous keyframe is exceeded, or
(3) based on a di�erential entropy criterion of the motion estimate.

3.3.2 Global Map Optimization

Incremental frame-to-(key)frame or frame-to-model tracking methods unavoidably ac-
cumulate dri� over time in practice. Online SLAM systems overcome this general prob-
lem by performing a global camera pose optimization in a continuous background pro-
cess. Whenever loop closures are detected, i.e. already visited places are re-visited, the
overall camera trajectory error is corrected to maximize global consistency.

Map Representation �e two most common methods for global map optimization in
SLAM system are Bundle Adjustment (BA) [115] and Pose Graph Optimization (PGO).

�e map in BA consists of absolute camera poses and a large number of 3D land-
marks; the landmarks are observed as repeatable sparse feature points in the input color
images. �ese feature observations are then used as constraints in the global BA prob-
lem to jointly optimize for landmark positions and poses by minimizing the reprojec-
tion error. Since BA scales poorly with increasing map sizes, it quickly becomes too
computationally expensive for real-time reconstruction of large-scale environments, es-
pecially on CPUs. Only few well-engineered RGB-D SLAM systems [28, 82] manage
to achieve real-time performance, hence global BA is commonly used rather for o�ine
post-processing.
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In contrast, the graph-based map representation of DVO-SLAM contains solely ab-
solute keyfames poses as nodes/vertices and relative pose-pose constraints between the
keyframes as edges. With this lean pose graph, even large-scale maps with thousands of
nodes can be optimized in real-time using a generic graph optimization framework like
g2o [63].

Loop Closures �e relative pose-pose constraints in the pose graph stem from incre-
mental frame-to-frame odometry and from detected loop closures of previously visited
keyframes. To �nd loop closures, we �rst search for potential loop closure candidates for
the current keyframe. Firstly, a nearest neighbor search returns spatially close keyframes
within a sphere of prede�ned radius. Secondly, a place recognition method based on
bags-of-words uses extracted visual feature descriptors to retrieve visually similar pre-
vious keyframe candidates from a database built online. In a �nal post-processing step,
an extensive brute-force matching between all keyframes yields additional pose-pose
constraints. For every loop closure candidate, we perform a �rst dense alignment of the
candidate with the current keyframe on a coarse pyramid level. With the estimated rel-
ative pose and covariance matrix, we discard false candidates with the entropy ratio test
also employed for keyframe selection. To incorporate valid loop closures into the map,
we compute a re�ned pose and covariance estimate over all pyramid levels and add a
new pose-pose constraint as edge into the pose graph.

Pose Graph Optimization In practice, the vertices V = {Ki} of a pose graph are the
absolute poses Ti of the keyframesKi = (Ci, Ii,Zi, Ti), transforming from frame i to the
global world coordinates frame. �e graph edges are pose-pose constraints E = {Eij}
between keyframes, where an edge Eij = (Tij,Σij) includes the relative pose from frame
j to frame i along with its estimated covariance matrix. To obtain optimal absolute poses
Ti, we formulate the energy of the Pose Graph Optimization as a NLS problem as follows:

EPG =
∑

(Tij ,Σij)∈E
log(TijT -1

j Ti)>Σ-1
ij log(TijT -1

j Ti), (3.43)

where the residuals measure the relative pose error in the tangent space of SE(3). �e
optimization distributes the overall error over the edges of the pose graph. Hereby, the
covariance matrix of the relative motion serves as residual weight and gives less weight
to uncertain relative pose estimates.

DVO-SLAM continuously runs the PGO in the background, leading to improved
global consistency as loop closures are added on-the-�y. �e �nal corrected camera
trajectory is highly accurate and allows to generate a dense 3D model of the scene with
compelling quality.
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3.4 Dense 3D Surface Representation

�e dense RGB-D input data of a static scene and their estimated camera poses allow
to reconstruct a complete global 3D model. To fuse noisy depth maps from varying
viewpoints, diverse dense 3D surface representations have been developed. In this thesis,
we focus on dense Signed Distance Functions (SDFs) [26, 84] that have proved particularly
successful in combination with commodity RGB-D sensors.

3.4.1 Signed Distance Functions

Implicit surface representations based on SDFs are usually implemented as discrete 3D
voxel grids (Signed Distance Fields) in practice.1 Voxels v ∈ Λ ⊂ R3 are de�ned in a
discrete voxel space domain Λ of a 3D volume. To access locations between discrete
voxel positions, tri-linear interpolation is used.

�e Signed Distance Function D : R3 → R stores the signed distance of a voxel v
to its closest surface. Points v ∈ Λ− in occupied space (i.e. behind the object surface)
have a negative SDF with D(v) < 0, while D(v) > 0 holds for points v ∈ Λ+ in free
space outside. �e reconstructed iso-surface between Λ− and Λ+ is hence de�ned as the
zero level set of the SDF where D(v) = 0. In addition to the signed distance D, each
voxel commonly stores an integration weight W : R3 → R and its fused RGB color
C : R3 → R3.

Truncated Signed Distance Function (TSDF) In a TSDF2, only voxels with D(v)

within a given truncation threshold µ around the actual surface are updated with each
frame. �is truncation e�ectively regularizes noise in the fused depth by averaging lo-
cally, but it also leads to smoothed out surface details that are smaller than µ.

Since operations on the TSDF volume are well-parallelizable over its voxels, real-time
performance is easily achieved using GPGPU programming with graphics cards. How-
ever, scarce GPU memory limits both spatial extents and resolution of dense voxel grids,
since voxels are also allocated for free space. To address this problem, Voxel Hashing is
introduced as a sparse volumetric surface representation in Section 3.4.4.

3.4.2 Surface Fusion

By integrating incoming partial RGB-D frames into a single TSDF volume, we ultimately
obtain a more complete 3D reconstruction. Multiple (temporally consecutive) depth

1We treat the terms Signed Distance Function and Signed Distance Field, both abbreviated as SDF, equiv-
alently without any further distinction in this work.

2�e term SDF generally refers to Truncated SDFs throughout this thesis.
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samples are averaged per voxel using a running weighted average update scheme in
order to e�ectively regularize noisy depth measurements. For an input RGB-D frame
with depth map Zk, color image Ck and absolute pose Tk ∈ SE(3) that transforms from
world coordinates to the local camera frame, we can update all voxels of the 3D voxel
grid independently in parallel.

Computing the TSDF We �rst transform each voxel v ∈ Λ into the input camera
coordinate system using Tk and also extract its z-coordinate in the local frame as z̄k(v):

vk = Tkv, z̄k(v) = [vk]z. (3.44)

Next, we project the local voxel coordinate vk onto the image plane, sample the input
depth and color measurements at the respective 2D pixel location xk = π(vk) and com-
pute an additional integration weight:

ck(v) = Ck(xk), zk(v) = Zk(xk), wk(v) =
cos(θ)

zk(v)2
. (3.45)

�e integration weight wk(v) aims to approximate the uncertainty of the sample, where
θ is the angle between the viewing direction and the normal (computed from the depth
map). �e measure cos(θ) favors frontoparalellity, while 1/zk(v)2 quadratically penal-
izes increasing distance of the surface to the sensor. Please note that there are di�erent
weighting schemes, e.g. using a uniform wk = 1 would instead lead to a simple moving
average update scheme.

To obtain the TSDF value dk(v), we compute the projective signed distance z̄k(v)−
zk(v) as a practical approximation of the true signed distance and truncate it using the
truncation function Ψ : R→ R:

dk(v) = Ψ(z̄k(v)− zk(v)). (3.46)

Ψ truncates the absolute SDF value to a speci�ed maximum threshold µ, which repre-
sents a regularizing narrow band around the iso-surface:

Ψ(d) =

{
min(1, d

µ
) if d ≥ −µ,

0 otherwise.
(3.47)

Frame Integration With the sampled color ck(v), the TSDF value dk(v) and its in-
tegration weight wk(v) derived from input frame k, we update the per-voxel a�ributes
stored in the TSDF voxel grid. When all M input RGB-D frames are given in advance,



32 Chapter 3. Fundamentals

the �nal per-voxel data is obtained using a weighted average of all observations:

D(v) =

∑M
k=1wk(v)dk(v)

Wk(v)
(3.48)

C(v) =

∑M
k=1wk(v)ck(v)

Wk(v)
(3.49)

W(v) =
∑M

k=1
wk(v). (3.50)

However, in real-time RGB-D scanning scenarios the input frames are continuously ac-
quired from the RGB-D sensor and immediately incorporated into the 3D model. In this
case, the TSDF volume is incrementally updated with each frame:

Dk(v) =
Dk−1(v)Wk−1(v) + dk(v)wk(v)

Wk−1(v) + wk(v)
(3.51)

Ck(v) =
Ck−1(v)Wk−1(v) + ck(v)wk(v)

Wk−1(v) + wk(v)
(3.52)

Wk(v) = Wk−1(v) + wk(v). (3.53)

Please note that this static surface integration method does not explicitly deal with dy-
namic scenes. Nevertheless, by saturating the accumulated integration weight W(v) to
a maximum threshold a�er each update, we prioritize more recent measurements and
can, to some degree, react to dynamic changes in the scene. But even without thresh-
olding W(v), inconsistent observations are commonly averaged out over time by the
TSDF fusion process, making it robust to small changes of the environment.

Frame de-integration When an input RGB-D frame k with (Ck,Zk, Tk) is kept avail-
able during the 3D reconstruction process, we can also remove it again from the SDF
volume to reverse the integration procedure. We therefore sample and compute ck(v),
dk(v) and wk(v) analogous to the surface update steps and de-integrate color, TSDF and
weight of the respective voxel in the volume:

Dk−1(v) =
Dk(v)Wk(v)− dk(v)wk(v)

Wk(v)− wk(v)
(3.54)

Ck−1(v) =
Ck(v)Wk(v)− ck(v)wk(v)

Wk(v)− wk(v)
(3.55)

Wk−1(v) = Wk(v)− wk(v). (3.56)

Frame de-integration and integration are combined in Chapter 6 to correct the recon-
structed surface in a voxel-hashed TSDF on-the-�y.
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3.4.3 Surface Extraction

While TSDFs allow to conveniently fuse and update the surface, we require additional
methods to visualize and extract the underlying geometry that is only encoded implicitly.
To achieve this, raycasting enables visual previews of the TSDF online during runtime.
�e Marching Cubes algorithm [75] extracts an explicit geometry representation in the
form of a 3D triangle mesh, which can be analyzed further e.g. for path planning or
collision detection.

Raycasting To generate synthetic views of the surface stored in the TSDF, a ray is shot
through each pixel of a virtual camera, with known pose and intrinsics, into the voxel
grid. We traverse the ray through the volume and determine all intersecting voxels using
the Digital Di�erential Analyzer (DDA) algorithm [11]. When a �rst zero-crossing of the
iso-surface is found along the ray, we calculate a re�ned depth value and store it at the
respective pixel of the virtual depth map. Besides the depth, we also render a synthetic
normal map, with the normals computed directly from the underlying TSDF using �nite
di�erences, as well as a synthetic color image with the interpolated voxel colors at the
intersection point. �e predicted depth map can be used for frame-to-model camera
tracking against the fused 3D model, e.g. using the projective ICP algorithm [84].

Marching Cubes Besides generating virtual views of the implicit iso-surface in the
TSDF, we can also extract an explicit 3D geometry representation embedded in the zero
level set using the Marching Cubes algorithm [75]. �e generated 3D triangle mesh
M = (V ,F), with vertices V and faces/triangles F , is directly usable in the standard
3D rendering pipeline of graphics cards. In the algorithm, we compute for each voxel
cube in the grid an index that represents one of 256 possible con�gurations, based on the
contained zero-crossing of the iso-surface. �e corresponding con�guration generates
polygons to represent the internal iso-surface; the polygon vertex positions are linearly
interpolated according to the neighboring TSDF values. �e �nal complete mesh is then
combined from the polygons of the individual voxel cubes.

Texture Mapping �e 3D triangle mesh generated by Marching Cubes accurately
represents the reconstructed geometry, but o�en consists of millions of vertices and faces
even for smaller objects. As rendering in Computer Graphics becomes ine�cient with
such overly complex geometry, we approach this shortcoming through texture mapping.
�is method achieves high visual model appearance by mapping high-quality textures
to the faces of a simpli�ed 3D mesh with low geometric complexity. Texture mapping
represents a transformation from 3D mesh vertices v = (x, y, z)> ∈ V in object space
to texture coordinates t = (u, v)> ∈ ΩT on a 2D texture image T : ΩT → R3. �is



34 Chapter 3. Fundamentals

parametrization allows to store multiple texels for a single triangle/fragment (de�ned by
the uv-coordinates of its vertices), where each texel t ∈ ΩT stores an RGB color value.
�e graphics cards hardware rasterizes the triangles and performs per-fragment color
lookups by interpolating texture coordinates from adjacent vertices.

�e texture mapping pipeline in Chapter 4 is based on [67] and applicable for meshes
with arbitrary topology. First, the mesh geometry is decimated by reducing the number
of faces and vertices. �is simpli�ed mesh contains larger triangles that are well-suited
for texturing, while still preserving the original shape. To be�er deal with non-trivial
mesh topologies, the mesh is then segmented into planar charts. A�erwards, the in-
dividual charts are uv-unwrapped, i.e. the surface for each chart is projected onto a
2D texture by assigning 2D uv-coordinates to 3D vertex coordinates. We compute this
texture parametrization for example using Least Squares Conformal Maps [67], which
minimizes the angle deformations of the mesh triangles during the projection. �e gen-
erated 2D sub-textures are e�ciently packed onto a single large global texture map that
contains the surface textures for the entire mesh.

�ere is a unique mapping from 2D texels to the corresponding 3D world coordinates
and vice versa. �is barycentric mapping ψ : ΩT → R3 computes for a texel t ∈ ΩT
a 3D position vt = ψ(t) ∈ R3 from its surrounding face vertices using barycentric
interpolation. �is allows to sample the generated 3D surface points and consequently
re-compute per-texel colors. In addition to texture maps, various other surface properties
can be stored in maps with the same uv-coordinates; normal maps for example contain
per-texel normals that allow to store highly resolved geometric details.

3.4.4 Voxel Hashing

�e regular uniform voxel grids introduced in Section 3.4.1 are characterized by their
ine�cient memory utilization because they also allocate voxels for empty space far from
the actual surface. Since the bounded size of GPU memory restricts the reconstruction of
large-scale scenes, more memory-e�cient hierarchical or sparse TSDF representations
have been developed to remedy this problem.

Voxel Hashing [86] is a sparse SDF representation that is substantial for the work
presented in Chapter 6. It encodes the TSDF in a sparse fashion around the actual surface
in order to support larger spatial extents. We explain this 3D representation in more
details in the following.
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3.4.4.1 Data Structure

To avoid unnecessary memory allocations for empty space and enable virtually in�nite
scene sizes, Voxel Hashing employs a two-level data structure. Smaller voxel blocks
of a prede�ned size are allocated only close to the surface and store the signed distance
values. �ese blocks are managed in a hash table and e�ciently addressed using a spatial
hash function. �e data structure is optimized towards GPUs, providing e�cient data
fusion and access with a runtime complexity of both O(1).

Voxel Blocks Conceptually, the whole scene is partitioned into small �xed-size voxel
blocks that altogether constitute an in�nite uniform grid. However, we exploit sparsity
by only instantiating voxel blocks within a truncation region around the reconstructed
surface geometry. �ese subvolumes are dynamically allocated and deallocated to store
the geometry only where surface measurements are observed. Each block by itself is a
regular voxel grid composed of 8×8×8 voxels, where each voxel stores a TSDF value,
color and weight. Implementation-wise, a voxel block array stores the blocks sequen-
tially in memory, managed by an additional array for maintaining all (un-)allocated voxel
blocks and a corresponding index variable for the rearmost array element.

HashMap �e voxel blocks are then managed in a hash table on the GPU with c ∈ N
consecutive hash buckets through a spatial hash function that maps from the 3D world
coordinates of a voxel block to its corresponding hash bucket withm ∈ N entries each.
�erefore, the 3D position of a voxel block is �rst converted to a 3D integer index
(i, j, k)> ∈ Z3 using the voxel size and block dimensions. �e spatial hash function
presented in [113] then maps these integer coordinates to a linearized hash value:

H(i, j, k) = (i · p1 ⊕ j · p2 ⊕ k · p3) mod c, (3.57)

where ⊕ is the XOR operator and p1 = 73856093, p2 = 19349669, p3 = 83492791 are
large prime numbers. In addition to the m entries per bucket, a linked list is appended
to a bucket in the case of an over�ow. Each entry contains the 3D position (i, j, k) to
uniquely identify blocks, a pointer to its allocated block and an o�set to the next linked
list member to resolve collisions.

�e proposed data structure allows to e�ciently retrieve, insert or delete voxel blocks
and resolve hash collisions. All operations commonly �nd the hash entry for a speci�c
voxel block by �rst calculating its spatial hash, then iterating over the entries in the
respective bucket and �nally traversing the appended linked list if necessary. We refer
the reader to the original paper [86] for more in-depth details.
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3.4.4.2 Integration

We require an extended surface fusion procedure in order to integrate new RGB-D
frames into the voxel-hashed TSDF volume. Before fusing a frame, voxel blocks need
to be streamed from GPU to host and vice versa in advance, which will be discussed in
Section 3.4.4.3.

Surface Allocation As the fused surface model is extended dynamically, we �rst need
to allocate non-existing voxel blocks that have surface measurements in the RGB-D
frame. We therefore instantiate rays from the frame’s camera center through all pixels
and use the DDA algorithm to determine all intersected voxel blocks. We only consider
blocks along the ray that are within the TSDF truncation interval of the corresponding
depth sample. All traversed voxel blocks are allocated and inserted into the hash map,
if not already allocated.

Surface Update To fuse the surface, we select voxel blocks within the current camera
frustrum and then update the voxels with the observed surface information. �is is done
by iterating over all blocks and checking whether their centers approximately project
into the (slightly extended) camera frustrum. Each voxel in the selected voxel blocks
that is within the truncation region is then updated analogous to the standard fusion
procedure explained in Section 3.4.2.

Garbage Collection Finally, a garbage collection step removes voxel blocks that were
unnecessarily allocated due to erroneous, unreliable or noisy depth measurements. Ide-
ally, the surface fusion smoothes out the surface information stored in these blocks over
time. Obsolete blocks are detected from the maximum per-voxel weight or minimum
TSDF within each block and �nally removed from the Voxel Hashing data structure.

3.4.4.3 Streaming

�e scarce amount of available GPU memory poses a practical limitation on the size and
resolution of the reconstructed scene. To enable large-scale surface reconstruction at
e�cient real-time runtimes, we keep only voxel blocks that approximately reside within
the current camera frustum in GPU memory. �is frees up space in GPU memory to
allocate new voxel blocks and map even large-scale environments. All inactive voxel
blocks are streamed out-of-core to the host memory and swapped in when they are
required again on the GPU. Instead of also using a hash map in the host memory, the
world space is partitioned into chunks of uniform size. Each chunk contains a linked list
with the streamed out voxel blocks and a linked list with the voxel block descriptors.
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GPU-to-Host Streaming A�er estimating the camera pose for a new frame, blocks
outside the active region are selected for streaming by checking whether they reside
within a sphere of constant radius around the camera center (plus some constant o�set).
All selected blocks are condensed for e�ciency, streamed from GPU to host and deleted
from the hash map on the GPU. �e voxel blocks on the host are then referenced in the
respective chunks they lie in.

Host-to-GPU Streaming If a chunk falls entirely into the sphere around the camera
center again, the whole chunk with all its voxel blocks is streamed to the GPU again all at
once. To ensure constant time, only the chunk closest to the sphere center is streamed
in. �is is implemented by manually increasing the index pointer of the voxel block
array for all blocks of the chunk and then uploading the entire chunk to intermediate
GPU bu�ers. All uploaded blocks are �nally inserted into the hash map using a modi�ed
insertion algorithm without block allocation steps.

Synchronization of Voxel Block Allocation As duplicate hash map entries are
problematic for the continuous host-to-GPU streaming, a binary array on the GPU en-
codes which chunks are currently stored on the host. �is array is then checked when
a new frame is about to be integrated, in order to prohibit that a voxel block is allocated
in case is already in a chunk on the host.

3.5 Shading-based Shape Re�nement

�e noisy depth maps captured from commodity RGB-D sensors and the over-smoothed
3D surface geometry encoded in a fused SDF characteristically lack �ne-scale surface
details. Shape-from-Shading (SfS) techniques provide an elegant solution to recover high-
quality geometry using the color images in RGB-D frames, which usually have a higher
resolution than the associated depth maps. �e preliminaries presented in this section
describe and complement the fundamental principles for the work in Chapter 5.

3.5.1 Shading Model

�e shading equation (or rendering equation) describes the physical light transport model
and relates the re�ected irradiance of a surface with its geometry, material properties and
incident illumination (Figure 3.1). For each 3D point p on the surface S , the following
model computes the re�ected irradiance B as a function of surface normal n, material
albedo a and lighting coe�cients `m:

B(p) = a(p)
b2∑

m=1

`mHm(n(p)), (3.58)
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albedoshading illuminationnormals
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Figure 3.1: �e shading model describes the physical light transport. It relates the emi�ed shad-
ing/irradiance (blue) with the underlying material properties (red), normals/geometry (green)
and incident illumination (yellow).

where the emi�ed shading B is ultimately observable as intensities in input images. �e
global scene lighting is parametrized with Spherical Harmonics (SH) basis functions Hm

with lighting coe�cients `m (Section 3.5.4) that illuminate a surface with normals n(p);
the spatially-varying surface albedo parameters a(p) describe the intrinsic color of the
material. While the points p ∈ S are independent of a speci�c surface representation,
the underlying geometry is usually represented as a depth map or as a TSDF volume in
practice. More expressive material re�ectance models exist, e.g. Bidirectional Re�ectance
Distribution Function (BRDF), but it is highly challenging to estimate their parameters in
unconstrained real-world se�ings.

3.5.2 Shape-from-Shading

�e challenging inverse problem of Shape-from-Shading tries to infer 3D shape from
a single image (or multiple images) of a scene. �e underlying intuition is that �ne
geometric features under illumination inherently result in shading cues in an image ob-
serving the scene. By inverting the image formation model, these cues can then be used
to estimate 3D geometry and surface properties. A physical model of the light transport
process, e.g. the shading model in Equation (3.58), is utilized to estimate illumination,
intrinsic material properties (e.g. albedo) and surface geometry of a scene.

However, this problem is highly ill-posed and challenging due to its considerable
ambiguity in uncontrolled environments with usually unknown lighting and material
re�ectance. To tackle the problem e�ectively, strong assumptions on both scene (e.g.
Lambertian surface re�ectance) as well as illumination are usually imposed on the scene.
For more details on SfS, we recommend the interested reader to investigate the extensive
survey presented in [131].
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3.5.3 Shading-based Re�nement

Shading-based Re�nement (SBR) describes the method of applying SfS techniques to an
initial surface geometry estimate, with the goal of recovering �ne-scale geometry using
the higher resolution color images. Generally, the coarse shape obtained from RGB-D
data, i.e. either the captured depth maps or fused coarse SDFs, can be utilized as initial
shape prior for both surface geometry and normals. �is prior guides the SfS process and
allows to resolve ambiguities among lighting, surface geometry and albedo. In particular,
it is possible to overcome the well-known Bas-Relief ambiguity [17] and even deal with
unknown material re�ectance variations and uncalibrated lighting.

SBR approaches have converged to an o�en similar pipeline in recent years. �ere-
fore, an inverse rendering optimization is usually coupled with an e�ective parameteri-
zation of a shading model similar to Section 3.5.1:

1. �e re�ned surface is initialized with the coarse surface estimate obtained from
RGB-D data and the albedo is set to a constant uniform value.

2. We estimate the scene lighting, given the current estimates of surface geometry
and material albedo (Section 3.5.4).

3. We optimize the surface geometry and material albedo, given the estimated light-
ing (Section 3.5.5).

To achieve convergence, steps 2 and 3 are iterated and o�en embedded in a coarse-to-�ne
pyramid scheme.

Assumptions While the use of depth maps is highly bene�cial for SBR, we still need
some (less severe) assumptions about scene and illumination to be�er constrain the chal-
lenging problem in practice. Firstly, we assume uncalibrated natural illumination. Sec-
ondly, we represent input luminance, light color, albedo and re�ected irradiance (shad-
ing) with gray-scale intensity values instead of three RGB color channels for simplicity.
�irdly, a common and in practice very important assumption is that surfaces in the
scene are Lambertian, i.e. the re�ected irradiance is independent of the viewing direc-
tion and not capable of representing specularities.

3.5.4 Lighting Estimation using Spherical Harmonics

One of the most relevant steps in every SfS approach consists of estimating the scene
lighting. �e coarse surface normals, which can be computed from a given depth map
obtained from RGB-D sensors, aid to approximate the global scene illumination and
tackle this problem more robustly.
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Spherical Harmonics While there are various light representations in Computer
Graphics pipelines (e.g. point light sources, etc.), Spherical Harmonics (SH) [88] have
proven particularly successful in inverse rendering problems. �ey provide a good ap-
proximation for Lambertian surfaces under natural illumination, where the incident ir-
radiance for surface points is known to be smooth.

For a point p ∈ S on the surface, the SH basis functions Hm : R3 → R encode the
incident scene lighting as a function of the unit surface normal n = nx,ny,n

>
z . With

only nine 2nd order SH basis functions and their respective lighting coe�cients ` =

(`1, . . . , `b2)
> (with b = 3 bands), we obtain a faithful approximation for the irradiance

of di�use objects under low-frequency illumination:

H0(n) = 1.0 H1(n) = ny H2(n) = nz H3(n) = nx

H4(n) = nxny H5(n) = nynz H6(n) = −nxnx − nyny + 2nznz

H7(n) = nznx H8(n) = nxnx − nyny

Since the lights are assumed to be in�nitesimally far away and thus are purely direc-
tional, the coe�cients `m are spatially invariant. While SH lighting represents di�use
and ambient lighting, neither specularities nor occlusions are considered.

Lighting Estimation �e task of estimating the scene illumination from an input
intensity image becomes signi�cantly more tractable with additional knowledge about
the scene geometry. With the presence of RGB-D data, we take advantage of rough
surface normals from the (smoothed) input depth maps or the fused SDF volume. We
initially set the material albedo to a constant uniform value; it will however be adjusted
as the geometry and albedo optimization advances (Section 3.5.5).

We compute the scene lighting coe�cients `m by minimizing the di�erence between
the forward shading B in Equation (3.58) and the observed input intensity I over all
surface points p ∈ S :

Eshading =
∑

p∈S
‖B(p)− I(p)‖2 (3.59)

=
∑

p∈S

∥∥∥∥a(p)
∑b2

m=1
`mHm(n(p))− I(p)

∥∥∥∥
2

, (3.60)

with given surface normals n(p) and albedos a(p). We �nd the lighting coe�cients
`m that minimize the energy Eshading by solving an overdetermined linear least-squares
problem. �is makes the method robust towards high-frequency illumination and ge-
ometry changes, such that we obtain an accurate global lighting model.
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3.5.5 Geometry and Albedo Re�nement

Once the lighting coe�cients are determined, we use shading cues from the observed
input intensity images to perform the actual Shape-from-Shading. We optimize for both
the surface geometry and dense spatially-varying material albedo, because otherwise
albedo variations could be interpreted as geometry changes and consequently lead to
texture-copy artifacts. Even with prior knowledge on the shape, the problem of separat-
ing albedo and shading is particularly hard for high-frequency textures.

Starting with the coarse shape estimate obtained from RGB-D data and a uniform
albedo, we tackle the same inverse rendering problem speci�ed in Equation (3.60). We
solve for the re�ned geometry through its surface normal n(p) and for the albedo a(p)

by again minimizing the di�erence between estimated shading and its input luminance
over all surface points. By formulating the surface normals as a function of the encoded
surface geometry, we implicitly re�ne the underlying geometry.

�e proposed least squares objective is highly non-linear and solved in an alternat-
ing or joint optimization. Since the speci�ed SfS problem is highly ill-posed, additional
regularization terms are required to reduce the e�ect of noise and to regularize the shad-
ing. �is leads to the following overall minimization objective with multiple cost terms,
similar to the formulation used in Chapter 5:

Esfs =
∑

p∈S
λshadingEshading + λvEv + λsEs + λaEa, (3.61)

with data term Eshading, geometric regularizers Ev and Es, albedo regularizer Ea and
their respective weighting hyperparameters λshading, λv, λs, λa.

Shading Constraint �e shading constraintEshading tries to maximize the consistency
between the estimated forward shading of surface points and their sampled intensities in
the input luminance images. To achieve this, geometry and albedo are gradually re�ned
as the optimization progresses. While this data term follows the very same objective
(Equation (3.60)) as the lighting estimation, a gradient-based shading constraint may be
more robust in practice. Here, instead of directly comparing the forward shading with
its input intensity, the gradients of the rendered shading are compared with the gradient
of the respective intensities to improve robustness. �e gradients are calculated using
discrete (forward) di�erences from neighboring points on the surface.

