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Abstract

In [10], a novel approach for numerical quadrature has been developed, based on a spatially
adaptive variant of the sparse grid combination technique [7]. In this thesis, the resulting
procedure, henceforth referred to as the split-extend scheme, has been subject to a slight mod-
i�cation regarding one of its fundamental operations, essentially reducing its consumption of
function evaluations per application. This modi�ed procedure, restricted to piecewise linear
basis functions, has been put to the test with regard to a selection of widely used functions
taken from [5] and [8], some of which have already been employed in [10]. In several cases, the
corresponding results have either shown a noticeably increased performance or proved to be at
least on par with the basic scheme, which indicates that the method itself might be worthy of
further investigation and improvement.

Das in [10] eingeführte, auf einer räumlich adaptiven Variante der in [7] konzipierten Kom-
binationstechnik für dünnbesetzte Gitter basierende, im Folgenden als Split-Extend-Methode
bezeichnete numerische Quadraturverfahren wurde im Zuge dieser Abschlussarbeit einer le-
ichten Modi�kation im Hinblick auf eine seiner beiden grundlegenden Operationen unterzogen,
welche eine substantielle Reduktion der nötigen Funktionsauswertungen pro Ausführung mit
sich zieht. Diese Variante wurde mit einer Einschränkung auf stückweise lineare Basisfunk-
tionen an einer Auswahl gebräuchlicher, [5] und [8] entnommener Funktionen zur Ausführung
gebracht, welche bereits in [10] zu Testzwecken eingesetzt wurden. In einigen Fällen sollten sich
die entsprechenden Resultate als deutlich besser herausstellen oder sich zumindest auf Augen-
höhe mit jenen des unmodi�zierten Verfahrens be�nden, was zu zusätzlichen Nachforschungen
und Verbesserungen anregen mag.
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Notations

Symbols Description
N,N0 The set of non-negative integers without/including 0.
[d] The positive integers less than or equal to d ∈ N.
R, Rd The set of real numbers/vectors with real components.
l, j Vectors in Rd, usually multi-indices in Nd

0. l corresponds to a grid's
level and j to a point's/basis function's index.

li The i-th component of l.
1 The one vector, i.e., (1, . . . , 1) ∈ Rd.
ei The k-th standard unit vector in Rd.
Ω Subset of Rd, typically the objective function's domain.
f : Ω→ R The objective function, typically integrable.
Ω, ∂Ω Closure and boundary of Ω in Rd.
| · | A norm on Rd (modulus in the scalar case).
| · |1 1-norm on Rd; one has |l|1 :=

∑
i∈[d] |li|.

| · |∞ Max-norm on Rd; one has |l|∞ := maxi∈[d] |li|.
Lp(Ω) Lebesgue space of p-integrable functions on Ω, p ≥ 1.

‖ · ‖p p-norm on Lp(Ω); one has ‖f‖p :=
(∫

Ω
|f(x)|pdx

) 1
p for 1 ≤ p <∞.

supp(f) Support of f , i.e., supp(f) := {x ∈ Ω|f(x) 6= 0}.
Ck(Ω) Space of k-times continuously di�erentiable functions, k ∈ N0 ∪ {∞}.
Df , ∂

∂xi
f Total di�erential and i-th partial derivative of f ∈ Ck(Ω), k ≥ 1.

D(Ω) Space of test functions C∞0 = {f ∈ C∞(Ω)| supp(f) ⊂ Ω compact}.
W k,p,W k,p

0 , Hk, Hk
0 Di�erent kinds of Sobolev spaces, k ∈ N0, p ≥ 1.

‖ · ‖k,p Sobolev norms.
D(α)f Weak derivative of f ∈ W k,p(Ω) w.r.t. multi-index α ∈ Nd

0, |α|1 ≤ k.
Ωl Anisotropic full grid of level l.
hl, hl, hn Mesh widths in grids.
φ, φl,j, φl,j Piecewise linear hat functions.
xl,j,xl,j Grid points associated with nodal basis functions.
spanR(M) Smallest R-linear subspace containing M w.r.t. set inclusion ⊂.
V ⊕ V ′ Direct sum of linear spaces V, V ′.
dim(V ) The dimension of a linear space V .

Vl, Vl, V
(∞)
n , V Spaces spanned by nodal point bases.

Il, Il Index sets related to the hierarchical basis' construction.
Wl,Wl Increment spaces.
αl,j, αl,j Coe�cients in the hierarchical representation.
O Landau notation, also used as an index set.

V
(1)
n , V

(1)
0,n Sparse grid spaces corresponding to in-/homogeneous boundary con-

ditions.
Qlf Conventional sparse grid quadrature.
fl, fl, fn, f

c
n The piecewise linear interpolant of f . f cn is constructed using the

standard combination technique.
τ Truncation parameter s.th. τi ∈ N0 ∪ {−1}, i ∈ [d] used in the trun-

cated combination technique.
argmaxi∈[d]xi If not unique, the smallest k ∈ [d] s.th. xk = maxi∈[d] xi.
I,A,O General index sets.
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Introduction

When numerically integrating a scalar objective function f : [a, b] → R, one typically approx-
imates its integral by a linear combination of (positive) weights wi and evaluations of f on
n ∈ N distinct points x0, . . . , xn−1 ∈ [a, b], the abscissas, which may be �xed beforehand (by
using e.g. an equidistant discretisation of [a, b]):∫

[a,b]

f(x)dx ≈
n−1∑
i=0

wif(xi).

A natural way to extend such schemes into higher dimensions, e.g. onto some domain Ω ⊂ Rd,
would consist of using a certain discretisation in each dimension. However, this approach
quickly succumbs to the so-called curse of dimensionality, as the total number of points would
lie in O(nd) and thus nowadays become computationally infeasible for n > 4 (cf. [11, p.5]).
Sparse grids, which require signi�cantly fewer points of evaluation, allow to mitigate the curse
to a certain extent while maintaining the error decay of full grids up to a logarithmic factor.
Their construction is based on a sparse tensor product decomposition, which dates back to
numerical integration of partial di�erential equations [12] (cf. [11, p.5]). In this thesis, such a
tensor product construction is reclusively performed for piecewise linear basis functions, which
sort of generalises strategies like Archimedes' quadrature.
As sparse grids tend to require more e�ort in implementation than full grids, since common
full grid methods would need to be adapted, the so-called sparse grid combination technique
comes in handy. It allows to obtain sparse grids by linearly combining so-called anisotropic
full grids of varying resolutions, e�ectively enabling the use of both common full grid methods
and parallelisation techniques, as one may process each grid separately and �nally combine
the individual solutions. As remarked in [11, p.5], this technique, which has been developed
in [7], has found its way into a plethora of applications in such diverse �elds as e.g. economics,
regression, classi�cation and uncertainty quanti�cation.
As static grids prove insu�cient when the objective function f shows highly varying character-
istics in di�erent parts of its domain Ω, adaptive approaches are required. While there already
exist multiple dimension-adaptive procedures (e.g. by Gerstner and Griebel [6]) that make use
of the combination technique, there have not yet occurred noteworthy breakthroughs in utilis-
ing it in a spatially adaptive way in higher dimensions (cf. [10, p.2]). The so-called split-extend
scheme introduced in [10] is a spatially adaptive procedure based on the sparse grid combina-
tion technique, which can, among other problems, be applied to numerical quadrature, whence
it will be the main focus of this thesis.

The contents of this work are presented in the following order: In the �rst section, the necessary
theoretical concepts, such as weakly di�erentiable functions, the piecewise linear hierarchical
basis, sparse grid spaces and the sparse grid combination technique are compiled. For more
detailed discussions and the proofs of the statements given in the text, one may consider the
corresponding sources, mainly [3], [4] and [11]. The second section shortly distinguishes between
dimensional and spatial adaptivity and subsequently presents the split-extend scheme, i.e. the
split and extension operations as well as the error and bene�t estimators, with a restriction
to quadrature rules based on piecewise linear basis functions. This section almost completely
relies on [10] with respect to the split-extend scheme and furthermore to [6] and [11], regarding
the fundamental concepts of adaptivity. The third section compiles the most important grid
functionality of the SpACE framework [9] and moreover presents the contributions regarding
the single-dimensional split operation made by the author. The text concludes with a series of
test cases, most of them taken from Genz' test functions [5], whose results are also compared
to those made in [10].

iv



1 Theoretical Foundations

1 Theoretical Foundations

This section compiles some basic concepts and results needed to describe and discuss the adap-
tive integration procedure in the following sections, regarding mainly weakly di�erentiable
functions, (piecewise linear) hierarchical basis, (generalised) sparse grids and the (truncated)
combination technique.

1.1 Weak derivatives and Sobolev spaces

Let Ω ⊂ Rd be an open set.
f ∈ Lp(Ω) is called weakly di�erentiable with derivative D(α)f , if there exists a g ∈ Lp(Ω)
such that ∫

Ω

g(x)ψ(x)dx = (−1)|α|1
∫

Ω

f(x)D(α)ψ(x)dx ∀ψ ∈ D(Ω).

Hereby α = (α1, . . . , αn) ∈ Nn
0 denotes a multi-index and one de�nes

∂|α|1

∂xα1
1 , . . . , ∂x

αn
n

ψ := D(α)ψ.

