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Abstract

As containers are getting more prevalent in modern software engineering due to cloud
computing and resource sharing, the need to analyse the performance of the different
solutions for resource management on host systems increases. New frameworks are
built on top of container technology that profit from the small footprint and use specific
facets of an implementation as a way to enable novel feature sets like rapid startup
times and minimalistic resource consumption.

This thesis analyses three different implementations of the Container Runtime Inter-
face, namely containerd as the industry standard, CRI-O as the reference implementation
and gVisor as a high-security alternative to the aforementioned. It dives deep into
the techniques behind container and process scheduling, I/O and disk limits, and
establishes an objective measurement for CRI implementation performance in reference
to resource management.
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1 Introduction

Cloud computing as an infrastructure model has become increasingly popular among
a wide range of industries. Container technology has played a leading role in this
change. The demand for an in-depth evaluation of the performance of container-based
workloads is rising. The widely-used cluster orchestrator Kubernetes supports every
container runtime that implements the standardised Container Runtime Interface [18].
While the cluster administrator is allowed to freely choose between the different
implementations, an objective evaluation of container runtime performance metrics in
reference to resource management is missing.

Resource management is a popular tool used in computing clusters shared between
multiple persons, teams or companies to enable a fair-use model that satisfies the
demands of all cluster tenants. It is also used to enable resource efficient, dense
deployment models like FaaS1 and other serverless architectures. But as these new
deployment models flourish, they also have specific performance requirements on
the numerous facets of a container runtime. To give an example, FaaS infrastructure
demands low startup times for the underlying container runtime since the time until a
response to an incoming request is critical to the quality of the service.

Previous research has shown that the performance overhead of popular container
runtimes is very low, hence container runtimes are more resource-efficient than tra-
ditional virtual machines [31]. This leads to container runtimes being a main driver
behind energy reduction in cloud datacentres due to the lowered amount of required
machines for the same amount of work. This leads to container technology being
a major cost reducer in the datacenter space. But while virtual machines are more
resource-intensive, they still have a reputation of being more secure than containers [2].

As container runtimes continue their rise to the top, they must also take on the
guarantee of a secure computing environment. In the past there have been several
security issues in the Docker engine and runc, allowing a bad actor to escape the
container sandbox as a privileged user [19]. There are several container runtimes
tackling these issues, first and foremost gVisor by Google [14] and Kata Containers by
OpenStack [21]. Resource management is a key factor to meet these security demands
since gVisor implements a user-space kernel therefore taking over major responsibilities

1Functions-as-a-Service, a service that abstracts away any underlying infrastructure of an application
deployment.
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1 Introduction

from the operating system and Kata Containers uses the virtualisation capabilities of a
modern CPU.

This thesis explores three existing container and system runtime implementations,
especially containerd, the CRI-compatible container runtime implementation used by
Docker and some distributions of Kubernetes. It has been investigated how exactly
these container runtimes use kernel features and functionality like process scheduling,
memory allocation and I/O interaction to satisfy the limit requirements.

Especially interesting in the context of resource limiting is the question, how exactly
can resources like CPU time be limited without hurting the overall performance of an
application too much.

To evaluate the performance of containers in a reliable fashion, a benchmarking
toolkit has been developed. This toolkit called Touchstone tests the numerous facets of
resource management in container runtimes.

The benchmarking tool measures scalability (e.g. does the runtime in general behave
differently with 1 instance versus 50 instances?), resource overuse (e.g. what happens if the
application continuously requests more resources than defined?) and general performance
(e.g. how fast does a single container start?).

This Bachelor thesis focuses on learning about the resource management techniques
used by container runtimes and how their implementation may shape application per-
formance. If a container runtime has unique properties related to resource management,
these differences will be highlighted and a relation to the suited scope of applications
established.

Chapter 2 defines a common terminology for the rapid-expanding space of container-
ised computing to reduce ambiguity. It explores the OS-level components of resource
management in container runtimes. The goal is to be able to differ between higher- and
lower level components in a consistent fashion.

Chapter 3 discusses previous research in container runtime performance relating to
I/O and memory throughput issues, resource usage and general behavioural differ-
ences.

Chapter 4 dives deep into the implementation details of the three container and
system runtimes containerd, CRI-O and gVisor.

Chapter 5 examines the architecture and implementation of the benchmarking tool
described above, especially challenges encountered along the way and architectural
idiosyncrasies.

Chapter 6 presents the results generated by the benchmarking tool and give reasoning
for the findings derived from the benchmarking data. Chapter 7 concludes the results
of this thesis and chapter 8 gives an outlook on what could be examined in future
research and which facets of container runtimes require more investigation.
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2 Fundamentals

This chapter will define some terms specific to containerised computing. The most
important concept is the Linux container, which is basically a logically isolated virtual
environment. Containers are started and managed using a container runtime, which
uses operating system capabilities to enable environment isolation. Additionally,
the container runtime sets up the container environment on startup according to a
container specification. This specification is packaged in combination with the container
filesystem layers in a container image. The container image is a template for containers
that can be distributed and published on the internet.

To be able to differ between software solutions like containerd and runc, the label
container runtime will be used for software that enables running containers as a high-
level task while low level OCI-compatible engines [38] will be called system runtimes.
A major difference between container and system runtimes is the dependency on
OS-specific abstractions in system runtimes while container runtimes can be ported
very easily.

2.1 Container runtimes

Linux containers are often compared to virtual machines but they are fundamentally
different. While in virtual machines you virtualise the hardware, containers just limit
access to host resources therefore virtualising the environment instead of the system.
A major difference is that containers are transparent to the host system, while virtual
machines are not – at least without contextual virtual machine introspection. In addition
to being transparent they are also more performant than virtual machines due to the
lower virtualisation workload. The only exception to the performance declarative are
solutions like Kata Containers [21], that run containerised processes in lightweight
virtual machines for security reasons.

In operating systems based on the Linux kernel the isolation between containers and
the host system is typically done using Namespaces and Control Groups. Namespaces
isolate different processes from each other while Control Groups control access to the
resources in the namespace.

3



2 Fundamentals

2.2 Runtime architecture and implementation

Figure 2.1: Architecture of Docker [9]

Since most of the container infrastructure tools are either written in C or Go, basic
knowledge of both languages is required to fully grasp their functionality. Most
toolchains use a mix of both languages, for example runc uses C in parts of libcontainer,
a container management library, and wraps libcontainer in a Go binary with a command-
line interface [49]. Many larger tools like the Docker engine are composed of a multitude
of subsystems. Docker itself is made up of the docker command as the primary tool
for user interaction on top, the dockerd daemon underneath and on the lowest level
containerd. This decoupled architecture can be seen in 2.1.

The command line interface provides a user-friendly abstraction over the container
operations happening on the lower levels of the Docker engine and directly interacts
with the Docker daemon. It enables a user who does not mind about implementation
specifics or peculiarities of control groups and namespaces to setup complex networks,
storage bindings and resource limits. It talks to the Docker daemon using a HTTP RPC
API [11].

The Docker daemon manages features such as volumes, mounts, networking end-
points and network drivers. It also provides the well-known build command that
allows the creation of container images using a simple build script, the so-called Dock-
erfile. The build command uses image snapshotting to generate images layers and
executes each Dockerfile command in its own container. The orchestration component
of Docker is called Swarm, a distributed cluster orchestrator build on top of the Raft
consensus algorithm [12]. Each Docker instance supports this special swarm mode
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2 Fundamentals

that enables multiple computing nodes to behave like a single Docker node similar
to Kubernetes. Docker also supports security features like content trust signature
verification to limit the runtime to running signed images. This makes it possible to
monitor the distribution chain from the creator of a container image to the runtime, a
critical feature for privacy- or security conscious users. It also provides utilities like log
management and container state management, e.g., pause and resume [11].