Albedo Regularization To separate albedo from shading and to avoid over��ing or
texture-copy artifacts, an albedo regularizerEa is usually introduced to guide the albedo
re�nement. To e�ectively regularize the spatially-varying albedo, well-working priors
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are o�en designed based on various heuristics and assumptions. Since the albedo is
assumed to be piecewise smooth, a weighted Laplacian regularizer is o�en employed.
Chromaticity changes, i.e. changes in colorfulness, o�en go along with changes of the
intrinsic material. �e weights of the anisotropic Laplacian regularizer can consequently
be set based on the chromaticity di�erences of two neighboring surface points, or based
on the spatial distance to geometry discontinuities.

Geometry Regularization As noise highly a�ects the robustness of SfS, we need reg-
ularization on the geometry to ensure a stable shape re�nement. A surface stabilization
constraint (or depth constraint) Es enforces the re�ned geometry to stay close to the ini-
tial coarse reconstruction. �is prior is also essential for resolving the related Bas-Relief
ambiguity. A volumetric regularizer Ev enforces smoothness in the distance values be-
tween neighboring surface points, allowing only for subtle changes in the surface. �is
smoothness constraint is commonly implemented as an isotropic Laplacian regularizer.
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(a) RGB input
images

(b) Vertex colors (c) Texture mapping using
super-resolution keyframes

Figure 4.1: We propose an e�cient method for generating high-quality textures from low-
resolution RGB-D frames. Our approach signi�cantly improves the visual quality of recon-
structed 3D models while it is still fast enough for applicability in real-world 3D scanning sce-
narios.

4.1 Introduction

�e wide availability of consumer RGB-D sensors has boosted research in 3D reconstruc-
tion in recent years. State-of-the-art methods in 3D model reconstruction yield impres-
sively accurate geometric reconstruction in real-time [84, 126]. Such 3D reconstructions
are well suitable for 3D printing [110]. Fast and robust estimation of high-quality vi-
sual appearance (i.e. texture) of the models has been given less a�ention. �is plays,
however, an equally important role for 3D modeling, for instance, of persons or objects.

Modern texture mapping approaches can obtain good-quality results, but are typ-
ically slow and impractical for instant 3D scanning applications. As scanning the 3D
geometry with RGB-D sensors is possible in real-time, also the texture mapping process
should be fast. We propose a method for fast and accurate reconstruction of geome-
try as well as appearance. Figure 4.1 shows a textured 3D model generated from low-
resolution (LR) RGB-D input frames with our approach. For geometric reconstruction,
we use a direct keyframe-based RGB-D SLAM method in order to estimate the camera
trajectory consistently. Using these pose estimates, the individual frames are integrated
into a volumetric truncated signed distance function (TSDF) representation, from which
a 3D mesh is extracted. For this mesh we �nd a parametrization suitable for texture
mapping. We signi�cantly improve the quality of the generated texture maps through
super-resolution (SR) fusion of RGB-D frames and deblurring. Simple weighted median
�ltering of projected color values onto the texture provides high-quality appearance re-
sults.
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In experiments, we compare our method to standard pipelines that perform per-
vertex coloring or texture mapping based on the original low-resolution frames. We
demonstrate superior results of our method with respect to texture quality. We also
evaluate the timing of our method and �nd that it yields high-quality results in reason-
able and practical time for 3D scanning applications.

4.1.1 Related Work

Since the recent advent of low-cost commodity RGB-D sensors, there has been exten-
sive research in the �eld of dense 3D reconstruction from RGB-D data. While gener-
ating highly accurate 3D models from RGB-D data has been investigated intensively,
there seems to be a shortage of research in improving the visual appearance of such
reconstructions.

To obtain geometrically accurate 3D reconstructions, Newcombe et al. [84] fuse
RGB-D frames into a TSDF Volume and perform camera tracking against this model.
Sturm et al. [110] developed a similar approach for reconstructing 3D printable models
of persons, paired with direct TSDF tracking [21]. Other RGB-D SLAM methods [32,
44, 7, 109] are based on frame-to-(key)frame tracking with trajectory optimization and
data fusion into a single model volume. Kerl et al. [57] developed a robust dense visual
SLAM system that shows limited dri� by combining dense robust visual odometry es-
timation with pose graph optimization. SLAM systems for reconstructing and mapping
large-scale environments have also been developed [86, 106].

�e systems presented above can produce models of high metric precision, however
the state-of-the-art for representing the visual appearance in such 3D reconstruction
systems is still volumetric averaging of per-vertex colors, such that the color resolution
is limited to mesh resolution. Mostly, these vertex colors are computed as a weighted
average of the observed colors for the respective vertices [84, 110, 119]. To improve
the appearance, weights based on the normals computed from the depth image are em-
ployed; to remove further artifacts, pixels close to depth discontinuities are discarded.

However, to create photo-realistic 3D models of real-world objects, the challeng-
ing problem of generating and mapping high-quality textures from multiple input color
images has been investigated intensively in the �eld of computer graphics for decades.
Without increasing the geometric complexity, textures (usually of higher resolution than
the mesh resolution) are mapped onto the mesh to enhance the visual quality, with cam-
era poses assumed to be given. [83, 103] compute the texel colors using a weighted
average of the observations in the input color images. Instead of using the weighted av-
erage, Coorg and Teller [24] use a color computation scheme based on weighted median
to cope with color outliers in the observations. Eisemann et al. [30] correct for inac-
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curacies in camera poses and calibration using optical �ow for mapping images to the
texture map. Lempitsky and Ivanov [66] and Gal et al. [36] select a single input view per
face and minimize seams, however the approaches su�er from high runtimes because of
the computationally expensive combinatorial optimization. Variational super-resolution
methods, e.g. by Goldlücke et al. [39], produce compelling results, paired with imprac-
tical computation times of several hours in a controlled setup with only a limited num-
ber of input views. Waechter et al. [116] texture large-scale scenes reconstructed with
Structure-from-Motion, however they rely on high-quality input images and have long
computation times with up to 80 minutes per dataset.

�e scenario of improving the visual appearance in RGB-D based 3D reconstruction
has not been tackled extensively yet. Meilland and Comport [79] fuse low-resolution im-
ages into a single high-resolution keyframe by applying a super-resolution technique.
�e fused keyframes exhibit an impressive level of detail, but the approach does not cre-
ate a globally consistent 3D model. Recently, Zhou and Koltun [133] have shown that the
colors of 3D models obtained from handheld RGB-D cameras can be improved substan-
tially; within several minutes, they alternatingly optimize camera poses and non-rigid
correction to correct for imprecise camera localization and for complex distortions re-
sulting from inaccurate geometric models. However, they use vertex colors of an upsam-
pled mesh, leading to an increasingly complex geometry with a still limited resolution
compared to texture maps.

To the best of our knowledge, we present the �rst method for combining keyframe
fusion with texture mapping in an RGB-D based 3D reconstruction scenario. Our prac-
tical approach is e�cient, with runtimes within a few minutes, and suitable for gener-
ating high-quality texture maps from low-quality color images obtained from consumer
RGB-D sensors.

4.1.2 Contributions

In summary, we propose a novel fast and robust 3D modeling approach that provides ac-
curate geometry and high-quality appearance. Our method uses direct keyframe-based
RGB-D SLAM to �nd a consistent global image alignment, and extracts a high-quality
mesh from a fused TSDF representation of the images.

• �e mesh is parametrized in a texture map, which we �ll from fused super-
resolution RGB-D keyframes.

• �e super-resolution RGB-D keyframes are sharpened using image deconvolution.

• Fast texture mapping is performed using the super-resolution keyframes. High
quality of the texture is obtained through weighted median �ltering of the
keyframe projections.
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4.2 3D Reconstruction System

In this section, we �rst describe the RGB-D sensor, the acquired data and the used cam-
era model. We then introduce our 3D reconstruction system based on DVO-SLAM by
Kerl et al. [57] and the data fusion into a TSDF volume as used by Newcombe et al. [84].

RGB-D Data Acquisition A calibrated Asus Xtion Pro Live RGB-D sensor provides
us with RGB color and depth images at 30 fps at a resolution of w × h (in this case,
640 × 480 pixels). To limit automatic color correction during data acquisition, we �x
exposure and white balance. We assume that depth and color images are registered.
Since both color and depth images are utilized for real-time camera tracking, we cannot
use the SXGA (1280×1024) color images provided at only 10 fps. We denote RGB images
with C : ΩC → R3 and depth images with Z : ΩZ → R.

Camera Model For the RGB-D sensor, we assume the pinhole camera model with
focal length fx, fy and optical center cx, cy. �e projection function π maps 3D points
p = (X, Y, Z)> to 2D pixels x = (x, y)>:

x = π(p) =

(
X

Z
fx + cx,

Y

Z
fy + cy

)
, (4.1)

while 2D pixel locations x are mapped back to 3D points using their depth values Z(x)

by the inverse projection π-1:

p = π-1(x,Z(x)) =

(
x− cx
fx

,
y − cy
fy

, 1

)>
Z(x). (4.2)

3D Reconstruction Framework DVO-SLAM performs dense camera tracking in
real-time on the CPU and minimizes the photometric and geometric error between two
RGB-D input frames to compute the relative pose. �e use of color images signi�cantly
improves camera tracking and limits the dri� of the SLAM system. Similarly, we per-
form an entropy-based loop closure detection and continuously optimize the pose graph
in order to obtain a globally consistent camera trajectory.

To reconstruct a dense 3D model in a post-processing step, we fuse the N ac-
quired RGB-D frames into a TSDF volume using their estimated absolute camera poses
Ti = (R, t) ∈ SE(3) (with i ∈ 1 . . . N , t ∈ R3 and R ∈ SO(3)). We extract a 3D
mesh M = (V ,F) with vertices V and faces F using the Marching Cubes algorithm.
�e camera poses exhibit only very limited dri� due to the global pose graph optimiza-
tion and hence the resulting 3D model is geometrically accurate.
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4.3 Keyframe Fusion

Given an accurate geometric 3D model, reconstructed as described above, and the abso-
lute camera poses for the input frames, we �rst fuse Nw neighboring frames into a com-
mon keyframe representation of higher resolution. We denote the color image of such
a SR keyframe as C∗ : ΩC → R3 and the corresponding depth image as Z∗ : ΩZ → R.
To store the depth fusion weights, we introduce a depth weight imageW∗ : ΩW → R.
�ese SR keyframes have the dimensions sw × sh, where s is a scale factor that deter-
mines the amount of upsampling. We set the pose T ∗ of the SR keyframe to the �rst
pose of the Nw LR frames to be fused. To integrate the LR images into the SR images,
we additionally need to de�ne the scale-dependent projection πs and inverse projection
π-1
s , which use the upscaled intrinsic parameters sfx, sfy, scx, scy.

Depth Fusion We �rst fuse all Nw LR depth images into the corresponding SR depth
image. �erefore, we compute the weights for the measured depth values, which is based
on a theoretical random error model [59], as follows:

wz(d) =
fb

σd
d−2, (4.3)

with the depth camera’s focal length f , baseline b and disparity error standard deviation
σd. Next, we transform the current depth image i into the keyframe’s camera coordinate
system using the relative transformation T ∗-1Ti between them:

p∗ = (X∗, Y ∗, Z∗)> = T ∗-1Tiπ-1(x,Zi(x)). (4.4)

We then use the image point x∗ = πs(p
∗) of the projection into the keyframe depth

image to update the fused depth values and depth weights by weighted averaging:

Z∗(x∗) =
W∗(x∗)Z∗(x∗) + wz(Zi(x))Z∗

W∗(x∗) + wz(Zi(x))
(4.5)

W∗(x∗) =W∗(x∗) + wz(Zi(x)) (4.6)

We achieve sub-pixel precision by updating all four neighboring depth values when
transforming and projecting a depth value into the SR depth map. Occlusions are con-
sidered by fusing only the closest depth values within a given distance. A�er integrating
all Nw LR depth images, we obtain the fused depth image Z∗ for the SR keyframe.

Color Fusion We use the fused depth image Z∗ to project the SR color image pixels
into the LR color images. �is allows us to directly look up the observed color values ci
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using bilinear interpolation:

ci = Ci(π(Ti-1T ∗π-1
s (x,Zi(x)))). (4.7)

For every observation ci, we also compute its weight

wci = Biwz(Zi(x)), (4.8)

where Bi is a measure of blurriness of the color image Ci according to Crete et al. [25],
which downweighs views with strong motion blur. Integrating the depth into the color
weights enforces that objects closer to the camera obtain higher weights. We store the
observed colors and weights for pixel x in its set of color observationsOx = {(ci, wci )}.
In order to increase color �delity, we prune observations from Ox with missing depth
values or that are within a window of 7× 7 pixels around depth discontinuities. Instead
of calculating the weighted mean for averaging the color, we calculate the weighted
median, for each color channel separately:

C∗(x) = arg min
c

∑

(ci,wc
i )∈Ox

wci‖c− ci‖. (4.9)

Since we usually have many observations per pixel, the use of weighted median is valid,
which results in an overall sharper texture. �e median selects the center probable value
in the distribution of colors, while the mean would be heavily a�ected by outliers. Inte-
grating weights into the median allows for incorporating a con�dence or a prioritization
of the individual color samples.

Before fusing the LR color images into the SR keyframe, we apply a Wiener �lter on
these LR color images as a pre-processing step. �is removes motion blur and notably
improves the sharpness of the visual appearance.

Note that we perform the keyframe fusion as a post-processing step; however, it is
reasonable to perform this step online whenever a new keyframe is detected.

4.4 High-�ality Texture Mapping

In this section, we introduce our method for texture mapping from fused SR keyframes.
First, we explain the computation of per-vertex colors based on a weighted median �l-
tering scheme, applicable also for recomputing the vertex colors. We a�erwards present
our texture mapping approach, in which we compute the texel colors using the weighted
median from SR keyframe color images.
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4.4.1 Vertex Color Computation

In order to improve the colors of 3D meshes, a very common approach is to recompute
the per-vertex colors of the 3D mesh vertices v ∈ V . We therefore need to determine the
views, in which a vertex is visible. To check if vertex v ∈ R3 is visible in view i, we render
the meshM into a virtual image using its pose Ti and the depth camera intrinsics. v is
visible in the image, if its depth value is compatible with the depth in the depth bu�er
used for rendering. We then get the observed color cvi using bilinear interpolation:

cvi = Ci(π(Ti-1v)). (4.10)

�e observation weights wvi of vertex v in its input views are computed as follows:

wvi =
cos(θ)Bi

d2
, (4.11)

where Bi is again the blurriness measure of color image Ci and d is the distance from
v to the camera corresponding to Ci; θ represents the angle between the vertex normal
and the view vector at v for the camera. We store all color observations for vertex v and
their respective weights in Ov = {(cvi , wvi )}, observations close to depth discontinuities
are discarded.

We can now compute the �nal vertex color c∗v as the weighted mean of the observa-
tions:

c∗v = arg min
cv

∑

(cvi ,w
v
i )∈Ov

wvi ‖cv − cvi ‖2. (4.12)

Since we assume that each vertex has many observations, we can also compute the �nal
color c∗v (separately for each color channel) using a weighted median �ltering scheme:

c∗v = arg min
cv

∑

(cvi ,w
v
i )∈Ov

wvi ‖cv − cvi ‖. (4.13)

Given enough views that observe a vertex, this simple method already improves the
mesh colors and results in a more detailed appearance, as demonstrated in Section 4.5.1.

4.4.2 Texture Mapping

Based on the introduced weighted median color computation scheme, we employ texture
mapping to further improve the appearance of 3D models. In particular, we use the
fused SR keyframes of Section 4.3 for texture mapping, leading to a signi�cantly higher
resolved visual appearance. We denote a texture as T : ΩT → R3, which stores a color
value at every texel t ∈ ΩT .
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Texture Parametrization For working with texture maps, a three-dimensional mesh
needs to be projected onto a planar two-dimensional texture T �rst. We beforehand
simplify the mesh geometry by decimating the number of mesh triangles. �is usually
results in larger triangles that can be textured more e�ciently with larger patches, while
the geometry is still preserved well. While di�erent planar parametrization methods
exist, our approach is in general independent of the chosen parametrization, as long as
the mesh faces contain texture coordinates. In practice, we mostly use Least Squares
Conformal Maps by Levy et al. [67], or a simple arrangement of the mesh triangles on
the texture within a rectangular grid.

Since there is a unique mapping from a texel to its containing face, we can de-
termine the respective surrounding vertices for each texel. �e barycentric mapping
ψ : ΩT → R3 performs a one-to-one mapping from 2D texel coordinates to 3D world
coordinates. Using barycentric interpolation, we can compute interpolated 3D vertices
vt corresponding to 2D texels t and vice versa:

vt = ψ(t). (4.14)

Texel Color Computation To compute the texel color for every texel t in the tex-
ture map, we employ only the N∗ SR keyframes (C∗l ,Z∗l ) with camera poses T ∗l (with
l ∈ 1 . . . N∗), generated as described in Section 4.3.

We collect the observations of the texel by �rst computing its 3D vertex posi-
tion vt according to Equation (4.14). We then determine the set of color observations
Ot = {(ctl , wtl)} for vt analogous to Equation (4.10) and Equation (4.11). From these ob-
servations, we compute the �nal texel colors by again applying a weighted median color
computation scheme:

T (t) = arg min
ct

∑

(ctl ,w
t
l )∈Ov

wtl‖ct − ctl‖. (4.15)

4.5 Experimental Results

In this section, we evaluated our approach on real-world datasets. �ree evaluation
sequences face, phone and keyboard were acquired using a handheld Asus Xtion Pro Live,
details are given in Table 4.1. We captured RGB-D data at a low resolution of 640 × 480

pixels at 30 fps, with �xed exposure and white-balance.
�e following experimental results demonstrate that (1) vertex recoloring using

weighted median �ltering improves the colors of 3D models compared to weighted
mean, (2) fusing LR input frames into SR keyframes and using them for texture map-
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face phone keyboard

# RGB-D frames 512 1359 642
# vertices (original) 159583 82942 155842
# triangles (original) 319176 165888 311686
# triangles (decimated) 40000 40000 40000

Table 4.1: Details of the acquired real-world datasets and the corresponding reconstructed 3D
meshes.

ping improves the visual quality substantially, and (3) the proposed method is e�cient
and practical for real-world 3D scanning applications. All experiments were performed
on a standard desktop PC with Intel Core i7-2600 CPU with 3.40GHz and 8GB RAM.

4.5.1 Vertex Recoloring using Weighted Median

First, we demonstrate that the visual appearance of 3D models can already be im-
proved by using a weighted median color integration scheme. Figure 4.2 shows that
the weighted mean in combination with discontinuity checks already improves the ver-
tex colors signi�cantly compared to unweighted mean. �e weighted median increases
the sharpness and level of detail even further and leads to a more realistic model. Still,
the texture resolution is limited by the number of vertices so far. Mesh subdivision in-
creases the number of vertices, but the increasing geometric mesh complexity makes
processing the mesh intractable.

4.5.2 Keyframe Fusion and Texture Mapping

A�er showing that a weighted median color computation scheme has advantages com-
pared to weighted mean, we investigate how texture mapping with weighted median
�ltering further improves the appearance of 3D models. In the following, we show quali-
tative results of texture mapping from fused SR keyframes in comparison with per-vertex
colors, which serves as currently most popular state-of-the-art.

By fusing several LR color images into a SR keyframe, we obtain high-quality frames
from low-quality input data. Depending on the scale factor s, the SR images have a
resolution of 1280× 960 (s = 2) or 2560× 1920 (s = 4). Figure 4.3 illustrates that both
color and depth of the resulting fused SR keyframes exhibit more details compared to
the LR input color images and depth maps.

An important aspect of the keyframe fusion is the deconvolution of the input images
with a Wiener �lter for deblurring. Figure 4.4 shows the results of generating a texture
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(a) Unweighted mean (b) Weighted mean (c) Weighted median

Figure 4.2: Improving the vertex colors of 3D models: (a) colors computed using the unweighted
mean of the vertex can be improved by (b) using the weighted mean. (c) Applying the weighted
median further improves the visual quality and preserves a higher level of detail.

map for a 3D model from SR keyframes with and without deconvolution. �e texture
computed from the deblurred SR keyframes (Figure 4.4(b)) exhibits a sharper texture with
substantially more details compared to Figure 4.4(a). For deblurring, a Wiener �lter is
applied on the LR input images as a pre-processing step before fusing them into the
keyframes.

Next, we compare the reconstructed surface colors depending on the scale factor s
for the SR keyframe dimensions. �e textures shown in Figure 4.5 show that the level
of detail can be slightly improved by using a higher keyframe resolution of 2560× 1920

(s = 4) compared to a resolution of 1280× 960 (s = 2).
For comparison, Figure 4.6 �nally shows the improvements of texture mapping with

SR keyframes compared to texture mapping with the LR input images only.
To demonstrate the practicability of our approach, we have reconstructed 3D models

of the face, phone and keyboard datasets. All textures have been computed by fusion
into SR keyframes of dimensions 2560× 1920 and using weighted median �ltering for
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(a) LR input color image (b) Fused SR color image

(c) LR input depth map (Phong shading) (d) Fused SR depth map (Phong shading)

Figure 4.3: Fusing several LR input color images into a single SR keyframe allows to directly
obtain high-quality color images. Compared to the LR input color image (a), the fused SR color
image (b) with a resolution of 2560× 1920 (scale s = 4) exhibits more details. Similarly, the LR
input depth map (c) shows signi�cantly more noise than the fused SR depth map (d).

computing the texel colors. As a pre-processing step, a Wiener �lter has been applied to
the LR input RGB images. Figures 4.1, 4.7 and 4.8 show the results. �e texture mapped
3D models provide a photo-realistic appearance and exhibit �ne surface details that are
not visible in the models with per-vertex colors only.

In Figure 4.8(c), the cable at the top of the keyboard is however not represented
correctly in the texture. �is may either be due to inaccuracies in the estimated camera
trajectory or due to an inaccurate geometric model. To compensate for this, an approach
similar to Zhou and Koltun [133] must be developed, which optimizes the camera poses
as well as non-rigid image corrections.
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(a) Without deconvolution (b) With deconvolution

Figure 4.4: (a) �e textures computed from SR keyframes are substantially improved by (b) ap-
plying deconvolution (e.g. using a Wiener �lter) to the input images before the keyframe fusion.

(a) Keyframes of dimensions 1280× 960 (b) Keyframes of dimensions 2560× 1920

Figure 4.5: (a) �e textures generated from keyframes of dimensions 1280× 960 show slightly
fewer details than (b) the ones generated from keyframes of dimensions 2560× 1920.

(a) With LR input frames (b) With SR keyframes

Figure 4.6: (a) Texture mapping with LR input frames only yields inferior results compared to (b)
texture mapping with SR keyframe fusion.
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(a) RGB input
images

(b) Vertex colors (c) Texture mapping using
SR keyframes

Figure 4.7: 3D model of the phone dataset reconstructed and textured using our approach: We
show (a) some input images and (b) the 3D model with vertex colors only. (c) �e texture mapped
reconstruction provides a signi�cantly more detailed visual appearance.

(a) RGB input
images

(b) Vertex colors

(c) Texture mapping using SR keyframes

Figure 4.8: 3D model of the keyboard dataset reconstructed and textured using our approach: We
show (a) some input images and (b) the 3D model with vertex colors only. (c) �e texture mapped
reconstruction provides a signi�cantly more detailed visual appearance.
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face phone keyboard

s t [s] fps t [s] fps t [s] fps

Texture Mapping 91.5 5.6 330.8 4.1 128.8 5.0

Keyframe Fusion 2 57.5 8.9 222.0 6.1 72.1 8.9
SR Texture Mapping 2 18.7 2.8 50.7 2.7 18.8 3.5

Keyframe Fusion 4 100.9 5.1 362.8 2.2 214.9 3.0
SR Texture Mapping 4 26.4 2.0 58.2 1.4 42.6 1.5

Table 4.2: Runtimes (in seconds) for texture mapping without SR keyframe fusion and texture
mapping with SR keyframe fusion.

4.5.3 Runtime Evaluation

We �nally evaluate the runtime and e�ciency of the proposed texture mapping method,
in particular the runtimes for keyframe fusion and texture mapping. Table 4.2 gives
the results. With runtimes of between one and a few minutes, our approach is a very
e�cient method for generating high-quality texture maps. Since our implementation is
based only on the CPU, a major speed-up can be achieved by porting the algorithm to
the GPU. �is holds in particular for the keyframe fusion, which has already been shown
to work in real-time on a GPU [79].

4.6 Conclusion

We presented a novel e�cient method for high-quality texture mapping in RGB-D-based
3D reconstruction approaches. Our method fuses low-quality color images from com-
modity depth sensors into super-resolution keyframes. �ese high-quality keyframes
in turn are then mapped into a global texture for the 3D model, resulting in a signif-
icantly improved texture quality compared to simple volumetric blending. We deblur
input images and use the weighted median for computing the texel colors from observa-
tions, which preserves a high level of detail. Using the weighted median already provides
be�er results for vertex coloring compared to the weighted mean. �e weights in our
method consider criteria such as view-angle, motion blur, and distance to the surface.

We have shown in experimental results that our method produces high-quality tex-
tures that substantially increase the photo-realism of the reconstructed 3D models. At
the same time, our method is a very e�cient and practical post-processing step with
runtimes within a few minutes, making it useful for real-world 3D scanning application
scenarios.
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Abstract We introduce a novel method to obtain high-quality 3D reconstructions from
consumer RGB-D sensors. Our core idea is to simultaneously optimize for geometry en-
coded in a signed distance �eld (SDF), textures from automatically-selected keyframes,
and their camera poses along with material and scene lighting. To this end, we propose
a joint surface reconstruction approach that is based on Shape-from-Shading (SfS) tech-
niques and utilizes the estimation of spatially-varying spherical harmonics (SVSH) from
subvolumes of the reconstructed scene. �rough extensive examples and evaluations,
we demonstrate that our method dramatically increases the level of detail in the recon-
structed scene geometry and contributes highly to consistent surface texture recovery.
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OursFusion

Figure 5.1: Our 3D reconstruction method jointly optimizes geometry and intrinsic material prop-
erties encoded in a Signed Distance Field (SDF), as well as the image formation model to produce
high-quality models of �ne-detail geometry (top) and compelling visual appearance (bo�om).

5.1 Introduction

With the wide availability of commodity RGB-D sensors such as the Microso� Kinect,
Intel RealSense, or Google Tango, reconstruction of 3D scenes has gained signi�cant
a�ention. Along with new hardware, researchers have developed impressive approaches
that are able to reconstruct 3D surfaces from the noisy depth measurements of these low-
cost devices. A very popular strategy to handle strong noise characteristics is volumetric
fusion of independent depth frames [26], which has become the core of many state-of-
the-art RGB-D reconstruction frameworks [23, 28, 84, 86, 104].

Volumetric fusion is a fast and e�cient solution for regularizing out sensor noise;
however, due to its `2-regularization property, it tends to oversmooth the reconstruction,
leaving li�le �ne-scale surface detail in the result. �e same problem also translates to
reconstruction of surface textures. Most RGB-D reconstruction frameworks simply map
RGB values of associated depth pixels onto the geometry by averaging all colors that
have been observed for a given voxel. �is typically leads to blurry textures, as wrong
surface geometry and misaligned poses introduce re-projection errors where one voxel
is associated with di�erent color values that are then incorrectly averaged.
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Very recent approaches address these two problems independently. For instance,
Zhou and Koltun [133] optimize for consistent surface textures by iteratively solving
for rigid pose alignment and color averages. To compensate for wrong surface geom-
etry where re-projection consistency is infeasible, they non-rigidly warp RGB frames
on top of the reconstructed mesh, thus obtaining a high-quality surface texture. On the
other end of the spectrum, shading-based re�nement techniques enhance depth frames
[126] or surface geometry [135] by adding shading constraints from higher resolution
color frames; i.e., they leverage RGB signal to re�ne the geometry. �ese reconstruction
pipelines are sequential; for instance, Zollhöfer et al. [135] �rst compute the alignment
between RGB-D frames, then fuse both RGB and depth data into a volumetric grid, and
�nally re�ne the 3D reconstruction. �is results in visually promising reconstructions;
however, the pipeline fundamentally cannot recover errors in its early stages; e.g., if pose
alignment is o� due to wrong depth measures, fused colors will be blurry, causing the
following geometry re�nement to fail.