Provided that such a g exists, it is unique (cf. [1]) and one sets D(α)f = g. This de�nition allows
for a specialisation of the spaces Lp(Ω) by including the notion of di�erentiability (cf. [13, Def.
1.3.1]):

De�nition 1.1 (Sobolev spaces). Let k ∈ N0 and f ∈ Lp(Ω), such that the weak derivatives

D(α)f exist for all multi-indices α, |α|1 ≤ k. One de�nes

‖f‖k,p :=


(∑

|α|1≤k ‖D
(α)f‖pp

) 1
p

: 1 ≤ p <∞
max|α|1≤k ‖D(α)f‖∞ : p =∞

and W k,p(Ω) :=
{
f ∈ Lp(Ω)

∣∣‖f‖k,p <∞}
‖ · ‖k,p de�nes a norm on W k,p(Ω) and in the case k = 0 one has D(α)f = D(0)f = f , as well
as ‖f‖k,p = ‖f‖p, thus W k,p(Ω) = Lp(Ω). If p = 2, it is conventional to use the notation
Hk(Ω) := W k,p(Ω). The spaces de�ned above are complete (cf. [13, Theorem 1.3.2]):

Theorem 1.2. For k ∈ N0, 1 ≤ p ≤ ∞ the Sobolev space (W k,p(Ω), ‖ · ‖k,p) is a Banach space.

These spaces do not consist of functions in the general sense, but merely of equivalence classes
of functions that coincide on sets of Lebesgue measure zero. Even though there exists a contin-
uous representative in every such class if certain prerequisites are met (cf. [2, p.67]), it is not
straightforward to combine boundary conditions with this notion, as the boundary of a domain
Ω ⊂ Rd, provided that it ful�lls certain smoothness conditions, is a (n − 1)-dimensional sub-
manifold and thus has measure zero. Therefore, another kind of spaces has been introduced,
namely W k,p

0 := C∞0 (Ω), where the closure is taken with regard to ‖ · ‖k,p. Analogously to the

previous de�nitions, Hk
0 abbreviates W k,2

0 . If V ⊂ Rd is an open and bounded set such that
Ω ⊂ V is compact in V and ∂Ω ful�ls certain smoothness conditions, there exists a linear and
continuous extension operator, called the trace,

T : W 1,p(Ω)→ W 1,p
0 (V ),

in a way that (Tf)|Ω = f for f ∈ W 1,p(Ω). As the practical approaches discussed in later
sections of this text always require pointwise evaluations and the above function spaces are only
needed for the compilation of theoretical results in this chapter, further details are omitted.

1



1 1.2 Hierarchical Basis

1.2 Hierarchical Basis

This section deals with a possible solution to the problem of interpolating a function that
satis�es certain smoothness conditions using a piecewise linear approach. The �rst step will
consist in de�ning discrete approximation spaces and a suitable set of basis functions, proceeding
from one-dimensional domains to the multidimensional case via a tensor product approach.
Moreover, a few important results regarding the approximation quality of these spaces with
respect to the norms ‖ · ‖2 and ‖ · ‖∞ are to be presented, while restricting the discussion to
the case of homogeneous boundary conditions.
In what follows, especially in the case of a multi-dimensional domain Ω ⊂ Rd, multi-indices

l = (l1, . . . , ld), j = (j1, . . . , jd) ∈ Nd
0,

will denote the level of a grid/grid point/basis function and the index, i.e. the location of
a grid point/basis function, respectively. When dealing with grids, one generally assumes to
have a bounded and rectangular domain Ω ⊂ Rd. For convenience, the following discussion is
limited to the hypercube Ω = [0, 1]d, since this setting can be achieved via a suitable rescaling
and therefore imposes no loss of generality. Given a multi-index l ∈ Nd

0, the anisotropic full
grid of mesh-width hl := 2−l := (2−l1 , . . . , 2−ld) on Ω is given by the set Ωl that contains the
points

xl,j = (xl1,j1 , . . . , xld,jd) := (j1 · h1, . . . , jd · hd) := j · l for 0 ≤ j ≤ 2l,

where the inequalities are meant to be understood component-wise. Furthermore, a grid is
called block-adaptive, if it has a block structure comprised of regular grids. The individual
grids may have non-uniform resolutions, as depicted in �gure 3.

1.2.1 1-dimensional case

A common choice is given by so-called hat functions. Each basis function is generated from the
standard hat function φ,

φ(x) :=

{
1− |x| : x ∈ [−1, 1]

0 : otherwise

by means of translation and dilation: For any level l ∈ N, an index j, 1 ≤ j ≤ 2l − 1 and step
size hl = 2−l, de�ne

φl,j(x) := φ

(
x− jhl
hl

)
= φ(2lx− j) (1)

and the corresponding space Vl := spanR
{
φl,j
∣∣1 ≤ j ≤ 2l − 1

}
. Note that only inner grid points

xl,j are taken into account in this �rst de�nition. This corresponds to homogeneous boundary
conditions and will therefore generally not be suitable for interpolating functions that have
non-zero values at the boundary of the domain, here at the points 0 and 1. Hence, an extra
level l = 0 may be introduced, containing two basis functions φ0,0, φ0,1. This is depicted in
�gure 1. As will be pointed out when discussing the higher-dimensional case, it is usually
better to regard φ0,0, φ0,1 and φ1,0 as all belonging to the �rst level, to avoid the introduction
of additional subspaces or to use di�erent basis functions altogether.
φl,j is centered at xl,j = ihl and has compact support suppφl,j = [xl,j − hl, xl,j + hl]. By de�n-

ing the hierarchical index sets Il :=
{
j ∈ N|1 ≤ j ≤ 2l − 1, j odd

}
, the hierarchical increment

spaces Wl are given by

Wl := spanR {φl,j|j ∈ Il} and it holds Vn =
⊕
l≤n

Wl for any n ∈ N. (2)

2



1 1.2 Hierarchical Basis

Figure 1: Comparison of hierarchical basis functions (left) and nodal basis functions (middle)
φl,j, as well as their corresponding grid points xl,j on levels l ≤ 3 (taken from [11, p.9]). In
order to deal with inhomogeneous boundary conditions, one may add an additional level l = 0
(right, taken from [11, p.14])

As �gure 1 illustrates, all basis functions φl,j inWl have the same size, shape and their supports
are mutually disjoint. Due to (2), any function f ∈ Vn can be represented via

f =
∑
l≤n

∑
j∈Il

αl,jφl,j, (3)

where the hierarchical coe�cients αl,i ful�l the relation

αl,j = f(xl,j)−
f(xl,j − hl) + f(xl,j + hl)

2
= f(xl,j)−

f(xl−1,(j−1)/2) + f(xl−1,(j+1)/2)

2
. (4)

(3), (4) and �gure 2 justify the alternative term hierarchical surpluses commonly used when
referring to the coe�cients αl,i.

1.2.2 d-dimensional case

Given an anisotropic grid Ωl, the corresponding space Vl of piecewise d-linear functions is
de�ned by

Vl := spanR

{
φl,j

∣∣∣∣1 ≤ j ≤ 2l − 1

}
via the tensor product approach φl,j(x) :=

∏d
i=1 φli,ji(xi), x ∈ Rd, using the one-dimensional

hat functions φli,ji from (1). In particular, they are linearly independent and each basis function
φl,j has an associated grid point xl,j , at which it is centered [3]. Note, that Vl does only contain
inner grid points and thus corresponds to the setting of homogeneous boundary conditions.
Generalising the one-dimensional approach (2), one de�nes the d-dimensional hierarchical basis
via the index set

Il :=
{
j ∈ Nd

∣∣1 ≤ j ≤ 2l − 1, jk odd for k ∈ [d]
}
, resulting in Wl :=

{
φl,j

∣∣∣∣j ∈ Il} ,
the increment spaces. As in the one-dimensional case (2), the supports of the basis functions
φl,j ∈ Wl are mutually disjoint and Vl can be written as a direct sum of the increment spaces
Wl:

Vl =
⊕
k≤l

Wk = spanR
⋃
k≤l

{
φk,j

∣∣∣∣j ∈ Ik} (5)

3



1 1.2 Hierarchical Basis

Figure 2: Piecewise linear interpolation of a scalar function f : R→ R on Ω = [0, 1] using the
nodal basis (�rst row, taken from [11, p.7]) and the 1d hierarchical basis (second row, taken
from [11, p.9]). Homogeneous boundary conditions are assumed.

and one has obtained the d-dimensional hierarchical basis. Note that the dimension of the
increment space Wl is dim(Wl) = |Il| = 2|l−1|1 . By setting V

(∞)
n :=

⊕
|k|∞≤nWk for n ∈ N and

V :=
⊕

l∈Nd Wl, one has limn→∞ V
(∞)
n =

⋃∞
n=1 V

(∞)
n = V , since V

(∞)
n ⊂ V

(∞)
n+1 for any n ∈ N

and additionally, V is dense in (H1(Ω), ‖ · ‖1,2), as remarked in [3, 3.16]. When arranging the

subspaces, as depicted in �gure 3 for two dimensions, the space V
(∞)
n corresponds to a quadratic

sector of selected subspaces. Its dimension is dim(V
(∞)
n ) = (2n ± 1)d ∈ O(2dn) = O(h−dn )

[3, 3.31], again depending on the choice of boundary conditions. Using these de�nitions, each
f ∈ Vn has unique representations

f =
∑
|l|∞≤n

∑
j∈Il

αl,j · φl,j =
∑
|l|∞≤n

fl (6)

where fl ∈ Wl and the coe�cients αl,j ∈ R are obtained from f by applying a generalisation
of the one-dimensional scheme (4) mentioned in the previous subsection,

αl,j =
d∏

k=1

[
−1

2
1 − 1

2

]
xlk ,jk,lk

, (7)

which corresponds to a d-dimensional stencil for a linear combination of nodal values [3, 3.23].
Now, a few selected properties of the hierarchical basis are to be compiled; for the sake of
simplicity, this compilation restricts itself to homogeneous Dirichlet boundary conditions and
thus functions f ∈ H2

0 (Ω). The underlying question is, how large the contributions of the
individual increment spaces Wl to the piecewise d-linear interpolant of an f ∈ H2

0 (Ω) can be
and of which order the interpolation error will be (cf. [4, p.7-8], [3, L3.5]):

Lemma 1.3. Let f ∈ H2
0 (Ω) and let fn ∈ V (∞)

n , n ∈ N, denote the piecewise d-linear interpolant
of f : Then ‖f − fn‖2 ∈ O(h2

n).