All lower-level container management is delegated by the Docker daemon to the
container runtime containerd, that was originally built as an internal subsystem of
Docker and moved into a separate project later on [9].

2.3 Namespaces

Namespaces are the fundamental Linux feature that enable the functionality and
separation that containers provide. They can be created using the clone and unshare
system calls. There are different types of namespaces for specific groups of resources
or configuration, like filesystem mounts, user mappings, networking or resource
limiting [35].

2.3.1 Namespace creation

The fork system call creates an exact copy of the calling process. The child process has
a different process ID, parent process ID and own copies of the open file descriptors.
On first sight the clone system call is very similar to fork. But instead of creating
a new execution context for the forked process, cloned processes keep a share of its
parent execution context. To give an example, the parent process of a cloned child
can access the child’s stack. The developer can also specify which parts of the parents
context should be shared. Typically, clone is used for multi-threaded applications [7].

The unshare system call allows to unshare parts of the current execution contexts
with other process, e.g. changing from a common user namespace to a separated
one [51]. The setns system call is the counterpart to unshare. It allows a process to
join an existing namespace [42].

The calling order of the namespace operations is very relevant for the functionality of
the container subsystem. For example, a process does not have privileges to administer
a network namespace that has been created while residing in a different user namespace.
Typically, the process initialisation is therefore split into multiple steps. As a first step,
the user and group mappings for the container process are created. In the second step
the user namespace is unshared and in a third step all other namespaces are unshared.
In the last step, configuration steps like mounts, networking and routing are taken care
of [49].
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2 Fundamentals

// Clone process with new namespaces
const int flags = CLONE_NEWNS

| CLONE_NEWCGROUP
| CLONE_NEWPID
| CLONE_NEWUSER
| CLONE_NEWIPC
| CLONE_NEWNET
| CLONE_NEWUTS;

if ((cfg.pid = clone(exec,
malloc(STACK_SIZE) + STACK_SIZE,
SIGCHLD|flags, &cfg)) < 0) {
returrn -1;

}

Figure 2.2: Creating a new thread in a different namespace

2.3.2 net

Network namespaces provide isolation between groups of network devices, routing
tables, protocol stacks and so on. Physical network devices can be bound to exactly
one network namespace. Virtual network devices can be used to connect two network
namespaces as a tunnel or as a bridge to a physical network device [36].

These virtual devices can be created by hand using the ip tool in Linux or by
directly communicating with the Kernel using the netlink system interface. The
typical procedure is to create all networking components beforehand and link in all
endpoints after the container is up and running. Inter-container networking itself is a
very complex topic and often handled separately from low level runtime environments
like runc. A basic networking setup can be seen in figure 2.3. The basic setup can
be configured by creating a virtual ethernet pair and assigning one of them to the
container network namespace. After adding fitting routes via iptables and setting up
network-address translation for incoming packets on the host system, the container is
able to communicate with the outside world. In some cases it is useful to have multiple
containers join a common network namespace, especially when they are tightly coupled
like a web server and a sidecar, that grabs metrics from this web server. When joining
a common network namespace, these containers share the loopback interface and are
able to communicate with each other using localhost.

6



2 Fundamentals

Figure 2.3: Usage of network namespaces to link container networks

2.3.3 user

User namespaces provide isolation between security groups. They can be nested and
are used to give a non-privileged user specific privileges inside the given execution
context. They are often paired with user and group ID mappings. This feature is
especially useful when securing a process, which the system user may want to run as
non-root due to security guidelines [52].

2.3.4 mount

Mount namespaces isolate the mount points of a process filesystem from the rest of the
system. This is very useful when mounting the rootfs of a container or binding specific
directories to a different path [34]. Mount namespaces are often used in combination
with the system calls chroot and pivot_root.

The Linux system call chroot changes the root directory of the active process. It has
been deemed insecure due to the superuser being able to escape a chroot restriction
very easily [6].

An alternative to chroot is the system call pivot_root. Instead of changing the active
root directory, the current root directory is pivoted. It is moved to a different directory
and a child node of the old root is used as the new root. The old root directory is
then unmounted. This technique is more complex and requires a variety of file system
interactions as seen in figure 2.4. In the context of container runtimes pivot_root is
preferred because it is non-invertible from inside the container and cannot be escaped
without further system exploitation. Historically pivot_root’s main use has been for
booting a Linux system using initrd [40].

7
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// Create temporary rootfs
char rootfs[] = "/tmp/rootfs";
mkdir(rootfs);
mount("my-rootfs", rootfs, NULL, MS_BIND | MS_PRIVATE, NULL);
// Move current root to oldroot, make rootfs new fs root
char inner_rootfs[] = "/tmp/rootfs/oldroot";
mkdir(inner_rootfs);
pivot_root(rootfs, inner_rootfs);
// Set process root to fs root
chdir("/");
// Remove old root
char old_root[] = "/oldroot";
umount2(old_root, MNT_DETACH);
rmdir(old_root);

Figure 2.4: Performing pivot_root for process root isolation

// Mount procfs
if (mount("proc", "/proc", "proc",

MS_NOEXEC | MS_NOSUID | MS_NODEV, NULL))
panic("failed␣to␣mount␣/proc");

Figure 2.5: Mounting proc in a container

2.3.5 pid

A PID namespace allocates a local process hierarchy. The initial process in a process
hierarchy always has the ID 1. In the case of clone, the cloned child has the PID 1.
When using unshare, the first child created after calling unshare has PID 1. When the
initial process with PID 1 terminates, all processes in the PID namespace are terminated
as well [39].

When using runc, the /proc directory is re-mounted such that the container process
can not see any running process outside of its namespace as demonstrated in listing
2.5 [49].

8



2 Fundamentals

2.3.6 uts

A UTS namespace allows to set a separated host and domain name. These changes
to the system identifiers do not change any identifiers in the host system. Container-
specific hostnames can be very useful for service discovery and networking [35].

2.3.7 cgroup

Control Groups namespaces exist to provide a namespace-specific abstraction over the
control groups system interface. They provide an own isolated subtree in the control
groups hierarchy such that no containerised process may modify or access a control
group that resides outside of its scope [4]. Control Groups are thoroughly discussed in
the following subsection.

2.4 Control groups

This section explores control groups, the Linux kernel feature that enables important
container capabilities related to resource usage and limits. There are currently two
implementations of the control group system called cgroup and cgroup2 [5]. This thesis
is limited to cgroup since cgroup2 is not used by runc. The main difference between
version 1 and 2 is the unified file system hierarchy. While in version 1 each subsystem
has its own hierarchy, in version 2 all controllers of a given control group sit in the same
directory. This facilitates better control of operations that are performed by multiple
subsystem [24, 5].

While using cgroup an indirect disk write, that is cached in memory, may be written
to disk with significantly higher speeds than the blkio control group permits to, the
unified hierarchy in cgroup2 allows to account resources across controllers. In this case
the indirect write can be limited by the blkio controller.

When using systemd cgroup may be accessed using the virtual filesystem mounted
by default in /sys/fs/cgroup.

