
Ingenieurfakultät Bau Geo Umwelt

Solution Compensation Spaces and Optimal
Constraints Relaxation in Systems Design with
Application to Vehicle Dynamics.

 Marc Eric Vogt

Vollständiger Abdruck der von der Ingenieurfakultät Bau Geo Umwelt
der Technischen Universität München zur Erlangung des
akademischen Grades eines Doktor-Ingenieurs genehmigten
Dissertation.

Vorsitzender: Prof. Dr.-Ing. Kai-Uwe Bletzinger

Prüfende der Dissertation:

1. Prof. Dr. Fabian Duddeck

2. Prof. Dr. Markus Zimmermann

3. Prof. Dr. Karsten Urban

Die Dissertation wurde am 26.07.2019 bei der Technischen Universität
München eingereicht und durch die Ingenieurfakultät Bau Geo
Umwelt am 28.11.2019 angenommen.

Preface

This thesis is based on the results obtained during my time as a PhD student. Be-
tween the years 2015 and 2019 I was involved in a joint research project between the
Technical University of Munich (TUM) and the BMW Group as a member of both the
TUM Graduate School and the BMW ProMotion Program in Munich. At the TUM I
participated mainly in the activities of the research group of Prof. Dr.-Ing. habil. Fabian
Duddeck, Associate Professorship of Computational Mechanics, while at BMW I worked
in the development department for driving dynamics, preliminary design.
I would like to express my deep gratitude to my supervising professor Fabian Duddeck

for giving me the opportunity to join his research group, providing me support whenever
needed and enriching my work with a critical review and fruitful discussions.
I would like to express my deep appreciation to Dr. Martin Wahle for supervising

me at BMW Group. I particularly appreciate that he gave me the opportunity to do
research in an industrial environment and that he shared his extensive knowledge of
driving dynamics and method development with me. Furthermore, I would like thank
him for the numerous valuable discussions we have had and still have together.
I would also like to express my deep gratitude to Prof. Dr. Markus Zimmermann

who shared his expertise in Solution Spaces, in which he has done extensive research in
recent years. I particularly appreciate the huge amount of time and e�ort he invested
into supporting my work. The numerous valuable discussions we had have contributed
decisively to the ideas presented in this thesis.
I would like to thank Prof. Dr. Karsten Urban, Ulm University, for agreeing to be

part of the committee.
Furthermore, I would like to thank Dr. Johannes Fender, for being my mentor during

my time as a PhD student.
I would also like to thank all of my colleagues at the TUM as well as at BMW for

supporting me with helpful discussions, technical support and encouragement. Special
thanks to my colleagues, Marco Daub, Stefan Erschen, Christian Schulz, Jan-Dominik
Korus, Mario Weinberger, Jens Wimmler and Amir Zare.
I would like to thank my family and friends for their valuable comments, and would like

to express my deepest gratitude to my wife Anna Vogt and my two wonderful children,
Mila and Neo, for their unwavering support.
I would also like to thank Anja Lindner for proof reading my thesis and her valuable

comments.
Last but not least, I would like to emphasize the work done by the numerous interns

and Master candidates, special thanks to Rilian Shao and Florian Cyril Stutz. Without
their work this thesis would not have been possible.

Marc Eric Vogt
Munich, 2019

Marc Eric Vogt

Abstract

In the early development phase of a complex product, many design parameters are
subject to uncertainty due to lack-of-knowledge. This uncertainty can be dealt with using
so-called Solution Spaces. Solution Spaces are sets of good designs that by de�nition reach
all design goals. By considering sets of designs rather than a single design, uncontrollable
variations of component properties that are typical in the early stages of systems design
are allowed. Box-shaped Solution Spaces can be expressed as the Cartesian product of the
design variables' permissible intervals. These intervals serve as decoupled target regions
and can be interpreted as component requirements. Existing algorithms optimise the
size of box-shaped Solution Spaces. Unfortunately, the sizes of the permissible intervals
of crucial design variables are often not large enough to encompass all uncertainty and
to ensure feasibility. In extreme cases not even a single feasible solution can be obtained.
A new approach called Solution-Compensation Spaces (B-corridors) is introduced in

order to enlarge the permissible intervals. The design variables are divided into a set
of early-decision (A-variables) and a set of late-decision variables (B-variables). Early-
decision variables are associated with intervals on which they may assume any value in
order to encompass uncertainty due to limited controllability. Late-decision variables
are controllable and therefore associated with intervals on which they can be adjusted
to any speci�c value. The Cartesian product of these intervals is called a Solution-
Compensation Space. It has the property that for all values of early-decision variables
within their permissible intervals there exists at least one set of late-decision variable
values within their intervals such that the resulting design reaches all design goals.
In case the resulting interval sizes are still too small, Optimal Constraint Relaxation for

Solution Spaces or Solution-Compensation Spaces can be applied. This newly introduced
method is able to determine the minimal set of changes which needs to be applied to the
constraints in order to make any arbitrarily strict Solution Space problem feasible. The
set of proposed changes to the constraints is optimal with respect to a target function
that weighs the relaxation of the di�erent constraints and aims to relax each constraint
as little as possible.
These approaches are applied to a chassis design problem. It is shown that by applying

the Solution-Compensation Space approach, the permissible intervals of the early-design
variables can be increased signi�cantly. In case these intervals remain too small, we can
obtain the desired interval size by applying Optimal Constraint Relaxation for Solution
Spaces or Solution-Compensation Spaces.

2 Advanced Solution Space Methods in Systems Design.

Marc Eric Vogt

Zusammenfassung

In der frühen Entwicklungsphase eines komplexen Produkts sind viele Designparameter
aufgrund von fehlendem Wissen mit Unbestimmtheiten behaftet. Diese Unbestimmthei-
ten können mit sogenannten Lösungsräumen behandelt werden. Lösungsräume stellen
eine Menge an guten Designs dar, welche per De�nition alle Designziele erreichen. Die
Betrachtung von vielen Designs ermöglicht es, nicht-kontrollierbare Variationen der Bau-
teileigenschaften, wie sie in den frühen Phasen des Systementwurfs typisch sind, abzu-
fangen. Boxförmige Lösungsräume können als das kartesische Produkt aus zulässigen
Intervallen für Designvariablen ausgedrückt werden. Diese Intervalle dienen als entkop-
pelte Zielregionen und können als Komponentenanforderungen interpretiert werden. Be-
stehende Algorithmen optimieren die Gröÿe von boxförmigen Lösungsräumen. Leider ist
die Gröÿe der zulässigen Intervalle für entscheidende Auslegungsvariablen oft nicht groÿ
genug, um alle Unbestimmtheiten abzudecken und die Machbarkeit zu gewährleisten. Im
Extremfall kann nicht einmal eine einzige umsetzbare Lösung gefunden werden.
Deshalb wird eine neue Methode eingeführt, die sogenannten B-Korridore (Solution-

Compensation Spaces), um die zulässigen Intervalle zu vergröÿern. Dafür werden die De-
signvariablen in einen Satz von Typ-A- und Typ-B-Variablen unterteilt. Typ-A-Variablen
sind zulässigen Intervallen zugeordnet, in denen sie aufgrund ihrer begrenzten Kontrollier-
barkeit jeden beliebigen Wert annehmen dürfen. Typ-B-Variablen sind kontrollierbar und
damit Intervallen zugeordnet, in denen sie auf einen bestimmten Wert eingestellt werden
können. Diese Intervalle werden als B-Korridore bezeichnet. Dieser hat die Eigenschaft,
dass für alle Werte der Typ-A-Variablen aus ihren zulässigen Intervallen mindestens ein
Satz von Typ-B-Variablen aus ihren Intervallen existiert, so dass das resultierende Design
alle Designziele erreicht.
Falls die resultierenden Intervallgröÿen immer noch nicht groÿ genug sind, kann die

Methode der Optimalen Relaxation der Randbedingungen (Optimal Constraint Relaxati-
ons) angewendet werden. Diese neu eingeführte Methode ist in der Lage, einen minimalen
Satz von Änderungen an den Anforderungen zu bestimmen, um jedes beliebig strenge
Lösungsraumproblem umsetzbar zu machen. Der Satz von Änderungen ist optimal in Be-
zug auf eine Zielfunktion, die die Relaxation der verschiedenen Anforderungen gewichtet
und darauf abzielt, jede Anforderung so wenig wie möglich zu entspannen.
Diese Methoden werden auf ein Fahrwerkdesignproblem angewendet. Es wird gezeigt,

dass durch die Anwendung des B-Korridoransatzes die zulässige Intervallgröÿe für die
Typ-A-Variablen deutlich erhöht werden kann. Falls diese Intervalle immer noch zu klein
sind, bringen wir sie auf die gewünschte Länge, indem wir die Methode der Optimalen
Relaxation der Randbedingungen anwenden.

Advanced Solution Space Methods in Systems Design. 3

Marc Eric Vogt

Contents

1 Introduction ... 5

1.1 Context and motivation .. 6
1.2 Overview of the methods... 9
1.3 Structure of the thesis .. 10
2 State of the Art .. 12
2.1 Solution Spaces .. 13
2.2 Chassis design with box-shaped Solution Spaces .. 16
2.3 Infeasible problem statements .. 19
3 Research Questions .. 24
3.1 De�ciencies of the state of the art methods ... 25
3.2 Aims and Objectives of this thesis.. 32
4 Solution-Compensation Spaces .. 35
4.1 Idea, overview, and problem statement ... 36
4.2 Linear Performance Constraints ... 39
4.3 Non-linear Performance Constraints ... 52
5 Optimal Constraint Relaxation for Solution Spaces 62
5.1 Idea, overview, and problem statement ... 63
5.2 Linear Performance Constraints ... 66
5.3 Non-linear Performance Constraints ... 69
5.4 Determination of the weighting factors ... 73
6 Optimal Constraints Relaxation for Solution-Compensation Spaces 76
6.1 Idea, overview, and problem statement ... 77
6.2 Linear Performance Constraints ... 80
7 Application and Comparison ... 88
7.1 Exemplary chassis design problem.. 89
7.2 Solution-Compensation Spaces... 94
7.3 Optimal Constraint Relaxation for Solution Spaces .. 102
7.4 Optimal Constraint Relaxation for Solution-Compensation Spaces 106
8 Conclusion ..117
8.1 Critical Re�ection .. 118
8.2 Outlook .. 119

4 Advanced Solution Space Methods in Systems Design.

Marc Eric Vogt

Chapter 1

Introduction

In this chapter, we discuss the motivation behind this thesis, which is the aim to increase
�exibility and robustness during the early stages of complex product design, such as
the design of passenger vehicles. We brie�y explain fundamental concepts such as the
decomposition of technical systems, the V-model approach, target cascading as well as
the term robustness, as it is used in this thesis. The aim of the thesis is outlined and the
methods used to reach that aim are listed. At the end of the chapter, an overview of the
structure of this thesis is given.