4



1 1.2 Hierarchical Basis

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Figure 3: A block-adaptive grid (left, taken from [10, p.7]) and an illustration of the subspace

selection in the de�nition of V
(1)

0,3 in 2d (right, taken from [11, p.13]).

It is an immediate conclusion, that the spaces V
(∞)
n are not satisfactory from a computational

point of view, since they have O(h−dn ) degrees of freedom, while achieving second order error
decay. Hence, it has been the goal to construct other �nite-dimensional approximation spaces
that have a better ratio of spent grid points versus accuracy, while restricting the candidates to
spaces of the form

⊕
l∈IWl for some �nite I ⊂ Nd, which has to be optimised. This problem

has been discussed in [3], using e.g. tools from discrete optimisation, which lead to sparse grids.

1.2.3 Sparse grid spaces

The underlying idea of sparse grids consists of neglecting hierarchical basis functions of small
support, which therefore in total do not contribute that much to the hierarchical representation
of f (cf. [4, p. 9]). By de�ning the sparse grid space via

V (1)
n :=

⊕
|l|1≤n+d−1

Wl, (8)

one calls the corresponding grid a sparse grid. The underlying scheme of subspace selection
consists of a triangular (2D) or more generally a simplicial sector (see �gure 3), as opposed to

the square in the case of V
(∞)
n .

Analogously, any function f ∈ V (1)
n has unique representations f =

∑
|l|1≤n+d−1

∑
j∈Il αl,j ·φl,j =∑

|l|1≤n+d−1 fl. In the case, that one only considers functions f ∈ V
(1)
n that are zero on the

boundary, a conventional way to de�ne the sparse grid space is via

V
(1)

0,n :=
⊕

|l|1≤n+d−1
l>0

Wl.

Sparse grids were originally introduced this way by Zenger [14], the original idea and application
to numerical integration is due to Smolyak [12]. Let f : [0, 1]d → R and (Ql)l denote a series
of (scalar) quadrature formulas of level l ∈ N on nl ∈ N abscissas xl,1, . . . , xl,nl

∈ [0, 1] having
weights wl,1, . . . , wl,nl

∈ R such that nl < nl+1:

Qlf :=

nl∑
i=1

wl,if(xl,i).

5



1 1.2 Hierarchical Basis

For any univariate real-valued function g(x) and l ∈ N, de�ne the linear mapping ∆kg ∈ R via
∆kg := (Qk − Qk−1)g, where Q0g := 0. Then, the conventional sparse grid quadrature
Ql for d-dimensional functions f on level l ∈ N is obtained by setting

Qlf :=
∑

|k|1≤l+d−1

(∆k1 ⊗ · · · ⊗∆kd)f, (9)

see [6, p.4] for speci�c details. The next results are intended to brie�y motivate the advantages
of sparse grids over regular grids, especially with regard to the number of grid points used
versus the approximation quality (cf. [4, p.11]):

Theorem 1.4. Let fn ∈ V
(1)

0,n denote the interpolant of f ∈ H2
0 (Ω). Then the interpolation

error w.r.t. the L2-norm ful�lls ‖f − fn‖2 = O(h2
n logd−1(h−1

n )).

Since full grids provide an interpolation error of O(h2
n) with regard to ‖ · ‖2, the quality of

approximation deteriorates slightly when switching to sparse grids. However, this disadvantage
is compensated by the fact, that the number of grid points and henceforth the computational
and storage requirements drastically decrease (cf. [4, p.12]):

Theorem 1.5. The number of inner grid points of V
(1)
n , |V (1)

0,n |, lies in O(h−1
n · logd−1(h−1

n )).

In the case, that there are no degrees of freedom on the boundary of the domain, this result
shows that it is possible to mitigate the curse of dimensionality to some extent when using sparse
grids instead of regular full grids. As remarked in [3], the corresponding subspace selection is
optimal with regard to the norms ‖·‖2 and ‖·‖∞, thus further improvement is impossible unless
the problem setting is modi�ed. An example of a sparse grid in two dimensions is depicted in
�gure 4. It is worth noting, that introducing the zero level basis functions in order to deal with
inhomogeneous boundary conditions implies that the overwhelming majority of the grid points
is located on ∂Ω, especially in higher dimensions. Even though the number of grid points in V

(1)
n

and V
(1)

0,n have equal asymptotic order, |V (1)
n | often seems too large to be practically applicable

in higher dimensions (cf. [11, p.12-16]). It may even be useful to omit boundary grid points
entirely and to instead modify the interior basis functions to extrapolate towards ∂Ω [11, p.16].

1.2.4 Combination technique

The sparse grid combination technique provides another way of obtaining a sparse grid repre-
sentation of a given function by linearly combining multiple anisotropic full component grids.
It grants a computational and implementation-wise bene�t over working directly in the hierar-
chical basis, since there is no need to implement anything else than full grid operations and all
computations on di�erent component grids can be performed independently from each other,
which enables parallelised approaches.
In the case of the standard combination technique, one considers all grids Ωl where |l|1 = n−q,
q ∈ [d − 1] ∪ {0} and l ≥ 0. Using the piecewise d-linear nodal basis functions φl,j on any
component grid Ωl, the corresponding interpolant fl of a function f on this grid is

fl =
∑
j≤2l

αl,jφl,j .

These individual grid-wise interpolants are then combined in the following way, which is illus-
trated in �gure 4 for d = 2, n = 4:

f cn :=
d−1∑
q=0

(−1)q
(
d− 1

q

) ∑
|l|1=n−q

fl. (10)
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V(1,4) V(2,3) V(3,2) V(4,1)

V(1,3) V(2,2) V(3,1)

Figure 4: Example of a sparse grid in 2d generated by means of the standard combination
technique (10) for n = 4, d = 2 assuming inhomogeneous boundary conditions. On the right,
the component grids arising in the combination are displayed along with their coe�cients
(coloured in blue).

Note, that in the original article [7], only those grids Ωl that ful�l |l|1 = n + (d − 1) − q,
q ∈ [d− 1] ∪ {0} and l > 0 were considered for the combination procedure. Again, this is only
a matter of de�nition, starting either with minimal level zero, as in (10) or with level one, as

in [7]. It is a noteworthy fact, that the combined interpolant f cn (10) lies in V
(1)
n and is identical

to the sparse grid interpolant fn [4, p.17]:

Lemma 1.6. For any function f : Ω→ R, it holds f cn = fn ∈ V (1)
n .

When turning to higher dimensions, it will become necessary to develop adaptive methods
that consider special features of the problem at hand. As remarked in [11, p.18], the standard
combination technique has been primarily utilised for dimensionally adaptive procedures.
In what follows, the so-called truncated combination technique (cf. [10, p.5]) will be used.
It di�ers from the standard combination technique in the use of a truncation parameter τ ,
τk ∈ N0 ∪ {−1} for each dimension k ∈ [d]. By de�ning the index sets

Il,q :=

{
l ∈ Nd

0

∣∣∣∣|l|1 = l + d− q − 1 +
d∑
i=1

τi, l > τ

}

for n ∈ N0 and q ∈ [d − 1] ∪ {0}, one enforces that each component grid that appears in the
combination scheme

f cn =
d−1∑
q=0

(−1)q
(
d− 1

q

) ∑
l∈In,q

fl (11)

has a level of at least 1+τ . One derives the standard combination technique by setting τ = 0.
The role of the truncation parameter τ and the level l are illustrated in �gure 5.

7



2 Adaptivity

0 1
0.0

0.5

1.0

+1

0 1
0.0

0.5

1.0

-1

0 1
0.0

0.5

1.0

+1

0 1
0.0

0.5

1.0

+1

0 1
0.0

0.5

1.0

-1

0 1
0.0

0.5

1.0

+1

0 10

1
+1

0 10

1
-1

0 10

1
+1

0 10

1
-1

0 10

1
+1

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Figure 5: Grids arising from di�erent truncation parameters τ and levels l in the truncated
combination technique (11) in two dimensions: Starting o� with τ = −1 and l = 1 on the
left, increasing τ to 0 and leaving the level constant yields the scheme depicted in the middle,
whereas an increase in level to l = 1 and an unchanged truncation parameter result in the
combination of grids on the right. All grid's coe�cients are coloured in blue.

2 Adaptivity

If one needs to integrate a function which does not satisfy given smoothness requirements
or shows great variation in its characteristics, adaptive re�nement is one possible solution.
As presented in the previous section, sparse grids are statically generated by making an a
priori choice of those subspaces, which are the most relevant with regard to the interpolation
error under certain smoothness conditions. Adaptive re�nement aims at deciding a posteriori,
which subspaces or grid points are to be re�ned using local error estimators. This section
follows [6], [11] and [10].