2.4.1 cpu, cpuset, cpuacct

The cpu controller is used to define the relative shares and ceiling time to be considered
by the CFS1 when scheduling processes that are assigned to this control group. Tasks
can be added and removed dynamically. Furthermore the controller supports changes
to the control groups limits and properties while a process is assigned either directly

1Completely Fair Scheduler, the default process scheduler in the Linux kernel.
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# Set interval to 100ms
echo 100000 > /sys/fs/cgroup/cpu/lowprio/cpu.cfs_period_us
# Set max share to 1ms
echo 1000 > /sys/fs/cgroup/cpu/lowprio/cpu.cfs_quota_us
# Get task stats
cat /sys/fs/cgroup/cpu/lowprio/cpu.stats
nr_periods 5906
nr_throttled 4321
throttled_time 643372847465

Figure 2.6: cgroup/cpu ceiling enforcement

by a tasks entry or indirectly by assignment of a parent [5]. The dynamic assignment
of resources facilitates more flexibility when scheduling containers.

Relative shares allow to perform weighted scheduling on groups of processes. For
example, an administration tool may create a control group for each user of a shared
system with cpu.shares set to 1024 and assign all processes run by this user to the
corresponding control group. Therefore the tool can ensure that each user has the same
quality of service while using the system. If a privileged user would exist, the tool
may decide to assign the doubled amount to the user’s control group such that the
privileged user can use twice as much CPU resources as an unprivileged user [23].

In contrast to relative shares ceiling enforcement is performed using CPU time
measured in microseconds. This ceiling is set by writing to cpu.cfs_quota_us and
cpu.cfs_period_us [22].

If an administrator tool runs a low-priority batch job, it may decide to limit the
maximum amount of CPU time available to this process. By writing 100000 to
cpu.cfs_period_us and 1000 to cpu.cfs_quota_us, the batch process gets to run
at maximum one millisecond each 100ms. Ceiling enforcement is one of the most
important tools in shared environments such that a single user may not use all of the
computing power of a workstation. Using cpu.stat the administrator tool may analyze
how often and how much the process group has been throttled as seen in figure 2.6.

As discussed before, the number of shares is specified in relative values. This is
demonstrated in figure 2.7 where the minimum number of shares is specified in relative
metrics. The shown assignment leads to tasks in group A being assigned only half of
CPU shares relative to tasks in group B.

The cpuset controller allows to assign processes to specific CPU and memory nodes.
This is especially useful for very large NUMA machines with hundreds of CPU and
memory nodes. In Non-Uniform Memory Access machines each CPU has its own

10



2 Fundamentals

# in cgroup A
echo 1024 > /sys/fs/cgroup/cpu/mygroupA/cpu.shares
# in cgroup B
echo 2048 > /sys/fs/cgroup/cpu/mygroupB/cpu.shares

Figure 2.7: cgroup/cpu share assignment

# Assign cgroup ’singlecore’ to a single CPU and memory node
echo 0 > /sys/fs/cgroup/cpusets/singlecore/cpuset.cpus
echo 0 > /sys/fs/cgroup/cpusets/singlecore/cpuset.mems

Figure 2.8: cgroup/cpusets node assignment

memory node while being while being able to access the memory nodes of other
CPU nodes. To make computations on these architectures faster, node affinity is
extraordinarily important. cpusets can make a process run on a compute node with a
local memory node. It also includes the possibility to assign a CPU or memory node
exclusively, thus no other sibling cpuset may assign an overlapping subset [26].

Exclusive resource assignment is required if the system user wants to give strong
performance guarantees to the process user. This comes in handy when managing
multiple compute-bound processes, e.g. in high-performance computing. When
running low-profile batch jobs, an administration tool may want to run these processes
only on an exclusive CPU node and can perform this task using cpusets as seen in
figure 2.8.

The cpuacct controller allows to group processes together and analyse their total
CPU consumption. This makes usage inspection of specific process groups possible.
All values reported by cpuacct are measured in nanoseconds as illustrated in figure
2.9 [25].

# retrieve cpuacct.usage
cat /sys/fs/cgroup/cpuacct/mygroupA/cpuacct.usage
# >> 129370653
# >> about 0.129 seconds

Figure 2.9: cgroup/cpuacct usage stats

11



2 Fundamentals

# Set max memory usage to 128 MB
echo 128M > /sys/fs/cgroup/memory/smallmem/memory.limit_in_bytes
# Read memory limit
cat /sys/fs/cgroup/memory/smallmem/memory.usage_in_bytes
2949120
# About 2.297 MiB

Figure 2.10: cgroup/memory memory limits

2.4.2 memory

The memory controller provides management access to the systems memory resources.
It allows to set limits for memory and memory+swap resources. Moreover, it makes the
extraction of limit statistics possible, e.g. how often memory limits have been hit. These
limits are set similar to the cpu controller using a virtual file system as illustrated in
figure 2.10. The memory controller can be very useful to

• limit memory-hungry applications from hogging to much resources

• limit the amount of memory available to each user on a time-sharing system

The controller also supports the usage of soft limits. Normally a process that is
only limited by a hard memory limit may consume as much memory as it wants up
to the hard limit. Soft limits enable the sharing of memory up to the point when
memory resources become scarce and the processes are limited to their soft limit.
The enforcement of soft memory limits takes a long period of time due to the slower
reclaiming of memory regions [27].

The core of the memory controller is based around counting pages allocated on a per
cgroup basis. Per cgroup only anonymous pages2 and cache pages are accounted for.
Anonymous pages are counted when they are swapped in and unaccounted when they
are unmapped. Cache pages are unaccounted when they are removed from the internal
address space tree. Shared pages are accounted to the cgroup that first touched the
shared page.

The memory controller also allows to administer the out-of-memory management
system for the group of processes. It is possible to deactivate the OOM killer entirely.
After deactivation of the OOM killer, processes that would normally be killed because
they requested memory that cannot be allocated for them, cannot use malloc anymore
until they have freed allocated pages.

2Anonymous pages are virtual memory mappings without any associated file.
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# Limit sda throughput to 1 MB/s read/write
echo "8:0␣1048576" > .../blkio/mygroupA/blkio.throttle.write_bps_device
echo "8:0␣1048576" > .../blkio/mygroupA/blkio.throttle.read_bps_device

Figure 2.11: cgroup/blkio throttling

# Give group B double the allocated IOPS
echo 500 > .../blkio/mygroupA/blkio.weights
echo 1000 > .../blkio/mygroupB/blkio.weights

Figure 2.12: cgroup/blkio weighting

Like the cpu controller, the memory controller supports on-the-fly reassignment of
limits.

2.4.3 blkio

The blkio controller manages I/O control policies in the kernel storage tree. It supports
two different types of controlling I/O. On the one hand there is the throttling mode that
limits the number of bytes or operations that can be performed on a specific device per
second. On the other hand there is the weighted mode, that modifies the scheduling of
the I/O operations similar to the cpu.shares in the cpu controller. I/O upper limits
can be specified in bytes per second (bps) and I/O operations per second (iops) as seen
in figure 2.11. If both limits are set, they are both considered by the I/O subsystem
when determining the limits on a per-cgroup basis.

By default throttling operates on a flat tree, such that no control group respects I/O
limits of a parent group. While throttling supports tree hierarchies, the feature has
to be activated using the sane_behavior flag. This flag has not been available to the
public outside of a Linux kernel development environment.

At the moment, throttling has its limits especially in respect to writing files. Because
it is not possible to associate indirect write operations on files with the blkio control
group it originated from (due to memory and blkio control groups operating indepen-
dently), throttling for writes only works for direct writes as specified by O_DIRECT flag.
Throttling for reads works on direct and indirect read operations.

The other supported control option is proportional I/O operation weighting. Linux
schedules disk I/O operations using the Complete Fair Queuing-Scheduler. The
scheduling weights used for process groups can be redistributed using the blkio
control group as seen in figure 2.12. The weight can also be specified per I/O device by
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using the blkio.device_weight parameter.