Advanced Solution Space Methods in Systems Design. 5

Marc Eric Vogt

1.1. Context and motivation

The performance of a vehicle with respect to driving dynamics depends on the prop-
erties of several interacting components, such as tyres, suspensions, and dampers. A
major challenge is that many design variables in�uence di�erent vehicle characteristics
at the same time. The complexity grows steadily as both, the number of derivatives and
the cost-driven necessity for high communality between the vehicle derivatives increase.
Especially in the early development phase, many constraints remain subject to large
uncertainties due to the lack of knowledge about the �nal state of the complex vehicle
architecture [82]. Hence, lack-of-knowledge or epistemic uncertainty in technical systems
needs to be considered. Classical design approaches like incremental and iterative devel-
opment optimise a single design in order to meet all requirements [43]. Unfortunately, it
is not guaranteed for these methods to converge and the use of it is "expensive, ine�cient
and vulnerable to uncertainty and variability" [55]. An e�ective way to cope with these
problems as well as to treat the uncertainty are set-based design approaches. These seek
permissible sets of designs. One example is seeking intervals for the design variables
rather than a single optimal solution, e.g. [29, 57, 62]. Considering sets rather than one
single design allows for variations of component properties later in the development.

This thesis focuses on the computation of a certain type of set-based designs, so-
called Solution Spaces. The idea to compute box-shaped Solution Spaces was already
introduced in 1983 by Swaney & Grossmann [68]. They used the method to analyse
�exibility in chemical process design. Since the complete Solution Space can have any
arbitrary non-linear, non-convex, non-connected shape and is often high-dimensional,
it is di�cult to compute and describe it. Hence, box-shaped Solution Spaces can be
computed instead. As shown in �gure 1.1, box-shaped Solution Spaces decouple the
design variables and hence serve as independent target regions, which can be interpreted
as component requirements. This enables a simultaneous and distributed, i.e. at least
partially decoupled, component development and leads to an e�cient design process
that is also robust to variations. An important milestone for the success of Solution
Spaces within the automotive design was the stochastic algorithm published in 2013 by
Zimmermann & von Hössle [83] and Gra� [30]. It enabled the optimisation of box-shaped
Solution Spaces with respect to their size for any arbitrarily non-linear high-dimensional
system. Zimmermann & von Hössle applied a stochastic approach, which optimises a
solution box with respect to a size measure µ. The box is required to have at least a
speci�ed fraction of good designs. A good design is de�ned here as a design, which does
not violate any constraints, such as performance requirements. Whether the required
fraction of good designs is reached is tested by Monte-Carlo (MC) sampling. Recently,
new approaches, which use classical optimisation instead of a stochastic approach to
derive the optimal box for general linear problems, have been developed [21, 22]. These
approaches ensure that each design inside the box is a good design.

A major challenge for Solution Spaces has been that in real-world applications the
sizes of permissible intervals for crucial design variables are often not large enough to
encompass all uncertainty and to ensure feasibility. In short, the optimised Solution

6 Advanced Solution Space Methods in Systems Design.

Marc Eric Vogt

Figure 1.1 Complete solution space (grey area) and a box-shaped Solution Space (blue box) for a
two-dimensional problem.

Space is simply too small [74]. In some cases, the constraints are such that not even a
single design exists which ful�ls all design goals.
System decomposition. Each complex system can be decomposed into subsystems

and the subsystems can be decomposed into components [20]. Figure 1.2 shows the
system, the subsystem as well as the component level for a passenger vehicle. Each unit
on every level has di�erent properties like mass, cost, length, sti�ness, etc. In chapter
7, a typical early phase engineering problem for chassis design is introduced where the
axles shall be optimised. The axle is a subsystem of the vehicle. In order to optimise the
axle, properties of the subsystem components like tyre, anti-roll bar, and bump stop are
modi�ed.
V-model. The V-model considers requirements on the objective quantities �rst and

breaks these down from the system level to the subsystem and the component level. This
is visualised by the left leg of the V in �gure 1.2. After developing the components with
respect to their requirements each component is evaluated in order to check if it ful�ls
the requirements on each level. This is visualised by the right leg of the V. The V-
model enables a cascading development process, which is more e�cient than the classical
iterative development process. In addition, the V-model does not presume an initial
solution, which is particularly valuable in revolutionary design where the entire design
space should be considered [82].
Target cascading. Complex systems include a huge number of connected design

variables, which are often subject to uncertainty. This makes it di�cult to develop the
top-down requirements, which are necessary to apply the V-model. A computational ap-
proach to derive quantitative requirements for components based on system requirements
is given by target cascading [38]. The classical target cascading approach computes a
target point for the component requirements. This means that each component property
has to assume a speci�c value. In the industry, this approach is usually di�cult to realise
since di�erent departments are involved in designing the system. Each department will
optimise their own design objectives while ignoring most other design objectives. This
leads to the classical point-based design process visualised in �gure 1.3 (a). The chassis

Advanced Solution Space Methods in Systems Design. 7

Marc Eric Vogt

Figure 1.2 The classical development approach and the design according to the V-model [82]. Arrows
show the shift of focus during the development.

design process is considered as an example here. It starts with an initial design (blue
box), which is then iteratively modi�ed to ful�l the requirements with respect to ride,
driving dynamics, structural durability, and geometrical integration. Since the require-
ments are in con�ict with each other (visualised by the di�erent directions of the arrows),
the �nal result will be a compromise.
For the purpose of this thesis, target regions are computed rather than a single tar-

get design. The idea is visualised in �gure 1.3. Each department speci�es their speci�c
requirements. The intersection of all requirements (green box) is called the complete
solution space. Each design point included is a design that ful�ls all performance re-
quirements (good design). Hence, the Solution Space approach circumvents an iterative
design process and will result in a good design.
Robustness and robustness constraints. In this thesis, we consider the early

design phase; therefore, lack of knowledge due to uncontrollable variations of system,
subsystem, and component properties needs to be taken into account. One option to
cope with this lack of knowledge is to compute su�ciently large Solution Spaces. As
long as unforeseen changes to properties happen within their target regions, a redesign
of the system is not required. We call this ability of a system to remain stable when
unforeseen changes occur robustness. This de�nition is in accordance with Wieland &
Wallenburg who de�ne robustness as "the ability of a system to resist change without
adapting its initial stable con�guration" [78]. Note that no universally accepted de�nition
for robustness exists. A more classical de�nition is given by Duddeck & Wehrle, who
describe robustness as the system feature, which assures that performance loss is small
with respect to design variations [15]. In this thesis, we introduce so-called robustness
constraints. These require a speci�c minimal interval size for certain design variables.
This minimal interval size is expected to be su�ciently large to compensate for any
uncontrollable design variations, which might occur during the development process, and
hence ensures that no iterative redesign of the entire system is necessary.
Aim of the thesis: In order to make the Solution-Space method viable for any

8 Advanced Solution Space Methods in Systems Design.

Marc Eric Vogt

(a) (b)

Figure 1.3 (a) Example for the classical point-based design process applied to chassis design. The
blue box represents the starting point (e.g. a predecessor design) (b) Target regions from di�erent
disciplines. The green area represents the complete Solution Space [53].

real-world application with an arbitrarily rigorous set of constraints, new approaches are
introduced in this thesis. These new approaches enlarge the feasible intervals for crucial
design variables.

1.2. Overview of the methods

In this thesis, di�erent approaches to compute set-based designs are either reviewed or
newly introduced. Table 1.1 gives an overview of all methods considered. The methods
are divided by their applicability to systems with non-linear constraints and their results.
Classical box-shaped Solution Spaces are state of the art and the foundation for all of
the new ideas introduced in the thesis. Therefore, they are reviewed in chapter 2.
Solution-Compensation Spaces (SCSs) were �rst introduced in [74] by the author of

this thesis. The idea behind Solution-Compensation Spaces is to de�ne two subsets of
variables: early- and late-decision variables. The interval sizes for all early-decision vari-
ables and hence their robustness are increased compared to classical box-shaped Solution
Spaces. The late-decision variables are used to compensate.
Optimal Constraint Relaxations (OCRs) is a method, which is commonly used to

examine optimisation problems where not a single solution exists. A set of minimal
changes to the constraints can be determined to make the problem feasible [7]. This
idea is modi�ed so that it is applicable to optimisation problems, which aim to �nd a
set of results rather than just a single design, such as Solution Spaces and Solution-
Compensation Spaces.

Advanced Solution Space Methods in Systems Design. 9

Marc Eric Vogt

1.3. Structure of the thesis

In this thesis, state of the art methods are reviewed, de�ciencies of state of the art
methods are highlighted, new approaches to compute set-based designs are introduced,
an application concerning chassis design is examined and conclusions are found. In
particular the chapters include:

Chapter 1 An outline is given as to why Solution Spaces are recommended in the early phases
of system design. Then, the motive behind increasing the size of permissible in-
tervals for design variables is explained. An overview of the methods, which are
considered in order to reach this goal is given.

Chapter 2 State of the art methods to determine set-based designs, prior work on chassis de-
sign with Solution Spaces as well as methods to treat infeasible problem statements
are reviewed. All methods and applications introduced in this thesis are built on
the methods described in the reviewed publications.

Chapter 3 The chassis design problem examined in this thesis is brie�y introduced. It is shown
that none of the state of the art methods is able to solve the problem described
to a su�cient extent. Based on this fact, the aims of the thesis are derived. New
methods, which aim to �nd larger feasible regions for component properties are
sought.

Chapter 4 Solution-Compensation Spaces (SCSs) are introduced. Solution-Compensation Spaces
are an evolution of Solution Spaces and are able to increase the ranges of the per-
missible intervals for crucial design variables. After detailing the idea and de�ning
the Solution-Compensation Space problem statement as an optimisation problem,
di�erent algorithms are introduced in order to compute Solution-Compensation
Spaces.

Chapter 5 Optimal Constraint Relaxation (OCR) for Solution Spaces is introduced. The goal
of this method is to �nd a minimal set of relaxed constraints such that any Solution
Space problem with arbitrarily strict constraints becomes feasible. After detailing
the idea and de�ning the problem statement as an optimisation problem, di�erent
algorithms are introduced in order to compute Solution-Compensation Spaces.

Chapter 6 Optimal Constraint Relaxation (OCR) for Solution-Compensation Spaces is intro-
duced. The goal of this method is to combine the advantages of the Solution-
Compensation Space approach and Optimal Constraint Relaxation. The result is
an optimal set of relaxed constraints while considering the increased target range
based on Solution-Compensation Spaces. After detailing the idea and de�ning the
problem statement as an optimisation problem, di�erent algorithms are introduced
in order to compute Solution-Compensation Spaces.