2.0.1 Dimensional adaptivity

Not all subspaces arising in a combination contribute similarly to the overall approximation
quality, which has been utilised in the construction of sparse grids. But instead of an a priori,
statically optimal selection of a �xed simplicial subset of subspaces as in their construction,
dimensionally adaptive approaches seek to identify and quantify important dimensions in which
to extend the selection of subspaces. One theoretical foundation for such algorithms is given
by Kolmogorov's superposition theorem, by means of which a high-dimensional function can
be approximated by sums of lower-dimensional functions [6, p.3]. As an example, the so-called
dimensionally adaptive quadrature by Gerstner and Griebel [6] will be presented brie�y.
As mentioned above, the simplicial subspace selection of the sparse grid construction in (8) is
relaxed in the following way: Up to now, only multi-indices l ∈ Nd

0 contained in the standard
simplex have been considered, i.e. those that ful�lled |l|1 ≤ n+ d− 1. From now on, an index
set I ⊂ Nd is admissible, if

∀ l ∈ I, k ∈ [d] : lk > 1⇒ l− ek ∈ I

holds, i.e., I is downward closed. Admissible index sets correspond to valid generalised sparse
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2 Adaptivity

grids, which are constructed via ⊕l∈IclΩl, where cl :=
∑
i∈I:l≤i≤l+1(−1)|i−l|1 (cf. [10, p.5]). In

accordance to (9), the conventional generalised sparse grid quadrature is de�ned as

QIf :=
∑
k∈I

(∆k1 ⊗ · · · ⊗∆kd)f (12)

for f : Ω→ R and a sequence of quadrature formulas (Ql)l similar to (9) (cf. [6, p.6]).
The basic idea of the algorithm is to iteratively add indices to I in such a way, that it remains
admissible throughout the whole process and that the overall error made by approximating
the analytic integral with the sum

∑
l∈I ∆lf of the di�erential integrals is reduced. An error

estimate gl is associated with each index l ∈ I, which may depend on ∆lf , as well as other
indicators, e.g. the number of function evaluations required for the computation of ∆lf . The
set of current indices I is partitioned into two sets A and O, which are referred to as active,
respectively old indices. The distinction between active and old is made as follows: A contains
all l ∈ I, whose error estimates gl have been computed, but none of the error estimates of
their forward neighbours have. Whenever an index l is added to I, it is indeed added to A and
the error estimates gk of its forward neighbours k ∈ {l + ei|i ∈ [d]} are computed, since those
are considered possible candidates for further additions to I. The sum η :=

∑
l∈A gl of error

estimates belonging to indices in A is used as an indicator for the global error. Initially, the
procedure commences by setting A = {1} and O = ∅.
In each iteration, an index l which has the largest error estimate |gl| among all active indices
is moved to O, its error estimate is subtracted from the global indicator η and all indices k
corresponding to its admissible forward neighbours are added to A and have their respective
error estimates gk computed and added to η, while their di�erential integrals ∆kf are added
to the current integral approximation r. If in some iteration the global error indicator η lies
below a given tolerance ε, the algorithm stops.
Figure 6 provides an exemplary illustration of this dimensionally adaptive procedure in 2D, a
pseudo-code implementation is given by algorithm 1 [6, p.7]. It is a noteworthy remark, that the
sparse grid combination technique can also be used with generalised sparse grids (cf. [10, p.5]).

Algorithm 1: Dimension-adaptive quadrature [6]

1 O ← ∅;
2 A ← {1};
3 r ← ∆1f ;
4 η ← g1;
5 while η > ε do
6 k← argmaxl∈A|gj|;
7 A ← A \ {k};
8 O ← O ∪ {k};
9 η ← η − gk;

10 foreach i ∈ [d] do
11 k′ ← k + ei;
12 if ∀j ∈ [d] : k′ − ej ∈ O then
13 A ← A∪ {k′};
14 r ← r + ∆k′f ;
15 η ← η + gk′ ;

16 end

17 end

18 end
19 return r;
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Figure 6: Dimensional adaptivity: Exemplary behaviour of algorithm 1 (taken from [6, p.9]):
The �rst row depicts the di�erent states of the index set I, whose active/old indices are coloured
dark/light grey, respectively. Encircled indices have largest error estimates among all active
indices. The second row shows the corresponding generalised sparse grids. The midpoint rule
has been used as underlying quadrature rule (cf. [6, p.9]).

Figure 7: Successive spatial re�nement steps of two red-coloured points in a regular grid using
homogeneous boundary conditions. In the second re�nement (middle), two points are added,
whose hierarchical parents (coloured in grey) are not contained in the grid. Those are succes-
sively added, as indicated in the rightmost image (taken from [11, p.21]).

2.0.2 Spatial adaptivity

Here, the goal is to decide which points of a subspace would contribute the most and to
subsequently add those, i.e., one estimates the error for each point and then decides whether
to re�ne it or not. The re�nement may consist of adding the hierarchical children from the
given point's next level to the grid. This often requires special amendments, as the process of
calculating the surpluses renders it necessary that all hierarchical parents of a given grid point
need also be contained in the grid. Thus, those parents are often added recursively during the
re�nement of a given point, cf. �gure 7. Whence, as remarked in [10, p.6], the total number of
points added per re�nement may exceed 2 · d.
Furthermore, as remarked in [11, p.22], it may be circumstantially better to re�ne more than
one point per iteration.
The split-extend scheme developed in [10], on which the main focus will remain until the end
of this thesis, is a representative of the class of spatially adaptive methods.
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Figure 8: Initial re�nement structure obtained using the truncated combination technique with
l = 1, τ = 0. The combination coe�cients are coloured in blue (taken from [10, p.8]).

2.1 The Split-Extend scheme

Introduced in [10], this approach combines the truncated sparse grid combination technique
with spatial adaptivity, operating on block-adaptive grids. Even though this text restricts
its use to quadrature and piecewise linear basis functions, the underlying algorithm and the
existing SpACE framework [9] can as well be tailored onto multiple problem settings, e.g.
approximatively solving partial di�erential equations.
One starts with an initial re�nement structure which is given by the standard combination
technique where l = 1 and τ = 0, cf. �gure 8.
The grid's block structure is visualised by fully drawn lines and will be further referred to as
the re�nement graph. Individual blocks in the re�nement graph are called sub-areas and
each of them is identi�ed via a unique index i, as well as a local level li and a local truncation
parameter τi.
In sub-areas where the objective function's characteristics vary signi�cantly, the resolution of the
block-adaptive grid resulting from the combination will be gradually increased. The underlying
idea of increasing the resolution of a sub-area of the grid in the truncated combination technique
is to increase the resolution of that sub-area in each component grid used in the combination.
However, as the re�nement of a large sub-area with many grid points is rather expensive, one
would �rst try to narrow down the area to be re�ned as far as possible.
There are two re�nement operations de�ned in [10], namely extensions and splits. Both serve
di�erent purposes; the split steps are primarily used to narrow down the areas to be re�ned,
while the extension steps' purpose lies in economically increasing the resolution of an area.
As will be pointed out in the following discussion of these operations, they correspond to the
solution of a combination scheme for each sub-area i where its local truncation parameter τi
and local level li depend on and vary due to the choice of the actual re�nement operations.
In the end of each re�nement step (which may involve multiple sub-areas), one consistent
combination scheme of (global) level lglobal and truncation parameter τglobal is generated from
the local re�nements of the sub-areas and each of the involved component grids is also de�ned
over the whole domain.

2.1.1 The split operation

A split operation is performed on sub-area i by incrementing its truncation parameter τi:
τi := τ old

i + 1. This can be alternatively interpreted as splitting the sub-area into 2d smaller
congruent sub-areas, denoted by children(i), whose truncation parameter and structure is the
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Figure 9: Exemplary split operations (taken from [10, p.9]), from left to right: Initial grid
structure, grid structure after a split operation has been applied to the lower left sub-area and
after the successive splitting of the newly created sub-area in the upper right corner of the
previously re�ned sub-area.

same as that of i: τj = τ old
i = τi−1 for j ∈ children(i). Furthermore i is de�ned as their parent,

i.e. parent(j) := i for j ∈ children(i). Each split operation applied onto i doubles the number of
grid points of i in each dimension. From a visual standpoint, the application of a split operation
onto a sub-area corresponds to adding a grid patch to the sub-area, which has the same size
as the sub-area and the same structure as the initial grid, cf. �gure 9. Since split sub-areas
are smaller in size, subsequent re�nements are enabled to be performed more selectively with
regard to the objective function's local characteristics. Among the disadvantages of the split
operation one has the substantial increase in grid points per application as well as the fact that
the truncation parameter being repeatedly incremented while the number of component grids
is kept constant, would lead to a grid structure which increasingly resembles a full grid. As a
remedy to this, the extend operation will be described in short notice.
One may view the initial structure of the grid as resulting from a split operation applied to the
leftmost grid structure depicted in �gure 5. Note that therefore all children j in the initial grid
have the same truncation parameter τj = −1. This implies that there will not occur any grids
with truncation parameter 0, which makes it reasonable to set the truncation parameter in the
global combination scheme to τglobal := −1 (cf. [10, p.8]).

2.1.2 Single-dimensional splitting

As the split operation turns out to become quite expensive when applied extensively in higher
dimensions, a single dimensional version has been implemented, which is the main contribution
made in this thesis. The advantage of this restriction is that the total number of points added
per split is decreased.
Basically, each sub-area i is associated to d other sub-areas, referred to as its twins. Additionally,
the so-called twin error εi,j = |Ili,i− Ilj ,j|, which is simply the modulus of the di�erence of their
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Figure 10: Exemplary single-dimensional split operations, from left to right: Initial grid struc-
ture, grid structure after a split operation in dimension 1 has been applied to the lower left
sub-area and after the successive splitting in dimension 2 of the second newly created sub-area
in right half of the previously re�ned sub-area.

integral approximations is stored for each twin j of i. In the initial re�nement structure, all
twins correspond to the actual neighbours in the respective dimension, i.e., a sub-area and its
twin in dimension k ∈ [d] share a facet.
Prior to a single dimensional split operation on i, the smallest dimension of maximal twin
error, dmax := argmaxj∈[d]εi,j is determined. During the successive split step in dimension dmax

applied on i, two instead of 2d new children i1, i2 are created, cf. �gure 10. As before, one sets
parent(i1) = parent(i2) = i. While they inherit the set of twins in dimensions k′ ∈ [d] \ {k}
from their parent, they are set to be each other's twin in dimension k.
It is quite important to notice, that the twin errors in dimensions k′ ∈ [d] \ {k} would still
correspond to the parent's twin errors between areas twice as large. For this reason, to avoid
unwanted behaviour like one single splitting dimension being dominantly preferred over all
other re�nement dimensions, each of those inherited twin errors is halved.
The residual functionality akin to error and bene�t estimations has remained unchanged and
the corresponding code is displayed in the following section.