In our work, we bring these two directions together by addressing these core prob-
lems simultaneously rather than separately. Our main idea is to compute accurate sur-
face geometry such that color re-projections of the reconstructed texture are globally
consistent. �is leads to sharp surface colors, which can again provide constraints for
correct 3D geometry. To achieve this goal, we introduce a novel joint optimization for-
mulation that solves for all parameters of a global scene formation model: (1) surface
geometry, represented by an implicit signed distance function, is constrained by input
depth measures as well as a shading term from the RGB frames; (2) correct poses and
intrinsic camera parameters are enforced by global photometric and geometric consis-
tency; (3) surface texture inconsistency is minimized considering all inputs along with
the 3D model; and (4) spatially-varying lighting as well as surface albedo values are con-
strained by RGB measures and surface geometry. �e core contribution of our work is to
provide a parametric model for all of these intrinsic 3D scene parameters and optimize
them in a joint, continuous energy minimization for a given RGB-D sequence. As a re-
sult, we achieve both sharp color reconstruction, highly-detailed and physically-correct
surface geometry (Figure 5.1), and an accurate representation of the scene lighting along
with the surface albedo. In a series of thorough evaluations, we demonstrate that our
method outperforms state-of-the-art approaches by a signi�cant margin, both qualita-
tively and quantitatively.

To sum up, our technical contributions are as follows:
• We reconstruct a volumetric signed distance function by jointly optimizing for 3D

geometry, surface material (albedo), camera poses, camera intrinsics (including
lens distortion), as well as accurate scene lighting using spherical harmonics basis
functions.
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• Instead of estimating only a single, global scene illumination, we estimate
spatially-varying spherical harmonics to retrieve accurate scene lighting.

• We utilize temporal view sampling and �ltering techniques to mitigate the in�u-
ence of motion blur, thus e�ciently handling data from low-cost consumer-grade
RGB-D sensor devices.

5.2 Related Work

3D Reconstruction using Signed Distance Functions Implicit surface representa-
tions have been widely used in 3D modeling and reconstruction algorithms. In particular,
signed distance �elds (SDF) [26] are o�en used to encode 3D surfaces in a voxel grid, and
have become the basis of many successful RGB-D surface reconstruction algorithms [84,
86]. More recently, Choi et al. [23] propose a robust optimization for high-quality pose
alignment using only geometry, and Dai et al. [28] present a global optimization for
large-scale scenes in real time. While most SDF-based fusion methods e�ciently regu-
larize noisy depth input, they spend li�le focus on reconstructing consistent and sharp
surface textures. In particular, in the context of wide baseline views and small surface
misalignments, this leads to blurry voxel colors that are obtained by averaging the input
RGB values of associated color images.
High-quality texture recovery In order to compute consistent colors on the recon-
structed surface, Zhou and Koltun [133] introduce a method to optimize the mapping
of colors onto the geometry (camera poses and 2D deformation grid), Klose et al. [62]
propose to �lter colors in scene space, and Jeon et al. [51] suggest a more e�cient way
of color optimization through texture coordinates. In addition to directly optimizing for
consistent surface textures, re�ning texture quality also helps to improve the quality of
reconstructed surface colors [39, 6]. While these methods achieve visually impressive
RGB reconstructions (e.g., by warping RGB input), they do not address the core prob-
lem of color inconsistency, which is caused by wrong surface geometry that leads to
inconsistent RGB-to-RGB and RGB-to-geometry re-projections.
Shading- and re�ectance-based geometry re�nement Shape-from-Shading [46,
131] aims to extract 3D geometry from a single RGB image, and forms the mathematical
basis of shading-based re�nement, targeted by our work. �e theory behind Shape-
from-Shading is well-studied, in particular when the surface re�ectance, light source
and camera locations are known. Unfortunately, the underlying optimizations are highly
under-constrained, particularly in uncontrolled environments. �us, one direction is to
re�ne coarse image-based shape models based on incorporation of shading cues [16].
For instance, this can be achieved with images captured by multiple cameras [124, 125]
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Figure 5.2: Overview of our method for joint appearance and geometry optimization. Our
pipeline takes RGB-D data of a scene as input and fuses it into a Signed Distance Field (SDF).
In a nested coarse-to-�ne approach, spatially-varying lighting is estimated and used to jointly
optimize for appearance and geometry of the scene, producing a high-quality 3D model.

or with RGB-D cameras that provide an initial depth estimate for every pixel [14, 41,
128].

Hence, shading and re�ectance estimation has become an important contextual cue
for re�ning geometry. Many methods leverage these cues to develop high-quality sur-
face re�nement approaches [15, 31, 126]. In particular, Zollhöfer et al. [135] motivates
our direction of using volumetric signed distance �elds to represent the 3D model. Un-
fortunately, the method has signi�cant drawbacks; �rst, it only assumes a single global
lighting se�ing based on spherical harmonics [88] that is constant over the entire scene;
second, its pipeline is sequential, meaning that poses and surface colors are optimized
only once in a pre-process, su�ering from erroneous depth measures and small pose
misalignments. In our approach, we systematically address these shortcomings with a
joint optimization strategy, as well as a much more �exible spatially-varying lighting
parametrization. Other related methods focus on specular surfaces with an alternating
optimization strategy [127], represent lighting with illumination maps [73], or retrieve
a box-like 3D representation with material parameters [130].

5.3 Overview

Our method �rst estimates a coarse sparse Signed Distance Field (SDF) similar to
Nießner et al. [86] from an input RGB-D sequence with initial camera poses. To mit-
igate the in�uence of views with motion blur, we automatically select views based on a
blurriness measure and constrain the optimization only based on color values from these
keyframes.

Our joint optimization employs a nested hierarchical approach (see Figure 5.2): in an
outer loop, we re�ne the SDF in a coarse-to-�ne manner on multiple SDF grid pyramid
levels in order to reconstruct �ne detail. At the coarsest grid pyramid level, we use
multiple RGB-D frame pyramid levels of all keyframes obtained through downsampling
in order to improve the convergence and robustness of the joint camera pose estimation.
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Within each inner iteration, we approximate complex scene lighting by partitioning
the SDF volume into subvolumes of �xed size with separate spherical harmonics param-
eters. During estimation, we jointly solve for all SH parameters on a global scale with a
Laplacian regularizer. �e lighting at a given point is de�ned as the trilinear interpola-
tion of the associated subvolumes.

In the main stage of our framework, we employ the estimated illumination to jointly
re�ne surface and albedo of the SDF as well as the image formation model (camera poses
of the input frames, camera intrinsics and lens distortion). As a consequence of this ex-
tensive set of optimized parameters, we implicitly obtain optimal colors. We re-compute
the voxel colors from the keyframes using the re�ned parameters a�er each optimiza-
tion. Finally, a 3D mesh is extracted from the re�ned SDF using Marching Cubes [75].

5.3.1 Signed Distance Field

At the core of our framework lies the reconstructed surface, which we implicitly store
as a sparse Truncated Signed Distance Function (TSDF) [26], denoted by D. Hereby,
each voxel stores the raw (truncated) signed distance to the closest surface D(v), its
color C(v), an integration weight W(v), an illumination albedo a(v), and an optimized
signed distance D̃(v). We denote the current estimate of the iso-surface by D0 and the
number of voxels in the SDF volume by N .

Following state-of-the-art reconstruction methods, we integrate depth maps into the
SDF using a weighted running average scheme:

D(v) =

∑M
i=1 wi(v)di(v)

W(v)
, W(v) =

M∑

i=1

wi(v), (5.1)

with sample integration weight wi(v) = cos(θ), based on the angle θ between the view-
ing direction and the normal computed from the input depth map. �e truncated signed
distance di(v) between a voxel and a depth frameZi with pose Ti is computed as follows:

di(v) = Ψ((T -1
i v)z −Zi(π(T -1

i v)), (5.2)

with truncation Ψ(d) = min(|d|, ttrunc)·sgn(d). A�er integrating all frames of the RGB-D
sequence in the implicit 3D model representation, we initialize the optimized SDF D̃ with
the integrated SDF D. We directly compute the surface normal for each voxel from the
gradient of the re�ned signed distance �eld using forward di�erences:

n(v) = (nx, ny, nz)
> =

∇D̃(v)

||∇D̃(v)||2
, (5.3)
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with the gradient

∇D̃(v)=∇D̃(i,j,k)=




D̃(i+1, j, k)−D̃(i, j, k)

D̃(i, j+1, k)−D̃(i, j, k)

D̃(i, j, k+1)−D̃(i, j, k)


 (5.4)

where D̃(i, j, k) is the optimized distance value at the (discrete) voxel location (i, j, k).
Since each voxel encodes the distance to its closest surface, it is possible to derive a
corresponding 3D point on the iso-surface v0. �us, the voxel center point vc ∈ R3 in
world coordinates is projected onto the (nearest) iso-surface using the transformation
ψ:

v0 = ψ(v) = vc − n(v)D̃(v). (5.5)

5.3.2 Image Formation Model and Sampling

RGB-D Data As input, our framework takes M RGB-D frames with registered color
images Ci, derived intensity images Ii, and depth maps Zi (with i ∈ 1 . . .M ). We as-
sume exposure and white balance of the sensor to be �xed, which is a common se�ing
in RGB-D sensors. Moreover, we are given an initial estimate of the absolute camera
poses T = {Ti} of the respective frames, with Ti = (Ri, ti) ∈ SE(3),Ri ∈ SO(3) and
ti ∈ R3. We denote the transformation of a pointp using a pose Ti by g(Ti,p) = Rip+ti.
While our approach is based on the Voxel Hashing framework [86], the initial camera
poses can in principle be computed using any state-of-the-art RGB-D based 3D recon-
struction system; e.g., [23, 28].

Camera Model Our camera model is de�ned by the focal length fx, fy, the optical
center cx, cy and three coe�cients κ1, κ2, ρ1 describing radial and tangential lens distor-
tion respectively. 3D points p = (X, Y, Z)> are mapped to 2D image pixels x = (x, y)>

with the projection function π : R3 → R2.

Keyframe Selection In hand-held RGB-D scanning, input images o�en exhibit severe
motion blur due to fast camera motion. To mitigate the e�ect of motion blur, we discard
bad views by selecting views using the blurriness measure by Crete et al. [25]. More
speci�cally, we choose the least blurred frame within a �xed size window of tKF neigh-
boring frames. We set tKF = 20 for regular datasets that are captured with commodity
RGB-D sensors, and tKF = 5 for short sequences with less than 100 frames. Our method
can also be applied to multi-view stereo datasets consisting of only few images; here, we
use all frames (i.e., tKF = 1).
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Observations Sampling andColorization A�er generating the SDF volume, we ini-
tially compute the voxel colors by sampling the selected keyframes. Given a frame
(Ci,Zi) and its pose Ti, we re-compute the color of a voxel v by sampling its 3D iso-
surface point v0 in the input views. To check whether voxel v is visible in view i, we
transform v0 back into the input view’s coordinate system using the (re�ned) pose Ti,
project it into its depth map Zi and look up the respective depth value. v is consid-
ered visible in the image if the voxel’s z-coordinate in the camera coordinate system is
compatible with the sampled depth value.

We collect all color observations of a voxel in its views and their respective weights
in Ov = {(cvi , wvi )}. �e observed colors cvi are obtained by sampling from the input
color image Ci using bilinear interpolation:

cvi = Ci(π(Ti-1v0)). (5.6)

�e observation weight wvi is view-dependent on both normal and depth in the view:

wvi =
cos(θ)

d2
, (5.7)

where d is the distance from v to the camera corresponding to Ci. θ represents the angle
between the voxel normal n(v) rotated into the camera coordinate system, and the view
direction of the camera.

Colorization We sort the observations in Ov by their weight and keep only the best
tbest observations. �e voxel color c∗v is computed as the weighted mean of its observa-
tions Ov (for each color channel independently):

c∗v = arg min
cv

∑

(cvi ,w
v
i )∈Ov

wvi (cv − cvi )2. (5.8)

Note that the per-voxel colors are only used before each optimization step (for up-to-date
chromaticity weights) and as a �nal postprocess during mesh extraction. �e optimiza-
tion itself directly constrains the input RGB images of the selected views and does not
use the per-voxel color values.
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5.4 Lighting Estimation using Spatially-varying

Spherical Harmonics

Lighting Model In order to represent the lighting of the scene, we use a fully-
parametric model that de�nes the shading at every surface point w.r.t. global scene
lighting. To make the problem tractable, we follow previous methods and assume that
the scene environment is Lambertian.

�e shading B at a voxel v is then computed from the voxel surface normal n(v),
the voxel albedo a(v) and scene lighting parameters lm:

B(v) = a(v)
b2∑

m=1

lmHm(n(v)), (5.9)

with shading basis Hm. As Equation (5.9) de�nes the forward shading computation, our
aim is to tackle the inverse rendering problem by estimating the parameters of B.

SphericalHarmonics In order to estimate the re�ected irradiance B (cf. Equation 5.9)
at a voxel v, we parametrize the lighting with spherical harmonics (SH) basis func-
tions [88], which is known to be a good approximation and smooth for Lambertian
surface re�ectance. �e SH basis functions Hm are parametrized by a unit normal n.
In our implementation, we use SH coe�cients up to the second order, which includes
b = 3 SH bands and leaves us with nine unknown lighting coe�cients ` = (l1, . . . , lb2).
For a given surface point, the SH basis encodes the incident lighting, parameterized as
a spherical distribution. However, a single SH basis cannot faithfully represent scene
lighting for all surface points simultaneously, as lights are assumed to be in�nitesimally
far away (i.e., purely directional), and neither visibility nor occlusion is taken into ac-
count.

Subvolume Partitioning To address the shortcoming of a single, global spherical
harmonics basis that globally de�nes the scene lighting, we extend the traditional for-
mulation. To this end, we partition the reconstruction volume into subvolumes S =

{s1 . . . , sK} of �xed size tsv; the number of subvolumes is denoted asK . We now assign
an SH basis – each with its own SH coe�cients – to every subvolume. �us, we sub-
stantially increase the number of lighting parameters per scene and allow for spatially-
adaptive lighting changes. In order to avoid aliasing artifacts at subvolume boundaries,
we de�ne the global lighting function as a trilinear interpolation of local SH coe�cients;
i.e., for a voxel, we obtain a smooth function de�ning the actual SH coe�cients as an
interpolation of the lighting parameters of its eights adjacent subvolumes.
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Figure 5.3: We partition the SDF volume into subvolumes of �xed size and estimate independent
spherical harmonics (SH) coe�cients for each subvolume (yellow). Per-voxel SH coe�cients are
obtained through tri-linear interpolation of the lighting of neighboring subvolumes (red).

Spatially-varying Spherical Harmonics �e ability of subvolumes to de�ne local
spherical harmonics coe�cients along with a global interpolant introduces the concept
of spatially-varying spherical harmonics (SVSH). Instead of only representing lighting
with a single set of SH coe�cients, we have now K × b2 unknown parameters, that
provide for signi�cantly more expressibility in the scene lighting model. �e lighting
for subvolumes is estimated by minimizing the following objective:

Elighting(`1, . . . , `K) = Eappearance + λdi�useEdi�use. (5.10)

�e intuition is that we try to approximate complex global illumination with varying
local illumination models for smaller subvolumes. We estimate the spherical harmonics
in a subvolume by minimizing the di�erences between the measured averaged voxel
intensity and the estimated appearance:

Eappearance =
∑

v∈D̃0

(B(v)− I(v))2, (5.11)

where only voxels close to the current estimate of the iso-surface D̃0 are considered.
Initially, we assume the albedo to be constant. However, the albedo is re�ned as the
optimization commences. A�er the surface re�nement on each level, we recompute
the voxel colors (and hence voxel intensity). We further regularize the distribution of
lighting coe�cients with a Laplacian regularizer that considers the 1-ring neighborhood
Ns of a subvolume s, thus e�ectively constraining global smoothness of the spherical
harmonics:

Edi�use =
∑

s∈S

∑

r∈Ns

(`s − `r)2. (5.12)
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5.5 Joint Optimization of Geometry, Albedo, and Im-

age Formation Model

One of the core ideas of our method is the joint optimization of the volumetric 3D re-
construction as well as the image formation model. In particular, we simultaneously
optimize for the signed distance and albedo values of each voxel of the volumetric grid,
as well as the camera poses and camera intrinsics such as focal length, center pixel, and
(radial and tangential) lens distortion coe�cients. We stack all parameters in the un-
known vector X = (T , D̃, a, fx, fy, cx, cy, κ1, κ2, ρ1) and formulate our minimization
objective as follows:

Escene(X ) =
∑

v∈D̃0

λgEg + λvEv + λsEs + λaEa, (5.13)

with λg, λv, λs, λa the weighting parameters that de�ne the in�uence of each cost term.
For e�ciency, we only optimize voxels within a thin shell close to the current estimate
of the iso-surface D̃0, i.e., |D̃| < tshell.

5.5.1 Camera Poses and Camera Intrinsics

For initial pose estimates, we use poses obtained by the frame-to-model tracking of Voxel
Hashing [86]. However, this merely serves as an initialization of the non-convex energy
landscape for our global pose optimization, which is performed jointly along with the
scene reconstruction (see below). In order to de�ne the underlying residuals of the en-
ergy term, we project each voxel into its associated input views by using the current
state of the estimated camera parameters. �ese parameters involve not only the extrin-
sic poses, but also the pinhole camera se�ings de�ned by focal length, pixel center, and
lens distortion parameters. During the coarse-to-�ne pyramid optimization, we derive
the camera intrinsics according to the resolution of the corresponding pyramid levels.

5.5.2 Shading-based SDF Optimization

In order to optimize for the 3D surface that best explains the re-projection and follows
the RGB shading cues, we directly solve for the parameters of the re�ned signed distance
�eld D̃, which is directly coupled to the shading through its surface normals n(v). In
addition to the distance values, the volumetric grid also contains per-voxel albedo pa-
rameters, which again is coupled with the lighting computation (cf. Equation 5.9); the
surface albedo is initialized with a uniform constant value. Although this de�nition of
solving for a distance �eld follows the direction of Zollhöfer et al. [135], it is di�erent at
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its core: here, we dynamically constrain the reconstruction with the RGB input images,
which contrasts Zollhöfer et al. who simply rely on the initially pre-computed per-voxel
colors. In the following, we introduce all terms of the shading-based SDF objective.

Gradient-based Shading Constraint In our data term, we want to maximize the
consistency between the estimated shading of a voxel and its sampled observations in the
corresponding intensity images. Our objective follows the intuition that high-frequency
changes in the surface geometry result in shading cues in the input RGB images, while
more accurate geometry and a more accurate scene formation model result in be�er
sampling of input images.

We �rst collect all observations in which the iso-surface point ψ(v) of a voxel v is
visible; we therefore transform the voxel into each frame using the pose Ti and check
whether the sampled depth value in the respective depth map Zi is compatible. We
collect all valid observations Ov , sort them according to their weights wvi (cf. Equa-
tion (5.7)), and keep only the best tbest views Vbest = {Ii}. Our objective function is
de�ned as follows:

Eg(v) =
∑

Ii∈Vbest

wvi ‖∇B(v)−∇Ii(π(vi))‖2
2, (5.14)

where vi = g(Ti, ψ(v)) is the 3D position of the voxel center transformed into the view’s
coordinate system. Observations are weighted with their view-dependent observation
weights wvi . By transforming and projecting a voxel v into its associated input intensity
images Ii, our joint optimization framework optimizes for all parameters of the scene
formation model, including camera poses, camera intrinsics, and lens distortion param-
eters. �e shading B(v) depends on both surface and material parameters and allows
to optimize for signed distances, implicitly using the surface normals, and voxel albedo
on-the-�y. Instead of comparing shading and intensities directly, we achieve improved
robustness by comparing their gradients, which we obtain by discrete forward di�er-
ences from its neighboring voxels.

To improve convergence, we compute an image pyramid of the input intensity im-
ages and run the optimization in a coarse-to-�ne manner for all levels. �is inner loop is
embedded into a coarse-to-�ne grid optimization strategy, that increases the resolution
of the SDF with each level.

Regularization We add multiple cost terms to regularize our energy formulation re-
quired for the ill-posed problem of Shape-from-Shading and to mitigate the e�ect of
noise.
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First, we use a Laplacian smoothness term to regularize our signed distance �eld. �is
volumetric regularizer enforces smoothness in the distance values between neighboring
voxels:

Ev(v) = (∆D̃(v))2. (5.15)

To constrain the surface and keep the re�ned reconstruction close to the regularized
original signed distances, we specify a surface stabilization constraint:

Es(v) = (D̃(v)−D(v))2. (5.16)

Given spherical harmonics coe�cients, the shading computed at a voxel depends on
both its albedo as well as its surface normal. We constrain to which degree the albedo or
normal should be re�ned by introducing an additional term that regularizes the albedo.
In particular, the 1-ring neighborhoodNv of a voxel is used to constrain albedo changes
based on the chromaticity di�erences of two neighboring voxels. �is follows the idea
that chromaticity changes o�en go along with changes of intrinsic material:

Ea(v) =
∑

u∈Nv

φ(Γ(v)− Γ(u)) · (a(v)− a(u))2, (5.17)

where the voxel chromaticity Γ = C(v)/I(v) is directly computed from the voxel colors
and φ(x) is a robust kernel with φ(x) = 1/(1 + trob · x)3.

5.5.3 Joint Optimization Problem

We jointly solve for all unknown scene parameters stacked in the unknown vector X by
minimizing the proposed highly non-linear least squares objective:

X ∗ = arg min
X

Escene(X ) (5.18)

We solve the optimization using the well-known Ceres Solver [10], which provides au-
tomatic di�erentiation and an e�cient Levenberg-Marquardt implementation.

By jointly re�ning the SDF and image formation model, we implicitly obtain opti-
mal colors for the reconstruction at minimal re-projection error. In the optimization,
the color and shading constraints are directly expressed with respect to associated input
images; however, for the �nal mesh generation, we recompute voxel colors in a postpro-
cess a�er the optimization. Finally, we extract a mesh from the re�ned signed distance
�eld using Marching Cubes [75].
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Dataset # frames # keyframes Resolution
color depth

Fountain [133] 1086 55 1280x1024 640x480
Lucy [135] 100 20 640x480 640x480
Relief [135] 40 8 1280x1024 640x480
Lion 515 26 1296x968 640x480
Tomb Statuary 523 27 1296x968 640x480
Bricks 773 39 1296x968 640x480
Hieroglyphics 919 46 1296x968 640x480
Gate 1213 61 1296x968 640x480

Table 5.1: Test RGB-D datasets used for the evaluation.

5.6 Results

We evaluated our approach on publicly available RGB-D datasets as well as on own
datasets acquired using a Structure Sensor; Table 5.1 gives an overview. For Lucy and
Relief we used the camera poses provided with the datasets as initializations, while we
estimated the poses using Voxel Hashing [86] for all other datasets. Our evaluations
were performed on a workstation with Intel Core i7-5930 CPU with 3.50GHz and 32GB
RAM.

We used λdi�use = 0.01, λg = 0.2, λv = 160 → 20, λs = 120 → 10, λa = 0.1 for our
evaluations, with a → b indicating changing weights with every iteration. For objects
with constant albedo, we �xed the albedo; i.e., we set λa = ∞. We used three RGB-D
frame pyramid levels and three grid levels, such that the �nest grid level has a resolution
of 0.5mm (or 1.0mm, depending on object size). We set tbest = 5 to limit the number of
data term residuals per voxel. To reduce the increase of the number of voxels close to
the surface considered for optimization, we used an adaptive thin shell size tshell, linearly
decreasing from 2.0→ 1.0 times the voxel size with each grid pyramid level.

Appearance Using our method, we implicitly obtain optimal voxel colors as a conse-
quence of the joint optimization of intrinsic material properties, surface geometry and
image formation model. Figure 5.4 shows qualitative results from the Fountain dataset.
While volumetric blending [84, 86] produces blurry colors, camera poses are corrected
in advance by Zollhöfer et al. [135] using dense bundle adjustment to yield signi�cantly
be�er color and geometry. However, their static color integration cannot correct for
small inaccuracies, resulting in slightly blurry colors. In contrast, our method adjusts
the surface and image formation model jointly to produce highly detailed texture at the
same voxel grid resolution of 1mm. Within our joint optimization, we also estimate
varying albedo. Figure 5.7 shows the estimated albedo for the Fountain dataset.
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Figure 5.4: Appearance of the Fountain reconstruction. Our method shows a visually more ap-
pealing result compared to volumetric fusion and Zollhöfer et al. [135].

Surface Geometry We qualitatively compare the quality of re�ned surfaces using our
method with the approach of Zollhöfer et al. [135] in Figure 5.5. �e results of the Relief
dataset visualize that our method reveals �ner geometric details by directly sampling
from high-resolution input color images instead of using averaged voxel colors. More-
over, we bene�t from simultaneously optimizing for camera poses and camera intrinsics.

Additionally, we provide a quantitative ground truth evaluation of the geometry re-
�nement on the synthetic Frog RGB-D dataset, which was generated by rendering a
ground truth mesh with a high level of detail into synthetic color and depth images.
Both depth and camera poses were perturbed with realistic noise. Figure 5.6 shows that,
in contrast to fusion and [135], our method is able to reveal even smaller details. �anti-
tatively, the mean absolute deviation (MAD) between our reconstruction and the ground
truth mesh is 0.222mm (with a standard deviation of 0.269mm), while the reconstruction
generated using our implementation of [135] results in a higher error of 0.278mm (with
a standard deviation of 0.299mm). �is corresponds to an overall accuracy improvement
of 20.14% of our method compared to [135]. We refer the reader to the supplementary
material for a quantitative evaluation on real data and further results.

Lighting In the following, we evaluate lighting estimation via spatially-varying spher-
ical harmonics, both qualitatively and quantitatively. In particular, we demonstrate that
a single global set of SH coe�cients cannot accurately re�ect real-world environments
with complex lighting. To analyze the e�ects of the illumination, we re-light the re-
construction using the surface normals and estimated voxel albedo according to Equa-
tion (5.9). �e computed shading B(v) of a voxel is in the ideal case identical to the
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Figure 5.5: Comparison of the reconstructed geometry of the Relief dataset. Our method (right)
reveals �ner geometric details compared to volumetric fusion (le�) and Zollhöfer et al. [135]
(middle).

Ours

(b) Zollhöfer et al. 15

(c) Ours

(a) Fusion

(d) Ground truth

Figure 5.6: Re�ned geometry of the Frog dataset: while fusion (a) smooths out high-frequency
details, Zollhöfer et al. [135] (b) can reconstruct some geometric details. Our method (c) recovers
even smaller surface details present in the ground truth mesh (d).
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Dataset Global SH SVSH (subvolume size)
0.5 0.2 0.1 0.05

Fountain 22.973 18.831 15.891 13.193 10.263

Lucy 22.190 19.408 16.564 14.141 11.863

Relief 13.818 12.432 11.121 9.454 8.339

Lion 30.895 25.775 20.811 16.243 13.468

Tomb Statuary 33.716 30.873 30.639 29.675 26.433

Bricks 29.327 27.110 25.318 22.850 19.476

Hieroglyphics 15.710 15.206 11.140 12.448 9.998

Gate 46.463 40.104 33.045 20.176 12.947

Table 5.2: �antitative evaluation of spatially-varying spherical harmonics. �e Mean Absolute
Deviation (MAD) between averaged per-voxel intensity and estimated shading decreases with
decreasing subvolume sizes.

measured voxel intensity I(v) computed from the voxel color.
We exploit the absolute di�erence |B(v) − I(v)| as an error metric in order to

quantitatively evaluate the quality of the illumination for given geometry and albedo.
In particular, we measure the mean absolute deviation (MAD) for all N voxels of the
SDF volume:

εshading =
1

N

∑

v∈D
|B(v)− I(v)| (5.19)

Table 5.2 gives the results of global SH coe�cients and SVSH with varying subvolume
sizes for multiple datasets. In summary, the more the SDF volume is partitioned into sub-
volumes, the be�er the approximation to complex lighting scenarios. �e illumination
in the Fountain dataset is clearly spatially varying, violating the assumptions of distant
and spatially invariant illumination for SH lighting coe�cients. Figure 5.7 shows that
the estimated shading is be�er approximated with SVSH coe�cients compared to only
with global SH coe�cients, while the underlying surface and albedo are exactly the same
for both shadings.