Chapter 7 The chassis design application, which was brie�y introduced in chapter 3, is ex-
plained in detail. Then, the methods introduced in chapters 4, 5, and 6 are applied

10 Advanced Solution Space Methods in Systems Design.

Marc Eric Vogt

to the chassis design problem. It is shown that these methods compensate for the
de�ciencies of the state of the art methods and lead to satisfying solutions for the
chassis design problem. The di�erent algorithms are compared in terms of compu-
tational e�ort, accuracy, and performance with respect to their target function.

Chapter 8 A critical re�ection on whether the research questions stated in chapter 3 have been
answered is given. In the end, an outlook for the approaches introduced in this
thesis is provided, key �ndings are summarised, the main conclusions are drawn
and ideas for future research work are presented.

linear performance con-

straints

non-linear performance

constraints

Classical box-shaped So-

lution Spaces

(reviewed in chapter 2)

Vertex Tracking Algorithm
([20], see section 2.1.3)

Stochastic Solution Space Al-
gorithm
([83], see section 2.1.4)

Solution-Compensation

Spaces (SCSs)

(introduced in chapter 4)

Basic Projection Algorithm
(see section 4.2.2)
Fourier-Motzkin Elimination
(see section 4.2.3)

Stochastic SCS Algorithm
(see section 4.3.2)

Optimal Constraints Re-

laxation (OCR) for Solu-

tion Spaces

(introduced in chapter 5)

Optimal Constraint Relax-
ation for systems with linear
constraints
(see section 5.2)

Optimal Constraint Relax-
ation Algorithm for systems
with non-linear constraints
(see section 5.3)

Optimal Constraint

Relaxation for Solution-

Compensation Spaces

(introduced in chapter 6)

Bisection Algorithm
(see section 6.2.1)
Static Algorithm
(see section 6.2.2)
Shifting Algorithm
(see section 6.2.3)

�

Table 1.1 Overview of the methods included in the thesis. The methods are categorised
column-wise according to their applicability to systems with linear or non-linear performance
constraints. The methods are categorised row-wise according to their result.

Advanced Solution Space Methods in Systems Design. 11

Marc Eric Vogt

Chapter 2

State of the Art

As stated in chapter 1, a strong motivation to apply set-based design approaches in the
early phases of complex product development exists. In this chapter, we review classical
Solution Spaces, which are applied in order to determine set-based designs expressed as
intervals. An overview of publications concerning chassis design with Solution Spaces is
given. Finally state of the art approaches on how to treat infeasible problem statements
are reviewed.

12 Advanced Solution Space Methods in Systems Design.

Marc Eric Vogt

2.1. Solution Spaces

The Solution Space method is a set-based design method. A Solution Space is a set of
good designs. A good design is de�ned here as a design, which does not violate any
constraints such as performance requirements.

In the following, set-based design is introduced as a method to design complex prod-
ucts. A speci�c focus is set on box-shaped Solution Spaces, which are explained in detail.
Therefore, two state of the art algorithms to compute box-shaped Solution Spaces are
reviewed: Stochastic Solution Space optimisation as well as Vertex Tracking (VT). In the
end, a method on how to represent high-dimensional Solution Spaces in lower dimensions
is reviewed.

2.1.1. Set-based design

The modern meaning of set-based design was mainly coined by Ward, who published
his �rst paper on it in 1989 [75]. In 1999, Sobek et al. drew signi�cant attention in
the scienti�c community when they published their famous article Toyota's principles of
set-based concurrent engineering [63]. Following this article, a plethora of publications
concerning set-based design have been published, e.g. [52, 56, 62, 76].

In classical set-based design approaches, an initial feasible region is derived. According
to certain optimality criteria, the size of the initial feasible region is iteratively decreased
until only one single optimal design is left. According to Rekuc et al., it is crucial
to eliminate as many feasible designs as possible during the early phases of product
development in order to decrease the number of alternatives and hence decrease the
complexity of the development process [56]. The Solution Space approach follows a
di�erent idea. Instead of searching for a unique design, the size of Solution Spaces
is maximised. The Solution Space approach "seeks �exibility for integration of many
requirements and encompassing uncertainty" [82]. An in-depth comparison of classical
set-based design and Solution Spaces can be found in [24].

2.1.2. Box-shaped Solution Spaces

Solution Spaces are areas of good designs, which can have an arbitrarily non-linear, non-
convex, and non-connected shape (see �gure 1.1). A good design is de�ned here as a
design, which does not violate any constraints such as performance requirements. In this
thesis, all requirements will be treated as constraints. Especially in high dimensions,
the area an Solution Space covers is di�cult to compute and is di�cult to describe.
Therefore, Zimmermann & von Hössle [83] propose box-shaped Solution Spaces. Their
aim is to �nd large box-shaped sets of good designs. Box-shaped Solution Spaces can
be expressed as a product of intervals and thus allow the decoupling of design variable
requirements. This enables a simultaneous and distributed component development and
leads to an e�cient design process that is also robust to variations.

Advanced Solution Space Methods in Systems Design. 13

Marc Eric Vogt

De�nitions

The set of considered design variables is called x:
Design points or designs are represented by the vector

x = (x1, x2, . . . , xd) ∈ Rd, (2.1)

where d is the dimensionality of the problem. For the �nal design manufacturability is
crucial. In this thesis, we assume that the design space Ωds is always chosen such that
all included designs are manufacturable. Only designs x ∈ Ωds, which are part of the
design space are considered.
The response of the system at x is given by

z = f(x) f : Rd → Rm (2.2)

where f is the performance function and m is the number of performance constraints. A
classical optimisation problem reads

maximise
x

(ϕ(x)) ϕ : Rm → R x ∈ Ωds , (2.3)

with ϕ being an appropriate objective function. By contrast, the Solution Space approach
does not seek a single design point but a set of designs described by the lower xli and the
upper xui bounds for each variable

Ω = I1 × I2 × ...× Id ⊂ Rd (2.4)

with Ii = [xli, x
u
i]. This box-shaped Solution Space is the solution of the following opti-

misation problem [83]:

Problem Statement 1.

maximise
Ω⊆Ωds

µ(Ω) (2.5a)

s.t. f(x) ≤ fc, ∀x ∈ Ω, (2.5b)

where µ(Ω) is a size measure and fc is a threshold value for the performance criteria. The
solution is the box maximising µ(Ω) while every design that is part of the box satis�es
all constraints.

Deriving Solution Space constraints from performance functions

In order to apply any Solution Space method, performance constraints f(x) ≤ fc need
to be available. According to Erschen, three common ways to derive the performance
constraints exist [20]:

• Directly from the performance function: A critical value gc is given, which
the output of the performance function z = f(x) must not exceed f(x) ≤ gc.

14 Advanced Solution Space Methods in Systems Design.

Marc Eric Vogt

• From an approximation of the performance function: In case, the perfor-
mance function is unknown or too expensive to compute, a surrogate modelling
method such as linear regression [26] or machine learning [47] can be applied in
order to compute an approximation of the original performance function z = f̃(x).
Similarly to the direct method, a critical value gc needs to be de�ned f̃(x) ≤ gc.

• From a mathematical description of the hull of the Solution Space: In-
stead of computing speci�c performance functions a classi�er can be trained. This
classi�er predicts whether a certain design ful�ls the considered performance con-
straints or not. Classical methods, which can be applied to derive such a classi�er
are Support Vector Machine (SVM) [31] or convex hull algorithms [6]. The dis-
advantage of this method is that a new classi�er has to be trained whenever the
critical performance value changes.

Optimising Box-shaped Solution Spaces

As explained in the introduction, we aim to maximise the size of Solution Spaces. When
optimising the size of box-shaped Solution Spaces, generally two di�erent types of opti-
misation approaches are distinguished:

1. Gradient-based approaches, which aim to optimise the solution of problem
statement 1, such as Vertex Tracking. The result is a box-shaped Solution Space
including 100% good designs.

2. Stochastic approaches, which aim to optimise the solution of a relaxed problem
statement. The result is a box-shaped Solution Space, a likelihood and a fraction.
The box-shaped Solution Space includes at least the speci�ed fraction of good
designs with the speci�ed likelihood.

2.1.3. Gradient-based Solution Space Algorithms

Recently new approaches were developed, which use classical optimisation instead of a
stochastic approach to derive the optimal box for general linear problems [21, 22]. These
approaches ensure that each design inside the box is a good design.
Vertex Tracking, as introduced by Erschen [21], is a very versatile gradient-based

Solution Space algorithm since it can be applied to any problem with linear performance
constraints and to certain problems with non-linear performance constraints. Instead
of checking all points inside the box, only certain critical vertices are checked. This
way, the in�nite number of constraints from problem statement 1 can be reduced to a
�nite amount. Note that the number of constraints in problem statement 1 is considered
in�nite. Despite the fact that Ω is a bounded space with a �nite number of dimensions
Ω includes an in�nite number of distinct designs x and each design x must ful�l the
performance constraints f(x) ≤ fc.
The idea of Vertex Tracking is illustrated in �gure 2.1. As long as a single critical

vertex (blue dot) ful�ls the performance constraint, each design inside the box ful�ls this

Advanced Solution Space Methods in Systems Design. 15

Marc Eric Vogt

performance constraint. For each constraint, such a critical vertex can be found. Vertex
Tracking is explained in detail in [20].

Figure 2.1 Example for Vertex Tracking. The grey area represents the complete solution space and
the blue box represents a box-shaped Solution Space.

2.1.4. Stochastic Solution Space Algorithm

The stochastic Solution Space algorithm proposed by Zimmermann & von Hössle opti-
mises a solution box with respect to the size measure µ and requires it to have at least
a speci�ed fraction of good designs, denoted by a [83]. Whether the required fraction is
reached is tested by MC sampling.
The following optimisation problem based on Bayesian probabilities as described in

[44] is solved:

Problem Statement 2.

maximise
Ω⊆Ωds

µ(Ω) (2.6a)

s.t. P (al < a|m,N) > 1− αc, (2.6b)

where N is the number of MC sample designs x ∈ Ω, m is the number of good sample
designs x ∈ Ω, f(x) ≤ fc, al is the lower boundary of the con�dence interval and 1− αc
is the con�dence level.

2.2. Chassis design with box-shaped Solution Spaces

The Solution Space method has been applied to a variety of industrial problems: chassis
design [16, 17, 18, 20, 49, 73, 74, 84], crash design [13, 22, 24, 41, 83, 84], front rail design
[39] as well as chemical process design [68].
In the following, we explain why it is bene�cial to apply box-shaped Solution Spaces in

chassis design and why di�erent types of algorithms are required to compute box-shaped
Solution Spaces for di�erent industrial applications.

16 Advanced Solution Space Methods in Systems Design.

Marc Eric Vogt

2.2.1. Advantages of box-shaped Solution Spaces for chassis design

Zimmermann & von Hössle [83], Eichstetter [17, 18], and Erschen [20] point out that the
chassis design process with box-shaped Solution Spaces has the following advantages:

• Requirements on the system level, which are provided as lower or upper thresholds
w.r.t. some properties of the system, can be expressed as permissible intervals on
the component level. This enables a development process in accordance with the
V-model (see �gure 1.2). In addition, all requirements on the component level are
decoupled. As such, a cooperative design process is possible. Di�erent groups are
able to develop the details of a component simultaneously and independently.