2.4.4 net_cls, net_prio

mkdir /sys/fs/cgroup/net_cls/eduroam
/bin/echo 0x100001 > /sys/fs/cgroup/net_cls/eduroam/net_cls.classid
tc qdisc add dev eth0 root handle 10: htb
tc class add dev eth0 parent 10: classid 10:1 htb rate 100kbit
tc filter add dev eth0 parent 10: protocol ip prio 10 handle 1: cgroup

Figure 2.13: cgroup/net_cls traffic shaping

net_cls allows to tag network packets that are routed from or to a specific process in
the control group. This feature can be used in combination with the traffic control tool tc
to shape the amount of traffic that can be send and received by processes in this control
group. Other advanced actions can be taken by the iptable tool using the created
network packets tag. For example, using the aforementioned tools an administrator
may limit the upstream of a process to 100 KBit per second as demonstrated in figure
2.13 [28].
net_prio provides an interface to prioritise network traffic by using network interface

handles. The controller facilitates setting the default network interface used by processes
in this control group. The prioritisation can be overridden by the process itself via the
SO_PRIORITY socket option [29].

2.5 runc and OCI

runc is the lowest runtime layer of containerd that explicitly handles containers. It was
used as the reference implementation when drafting the OCI runtime specification [38].
Internally, runc uses libcontainer to interact with OS-level components.

The Open Containers Initiative has defined two standards, the image-spec for OCI
images and the runtime-spec for system runtimes [38, 37]. The typical job sequence
would be that a container runtime downloads such as containerd downloads an OCI
image, unpacks it and prepares an OCI bundle, a container specification including
the root filesystem, on the local disk. Then a system runtime like runc is able to
create a running instance from this container specification. OCI images can be created
using a number of tools, for example the famous docker build command or various
standalone tools like kaniko, a replacement for the docker build command that does
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not require privileged system access [20]. After a successful build, they are usually
pushed and published to a public or private container registry.

2.5.1 OCI bundles

An OCI bundle consists of two major components, a config.json at the root level and
the rootfs container filesystem. The config.json specifies [38]

• the required OCI version (.ociVersion)

• user configuration and mappings (.process.user)

• environment variables (.process.env) and working directory (.process.cwd)

• process capabilities (.process.capabilities) and Linux security features like

– SECCOMP (.linux.seccomp)

– SELinux (.process.selinuxLabel)

– AppArmor (.process.apparmorProfile)

• root filesystem path (root.path) and mounts (.mounts)

• resource management (.linux.resources)

The runtime user has also the option to supply a range of POSIX-compatible hooks
for pre-start, post-start and post-stop. Beside being able to parse the config.json, an
OCI runtime has to implement among other commands the following operations [38].

• create, to create a new container from an OCI bundle

• kill, to signal a container to stop

• delete, to delete a stopped containers

• state, to retrieve the state of a container

Each of these operations is directly invoked by executing the runtime binary with
specified parameters, a major difference to higher-level runtimes that mostly either use
HTTP REST endpoints or gRPC in a client-server architecture.
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{
"schemaVersion": 2,
"mediaType": "application/vnd.docker.distribution.manifest.v2+json",
"config": {

"mediaType": "application/vnd.docker.container.image.v1+json",
"size": 3410,
"digest": "sha256:4c108a37...

},
"layers": [

{
"mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip",
"size": 26684508,
"digest": "sha256:5b733921...

},
...

Figure 2.14: ubuntu:latest OCI image manifest

2.5.2 OCI images

OCI images on the other hand consist of multiple filesystem layers that are layered
onto each other using an overlay or snapshot filesystem. The main components of an
OCI image is the manifest, storing basic information like intermediate layers and image
size, and the layer manifest. Each image manifest is platform and operating-system
specific. This is the reason why there often are different manifests for the same image
source (for example one for windows and one for linux).

In addition to the image manifests, the OCI image specification also specifies the
OCI image layout, a directory structure for storing OCI image manifests. It is itself
described by an index.json, that specifies among other things the mapping between
system platform and image manifest [37].
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There has been some research related to the runtime overhead of Docker in the context
of resource-critical mobile edge computing. Avino et al. have found that the CPU
usage of the Docker process is constant regardless of the CPU cycle consumption of the
containerized process [1].

Casalicchio et al. have benchmarked the Docker Engine in regards to different
implementation details, mainly CPU- and I/O intensive workloads. They have found
that monitoring disk I/O performance in Docker can be rather complicated since there
are no tools available. An interesting fact they have discovered is that when the amount
of requested CPU cycles by the container is over 80% the overhead of the Docker Engine
shrinks from 10% down to 5%, concluding that the overhead of the Docker engine does
not grow linearly with each container instance [3].

Kunal Kushwaha from the NTT Open-Source Center has looked at the performance
of VM-based and OS-level container runtimes such as runc, kata-containers and higher
level runtimes such as containerd and CRI-O. In his analysis he claims that containerd
performs better in comparison to CRI-O and Docker due to the different file system
driver interface design. One of his discoveries was the very low container startup
latency of CRI-O in comparison to containerd. In all other test cases CRI-O performed
worse than containerd, but starting a container using CRI-O was 5 times faster. This
low startup latency also transferred to the kata-containers test environment, where
CRI-O was 3 times as fast as containerd [32]. Kushwaha mainly focused on operations
performance and runtime overhead, while this thesis also explores benchmarking of
the scalability and resource management capabilities of container runtimes. He also
compares containerd with Docker, which will not be done in this thesis due to the
different abstraction layers these tools operate on.
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This chapter explores three different runtimes for containers, namely containerd, CRI-O
and gVisor. containerd and CRI-O operate on the abstraction level of the Container
Runtime Interface and are categorized according to the terminology defined in chapter
2 as container runtimes. gVisor is a system runtime that can be plugged in as a
replacement for runc, which is used by both containerd and CRI-O.

4.1 containerd

containerd is the default runtime used by the Docker engine [9]. It is often called the
industry-standard because of its high level of adoption. containerd runs on top of runc,
the reference implementation of the OCI runtime specification [38] that runs containers
specified in the OCI image format [37].

OS-level runtimes
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Figure 4.1: Architecture of containerd [43]

The architecture of containerd, which can be seen in figure 4.1, is rather complex. In
the following section the intersection between the operating system and the high-level
runtime will be discussed.
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4.1.1 Execution model

containerd is a high-level container runtime. It is responsible for storing and manag-
ing images as well as snapshots and starting and stopping containers by delegating
execution tasks to the system runtime.

The daemon itself works in a very linear fashion, working through the dependency
graph of a task and finally running it using the given system runtime [46]. To start a
new containerised process, containerd has to

1. create a new Container from a given OCI image

2. create a new Task in the Container context

3. start the Task, at this point runc takes over and starts executing the OCI bundle
supplied by containerd

containerd also provides a CRI-compatible gRPC endpoint that is enabled by default.
This was originally an out-of-tree plugin, but later merged into the main project. When
using this endpoint abstractions specific to containerd are hidden from the client and
the user can operate directly on CRI-specific abstractions.

4.2 CRI-O

CRI-O is a container runtime built to provide a bridge between OCI runtimes and the
high-level Container Runtime Interface developed by Kubernetes. It is based on an
older version of the Docker architecture that was built around graph drivers, which
will be discussed in the execution model section [53].

It is mainly developed by RedHat and the default runtime for OpenShift, a popular
Kubernetes distribution among enterprises [33].