5.7 Conclusion

We have presented a novel method for simultaneous optimization of scene reconstruc-
tion along with the image formation model. �is way, we obtain high-quality recon-
structions along with well-aligned sharp surface textures using commodity RGB-D sen-
sors by e�ciently combining information from (potentially noisy) depth and (possibly)
higher resolution RGB data. In comparison to existing Shape-from-Shading techniques
(e.g., [126, 135]), we tackle the core problem of �xing wrong depth measurements jointly
with pose alignment and intrinsic scene parameters. Hence, we minimize re-projection
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(a) Per-voxel luminance (b) Estimated albedo

(c) Shading (global SH) (d) Shading (SVSH)

(e) Di�erences (global SH) (f) Di�erences (SVSH)

Figure 5.7: �antitative evaluation of global SH vs. SVSH: the heatmaps in (e) and (f) represent
the di�erences between the per-voxel input luminance (a) and the shadings with global SH (c)
and with SVSH (d), both with underlying albedo (b).

errors, thus avoiding oversmoothed geometry and blurry surface textures. In addition,
we introduce a signi�cantly more �exible lighting model that is spatially-adaptive, thus
allowing for a more precise estimation of the scene lighting.
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sors usually reduce dri� in camera tracking by globally optimizing the estimated camera
poses in real-time without simultaneously updating the reconstructed surface on pose
changes. We propose an e�cient on-the-�y surface correction method for globally con-
sistent dense 3D reconstruction of large-scale scenes. Our approach uses a dense Visual
RGB-D SLAM system that estimates the camera motion in real-time on a CPU and re-
�nes it in a global pose graph optimization. Consecutive RGB-D frames are locally fused
into keyframes, which are incorporated into a sparse voxel hashed Signed Distance Field
(SDF) on the GPU. On pose graph updates, the SDF volume is corrected on-the-�y using
a novel keyframe re-integration strategy with reduced GPU-host streaming. We demon-
strate in an extensive quantitative evaluation that our method is up to 93% more runtime
e�cient compared to the state-of-the-art and requires signi�cantly less memory, with
only negligible loss of surface quality. Overall, our system requires only a single GPU
and allows for real-time surface correction of large environments.
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6.1 Introduction

In recent years, there has been a boost of research in the �eld of dense 3D reconstruction
due to the wide availability of low-cost depth sensors such as the Microso� Kinect. Most
of the approaches fuse depth maps obtained from such sensors in real-time into a vol-
umetric surface representation [26] to compensate for sensor noise and perform frame-
to-model camera tracking against the fused volume. While researchers have shown the
suitability of these methods for accurate geometric reconstruction of objects or scenes
of limited size [84], global dri� in camera tracking is not compensated, limiting the re-
construction of large-scale environments [53, 86, 120].

However, only few methods tackle the problem of globally optimizing the camera
poses in real-time and simultaneously correcting the reconstructed surface on-the-�y.
BundleFusion by Dai et al.[28] represents the state-of-the-art and estimates highly ac-
curate camera poses on a high-end GPU. �ey require a second graphics card for inte-
grating input RGB-D frames into a sparse Signed Distance Field (SDF) volume, making
the entire framework computationally demanding. On pose graph updates, BundleFu-
sion corrects the reconstructed surface on-the-�y by frame re-integration. However, all
previous frames need to be held in memory to allow for a fast re-integration on pose
updates; this limits its suitability for scanning large-scale environments with long se-
quences.

To enable state-of-the-art large-scale 3D reconstruction from RGB-D sensors, our
SLAM framework is based on DVO-SLAM by Kerl et al. [57] for estimating a globally
consistent camera motion. �e system is computationally signi�cantly less expensive
than BundleFusion and works in real-time on a single CPU, with only slightly less accu-
rate estimated camera poses. To obtain globally consistent and up-to-date reconstruc-
tions of large environments, we couple it with our novel 3D surface correction method.
Figure 6.1 shows the result of our online surface re-integration method at the end of a
3D scanning session and indicates the e�ect of keyframe fusion on the completeness of
the reconstruction.

In summary, the main contributions of our work are:

• We integrate our 3D surface correction framework with a dense Visual SLAM sys-
tem, such that our entire 3D reconstruction system runs in real-time with a single
GPU only.

• We fuse consecutive RGB-D input frames in keyframes of high depth and color
quality using di�erent keyframe strategies.

• Our surface correction framework is highly e�cient by only re-integrating fused
keyframes into a sparse SDF volume on pose graph updates.
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• Our strategy for selecting keyframes to be updated substantially reduces streaming
between host and GPU.

• An extensive quantitative evaluation shows that our method is overall 93% more
e�cient compared to the state-of-the-art while maintaining surface quality.

a) Without and with on-the-�y surface correction

b) Surface completeness (5 vs. 60 frames per keyframe)

Figure 6.1: Our method e�ciently corrects the surface during the 3D scanning process on-the-�y
(a) using an e�cient keyframe re-integration strategy. Fusing fewer frames into each keyframe
allows to maintain the completeness of the reconstructed 3D model (b).
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6.2 Related Work

�e �eld of dense 3D reconstruction from RGB-D data has been investigated extensively
in recent years. KinectFusion by Newcombe et al. [84] enabled dense 3D reconstruction
in real-time through extensive use of GPU programming. Like most of the following
approaches, it stores the 3D model in an SDF volume [26], which regularizes the noisy
depth maps from RGB-D sensors, and performs ICP-based camera tracking against the
raycasted 3D model. Voxel Hashing [86] be�er exploits scarce GPU memory and allo-
cates only occupied voxel blocks of the SDF. A hash map �exibly maps 3D voxel block
coordinates onto memory locations. Kähler et al. [53] designed an optimized version of
Voxel Hashing for mobile devices. However, the frame-to-model camera tracking of the
frameworks above is only of limited use for reconstructing larger scenes. To reduce dri�
explicitly, recent approaches [23, 7, 106, 134] rely on loop closure detection in combina-
tion with global pose optimization.

In order to e�ciently estimate camera poses in real-time, DVO-SLAM by
Kerl et al. [57] minimizes a photometric and geometric error to accurately align RGB-D
frames. For global consistency, it continuously performs a pose graph optimization to re-
duce global dri�. While there is no dense volumetric model representation, they exploit
keyframes to reduce the in�uence of noise. �e system provides an excellent trade-o� be-
tween runtime and accuracy, making it highly suitable for our 3D reconstruction frame-
work. Utilizing keyframes as intermediate representation for reducing noise has also
been exploited for improving camera tracking [79] and reconstruction appearance [6].
Following this idea, we also employ keyframes in our work as memory e�cient inter-
mediate 2.5D representations of 3D surfaces.

�ere are only few works on real-time large-scale RGB-D based 3D reconstruction
that incorporate online surface correction. Fioraio et al. [33] reconstruct overlapping
subvolumes, register their poses globally and update the subvolumes using volume
blending. However, the absence of loop closure detection avoids to cope with larger
dri�. Kähler et al. [52] perform real-time tracking against multiple submaps indepen-
dently and globally optimize the estimated trajectories. Submaps are fused on-the-�y
during raycasting.

Whelan et al. use a deformation graph for online update of a surfel-based model [123]
and of an SDF model [121] with an as-rigid-as-possible surface deformation. In Elastic-
Fusion [123] input frames are fused into surfels and then discarded. However, wrong
camera poses (e.g. due to dri�) result in inconsistent surfel observations and hence in-
crease their uncertainties; surfels with high uncertainty are ultimately �ltered out. When
a loop closure is detected, only the existing surface can be corrected along with the de-
formation graph, while surface information lost through inconsistent fusion cannot be
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recovered. In contrast, our method keeps all keyframes fused from input data and allows
to re-integrate them at any pose graph update without a loss of surface information. Ad-
ditionally, despite correcting the model online, the frame-to-model camera tracking may
fail to compensate for dri� due to delayed surface updates and undetected (or too late
detected) loop closures.

BundleFusion et al. [28] represents the state-of-the-art both w.r.t. SLAM system ac-
curacy as well as on-the-�y surface re-integration. �e system �rst optimizes consecu-
tive frame poses locally within chunks, which are then aligned globally in a hierarchi-
cal global optimization. New RGB-D input frames are matched brute-force against all
previous chunk keyframes and subsequently aligned using a sparse-then-dense align-
ment. �e global alignment regularly changes camera poses; to correct the reconstructed
sparse SDF volume on-the-�y, the system �rst de-integrates frames with their former
poses and then integrates them with their updated poses using a simple re-integration
strategy. �e 3D model is gradually adapted to the updated poses while still enabling
real-time reconstruction. In contrast to BundleFusion, our method needs only a sin-
gle GPU for surface modeling instead of two high-end graphics cards. Our online sur-
face re-integration combines keyframe fusion with a more intelligent keyframe selection
strategy, resulting in a signi�cantly more e�cient re-integration. Moreover, the use of
keyframes requires substantially less memory and enables on-the-�y surface correction
for large environments.

6.3 3D Reconstruction System

Our framework consists of a real-time RGB-D SLAM framework for globally consistent
camera pose estimation and a sparse SDF volume for storing the reconstructed 3D model.
While dense SDF-based 3D reconstruction methods usually integrate new RGB-D input
frames directly into the volume, we �rst fuse them into keyframes as intermediate data
representation. We integrate and re-integrate them online into the SDF on pose updates
to e�ciently correct the surface. �is way, we can reduce the number of individual
frames that we integrate into the SDF volume, which helps especially when we need
to correct the 3D model due to a pose update. Figure 6.2 shows an overview of our
approach.

Preliminaries We acquire RGB-D data from commodity depth sensors with 30 fps at a
resolution of 640×480 pixels. �eN captured RGB-D frames consist of registered color
images Ci, depth maps Zi and camera poses Ti = (Ri, ti) ∈ SE(3) (withRi ∈ SO(3),
ti ∈ R3 and i ∈ 1 . . . N ). A 3D point p = (X, Y, Z)> is transformed using a pose Ti
through g(Ti,p) = Rip + ti. We use the pinhole camera model, which projects 3D
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Figure 6.2: Overview of our online surface correction method. RGB-D frames are fused into
keyframes, which are (re-)integrated into the SDF on-the-�y on DVO-SLAM pose updates.

points p to 2D pixels x = (u, v)> = π(p) using the projection π : R3 → R2. �e
inverse projection π-1 : R2×R→ R3 maps a 2D pixel location x back to the respective
3D point p = π-1(x,Z(x)) using its depth.

Dense Visual RGB-D SLAM To estimate globally consistent camera poses Ti, we uti-
lize the DVO-SLAM system by Kerl et al. [57]. It runs in real-time on a CPU and employs
a robust dense visual odometry approach that minimizes the photometric and geometric
error of all pixels to estimate the rigid body motion between two RGB-D frames. To
reduce dri� in camera pose estimation, input frames are aligned against the preceding
keyframe. Keyframes are selected using the di�erential entropy of the motion estimate
and a pose distance threshold. In the following, we refer to the keyframes selected by
DVO-SLAM as DVO keyframes. DVO-SLAM detects loop closures by aligning keyframes
against candidates of previous keyframes within a sphere of prede�ned radius and val-
idates them using their entropy ratio. Estimated frame-to-(key)frame camera motions
and successful loop closures are integrated as constraints into a graph based map rep-
resentation. �is keyframe pose graph is steadily optimized in the background dur-
ing runtime, yielding a globally consistent camera trajectory with continuously updated
keyframe poses Ti. Please note that our surface correction method works in principle
with any SLAM system that incorporates loop closures.

Keyframe Fusion Our keyframe fusion builds up on [6] and consists of separate steps
for depth and color fusion (cf. Figure 6.3). While new depth maps are immediately fused
into the keyframe depth, color fusion relies on the more complete fused keyframe depth.

For depth fusion, we �rst compute for each pixel x of Zi its respective view- and
distance-dependent weight wz(x) = cos(θi(x)) · Zi(x)−2, where θi(x) is the angle
between the depth normal at x and the camera axis. Furthermore, we discard error-
prone depth values close to depth discontinuities. We then warp each pixel with the
frame pose Ti into the keyframe with pose T ∗ and obtain p∗ = (X∗, Y ∗, Z∗)> =

g(T ∗-1, g(Ti, π-1(x,Zi(x)))). �e keyframe depth Z∗ and the depth fusion weightsW∗
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a) Input depth b) Fused depth

c) Input color d) Fused color

Figure 6.3: Keyframe fusion: several consecutive input depth maps (a) are fused into the keyframe
depth (b). Our color fusion creates sharp color keyframes (d) from input color (c).

at the projected 2D image point x∗ = π(p∗) are then updated as follows:

W∗(x∗) =
W∗(x∗)Z∗(x∗) + wz(x)Z∗

W∗(x∗) + wz(x)
, W∗(x∗) =W∗(x∗) + wz(x). (6.1)

For color fusion, we �rst deblur the input color images using Unsharp Mask-
ing and compute a per-frame blurriness measure wb [25] from Ci to alleviate frames
with strong motion blur. In contrast to depth fusion, the fused keyframes are
warped back into each input frame i and the observed color values ci(x

∗) =

Ci(π(g(T -1
i , g(T ∗, π-1(x∗,Z∗(x∗)))))) are sampled using bilinear interpolation. For a

pixel x∗ in the keyframe, we collect all valid color observations in the input views and
their color weights wci(x∗) = wb · wz . We compute the �nal keyframe color C∗(x∗) as
the weighted median of the collected observations.
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SDF volume At the core of our method, we store a memory e�cient sparse SDF vol-
ume based on Voxel Hashing [86] as volumetric 3D model representation for large-scale
3D reconstructions. �e implemented data structure is tailored to GPUs and only oc-
cupied space is allocated in voxel blocks, which are e�ciently addressed using spatial
hashing. For each voxel v, we store its signed distance D(v), its color C(v) and its
integration weight W(v). We extract the iso-surface from the SDF using Marching
Cubes [75]. To overcome the limitations of scarce GPU memory for large-scale environ-
ments, voxel blocks are streamed from GPU to host (and vice versa) before integration of
a new frame. In particular, only voxel blocks within a sphere of constant radius around
the current camera position are kept in GPU memory, while all other voxel blocks are
streamed to the host. When an RGB-D frame is integrated into the SDF volume, voxel
blocks are �rst allocated and the voxels are then updated using a running weighted av-
erage.

6.4 E�cient Online Surface Re-Integration

In the following, we introduce our online surface correction method that combines
keyframe fusion with our sparse SDF volume implementation. Firstly, we incorporate
on-the-�y keyframe re-integration into the 3D reconstruction pipeline; secondly, we
show di�erent strategies for starting new keyframes; thirdly, we propose an e�cient
surface correction procedure that is based on a re-integration strategy that reduces GPU-
host transfer.

6.4.1 System Pipeline

While DVO-SLAM selectsDVO keyframes for camera tracking based on an entropy crite-
ria, we introduce KF keyframes (Keyframe Fusion keyframes) as intermediate represen-
tation for surface (re-)integration. When a new frame arrives, DVO-SLAM provides an
initial pose estimate which is used to fuse the input frame into the current KF keyframe.
Depending on the chosen keyframe selection strategy, a new keyframe will be started
if some criteria are met and the previous KF keyframe is integrated into the SDF vol-
ume. �e KF keyframe is also stored in memory for later re-integration on pose updates.
Since DVO-SLAM issues only pose updates for DVO keyframes, we convert by express-
ing KF keyframe poses relative to DVO keyframe poses. �e KF keyframes are then
de-integrated from the SDF volume with their former camera poses and re-integrated
on-the-�y with their updated poses.
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6.4.2 Keyframe Strategies

In the following, we investigate keyframe selection strategies w.r.t. obtaining opti-
mal surface quality. With only few input frames fused into KF keyframes, many KF
keyframes need to be (re-)integrated into the SDF volume on pose updates. On the other
hand, fusing many input frames into KF keyframes leads to a degradation in 3D recon-
struction quality, since the 2.5D keyframes cannot fully represent the incorporated 3D
information. We present keyframe strategies to �nd the optimal trade-o� between re-
integration performance and reconstruction quality.

�e kf const strategy is a simple but e�ective strategy and fuses a constant number
κ of frames into each KF keyframe. kf dvo uses the frames selected as DVO keyframes
also as KF keyframes. �e distance based strategy kf dist issues a new KF keyframe
whenever the rotational distance ∆r or translational distance ∆t of the relative pose Tij
between the current frame and the current KF keyframe exceeds a certain threshold,
similar to [61]. �e overlap strategy kf ovrlp is derived from [45] and generates a new
KF keyframe when the ratio of the pixels visible in both current frame and keyframe
drops below a threshold.

6.4.3 On-the-�y Surface Correction

Our surface correction method follows the frame re-integration approach of [28]. How-
ever, we substantially improve it at critical points w.r.t. runtime e�ciency by implement-
ing a more intelligent strategy for selecting the KF keyframes to be re-integrated. Since
we only need to correct KF keyframes instead of all frames, our surface correction is
highly e�cient w.r.t. runtime and memory consumption.

Frame de-integration For de-integrating an RGB-D frame i from the SDF volume,
we simply reverse the integration procedure. We therefore retrieve the KF keyframe
from the memory and compute the projective distance di (along the z axis) of v in depth
map Zi (with sampling weight wi) and its sampled color ci in the input color image Ci.
�e de-integration steps for updating signed distance, color and weight of a voxel are
denoted as follows:

D′(v) =
D(v)W(v)− diwi

W(v)− wi
,C′(v) =

C(v)W(v)− ciwi
W(v)− wi

,W′(v) = W(v)−wi (6.2)

Re-integration strategy While the poses of all keyframes are updated when
DVO-SLAM issues a pose update, it is computationally too expensive to correct them
all immediately. Instead, we re-integrate only m changed frames whenever we receive
a pose update. Poses that were not corrected on-the-�y are re-integrated in a �nal pass
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Frame 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Distance 1 3 4 3 5 4 1 7 2 1 1 8 6 2 0

Distance (sum) 16 19 17 20 19 15 12 19 18 18 17

Figure 6.4: Selection of frames for re-integration: BundleFusion [28] chooses the frames
with highest distances between integrated pose and new pose. However, selecting frames
12, 8, 13, 5, 3 results here in disadvantageous shi�s of the streaming sphere. Our method selects
the group of most-moved m consecutive frames, which results in frames 4 to 8 (j∗ = 4).

a�er the reconstruction. We denote the SDF integration pose of a frame by Ti and the
updated pose by T ′i .

To select the m frames for re-integration, BundleFusion orders all frames by
descending distance between Ti and T ′i ‖sti − st′i‖ and selects the m most-moved
frames. �e vectors ti and t′i contain the Euler rotation angles and the translation
of the poses Ti and T ′i , with a constant scale vector s = (2, 2, 2, 1, 1, 1)>. However,
since the corrected frames (and the respective SDF voxel blocks) may be spatially
distant, suboptimal expensive GPU-host-streaming of voxel blocks may be required. To
limit the streaming overhead, it is bene�cial to correct close frames within the same
re-integration procedure. We therefore keep the original temporal ordering of frames
and select the group of most-moved m consecutive frames:

j∗ = arg max
j∈[1,K−m+1]

j+m−1∑

i=j

‖sti − st′i‖ , (6.3)

where K is the total number of frames integrated so far. �e resulting j∗ represents
the �rst frame of our m consecutive frames thats need to be re-integrated. Figure 6.4
exempli�es the advantages of this procedure. Additionally, we adjust the streaming pro-
cedure of [86] to the re-integration process: We �rst stream in all voxel blocks inside the
sphere around pose Tj∗ to safely access them. �en, we successively de-integrate frames
[j∗, j∗ + m − 1] with regular streaming. A�er de-integration, we stream in the sphere
around the updated pose T ′j∗ und successively re-integrate frames [j∗, j∗+m− 1] using
their updated poses with regular streaming. We �nally stream the sphere back to the
next integration pose.

6.5 Evaluation and Experimental Results

To demonstrate the e�ectiveness of our surface reconstruction algorithm, we provide
a thorough quantitative evaluation w.r.t. runtime e�ciency and surface accuracy. In
particular, we analyze the e�ects of combining keyframe fusion with our surface re-
integration method.
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Datasets We use publicly available RGB-D datasets of large-scale scenes with loop
closures that provide registered depth and color images as well as the respective camera
poses. AUG ICL/Liv1 (noisy) [23] is a synthetic RGB-D sequence that is rendered from a
modeled scene of a living room with realistic sensor noise. In addition to ground truth
poses it also provides the ground truth 3D scene model that allows for a quantitative
comparison of surface quality of reconstructed 3D models. BundleFusion/apt0 [28] fea-
tures a long camera trajectory of 8560 frames with poses estimated from BundleFusion.

Surface evaluation methods and metrics �e evaluation procedure for comparing
our reconstructed 3D models with synthetic ground truth is adapted from [42] and �rst
extracts a 3D meshM from the reconstructed SDF volume. We use CloudCompare 1

to uniformly sample a reference point cloud R with 50 million points from the ground
truth mesh of AUG ICL/Liv1. We measure the distance of each vertex ofM to its closest
vertex in R with SurfReg 2 and compute the mean absolute deviation mad. �is tech-
nique assesses the correctness corr of the model, i.e. the accuracy of the successfully
reconstructed surfaces. However, we also want to measure the completeness compl of
reconstructions to determine the information loss from keyframe fusion. For measuring
compl, we inversely compare every vertex ofR to the nearest neighbor inM. For a fair
comparison and to only compare surfaces visible in the synthetic frames, we re-generate
the referenceR by fusing all input frames into the SDF with ground truth poses. We rely
on the poses from the datasets for assessing the surface quality to eliminate a substantial
source of error. We used a workstation with Intel Core i7-3770 CPU, 32GB RAM and an
NVIDIA GeForce GTX 1070 GPU.

6.5.1 Keyframe Fusion

We quantitatively investigate the e�ect of keyframe fusion on the reconstruction quality,
i.e. surface completeness and correctness, of the noisy AUG ICL/Liv1 dataset.

Keyframe strategies Figure 6.5 shows the results of di�erent keyframe selection
strategies and their average keyframe sizes on the reconstructed surface quality. Each
mark represents a separate evaluation run of a given strategy with a di�erent set of
speci�ed parameters. For kf const, we vary the number of consecutive frames κ that
are fused into each keyframe. In kf dist we adjusted the pose distance threshold ∆t

and ∆r, while we varied the overlap ratio parameters in kf ovrlp. In kf dvo we use
the same keyframes as DVO-SLAM. In summary, more relaxed parameters result in a

1http://www.danielgm.net/cc/
2https://github.com/mp3guy/SurfReg

http://www.danielgm.net/cc/
https://github.com/mp3guy/SurfReg
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Figure 6.5: �antitative evaluation of reconstruction correctness (le�) and completeness (right)
w.r.t. di�erent keyframe strategies on AUG ICL/Liv1. �e x-axis shows the average keyframe size
κ̄ produced in each run, the y-axis shows the mad error (axes are logarithmic). �e kf const
strategy achieves the best reconstruction results for both corr and compl.

higher average number of fused frames per keyframe κ̄ for all strategies; di�erent pa-
rameter combinations for the same strategy may result in a similar κ̄. With an increasing
κ̄, the completeness of reconstructions decreases rapidly, since 3D surface information
gets lost in 2.5D keyframe fusion. �e e�ect on surface correctness is less signi�cant,
since the deviation for the remaining surfaces is still reasonably close to the ground
truth 3D model. Compared to kf const, the strategies kf dist, kf ovrlp and kf dvo
result mostly in worse quantitative results, a hardly predictable number of keyframes
and barely tunable interdependent parameters. We found kf const to give good quan-
titative results, while it is also highly predictable w.r.t. fusion and re-integration runtime
as well as memory consumption (∼ 1/κ̄) due to its priorly known number of frames per
keyframe. We refer the reader to the supplementary material for more details.

Completeness Figure 6.6 shows color coded distance renderings for kf const
keyframe fusion with κ = 5 and κ = 60 on AUG ICL/Liv1. �e colors represent er-
rors from 0mm (blue) to 50mm (red). Again, the completeness compl of reconstructions
decreases with more fused frames per keyframe because of the loss of surface informa-
tion with 2.5D keyframes. �e reconstructed surfaces are still accurate w.r.t. ground
truth (corr).

6.5.2 Surface Re-integration

We �nally assess our surface correction w.r.t. real-time performance and show results
of on-the-�y surface re-integration on real-world data.

Runtime While BundleFusion requires two high-end GPUs to operate in real-time,
our system requires only a single GPU. Figure 6.7 gives the average amortized runtimes
of our system, speci�cally for (re-)integration of frames w.r.t. κ (red), for DVO-SLAM
(green) and the total runtime of both combined (blue). Generally, the higher κ is, the
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a) Completeness (le� κ = 5, right κ = 60)

b) Correctness (le� κ = 5, right κ = 60)

Figure 6.6: Completeness and correctness a�er integration of AUG ICL/Liv1 with kf const
keyframe strategy (with keyframe sizes 5 and 60).

fewer keyframes are generated and thus need to be updated. We accomplish real-time
performance with κ = 20,m = 5. Here, the re-integration strategy of updating the
m most-moved consecutive keyframes (solid lines) saves already 47% of (re-)integration
runtime compared to BundleFusion’s simple strategy (dashed). �is is further acceler-
ated through the use of keyframes only: Overall, the reconstruction with κ = 20,m = 5

and our re-integration strategy takes 93% less time than BundleFusion’s re-integration
strategy without keyframe fusion (κ = 1,m = 100). We foundm ∈ [10, 20] to be a good
trade-o� between reconstruction quality and model correction speed for most data sets.
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Figure 6.7: Average runtime per frame for reconstruction of AUG ICL/Liv1 with kf const w.r.t.
κ. Our re-integration strategy (solid) is substantially faster than BundleFusion’s (dashed). mwas
set to 100/κ, yielding a constant e�ective re-integration rate.

On-the-�y surface re-integration As DVO-SLAM steadily optimizes a pose graph
and issues pose updates, our surface correction method gradually improves the re-
constructed 3D model on-the-�y by re-integrating the most-moved consecutive m

keyframes into the SDF. While updating all changed keyframes at once is too expensive,
we can control the speed of incorporating pose updates into the 3D model by adjust-
ing m. Also, with decreasing κ̄ more keyframes are generated and need to be updated.
Figure 6.8 shows an example of how a 3D reconstruction is corrected on-the-�y during
the reconstruction to be as globally consistent as possible (with m = 5, κ = 20 and
kf const strategy).

An isolated comparison of the surface correction of ElasticFusion [123] with our
method is not applicable since the respective SLAM systems may result in di�erent
camera trajectories. Nevertheless, Figure 6.9 shows a qualitative comparison of the gen-
erated models, which is in accordance with the �ndings in [28]. While ElasticFusion
might bene�t from camera tracking against the corrected model, the point cloud recon-
structed with ElasticFusion with default parameters exhibits double walls and artifacts
due to potentially undetected loop closures and surface warping artifacts. �ese e�ects
are mitigated in the continuous surface mesh reconstructed from our method, which
successfully corrects the model on-the-�y.

6.6 Conclusion

We presented an e�cient online surface re-integration method for globally consistent
3D reconstruction of large-scale scenes from RGB-D sensors in real-time on a single GPU
only. Our SLAM system based on DVO-SLAM estimates the camera motion in real-time
on a CPU and employs pose graph optimization for obtaining globally optimized camera
poses. Multiple RGB-D frames are �rst fused into keyframes, which are then integrated
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i = 4000 i = 6000

i = 8000 �nal
Figure 6.8: Reconstruction of BundleFusion/apt0. Every 2000 frames, a model was generated
without (le�) and with (right) on-the-�y surface correction (kf const keyframe strategy with
m = 5, κ = 20).

Figure 6.9: �alitative comparison of ElasticFusion [123] (le�) with our method (right) on Bundle-
Fusion/apt0. �e point cloud reconstructed with ElasticFusion exhibits artifacts due to potentially
undetected loop closures and surface warping artifacts, whereas our method successfully corrects
the model.

into a sparse voxel hashed SDF model representation. Continuous keyframe pose up-
dates are gradually incorporated into the SDF volume by on-the-�y re-integration of
changed keyframes. Our improved re-integration strategy with correction of keyframes
and signi�cantly reduced host-GPU-streaming saves about 93% of runtime compared
to the state-of-the-art. By re-integrating keyframes (instead of all frames), we substan-
tially reduce the number of frames to be re-integrated with only a slight degradation of
reconstruction quality.

Acknowledgement �is work was funded by the ERC Consolidator grant 3D
Reloaded.
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Chapter 7

Summary

In this thesis, we introduced novel algorithms for reconstructing high-quality 3D models
of real scenes using low-cost commodity RGB-D sensors. To this end, we �rst proposed
techniques for enhancing the level of detail in the reconstructed scene geometry and for
recovering sharp model textures in order to improve typically oversmooth and blurry
SDF-based 3D reconstructions. Additionally, we developed an e�cient surface correc-
tion method for updating dense SDF volumes on-the-�y, which enables high-quality
model previews in real-time whenever the SLAM system updates camera poses on loop
closures. In the following, we summarize the key contributions presented in the indi-
vidual chapters in Part II of this dissertation.