• Computing intervals for the design variables rather than a single design provides
space for uncertainties. This is of particular importance for uncertainties, which
arise due to lack of knowledge since it is impossible to describe these uncertainties
with a speci�c probability distribution. Note that it is important to maximise the
size of the intervals for the design variables, since a larger interval provides more
robustness and �exibility (see section 1.1).

• Intervals for design variables enable a simple visualisation and understanding of the
resulting Solution Space (e.g. �gures 3.1, 3.2, 3.3). This is especially important in
high dimensions.

• It is possible to consider further requirements without a complete redesign of the
system. This can be easily achieved by computing the common space of di�erent
Solution Spaces.

In case new requirements are added, a new Solution Space is computed. It has the
property that each design included ful�ls all new requirements. Then, a common
space with the original Solution Space is derived by computing the overlap of
each interval. The result is a new Solution Space, which ful�ls all old and new
requirements.

• The centre of the box-shaped Solution Space can be determined as the most reliable
design, since the distance to the edges of the box is maximised. Keep in mind that
outside the box, designs might fail w.r.t. the requirements.

• It is simple to consider robustness towards an uncontrollable variable. In case an
uncontrollable variable is part of the system, an interval with a speci�c lower and
upper bound is considered. When optimising the box-shaped Solution Space, this
variable is treated as a normal design variable, with the only di�erence being that
additional constraints are set, which keep the lower and upper bound of the interval
at their initial values.

• Product family design is enabled by box-shaped Solution Spaces. When the in-
tervals of the Solution Spaces of di�erent vehicles overlap it is an indication that

Advanced Solution Space Methods in Systems Design. 17

Marc Eric Vogt

communality is possible (particular components can be shared between the vehi-
cles). By superposing the Solution Spaces of multiple vehicles, communality can be
optimised such that a minimal number of di�erent components is necessary. This
leads to a faster and more cost-e�cient development process [64].

2.2.2. Application of box-shaped Solution Spaces in chassis design

compared to crash design

In recent years, two of the main �elds where Solution Space methods have been applied
are chassis design [16, 17, 18, 20, 49, 73, 74, 84] and crash design [13, 22, 24, 41, 83,
84]. From a mathematical standpoint, there is no di�erence between the requirements
of the two areas. Each time a set of parameters x ∈ Rd, a design space Ω and a set of
constraints f(x) ≤ fc, f : Rd → Rm is given. Each time problem statement 1 needs to be
solved to �nd a box-shaped Solution Space. Still, the algorithms used are often di�erent.
This is due to the following reasons:

• The number of constraints m is usually a lot higher in crash design than in chassis
design.

In chassis design, it is possible to assess the performance of a design based on
characteristic values of the output curves, which are generated by the model. Such
characteristic values usually represent the maximum, the minimum or the gradient
at a speci�c location (examples are shown in table 3.2). Hence, the relevant infor-
mation of an entire graph can be condensed to a couple of values or in some cases
even just a single value. In real world applications, the total number of constraints
m is usually below 100.

When crash design is combined with solution spaces, the so-called direct method is
often used. In this case, the output of the models are force-deformation curves [22].
Modelling forces as design parameters is a special feature of crash design. Usually,
the relevant information of the force-deformation curves cannot be condensed to
a single value. Instead Fender proposes to divide the curves into segments. For
each segment a lower and an upper boundary is determined [24]. Depending on the
re�nement of the segments this leads to a number of constraints in the magnitude
of m = 1000.

• The use of non-linear models with low computational e�ort is common in chassis
design but not in crash design.

In chassis design it is common to use non-linear models, which approximate the
results of the full-scale �nite-elements models really well and are much faster to
compute. Such models are white box models, which are derived based on physical
relations. The most famous example is the two-track-model, e.g. [32].

In crash design also simpli�ed non-linear models exist. But these models can usually
only be applied to very speci�c crash scenarios and are hence not as �exible as their
counterparts in chassis design. In [23] a method to derive simpli�ed models to assess

18 Advanced Solution Space Methods in Systems Design.

Marc Eric Vogt

crashworthiness is introduced. Currently, it is only suitable for very speci�c load
cases. Further work can be found in [10, 42, 65].

Consequently, in crash design gradient-based algorithms, which evaluate linear systems,
are preferred [22, 24]. The derivation of high-dimensional Solution Spaces on full-scale
�nite-element models would be too time-consuming. For speci�c load cases stochastic
approaches to derive Solution Spaces on simpli�ed models are applied [22, 83].
Generally, in chassis design stochastic Solution Space algorithms, which evaluate non-

linear systems are preferred [16, 74, 84]. The models are fast enough to allow a high
number of function evaluations. This way any error, which would result from linearisa-
tion, is prevented. If very quick results are warranted, it can still be useful to apply the
gradient-based Solution Space algorithms to linearised models. Note that in special cases
the gradient-based approaches are also applicable to non-linear systems [20]. In these
cases, gradient-based approaches are usually preferred since they are deterministic and
guarantee that only good designs are included.

2.3. Infeasible problem statements

As introduced in section 2.1.2, in order to determine an Solution Space, requirements
in the form f(x) ≤ fc, f : Rd → Rm need to be available. These requirements are
derived on the system level and relate to costumer-relevant properties. Unfortunately,
sometimes the requirements are such that it is impossible to optimise even a single design
point inside the design space, which ful�ls all requirements x ∈ Ω, f(x) ≤ fc.
In the following, we introduce aspects from Requirements Engineering as a way to

de�ne, document and maintain requirements. Then, we introduce methods to treat
infeasible problem statements.

2.3.1. Requirements Engineering

De�nition of requirements

Di�erent de�nitions for requirements can be found in the literature. A classical de�nition
is given by Lindemann, who de�nes requirements as demanded functions or properties of a
product. These functions and the properties are derived according to demand, boundary
conditions and restrictions [45]. Zimmermann provides a more generalised de�nition,
which is not speci�c to product design: Requirements are the relation of an attribute
and a value that is desired. Satisfying a requirement is the condition to have reached
the design goal. A requirement is typically expressed as an attribute and a target value
[81]. In this thesis requirements are associated with critical performance values. Hence
the more general de�nition according to Zimmermann is used.

Types of requirements

According to Pohl, three di�erent types of requirements exist [54]:

Advanced Solution Space Methods in Systems Design. 19

Marc Eric Vogt

• Functional requirements de�ne functions to be provided by the system. In
most industrial applications, the functional requirements are ful�lled because of a
prede�ned architecture. For example, in chassis design we usually apply a very
similar set of components: 4 tyres, 4 dampers, 4 bump stops, 2 axles, etc. The
combination of those components will result in a chassis, which ful�ls the functional
requirements.

• Quality requirements de�ne qualitative characteristics that the system should
have. Typically, quality requirements refer to the performance, availability, reli-
ability, scalability, or portability of the system. In chassis design, the degrees of
freedom are the component properties, such as the sti�ness of a damper. The de-
sign goal is to optimise these component properties such that quality requirements
are ful�lled.

• Boundary conditions are organisational or technological speci�cations that re-
stricts the way in which the system can be realised. In chassis design, the boundary
conditions usually dictate the design space and hence the intervals in which the de-
sign variables can be adjusted. Note that this type of condition is called a constraint
within the mathematical community.

Pohl's distinction of requirements mainly focuses on physical products. For software
products numerical requirements should be added. These can be categorised as a sub-
group of quality requirements. Typical numerical requirements are accuracy and e�-
ciency. In addition, Pohl does not consider requirements derived from corporate strate-
gies such as the representativeness and the relevance of a product.

Requirement speci�cations

Requirement speci�cations change during product development: new requirements are
added, requirements that have already been included change, or they even disappear.
New requirements arise, for example, when a competitor launches a new product on the
market that must be taken into account. It is also possible for the customer to change
their ideas and thus their requirements for the product [45]. Changes of requirements
create uncontrollable variations of the system and can hence be categorised as lack of
knowledge uncertainties. As introduced in section 1.1, Solution Spaces are applied in
this thesis to cope with lack of knowledge.

Requirement dependencies

Often di�erent requirements have dependencies; hence, they are coupled. These de-
pendencies do not refer to a direct relation between the requirements but indicate that
reaching a speci�c requirement might a�ect the satisfaction of another requirement. As
visualised in �gure 2.2, three types of dependencies can be di�erentiated [45]:

• Requirement dependencies are classi�ed as supportive, when optimising the sys-
tem properties such that the �rst requirement is ful�lled also improves the system

20 Advanced Solution Space Methods in Systems Design.

Marc Eric Vogt

(a) dependent (b) dependent (c) dependent (d) independent

Figure 2.2 2d-examples for the di�erent types of requirements. The grey area shows the complete
Solution Space. The arrows represent the normals of the constraints.

with respect to the second requirement. An example for this would be a pair of
performance constraint hyper-planes where the normals are identical. A simple
2d-example is given in �gure 2.2a.

• Requirement dependencies are classi�ed as competing, when optimising the sys-
tem properties such that the �rst requirement is ful�lled deteriorates the system
with respect to the second requirement. An example for this would be a pair of
performance constraint hyper-planes where the normals are subtended and point
at each other. A simple 2d-example is given in �gure 2.2b.

• Requirement dependencies are classi�ed as exclusive, when it is impossible to ful�l
both requirements at the same time. Note that exclusive requirements automat-
ically lead to an infeasible problem statement. An example for this would be a
pair of performance constraint hyper-planes where the normals point away from
each other and the hyper-planes do not intersect within the design space. A simple
2d-example is given in �gure 2.2c.

In addition, requirements can be independent:

• Requirements are classi�ed as independent, when the system properties, which
in�uence their performance are completely di�erent. A simple 2d-example is given
in �gure 2.2d.

In case of competing requirements, Lindemann proposes a weighting between them in
order to �nd an optimal design [45]. These weighting factors can be adjusted in an
iterative process in order to optimise the �nal design. This leads to the classical point-
based design shown in �gure 1.3.

2.3.2. Treatment of infeasible problem statements

In case requirements are exclusive (see �gure 2.2c), the problem statement is infeasible.
In this case the question arises: What is the smallest set of changes, which needs to be
applied to the constraints, in order to make the problem feasible?