2.1.3 The extend operation

Complementary to the split operation, the extend operation may increase the number of com-
ponent grids and thus add new subspaces. This results from incrementing the level li of a
sub-area i, i.e. li := loldi + 1, whereas its truncation parameter τi remains unchanged. An
exemplary step is depicted in �gure 11.
Since one reclusively modi�es local levels, there might exist di�erent sub-areas that each de�ne
an overall inconsistent number of component grids due to their possibly unequal local levels.
Therefore all the schemes corresponding to the modi�ed sub-areas are merged while employing
the so-called coarsening process. As pointed out in [10], this would not be necessary if the
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Figure 11: Exemplary extension operation (taken from [10, p.11]), from left to right: Starting
from the initial grid structure (li = 1 for all i = 0, . . . , 3) an extend operation is applied to
the lower left sub-area: Its local level is increased to 2, which sets the global level lglobal := 2
and increases the number of component grids in the global combination scheme to 5. As the
remaining sub-areas have strictly smaller local levels, they need coarsening. All grid points
coloured in red are not included in the �nal quadrature, as they only serve the purpose of
having a grid covering the whole domain while their contributions have already been accounted
for by the other component grids in the global combination scheme.

procedure were only to be used for solving quadrature problems, as the integral is a linear
operator. Since the procedure has been conceived to be of wider application, the process has
been included nonetheless.
When merging, the global combination scheme's truncation parameter is set to τglobal := −1,
its level is de�ned as the maximum level occurring among all sub-areas to be re�ned, i.e.
lglobal := max{li|i ∈ re�nement}. Subsequently, one iterates over all sub-areas for each com-
ponent grid in the global combination scheme and coarsens the level vector l of the currently
regarded component grid for each sub-area i whose local level li is strictly smaller than lglobal
by decrementing a largest entry of l (lglobal − li) times, which yields a coarsened level vector
li,coarse for each sub-area i. Thus, a list of coarsened level vectors is generated for each sub-area
i, one per component grid in the global combination scheme.
As several component grids might generate the same coarsened level vector, and it is undesirable
to include the corresponding points' contribution multiple times, only one of those is included in
the �nal combination. Similarly to generalised sparse grids, level vectors li,coarse with negative
entries are deemed invalid and are therefore excluded. The given quadrature rule uses only
those points corresponding to the selected coarsened level vectors li,coarse.

2.1.4 Error estimators

In order to decide which sub-areas to re�ne next, each sub-area in the re�nement graph is
assigned a scalar error indicator. All those sub-areas whose error indicator lies within a certain
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margin of the maximum error indicator in the present re�nement structure are chosen for
re�nement.
In [10], an error estimator ε for the split-extend scheme is de�ned via εi := |Iold,i − Inew,i| for
any sub-area i, which compares the current integral approximation Inew,i on i with a previous
approximation Iold,i. In particular, Inew,i := Ili,i denotes the approximation which results from
the evaluation of the quadrature rule corresponding to the current re�nement structure of
sub-area i of local level li.
Iold,i is determined by the operation involved in the creation of sub-area i, i.e. Iold,i ∈ {Isplitold,i, I

extend
old,i }.

If it resulted from an extension, which would correspond to an increment of the local level li
and an unchanged re�nement graph, one would have Iold,i = Iextendold,i = Ili−1,i.
On the other hand, if it is a newly created child of a sub-area parent(i) resulting from a
split operation, there are no previous approximations available, whence a previous integral
approximation of sub-area parent(i) of level li, denoted by Ili,parent(i), is considered:

Ili,parent(i) :=
∑

k∈points(li,parent(i))

wkf(xk)

Herein points(li, parent(i)) is an abbreviation for the set of indices of all those points, which sub-
area parent(i) would contain, if its local level were equal to li. In the �rst approach developed
in [10], one calculates the previous approximation for sub-area i by restricting the above sum
to those points xk which lie in sub-area i, henceforth referred to as xk ∈ area(i):

Isplit1old,i :=
∑

k∈points(li,parent(i))∩area(i)

w∗kf(xk) (13)

The corresponding weight w∗k of a point xk only di�ers from wk if it lies on the boundary of
sub-area i, as it may thus be contained in more than one sub-area originating from parent(i).
As such, its weight is divided uniformly among all children of parent(i) containing the respective
point, which breaks down to setting

w∗k :=
wk

|{i ∈ children(parent(i))|k ∈ area(i)}|
.

A second approach would consist in splitting the parent's previous integral approximation
uniformly among all children, yielding

Isplit2old,i := Il,parent(i)/2
d. (14)

The third approach presented in [10] is restricted to the case of piecewise linear basis functions,
as the objective function's evaluations in the set points(li, parent(i)) are utilised to bilinearly
interpolate at grid points in sub-area i, which in general would not preserve the order of
approximation attained by using higher order basis functions. Thus

Isplit3old,i := IΓli,i
(li,parent(i)), (15)

where Γli,i(li, j) is de�ned as the operator that linearly interpolates function values at grid
points in component grids of sub-area i using function values at points belonging to sub-area
j.
Moreover, it is a noteworthy fact, that this third approach may require additional function
evaluations, as all grid points corresponding to level li in sub-area parent(i) are considered.
As remarked in [10, p.12], the most promising error estimates based on (13), (14) and (15) for
piecewise linear basis functions resulted from combining (13) and (15) by taking their minimum,
i.e.,

Isplitold,i := min{Isplit1old,i , I
split3
old,i } (16)
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In general, when using higher order quadrature rules, respectively basis functions, bilinear
interpolation or �ltering approaches would not preserve the underlying order and thus other
error estimates have to be employed.
With respect to piecewise linear basis functions, each sub-area i has now been assigned an error
estimate εi. The bene�t βi of re�ning this sub-area is de�ned by βi := εi

|points(i,li)| [10, p.13]. The
sub-area which o�ers the largest bene�t as well as all those sub-areas whose bene�t is at least
βiγ for some �xed parameter γ ∈ ]0, 1[ are chosen for the proximal re�nement.

2.1.5 Split or extension?

If a sub-area has been selected as a candidate for re�nement, one ought to make a reasonable
guess, which of the two previously compiled strategies would prove more suitable. Splits are
typically useful when the objective function's characteristics require a focus on small subsets of
the domain, e.g. when the function is zero on most of the domain, but has a peak in a corner;
it would not be of much use to increase the global resolution of the grid but only that of a small
sub-area which contains the peak.
As to the aforementioned guess, [10] estimate the error reduction due to a split and an extension
per sub-area to be re�ned and consequently choose the operation which yields better results.
If sub-area i is to be re�ned, the approximation Ili−1,parent(i) is used as a reference value for the
analytic integral on sub-area parent(i).
Note that sub-area i, which has the associated integral approximation Ili,i, can be obtained
from sub-area parent(i), provided that is has local level li − 1, by executing one split and one
extension. Ili−1,parent(i) is always available, as the initial re�nement structure with τglobal = 0
results from a split and the local level li of sub-area i is positive, as li > τglobal,i [10, p.13].
If a split step is applied to parent(i), assuming it has local level li− 1, the approximation Ili−1,i

for i is compared relatively to the current approximation Ili,i:

εspliti :=
|Ili,i − Ili−1,i|
|Ili,i|

. (17)

As extension steps leave the re�nement graph unmodi�ed and in most cases add fewer points to
the grid than splits, �ltering and bilinear interpolation are used once more for piecewise linear
basis functions to de�ne εextendi .
Since among consecutive extensions the �rst tends to be the most e�ective with regard to error
reduction [10, p.14], k steps are performed instead of just one, such that k is maximum while
satisfying

3 · |Πi(li − 1 + k, parent(i))| ≥ |points(li − 1, i)|.

Πi(l, j) denotes the operator that outputs the set of all grid points in sub-area j, assuming it
has local level l, that are also contained in sub-area i [10, p.12]. As remarked in [10, p.14], such
a k is typically maximum in the way that the number of points added in the k extension steps
applied on parent(i), i.e. |Πi(li−1+k, parent(i))|, is strictly smaller than the number of points
that would be added due to a split step applied on parent(i), i.e. |points(li − 1, i)|. The third
approach (15) of bilinear interpolation is included as well and once again the minimum of both
relative errors is taken, i.e.,

εextendi :=
min{|Ili,i − Πi(li − 1 + k, parent(i))|, |Ili,i − Γli,i(li − 1 + k, parent(i))|}

|Ili,i|
(18)
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2 2.1 The Split-Extend scheme

Using the convenient de�nitions

nspliti := |points(li − 1, i)|,
nextendi := |Πi(li − 1 + k, parent(i))|,

nreferencei :=

{
|points(li − 1, parent(i))| : if the grid is nested

0 : otherwise

made in [10, p.14], the operation's costs on sub-area i are given as products of errors and points
that are to be spent by the respective operation: αθi := εθi (n

θ
i − nreferencei ), θ ∈ {split, extend}.

The algorithm then performs the operation which has lower estimated cost.
Analogously to the previously discussed error estimates with regard to sub-areas i, �ltering and
bilinear interpolation are not combined with higher order quadrature formulas, respectively
basis functions, and require di�erent cost estimators.

2.1.6 The algorithm

The input consists of:

� Vectors a, b ∈ Rd which encode the endpoints of the intervals that de�ne the rectangular
domain Ω,

� a tolerance ε > 0,
� the objective function f : Ω→ R and
� an optional reference solution for

∫
Ω
f(x)dx.