4.2.1 Execution model

The project scope of CRI-O is limited to satisfy the CRI, therefore the container runtime
does not provide tools for non-programmatic user interaction nor does it support
building and publishing OCI images [47]. There exist a few tools like crictl that make
direct interaction over the command line possible but these were crafted for testing
purposes rather than real-world use due to the direct utilisation of CRI abstractions.

Implementing any of the aforementioned concepts like image publishings would
lead away from the main goal to provide Kubernetes with an interface to interact as
directly as possible with OCI containers [47].
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As a consequence the typical lifecycle interaction with CRI-O is very similar to using
containerd over the CRI endpoint. Major differences in internal container handling to
containerd do not exist since runc is the default system runtime when running CRI-O.

As mentioned above CRI-O is built similar to an older design of the Docker runtime
using graph drivers, an out-of-tree storage plugin system. The concept of graph drivers
was born out of need to port Docker to other Linux distributions than Ubuntu. At
the time this architecture decision was made, Ubuntu was the only Linux distribution
that shipped with aufs, an overlay filesystem used by Docker. Graph drivers provide
an abstraction over the creation, deletion and other operations on filesystem layers.
It is described by the core maintainer of Docker, Michael Crosby, as “unnecessarily
complex“ and “hard to maintain“. Today Docker and containerd use a simpler storage
model built on top of snapshot filesystems that operate on filesystem blocks instead of
layers [10].

4.2.2 The Container Runtime Interface

The Container Runtime Interface is a standardised interface for Kubernetes plugins
that execute and watch over containers. It was created as an attempt to stabilise the
communication interface between a kubelet and the host container runtime while not
abstracting too much of the underlying execution layer. It is based on gRPC, a cross-
language library for remote procedure calls using Protocol Buffers [41]. In contrast
to the Kubernetes ecosystem CRI uses an imperative interface with the aim of higher
development velocity for maintainers of CRI-compatible runtime systems [18].

The interface makes no assumption about the low-level implementation of containers
as long as the monitoring, logging, image and lifecycle management capabilities are
provided. This makes is possible to implement plugins that do not use typical Linux
(or Windows) containers, but also virtual machines with hypervisors.

The gRPC interface consists of two major services. The Runtime service is responsible
for running containers in pod sandboxes and direct interaction like starting processes
in these containers, port forwarding, shell access and metrics extraction [48]. In the
context of an application a pod sandbox is similar to an application-specific logical
host. Containers in a shared pod sandbox can directly interact with each other using
localhost.

The Image service main responsibility is to download images from a remote source
and manage them locally. It also provides information about the filesystem that is used
to store images. The typical sequence of actions when running a container using CRI
consists of

1. pulling the image from a registry (ImageService.PullImage)
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2. creating a pod sandbox (RuntimeService.RunPodSandbox)

3. creating a container in the sandbox (RuntimeService.CreateContainer)

4. starting the container (RuntimeService.StartContainer)

5. waiting for it to finish and remove the container (RuntimeService.RemoveContainer)

6. removing the sandbox (RuntimeService.RemovePodSandbox)

Every CRI remote procedure call is executed synchronously and blocks until the
action is executed [18].

4.3 gVisor

Typical runtimes like runc limit system access using different capability models inte-
grated into the Linux kernel like AppArmor, SELinux and SECCOMP as seen in figure
4.4. If a bad actor has access to a limited set of system calls and manages to exploit a
vulnerability in the Linux kernel, it may be able to escape the sandbox and gain privi-
leged system access. This is a major risk when running untrusted code like a provider
of FaaS infrastructure does. When running a container in a VMM-based runtime like
Kata Containers, a hypervisor will be started that virtualises the underlying system
hardware the container is running on as seen in figure 4.2 [21].

This approach has a very large overhead due to the resources required to provide a
fully virtualised set of hardware. In this setup, system calls travel from the application
to the guest kernel. The major positive effect is the additional obstacle to escape the
virtual machine to be able to wreak havoc on the host system.

The gVisor approach to container isolation can be classified as middle ground
between a typical container runtime and a fully virtualised runtime built on top of a
VM hypervisor. The developers of gVisor have taken the idea of a guest kernel from
the VMM-based runtimes and implemented a user-space kernel called Sentry, that is
instantiated once for every OCI pod sandbox, and Gofer, which manages container
filesystem access and is instantiated once for every OCI container in a pod sandbox.
This approach is a middle ground between the default control groups / namespaces
approach and the VMM model as seen in figure 4.3. To reduce overhead, it does not
virtualise the system hardware and leaves scheduling and memory management to the
host kernel. This split of responsibilities impacts performance on applications loaded
with system calls negatively and also leads to possible incompatibilities between some
workloads and gVisor due to specific Linux kernel behaviour or unimplemented Linux
system calls [14].
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Figure 4.2: VMM [14] Figure 4.3: gVisor [14] Figure 4.4: Default [14]

4.3.1 runsc

gVisor is implemented as an OCI-compatible runtime that can be easily plugged into
well-known container tools like containerd, Docker and CRI-O. Using a containerd
plugin it is also possible to switch between the default runtime and gVisor using
annotations. This allows for running normal and highly-secure workloads side-by-side
in a single containerd instance [14]. runsc, the gvisor-containerd-shim, Sentry and
Gofer are completely implemented in Go and support at the time of writing this thesis
most Linux system calls, except POSIX and System V message queues, signal file
descriptors and some minor system calls. The user-space kernel implementation aims
to be compatible with Linux 4.4. To control resource limits, gVisor utilises the host
cgroup subsystem. This may influence the performance of the system runtime due to
performing Kernel checks under the control group settings like CPU time [16].

At the time of writing gVisor did not support container-scoped resource limits and
dynamic resource limits updates [15].
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This chapter describes the development of the benchmarking tool called Touchstone.
The name refers to small stones that have been used in the past to determine the quality
of gold. The tool has been published under the MIT license on GitHub [50].

The tool will be used in the next chapter to extract various performance benchmarks
related to container runtimes from the testing system.

5.1 Requirements

As described in chapter 1, the main motivation behind the development of Touchstone
was to improve container runtime evaluation. The tool should extract meaningful
benchmarking data during one or multiple runs and export it in an easy-to-use format.
During execution there are multiple facets to test, including CPU, memory and block
I/O performance as well as general interface performance and behaviour under load.
All of these facets have to be regarded by the tool to give a broad classification of
runtime components. Additionally, the tool has to be as objective as possible regarding
the specifics of any container runtime.

Furthermore, it should be easy to use new CRI runtime and OCI handler imple-
mentations in a plug-and-play style. Enabling these components should be performed
either via a minor change in the code base or preferably by using a slightly tweaked
configuration.

The configuration and user experience of the tool should feel familiar for anyone
who knows other tooling from the container ecosystem. Configuration should be done
using one or multiple YAML files that declare which tests to run, how often to run
them and the scaling magnitude – e.g., how many containers should be run at the same
time.

The internal testing framework should be able to start and stop containers as well as
extract metrics and logs during a run. Specific tests like performance evaluations could
be run inside the container using existing tools like sysbench [30].

The benchmark output should be easily readable and visualisable. Auto-generated
graphics should help to extract meaningful predicates from the performance data.
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cri: ["containerd", "crio"]
oci: ["runc", "runsc"]
filter:
- performance
runs: 100
output: performance.json

Figure 5.1: Configuration YAML for performance testing

5.2 Implementation

Since most of the software in the container space has been written in Go, it made sense
to implement Touchstone in Go due to its good integration with gRPC. Another benefit
of implementing the tool in Go was the existing set of Go open-source tools that use the
Container Runtime Interface. These existing projects were used as an inspiration and
reference during implementation. For example, crictl from the cri-tools Kubernetes
Incubator project implements a command line tool for interacting with runtimes using
the CRI [8].