Advanced Solution Space Methods in Systems Design. 21

Marc Eric Vogt

The smallest set of changes can be computed by reformulating the feasibility problem
as an optimisation problem [7]. This relates to the basic idea of any phase 1 technique,
which means that a constrained optimisation problem is modi�ed in order to �nd an
initial feasible solution. A typical modi�cation is to add arti�cial non-negative variables
to the constraints of the optimisation problem. The target function is formulated such
that the arti�cial variables are minimised. If all arti�cial variables reach a value of zero
the initial constraints are ful�lled and a feasible solution is found [37]. In this thesis we
execute the following steps in order to treat an infeasible problem statement:

1. Create an objective function µ(x) that measures the degree of violation of the
constraints at any given point.

2. Minimize this new objective function minµ(x), x ∈ Ω.

Chinneck [7] highlights three types of objective functions µ(x), which can be used to
measure the degree of infeasibility at any given point. They are all constructed such that
µ(x) = 0, if x is feasible and µ(x) > 0, if x is infeasible:

• Number of Infeasibilities (NINF), i.e. the number of violated constraints µ(x) = N .
A constraint f(x) ≤ fc is violated if f(x)−fc > 0. Note that for numerical purposes
in many applications constraints are counted as violated if f(x) − fc > ε where ε
is a small number like 1.0× 10−6.

• Sum of Infeasibilities (SINF), i.e. the weighed sum of deviations from violated
constraints µ(x) =

∑m
i=1 qi(fi(x)− fi,c). Negative deviations are not considered; if

a constraint is ful�lled its deviation is set to zero.

• Sum of the lengths of the feasibility vectors (SLVF), µ(x) =
∑m

i=1 |ζi(x)|. A feasi-
bility vector ζi(x) is de�ned for each individual constraint as the vector extending
from an infeasible point to its orthogonal projection on the constraint [8]. Hence,
its length equals the shortest distance from the considered point to the constraint
hyper-plane. The feasibility vector is zero for any constraint, which is ful�lled.

The result x of the newly formulated optimisation problem minµ(x), x ∈ Ω can be used
to derive the minimal set of changes required to make the initial problem statement
feasible. The idea is that each constraint, which is violated at the location of x, is
moved by ∆fc,i such that f(x) = fc + ∆fc,i. Depending on the chosen measure µ(x),
di�erent positions for x are optimal. This is visualised in �gure 2.3. The blue cross is
the result of an optimisation according to the size measure NINF. Only one constraint is
violated. The orange cross is the result of the optimisation according to the size measure
SLVF. The distance to each constraint is maximised in the input space. Hence, the �nal
result lies in the centre of the triangle. The green cross is the result of the optimisation
according to the size measure SINF. The distance to each constraint is maximised in
the output space. The optimal result lies inside the triangle. The �nal position depends
on the gradient of the performance functions f(x). In this example, the gradient of the
bottom left constraint is very steep compared to the gradient of the other constraints.

22 Advanced Solution Space Methods in Systems Design.

Marc Eric Vogt

Figure 2.3 An example for optimal designs concerning di�erent size measures: NINF, SINF, and
SLVF .

In numerical applications, both NINF and SINF su�er from the row-scaling problem
(=the output functions need to be weighed against each other). For NINF this might be
unexpected but in numerical applications the comparison between ε and the deviation is
necessary. In addition, NINF represents a discontinuous target function, which is usually
ill-suited for numerical optimisation. Even though SLVF has the desirable property
of being immune to row-scaling and has an intuitive meaning, SINF is the commonly
preferred option for numerical optimisation. This is due to the fact that for non-linear
constraints the feasibility vectors ζi(s) are very di�cult to obtain [7].

Advanced Solution Space Methods in Systems Design. 23

Marc Eric Vogt

Chapter 3

Research Questions

In this chapter, the aims and objectives of this thesis are de�ned. This is done by �rst
clarifying the context in the �eld of driving dynamics and then illustrating de�ciencies of
existing approaches. The necessity of new improved methods, presented in the subsequent
chapters, is hence illustrated.
To achieve this, an exemplary design problem is described with typical design param-

eters and functional requirements. It is shown that the corresponding state of the art
approach for Solution Spaces fails here in identifying a set of designs, which is su�-
ciently robust with respect to all relevant uncertainties. Hence, methods to optimise the
tolerance to these uncertainties are proposed in this thesis.

24 Advanced Solution Space Methods in Systems Design.

Marc Eric Vogt

3.1. De�ciencies of the state of the art methods

An engineering problem is considered here in order to motivate the aims and objectives
of this thesis. The problem considered is a typical chassis design problem in the early
stage of vehicle design. State of the art design methods are applied to �nd appropriate
solutions. It is shown that these state of the art methods are not su�cient to �nd
satisfactory solutions concerning both robustness and performance. This motivates the
new methods proposed in the subsequent chapters of the thesis.

3.1.1. Outline of the exemplary chassis design problem

For the chassis design problem, we assume that conceptional decisions concerning the
structure of the vehicle have already been made. Therefore, the genes of the car such
as mass, rear axle load, and the height of the centre of gravity are �xed. Now chassis
components need to be designed so that customer relevant properties concerning vehicle
dynamics are optimised. The chassis design problem is brie�y described in this section.
Details are found in section 7.1.
The input space is created by eight design variables listed in table 3.1. These variables

refer to tyres, suspension, bump-stop, and anti-roll bar, which all have a signi�cant
in�uence on the driving dynamics behaviour of a vehicle. The design variables µmax,
carb, and cbs are directly linked to the component properties of tyres, anti-roll bars, and
bump stops. An axle including these components is shown in �gure 7.1. The remaining
design variable hRo (roll centre height) depends on the roll centre.

Table 3.1 Overview of the design variables

variable unit part description

µmax,X µmax,Y � tyre Maximum friction coe�cient in the
tyre longitudinal/transverse axle

hRo,RA hRo,FA m axle Roll centre height at the rear/front
axle.

carb,RA carb,FA
N
m

anti-roll bar Sti�ness of the anti-roll bar at the
rear/front axle.

cbs,RA cbs,FA
N
m

bump stop Sti�ness of the bump stop at the
rear/front axle.

Three standardised driving manoeuvres, which allow for an objective and reproducible
assessment of the performance of the vehicle, are regarded here. Di�erent vehicle designs
are simulated and assessed with respect to customer relevant properties, which are objec-
ti�ed by the performance measures f(x) listed in table 3.2. All design goals are met when
the performance measures are between their lower and upper bound, i.e., f(x) ≤ fc.

Advanced Solution Space Methods in Systems Design. 25

Marc Eric Vogt

Table 3.2 Vehicle performance measures and the associated requirements represented by lower and/or
upper bounds.

plot perf. lower upper unit description, manoeuvre
colour measure bound bound (linear)

zα 20.6
[
rad/m

s2

]
Self-steering gradient, QSSC

zay 9.1
[
m
s2

]
Maximum lateral acceleration, QSSC

zFz 560.0 [N] Minimum vertical tyre force at the max-
imum lateral acceleration, QSSC

zzRA 0.009 [m] Vertical displacement of the rear part of
the car body at a speci�ed lateral accel-
eration, RAST

zzFA 0.009 [m] Vertical displacement of the front part of
the car body at a speci�ed lateral accel-
eration, RAST

zΦ 0.055 [�] Roll angle of the body while corner-
ing with a speci�ed lateral acceleration,
QSSC

zC 2.90 [�] Maximum amplitude of the frequency re-
sponse of the vehicle body when passing
a one sided road bump

zδ 4.5 [�] Maximum steering angle factor before
loss of stability, SWD

26 Advanced Solution Space Methods in Systems Design.

Marc Eric Vogt

3.1.2. Technical problem statements

The following technical problem statements typically arise in the early development stages
of chassis design:

Technical problem statement 1

Derive a set of chassis component properties, such that each design included in the set
is permissible in the sense that all performance requirements are ful�lled. In addition,
the set shall be constructed such that it provides a de�ned minimal robustness concerning
variations of the tyre and axle design variables.

The goal is to �nd a set-based design for the design variables shown in table 3.1
such that all performance constraints included in table 3.2 are met. Since we are in
the early stages of product design, we need to account for all uncertainties, which are
part of the design process [82]. Hence, a certain robustness concerning variations of
the variables must be provided. In this thesis, robustness is considered as the ability of
a system to resist change without adapting its [...] con�guration [78]. In order to meet
the additional robustness requirements, the design intervals for the maximum friction
coe�cient µmax and the roll centre height hRo need to have a certain minimum length
(see table 3.3). Changes of the variable values within these intervals can be executed
during the component design phase without the need to change the design of the entire
system. Two scenarios are considered in order to re�ect di�erent tyre requirements for
the premium and the standard tyre. Typically, additional �exibility is demanded for
the latter since more �exibility leads to larger target intervals, which leads to lower
development costs. Since both the anti-roll bar and the bump stop are from a speci�ed
set of components, their design parameters can be modi�ed in the later stages of the
vehicle design process without huge signi�cant e�ort. Hence, no additional constraint
with respect to the robustness of carb and cbs is demanded.

Table 3.3 Examples for the minimal interval sizes for axle and tyre parameters to ensure su�cient
robustness of the derived design.

µmax,X µmax,Y hRo,RA hRo,FA

scenario 1 (premium) 0.03 [�] 0.03 [�] 0.02 [m] 0.02 [m]

scenario 2 (standard) 0.06 [�] 0.06 [�] 0.02 [m] 0.02 [m]

Technical problem statement 2

Seek a set of relaxed performance constraints and derive an associated set of chassis com-
ponent properties, such that each design included in the set is permissible in the sense

Advanced Solution Space Methods in Systems Design. 27

Marc Eric Vogt

that all relaxed performance requirements are ful�lled. In addition, the set shall be con-
structed, such that it provides a de�ned minimal robustness with respect to uncertainties
associated with and axle design variables.

In case no solution to technical problem statement 1 can be found, problem statement
2 is motivated: Which is the smallest set of changes we need to make to the performance
constraints, such that technical problem statement 1 can be solved? Hence, a new relaxed
set of performance constraints is optimised. Note that the minimal robustness require-
ments (see table 3.3) still need to be considered. Typically, these requirements cannot
be relaxed. Especially tyre and axle designs are complex tasks with many uncertainties;
therefore, it is necessary to provide the amount of robustness needed to compensate for
all uncertainties.

3.1.3. Performance of state of the art methods

In the following, state of the art algorithms [4, 20, 83] are applied to the chassis de-
sign problem described in section 7.1 in order to solve the technical problem statements
formulated in subsection 3.1.2.

Performances with respect to technical problem statement 1

Figures 3.1 (a)-(d) show an initial vehicle design. This design ful�ls all performance
requirements and hence lies in the feasible area (green). Each coloured dot in the �gure
is a di�erent vehicle design. For each dimension not shown in a plot, the design variables
are chosen according to their initial design value. Green dots suggest the design ful�ls
all performance requirements. If at least one requirement is not met, the dot is coloured
di�erently. The colour then indicates which constraint is not met. For the colour-code
consult table 3.2. If multiple constraints are violated, one of their colours is chosen to
indicate that the dot represents a design that does not ful�l all performance require-
ments (bad design).