In the algorithm, one �rst initialises the level lglobal := 1, the truncation parameter τglobal := −1
and �nally constructs the global combination scheme. Then, the initial re�nement structure as
depicted in �gure 8 is created by a split operation, whence all sub-areas i originating from this
process have local level li = 1 and truncation parameter τi = −1. Subsequently, the integral
approximation corresponding to the current re�nement structure is calculated by iteratively
accumulating the respective contributions of all sub-areas in the re�nement graph.
As several sub-areas may have local levels strictly smaller than lglobal, level vectors of certain
component grids might require coarsening. Thus for each sub-area the coarsened level vectors
of all component grids are calculated and utilised to derive the integral approximation on it,
using a prede�ned grid, which de�nes for each dimension k ∈ [d] (cf. [10, p.15]):

� A quadrature formula (e.g. Newton-Cotes),
� the number of points nk,
� the position pj for j ∈ [nk] and
� the weights wj,k

that correspond to level lk.
In [10, p.15] the assumption is made, that uniform grids as well as 2nk + 1 points are used
in all dimensions k, which conforms to the notions introduced in section 1. According to the
tensor product approach also described there, the weight corresponding to the point pl,j is
calculated as the product wl,j :=

∏
k∈[d] wjk,k. As the integral approximations for each sub-area

and component grid have been calculated in this fashion, they are combined with regard to the
global combination scheme, i.e., scaled with the component grid's coe�cient cl and added up.
The result of this step, the integral approximation for the current re�nement structure, is
compared to the value obtained by evaluating the reference solution on the current re�nement
structure. If no reference solution has been speci�ed, the sum of all hierarchical surpluses is
used to estimate the error [10, p.16].
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2 2.1 The Split-Extend scheme

If it is smaller than the given tolerance ε, the algorithm terminates. In the converse situa-
tion, the sub-area i of highest expected bene�t βi is speci�ed and all those sub-areas, whose
estimated bene�t exceeds βiγ, are selected for re�nement after their current integral approxi-
mation is removed from the temporary result. For each of those sub-areas i, the expected costs
αsplit
i , αextend

i are calculated and subsequently the cheaper operation is performed. In succes-
sion to the completion of the re�nement, the previous outdated sub-areas are discarded. The
following pseudo-code representation of the algorithm (cf. [10, p.16]) concludes this section.

Algorithm 2: Split-Extend scheme

Data: Rectangular domain Ω ⊂ Rd given by a, b, tolerance ε > 0, re�nement
parameter γ ∈ ]0, 1], objective function f , (optional) reference solution

Result: Approximation of
∫

Ω
f(x)dx

1 lglobal ← 1;
2 τglobal ← −1;
3 Initialise global combination scheme with lglobal, τglobal;
4 Create 2d sub-areas i having li = 1, τi = −1 in the initial split;
5 do
6 integral ← 0;
7 foreach component grid g ∈ combination scheme do
8 foreach sub-area a in the current re�nement do
9 levelvec ← Coarsened level vector of g with regard to a;

10 if levelvec ≥ 0 and not duplicate then
11 integral += g.integrate(f , a, g) · g.coe�cient;
12 end

13 end

14 end

15 error ← |integral−reference|
|reference| ;

16 βmax ← max{βi|i ∈ re�nement};
17 subareas ← {i|βi ≥ γβmax};
18 foreach sub-area a ∈ subareas do
19 Calculate costs αsplit, αextend;
20 if αextend > αsplit then
21 if splitSingleDim then
22 dmax ← argmaxk∈[d]|a.twinerrors[k]|;
23 children ← a.split_single_dim(dmax);

24 else
25 children ← a.split();
26 end
27 foreach j ∈ children do
28 lj ← la;
29 τj ← τa;

30 end

31 else
32 a_new ← a.extend();
33 la_new ← la + 1;
34 τa_new ← τa;

35 end

36 end

37 while error ≥ ε;
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3 Implementation

3 Implementation

In this section, all contributions to SpACE [9] concerning the single dimensional split are
compiled and their functionality is explained brie�y. When the need arises, previously existing
constructs are thematised as well.

3.1 Grids in SpACE

Grids in general are implemented as subclasses of

class Grid(object):

which has among its attributes a boolean �ag boundary, which indicates whether one has
grid points on the boundary or not, as well as two d-dimensional vectors a, b, which de�ne
the borders of the domain Ω = [a1, b1]× · · · × [ad, bd] (not restricted to [0, 1]d). A few selected
member functions, which o�er the functionality listed in the previous section, are

def getCoordinate(self, indexvector)

which returns the Cartesian coordinates of a point xl,j when supplied with the index vector j
and

def get_weights(self)

which returns all weights according to the underlying quadrature rule, which are de�ned by
the subclasses of the Grid class. Several types of grids are supported by the framework, e.g.
TrapezoidalGrid and ClenshawCurtisGrid, which correspond to equidistant mesh com-
bined with the trapezoidal rule and to Clenshaw-Curtis quadrature on Tchebychev abscissas,
respectively.

3.2 Contributions regarding the single-dimensional split

The instances of class Re�nementObjectExtendSplit, which inherits from the Re�nemen-
tObject class implemented to model sub-areas, correspond to the type of sub-areas utilised in
the split-extend scheme.

1 class RefinementObjectExtendSplit(RefinementObject)

2 def __init__(self, start, end, grid, ... , splitSingleDim=True):

3 ...

4 # twin array

5 self.twins = [None] * self.dim

6 ...

7 # twin errors

8 self.twinErrors = [None] * self.dim

9 ...

Its constructor has been supplied with an additional boolean parameter splitSingleDim (line
1) which indicates whether single-dimensional or full-dimensional splits are to be employed.
In the constructor's body, two arrays twins and twinErrors of size d are initialised with the
None data type (lines 5 and 8). They will be used to store a reference to the re�nement
object's twin in each dimension, respectively the error that arises from the comparison of their
integral approximations.
The next addition to the code consists of the method which performs a split in a single dimension
on the given re�nement object, namely
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3 3.2 Contributions regarding the single-dimensional split

1 def split_area_single_dim(self, d):

2 midpoint = self.grid.get_mid_point(self.start[d], self.end[d], d)

3 sub_area_array = []

4 for i in range(2):

5 start_sub_area = list(self.start)

6 end_sub_area = list(self.end)

7 start_sub_area[d] = start_sub_area[d] if i == 0 else midpoint

8 end_sub_area[d] = midpoint if i == 0 else end_sub_area[d]

9 parent_info = ErrorInfo(parent=self, last_refinement_split=True)

10 new_refinement_object = RefinementObjectExtendSplit(

11 start=start_sub_area,

12 end=end_sub_area, grid=self.grid,

13 self.numberOfRefinementsBeforeExtend,

14 parent_info=parent_info,

15 coarseningValue=self.coarseningValue,

16 needExtendScheme=self.needExtendScheme,

17 automatic_extend_split=self.automatic_extend_split,

18 splitSingleDim=self.splitSingleDim)

19 new_refinement_object.twins = list(self.twins)

20 new_refinement_object.twinErrors =

21 list([t * 0.5 if t is not None else t for t in self.twinErrors])

22 new_refinement_object.twinErrors[d] = None

23 self.children.append(new_refinement_object)

24 sub_area_array.append(new_refinement_object)

25 sub_area_array[0].set_twin(d, sub_area_array[1])

26 return sub_area_array

The argument d in line 1 indicates the split dimension. One commences by calculating the
mean of start and end point in the dimension speci�ed by d in line 2. Subsequently, one de�nes
the two children of the given sub-area resulting from the split by their start and end points in
lines 7 to 8. Apart from the d'th coordinate, those remain unchanged.
One proceeds by instantiating a new re�nement object with the given boundary data, adding
it to the sub_area_array (lines 10-18). The variable parent_info contains mainly error
estimates and properties like the operation's bene�ts, local level of the parent, the type of the
last operation performed on it and so forth. The d-dimensional vectors start_sub_area and
end_sub_area de�ne the borders of the re�nement object, i.e., [s1, e1] × · · · × [sd, ed]. The
integer number_of_re�nements_before_extend states, how many split operations may
be performed on this re�nement object, until only extensions are used in further steps. coars-
eningValue indicates, how often the underlying sub-area needs to be coarsened, according
to the combination scheme, while the number of splits performed on the parent is stored in
needExtendScheme. automatic_extend_split is a boolean parameter, which enables or
disables the automatic decision-making, which re�nement operation to apply.
The newly created re�nement object's twins are simply inherited from the parent, except for
the d'th entry, which will be set after both children have been created. Since python would just
store references to the existing arrays instead of creating new ones, which could in turn cause
inconsistencies and overwriting, list constructors are applied (line 19). As has been mentioned
in the previous section, each of the inherited twin errors is halved, in order to avoid imbalanced
behaviour regarding the choice of the split dimensions (lines 20-21).
Finally, the newly created re�nement object is added to its parent's list of children and to the
set of newly created re�nement objects to be returned (line 24).
Now, each of the children is set to be the other's twin in dimension d and they are returned in

20



3 3.2 Contributions regarding the single-dimensional split

the sub_area_array (lines 25-26).
This method is followed up by a few short helper methods, which have already been made use
of in the previous method:

1 def set_twin(self, d, twin):

2 self.twins[d] = twin

3 twin.twins[d] = self

set_twin receives a dimension d and a reference to another re�nement object, which is de�ned
as the twin in dimension d of the re�nement object on which it is called.

1 def set_twin_error(self, d, twinError):

2 twin = self.twins[d]

3 twin.twinErrors[d] = self.twinErrors[d] = twinError

set_twin_error sets the twin error of self and its twin in dimension d to the given value
twinError.

1 def get_split_dim(self):

2 return np.argmax(self.twinErrors)

get_split_dim returns the dimension in which the twin error is maximum. If it is not unique,
the �rst occurrence is returned.
The second noteworthy change occurred in the class SpatiallyAdaptiveExtendScheme,
which comprises substantial parts of the functionality needed for the split-extend scheme.
Again, a boolean parameter indicates, if full- or single-dimensional splits are performed.