Texture Mapping using Super-Resolution Keyframes �e novel texture mapping
method demonstrated in Chapter 4 employs a robust super-resolution keyframe fusion
to achieve high-quality model appearance. �is dramatically improves the photorealism
of 3D models generated by fusing RGB-D frames in an SDF with smoothing `2-regula-
rization. Firstly, the low-quality input frames are fused into super-resolution keyframes
of higher resolution. In particular, we utilize advanced �ltering techniques to preserve
a high level of detail: a blurriness measure mitigates frames with motion blur and the
color observations are �nally fused using a weighted median scheme. Secondly, we tex-
ture map the produced super-resolution keyframes onto the reconstructed 3D triangle
mesh, again using a weighted median per-texel color computation. �e experimental
results show that the devised method is able to generate consistent and sharp model
textures, with a signi�cantly be�er quality compared to simple volumetric blending. Its
robustness and e�cient runtime make the approach highly practical for real-world 3D
scanning applications.
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Joint Geometry and Appearance Optimization In Chapter 5, a joint 3D recon-
struction approach that simultaneously optimizes scene geometry, material albedo and
image formation model was proposed. Our method recovers �ne-scale geometric de-
tails from a coarse initial SDF volume as well as sharp surface textures. High-resolution
RGB keyframes are selected using a blurriness measure and utilized in a joint optimiza-
tion based on Shape-from-Shading. A �exible lighting model based on Spatially-Varying
Spherical Harmonics is introduced, allowing to faithfully approximate complex scene
illumination. �e estimated lighting is then employed in a shading-based re�nement
method that jointly optimizes for surface geometry and material albedo encoded in a
voxel-hashed SDF volume along with the image formation model including keyframe
camera poses. We show in extensive qualitative and quantitative evaluations that the
developed technique recovers impressive geometry details and an improved reconstruc-
tion of spatially-varying scene lighting. �rough joint optimization of both geometry
and camera poses, the color sampling in the keyframes continuously improves, which
implicitly leads to optimal high-quality surface colors as a by-product.

E�cient Online Surface Correction In Chapter 6, we addressed the challenging
task of e�cient on-the-�y surface re-integration for large-scale 3D reconstruction using
SDFs. In combination with a real-time SLAM system [57] that continuously optimizes
a global pose graph and reduces dri� on loop closures, our method manages to gradu-
ally correct a sparse voxel-hashed SDF [86] on pose updates. Consecutive RGB-D input
frames are �rst fused in keyframes with more complete depth and reduced noise. �ese
keyframes are then directly incorporated into the global 3D model using their initial
poses. As the scanning advances, the SLAM system potentially �nds loop closures of
previously visited places and consequently updates its pose graph to maximize global
consistency. To accordingly update the SDF volume, we de-integrate and re-integrate
the updated keyframes with their new poses on-the-�y. Our advanced keyframe selec-
tion and re-integration strategy considerably accelerates GPU-host-streaming for real-
time performance. Our experiments demonstrate that the runtime is improved by up to
93% compared to the state-of-the-art. Our method bene�ts highly from re-integrating
keyframes only (instead of all frames), requiring signi�cantly fewer frames to be cor-
rected. �is comes with only a slight degradation of the reconstructed surface geometry,
which renders up-to-date model previews with high global consistency and enhanced
visual quality possible. �e presented method requires only a single GPU and is a �rst
step towards real-time online surface correction in large-scale dense 3D reconstruction.



Chapter 8

Future Research

�e techniques presented in this thesis achieve compelling state-of-the-art results in
the context of 3D reconstruction from consumer RGB-D cameras. Despite all recent
advances, there are still many open challenges and possible extensions to existing ap-
proaches. In the following, we cover interesting directions that can potentially be ad-
dressed in future research.

RGB-D Sensors and Calibration Since the Microso� Kinect, RGB-D sensors have
had a signi�cant impact on solving practical 3D reconstruction problems. However, slow
progress in sensor hardware has led to a stagnation of depth and color image quality.
�e noisy depth maps have limited image resolutions, while the associated RGB images
contain noticeable visual artifacts due to low-quality lenses and cheap image sensors
without global shu�er. Moreover, the inexact intrinsic and extrinsic factory calibration
and the lack of hardware synchronization between depth and color o�en lead to un-
compensated inaccuracies in the 3D reconstruction. However, the framework in [118]
has proved that a thoroughly assembled and calibrated camera rig is crucial for impres-
sive 3D reconstructions. A further miniaturization of depth sensors with lower power
consumption is required for a more wide-spread use in smartphones or HMDs.

To remedy the limitations above, there are some new RGB-D sensors on the horizon
such as the new Microso� Azure Kinect1. In contrast to using depth sensing hardware,
there is a lot of potential in combining learning-based monocular or stereo depth esti-
mation methods [69, 132] with existing RGB-D based 3D reconstruction approaches.

Real-time Large-Scale Geometry Re�nement �e optimization method in Chap-
ter 5 reconstructs high-quality 3D models of only limited-size objects due to its high
memory requirements. We consider partitioned optimization techniques as a possible
direction for re�ning even large-scale reconstructions, in which two steps are iterated:

1https://azure.microsoft.com/en-in/services/kinect-dk/

https://azure.microsoft.com/en-in/services/kinect-dk/
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(1) �xed-size subvolumes of the reconstruction are optimized independently; (2) we slide
the subvolumes about half of their size in order to a�erwards re�ne the unoptimized
boundaries. To speed up the slow optimization runtimes and aim for real-time perfor-
mance, a data-parallel NLS solver on the GPU can be employed, either implemented as
a custom solver or using the generic Opt Solver library [29].

Geometry Simpli�cation and Completion While fusing many RGB-D frames in a
SDF volume e�ectively regularizes the depth noise, the geometry may still contain noise
or holes in regions with few or no observations. By analyzing the geometry and incor-
porating shape priors such as planes [2, 49, 70], CAD models [12] or other geometric
primitives [100], the surface geometry can be completed and denoised. �ese shape pri-
ors have the potential to enable compact scene representations with a very low memory
footprint, which is crucial for large-scale 3D reconstruction of almost unlimited scale.

Volumetric 3D deep learning approaches have recently demonstrated that semantic
scene analysis helps to complete geometry [27, 48, 102], but are still su�ering from their
high memory requirements and limited resolution. Geometric deep learning [20, 81] and
graph convolutional neural networks [38] provide an interesting research direction for
analyzing and simplifying 3D model geometry.

Scene Decomposition Despite the recent progress, 3D reconstructions obtained in
unconstrained environments commonly still lack photorealism. For example, uncap-
tured material re�ectance properties and baked-in shadows or specularities are o�en
hindering the use of such models in VR applications, where realistic re-lighting of ob-
jects is essential. Our approach in Chapter 5 tackles the complex problem of separating
geometry and albedo by heavily relying on a heuristic but o�en insu�cient albedo reg-
ularization term. Additionally, more advanced surface re�ectance models like BRDFs
with material roughness parameters for specularities are required in practice.

Recent works using deep neural networks have shown their potential to e�ectively
estimate material re�ectance [13, 60, 80], outperforming handcra�ed albedo regular-
izers. Likewise, deep learning based methods can approximate the scene illumination
more realistically than SVSH lighting; this allows to faithfully re-light virtual objects in
reconstructed 3D models [37, 65, 101]. �e di�erentiable rendering [54, 74] and raytrac-
ing [68] techniques utilized in these works enable semi- or unsupervised learning by
incorporating a di�erentiable physical light transport model already during training.

Online Surface Correction On-the-�y 3D surface correction, in particular of SDFs, is
still a research topic that is not fully explored. Most state-of-the-art SLAM methods have
lightweight internal scene maps for enabling up-to-date localization and incorporating
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loop closures. �ese maps are however independent of a dense 3D surface representation
for model visualization and analysis.

Using fused keyframes for surface correction in Chapter 6 signi�cantly improves
performance and memory consumption compared to [28]. To scale even be�er w.r.t.
memory usage as the scanning progresses, revisiting of keyframes is appealing. �is in-
volves fusion of input frames into existing keyframes that observe the same scene parts,
instead of creating new ones. By avoiding to redundantly store 3D scene information,
the method becomes suitable for robotic scenarios with limited hardware capabilities.
Moreover, adopting the revised hash map structure of the voxel-hashed SDF in [53] fur-
ther speeds up the re-integration times of our presented method and allows to ultimately
correct more keyframes per pose update.

While we have utilized dense SDF volumes for reconstructing and updating the ge-
ometry, fundamental research on suitable 3D representations for surface correction is
necessary. Memory e�ciency, real-time performance for fusion and correction, and on-
line 3D mesh extraction are aspects of special interest. Recent methods employ defor-
mation graphs that have local SDF subvolumes [52] or dense surfel maps [94, 95, 123]
a�ached. �ese graphs are corrected on loop closures and allow the a�ached local 3D re-
constructions to move along; while this obviates the need for explicit de-/re-integration,
it also involves a more sophisticated real-time mesh extraction.
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Appendix A

Supplementary Material for Publication

Intrinsic3D: High-�ality 3D Reconstruction

by Joint Appearance and Geometry

Optimization with Spatially-Varying Lighting

In this supplementary material, we provide additional experiments and details. Speci�-
cally, we give an overview of the mathematical symbols in Sec. A.1, and in Sec. A.2 we
provide a thorough quantitative evaluation regarding the geometric reconstruction qual-
ity on ground truth data (both real and synthetic). We further show qualitative results
of the reconstructed models on several own and publicly-available datasets, with a focus
on both reconstruction geometry and appearance; see Sec. A.3. Finally, in Sec. A.4, we
detail additional experiments on spatially-varying lighting under both qualitative and
quantitative standpoints.
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A.1 List of Mathematical Symbols

Symbol Description

p continuous 3D point in R3

x continuous 2D image point in R2

v position of voxel in R3

vc position of voxel center of v in R3

v0 position of v transformed onto iso-surface in R3

n(v) surface normal at v in R3

D(v) signed distance value at v
C(v), I(v) color (RGB) and intensity at v

W(v) integration weight at v
a(v) albedo at v
D̃(v) re�ned signed distance value at v
D0 iso-surface of the re�ned SDF

B(v) estimated re�ected shading at v
Γ(v) chromaticity at v
tshell thin shell size
N number of voxels inside the thin shell region

K, tsv number of subvolumes and subvolume size in R3

S set of subvolumes sk
` vector of all lighting coe�cients lm
Hm m-th spherical harmonics basis
b number of spherical harmonics bands
M number of input frames

Ci, Ii,Zi color, intensity and depth image of frame i
Ti transformation from frame i to the base frame
tKF keyframe selection window size

tbest,Vbest number of best views for v and corresponding set
di(v) projective distance to voxel center in frame i
wi(v) sample integration weight of frame i
Ov set of color observations of v
cvi observed color of v in frame i
wv

i observation weight of v in frame i
fx, fy, cx, cy camera intrinsics (focal length, optical center)
κ1, κ2, ρ1 radial and tangential lens distortion parameters
X stacked vector of optimization variables
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Figure A.1: Surface accuracy comparison with a ground truth laser scan of the Socrates dataset:
the approach of Zollhöfer et al. [135] (le�) exhibits a higher mean absolute deviation from the
ground truth compared to our method (right).

A.2 �antitative Geometry Evaluation

In the following, we show a quantitative surface accuracy evaluation of our geometry
re�nement on the Socrates and Frog datasets.

A.2.1 Socrates

In order to measure the surface accuracy of our method quantitatively, we �rst compare
our method with a ground truth laser scan of the Socrates Multi-View Stereo dataset
from [135]. �e mean absolute deviation (MAD) between our reconstruction and the
laser scan is 1.09mm (with a standard deviation of 2.55mm), while the publicly-available
re�ned 3D model of Zollhöfer et al. [135] has a signi�cantly higher mean absolute devi-
ation of 1.80mm (with a standard deviation of 3.35mm). �is corresponds to an accuracy
improvement of 39.44% of our method. Figure A.1 visualizes the color-coded mean ab-
solute deviation on the surface.

A.2.2 Frog

Besides a quantitative comparison with a laser scan, we also evaluate the surface accu-
racy of a 3D model reconstructed from synthetic RGB-D data. We therefore generated
the synthetic Frog dataset by rendering a ground truth mesh with a high level of detail
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Figure A.2: Surface accuracy comparison on synthetic data with a ground truth mesh of the Frog
dataset: our method (bo�om) generates more accurate results compared to Zollhöfer et al. [135]
(top).

into synthetic color and depth images. We smooth the depth maps using a bilateral �lter
and add Gaussian noise to both the depth values and to the camera poses.

Instead of comparing the reconstructed 3D models directly with the original mesh,
we instead fuse the generated noise-free RGB-D frames into a Signed Distance Field and
extract a 3D mesh with Marching Cubes [75]. �is extracted mesh is then used as ground
truth reference and represents the best possible reconstruction given the raycasted input
data in combination with an SDF volume representation.

�e mean absolute deviation between our reconstruction and the ground truth mesh
is 0.222mm (with a standard deviation of 0.269mm). With the reconstruction generated
using our implementation of [135], we obtain a substantially higher mean absolute de-
viation of 0.278mm (with a standard deviation of 0.299mm). Compared to [135], our
method improves the reconstruction accuracy by 20.14% and is able to reveal geometric
details lost with [135]. Figure A.2 visualizes the color-coded mean absolute deviation on
the surface.
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A.3 Examples of 3D Reconstructions

In addition to providing a thorough quantitative ground truth evaluation, we show qual-
itative results of 3D models reconstructed from several RGB-D datasets. In particular,
we present 3D reconstructions of the publicly-available Relief and Lucy datasets from
Zollhöfer et al. [135] as well as 3D models of the Gate, Lion, Hieroglyphics, Tomb Statuary
and Bricks datasets that we acquired with a Structure Sensor.

Apart from showing the �ne detailed geometry, we also demonstrate the improved
appearance of the reconstructions, which we implicitly obtain by jointly optimizing for
surface, albedo, and image formation model parameters within our approach.

A.3.1 Relief

In Figure A.3, we show a comparison of the appearance generated using our method
with simple volumetric fusion (e.g., Voxel Hashing [86]) and the shading-based surface
re�nement approach by Zollhöfer et al. [135]. �e results in (a) and (b) are visualizations
from the meshes that are publicly-available on the project website of [135]. �e close-ups
successfully visualize that our method results in signi�cantly sharper textures.

A.3.2 Lucy

In Figure A.4, we present a visual comparison of the reconstructed surface geometry of
the Lucy dataset. Note how volumetric fusion (a) and Zollhöfer et al. [135] (b) cannot
reveal �ne-scale details due to the use of averaged per-voxel colors for the re�nement,
while our method gives the best results and provides geometric consistency (c).

Regarding appearance, we can observe in Figure A.5 that our method (c) provides a
more detailed texture compared to fusion (a) and Zollhöfer et al. [135] (b).

A.3.3 Additional Datasets

While the Relief and Lucy datasets provided by [135] consist of rather small objects with
only few input RGB-D frames and short camera trajectories, we acquired more advanced
RGB-D datasets using a Structure Sensor.

Figure A.6 shows the reconstruction of the Gate dataset, while the 3D model of the
Lion dataset is visualized in Figure A.7. �e 3D reconstructions of Hieroglyphics, Tomb
Statuary and Bricks are presented in Figure A.8, Figure A.9 and Figure A.10 respectively.
For all of these datasets, our method generates high-quality 3D reconstructions with �ne-
scale surface details and and compelling visual appearance with sharp texture details. In
contrast, the models obtained from volumetric fusion lack �ne details in both geometry
and appearance.
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Input Color Ours

(b) Zollhöfer et al. 15 (c) Ours(a) Fusion

Figure A.3: Re�ned appearance of Relief dataset: our method (c) reconstructs signi�cantly
sharper textures compared to (a) and (b). Close-ups of ornaments (yellow, blue) and �gures
(green, red) exhibit more visual details.

Input Color Ours (b) Zollhöfer et al. 15 (c) Ours(a) Fusion

Figure A.4: Re�ned geometry of Lucy dataset: volumetric fusion (a) with its strong regularization
gives only coarse models. Zollhöfer et al. [135] (b) generate more details; however, limited by
using averaged per-voxel colors for the re�nement. Our approach that jointly optimizes for all
involved parameters (c) reconstructs �ne-detailed high-quality geometry.
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Input Color Ours (b) Zollhöfer et al. 15 (c) Ours(a) Fusion

Figure A.5: Re�ned appearance of Lucy dataset: in addition to precise geometry our method (c)
also produces high-quality colors compared to (a) and (b).

Input Color Geometry (ours)

Fusion Ours

Appearance (ours)

Fusion Ours

Figure A.6: Reconstruction of the Gate dataset.

Input Color Geometry (ours) Appearance (ours)

Fusion Ours Fusion Ours

Figure A.7: Reconstruction of the Lion dataset.
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Input Color Geometry (ours)

Fusion Ours

Appearance (ours)

Fusion Ours

Figure A.8: Reconstruction of the Hieroglyphics dataset.

Input Color Geometry (ours) Appearance (ours)

Fusion Ours Fusion Ours

Figure A.9: Reconstruction of the Tomb Statuary dataset.

Input Color Geometry (ours)

Fusion Ours

Appearance (ours)

OursFusion

Figure A.10: Reconstruction of the Bricks dataset.



A.4. Evaluation of Spatially-Varying Lighting 113

(a) Luminance (b) Shading
(global SH)

(c) Shading (SVSH)

(d) Di�erence
(global SH)

(e) Di�erence
(SVSH)

Figure A.11: Estimated illumination of Relief dataset: the di�erences between input luminance
(a) and estimated shading (b) and (c) are less for SVSH (e) than for global SH (d), meaning a be�er
approximation of the illumination.

A.4 Evaluation of Spatially-Varying Lighting

In this section, we present further qualitative results for lighting estimation via spatially-
varying spherical harmonics (SVSH) compared to global spherical harmonics (global SH)
on various datasets. We use the same underlying geometry for both variants of lighting
estimation for each dataset.

Error Metric As a metric, we use the absolute di�erence between estimated shading
and observed input luminance of a voxel v; i.e.,

Bdi� = |B(v)− I(v)|, (A.1)

to determine the quality of the illumination for given geometry and albedo. Ideally, this
di�erence should be as small as possible.

Relief For the Relief dataset, the di�erences between lighting estimation with global
SH and SVSH (with a subvolume size of 0.05m) are shown in Figure A.11. It becomes
obvious that even for seemingly simple scenes, a single global set of Spherical Harmonics
coe�cients cannot accurately re�ect real-world environments with complex lighting.
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(a) Luminance (b) Shading
(global SH)

(c) Shading (SVSH)

(d) Di�erence
(global SH)

(e) Di�erence
(SVSH)

Figure A.12: Estimated illumination of Lucy dataset: illumination with SVSH (c) explains the illu-
mination be�er than global SH only (b), resulting in less di�erences (e) compared to (d) between
input luminance (a) and shading.

Lucy Similar to the Relief, SVSH (with a subvolume size of 0.05m) can be�er approxi-
mate the complex illumination in the Lucy dataset than global SH. Figure A.12 visualizes
the di�erences in the estimated shadings.
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E�cient Online Surface Correction for

Real-time Large-Scale 3D Reconstruction

In this chapter, we provide additional experiments and details of our work ”E�cient
Online Surface Correction for Real-time Large-Scale 3D Reconstruction”. Speci�cally,
we demonstrate the e�ect of the di�erent keyframe strategies on the completeness of
reconstructions; see Section B.1. Moreover, we provide a detailed evaluation of the
runtime (Section B.2) and memory consumption (Section B.3) of our surface correction
method. Finally, Section B.4 shows some more qualitative results for on-the-�y surface
re-integration on additional datasets. Our evaluation was performed on a workstation
with Intel Core i7-3770 CPU, 32GB RAM and an NVIDIA GeForce GTX 1070 GPU.

Datasets For our evaluation, we use publicly available RGB-D datasets, an overview
is given in Table B.1. All used sequences depict larger scenes and provide registered
depth and color images (with a resolution of 640 × 480 at 30 fps) as well as respective
camera poses. For assessing the surface quality and to eliminate a substantial source of
error, we rely on on the (ground truth) camera poses provided directly with the datasets.

�e real-world sequence TUM/long o�ce household [111] shows a long sequence
with a loop closure and provides ground truth camera poses obtained from a high-speed
motion capture system.

BundleFusion/apt0 [28] features a very long camera trajectory estimated using a
highly accurate 3D reconstruction framework.

AUG ICL/Liv1 [23] is a synthetic RGB-D sequence generated from manually mod-
eled scenes of a living room. In addition to providing ground truth camera poses, the
dataset also provides exact ground truth 3D scene models which allow for a quantita-
tive comparison of surface quality of reconstructed 3D models. �e AUG ICL sequences
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Sequence # frames Synthetic GT trajectory GT 3D model
TUM/long o�ce household [111] 2486 No Yes No
AUG ICL/Liv1 [23] 2870 Yes Yes Yes
BundleFusion/apt0 [28] 8560 No No No

Table B.1: RGB-D datasets used for our evaluation. (GT stands for ground truth)

consist of separate sequences with clean and noisy depth maps, which exhibit a more
realistic camera noise model.

Surface evaluation methods and metrics In order to perform a quantitative evalu-
ation of our reconstructed 3D models with ground truth models, we �rst introduce the
employed methods and metrics. �e evaluation procedure for a comparison with syn-
thetic ground truth is adapted from [42] and �rst extracts a 3D meshM from the Signed
Distance Field (SDF) volume using the Marching Cubes algorithm [75].

�en, using CloudCompare 1, we sample a ground truth reference model R from
the mesh provided for AUG ICL/Liv1, giving a point cloud with 50 million vertices dis-
tributed uniformly on the models. Note that we generate distinct models for clean and
noisy sequences. By using the poses from the sequences, our models are already aligned
with the reference. We use SurfReg 2 to measure the distance of each vertex of our re-
constructionM to its closest vertex in the reference point cloudR and compute the val-
ues for the mean absolute deviation mad. �is technique assesses the correctness (corr)
of the model and basically compares the accuracy of the reconstructed surfaces w.r.t. the
ground truth model.

However, this method fails to evaluate the completeness (compl) of the reconstruc-
tion, which is especially important for determining the information loss when applying
keyframe fusion. For measuring compl, we use the inverse procedure and compare ev-
ery vertex of the reference R to the nearest neighbor in M. Since the ground truth
model contains more surface than actually covered in the synthetic RGB-D frames, we
re-generate the reference models by fusing all input frames (without keyframe fusion)
into the SDF volume using the ground truth trajectory. �is yields reference models that
are as complete as possible based on the synthetic frames.

1http://www.danielgm.net/cc/
2https://github.com/mp3guy/SurfReg

http://www.danielgm.net/cc/
https://github.com/mp3guy/SurfReg
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B.1 Keyframe Strategies

In our work, we have introduced four di�erent strategies for creating Keyframe Fu-
sion keyframes (KF keyframes), namely kf const, kf dist, kf ovrlp and kf dvo. �e
number of input RGB-D frames fused into a keyframe has an important e�ect on both
re-integration e�ciency and reconstruction surface quality. �e more keyframes are
generated, the less frames need to be re-integrated on DVO-SLAM pose graph updates,
resulting in a more e�cient surface correction. At the same time there is a loss in recon-
struction quality (completeness compl in particular) that goes along with less keyframes,
since 3D information cannot be fully represented in the 2.5D keyframe depth maps. Our
keyframe fusion generally follows [6] and consists of separate steps for depth and color
fusion.

�e di�erent keyframe strategies result in a di�erent number of keyframes and con-
sequently directly in�uence the reconstruction quality. Each keyframe strategy can be
con�gured with speci�c parameters; the more relaxed these parameters are, the more
keyframes are created in general. Figure B.1 shows the e�ect of the di�erent strategies on
the completeness compl of noisy AUG ICL/Liv1, with parameters chosen in a way that
all strategies fuse roughly the same average number κ̄ of input frames in each keyframe.
We additionally show the result of omi�ing intermediate frames, i.e. only integrating
the (unfused) depth map of the input frame corresponding to the keyframe into the SDF
volume.

B.2 Surface Correction Runtime Evaluation

In the following, we show a quantitative runtime evaluation of our method. We rely on
the kf const keyframe strategy, since it provides the best trade-o� between e�ciency,
surface quality and predictability (runtime and memory consumption).

Figure B.2 gives the average runtimes per frame of our full 3D reconstruction frame-
work w.r.t. the number of input frames fused into a keyframe. Our system is split into
it’s processing steps:
Integrate Adding of a new frame, i.e., either fusion of a frame into the current keyframe

or integration of a keyframe into the 3D model.

Update Correcting the model, i.e., the re-integration procedure.

Wait for DVO-SLAM DVO-SLAM runs in parallel to our system. �is component
represents the time required for synchronization with DVO-SLAM .

Miscellaneous All other required processing.
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No fusion
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Figure B.1: Reconstruction of noisy AUG ICL/Liv1 with di�erent keyframe strategies: Keyframe
fusion is generally more e�cient, but also results in more noisy reconstructions (le�) and less
complete 3D models (middle and right).
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Figure B.2: Average runtime required per frame for reconstruction of AUG ICL/Liv1 with kf -
const keyframe strategy w.r.t. the number of frames fused per keyframe κ. For each pose update,
k = 100/κ frames were re-integrated. Our system (consisting of the steps Integrate, Update,
Wait for DVO-SLAM and Miscellaneous, see text) and DVO-SLAM are executed in parallel,
hence resulting in the two bars next to each other. While the strong colored bars (A) represent
our system run with our improved re-integration strategy, the washed out bars (B) stand for our
system run with BundleFusion’s strategy. Note that for be�er visibility of short runtimes, the
scale of the �gure’s x-axis is adapted between κ = 5 and κ = 10. �e dashed line shows our
goal of 30 fps. Table B.2 contains the raw data of this �gure.

For a keyframe size of κ ≥ 20 we achieve real-time performance. DVO-SLAM runs
in real-time on a single CPU, asynchronously to our system in a separate thread. Fig-
ure B.2 also compares our re-integration strategy to BundleFusion’s by Dai et al. [28].
Especially for low κwe obtain a signi�cant speed-up stemming from a reduction of run-
time required for Update.

�e raw data of Figure B.2 is displayed in Table B.2.

B.3 Surface Correction Memory Evaluation

In addition to major runtime improvements during re-integration, keyframe fusion also
leads to decreased memory consumption on the host.

Figure B.3 shows the memory consumption of our system for di�erent numbers of
frames per keyframe κ. �e memory consumption was measured every 10th frame and
refers to RSS (resident set size); we excluded the memory usage of DVO-SLAM , since
our surface reconstruction method is independent of the used SLAM system.

As demonstrated in Figure B.3, the RSS increases linearly with progressing surface
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Our re-integration strategy
κ Integrate Update Wait for DVO-SLAM Miscellaneous DVO-SLAM

1 18.70 101.40 1.28 3.24 25.45
2 14.31 53.55 3.24 3.39 25.50
5 8.97 26.07 6.55 3.35 24.89

10 7.65 16.14 6.99 3.42 24.89
20 6.90 10.65 9.47 3.41 25.01
50 5.83 6.52 12.18 3.38 24.85

BundleFusion’s re-integration strategy
κ Integrate Update Wait for DVO-SLAM Miscellaneous DVO-SLAM

1 19.22 410.83 1.25 2.85 25.32
2 14.42 200.57 3.14 3.06 25.31
5 9.65 91.87 6.68 2.94 25.47

10 7.61 50.01 7.62 2.99 25.01
20 7.07 25.98 8.13 2.98 25.18
50 5.83 10.89 10.37 3.06 24.71

Table B.2: Raw data of Figure B.2. Our re-integration method requires substantially less time for
updating, i.e., correcting, the surface on-the-�y compared to BundleFusion’s strategy, while all
other steps of the pipeline remain essentially the same.
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Figure B.3: Host memory consumption of our system (excluding DVO-SLAM ). We measured
the RSS (resident set size) a�er every 10th frame during reconstruction of AUG ICL/Liv1 with
kf const.

reconstruction (i.e. with the number of integrated frames). Inversely, the memory con-
sumption decreases linearly with increasing κ. In our framework, most of the memory
is used for storing the keyframes for potential later re-integration. When comparing
no keyframe fusion with kf const with κ = 20, we save about 90% of host memory
(14.5 GiB vs. 1.5 GiB).
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B.4 On-the-�y Surface Re-integration

Finally, we present some qualitative examples for on-the-�y surface re-integration on
various large-scale datasets.

�e following sequences of models were created by reconstructing the RGB-D se-
quences TUM/long o�ce household, BundleFusion/apt0 and AUG ICL/Liv1; the underly-
ing camera poses were provided by DVO-SLAM . With a certain frequency (speci�ed
in each �gure’s caption), a polygon 3D model was generated and later rendered using
Blender. In order to compare the outcome with and without re-integration, pairs of ren-
derings are shown, with the le� and right image stemming from reconstruction without
and with re-integration, respectively. A�er integration of all frames, the �nal 3D model
was generated, independently of the above frequency. For the run with re-integration,
before generation of the �nal 3D model, all frames were re-integrated once to ensure
that all pose updates were incorporated in the 3D model.