Approach (1). One approach to solve technical problem statement 1 is to construct
an Solution Space around the initial point. This is visualised in �gure 3.1. The dashed
boxes represent Solution Space, which ful�l the robustness requirements de�ned in table
3.3. As can be seen, these boxes include bad designs. Hence, applying this approach
does not solve technical problem statement 1.
Approach (2). Another approach to solve technical problem statement 1 is to op-

timise classical Solution Space. Therefore, both the results obtained by applying the
Solution Space algorithm applying VT [20] (see �gure 3.2 (a)-(d)) and the stochastic
Solution Space algorithm [83] (see �gure 3.2 (e)-(h)) are considered. For the stochastic
algorithm a con�dence interval and a con�dence level need to be speci�ed. The con�-
dence interval describes the percentage of good designs inside the Solution Space and
the con�dence level describes the likelihood that the actual percentage of good designs
lies within the con�dence interval. The size of the resulting Solution Space is heavily
in�uenced by the numbers chosen. For this example a con�dence interval of [0.97; 1.00]

28 Advanced Solution Space Methods in Systems Design.

Marc Eric Vogt

and a con�dence level of 1− αc = 95% are stipulated. This corresponds to the standard
con�guration where 100 sample points per Solution Space evaluation are su�cient [44].
In most industrial applications even more strict requirements are necessary since a chance
of more then 3% to develop a bad design is not acceptable. Stricter requirements lead
to a smaller Solution Space.
For each dimension not shown in a plot the design variables are chosen randomly from
the Solution Space. Since �gures 3.1 (a)-(d) show a focal design, the Solution Space has
zero volume and hence the boundaries are sharp since no random sampling needs to be
done in the hidden dimensions. Figures 3.2 (a)-(d) show the results of Solution Space
optimisations, therefore boundaries are fuzzy. As expected, the resulting Solution Space
of the Solution Space algorithm applying VT [20] is smaller than the result of a stochastic
Solution Space algorithm. Therefore, the Solution Space algorithm applying VT guar-
antees that 100% of the Solution Space consists of good designs, while the stochastic
algorithm is sampling-based and hence only gives a statistical statement on the amount
of good designs in the Solution Space [83]. Comparing the results of both algorithms
(black box) to the required box size (dashed black boxes), it can be seen that the sizes
of the permissible intervals are still too small. The only exception is µmax,X where the
intervals derived are large enough to encompass uncertainty to a su�cient extent for the
premium tyre (see �gure 3.2 (e)).
Approach (3). In order to further enlarge the interval size for the maximum friction

coe�cient µmax as well as the roll centre height hRo, the anti-roll bars carb and the sti�ness
of the bump stop cbs are set to a single design value. Particle Swarm Optimisation (PSO)
is used in order to determine a design xopt, which is optimal with respect to the following
target function:

minimise
x

{
max
j

fj(x)− f critj

f critj

}
. (3.1)

Where x are the design variables from table 3.1 and f critj is the upper/ lower boundary
for the j-th performance constraint taken from table 3.2. The result of equation (3.1) is
a good design and maximises the distance to the closest output constraint in the output
space. After �xing the values for carb and cbs, a classical Solution Space optimisation is
run. The results for both VT and stochastic Solution Space optimisation are shown in
�gures 3.2 (i)-(p). Even though the volume of the Solution Space further increases com-
pared to what happens for Approach 2, with the exception of µmax,X for premium tyres,
the individual interval sizes are still not large enough to ful�l the robustness requirements.
An overview of the interval sizes as well as the resulting volume of the Solution Space

for µmax and hRo for Approaches 2 and 3 is given in table 3.4. The interval sizes are
normalised with respect to the requirements of scenario 1 (µmax[1 : 0.03]; hRo[1 : 0.02m]).

Performances with respect to technical problem statement 2

Unfortunately, for the technical problem statement 1 none of the applied state of the art
methods generated an Solution Space, which satis�es the robustness requirements from

Advanced Solution Space Methods in Systems Design. 29

Marc Eric Vogt

Table 3.4 Approach (2) & (3). Normalised interval sizes (normalised with respect to requirements
of scenario 1) and the resulting volume of the Solution Space for µmax and hRo.

µmax,X µmax,Y hRo,RA hRo,FA volume

scenario 1 (premium) 1.00 1.00 1.00 1.00 1.00

scenario 2 (standard) 2.00 2.00 1.00 1.00 4.00

Approach 2 (Vertex Tracking) 1.05 0.51 0.24 0.31 0.04

Approach 2 (stochastic) 1.71 0.76 0.33 0.84 0.36

Approach 3 (Vertex Tracking) 1.73 0.77 0.75 0.65 0.65

Approach 3 (stochastic) 1.61 0.92 0.63 0.94 0.88

(a) intial design (b) initial design (c) initial design (d) initial design

Figure 3.1 Approach (1). Nominal design (black cross) and cross-sections of the complete Solution
Space (feasible designs are marked as green area) and two Solution Spaces, which ful�l the robustness
requirements with respect to scenario 1 and 2 (dashed boxes, identical for the dimensions shown in
(b)-(d)).

30 Advanced Solution Space Methods in Systems Design.

Marc Eric Vogt

Table 3.5 Approach (4). Relative amount of relaxation with respect to the performance constraints.

zα zay zFz zzRA zzFA zΦ zC zδ

scenario 1 0 0 0 +2.22% 0 +1.30% 0 -1.33%

scenario 2 0 -3.94% -1.81% +2.22% 0 +3.67% 0 -2.44%

table 3.3. Hence, the question arises: which is the smallest set of changes required, such
that technical problem statement 1 becomes feasible? For problem statements where
only a single good design is sought this question can be answered by applying classical
methods for the treatment of infeasible problem statements. For high-dimensional boxes
with non-linear constraint functions these are not applicable.
Approach (4). A basic approach to determine a set of relaxed constraints considers

all vertices of the desired Solution Space and relaxes each constraint such that each vertex
is feasible. Since Approach 3 with the stochastic Solution Space optimisation yielded the
best results so far, the surrounding dashed boxes are used as the desired Solution Space
and the values for carb and cbs are �xed at the appropriate value for this approach. The
problem is 4-dimensional, hence the Solution Space has 24 = 16 corners, which need
to be considered. For problems where all constraints are either linear or monotonically
increasing/decreasing Vertex Tracking can be applied to reduce the number of corners
which need to be considered. With Vertex Tracking onlym corners need to be considered,
where m = 8 is the total number of constraints [20]. Figure 3.3 shows the results of the
relaxed problem statement and table 3.5 shows by how much each individual constraint
has been relaxed. Even though the results might look satisfying, this method has three
severe drawbacks:

• The number of corners, which have to be checked, increases exponentially 2d with
the number of dimensions, which leads to an prohibitively high computational e�ort
in high dimensions.

• For non-linear performance constraints, it is not su�cient to only consider the
vertices since inner points of the Solution Space might be bad designs even if all
vertices are good designs.

• The constraint relaxation is most probably not minimal since the position of the
Solution Space that is chosen initially is not optimised with respect to minimal
constraint relaxation.

Advanced Solution Space Methods in Systems Design. 31

Marc Eric Vogt

3.2. Aims and Objectives of this thesis

Large Solution Space are sought in the early phases of product development since they
are able to compensate for the uncertainties, which arise due to a lack of knowledge. In
addition, large solution spaces yield �exibility for decision makers as well as robustness to
epistemic uncertainty. Hence, large solution spaces are able to prevent time consuming
and expensive iterations in the development process. In order to ful�l the requirements
with respect to the size of particular intervals of an Solution Space, so-called robustness
constraints are introduced in this thesis. They de�ne a minimal interval size for each
a�ected design variable.

As shown in section 3.1, current state of the art methods are not always able to
compute Solution Spaces of su�cient size to ful�l the robustness constraints of industrial
problems. The �rst aim of this thesis is to develop new methods, which are able to
signi�cantly increase the size of permissible intervals for crucial design variables. For
this, it is important to maintain the decoupling nature of Solution Space in order to
enable distributed development.

This is achieved by introducing Solution-Compensation Spaces. The idea is that di�er-
ent kinds of design variables can often be distinguished in a development process: early-
and late-decision variables. By delaying the speci�cation of values for late-decision vari-
ables to the later stages of the development process, increased �exibility and robustness
can be achieved with respect to early-decision variables.

Even though Solution-Compensation Spaces are able to increase the size of permissible
intervals in many industrial applications, the size of these intervals might still be too
small to compensate for all uncertainties. Therefore, the second aim of this thesis is to
develop a method, which computes a minimal set of changes applied to the performance
constraints such that the problem statement becomes feasible with respect to both, the
relaxed performance constraints and the initial robustness constraints. This is achieved
by introducing Optimal Constraint Relaxation for Solution Spaces.

The third aim of this thesis is to develop an algorithm, which is able to combine the
advantages of Solution-Compensation Spaces with the advantages of Optimal Constraint
Relaxation for Solution Spaces. Thus making any problem statement where an Solution
Space, with early- and late-decision variables as well as robustness requirements, is sought
feasible while relaxing the initial performance constraints as little as possible. This
is achieved by introducing Optimal Constraint Relaxation for Solution-Compensation
Spaces. The idea is that Solution-Compensation Spaces are computed after relaxing the
performance constraints of the initial problem statement.

32 Advanced Solution Space Methods in Systems Design.

Marc Eric Vogt

(a) VT (b) VT (c) VT (d) VT

(e) SSA (f) SSA (g) SSA (h) SSA

(i) VT+PSO (j) VT+PSO (k) VT+PSO (l) VT+PSO

(m) SSA+PSO (n) SSA+PSO (o) SSA+PSO (p) SSA+PSO

Figure 3.2 (a)-(h) Approach (2). Classical box-shaped Solution Space (black box) optimised either
with Vertex Tracking (VT) or the Stochastic Solution Space Algorithm (SSA) and an Solution Space,
which ful�ls the robustness requirements (dashed box).
(i)-(p) Approach (3). Combination of Particle Swarm Optimisation (PSO) and a classical box-shaped
Solution Space (black box) optimised either with Vertex Tracking or the SSA.

Advanced Solution Space Methods in Systems Design. 33

Marc Eric Vogt

Note that for each method developed in this thesis an algorithm is given that is ap-
plicable to full-scale vehicle dynamics problems, which can have well over 100 design
variables.

(a) basic relaxed (b) basic relaxed (c) basic relaxed (d) basic relaxed

(e) basic relaxed (f) basic relaxed (g) basic relaxed (h) basic relaxed

Figure 3.3 Approach (4). (a)-(d)/(e)-(h) An Solution Space (black box) that ful�ls the robustness
requirements for scenario 1/2 (see table 3.3) while ful�lling the relaxed performance constraints for
scenario 1/2 (see table 3.5).