1 class SpatiallyAdaptiveExtendScheme(SpatiallyAdaptivBase):

2 def __init__(self, a, b, ... , split_single_dim=True, operation=None, ...):

3 ...

4 self.split_single_dim = split_single_dim

5 ...

Among the o�ered functionality, one has the initial splitting of the domain performed in the
method initialize_re�nement. As the full-dimensional split neither required to set the twins
accordingly, nor to initialise the twin errors, these features have both been added.

1 def initialize_refinement(self):

2 ...

3 if self.noInitialSplitting:

4 ...

5 else:

6 self.root_cell = RefinementObjectExtendSplit(

7 np.array(self.a),

8 np.array(self.b),

9 self.grid,

10 self.numberOfRefinementsBeforeExtend,

11 None, 0, 0,

12 automatic_extend_split=self.automatic_extend_split,

13 splitSingleDim=self.split_single_dim)

14 if self.split_single_dim:

15 new_refinement_objects = [self.root_cell]

16 for d in range(self.dim):

17 temp = []
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3 3.2 Contributions regarding the single-dimensional split

18 for area in new_refinement_objects:

19 temp.extend(area.split_area_single_dim(d))

20 new_refinement_objects = temp

21 for area in new_refinement_objects:

22 integral = 0

23 for component_grid in self.scheme:

24 integral_area, a, b = self.evaluate_area(

25 self.f,

26 area,

27 component_grid)

28 integral += integral_area * component_grid.coefficient

29 area.integral = integral

30 for i in range(2**self.dim):

31 area = new_refinement_objects[i]

32 for d in range(self.dim-1):

33 twin =

34 new_refinement_objects[(i+2**(self.dim-1)) % 2**(self.dim-d)]

35 area.set_twin(d, twin)

36 if area.twinErrors[d] is None:

37 area.set_twin_error(d, abs(area.integral - twin.integral))

38 if area.twinErrors[self.dim-1] is None:

39 area.set_twin_error(

40 self.dim-1,

41 abs(area.integral - area.twins[self.dim-1].integral))

42 area.parent_info.parent = self.root_cell

43 else:

44 new_refinement_objects = self.root_cell.split_area_arbitrary_dim()

45 self.refinement = RefinementContainer(

46 new_refinement_objects,

47 self.dim,

48 self.errorEstimator)

The extended else branch commences with the creation of a re�nement object named root_cell,
which corresponds to the original domain prior to the initial split (lines 6-13). An array
new_re�nement_objects is initialised which initially only contains root_cell. It is how-
ever designated to hold the soon to be created re�nement objects corresponding to the initial
re�nement structure.
For each dimension, one after another, a split in this dimension is performed on all re�nement
objects currently accumulated in the temporary array temp (lines 18-19) and the resulting
re�nement objects replace the former content of new_re�nement_objects (line 20). After
all d dimensions have been iterated through, all re�nement objects resulting from the initial
split of the domain have been created. Each of those re�nement objects is then assigned an
approximation of the objective function's integral on the corresponding sub-area with regard
to the global combination scheme by successively adding up all contributions of the component
grids of this sub-area (lines 21-29).
Only in this initial split, all twins are set to be the actual neighbours in each dimension and
all twin errors are exactly calculated, which is achieved by the indexing in lines 32 to 41. This
is considered to be of importance, as the �rst choices of splitting dimensions may a�ect later
decisions in the procedure.
In the full-dimensional case, i.e., split_single_dim being false, a regular split is performed
on the initial domain (lines 43-44). Finally, the re�nement objects created by either one of the

22
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split strategies set as new re�nement (lines 45-48).
As noted in the discussion of the method split_area_single_dim, one assigns None to
those components of the twin error array to indicate that they require an update, if single-
dimensional splits are utilised. This update is realised in the method do_re�nement, which
is also a member of class Re�nementObjectExtendSplit:

1 def do_refinement(self, area, position):

2 ...

3 if self.split_single_dim:

4 for d in range(area.dim):

5 if area.twinErrors[d] is None:

6 twinError = self.operation.get_twin_error(d, area)

7 area.set_twin_error(d, twinError)

8 ...

In case of single-dimensional splits (line 3), one simply assigns current twin errors to those
dimensions in [d], which have been assigned None due to the assignment of new twins during
a previous split operation (lines 4-7). For structural sake, the corresponding functionality of
calculating twin errors has been moved to a subclass of GridOperation, which itself has
mostly abstract members:

class GridOperation(object):

This class' use is by no means restricted to integration, which again hints at the �exibility of
the SpACE framework. A subclass contains the method get_twin_error, which is called to
calculate the twin error of a re�nement object i in dimension d by comparing Ili,i to Ilj ,j, if j
corresponds to i's twin in dimension d:

1 def get_twin_error(self, d, area):

2 return abs(area.integral - area.twins[d].integral)

23
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4 Testing

In this last section, the performance of the modi�ed split-extend scheme featuring single-
dimensional split operations is evaluated by means of several test cases, some among those
presented in [10]. The underlying functions are part of a selection included in Genz' package
of test functions [5], as well as one example from [8]. The chapter is concluded by an overall
summary of the results, as well as an outlook on potential future improvements of the approach.

4.1 Test functions

The general de�nitions of the functions f1, . . . , f5 : [0, 1]d → R are given in the following para-
graphs. Plots for particularly parameterised representatives are depicted in �gure 12. Compar-
isons between full- and single-dimensional splitting approaches for two-dimensional cases are
restricted to a visual inspection of the corresponding sparse grid structures generated by the
schemes displayed in �gures 13, 14, 15 and 16. Error plots with regard to the 2-dimensional
grids have been arranged in �gure 17. All results of higher-dimensional test cases have been
compiled in �gure 18, �gure 19 and �gure 20. To comply with the previous sections, only linear
basis functions have been utilised. Throughout the whole section, the tolerance will be denoted
by ε, conforming to the notation in section 2. Moreover, δ ∈ N0 denotes the maximum splitting
level, if such a restriction has been set beforehand.

f1(x) :=

{
0 : x ≥ p

e−
∑d

i=1 cixi : otherwise
(19)

f1 is a discontinuous function, as it behaves like a positive exponential on [0, p1]× · · · × [0, pd],
while it is identically zero on the complement of this set in [0, 1]d. The components of c ∈ Rd

determine the overall growth/decay in the respective coordinates. Exemplary plots (d = 2)
for p =

(
0.3
0.3

)
and c =

(
1
2

)
, respectively p =

(
0.6
0.6

)
and c =

(
10
1

)
are depicted in �gure 12 (a),

respectively (b). The block-adaptive sparse grids arising from both schemes are displayed and
discussed in �gures 13.

f2(x) := e−
∑d

i=1 ci|xi−pi|, f3(x) := e−
∑d

i=1 c
2
i (xi−pi)2 (20)

f2 is a continuous, radially symmetric exponential centered at p ∈ [0, 1]d. c controls its
growth/decay. f3 has similarities to a Gaussian centered at p. In contrast to f2, it is either
constant or gradually decaying for increasingly large arguments and any choice of c. Addition-
ally, it is an element of C∞(Rn). In �gure 12, f2 has been plotted for p =

(
0.5
0.5

)
, c =

(
30
2

)
in (c),

p =
(

0.2
0.2

)
, c =

(
10
1

)
in (d) and p =

(
0.5
0.5

)
, c =

(
10
20

)
in (e). f3 has been visualised for p =

(
0.5
1

)
,

c =
(

1000
11

)
in �gure 12 (f) and for p =

(
0.5
0.5

)
c =

(
200
0.1

)
in �gure 12 (g). The grid structure

resulting from the split-extend scheme have been collected in �gures 14 and 15.

f4(x) :=
10−d∏d

i=1

(
1
x2i

+ (xi − pi)2
) (21)

Plots of variants of the rational function f4 are depicted in �gure 12 (h) for p =
(

0.2
0.2

)
, c =

(
20
2

)
, as

well as in (i) for p =
(

0.7
0.7

)
, c =

(
10
6

)
. The corresponding grids resulting from the two re�nement

schemes are compiled in �gure 16.

f5(x) :=

(
d∑
i=1

cixi

)−d−1

(22)

f5 has not been plotted, but 5-dimensional test cases have been included in �gure 18 and 20.
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Figure 12: Plots of several two-dimensional variants of some employed test functions not con-
tained in the set of test cases presented in [10]. Sub�gures (e) and (f) serve as negative
examples, in which full-dimensional split operations prove more e�ective and suitable due to
a smaller number of distinct point evaluations. In all other cases (2d), the scheme applying
single-dimensional splits performs at least as well, if not substantially better than the original
procedure.
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(a) f1, p =
(

0.3
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)
, c =

(
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)
, ε = 5 · 10−3, δ = 3, 141 vs. 189 distinct point evaluations.

As the support of the objective function is concentrated in [0, 0.3]2, both procedures re�ne only the

lower left quadrant. In this case, the less strict regularity of the single-dimensional split operation

yields only a visual advantage over the full-dimensional method. Interestingly, a minor reduction of

ε to 0.0049 prompted a devastatingly ine�cient behaviour in the latter, which enormously increases

the resolution of both quadratic subregions in the lower left quadrant, while the grid created by the

single-dimensional method remained unchanged.
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(b) f1, p =
(
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)
, c =
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)
, ε = 10−2, δ = 3, 184 vs. 240 distinct point evaluations.

Similar to the above case, the higher spatial �exibility of the single-dimensional procedure does only

provide a visual advantage over the full-dimensional strategy here, as both procedures require similar

numbers of point evaluations.

Figure 13: Grids resulting from variants of the function in (19), single-dimensional split oper-
ations on the left, full-dimensional split operations on the right.
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(

0.5
0.5

)
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)
, ε = 10−2, δ = 2, 233 vs. 929 distinct point evaluations.