The implementation of the testing framework itself is relative simple and rather
stripped-down. Benchmarks are run in a testing matrix that tests each configura-
tion pair consisting of container runtime (CRI runtime) and system runtime (OCI
handler) once. The tests are identified by a hierarchical naming scheme consisting
of context.component.facet – like performance.cpu.total for a CPU performance
benchmark. Tests can be filtered by prefix before being fed to the benchmark matrix.
All of the configuration listed above is done using a YAML file similar to the one in
figure 5.1. Each of these configuration files defines an output file path. The output of
each configuration run is a JSON file containing all data generated from the benchmark
executions. The user may choose one or more of these configuration files, each of
them is run separately. This suits the concept of benchmarking suites, where running a
folder generates a list of output files, each testing a specific facet of a container runtime
implementation. After all benchmarks have been run, an index of the test results is
generated and injected together with the results into an HTML file.

5.2.1 Package structure

pkg/cmd

The package cmd contains all code regarding the command line interface. Touchstone
only provides four commands to the enduser – version, command, list and index. The
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Indexmap[string]IndexEntry

pkg/benchmark

pkg/benchmark/suites

pkg/cmd

+ Execute()

pkg/visual

+ Write(file, entries, index)

pkg/config

+ Parse(file): Config

Benchmark interface

+ Run(client, handler): Report
+ Name(): string
+ Labels(): []string

Report interface

+ Aggregate(report): Report
+ Scale(scale): Report

pkg/runtime

+ NewClient(address): Client

Client struct

Config struct

Matrix struct

...

RuntimeServiceClient
ImageServiceClient

+ Matrix(): Matrix

CRIs: []string
OCIs: []string
Items: []Benchmark
Runs: int

+ Index(): Index
+ Run(): []MatrixEntry

MatrixEntry struct

CRI, OCI: string
Results: []MatrixResult

MatrixResult struct

Name: []string
Aggregated: Report
Reports: []Report

IndexEntry struct

Labels: []string

+ All(): []Benchmark

Performance: []Benchmark
Operations: []Benchmark
Limits: []Benchmark
Scalability: []Benchmark

CRI

generates

Figure 5.2: Touchstone package overview
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User invokes touchstone benchmark,
pkg/cmd expands input file pattern and invokes for each file

Each Benchmark receives a runtime.Client (CRI)
and a container handler (OCI) as parameters.

Invoke a newMatrix.Run, for CRI/OCI create unique client and do3 pkg/cmd

Run each Item inMatrix N times, collect Report4 pkg/benchmark

Generate aggregated Report, setMatrixResult5 pkg/benchmark

Collect allMatrixResults of a single CRI/OCI run asMatrixEntry6 pkg/benchmark

WriteMatrixEntry JSON to destination report file7 pkg/cmd

Generate visualisation indexing structure8 pkg/benchmark

WriteMatrixEntry and Index to HTML template9 pkg/visual

Map specified output to destination report file2 pkg/config

Parse configuration file, generateMatrix1 pkg/config

Figure 5.3: Touchstone control flow
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implementation of the user interface is based on the popular cobra framework used by
Docker, Kubernetes and many more [13]. The version command returns the version
of the tool itself and all CRI implementations it was able to talk to. The benchmark
command runs the benchmarks specified by the -f input files and spits out the results
into the -d destination folder. It also generates a visualisation webpage and stores it in
the destination folder. The list command lists all available benchmarking suites while
the index command generates an index of a list of benchmarking suites. It can be used
to preview the results generated by the benchmark command.

pkg/config

The pkg/config packages implements a YAML-parsable Config structure. Each con-
figuration defines an output file to write the benchmark results to, a list of filters
specifying which benchmarks to run, basic benchmark parameters like runs per bench-
mark and benchmark scale as well as which container (CRI) and system (OCI) runtime
to use. Each CRI name is automatically expanded to a canonical UNIX socket endpoint
using the pattern unix:///var/run/[CRI]/[CRI].sock. Both CRI-O and containerd
use socket endpoints of that form. In the case of a user wanting to include a new
runtime in the benchmarks, the runtime has to expose this endpoint either directly or
via a symbolic link.

pkg/benchmark

The benchmark package provides a simple benchmarking framework. It defines the
types Matrix, Benchmark and Report as well as Index and some helper structures. The
heavyweight in this package is the Matrix, which specifies similar to a build matrix
a list of targets to benchmark. A Matrix has a slice of Benchmarks that are invoked
for each combination of CRI runtime and OCI handler. For each CRI runtime a new
runtime.Client is instantiated as seen in figure 5.3 in step 3.

When a Benchmark is run, a Report is generated. Each Report has to be summable
by using Aggregate and scalable by using Scale. The only structure implementing
the Report interface is the ValueReport type. A ValueReport is a hash-map that is
summable by key. All these reports are collected together with the report aggregate
and the benchmark name in a MatrixResult as seen in figure 5.3 in step 5. After
evaluating all benchmarks of a CRI/OCI combination, the MatrixResults are collected
in a MatrixEntry. Both MatrixResult and MatrixEntry are annotated structures, such
that they can be easily marshalled into a JSON string. When all CRI/OCI combinations
are run, the array of MatrixEntry is written to the destination file specified in the
YAML configuration and the Index of the Matrix is generated. An Index stores which
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benchmark contains which report keys and persists across different configuration runs.
The MatrixEntry items are collected in an even larger list that persists during different
configuration runs, too.

pkg/benchmark/suites

The suites package implements the different benchmarks. They can be grouped into
four categories.

The limits suite attempts to benchmark the performance of containers, whose
resources have been limited. In this context the behaviour of gVisor is especially inter-
esting due to the fact that the hypervisor is included in the control group accounting.
These benchmarks may be of interest to users who run a lot of small, hard-limited
containers.

The operations suite tests general container runtime operation performance. This
includes measuring latencies during creation and destruction as well as container
launch time. The benchmarks are relevant when evaluating runtimes in the context of
small, rapid executions of a process – for example, serverless computing.

The performance suite measures the performance of containers running using a spe-
cific runtime. These measurements are done using the popular sysbench benchmarking
tool [30]. They give an impression of the impact of the container and system runtime
resource consumption.

The scalability suite quantifies the scalability of a runtime in relation to container
instances. In this suite, the relation between the metrics is very relevant. For example, a
runtime may perform slower in operations when running only a few containers but
perform faster in comparison when running 50 instances.

pkg/runtime

The runtime package contains a wrapper for the default Container Runtime Interface
gRPC client. It includes minor helper functions to simplify the creation of containers
and sandboxes as well as pulling images. The Client implements basic container
management functionality for pulling images, starting and stopping pod sandboxes,
starting and stopping containers as well as extracting logs and container state.

pkg/visual

As described in the implementation introduction, the visual package uses HTML tem-
plating from text/template, Bootstrap [45] and ChartJS [44] to provide an appealing
and understandable visualisation of the generated datasets.
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5.2.2 Machine setup

To run all these benchmark on the same machine, a collection of container tools is
required including

• containerd (v1.2.0-621-g04e7747e)

• CRI-O (1.15.1-dev)

• runc (1.0.0-rc8+dev)

• runsc (release-20190529.1-194-gf10862696c85)

• CNI (v0.7.5)

• crictl (1.15.0-2-g4f465cf)

All of these tools were compiled from scratch on the testing machine to minify the
risk of running into incompatibilities. They were also run on a relatively recent Linux
kernel 4.19.0-5-amd64 under Debian Buster on a 2,9 GHz Intel Core i5.