34 Advanced Solution Space Methods in Systems Design.

Marc Eric Vogt

Chapter 4

Solution-Compensation Spaces

As the classical Solution Space approach, the Solution-Compensation Spaces represent
a high-dimensional Solution Space by intervals for each design variable. New is that the
design variables are now divided into a set of early- and a set of late-decision variables.
Early-decision variables are associated with permissible intervals on which they may
assume any value. Late-decision variables are associated with intervals where they can
be adjusted to any speci�c value. Solution-Compensation Spaces have the property that
for all values of early-decision variables from their permissible intervals there exists at
least one set of late-decision variable values from their intervals such that the resulting
design reaches all design goals. In order to enclose as many good designs as possible, the
size of the permissible intervals for the early-decision variables is maximised.
In this chapter, mathematical formulations of the underlying optimisation problem are

stated and two di�erent approaches to compute Solution-Compensation Spaces for sys-
tems with linear constraints are proposed. In order to compute Solution-Compensation
Spaces for systems with non-linear constraints a stochastic approach, based on the clas-
sical Solution Space algorithm [83], is presented at the end of the chapter.

Advanced Solution Space Methods in Systems Design. 35

Marc Eric Vogt

4.1. Idea, overview, and problem statement

As introduced in section 2.1.2, box-shaped Solution Spaces are maximised with respect
to a size measure (e.g. the volume of the box) in order to maximise the size of the
permissible intervals. Unfortunately, in many industrial applications, the size of the
permissible intervals for crucial design variables derived by the Solution Space approach is
not su�ciently large to compensate for all uncertainties during the development process.
As already published by the author of this thesis in [74], Solution-Compensation Spaces

are proposed, which allow to compute larger intervals by introducing the distinction
between early- and late-decision variables as follows:

• Early-decision variables underlie large uncertainty and have to be bounded during
the early phases of the development process since they have a strong in�uence on
the performance of the system (e.g. the design of a suspension). When computing
Solution-Compensation Spaces, these variables are associated with permissible in-
tervals on which they may assume any value. It is attractive to identify the largest
intervals possible for these variables.

• Late-decision variables are speci�ed in the late stages of the development process
since they are associated with parts, which are easy to adjust (e.g. the tuning
variables of a control system or the design of an anti-roll bar). When comput-
ing Solution-Compensation Spaces, these variables are associated with intervals on
which they have to be able to assume any value. Here, it is not necessary to have
the largest possible intervals.

The Cartesian product of the early-decision variable intervals and the late-decision
variable intervals is called an Solution-Compensation Space. Solution-Compensation
Spaces serve to increase the size of the permissible intervals for early-decision variables
while requiring additional conditions for late-decision variables. This means that an
additional dependency is allowed compared to the classical Solution Spaces.

4.1.1. Basic idea of Solution-Compensation Spaces

In order to illustrate the basic idea of computing Solution-Compensation Spaces, a two-
dimensional example problem is shown in �gure 4.1a. The three straight lines forming the
grey triangle represent the constraints. The triangle depicts the area of all good designs
where all requirements are satis�ed, called the complete Solution Space. The complete
design space Ωds is represented by the grey surrounding line. Inside of the complete
Solution Space, the box-shaped Solution Space is shown. Comparing the box-shaped
Solution Space with the complete Solution Space shows that the box only covers a small
part of the complete Solution Space. Therefore, restricting development to the Solution
Space represents a signi�cant loss of good designs.
It is assumed here that the Solution Space interval for the early-decision variable xa is

too small and should be enlarged. This is made possible by changing the character of xb :
rather than treating it as an uncertain variable that may assume any value within some

36 Advanced Solution Space Methods in Systems Design.

Marc Eric Vogt

interval, it is considered as a variable that can be adjusted arbitrarily well to any desired
value from an assigned interval. Its �nal value will be determined in a later stage, in
particular after xa is chosen. One possibility to derive the early-decision variable interval
for xa is to project the complete Solution Space onto the xa axis. The late-decision
variable interval for xb is chosen to be its entire design interval. Note that it is possible
to determine a minimal interval for each late-decision variable xb within Ωb, which is
su�cient to provide the same feasible regions for the early-decision variables xa as the
entire Ωb. In industrial applications Ωb is chosen such that any design xb within is viable.
Hence, more precise intervals for xb yield no bene�t. In the 2d example (see �gure 4.1a),
the Solution-Compensation Space is represented by the blue line. As can be seen, for
all values in the xa interval, there exists at least one value in xb ∈ Ωb such that the
resulting design reaches all design goals. Figure 4.1b shows an example of the resulting
late-decision variable interval Ω∗b for a chosen early-decision variable value x∗a ∈ Ωa.

(a) (b)

Figure 4.1 (a) The box-shaped Solution Space (black) and the SCS (blue). Dashed/solid lines
indicate that the respective axis is associated with a late/early-decision variable. (b) A realised value
for the early-decision variable x∗a and the resulting late-decision variable permissible interval Ω∗

b (blue
solid line).

4.1.2. Design Process with Solution-Compensation Spaces

A typical iterative design process consists of a component design phase in which the design
is chosen and iteratively improved (see �gure 4.2). The classical Solution Space approach
extends the component design phase by a system design phase in which permissible
intervals for all variables are derived �rst (see �gure 4.3). This enables the development
of a single design, which satis�es all design goals without any iterative steps. As depicted
in �gure 4.4, the Solution-Compensation Space approach adds a third design step called
the compensation phase. In the system design phase, a set of early- and late-decision
variables needs to be determined. Then, the enlarged permissible intervals for the early-
design variables xa are derived. Note that larger intervals for xa grant more �exibility
during the development process. This accounts for the lack-of-knowledge situation in

Advanced Solution Space Methods in Systems Design. 37

Marc Eric Vogt

early development stages. In the component design phase, all early-decision variables xa
are chosen. In the compensation phase, all late-decision variable intervals are computed
in dependency on the decisions made for the early-decision variables; their values xb
are chosen such that in combination with the early-decision variables a good design is
generated.

Figure 4.2 Iterative design
process according to [43].

Figure 4.3 Approach using system and component design of
classical Solution Spaces according to [83].

Figure 4.4 Extension to a three-step design approach for sequential development using SCSs.

4.1.3. Problem statement

Concerning Solution-Compensation Spaces, design points are represented by the vector

x = (xa, xb) (4.1)

with xa = (xa,1, xa,2, ..., xa,p) and xb = (xb,1, xb,2, ..., xb,q) where p and q are the total
numbers of early- and late-decision variables, respectively. The index a indicates an
early-decision variable whereas the index b indicates a late-decision variable.
Solution-Compensation Spaces are computed similarly to classical Solution Spaces (see

Section 2.1.2), i.e. a box-shaped set of design points is derived, described by the lower and
upper bounds; the di�erence is that only early-decision variables xa and its associated
Solution Space are optimisation variables. A Solution-Compensation Space is the solution
of the following optimisation problem

Problem Statement 3.

maximise
Ωa⊆Ωds,a

µ(Ωa) (4.2a)

38 Advanced Solution Space Methods in Systems Design.

Marc Eric Vogt

s.t. ∀xa ∈ Ωa, ∃xb ∈ Ωds,b, f(xa, xb) ≤ fc . (4.2b)

Note that only Ωa = Ia,1× Ia,2× ...× Ia,p de�nes the degrees of freedom (dof) whereas
Ωb = Ωds,b is �xed. For every design that is part of Ωa there exists at least one set of
values for the late-decision variables xb such that all constraints are satis�ed.

4.2. Linear Performance Constraints

In this section, the problem statement with linear constraints is presented. Afterwards the
Basic Projection Algorithm as well as the Fourier-Motzkin Elimination with redundancy
removal are introduced to solve the problem statement.

4.2.1. Problem statement with linear performance constraints

This thesis proposes two algorithms (see Sections 4.2.2 and 4.2.3) for systems with linear
constraints

f(x) = Fx+ c = Axa +Bxb + c, F ∈ Rm×(p+q) A ∈ Rm×p B ∈ Rm×q c ∈ Rm
(4.3)

where p ∈ N is the number of early-decision variables and q ∈ N is the number of
late-decision variables. m ∈ N represents the number of performance constraints.
Similarly to expression (4.2), box-shaped Solution-Compensation Spaces for linear sys-

tem responses for the early-decision variables xa are sought. In order to derive these
intervals, the following optimisation problem is solved:

Problem Statement 4.

maximise
Ωa⊆Ωds,a

µ(Ωa) (4.4a)

s.t. ∀xa ∈ Ωa, ∃xb ∈ Ωds,b, Axa +Bxb ≤ fc. (4.4b)

Note that the constant c ∈ Rm is included in fc. Considering the design space bound-
aries as linear constraints, the linear problem statement (4.2b) can be rewritten as

Problem Statement 5.

maximise
Ωa

µ(Ωa) (4.5a)

s.t. ∀xa ∈ Ωa, ∃xb, Gx ≤ gc, (4.5b)

G =


A B

−I

I

 ∈ R(2p+2q+m)×(p+q) gc =


fc

−xlds

xuds

 ∈ R(2p+2q+m), (4.5c)

Advanced Solution Space Methods in Systems Design. 39

Marc Eric Vogt

where the boundaries of the entire design space Ωds = Ωds,a × Ωds,b are represented by
xlds = {xlds,i} and xu = {xuds,i} with i = 1, ..., p+ q. I represents the identity matrix.

In order to apply the following algorithms (in sections 4.2.2, 4.2.3), which solve problem
statement 4/5, the Solution Space described by x|Gx ≤ gc, x ∈ Rp+q is assumed to be
fully dimensional and no duplicate constraints exist. This can be checked by applying
appropriate preprocessing:

• Search for an interior point. If an interior point does exist, full dimensionality of
the system can be assumed [69].

• Delete all constraints, which are multiples of other constraints.

4.2.2. Basic Projection Algorithm

In this section, the idea, the notation, and the computational e�ort of the basic projection
algorithm are described.

Idea

The idea of the Basic Projection Algorithm is to modify the constraints (4.2b) of the
initial problem statement such that the late-decision variables xb are eliminated from the
expression. Solving the following problem:

Problem Statement 6.

Given A ∈ Rm×p, B ∈ Rm×q, fc ∈ Rm, Ωds,a ∈ Rp, Ωds,b ∈ Rq (4.6a)

Find Ã ∈ Rm̃×q, f̃c ∈ Rm̃ (4.6b)

s.t. ∀ {xa ∈ Ωds,a|∃xb ∈ Ωds,b : Axa +Bxb ≤ fc} ⇒ xa : Ãxa ≤ f̃c (4.6c)

∧ ∀ {xa ∈ Ωds,a|@xb ∈ Ωds,b : Axa +Bxb ≤ fc} ⇒ xa : Ãxa > f̃c. (4.6d)

Late-decision variables xb are eliminated by projecting the complete Solution Space
into the design space of the early-decision variables Ωds,a. This is accomplished in four
steps:

Details

In the following, the four steps of algorithm 1 are explained in detail.
Step (1). In the �rst step the intersections of all constraint hyper-planes Λc are

computed. This is visualised in �gure 4.5 (a). Therefore, the following procedure is
applied: Construct all possible sub-matrices Gk of G as de�ned in equation (4.5) by
removing rows such that

40 Advanced Solution Space Methods in Systems Design.

Marc Eric Vogt

Algorithm 1: Basic projection algorithm
Data: Initial System Axa +Bxb ≤ fc with xa ∈ Ωds,a and xb ∈ Ωds,b

Result: Projected System Ãxa ≤ f̃c with xa ∈ Ωds,a

(1) Seek the intersections of all constraint hyper-planes.
(2) Determine the set of intersections, which satisfy all constraints and are part of
the design space.
(3) Project the intersection points onto Ωds,a.
(4) Determine the convex hull of the projected intersection points.