In particular, Figure B.4 shows the results for AUG ICL/Liv1, while Figure B.5 shows
the model for TUM/long o�ce household and Figure B.6 the reconstruction of Bundle-
Fusion/apt0.

i = 500

i = 1000

i = 1500 i = 2000

i = 2500 �nal

Figure B.4: On-the-�y surface re-integration of AUG ICL/Liv1. Every 500 frames, a model was
generated.
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i = 250

i = 500

i = 750 i = 1000

i = 1250 i = 1500

i = 1750 i = 2000

i = 2250 �nal

Figure B.5: On-the-�y surface re-integration of TUM/long o�ce household. Every 250 frames, a
model was generated.
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i = 1000

i = 2000

i = 3000 i = 4000

i = 5000 i = 6000

i = 7000 i = 8000

�nal

Figure B.6: On-the-�y surface re-integration of BundleFusion/apt0. Every 1000 frames, a model
was generated.
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Original Publications

�is chapter includes the original publications of the peer-reviewed papers [4, 5, 6] that
contribute to this cumulative dissertation. �e works in Chapters 4, 5 and 6 have revised
layouts as well as minor content adaptations compared to the original publications. Ad-
ditionally, we provide a detailed disclaimer for each paper, indicating a copyright notice,
a publication summary and the speci�c individual contributions of the author of this
thesis. More precisely, the individual contributions are divided in problem de�nition,
literature survey, implementation, experimental evaluation and manuscript preparation.





C.1. Super-Resolution Keyframe Fusion for High-�ality 3D Modeling 127

C.1 Super-Resolution Keyframe Fusion for 3DModel-

ing with High-�ality Textures

Copyright

©2015 IEEE. Reprinted, with permission, from
Robert Maier, Jörg Stückler, and Daniel Cremers
Super-Resolution Keyframe Fusion for 3D Modeling with High-�ality Tex-

tures

IEEE International Conference on 3D Vision (3DV) 2015
DOI: 10.1109/3DV.2015.66

Summary

We propose a novel fast and robust method for obtaining 3D models with high-quality
appearance using commodity RGB-D sensors. Our method uses a direct keyframe-
based SLAM frontend to consistently estimate the camera motion during the scan.
�e aligned images are fused into a volumetric truncated signed distance function
representation, from which we extract a mesh. For obtaining a high-quality appear-
ance model, we additionally deblur the low-resolution RGB-D frames using �ltering
techniques and fuse them into super-resolution keyframes. �e meshes are textured
from these sharp super-resolution keyframes employing a texture mapping approach.
In experiments, we demonstrate that our method achieves superior quality in appear-
ance compared to other state-of-the-art approaches.

Individual contributions

Leading role in realizing the scienti�c project.
Problem de�nition signi�cantly contributed
Literature survey signi�cantly contributed
Implementation signi�cantly contributed
Experimental evaluation signi�cantly contributed
Preparation of the manuscript signi�cantly contributed

In accordance with the IEEE �esis / Dissertation Reuse Permissions, we include the accepted version
of the original publication [6] in the following.

https://doi.org/10.1109/3DV.2015.66


Super-Resolution Keyframe Fusion for
3D Modeling with High-Quality Textures

Robert Maier, Jörg Stückler, Daniel Cremers
Computer Vision Group, Technische Universität München, Germany

{maierr,stueckle,cremers}@in.tum.de

Abstract

We propose a novel fast and robust method for obtaining
3D models with high-quality appearance using commod-
ity RGB-D sensors. Our method uses a direct keyframe-
based SLAM frontend to consistently estimate the camera
motion during the scan. The aligned images are fused
into a volumetric truncated signed distance function rep-
resentation, from which we extract a mesh. For obtaining
a high-quality appearance model, we additionally deblur
the low-resolution RGB-D frames using filtering techniques
and fuse them into super-resolution keyframes. The meshes
are textured from these sharp super-resolution keyframes
employing a texture mapping approach. In experiments, we
demonstrate that our method achieves superior quality in
appearance compared to other state-of-the-art approaches.

1. Introduction

The wide availability of consumer RGB-D sensors has
boosted research in 3D reconstruction in recent years.
State-of-the-art methods in 3D model reconstruction yield
impressively accurate geometric reconstruction in real-
time [16, 24]. Such 3D reconstructions are well suitable
for 3D printing [21]. Fast and robust estimation of high-
quality visual appearance (i.e. texture) of the models has
been given less attention. This plays, however, an equally
important role for 3D modeling, for instance, of persons or
objects.

Modern texture mapping approaches can obtain good-
quality results, but are typically slow and impractical for
instant 3D scanning applications. As scanning the 3D ge-
ometry with RGB-D sensors is possible in real-time, also
the texture mapping process should be fast. We propose a
method for fast and accurate reconstruction of geometry as
well as appearance. Figure 1 shows a textured 3D model
generated from low-resolution (LR) RGB-D input frames
with our approach. For geometric reconstruction, we use
a direct keyframe-based RGB-D SLAM method in order

to estimate the camera trajectory consistently. Using these
pose estimates, the individual frames are integrated into a
volumetric truncated signed distance function (TSDF) rep-
resentation, from which a 3D mesh is extracted. For this
mesh we find a parametrization suitable for texture map-
ping. We significantly improve the quality of the gener-
ated texture maps through super-resolution (SR) fusion of
RGB-D frames and deblurring. Simple weighted median
filtering of projected color values onto the texture provides
high-quality appearance results.

In experiments, we compare our method to standard
pipelines that perform per-vertex coloring or texture map-
ping based on the original low-resolution frames. We
demonstrate superior results of our method with respect to
texture quality. We also evaluate the timing of our method
and find that it yields high-quality results in reasonable and
practical time for 3D scanning applications.

1.1. Related Work

Since the recent advent of low-cost commodity RGB-D
sensors, there has been extensive research in the field of
dense 3D reconstruction from RGB-D data. While generat-
ing highly accurate 3D models from RGB-D data has been
investigated intensively, there seems to be a shortage of re-
search in improving the visual appearance of such recon-
structions.

To obtain geometrically accurate 3D reconstructions,
Newcombe et al. [16] fuse RGB-D frames into a TSDF Vol-
ume and perform camera tracking against this model. Sturm
et al. [21] developed a similar approach for reconstructing
3D printable models of persons, paired with direct TSDF
tracking [1]. Other RGB-D SLAM methods [5, 20, 13, 8]
are based on frame-to-(key)frame tracking with trajectory
optimization and data fusion into a single model volume.
Kerl et al. [9] developed a robust dense visual SLAM sys-
tem that shows limited drift by combining dense robust
visual odometry estimation with pose graph optimization.
SLAM systems for reconstructing and mapping large-scale
environments have also been developed [17, 19].

The systems presented above can produce models of



(a) RGB input images (b) Vertex colors (c) Texture mapping using super-resolution keyframes

Figure 1: We propose an efficient method for generating high-quality textures from low-resolution RGB-D frames. Our
approach significantly improves the visual quality of reconstructed 3D models while it is still fast enough for applicability in
real-world 3D scanning scenarios.

high metric precision, however the state-of-the-art for rep-
resenting the visual appearance in such 3D reconstruc-
tion systems is still volumetric averaging of per-vertex col-
ors, such that the color resolution is limited to mesh res-
olution. Mostly, these vertex colors are computed as a
weighted average of the observed colors for the respective
vertices [16, 23, 21]. To improve the appearance, weights
based on the normals computed from the depth image are
employed; to remove further artifacts, pixels close to depth
discontinuities are discarded.

However, to create photo-realistic 3D models of real-
world objects, the challenging problem of generating and
mapping high-quality textures from multiple input color im-
ages has been investigated intensively in the field of com-
puter graphics for decades. Without increasing the geomet-
ric complexity, textures (usually of higher resolution than
the mesh resolution) are mapped onto the mesh to enhance
the visual quality, with camera poses assumed to be given.
[15, 18] compute the texel colors using a weighted average
of the observations in the input color images. Instead of us-
ing the weighted average, Coorg and Teller [2] use a color
computation scheme based on weighted median to cope
with color outliers in the observations. Eisemann et al. [4]
correct for inaccuracies in camera poses and calibration us-
ing optical flow for mapping images to the texture map.
Lempitsky and Ivanov [11] and Gal et al. [6] select a single
input view per face and minimize seams, however the ap-
proaches suffer from high runtimes because of the computa-
tionally expensive combinatorial optimization. Variational
super-resolution methods, e.g. by Goldlücke et al. [7], pro-
duce compelling results, paired with impractical computa-
tion times of several hours in a controlled setup with only
a limited number of input views. Waechter et al. [22] tex-
ture large-scale scenes reconstructed with Structure-from-

Motion, however they rely on high-quality input images
and have long computation times with up to 80 minutes per
dataset.

The scenario of improving the visual appearance in
RGB-D based 3D reconstruction has not been tackled
extensively yet. Meilland and Comport [14] fuse low-
resolution images into a single high-resolution keyframe by
applying a super-resolution technique. The fused keyframes
exhibit an impressive level of detail, but the approach does
not create a globally consistent 3D model. Recently, Zhou
and Koltun [25] have shown that the colors of 3D models
obtained from handheld RGB-D cameras can be improved
substantially; within several minutes, they alternatingly op-
timize camera poses and non-rigid correction to correct for
imprecise camera localization and for complex distortions
resulting from inaccurate geometric models. However, they
use vertex colors of an upsampled mesh, leading to an in-
creasingly complex geometry with a still limited resolution
compared to texture maps.

To the best of our knowledge, we present the first method
for combining keyframe fusion with texture mapping in an
RGB-D based 3D reconstruction scenario. Our practical ap-
proach is efficient, with runtimes within a few minutes, and
suitable for generating high-quality texture maps from low-
quality color images obtained from consumer RGB-D sen-
sors.

1.2. Contributions

In summary, we propose a novel fast and robust 3D mod-
eling approach that provides accurate geometry and high-
quality appearance. Our method uses direct keyframe-based
RGB-D SLAM to find a consistent global image alignment,
and extracts a high-quality mesh from a fused TSDF repre-
sentation of the images.



• The mesh is parametrized in a texture map, which we
fill from fused super-resolution RGB-D keyframes.

• The super-resolution RGB-D keyframes are sharpened
using image deconvolution.

• Fast texture mapping is performed using the super-
resolution keyframes. High quality of the texture
is obtained through weighted median filtering of the
keyframe projections.

2. 3D Reconstruction System
In this section, we first describe the RGB-D sensor, the

acquired data and the used camera model. We then intro-
duce our 3D reconstruction system based on DVO-SLAM
by Kerl et al. [9] and the data fusion into a TSDF volume as
used by Newcombe et al. [16].

RGB-D Data Acquisition A calibrated Asus Xtion Pro
Live RGB-D sensor provides us with RGB color and depth
images at 30 fps at a resolution of w × h (in this case,
640× 480 pixels). To limit automatic color correction dur-
ing data acquisition, we fix exposure and white balance. We
assume that depth and color images are registered. Since
both color and depth images are utilized for real-time cam-
era tracking, we cannot use the SXGA (1280× 1024) color
images provided at only 10 fps. We denote RGB images
with C : ΩC → R3 and depth images with Z : ΩZ → R.

Camera Model For the RGB-D sensor, we assume the
pinhole camera model with focal length fx, fy and optical
center cx, cy . The projection function π maps 3D points
p = (X,Y, Z)⊤ to 2D pixels x = (x, y)⊤:

x = π(p) =

(
X

Z
fx + cx,

Y

Z
fy + cy

)
, (1)

while 2D pixel locations x are mapped back to 3D points
using their depth values Z(x) by the inverse projection π-1:

p = π-1(x,Z(x)) =

(
x− cx
fx

,
y − cy
fy

, 1

)⊤
Z(x). (2)

3D Reconstruction Framework DVO-SLAM performs
dense camera tracking in real-time on the CPU and min-
imizes the photometric and geometric error between two
RGB-D input frames to compute the relative pose. The use
of color images significantly improves camera tracking and
limits the drift of the SLAM system. Similarly, we perform
an entropy-based loop closure detection and continuously
optimize the pose graph in order to obtain a globally con-
sistent camera trajectory.

To reconstruct a dense 3D model in a post-processing
step, we fuse the N acquired RGB-D frames into a

TSDF volume using their estimated absolute camera
poses Ti = (R, t) ∈ SE(3) (with i ∈ 1 . . . N , t ∈ R3

and R ∈ SO(3)). We extract a 3D mesh M = (V,F)
with vertices V and faces F using the Marching Cubes al-
gorithm. The camera poses exhibit only very limited drift
due to the global pose graph optimization and hence the re-
sulting 3D model is geometrically accurate.

3. Keyframe Fusion
Given an accurate geometric 3D model, reconstructed

as described above, and the absolute camera poses for
the input frames, we first fuse Nw neighboring frames
into a common keyframe representation of higher resolu-
tion. We denote the color image of such a SR keyframe
as C∗ : ΩC → R3 and the corresponding depth image as
Z∗ : ΩZ → R. To store the depth fusion weights, we in-
troduce a depth weight image W∗ : ΩW → R. These SR
keyframes have the dimensions sw × sh, where s is a scale
factor that determines the amount of upsampling. We set the
pose T ∗ of the SR keyframe to the first pose of the Nw LR
frames to be fused. To integrate the LR images into the SR
images, we additionally need to define the scale-dependent
projection πs and inverse projection π-1

s , which use the up-
scaled intrinsic parameters sfx, sfy, scx, scy .

Depth Fusion We first fuse all Nw LR depth images into
the corresponding SR depth image. Therefore, we compute
the weights for the measured depth values, which is based
on a theoretical random error model [10], as follows:

wz(d) =
fb

σd
d−2, (3)

with the depth camera’s focal length f , baseline b and dis-
parity error standard deviation σd. Next, we transform the
current depth image i into the keyframe’s camera coordinate
system using the relative transformation T ∗-1Ti between
them:

p∗ = (X∗, Y ∗, Z∗)⊤ = T ∗-1Tiπ
-1(x,Zi(x)). (4)

We then use the image point x∗ = πs(p
∗) of the projection

into the keyframe depth image to update the fused depth
values and depth weights by weighted averaging:

Z∗(x∗) =
W∗(x∗)Z∗(x∗) + wz(Zi(x))Z

∗

W∗(x∗) + wz(Zi(x))
(5)

W∗(x∗) = W∗(x∗) + wz(Zi(x)) (6)

We achieve sub-pixel precision by updating all four neigh-
boring depth values when transforming and projecting a
depth value into the SR depth map. Occlusions are consid-
ered by fusing only the closest depth values within a given
distance. After integrating all Nw LR depth images, we ob-
tain the fused depth image Z∗ for the SR keyframe.



Color Fusion We use the fused depth image Z∗ to project
the SR color image pixels into the LR color images. This
allows us to directly look up the observed color values ci
using bilinear interpolation:

ci = Ci(π(Ti
-1T ∗π-1

s (x,Zi(x)))). (7)

For every observation ci, we also compute its weight

wc
i = Biwz(Zi(x)), (8)

where Bi is a measure of blurriness of the color image Ci
according to Crete et al. [3], which downweighs views with
strong motion blur. Integrating the depth into the color
weights enforces that objects closer to the camera obtain
higher weights. We store the observed colors and weights
for pixel x in its set of color observations Ox = {(ci, wc

i )}.
In order to increase color fidelity, we prune observations
from Ox with missing depth values or that are within a win-
dow of 7× 7 pixels around depth discontinuities. Instead of
calculating the weighted mean for averaging the color, we
calculate the weighted median, for each color channel sep-
arately:

C∗(x) = argmin
c

∑

(ci,wc
i )∈Ox

wc
i ‖c− ci‖. (9)

Since we usually have many observations per pixel, the use
of weighted median is valid, which results in an overall
sharper texture. The median selects the center probable
value in the distribution of colors, while the mean would
be heavily affected by outliers. Integrating weights into the
median allows for incorporating a confidence or a prioriti-
zation of the individual color samples.

Before fusing the LR color images into the SR keyframe,
we apply a Wiener filter on these LR color images as a pre-
processing step. This removes motion blur and notably im-
proves the sharpness of the visual appearance.

Note that we perform the keyframe fusion as a post-
processing step; however, it is reasonable to perform this
step online whenever a new keyframe is detected.

4. High-Quality Texture Mapping
In this section, we introduce our method for texture map-

ping from fused SR keyframes. First, we explain the com-
putation of per-vertex colors based on a weighted median
filtering scheme, applicable also for recomputing the ver-
tex colors. We afterwards present our texture mapping ap-
proach, in which we compute the texel colors using the
weighted median from SR keyframe color images.

4.1. Vertex Color Computation

In order to improve the colors of 3D meshes, a very com-
mon approach is to recompute the per-vertex colors of the

3D mesh vertices v ∈ V . We therefore need to determine
the views, in which a vertex is visible. To check if vertex
v ∈ R3 is visible in view i, we render the mesh M into a
virtual image using its pose Ti and the depth camera intrin-
sics. v is visible in the image, if its depth value is compati-
ble with the depth in the depth buffer used for rendering. We
then get the observed color cvi using bilinear interpolation:

cvi = Ci(π(Ti
-1v)). (10)

The observation weights wv
i of vertex v in its input views

are computed as follows:

wv
i =

cos(θ)Bi

d2
, (11)

where Bi is again the blurriness measure of color image
Ci and d is the distance from v to the camera correspond-
ing to Ci; θ represents the angle between the vertex nor-
mal and the view vector at v for the camera. We store all
color observations for vertex v and their respective weights
in Ov = {(cvi , wv

i )}, observations close to depth disconti-
nuities are discarded.

We can now compute the final vertex color c∗v as the
weighted mean of the observations:

c∗v = argmin
cv

∑

(cvi ,w
v
i )∈Ov

wv
i ‖cv − cvi ‖2. (12)

Since we assume that each vertex has many observations,
we can also compute the final color c∗v (separately for each
color channel) using a weighted median filtering scheme:

c∗v = argmin
cv

∑

(cvi ,w
v
i )∈Ov

wv
i ‖cv − cvi ‖. (13)

Given enough views that observe a vertex, this simple
method already improves the mesh colors and results in a
more detailed appearance, as demonstrated in Section 5.1.

4.2. Texture Mapping

Based on the introduced weighted median color compu-
tation scheme, we employ texture mapping to further im-
prove the appearence of 3D models. In particular, we use
the fused SR keyframes of Section 3 for texture mapping,
leading to a significantly higher resolved visual appearance.
We denote a texture as T : ΩT → R3, which stores a color
value at every texel t ∈ ΩT .

Texture Parametrization For working with texture
maps, a three-dimensional mesh needs to be projected onto
a planar two-dimensional texture T first. We beforehand
simplify the mesh geometry by decimating the number of
mesh triangles. This usually results in larger triangles that
can be textured more efficiently with larger patches, while



the geometry is still preserved well. While different pla-
nar parametrization methods exist, our approach is in gen-
eral independent of the chosen parametrization, as long as
the mesh faces contain texture coordinates. In practice,
we mostly use Least Squares Conformal Maps by Levy et
al. [12], or a simple arrangement of the mesh triangles on
the texture within a rectangular grid.

Since there is a unique mapping from a texel to its con-
taining face, we can determine the respective surround-
ing vertices for each texel. The barycentric mapping
ψ : ΩT → R3 performs a one-to-one mapping from 2D
texel coordinates to 3D world coordinates. Using barycen-
tric interpolation, we can compute interpolated 3D vertices
vt corresponding to 2D texels t and vice versa:

vt = ψ(t). (14)

Texel Color Computation To compute the texel color
for every texel t in the texture map, we employ only the
N∗ SR keyframes (C∗

l ,Z∗
l ) with camera poses T ∗

l (with
l ∈ 1 . . . N∗), generated as described in Section 3.

We collect the observations of the texel by first com-
puting its 3D vertex position vt according to Equation
(14). We then determine the set of color observations
Ot = {(ctl , wt

l )} for vt analogous to Equations (10) and
(11). From these observations, we compute the final texel
colors by again applying a weighted median color compu-
tation scheme:

T (t) = argmin
ct

∑

(ctl ,w
t
l )∈Ov

wt
l‖ct − ctl‖. (15)

5. Experimental Results
In this section, we evaluated our approach on real-world

datasets. Three evaluation sequences face, phone and key-
board were acquired using a handheld Asus Xtion Pro Live,
details are given in Table 1. We captured RGB-D data at a
low resolution of 640 × 480 pixels at 30 fps, with fixed ex-
posure and white-balance.

The following experimental results demonstrate that (1)
vertex recoloring using weighted median filtering improves
the colors of 3D models compared to weighted mean, (2)
fusing LR input frames into SR keyframes and using them
for texture mapping improves the visual quality substan-
tially, and (3) the proposed method is efficient and practical
for real-world 3D scanning applications. All experiments
were performed on a standard desktop PC with Intel Core
i7-2600 CPU with 3.40GHz and 8GB RAM.

5.1. Vertex Recoloring using Weighted Median

First, we demonstrate that the visual appearance of 3D
models can already be improved by using a weighted me-
dian color integration scheme. Figure 2 shows that the

face phone keyboard

# RGB-D frames 512 1359 642

# vertices (original) 159583 82942 155842
# triangles (original) 319176 165888 311686
# triangles (decimated) 40000 40000 40000

Table 1: Details of the acquired real-world datasets and the
corresponding reconstructed 3D meshes.

(a) Unweighted mean (b) Weighted mean (c) Weighted median

Figure 2: Improving the vertex colors of 3D models: (a) col-
ors computed using the unweighted mean of the vertex can
be improved by (b) using the weighted mean. (c) Applying
the weighted median further improves the visual quality and
preserves a higher level of detail.

weighted mean in combination with discontinuity checks
already improves the vertex colors significantly compared
to unweighted mean. The weighted median increases the
sharpness and level of detail even further and leads to a
more realistic model. Still, the texture resolution is limited
by the number of vertices so far. Mesh subdivision increases
the number of vertices, but the increasing geometric mesh
complexity makes processing the mesh intractable.

5.2. Keyframe Fusion and Texture Mapping

After showing that a weighted median color computation
scheme has advantages compared to weighted mean, we in-
vestigate how texture mapping with weighted median filter-
ing further improves the appearence of 3D models. In the
following, we show qualitative results of texture mapping
from fused SR keyframes in comparison with per-vertex
colors, which serves as currently most popular state-of-the-
art.

By fusing several LR color images into a SR keyframe,
we obtain high-quality frames from low-quality input data.



(a) Without deconvolution (b) With deconvolution

Figure 4: (a) The textures computed from SR keyframes
are substantially improved by (b) applying deconvolution
(e.g. using a Wiener filter) to the input images before the
keyframe fusion.

(a) Keyframes of dimensions
1280× 960

(b) Keyframes of dimensions
2560× 1920

Figure 5: (a) The textures generated from keyframes of
dimensions 1280× 960 show slightly fewer details than
(b) the ones generated from keyframes of dimensions
2560× 1920.

Depending on the scale factor s, the SR images have a res-
olution of 1280 × 960 (s = 2) or 2560 × 1920 (s = 4).
Figure 3 illustrates that both color and depth of the result-
ing fused SR keyframes exhibit more details compared to
the LR input color images and depth maps.

An important aspect of the keyframe fusion is the decon-
volution of the input images with a Wiener filter for deblur-
ring. Figure 4 shows the results of generating a texture map
for a 3D model from SR keyframes with and without de-
convolution. The texture computed from the deblurred SR
keyframes (Figure 4b) exhibits a sharper texture with sub-
stantially more details compared to Figure 4a. For deblur-
ring, a Wiener filter is applied on the LR input images as a
pre-processing step before fusing them into the keyframes.

Next, we compare the reconstructed surface colors de-
pending on the scale factor s for the SR keyframe dimen-
sions. The textures shown in Figure 5 show that the level of
detail can be slightly improved by using a higher keyframe
resolution of 2560× 1920 (s = 4) compared to a resolution
of 1280× 960 (s = 2).

For comparison, Figure 6 finally shows the improve-
ments of texture mapping with SR keyframes compared to
texture mapping with the LR input images only.

To demonstrate the practicability of our approach, we

(a) With LR input frames (b) With SR keyframes

Figure 6: (a) Texture mapping with LR input frames only
yields inferior results compared to (b) texture mapping with
SR keyframe fusion.

have reconstructed 3D models of the face, phone and key-
board datasets. All textures have been computed by fusion
into SR keyframes of dimensions 2560× 1920 and using
weighted median filtering for computing the texel colors.
As a pre-processing step, a Wiener filter has been applied
to the LR input RGB images. Figures 1, 7 and 8 show the
results. The texture mapped 3D models provide a photo-
realistic appearance and exhibit fine surface details that are
not visible in the models with per-vertex colors only.

In Figure 8c, the cable at the top of the keyboard is how-
ever not represented correctly in the texture. This may ei-
ther be due to inaccuracies in the estimated camera trajec-
tory or due to an inaccurate geometric model. To compen-
sate for this, an approach similar to Zhou and Koltun [25]
must be developed, which optimizes the camera poses as
well as non-rigid image corrections.

5.3. Runtime Evaluation

We finally evaluate the runtime and efficiency of the pro-
posed texture mapping method, in particular the runtimes
for keyframe fusion and texture mapping. Table 2 gives the
results. With runtimes of between one and a few minutes,
our approach is a very efficient method for generating high-
quality texture maps. Since our implementation is based
only on the CPU, a major speed-up can be achieved by port-
ing the algorithm to the GPU. This holds in particular for the
keyframe fusion, which has already been shown to work in
real-time on a GPU [14].

6. Conclusion
We presented a novel efficient method for high-quality

texture mapping in RGB-D-based 3D reconstruction ap-
proaches. Our method fuses low-quality color images from
commodity depth sensors into super-resolution keyframes.
These high-quality keyframes in turn are then mapped into a
global texture for the 3D model, resulting in a significantly
improved texture quality compared to simple volumetric
blending. We deblur input images and use the weighted
median for computing the texel colors from observations,



(a) LR input color image (b) Fused SR color image

(c) LR input depth map (Phong shading) (d) Fused SR depth map (Phong shading)

Figure 3: Fusing several LR input color images into a single SR keyframe allows to directly obtain high-quality color images.
Compared to the LR input color image (a), the fused SR color image (b) with a resolution of 2560 × 1920 (scale s = 4)
exhibits more details. Similarly, the LR input depth map (c) shows significantly more noise than the fused SR depth map (d).

face phone keyboard

s t [s] fps t [s] fps t [s] fps

Texture Mapping 91.5 5.6 330.8 4.1 128.8 5.0

Keyframe Fusion 2 57.5 8.9 222.0 6.1 72.1 8.9
SR Texture Mapping 2 18.7 2.8 50.7 2.7 18.8 3.5

Keyframe Fusion 4 100.9 5.1 362.8 2.2 214.9 3.0
SR Texture Mapping 4 26.4 2.0 58.2 1.4 42.6 1.5

Table 2: Runtimes (in seconds) for texture mapping without
SR keyframe fusion and texture mapping with SR keyframe
fusion.

which preserves a high level of detail. Using the weighted
median already provides better results for vertex coloring
compared to the weighted mean. The weights in our method
consider criteria such as view-angle, motion blur, and dis-
tance to the surface.

We have shown in experimental results that our method
produces high-quality textures that substantially increase

the photo-realism of the reconstructed 3D models. At the
same time, our method is a very efficient and practical post-
processing step with runtimes within a few minutes, making
it useful for real-world 3D scanning application scenarios.
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[17] M. Nießner, M. Zollhöfer, S. Izadi, and M. Stamminger.
Real-time 3D reconstruction at scale using voxel hashing.
ACM Transactions on Graphics (TOG), 32(6):169, 2013.

[18] I. Stamos and P. Allen. 3-d model construction using range
and image data. In CVPR, 2000.
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Abstract

We introduce a novel method to obtain high-quality 3D
reconstructions from consumer RGB-D sensors. Our core
idea is to simultaneously optimize for geometry encoded in
a signed distance field (SDF), textures from automatically-
selected keyframes, and their camera poses along with ma-
terial and scene lighting. To this end, we propose a joint
surface reconstruction approach that is based on Shape-
from-Shading (SfS) techniques and utilizes the estimation of
spatially-varying spherical harmonics (SVSH) from subvol-
umes of the reconstructed scene. Through extensive exam-
ples and evaluations, we demonstrate that our method dra-
matically increases the level of detail in the reconstructed
scene geometry and contributes highly to consistent surface
texture recovery.

1. Introduction
With the wide availability of commodity RGB-D sen-

sors such as the Microsoft Kinect, Intel RealSense, or
Google Tango, reconstruction of 3D scenes has gained sig-
nificant attention. Along with new hardware, researchers
have developed impressive approaches that are able to re-
construct 3D surfaces from the noisy depth measurements
of these low-cost devices. A very popular strategy to han-
dle strong noise characteristics is volumetric fusion of in-
dependent depth frames [7], which has become the core
of many state-of-the-art RGB-D reconstruction frameworks
[17, 18, 21, 5, 8].