5.3 Issues faced and challenges

A major issue during the implementation of the tool has been dependency manage-
ment. The typical style to refer to project dependencies has been to put them in
a vendor folder in the project itself. Since Go 1.12, there exists a new dependency
model implementation called go mod. As of writing this thesis Kubernetes did not
support the dependency model. Early implementations of the tool still used the
k8s.io/kubernetes/pkg/kubelet/remote package to interact with any CRI implemen-
tations. In the most recent versions of Kubernetes the gRPC definition and Go imple-
mentation of the Container Runtime Interface has been moved out of the Kubernetes
main repository and into a subproject.

This collision of in-tree and out-of-tree dependencies made initial implementations
unreliable, leading to multiple bugs – e.g., the tool could only talk to containerd despite
using the standard CRI interface. After stripping the implementation of any references
of Kubernetes remote package and implementing an own client wrapper and vendoring
the gRPC version of CRI-O instead of the latest one, the tool was able to talk to both
CRI implementations.

Another problem was the setup of the container runtimes itself. containerd as well as
CRI-O are typically used in the context of Kubernetes and not installed from source and
configured by hand. Since these container runtimes rely on the Container Networking
Interface for networking configuration, the on-machine CNI had to be configured.
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This included the installation of a collection of standard CNI plugins as well as the
configuration of the CNI itself.

A major challenge has been to find valuable benchmarking metrics. A benchmarking
tool can be very well written, but useless due to inconsistent metrics or data without
significance. It still has to be assumed that some of the presented datasets favour one
implementation over the other due to some implementation specifics in the bench-
marking tool itself. Trimming benchmarks to fit into the toolset is also not easy. A
good example for this issue is the problem of deciding where to stop testing scalability.
Should the tool at maximum spawn 10, 25, 50, 100, 500 or even 1000? Where can the
tool observe new behaviour that has not been observed before a specific stepping stone?
These configuration specifics had to be tested extensively.
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The following data points and graphics have been generated solely by the Touchstone
tool. All benchmarks have been executed between 5 and 20 times depending on the
workload of the benchmark itself. Due to the type of benchmarks ran and especially
their vulnerability to strong outliers, only the median of the generated dataset is shown
in the followings graphs and tables. All tests have been executed in a virtual machine
with 2 CPU cores and 8 GiB of RAM on an Intel Core i5-6267U CPU. These conditions
are very similar to a typical cloud virtual machine with the exception of the CPU itself
because CPUs for servers tend to have more cache, additional instructions and other
features.
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6.1 General performance

6.1.1 CPU

The CPU benchmark measures the time needed to compute all prime numbers up to a
certain maximum and therefore does not use a lot of system calls. Figure 6.1 shows that
containerd has a lower computational overhead compared to CRI-O, the same applies
to runc in comparison to runsc.

Figure 6.1: performance.cpu.time, 20 runs, measurement in seconds

Metric containerd/runc containerd/runsc crio/runc crio/runsc
TotalTime 23.8667s 26.2972s 25.3505s 26.8266s

Table 6.1: performance.cpu.time, 20 runs
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6.1.2 Memory

When looking at total time spent in the memory benchmark, containerd is the clear
winner. A subtle difference between runc and runsc can also be seen with runc as the
leader.

Total time taken

Figure 6.2: performance.memory.total, 10 runs, measurement in seconds

Metric containerd/runc containerd/runsc crio/runc crio/runsc
TotalTime 10.1209s 10.5991s 13.2264s 14.5114s

Table 6.2: performance.memory.total, 10 runs
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Minimum and average latency

In this benchmark it can be observed that runsc introduces an additional overhead of
a factor between 1.48x and 1.72x when accessing memory. Additionally, it seems that
containerd performs on average better when accessing memory.

Figure 6.3: performance.memory.minavglatency, 10 runs, measurement in millisec-
onds

Metric containerd/runc containerd/runsc crio/runc crio/runsc
AvgLatency 0.1100ms 0.1900ms 0.1350ms 0.2000ms
MinLatency 0.1000ms 0.1450ms 0.1000ms 0.1500ms

Table 6.3: performance.memory.minavglatency, 10 runs
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Maximum latency

The maximum latency benchmark is in stark contrast to the average latency, be-
cause containerd/runc has a major latency spike in comparison to containerd|runsc,
crio/runc and crio/runsc. The benchmark was repeated with a reordered test execu-
tion and the same effect has been observed. It seems that using the containerd/runsc
runtime setup leads to higher maximum latency.

Figure 6.4: performance.memory.maxlatency, 10 runs, measurement in milliseconds

Metric containerd/runc containerd/runsc crio/runc crio/runsc
MaxLatency 3.5550ms 1.9850ms 1.1400ms 0.9550ms

Table 6.4: performance.memory.maxlatency, 10 runs
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6.1.3 Disk I/O

Read throughput

In the sysbench fileio read benchmarks a large difference in performance between
runc and runsc can be detected. gVisor introduces massive delays in workloads loaded
with file operations like this synthetic test. This is due to an inefficient implementation
of the virtual file system provided by Gofer and has been improved in a recent gVisor
version [17].

The difference between containerd and crio when using runc is very minimal, even
though containerd is slightly faster in almost all cases.

Figure 6.5: performance.disk.read, 10 runs, measurement in seconds

Metric containerd/runc containerd/runsc crio/runc crio/runsc
RndRead 0.0354s 0.2973s 0.0393s 0.3159s
SeqRead 0.3628s 3.3224s 0.3917s 3.2670s

Table 6.5: performance.disk.read, 10 runs
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Write throughput

When writing to disk, the differences between runc and runsc stand out far less
pronounced than in the read benchmarks. Therefore, the underlying hardware and
operating system are, up to a certain degree of course, the cause for the smaller
difference in write speeds. In contrast to the read benchmarks, CRI-O performs slightly
better than containerd in all cases.

Figure 6.6: performance.disk.write, 10 runs, measurement in seconds

Metric containerd/runc containerd/runsc crio/runc crio/runsc
RndWrite 6.3971s 12.7412s 6.0281s 12.0289s
SeqRewrite 2.6437s 6.7412s 2.4302s 6.5751s
SeqWrite 2.7127s 6.8039s 2.5370s 6.5424s

Table 6.6: performance.disk.write, 10 runs
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6.2 Container operations

In figure 6.7 it can be seen, that containerd performs slightly faster when creating a
container than CRI-O. This head start is diminished by the higher run latency, in total
containerd still performs worse than CRI-O. It is also visible that runsc operates almost
always faster than runc.

Figure 6.7: operations.container.lifecycle, 20 runs, measurement in seconds

Metric containerd/runc containerd/runsc crio/runc crio/runsc
Create 0.5017s 0.4254s 0.5097s 0.4832s
CreateAndRun 0.6807s 0.5284s 0.5372s 0.5380s
Destroy 0.4786s 0.5488s 0.5310s 0.4059s
Run 0.1790s 0.1001s 0.0272s 0.0489s

Table 6.7: operations.container.lifecycle, 20 runs
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6.3 Scalability

The scalability benchmarks tests the performance of starting, running and destroying a
specific amount of long-running containers.

5 containers

With 5 containers there is not much of a difference to the section 6.2, containerd/runsc
performs best overall while crio/runsc falls behind.

Figure 6.8: scalability.runtime.5, 10 runs, measurement in seconds

Metric containerd/runc containerd/runsc crio/runc crio/runsc
TotalTime 3.4959s 2.9636s 4.7769s 7.0276s

Table 6.8: scalability.runtime.5, 10 runs

39



6 Performance and benchmarks

10 containers

The trend seen in the 5 container test continues and becomes even more pronounced.
We can see that the required time for starting and stopping 10 containers is in a linear
relation to the container count.