The single-dimensional strategy apparently allows for a re�nement structure better suited to catch the

shape of the elongated peak's support here.
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(b) f2, p =
(

0.2
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)
, c =

(
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)
, ε = 10−3, δ = 2, 205 vs. 369 distinct point evaluations.

Comparable to case (b) in �gure 13, a slightly better visual adaption by the single-dimensional scheme,

yet no immense improvements in e�ciency.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(c) f2, p =
(

0.5
0.5

)
, c =

(
10
20

)
, ε = 10−2, δ = 2, 1473 vs. 545 distinct point evaluations.

Here, the full-dimensional scheme clearly outperforms the single-dimensional method, which seemingly

has di�culties catching the symmetry of the objective function. This may be due to the choice of

initially splitting in y-dimension in the upper left quadrant.

Figure 14: Grids resulting from variants of the �rst function in (20), single-dimensional split
operations on the left, full-dimensional split operations on the right.
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(a) f3, p =
(

0.5
1

)
, c =

(
1000
11

)
, ε = 10−2, δ = 3, 201 vs. 109 distinct point evaluations.

In this case, the single-dimensional method's surprising choice to split in y-direction rather than in

x-direction prompts more densely re�ned sub-areas which would not be necessary in the upper outward

corners of the domain, as the function is zero there. The full-dimensional method managed to detect

this, which resulted in a slightly better performance.
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(b) f3, p =
(

0.5
0.5

)
, c =

(
200
0.1

)
, ε = 10−4, δ = 3, 481 vs. 897 distinct point evaluations.

Both procedures perform in a comparable fashion, the single-dimensional split procedure having a

slight advantage due to the increased side length of the sub-areas in y-direction, which allows for a

lower resolution in this dimension, since the objective function varies comparatively highly in x-, but

not in y-dimension.

Figure 15: Grids resulting from variants of the second function in (20), single-dimensional split
operations on the left, full-dimensional split operations on the right.
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(a) f4, p =
(

0.2
0.2

)
c =

(
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)
, ε = 10−4, δ arbitrary, 1345 vs. 2369 distinct point evaluations.

While there is no notable change on the right half of the domain, the single-dimensional scheme

managed to adapt remarkably better to the stretched peak of the objective function along the middle

of the lower left quadrant. Additionally, the function varies greatly in x-direction on the lower left

quadrant, which the grid resulting from the procedure employing single-dimensional split steps also

catches.
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(b) f4, p =
(

0.7
0.7

)
, c =

(
10
6

)
, ε = 10−3, δ arbitrary, 297 vs. 617 distinct point evaluations.

No too many di�erences, although again a slightly better adaptation by the single-dimensional method.

This case is quite similar to examples (b) in both �gure 13 and �gure 14.

Figure 16: Grids resulting from variants of the function in (21), single-dimensional split oper-
ations on the left, full-dimensional split operations on the right.
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)
, ε = 10−2, δ = 3.
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, ε = 10−2, δ = 2.
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, ε = 10−3, δ = 2.
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, ε = 10−2, δ = 3.
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)
, ε = 10−4, δ arbitrary.
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(h) f4, p =
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)
, c =
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)
, ε = 10−3, δ arbitrary.

Figure 17: Error plots corresponding to the block-adaptive grid structures from �gures (13),
(14), (15) and (16), respectively the functions depicted in �gure 12, except for the one in (g).
The overall impression is, that at least in 2d, no immensely signi�cant performance-related
di�erences seem to exist between both schemes.
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(a) f1, where d = 5, p = 0.2 ·1, c = (1, 2, 3, 4, 5)T ,
ε = 10−3 and δ = 5:
661140 vs. 748288 distinct evaluations.

As far as this test case is concerned, both schemes

perform nearly identically. In comparison to

the graphs in (b) and (c), the error correspond-

ing to the single-dimensional variant consistently

bounds the error of the full-dimensional variant

from below.
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(b) f3, where d = 5, p = 0.99 · 1, c = 100 ·
(1, 2, 3, 4, 5)T , ε = 10−4 and δ = 5:
54629 vs. 137136 distinct evaluations.

After reaching the mark of 104 point evaluations,

the single-dimensional variant seems to perform

at least one order better until the tolerance is

reached.
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(c) f4, where d = 5, p = 0.99 · 1, c = 10 ·
(1, 2, 3, 4, 5)T , ε = 10−2 and δ = 3:
1765987 vs. 2390888 distinct evaluations.

Like in (a), both schemes perform similarly. In-

terestingly, the error corresponding to the full-

dimensional method decays in a much more con-

tinuous fashion than that of its single-dimensional

counterpart.
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(d) f5, where d = 5, p = 0.99 · 1, c =
(1, 2, 3, 4, 5)T , ε = 10−2 and δ = 3:
8471 vs. 149392 distinct evaluations.

This test case may serve as one of the best exam-

ples to hint at the potential of single-dimensional

split steps in higher dimensions among all those

presented, although this may be due to a fortu-

nate choice of the objective function's parame-

ters.

Figure 18: Some of the 5d test cases included in [10], namely the functions (19), the second
function in (20), (21) and (22). Judging from those examples only, the single-dimensional
variant appears to behave at least as e�ciently as the underlying procedure.
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(a) f1, where d = 5, p = 0.3 · 1, c =
(1, 2, 4, 8, 16)T , ε = 10−1 and δ was arbitrary:

197151 vs. 54416 distinct evaluations.

In this example, the objective function's sup-

port has uniform length in all dimensions and

thus a regularity in its structure which, compa-

rable to the two-dimensional case, puts the full-

dimensional scheme at a minor advantage.
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(b) f1, where d = 5, p = 10−1 · (1, 1, 3, 3, 3)T , c =
(1, 2, 4, 8, 16)T , ε = 10−1, and δ was arbitrary:

20369 vs. 59167 distinct evaluations.

Here, on the other hand, a slight decrease in the

lengths of supp(f) in the �rst two coordinates

turns the tide and the roles of both procedures

are practically reversed.

Figure 19: Additional test cases with regard to function (19).
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(a) f4, where d = 5, p = 0.2 · 1, c =
(2, 2, 10, 20, 50)T , ε = 10−2, and δ = 5:
1846784 vs. 187842 distinct evaluations.

Note, that the full-dimensional procedure and

even the standard combination technique literally

outperform the single-dimensional scheme in this

example. As a noteworthy remark, the execution

of the single-dimensional variant involved a high

number of splits, the majority of them in dimen-

sions 2 to 4, which were however not always as

e�ective in reducing the global error.
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(b) f4, where d = 5, p = 10−1 · (3, 3, 4, 5, 5)T ,
c = (2, 2, 10, 20, 50)T , ε = 10−1, and δ was arbi-

trary:

18275 vs. 128806 distinct evaluations. Alike

to the examples (a) and (b) in �gure 19, a slight

decrease in uniformity among the components of

p provokes a di�erent outcome for both strate-

gies, as the single-dimensional variant shows sim-

ilar tendencies in the beginning, but reaches the

required tolerance much earlier. The majority of

the splits were performed in dimension 1, 3 and

4.

Figure 20: Additional test cases with regard to function (21).
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4 4.2 Conclusion

4.2 Conclusion

Judging by the results that have been presented in this section, the augmentation of the split-
extend scheme, respectively the underlying spatially adaptive combination technique with the
single-dimensional splitting operation may in comparison achieve a noteworthy increase in ef-
�ciency with regard to the number of function evaluations needed, if the integrand is suitable.
Namely, if the objective function's largest variations are restricted to a proper subset of the
[d] dimensions, as in case of the functions illustrated in �gure 12 (b), (c), (d) and (g) in 2d,
the single-dimensional procedure seems to display its largest potential. In cases of functions
on rectangular, full-dimensional supports like in the examples (e) and (f) in �gure 12, the full-
dimensional splitting strategy has been perceived to be both more suitable from a geometrical
viewpoint, as well as of greater practical use in several instances. From the test cases on func-
tions in higher dimensions, especially the examples (b) and (d) in �gure 18, one gathers that
the advantages provided by the utilisation of single-dimensional split operations may become
even more prominent in those dimensions.
In contrast to those positive results, analogous to the two-dimensional cases, one may naturally
construct a plethora of counterexamples, such as the one depicted in �gure 19 (a) and �gure
20 (a), in which the modi�ed split-extend scheme performs quite poorly in comparison to the
original procedure. Notice, that in �gure 20 (a) even the standard combination technique
demonstrated a higher performance than the adaptive scheme based on single-dimensional split
steps.
Conversely, this can also be stated for the basic scheme, which is a simple consequence of the
general "greedy" re�nement strategy. As no additional information with regard to the objective
function is included, e.g. its derivatives in case of di�erentiability, it seems to be too much to
expect more of the scheme under such general circumstances. Not having su�ciently smooth
integrands may also be considered a realistic setting in numerous �elds of application, such
as uncertainty quanti�cation. Yet it is signi�cant to remark, that almost all of the previously
discussed test cases relied more or less heavily on the scheme being supplied with an exact refer-
ence solution, in order to produce better error estimations. If one had only used the hierarchical
surpluses for error estimation, the convergence properties might have notably deteriorated, as
the author noticed on several occasions when running even small test cases in two dimensions.
However, as the overall approach is of a rather novel kind, further improvements with regard
to error- and bene�t-estimators are not unlikely to be achieved and might elevate the general
performance of the scheme. It may on the other hand be of interest to consider higher-order
quadrature rules, respectively basis functions, alongside with further error estimators described
in [10], perhaps even particularly tailored to the single-dimensional splitting strategy.
For now, one would do best to conduct further testing, especially in higher dimensions, i.e.
d > 5, as the method is expected to become increasingly potent.
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