Volumetric fusion is a fast and efficient solution for
regularizing out sensor noise; however, due to its ℓ2-
regularization property, it tends to oversmooth the recon-
struction, leaving little fine-scale surface detail in the re-
sult. The same problem also translates to reconstruction of
surface textures. Most RGB-D reconstruction frameworks
simply map RGB values of associated depth pixels onto the
geometry by averaging all colors that have been observed
for a given voxel. This typically leads to blurry textures,
as wrong surface geometry and misaligned poses introduce
re-projection errors where one voxel is associated with dif-

OursFusion

Figure 1. Our 3D reconstruction method jointly optimizes geome-
try and intrinsic material properties encoded in a Signed Distance
Field (SDF), as well as the image formation model to produce
high-quality models of fine-detail geometry (top) and compelling
visual appearance (bottom).

ferent color values that are then incorrectly averaged.
Very recent approaches address these two problems inde-

pendently. For instance, Zhou and Koltun [29] optimize for
consistent surface textures by iteratively solving for rigid
pose alignment and color averages. To compensate for
wrong surface geometry where re-projection consistency is
infeasible, they non-rigidly warp RGB frames on top of the
reconstructed mesh, thus obtaining a high-quality surface
texture. On the other end of the spectrum, shading-based
refinement techniques enhance depth frames [24] or surface
geometry [30] by adding shading constraints from higher
resolution color frames; i.e., they leverage RGB signal to
refine the geometry. These reconstruction pipelines are se-
quential; for instance, Zollhöfer et al. [30] first compute
the alignment between RGB-D frames, then fuse both RGB



and depth data into a volumetric grid, and finally refine the
3D reconstruction. This results in visually promising recon-
structions; however, the pipeline fundamentally cannot re-
cover errors in its early stages; e.g., if pose alignment is off
due to wrong depth measures, fused colors will be blurry,
causing the following geometry refinement to fail.

In our work, we bring these two directions together by
addressing these core problems simultaneously rather than
separately. Our main idea is to compute accurate surface
geometry such that color re-projections of the reconstructed
texture are globally consistent. This leads to sharp sur-
face colors, which can again provide constraints for correct
3D geometry. To achieve this goal, we introduce a novel
joint optimization formulation that solves for all parame-
ters of a global scene formation model: (1) surface geom-
etry, represented by an implicit signed distance function, is
constrained by input depth measures as well as a shading
term from the RGB frames; (2) correct poses and intrinsic
camera parameters are enforced by global photometric and
geometric consistency; (3) surface texture inconsistency is
minimized considering all inputs along with the 3D model;
and (4) spatially-varying lighting as well as surface albedo
values are constrained by RGB measures and surface ge-
ometry. The core contribution of our work is to provide
a parametric model for all of these intrinsic 3D scene pa-
rameters and optimize them in a joint, continuous energy
minimization for a given RGB-D sequence. As a result, we
achieve both sharp color reconstruction, highly-detailed and
physically-correct surface geometry (Figure 1), and an ac-
curate representation of the scene lighting along with the
surface albedo. In a series of thorough evaluations, we
demonstrate that our method outperforms state-of-the-art
approaches by a significant margin, both qualitatively and
quantitatively.

To sum up, our technical contributions are as follows:

• We reconstruct a volumetric signed distance function
by jointly optimizing for 3D geometry, surface mate-
rial (albedo), camera poses, camera intrinsics (includ-
ing lens distortion), as well as accurate scene lighting
using spherical harmonics basis functions.

• Instead of estimating only a single, global scene illu-
mination, we estimate spatially-varying spherical har-
monics to retrieve accurate scene lighting.

• We utilize temporal view sampling and filtering tech-
niques to mitigate the influence of motion blur, thus ef-
ficiently handling data from low-cost consumer-grade
RGB-D sensor devices.

2. Related Work
3D Reconstruction using Signed Distance Functions Im-
plicit surface representations have been widely used in
3D modeling and reconstruction algorithms. In particu-

lar, signed distance fields (SDF) [7] are often used to en-
code 3D surfaces in a voxel grid, and have become the ba-
sis of many successful RGB-D surface reconstruction algo-
rithms [17, 18]. More recently, Choi et al. [5] propose a
robust optimization for high-quality pose alignment using
only geometry, and Dai et al. [8] present a global optimiza-
tion for large-scale scenes in real time. While most SDF-
based fusion methods efficiently regularize noisy depth in-
put, they spend little focus on reconstructing consistent and
sharp surface textures. In particular, in the context of wide
baseline views and small surface misalignments, this leads
to blurry voxel colors that are obtained by averaging the in-
put RGB values of associated color images.
High-quality texture recovery In order to compute con-
sistent colors on the reconstructed surface, Zhou and
Koltun [29] introduce a method to optimize the mapping of
colors onto the geometry (camera poses and 2D deforma-
tion grid), Klose et al. [13] propose to filter colors in scene
space, and Jeon et al. [12] suggest a more efficient way
of color optimization through texture coordinates. In ad-
dition to directly optimizing for consistent surface textures,
refining texture quality also helps to improve the quality of
reconstructed surface colors [16, 9]. While these methods
achieve visually impressive RGB reconstructions (e.g., by
warping RGB input), they do not address the core problem
of color inconsistency, which is caused by wrong surface
geometry that leads to inconsistent RGB-to-RGB and RGB-
to-geometry re-projections.
Shading- and reflectance-based geometry refinement
Shape-from-Shading [11, 28] aims to extract 3D geometry
from a single RGB image, and forms the mathematical ba-
sis of shading-based refinement, targeted by our work. The
theory behind Shape-from-Shading is well-studied, in par-
ticular when the surface reflectance, light source and camera
locations are known. Unfortunately, the underlying opti-
mizations are highly under-constrained, particularly in un-
controlled environments. Thus, one direction is to refine
coarse image-based shape models based on incorporation
of shading cues [4]. For instance, this can be achieved with
images captured by multiple cameras [23, 22] or with RGB-
D cameras that provide an initial depth estimate for every
pixel [10, 26, 2].

Hence, shading and reflectance estimation has become
an important contextual cue for refining geometry. Many
methods leverage these cues to develop high-quality sur-
face refinement approaches [24, 19, 3]. In particular,
Zollhöfer et al. [30] motivates our direction of using vol-
umetric signed distance fields to represent the 3D model.
Unfortunately, the method has significant drawbacks; first,
it only assumes a single global lighting setting based on
spherical harmonics [20] that is constant over the entire
scene; second, its pipeline is sequential, meaning that poses
and surface colors are optimized only once in a pre-process,
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Figure 2. Overview of our method for joint appearance and geometry optimization. Our pipeline takes RGB-D data of a scene as input and
fuses it into a Signed Distance Field (SDF). In a nested coarse-to-fine approach, spatially-varying lighting is estimated and used to jointly
optimize for appearance and geometry of the scene, producing a high-quality 3D model.

suffering from erroneous depth measures and small pose
misalignments. In our approach, we systematically ad-
dress these shortcomings with a joint optimization strategy,
as well as a much more flexible spatially-varying lighting
parametrization. Other related methods focus on specular
surfaces with an alternating optimization strategy [25], rep-
resent lighting with illumination maps [14], or retrieve a
box-like 3D representation with material parameters [27].

3. Overview

Our method first estimates a coarse sparse Signed Dis-
tance Field (SDF) similar to Nießner et al. [18] from an in-
put RGB-D sequence with initial camera poses. To mit-
igate the influence of views with motion blur, we auto-
matically select views based on a blurriness measure and
constrain the optimization only based on color values from
these keyframes.

Our joint optimization employs a nested hierarchical ap-
proach (see Figure 2): in an outer loop, we refine the SDF
in a coarse-to-fine manner on multiple SDF grid pyramid
levels in order to reconstruct fine detail. At the coarsest
grid pyramid level, we use multiple RGB-D frame pyramid
levels of all keyframes obtained through downsampling in
order to improve the convergence and robustness of the joint
camera pose estimation.

Within each inner iteration, we approximate complex
scene lighting by partitioning the SDF volume into subvol-
umes of fixed size with separate spherical harmonics pa-
rameters. During estimation, we jointly solve for all SH
parameters on a global scale with a Laplacian regularizer.
The lighting at a given point is defined as the trilinear inter-
polation of the associated subvolumes.

In the main stage of our framework, we employ the esti-
mated illumination to jointly refine surface and albedo of
the SDF as well as the image formation model (camera
poses of the input frames, camera intrinsics and lens dis-
tortion). As a consequence of this extensive set of opti-
mized parameters, we implicitly obtain optimal colors. We
re-compute the voxel colors from the keyframes using the
refined parameters after each optimization. Finally, a 3D
mesh is extracted from the refined SDF using Marching
Cubes [15].

3.1. Signed Distance Field
At the core of our framework lies the reconstructed sur-

face, which we implicitly store as a sparse Truncated Signed
Distance Function (TSDF) [7], denoted by D. Hereby,
each voxel stores the raw (truncated) signed distance to
the closest surface D(v), its color C(v), an integration
weight W(v), an illumination albedo a(v), and an opti-
mized signed distance D̃(v). We denote the current esti-
mate of the iso-surface by D0 and the number of voxels in
the SDF volume by N .

Following state-of-the-art reconstruction methods, we
integrate depth maps into the SDF using a weighted running
average scheme:

D(v) =

∑M
i=1 wi(v)di(v)

W(v)
, W(v) =

M∑

i=1

wi(v), (1)

with sample integration weight wi(v) = cos(θ), based on
the angle θ between the viewing direction and the normal
computed from the input depth map. The truncated signed
distance di(v) between a voxel and a depth frame Zi with
pose Ti is computed as follows:

di(v) = Ψ((T -1
i v)z −Zi(π(T -1

i v)), (2)

with truncation Ψ(d) = min(|d|, ttrunc) · sgn(d). After
integrating all frames of the RGB-D sequence in the im-
plicit 3D model representation, we initialize the optimized
SDF D̃ with the integrated SDF D. We directly compute
the surface normal for each voxel from the gradient of the
refined signed distance field using forward differences:

n(v) = (nx, ny, nz)
⊤ =

∇D̃(v)

||∇D̃(v)||2
, (3)

with the gradient

∇D̃(v)=∇D̃(i,j,k)=



D̃(i+1, j, k)−D̃(i, j, k)

D̃(i, j+1, k)−D̃(i, j, k)

D̃(i, j, k+1)−D̃(i, j, k)


 (4)

where D̃(i, j, k) is the optimized distance value at the
(discrete) voxel location (i, j, k). Since each voxel encodes
the distance to its closest surface, it is possible to derive
a corresponding 3D point on the iso-surface v0. Thus,
the voxel center point vc ∈ R3 in world coordinates is
projected onto the (nearest) iso-surface using the transfor-
mation ψ:

v0 = ψ(v) = vc − n(v)D̃(v). (5)



3.2. Image Formation Model and Sampling

RGB-D Data As input, our framework takes M RGB-D
frames with registered color images Ci, derived inten-
sity images Ii, and depth maps Zi (with i ∈ 1 . . .M ).
We assume exposure and white balance of the sensor to
be fixed, which is a common setting in RGB-D sensors.
Moreover, we are given an initial estimate of the absolute
camera poses T = {Ti} of the respective frames, with
Ti = (Ri, ti) ∈ SE(3), Ri ∈ SO(3) and ti ∈ R3. We
denote the transformation of a point p using a pose Ti by
g(Ti,p) = Rip + ti. While our approach is based on the
VoxelHashing framework [18], the initial camera poses can
in principle be computed using any state-of-the-art RGB-D
based 3D reconstruction system; e.g., [5, 8].

Camera Model Our camera model is defined by the fo-
cal length fx, fy , the optical center cx, cy and three coeffi-
cients κ1, κ2, ρ1 describing radial and tangential lens distor-
tion respectively. 3D points p = (X,Y, Z)⊤ are mapped to
2D image pixels x = (x, y)⊤ with the projection function
π : R3 7→ R2.

Keyframe Selection In hand-held RGB-D scanning, in-
put images often exhibit severe motion blur due to fast cam-
era motion. To mitigate the effect of motion blur, we discard
bad views by selecting views using the blurriness measure
by Crete et al. [6]. More specifically, we choose the least
blurred frame within a fixed size window of tKF neighbor-
ing frames. We set tKF = 20 for regular datasets that are
captured with commodity RGB-D sensors, and tKF = 5 for
short sequences with less than 100 frames. Our method can
also be applied to multi-view stereo datasets consisting of
only few images; here, we use all frames (i.e., tKF = 1).

Observations Sampling and Colorization After gener-
ating the SDF volume, we initially compute the voxel colors
by sampling the selected keyframes. Given a frame (Ci,Zi)
and its pose Ti, we re-compute the color of a voxel v by
sampling its 3D iso-surface point v0 in the input views. To
check whether voxel v is visible in view i, we transform
v0 back into the input view’s coordinate system using the
(refined) pose Ti, project it into its depth map Zi and look
up the respective depth value. v is considered visible in the
image if the voxel’s z-coordinate in the camera coordinate
system is compatible with the sampled depth value.

We collect all color observations of a voxel in its views
and their respective weights in Ov = {(cvi , wv

i )}. The
observed colors cvi are obtained by sampling from the input
color image Ci using bilinear interpolation:

cvi = Ci(π(Ti-1v0)). (6)

The observation weight wv
i is view-dependent on both

normal and depth in the view:

wv
i =

cos(θ)

d2
, (7)

where d is the distance from v to the camera corresponding
to Ci. θ represents the angle between the voxel normal n(v)
rotated into the camera coordinate system, and the view di-
rection of the camera.

Colorization We sort the observations in Ov by their
weight and keep only the best tbest observations. The
voxel color c∗v is computed as the weighted mean of its
observations Ov (for each color channel independently):

c∗v = argmin
cv

∑

(cvi ,w
v
i )∈Ov

wv
i (cv − cvi )

2. (8)

Note that the per-voxel colors are only used before each op-
timization step (for up-to-date chromaticity weights) and as
a final postprocess during mesh extraction. The optimiza-
tion itself directly constrains the input RGB images of the
selected views and does not use the per-voxel color values.

4. Lighting Estimation using Spatially-varying
Spherical Harmonics

Lighting Model In order to represent the lighting of the
scene, we use a fully-parametric model that defines the
shading at every surface point w.r.t. global scene lighting.
To make the problem tractable, we follow previous methods
and assume that the scene environment is Lambertian.

The shading B at a voxel v is then computed from the
voxel surface normal n(v), the voxel albedo a(v) and
scene lighting parameters lm:

B(v) = a(v)
b2∑

m=1

lmHm(n(v)), (9)

with shading basis Hm. As Equation 9 defines the forward
shading computation, our aim is to tackle the inverse ren-
dering problem by estimating the parameters of B.

Spherical Harmonics In order to estimate the reflected
irradiance B (cf. Equation 9) at a voxel v, we parametrize
the lighting with spherical harmonics (SH) basis func-
tions [20], which is known to be a good approximation and
smooth for Lambertian surface reflectance. The SH basis
functions Hm are parametrized by a unit normal n. In our
implementation, we use SH coefficients up to the second
order, which includes b = 3 SH bands and leaves us with
nine unknown lighting coefficients ℓ = (l1, . . . , lb2). For a
given surface point, the SH basis encodes the incident light-
ing, parameterized as a spherical distribution. However, a
single SH basis cannot faithfully represent scene lighting
for all surface points simultaneously, as lights are assumed
to be infinitesimally far away (i.e., purely directional), and
neither visibility nor occlusion is taken into account.

Subvolume Partitioning To address the shortcoming of
a single, global spherical harmonics basis that globally de-
fines the scene lighting, we extend the traditional formula-
tion. To this end, we partition the reconstruction volume



into subvolumes S = {s1 . . . , sK} of fixed size tsv; the
number of subvolumes is denoted as K. We now assign
an SH basis – each with its own SH coefficients – to ev-
ery subvolume. Thus, we substantially increase the num-
ber of lighting parameters per scene and allow for spatially-
adaptive lighting changes. In order to avoid aliasing arti-
facts at subvolume boundaries, we define the global lighting
function as a trilinear interpolation of local SH coefficients;
i.e., for a voxel, we obtain a smooth function defining the
actual SH coefficients as an interpolation of the lighting pa-
rameters of its eights adjacent subvolumes.

Spatially-varying Spherical Harmonics The ability of
subvolumes to define local spherical harmonics coefficients
along with a global interpolant introduces the concept of
spatially-varying spherical harmonics (SVSH). Instead of
only representing lighting with a single set of SH coef-
ficients, we have now K × b2 unknown parameters, that
provide for significantly more expressibility in the scene
lighting model. The lighting for subvolumes is estimated
by minimizing the following objective:

Elighting(ℓ1, . . . , ℓK) = Eappearance + λdiffuseEdiffuse. (10)

The intuition is that we try to approximate complex global
illumination with varying local illumination models for
smaller subvolumes. We estimate the spherical harmonics
in a subvolume by minimizing the differences between
the measured averaged voxel intensity and the estimated
appearance:

Eappearance =
∑

v∈D̃0

(B(v)− I(v))2, (11)

where only voxels close to the current estimate of the
iso-surface D̃0 are considered. Initially, we assume the
albedo to be constant. However, the albedo is refined as the
optimization commences. After the surface refinement on
each level, we recompute the voxel colors (and hence voxel
intensity). We further regularize the distribution of lighting
coefficients with a Laplacian regularizer that considers the
1-ring neighborhood Ns of a subvolume s, thus effectively
constraining global smoothness of the spherical harmonics:

Ediffuse =
∑

s∈S

∑

r∈Ns

(ℓs − ℓr)
2. (12)

5. Joint Optimization of Geometry, Albedo,
and Image Formation Model

One of the core ideas of our method is the joint opti-
mization of the volumetric 3D reconstruction as well as the
image formation model. In particular, we simultaneously
optimize for the signed distance and albedo values of
each voxel of the volumetric grid, as well as the camera
poses and camera intrinsics such as focal length, center
pixel, and (radial and tangential) lens distortion coeffi-
cients. We stack all parameters in the unknown vector

Figure 3. We partition the SDF volume into subvolumes of fixed
size and estimate independent spherical harmonics (SH) coeffi-
cients for each subvolume (yellow). Per-voxel SH coefficients are
obtained through tri-linear interpolation of the lighting of neigh-
boring subvolumes (red).

X = (T , D̃,a, fx, fy, cx, cy, κ1, κ2, ρ1) and formulate our
minimization objective as follows:

Escene(X ) =
∑

v∈D̃0

λgEg + λvEv + λsEs + λaEa, (13)

with λg , λv , λs, λa the weighting parameters that define the
influence of each cost term. For efficiency, we only opti-
mize voxels within a thin shell close to the current estimate
of the iso-surface D̃0, i.e., |D̃| < tshell.

5.1. Camera Poses and Camera Intrinsics
For initial pose estimates, we use poses obtained by the

frame-to-model tracking of VoxelHashing [18]. However,
this merely serves as an initialization of the non-convex en-
ergy landscape for our global pose optimization, which is
performed jointly along with the scene reconstruction (see
below). In order to define the underlying residuals of the
energy term, we project each voxel into its associated input
views by using the current state of the estimated camera pa-
rameters. These parameters involve not only the extrinsic
poses, but also the pinhole camera settings defined by focal
length, pixel center, and lens distortion parameters. Dur-
ing the coarse-to-fine pyramid optimization, we derive the
camera intrinsics according to the resolution of the corre-
sponding pyramid levels.

5.2. Shading-based SDF Optimization
In order to optimize for the 3D surface that best explains

the re-projection and follows the RGB shading cues, we di-
rectly solve for the parameters of the refined signed distance
field D̃, which is directly coupled to the shading through its
surface normals n(v). In addition to the distance values,
the volumetric grid also contains per-voxel albedo parame-
ters, which again is coupled with the lighting computation
(cf. Equation 9); the surface albedo is initialized with a uni-
form constant value. Although this definition of solving for
a distance field follows the direction of Zollhöfer et al. [30],
it is different at its core: here, we dynamically constrain
the reconstruction with the RGB input images, which con-
trasts Zollhöfer et al. who simply rely on the initially pre-
computed per-voxel colors. In the following, we introduce
all terms of the shading-based SDF objective.



Gradient-based Shading Constraint In our data term,
we want to maximize the consistency between the estimated
shading of a voxel and its sampled observations in the cor-
responding intensity images. Our objective follows the in-
tuition that high-frequency changes in the surface geome-
try result in shading cues in the input RGB images, while
more accurate geometry and a more accurate scene forma-
tion model result in better sampling of input images.

We first collect all observations in which the iso-surface
point ψ(v) of a voxel v is visible; we therefore transform
the voxel into each frame using the pose Ti and check
whether the sampled depth value in the respective depth
map Zi is compatible. We collect all valid observations Ov ,
sort them according to their weights wv

i (cf. Equation 7),
and keep only the best tbest views Vbest = {Ii}. Our
objective function is defined as follows:

Eg(v) =
∑

Ii∈Vbest

wv
i ‖∇B(v)−∇Ii(π(vi))‖22, (14)

where vi = g(Ti, ψ(v)) is the 3D position of the voxel cen-
ter transformed into the view’s coordinate system. Obser-
vations are weighted with their view-dependent observation
weights wv

i . By transforming and projecting a voxel v into
its associated input intensity images Ii, our joint optimiza-
tion framework optimizes for all parameters of the scene
formation model, including camera poses, camera intrin-
sics, and lens distortion parameters. The shading B(v) de-
pends on both surface and material parameters and allows
to optimize for signed distances, implicitly using the surface
normals, and voxel albedo on-the-fly. Instead of comparing
shading and intensities directly, we achieve improved ro-
bustness by comparing their gradients, which we obtain by
discrete forward differences from its neighboring voxels.

To improve convergence, we compute an image pyramid
of the input intensity images and run the optimization in
a coarse-to-fine manner for all levels. This inner loop is
embedded into a coarse-to-fine grid optimization strategy,
that increases the resolution of the SDF with each level.

Regularization We add multiple cost terms to regularize
our energy formulation required for the ill-posed problem
of Shape-from-Shading and to mitigate the effect of noise.

First, we use a Laplacian smoothness term to regularize
our signed distance field. This volumetric regularizer
enforces smoothness in the distance values between neigh-
boring voxels:

Ev(v) = (∆D̃(v))2. (15)

To constrain the surface and keep the refined reconstruc-
tion close to the regularized original signed distances, we
specify a surface stabilization constraint:

Es(v) = (D̃(v)−D(v))2. (16)

Given spherical harmonics coefficients, the shading
computed at a voxel depends on both its albedo as well as

its surface normal. We constrain to which degree the albedo
or normal should be refined by introducing an additional
term that regularizes the albedo. In particular, the 1-ring
neighborhood Nv of a voxel is used to constrain albedo
changes based on the chromaticity differences of two
neighboring voxels. This follows the idea that chromaticity
changes often go along with changes of intrinsic material:

Ea(v) =
∑

u∈Nv

φ(Γ(v)− Γ(u)) · (a(v)− a(u))2, (17)

where the voxel chromaticity Γ = C(v)/I(v) is directly
computed from the voxel colors and φ(x) is a robust kernel
with φ(x) = 1/(1 + trob · x)3.

5.3. Joint Optimization Problem
We jointly solve for all unknown scene parameters

stacked in the unknown vector X by minimizing the
proposed highly non-linear least squares objective:

X ∗ = argmin
X

Escene(X ) (18)

We solve the optimization using the well-known Ceres
Solver [1], which provides automatic differentiation and an
efficient Levenberg-Marquardt implementation.

By jointly refining the SDF and image formation model,
we implicitly obtain optimal colors for the reconstruction at
minimal re-projection error. In the optimization, the color
and shading constraints are directly expressed with respect
to associated input images; however, for the final mesh gen-
eration, we recompute voxel colors in a postprocess after
the optimization. Finally, we extract a mesh from the re-
fined signed distance field using Marching Cubes [15].

6. Results
We evaluated our approach on publicly available RGB-D

datasets as well as on own datasets acquired using a Struc-
ture Sensor; Table 1 gives an overview. For Lucy and Re-
lief we used the camera poses provided with the datasets
as initializations, while we estimated the poses using Voxel
Hashing [18] for all other datasets. Our evaluations were
performed on a workstation with Intel Core i7-5930 CPU
with 3.50GHz and 32GB RAM.

We used λdiffuse = 0.01, λg = 0.2, λv = 160 →
20, λs = 120 → 10, λa = 0.1 for our evaluations, with
a → b indicating changing weights with every iteration.
For objects with constant albedo, we fixed the albedo; i.e.,
we set λa = ∞. We used three RGB-D frame pyramid
levels and three grid levels, such that the finest grid level
has a resolution of 0.5mm (or 1.0mm, depending on object
size). We set tbest = 5 to limit the number of data term
residuals per voxel. To reduce the increase of the number
of voxels close to the surface considered for optimization,
we used an adaptive thin shell size tshell, linearly decreasing
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Figure 4. Appearance of the Fountain reconstruction. Our method shows a visually more appealing result compared to volumetric fusion
and Zollhöfer et al. [30].

Dataset # frames # keyframes Resolution
color depth

Fountain [29] 1086 55 1280x1024 640x480
Lucy [30] 100 20 640x480 640x480
Relief [30] 40 8 1280x1024 640x480
Lion 515 26 1296x968 640x480
Tomb Statuary 523 27 1296x968 640x480
Bricks 773 39 1296x968 640x480
Hieroglyphics 919 46 1296x968 640x480
Gate 1213 61 1296x968 640x480

Table 1. Test RGB-D datasets used for the evaluation.

from 2.0 → 1.0 times the voxel size with each grid pyramid
level.

Appearance Using our method, we implicitly obtain opti-
mal voxel colors as a consequence of the joint optimization
of intrinsic material properties, surface geometry and image
formation model. Figure 4 shows qualitative results from
the Fountain dataset. While volumetric blending [17, 18]
produces blurry colors, camera poses are corrected in ad-
vance by Zollhöfer et al. [30] using dense bundle adjust-
ment to yield significantly better color and geometry. How-
ever, their static color integration cannot correct for small
inaccuracies, resulting in slightly blurry colors. In contrast,
our method adjusts the surface and image formation model
jointly to produce highly detailed texture at the same voxel
grid resolution of 1mm. Within our joint optimization, we
also estimate varying albedo. Figure 7 shows the estimated
albedo for the Fountain dataset.

Surface Geometry We qualitatively compare the quality
of refined surfaces using our method with the approach of
Zollhöfer et al. [30] in Figure 5. The results of the Re-
lief dataset visualize that our method reveals finer geomet-
ric details by directly sampling from high-resolution input
color images instead of using averaged voxel colors. More-
over, we benefit from simultaneously optimizing for camera
poses and camera intrinsics.

Additionally, we provide a quantitative ground truth
evaluation of the geometry refinement on the synthetic Frog

Input Color Ours

Zollhöfer et al. 15 OursFusion

Figure 5. Comparison of the reconstructed geometry of the Relief
dataset. Our method (right) reveals finer geometric details com-
pared to volumetric fusion (left) and Zollhöfer et al. [30] (middle).

RGB-D dataset, which was generated by rendering a ground
truth mesh with a high level of detail into synthetic color
and depth images. Both depth and camera poses were per-
turbed with realistic noise. Figure 6 shows that, in contrast
to fusion and [30], our method is able to reveal even smaller
details. Quantitatively, the mean absolute deviation (MAD)
between our reconstruction and the ground truth mesh is
0.222mm (with a standard deviation of 0.269mm), while
the reconstruction generated using our implementation of
[30] results in a higher error of 0.278mm (with a standard
deviation of 0.299mm). This corresponds to an overall ac-
curacy improvement of 20.14% of our method compared to
[30]. We refer the reader to the supplementary material for
a quantitative evaluation on real data and further results.
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(d) Ground truth

Figure 6. Refined geometry of the Frog dataset: while fusion (a)
smooths out high-frequency details, Zollhöfer et al. [30] (b) can
reconstruct some geometric details. Our method (c) recovers even
smaller surface details present in the ground truth mesh (d).

Dataset Global SH SVSH (subvolume size)
0.5 0.2 0.1 0.05

Fountain 22.973 18.831 15.891 13.193 10.263
Lucy 22.190 19.408 16.564 14.141 11.863
Relief 13.818 12.432 11.121 9.454 8.339
Lion 30.895 25.775 20.811 16.243 13.468
Tomb Statuary 33.716 30.873 30.639 29.675 26.433
Bricks 29.327 27.110 25.318 22.850 19.476
Hieroglyphics 15.710 15.206 11.140 12.448 9.998
Gate 46.463 40.104 33.045 20.176 12.947

Table 2. Quantitative evaluation of spatially-varying spherical har-
monics. The Mean Absolute Deviation (MAD) between averaged
per-voxel intensity and estimated shading decreases with decreas-
ing subvolume sizes.

Lighting In the following, we evaluate lighting estima-
tion via spatially-varying spherical harmonics, both qual-
itatively and quantitatively. In particular, we demonstrate
that a single global set of SH coefficients cannot accurately
reflect real-world environments with complex lighting. To
analyze the effects of the illumination, we re-light the re-
construction using the surface normals and estimated voxel
albedo according to Equation 9. The computed shading
B(v) of a voxel is in the ideal case identical to the mea-
sured voxel intensity I(v) computed from the voxel color.