Figure 6.9: scalability.runtime.10, 10 runs, measurement in seconds

Metric containerd/runc containerd/runsc crio/runc crio/runsc
TotalTime 8.3489s 5.9964s 9.7095s 16.8144s

Table 6.9: scalability.runtime.10, 10 runs
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50 containers

Interestingly, the linear trend discontinues and containerd/runc comes out ahead in
this benchmark. Especially crio/runsc is very slow, this may be due to the larger
runtime overhead.

Figure 6.10: scalability.runtime.50, 10 runs, measurement in seconds

Metric containerd/runc containerd/runsc crio/runc crio/runsc
TotalTime 37.6949s 43.3633s 51.6614s 145.7691s

Table 6.10: scalability.runtime.50, 10 runs
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6.4 Resource limits and quotas

6.4.1 CPU quotas

The following two benchmarks both run the same sysbench CPU test used in section
6.1.1 with the addition of limited CPU performance.

Hard CPU limits

The hard CPU limits assigns cfs_quota_us = 1000 and cfs_period_us = 10000. It can
be seen that the overhead of runsc hits the performance much harder in this benchmark
compared to performance.cpu.time. This behaviour can be explained by the fact that
gVisor adds both Sentry and Gofer to the control group. Since these components
require CPU time, too, and are run in user space instead of kernel space, they count
towards the control group CPU account [15]. Due to a bug the containerd/runsc setup
ignored the control group limits and was therefore excluded from the benchmark.

Figure 6.11: limits.cpu.time, 10 runs, measurement in seconds

Metric containerd/runc containerd/runsc crio/runc crio/runsc
TotalTime 340.3340s - 354.9812s 403.4028s

Table 6.11: limits.cpu.time, 10 runs
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Scaling CPU limits

The scaling benchmarks shines light into how workloads behave that are scaled from
half of the allocatable CPU time up to full allowance over the course of 10 seconds.
Since both gVisor does not support updating resource limits during the execution of a
container, runsc had to be excluded from this benchmarks. It can be seen that the per-
formance difference is very small, most likely due to the low logical overhead between
CRI runtime and OCI handler – calls to RuntimeService.UpdateContainerResources
can be directly translated to runc update.

Figure 6.12: limits.cpu.scaling, 10 runs, measurement in seconds

Metric containerd/runc containerd/runsc crio/runc crio/runsc
TotalTime 28.3804s - 28.2205s -

Table 6.12: limits.cpu.scaling, 10 runs
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6.5 Summary

In conclusion containerd performs better when running a container without limits due
to the lower runtime overhead, although CRI-O is faster when running a container
that has been created beforehand. The lead of containerd continues in memory perfor-
mance. Disk performance gives a different picture. Although containerd leads in read
performance, the superiority is broken by CRI-O in file read performance.

When comparing runc and runsc alias gVisor, runc comes ahead as the clear leader.
This is not very surprising due to the Gofer virtual file system. It should be noted that
runsc may perform on the same level as runc when running workloads that do not
perform a lot of system calls, e.g., the performance.cpu.time benchmark. In every other
benchmark runsc did worse than runc except the operations.container.lifecycle.
It should be noted that runsc performs worse than runc even in compute bound
workloads when running in a rigourously limited environment like limits.cpu.time
[15].

The containerd/runc setup performs best for I/O heavy workloads like databases
and web servers, while crio/runc is a solid alternative in any case. The usage of gVisor
should be limited to systems where security is vitally important and has to be achieved
with limited loss in raw computing power. Especially running very small containers
with strong resource limitation may run significantly slower in gVisor compared to
runc.
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Metric containerd/runc containerd/runsc crio/runc crio/runsc
CPUTime 23.8667s 26.2972s 25.3505s 26.8266s
HardLimit 340.3340s - 354.9812s 403.4028s
ScalingLimit 28.3804s - 28.2205s -
MemMinLatency 0.1000ms 0.1450ms 0.1000ms 0.1500ms
MemAvgLatency 0.1100ms 0.1900ms 0.1350ms 0.2000ms
MemMaxLatency 3.5550ms 1.9850ms 1.1400ms 0.9550ms
FileRndRead 0.0354s 0.2973s 0.0393s 0.3159s
FileSeqRead 0.3628s 3.3224s 0.3917s 3.2670s
FileRndWrite 6.3971s 12.7412s 6.0281s 12.0289s
FileSeqRewrite 2.6437s 6.7412s 2.4302s 6.5751s
FileSeqWrite 2.7127s 6.8039s 2.5370s 6.5424s
OpCreate 0.5017s 0.4254s 0.5097s 0.4832s
OpRun 0.1790s 0.1001s 0.0272s 0.0489s
OpCreateAndRun 0.6807s 0.5284s 0.5372s 0.5380s
OpDestroy 0.4786s 0.5488s 0.5310s 0.4059s
Scalability5 3.4959s 2.9636s 4.7769s 7.0276s
Scalability10 8.3489s 5.9964s 9.7095s 16.8144s
Scalability50 37.6949s 43.3633s 51.6614s 145.7691s

Table 6.13: Overview of benchmark results
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7 Conclusion

This thesis has explored how container runtimes manage containers, provide isolation
and limit resources. The functionality and inner working of namespaces and control
groups have been investigated as well as the pros- and cons of the utility of user-space
kernels in containerised environments.

Additionally, a benchmarking tool has been developed to evaluate container run-
times independent of any implementation detail using the popular Container Runtime
Interface. The benchmarking tool is highly configurable and suited for continued
development in the future. The tool makes it possible to include additional container
runtimes easily, implement new kinds of benchmarks in a timely manner and ac-
cess performance results without deep knowledge of additional tools by providing a
high-quality visualisation that can be shared on the web.

The benchmarking tool has been applied to popular container runtimes and differ-
ences in the execution behaviour of these tools have been highlighted. These behavioural
differences have been put in an application-oriented context including basic guidance
in how to choose the right container runtime for a specific sets of requirements.
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8 Future work

Of course, there is a lot of potential for future work. The benchmarking tool could be
improved to benchmark all operations of a CRI implementation, including performance
of extracting logs, pausing/resuming and more. It could also be tested on more CRI
implementations, including Kata Containers and others, to find implementations that
provide security guarantees comparable to gVisor.

Due to the fact that the CRI is currently missing the ability to set and update blkio
control group properties, controlling CFQ properties using the Container Runtime
Interface is impossible. In the case of support by a newer release of the CRI API
specification that includes these resource controls, block I/O limits could also be
benchmarked using the tool.

Another big task would be to improve the visualisation. At the moment it only shows
the median values of each benchmarked metric. The visualisation could implement
a switch between different index values per benchmark like minimum, maximum,
average and median. A feature could be introduced that automatically annotates
the results with human-interpretable facts like relative speed difference between two
implementations.

Furthermore, the virtual machine is not standardised. The preferred way to distribute
such a benchmarking environment would be a prebuilt virtual machine image, where
the different CRI implementations can be installed on. This would also solve the
dependency incompatibility problem, though it would make the integration of other CRI
runtime harder. Another possible method of integrating standardisation could be the
automatic creation of a cloud VM running the tool with preinstalled and preconfigured
runtimes similar to tools like kops, which allows to create a Kubernetes cluster from the
command line. This integration would also make cross-machine benchmarks possible
– running Touchstone on multiple different machines and aggregating the results
afterwards.

During the timeframe this thesis was written, a new version of gVisor has been
released with a rewritten virtual file system [17]. The Touchstone benchmarks, especially
for disk I/O, should be recreated with this newer runsc version.
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