We exploit the absolute difference |B(v) − I(v)| as an
error metric in order to quantitatively evaluate the quality
of the illumination for given geometry and albedo. In
particular, we measure the mean absolute deviation (MAD)
for all N voxels of the SDF volume:

ǫshading =
1

N

∑

v∈D

|B(v)− I(v)| (19)

Table 2 gives the results of global SH coefficents and SVSH
with varying subvolume sizes for multiple datasets. In sum-
mary, the more the SDF volume is partitioned into subvol-
umes, the better the approximation to complex lighting sce-
narios. The illumination in the Fountain dataset is clearly
spatially varying, violating the assumptions of distant and
spatially invariant illumination for SH lighting coefficients.
Figure 7 shows that the estimated shading is better approxi-
mated with SVSH coefficients compared to only with global
SH coefficients, while the underlying surface and albedo are
exactly the same for both shadings.

(a) Per-voxel luminance (b) Estimated albedo

(c) Shading (global SH) (d) Shading (SVSH)

(e) Differences (global SH) (f) Differences (SVSH)

Figure 7. Quantitative evaluation of global SH vs. SVSH: the
heatmaps in (e) and (f) represent the differences between the per-
voxel input luminance (a) and the shadings with global SH (c) and
with SVSH (d), both with underlying albedo (b).

7. Conclusion

We have presented a novel method for simultaneous op-
timization of scene reconstruction along with the image for-
mation model. This way, we obtain high-quality reconstruc-
tions along with well-aligned sharp surface textures using
commodity RGB-D sensors by efficiently combining infor-
mation from (potentially noisy) depth and (possibly) higher
resolution RGB data. In comparison to existing Shape-
from-Shading techniques (e.g., [24, 30]), we tackle the core
problem of fixing wrong depth measurements jointly with
pose alignment and intrinsic scene parameters. Hence, we
minimize re-projection errors, thus avoiding oversmoothed
geometry and blurry surface textures. In addition, we in-
troduce a significantly more flexible lighting model that is
spatially-adaptive, thus allowing for a more precise estima-
tion of the scene lighting.
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Abstract
State-of-the-art methods for large-scale 3D reconstruction from RGB-D sensors usu-

ally reduce drift in camera tracking by globally optimizing the estimated camera poses in
real-time without simultaneously updating the reconstructed surface on pose changes.
We propose an efficient on-the-fly surface correction method for globally consistent
dense 3D reconstruction of large-scale scenes. Our approach uses a dense Visual RGB-D
SLAM system that estimates the camera motion in real-time on a CPU and refines it in
a global pose graph optimization. Consecutive RGB-D frames are locally fused into
keyframes, which are incorporated into a sparse voxel hashed Signed Distance Field
(SDF) on the GPU. On pose graph updates, the SDF volume is corrected on-the-fly using
a novel keyframe re-integration strategy with reduced GPU-host streaming. We demon-
strate in an extensive quantitative evaluation that our method is up to 93% more runtime
efficient compared to the state-of-the-art and requires significantly less memory, with
only negligible loss of surface quality. Overall, our system requires only a single GPU
and allows for real-time surface correction of large environments.

1 Introduction
In recent years, there has been a boost of research in the field of dense 3D reconstruction
due to the wide availability of low-cost depth sensors such as the Microsoft Kinect. Most
of the approaches fuse depth maps obtained from such sensors in real-time into a volumet-
ric surface representation [3] to compensate for sensor noise and perform frame-to-model
camera tracking against the fused volume. While researchers have shown the suitability of
these methods for accurate geometric reconstruction of objects or scenes of limited size [16],
global drift in camera tracking is not compensated, limiting the reconstruction of large-scale
environments [8, 17, 19].

However, only few methods tackle the problem of globally optimizing the camera poses
in real-time and simultaneously correcting the reconstructed surface on-the-fly. BundleFu-
sion by Dai et al.[4] represents the state-of-the-art and estimates highly accurate camera
poses on a high-end GPU. They require a second graphics card for integrating input RGB-D
frames into a sparse Signed Distance Field (SDF) volume, making the entire framework com-
putationally demanding. On pose graph updates, BundleFusion corrects the reconstructed

c© 2017. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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a) Without and with on-the-fly surface correction b) Surface completeness (5 vs. 60 frames per keyframe)

Figure 1: Our method efficiently corrects the surface during the 3D scanning process on-
the-fly (a) using an efficient keyframe re-integration strategy. Fusing fewer frames into each
keyframe allows to maintain the completeness of the reconstructed 3D model (b).

surface on-the-fly by frame re-integration. However, all previous frames need to be held
in memory to allow for a fast re-integration on pose updates; this limits its suitability for
scanning large-scale environments with long sequences.

To enable state-of-the-art large-scale 3D reconstruction from RGB-D sensors, our SLAM
framework is based on DVO-SLAM by Kerl et al. [10] for estimating a globally consistent
camera motion. The system is computationally significantly less expensive than Bundle-
Fusion and works in real-time on a single CPU, with only slightly less accurate estimated
camera poses. To obtain globally consistent and up-to-date reconstructions of large environ-
ments, we couple it with our novel 3D surface correction method. Figure 1 shows the result
of our online surface re-integration method at the end of a 3D scanning session and indicates
the effect of keyframe fusion on the completeness of the reconstruction.

In summary, the main contributions of our work are:

• We integrate our 3D surface correction framework with a dense Visual SLAM system,
such that our entire 3D reconstruction system runs in real-time with a single GPU only.

• We fuse consecutive RGB-D input frames in keyframes of high depth and color quality
using different keyframe strategies.

• Our surface correction framework is highly efficient by only re-integrating fused key-
frames into a sparse SDF volume on pose graph updates.

• Our strategy for selecting keyframes to be updated substantially reduces streaming
between host and GPU.

• An extensive quantitative evaluation shows that our method is overall 93% more effi-
cient compared to the state-of-the-art while maintaining surface quality.

2 Related Work
The field of dense 3D reconstruction from RGB-D data has been investigated extensively in
recent years. KinectFusion by Newcombe et al. [16] enabled dense 3D reconstruction in real-
time through extensive use of GPU programming. Like most of the following approaches,
it stores the 3D model in an SDF volume [3], which regularizes the noisy depth maps from
RGB-D sensors, and performs ICP-based camera tracking against the raycasted 3D model.
Voxel Hashing [17] better exploits scarce GPU memory and allocates only occupied voxel
blocks of the SDF. A hash map flexibly maps 3D voxel block coordinates onto memory
locations. Kähler et al. [8] designed an optimized version of Voxel Hashing for mobile
devices. However, the frame-to-model camera tracking of the frameworks above is only of
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limited use for reconstructing larger scenes. To reduce drift explicitly, recent approaches [1,
13, 18, 22] rely on loop closure detection in combination with global pose optimization.

In order to efficiently estimate camera poses in real-time, DVO-SLAM by Kerl et al. [10]
minimizes a photometric and geometric error to accurately align RGB-D frames. For global
consistency, it continuously performs a pose graph optimization to reduce global drift. While
there is no dense volumetric model representation, they exploit keyframes to reduce the in-
fluence of noise. The system provides an excellent trade-off between runtime and accu-
racy, making it highly suitable for our 3D reconstruction framework. Utilizing keyframes as
intermediate representation for reducing noise has also been exploited for improving cam-
era tracking [15] and reconstruction appearance [14]. Following this idea, we also employ
keyframes in our work as memory efficient intermediate 2.5D representations of 3D surfaces.

There are only few works on real-time large-scale RGB-D based 3D reconstruction that
incorporate online surface correction. Fioraio et al. [5] reconstruct overlapping subvolumes,
register their poses globally and update the subvolumes using volume blending. However,
the absence of loop closure detection avoids to cope with larger drift. Kähler et al. [9]
perform real-time tracking against multiple submaps independently and globally optimize
the estimated trajectories. Submaps are fused on-the-fly during raycasting.

Whelan et al. use a deformation graph for online update of a surfel-based model [21] and
of an SDF model [20] with an as-rigid-as-possible surface deformation. In ElasticFusion [21]
input frames are fused into surfels and then discarded. However, wrong camera poses (e.g.
due to drift) result in inconsistent surfel observations and hence increase their uncertainties;
surfels with high uncertainty are ultimately filtered out. When a loop closure is detected,
only the existing surface can be corrected along with the deformation graph, while surface
information lost through inconsistent fusion cannot be recovered. In contrast, our method
keeps all keyframes fused from input data and allows to re-integrate them at any pose graph
update without a loss of surface information. Additionally, despite correcting the model
online, the frame-to-model camera tracking may fail to compensate for drift due to delayed
surface updates and undetected (or too late detected) loop closures.

BundleFusion et al. [4] represents the state-of-the-art both w.r.t. SLAM system accuracy
as well as on-the-fly surface re-integration. The system first optimizes consecutive frame
poses locally within chunks, which are then aligned globally in a hierarchical global op-
timization. New RGB-D input frames are matched brute-force against all previous chunk
keyframes and subsequently aligned using a sparse-then-dense alignment. The global align-
ment regularly changes camera poses; to correct the reconstructed sparse SDF volume on-
the-fly, the system first de-integrates frames with their former poses and then integrates them
with their updated poses using a simple re-integration strategy. The 3D model is gradually
adapted to the updated poses while still enabling real-time reconstruction. In contrast to
BundleFusion, our method needs only a single GPU for surface modeling instead of two
high-end graphics cards. Our online surface re-integration combines keyframe fusion with
a more intelligent keyframe selection strategy, resulting in a significantly more efficient re-
integration. Moreover, the use of keyframes requires substantially less memory and enables
on-the-fly surface correction for large environments.

3 3D Reconstruction System

Our framework consists of a real-time RGB-D SLAM framework for globally consistent
camera pose estimation and a sparse SDF volume for storing the reconstructed 3D model.
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Figure 2: Overview of our online surface correction method. RGB-D frames are fused into
keyframes, which are (re-)integrated into the SDF on-the-fly on DVO-SLAM pose updates.

While dense SDF-based 3D reconstruction methods usually integrate new RGB-D input
frames directly into the volume, we first fuse them into keyframes as intermediate data rep-
resentation. We integrate and re-integrate them online into the SDF on pose updates to
efficiently correct the surface. This way, we can reduce the number of individual frames that
we integrate into the SDF volume, which helps especially when we need to correct the 3D
model due to a pose update. Figure 2 shows an overview of our approach.

Preliminaries We acquire RGB-D data from commodity depth sensors with 30 fps at a
resolution of 640× 480 pixels. The N captured RGB-D frames consist of registered color
images Ci, depth mapsZi and camera poses Ti = (Ri, ti) ∈ SE(3) (with Ri ∈ SO(3), ti ∈ R3

and i ∈ 1 . . .N). A 3D point p= (X ,Y,Z)> is transformed using a pose Ti through g(Ti, p) =
Ri p+ ti. We use the pinhole camera model, which projects 3D points p to 2D pixels x =
(u,v)> = π(p) using the projection π : R3 7→ R2. The inverse projection π-1 : R2×R 7→ R3

maps a 2D pixel location x back to the respective 3D point p = π-1(x,Z(x)) using its depth.

Dense Visual RGB-D SLAM To estimate globally consistent camera poses Ti, we utilize
the DVO-SLAM system by Kerl et al. [10]. It runs in real-time on a CPU and employs a
robust dense visual odometry approach that minimizes the photometric and geometric error
of all pixels to estimate the rigid body motion between two RGB-D frames. To reduce
drift in camera pose estimation, input frames are aligned against the preceding keyframe.
Keyframes are selected using the differential entropy of the motion estimate and a pose
distance threshold. In the following, we refer to the keyframes selected by DVO-SLAM as
DVO keyframes. DVO-SLAM detects loop closures by aligning keyframes against candidates
of previous keyframes within a sphere of predefined radius and validates them using their
entropy ratio. Estimated frame-to-(key)frame camera motions and successful loop closures
are integrated as constraints into a graph based map representation. This keyframe pose
graph is steadily optimized in the background during runtime, yielding a globally consistent
camera trajectory with continuously updated keyframe poses Ti. Please note that our surface
correction method works in principle with any SLAM system that incorporates loop closures.

Keyframe Fusion Our keyframe fusion builds up on [14] and consists of separate steps
for depth and color fusion (cf. Figure 3). While new depth maps are immediately fused into
the keyframe depth, color fusion relies on the more complete fused keyframe depth.

For depth fusion, we first compute for each pixel x ofZi its respective view- and distance-
dependent weight wz(x) = cos(θi(x)) · Zi(x)

−2, where θi(x) is the angle between the depth
normal at x and the camera axis. Furthermore, we discard error-prone depth values close to
depth discontinuities. We then warp each pixel with the frame pose Ti into the keyframe with
pose T ∗ and obtain p∗ = (X∗,Y ∗,Z∗)> = g(T ∗-1,g(Ti,π-1(x,Zi(x)))). The keyframe depth
Z∗ and the depth fusion weights W∗ at the projected 2D image point x∗ = π(p∗) are then
updated as follows:

Z∗(x∗) = W
∗(x∗)Z∗(x∗)+wz(x)Z∗

W∗(x∗)+wz(x)
, W∗(x∗) =W∗(x∗)+wz(x). (1)
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a) Input depth b) Fused depth c) Input color d) Fused color

Figure 3: Keyframe fusion: several consecutive input depth maps (a) are fused into the
keyframe depth (b). Our color fusion creates sharp color keyframes (d) from input color (c).

For color fusion, we first deblur the input color images using Unsharp Masking and com-
pute a per-frame blurriness measure wb [2] from Ci to alleviate frames with strong motion
blur. In contrast to depth fusion, the fused keyframes are warped back into each input frame
i and the observed color values ci(x∗) = Ci(π(g(T -1

i ,g(T ∗,π-1(x∗,Z∗(x∗)))))) are sampled
using bilinear interpolation. For a pixel x∗ in the keyframe, we collect all valid color obser-
vations in the input views and their color weights wci(x

∗) = wb ·wz. We compute the final
keyframe color C∗(x∗) as the weighted median of the collected observations.

SDF volume At the core of our method, we store a memory efficient sparse SDF volume
based on Voxel Hashing [17] as volumetric 3D model representation for large-scale 3D re-
constructions. The implemented data structure is tailored to GPUs and only occupied space
is allocated in voxel blocks, which are efficiently addressed using spatial hashing. For each
voxel v, we store its signed distance D(v), its color C(v) and its integration weight W(v).
We extract the iso-surface from the SDF using Marching Cubes [12]. To overcome the limi-
tations of scarce GPU memory for large-scale environments, voxel blocks are streamed from
GPU to host (and vice versa) before integration of a new frame. In particular, only voxel
blocks within a sphere of constant radius around the current camera position are kept in
GPU memory, while all other voxel blocks are streamed to the host. When an RGB-D frame
is integrated into the SDF volume, voxel blocks are first allocated and the voxels are then
updated using a running weighted average.

4 Efficient Online Surface Re-Integration

In the following, we introduce our online surface correction method that combines keyframe
fusion with our sparse SDF volume implementation. Firstly, we incorporate on-the-fly
keyframe re-integration into the 3D reconstruction pipeline; secondly, we show different
strategies for starting new keyframes; thirdly, we propose an efficient surface correction pro-
cedure that is based on a re-integration strategy that reduces GPU-host transfer.

4.1 System Pipeline

While DVO-SLAM selects DVO keyframes for camera tracking based on an entropy criteria,
we introduce KF keyframes (Keyframe Fusion keyframes) as intermediate representation for
surface (re-)integration. When a new frame arrives, DVO-SLAM provides an initial pose
estimate which is used to fuse the input frame into the current KF keyframe. Depending on
the chosen keyframe selection strategy, a new keyframe will be started if some criteria are
met and the previous KF keyframe is integrated into the SDF volume. The KF keyframe
is also stored in memory for later re-integration on pose updates. Since DVO-SLAM issues
only pose updates for DVO keyframes, we convert by expressing KF keyframe poses relative



6 MAIER ET AL.: EFFICIENT LARGE-SCALE ONLINE SURFACE CORRECTION

Frame 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Distance 1 3 4 3 5 4 1 7 2 1 1 8 6 2 0

Distance (sum) 16 19 17 20 19 15 12 19 18 18 17

Figure 4: Selection of frames for re-integration: BundleFusion [4] chooses the frames
with highest distances between integrated pose and new pose. However, selecting frames
12,8,13,5,3 results here in disadvantageous shifts of the streaming sphere. Our method se-
lects the group of most-moved m consecutive frames, which results in frames 4 to 8 ( j∗ = 4).

to DVO keyframe poses. The KF keyframes are then de-integrated from the SDF volume
with their former camera poses and re-integrated on-the-fly with their updated poses.

4.2 Keyframe Strategies
In the following, we investigate keyframe selection strategies w.r.t. obtaining optimal surface
quality. With only few input frames fused into KF keyframes, many KF keyframes need to
be (re-)integrated into the SDF volume on pose updates. On the other hand, fusing many
input frames into KF keyframes leads to a degradation in 3D reconstruction quality, since
the 2.5D keyframes cannot fully represent the incorporated 3D information. We present
keyframe strategies to find the optimal trade-off between re-integration performance and
reconstruction quality.

The KF_CONST strategy is a simple but effective strategy and fuses a constant number κ
of frames into each KF keyframe. KF_DVO uses the frames selected as DVO keyframes also
as KF keyframes. The distance based strategy KF_DIST issues a new KF keyframe whenever
the rotational distance ∆r or translational distance ∆t of the relative pose Ti j between the
current frame and the current KF keyframe exceeds a certain threshold, similar to [11]. The
overlap strategy KF_OVRLP is derived from [7] and generates a new KF keyframe when the
ratio of the pixels visible in both current frame and keyframe drops below a threshold.

4.3 On-the-fly Surface Correction
Our surface correction method follows the frame re-integration approach of [4]. However,
we substantially improve it at critical points w.r.t. runtime efficiency by implementing a more
intelligent strategy for selecting the KF keyframes to be re-integrated. Since we only need
to correct KF keyframes instead of all frames, our surface correction is highly efficient w.r.t.
runtime and memory consumption.

Frame de-integration For de-integrating an RGB-D frame i from the SDF volume, we
simply reverse the integration procedure. We therefore retrieve the KF keyframe from the
memory and compute the projective distance di (along the z axis) of v in depth map Zi (with
sampling weight wi) and its sampled color ci in the input color image Ci. The de-integration
steps for updating signed distance, color and weight of a voxel are denoted as follows:

D′(v) =
D(v)W(v)−diwi

W(v)−wi
C′(v) =

C(v)W(v)− ciwi

W(v)−wi
W′(v) = W(v)−wi (2)

Re-integration strategy While the poses of all keyframes are updated when DVO-SLAM
issues a pose update, it is computationally too expensive to correct them all immediately.
Instead, we re-integrate only m changed frames whenever we receive a pose update. Poses
that were not corrected on-the-fly are re-integrated in a final pass after the reconstruction.
We denote the SDF integration pose of a frame by Ti and the updated pose by T ′i .
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To select the m frames for re-integration, BundleFusion orders all frames by descending
distance between Ti and T ′i ‖sti− st ′i‖ and selects the m most-moved frames. The vectors ti
and t ′i contain the Euler rotation angles and the translation of the poses Ti and T ′i , with a con-
stant scale vector s = (2,2,2,1,1,1)>. However, since the corrected frames (and the respec-
tive SDF voxel blocks) may be spatially distant, suboptimal expensive GPU-host-streaming
of voxel blocks may be required. To limit the streaming overhead, it is beneficial to correct
close frames within the same re-integration procedure. We therefore keep the original tem-
poral ordering of frames and select the group of most-moved m consecutive frames:

j∗ = argmax
j∈[1,K−m+1]

j+m−1

∑
i= j

∥∥sti− st ′i
∥∥ , (3)

where K is the total number of frames integrated so far. The resulting j∗ represents the first
frame of our m consecutive frames thats need to be re-integrated. Figure 4 exemplifies the
advantages of this procedure. Additionally, we adjust the streaming procedure of [17] to
the re-integration process: We first stream in all voxel blocks inside the sphere around pose
T j∗ to safely access them. Then, we successively de-integrate frames [ j∗, j∗+m− 1] with
regular streaming. After de-integration, we stream in the sphere around the updated pose T ′j∗
und successively re-integrate frames [ j∗, j∗+m− 1] using their updated poses with regular
streaming. We finally stream the sphere back to the next integration pose.

5 Evaluation and Experimental Results
To demonstrate the effectiveness of our surface reconstruction algorithm, we provide a thor-
ough quantitative evaluation w.r.t. runtime efficiency and surface accuracy. In particular, we
analyze the effects of combining keyframe fusion with our surface re-integration method.

Datasets We use publicly available RGB-D datasets of large-scale scenes with loop clo-
sures that provide registered depth and color images as well as the respective camera poses.
AUG_ICL/Liv1 (noisy) [1] is a synthetic RGB-D sequence that is rendered from a mod-
eled scene of a living room with realistic sensor noise. In addition to ground truth poses it
also provides the ground truth 3D scene model that allows for a quantitative comparison of
surface quality of reconstructed 3D models. BundleFusion/apt0 [4] features a long camera
trajectory of 8560 frames with poses estimated from BundleFusion.

Surface evaluation methods and metrics The evaluation procedure for comparing our
reconstructed 3D models with synthetic ground truth is adapted from [6] and first extracts a
3D meshM from the reconstructed SDF volume. We use CLOUDCOMPARE 1 to uniformly
sample a reference point cloud R with 50 million points from the ground truth mesh of
AUG_ICL/Liv1. We measure the distance of each vertex ofM to its closest vertex inR with
SURFREG 2 and compute the mean absolute deviation MAD. This technique assesses the
correctness CORR of the model, i.e. the accuracy of the successfully reconstructed surfaces.
However, we also want to measure the completeness COMPL of reconstructions to determine
the information loss from keyframe fusion. For measuring COMPL, we inversely compare
every vertex of R to the nearest neighbor inM. For a fair comparison and to only compare
surfaces visible in the synthetic frames, we re-generate the reference R by fusing all input
frames into the SDF with ground truth poses. We rely on the poses from the datasets for

1http://www.danielgm.net/cc/
2https://github.com/mp3guy/SurfReg
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Figure 5: Quantitative evaluation of reconstruction correctness (left) and completeness
(right) w.r.t. different keyframe strategies on AUG_ICL/Liv1. The x-axis shows the average
keyframe size κ̄ produced in each run, the y-axis shows the MAD error (axes are logarithmic).
The KF_CONST strategy achieves the best reconstruction results for both CORR and COMPL.

assessing the surface quality to eliminate a substantial source of error. We used a workstation
with Intel Core i7-3770 CPU, 32GB RAM and an NVIDIA GeForce GTX 1070 GPU.

5.1 Keyframe Fusion
We quantitatively investigate the effect of keyframe fusion on the reconstruction quality, i.e.
surface completeness and correctness, of the noisy AUG_ICL/Liv1 dataset.

Keyframe strategies Figure 5 shows the results of different keyframe selection strategies
and their average keyframe sizes on the reconstructed surface quality. Each mark represents
a separate evaluation run of a given strategy with a different set of specified parameters. For
KF_CONST, we vary the number of consecutive frames κ that are fused into each keyframe.
In KF_DIST we adjusted the pose distance threshold ∆t and ∆r, while we varied the overlap
ratio parameters in KF_OVRLP. In KF_DVO we use the same keyframes as DVO-SLAM.
In summary, more relaxed parameters result in a higher average number of fused frames
per keyframe κ̄ for all strategies; different parameter combinations for the same strategy
may result in a similar κ̄ . With an increasing κ̄ , the completeness of reconstructions de-
creases rapidly, since 3D surface information gets lost in 2.5D keyframe fusion. The effect
on surface correctness is less significant, since the deviation for the remaining surfaces is
still reasonably close to the ground truth 3D model. Compared to KF_CONST, the strate-
gies KF_DIST, KF_OVRLP and KF_DVO result mostly in worse quantitative results, a hardly
predictable number of keyframes and barely tunable interdependent parameters. We found
KF_CONST to give good quantitative results, while it is also highly predictable w.r.t. fusion
and re-integration runtime as well as memory consumption (∼ 1/κ̄) due to its priorly known
number of frames per keyframe. We refer the reader to the supplementary material for more
details.

Completeness Figure 6 shows color coded distance renderings for KF_CONST keyframe
fusion with κ = 5 and κ = 60 on AUG_ICL/Liv1. The colors represent errors from 0mm
(blue) to 50mm (red). Again, the completeness COMPL of reconstructions decreases with
more fused frames per keyframe because of the loss of surface information with 2.5D key-
frames. The reconstructed surfaces are still accurate w.r.t. ground truth (CORR).

5.2 Surface Re-integration
We finally assess our surface correction w.r.t. real-time performance and show results of
on-the-fly surface re-integration on real-world data.

Runtime While BundleFusion requires two high-end GPUs to operate in real-time, our
system requires only a single GPU. Figure 7 gives the average amortized runtimes of our
system, specifically for (re-)integration of frames w.r.t. κ (red), for DVO-SLAM (green) and
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a) Completeness (left κ = 5, right κ = 60) b) Correctness (left κ = 5, right κ = 60)

Figure 6: Completeness and correctness after integration of AUG_ICL/Liv1 with KF_CONST
keyframe strategy (with keyframe sizes 5 and 60).
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Figure 7: Average runtime per frame for reconstruction of AUG_ICL/Liv1 with KF_CONST
w.r.t. κ . Our re-integration strategy (solid) is substantially faster than BundleFusion’s
(dashed). m was set to 100/κ , yielding a constant effective re-integration rate.

the total runtime of both combined (blue). Generally, the higher κ is, the fewer keyframes
are generated and thus need to be updated. We accomplish real-time performance with
κ = 20,m = 5. Here, the re-integration strategy of updating the m most-moved consec-
utive keyframes (solid lines) saves already 47% of (re-)integration runtime compared to
BundleFusion’s simple strategy (dashed). This is further accelerated through the use of
keyframes only: Overall, the reconstruction with κ = 20,m = 5 and our re-integration strat-
egy takes 93% less time than BundleFusion’s re-integration strategy without keyframe fusion
(κ = 1,m = 100). We found m ∈ [10,20] to be a good trade-off between reconstruction qual-
ity and model correction speed for most data sets.

On-the-fly surface re-integration As DVO-SLAM steadily optimizes a pose graph and
issues pose updates, our surface correction method gradually improves the reconstructed 3D
model on-the-fly by re-integrating the most-moved consecutive m keyframes into the SDF.
While updating all changed keyframes at once is too expensive, we can control the speed of
incorporating pose updates into the 3D model by adjusting m. Also, with decreasing κ̄ more
keyframes are generated and need to be updated. Figure 8 shows an example of how a 3D
reconstruction is corrected on-the-fly during the reconstruction to be as globally consistent
as possible (with m = 5, κ = 20 and KF_CONST strategy).

An isolated comparison of the surface correction of ElasticFusion [21] with our method is
not applicable since the respective SLAM systems may result in different camera trajectories.
Nevertheless, Figure 9 shows a qualitative comparison of the generated models, which is in
accordance with the findings in [4]. While ElasticFusion might benefit from camera tracking
against the corrected model, the point cloud reconstructed with ElasticFusion with default
parameters exhibits double walls and artifacts due to potentially undetected loop closures
and surface warping artifacts. These effects are mitigated in the continuous surface mesh
reconstructed from our method, which successfully corrects the model on-the-fly.
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i = 4000 i = 6000

i = 8000 final

Figure 8: Reconstruction of BundleFusion/apt0. Every 2000 frames, a model was generated
without (left) and with (right) on-the-fly surface correction (KF_CONST keyframe strategy
with m = 5, κ = 20).

Figure 9: Qualitative comparison of ElasticFusion [21] (left) with our method (right) on
BundleFusion/apt0. The point cloud reconstructed with ElasticFusion exhibits artifacts due
to potentially undetected loop closures and surface warping artifacts, whereas our method
successfully corrects the model.

6 Conclusion
We presented an efficient online surface re-integration method for globally consistent 3D
reconstruction of large-scale scenes from RGB-D sensors in real-time on a single GPU only.
Our SLAM system based on DVO-SLAM estimates the camera motion in real-time on a
CPU and employs pose graph optimization for obtaining globally optimized camera poses.
Multiple RGB-D frames are first fused into keyframes, which are then integrated into a
sparse voxel hashed SDF model representation. Continuous keyframe pose updates are grad-
ually incorporated into the SDF volume by on-the-fly re-integration of changed keyframes.
Our improved re-integration strategy with correction of keyframes and significantly reduced
host-GPU-streaming saves about 93% of runtime compared to the state-of-the-art. By re-
integrating keyframes (instead of all frames), we substantially reduce the number of frames
to be re-integrated with only a slight degradatation of reconstruction quality.

Acknowledgement This work was funded by the ERC Consolidator grant 3D Reloaded.
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[104] F. Steinbrücker, C. Kerl, J. Sturm, and D. Cremers. Large-scale multi-resolution
surface reconstruction from RGB-D sequences. In International Conference on
Computer Vision (ICCV), 2013 (cited on pp. 7–9, 62).
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