• rank(Gk) = p+ q and

• Gk ∈ R(p+q)×(p+q).

Then, construct gc,k for each Gk by removing the same rows from gc and solve the linear
equations

Gkxk = gc,k . (4.7)

The set of all basic solutions found is denoted as Λc. Note that these solutions are not
necessarily feasible.
Step (2). The set of all feasible vertices Λ is denoted as

Λ = {x ∈ Λc|Gx ≤ gc} . (4.8)

Step (3). As visualised in �gure 4.5 (b), in the third step all feasible vertices Λ are
projected. Therefore, a simple projection operator is used:

p : Rp+q → Rp p(x) =

[
I 0

]



x1

...

xp

xp+1

...

xp+q


=


x1

...

xp

 (4.9)

Λp = {p(x)|x ∈ Λ} . (4.10)

Step (4). In the last step, the convex hull of Λp is determined. Note that this step is
necessary in order to derive the feasible region for the early-decision parameters.

Ωc,a = conv{Λp} = {xa| G̃xa ≤ g̃c} = {xa| Ãxa ≤ f̃c, xa ∈ Ωds,a}. (4.11)

In order to compute the convex hull, the quick hull algorithm developed by [2] is used.

Advanced Solution Space Methods in Systems Design. 41

Marc Eric Vogt

(a) (b)

Figure 4.5 (a) Step (1) of the Basic Projection Algorithm: intersection points of all constraints
hyper-planes (black crosses) (b) In Step (2) and (3): projection of all feasible intersection points (green
crosses) .

The resulting polytope is called the early-decision-variable space after projection.
After the late-decision variables xb are eliminated from the problem statement it can

be written as a classical Solution Space problem

maximise
Ωa⊆Ωds,a

µ(Ωa) (4.12a)

s.t. ∀xa ∈ Ωa, Ãxa ≤ f̃c. (4.12b)

At this point, the stochastic Solution Space algorithm [83] as well as the VT approach
[21] can be used to �nd the box-shaped Solution Space.

Computational E�ort

The basic projection algorithm produces a result for any linear problem within a high-
dimensional space. It is divided into four steps:

Step (1). The upper bound of the binomial coe�cient

n
k

 can be estimated with

(
ne
k

)k
where n = 2p+ 2q+m and k = p+ q [12]. This means exponential growth for the

computational e�ort.
Step (2). The computational complexity to determine, which of the intersections ful�l

all constraints, is O(s) where s is the number of intersections.
Step (3). The computational complexity to project all good design points is O(sg)

where sg is the number of good intersection points.
Step (4). According to [2], the computational complexity of the quick hull algorithm

for a space with dimensionality higher than three is O(nfr/r). Where n is the number

42 Advanced Solution Space Methods in Systems Design.

Marc Eric Vogt

of input points, r is the number of processed points, and fr is the maximum number of
facets created by r vertices.
The computationally most expensive part is step 1, which grows exponentially with the

number of dimensions. Its computational e�ort can be reduced by predicting a subset of
all possible matrices Gk that do not have full rank. Whenever a requirement has both,
an upper and a lower bound (e.g. all design space boundaries), this leads to two parallel
constraint hyper-planes, which cannot intersect. Thus, any matrix Gk that includes an
upper and a lower boundary of the same constraint does not have full rank and can
immediately be dismissed. If all matrices Gk that include the upper and the lower bound
of the same requirement are dismissed a reduced total of

p+q∑
i=0

 s

p+ q − i


r
i

 2i (4.13)

linear equalities has to be solved in step 1 of the basic projection algorithm. Where r is the
number of constraints that have both an upper and a lower bound and s is the number of
constraints with a single bound. Each matrix Gk consists of a total of p+q rows from the
initial matrix G. In every part of the sum, a set of p+q−i single bounded constraints and
i double bounded constraints are chosen. For each of the i double bounded constraints,
the upper and the lower bound have to be accounted for. Thus, multiplying each part
of the sum with 2i. Unfortunately, even with this performance improvement the basic
projection algorithm is not suitable for very high-dimensional problems since the e�ort
still grows exponentially with the number of dimensions.
Note: It is possible to reduce the number of linear equalities even further by checking

if each combination of constraints is linearly dependent. But this does not lead to an
improved performance, since checking for linear dependency is equivalent for solving the
linear system Ax = 0 and determining whether it has non-trivial solutions.

4.2.3. Fourier-Motzkin Elimination with redundancy removal

In this section, the Fourier-Motzkin Elimination (FME) [11] with Redundancy Removal
(RR) is applied in order to compute Solution-Compensation Spaces with linear con-
straints (see problem statement 4). This idea was �rst published by the author in [73].
It is shown that the algorithm scales very well with the number of dimensions d and thus
can be applied to high-dimensional problems.

Idea

The FME is an algorithm, which eliminates variables from a system of linear inequalities.
It was �rst introduced by Fourier in order to test polyhedrons for emptiness. This is
done by eliminating all but one dimension from the constraints. If the one-dimensional
inequality has a solution it can be deduced that the polyhedron is not empty. Here
FME is used in a similar way, but instead of eliminating all but one dimension only

Advanced Solution Space Methods in Systems Design. 43

Marc Eric Vogt

the late-decision variables xb are eliminated from the constraints Axa + Bxb ≤ fc of
equation (4.4). This yields a new system Ãxa ≤ f̃c with the property that for each xa
that is a solution of the new system there exists an xb such that (xa, xb) is a solution of
Axa + Bxb ≤ fc [33]. This is equivalent to the constraint transformation carried out in
the basic projection algorithm (see subsection 4.2.2).
The FME algorithm eliminates each variable step by step. Unfortunately, in the worst

case, the number of inequalities grows double exponentially with the number of elimi-
nated variables (see equation (4.22)). This can be circumvented by complete removal of
all redundancies between the elimination of each subsequent late-decision variable [1].
E�cient ways to remove redundancies are proposed by Clarkson [9] and Fukuda [28].
Even though Fukuda's combinatorial redundancy detection has a slightly faster runtime
for some applications, the Clarkson Algorithm is chosen here for this application since it
is not restricted to non-negative variables. The following algorithm is executed:

Algorithm 2: FME algorithm with RR
Data: Initial System Axa +Bxb ≤ fc with xa ∈ Ωds,a and xb ∈ Ωds,b

Result: Projected System Ãxa ≤ f̃c with xa ∈ Ωds,a

for each dimension i of Ωds,b do
(1) Project the i-th coordinate in the direction −ei using the FME. ei is the
standard basis vector for the i-th coordinate;
(2) Eliminate all redundant constraints, using the Clarkson Algorithm [9];

end

Details

In the following, the two steps of the FME algorithm with RR (alg. 2) are explained in
detail.
Step (1). The FME can be understood as the projection of an n-dimensional polytope

in the direction of a standard basis vector ei. For the coordinate i, a late-decision param-
eter dimension is chosen. When applying the FME algorithm to Solution-Compensation
Spaces, the n-dimensional polytope represents the complete Solution Space.
In order to represent the FME algorithm graphically, a two-dimensional problem is

considered. In two dimensions it is su�cient to consider the bounding vertices of the
polygon [67]. Graphically speaking, these are the vertices an observer can see when
looking at the polygon in the direction of the projection. As depicted in �gure 4.6 (a),
these vertices are either created by the combination of facets, which are directed towards
and away from the view point (marked with blue and red arrows respectively), or by
facets, which are parallel to the direction of the projection (marked with black arrows).

De�nition 4.1. Front facing, back facing, and parallel facets:

A facet fc is front facing if 〈fc,−ei〉 < 0.
A facet fc is back facing if 〈fc,−ei〉 > 0.

44 Advanced Solution Space Methods in Systems Design.

Marc Eric Vogt

(a) (b)

Figure 4.6 (a) Two-dimensional polygon, which represents the complete Solution Space before
projection and the corresponding facets. Blue arrows indicate front facing facets, red arrows indicate
back facing facets and black arrows represent parallel facets. (b) One-dimensional projected polygon
(green arrow) and the corresponding constraints (blue lines).

A facet fc is parallel if 〈fc,−ei〉 = 0.
Where −ei is the direction of the projection and < x, y > is the scalar product of the
vectors x and y [36].

Unfortunately, a priori it is not known which facets de�ne the polygon. Hence, all
possible combinations of front and back facing facets as well as all parallel constraints
need to be considered. This leads to a total of mt1 constraints when projecting a single
dimension:

mt1 = mf ×mb +mp, (4.14)

where mf is the number of front facing facets, mb is the number of back facing facets
and mp is the number of parallel facets. The projected polygon is depicted in �gure 4.6
(b). Only the two inner constraints are non-redundant. Note that according to equation
(4.14) eight projected constraints should exist for this example, while only six are shown
in �gure 4.6 (b). The 7th constraint lies too far on the left so it is not shown. The 8th

constraint does not exist since one of the front facing constraints is parallel to a back
facing constraint.
How to derive the FME for an arbitrary high-dimensional problem Gx ≤ gc, with

G ∈ Rmt×d and gc ∈ Rmt , is explained in the following. mt = m+ 2d is the total amount
of performance as well as design space constraints of the initial system. FME solves
problem statement 6, by projecting each single dimension of xb in a recurring iteration of
the same procedure. Considering the design space boundaries as linear constraints (see
problem statement 5) and projecting only a single dimension, problem statement 6 can

Advanced Solution Space Methods in Systems Design. 45

Marc Eric Vogt

be simpli�ed to:

Problem Statement 7.

Given G ∈ Rmt×d, gc ∈ Rmt (4.15a)

Find G̃ ∈ Rmt1×(d−1), g̃c ∈ Rmt1 (4.15b)

s.t. ∀
{
xa ∈ Rd−1|∃xb ∈ R : G(xa, xb) ≤ gc

}
⇒ xa : G̃xa ≤ g̃c (4.15c)

∧ ∀
{
xa ∈ Rd−1|@xb ∈ R : G(xa, xb) ≤ gc

}
⇒ xa : G̃xa > g̃c. (4.15d)

The initial system Gx ≤ gc is modi�ed by rearranging the columns such that the
dimension, which is to be eliminated xbi , is in the �rst column and by rearranging the
rows according to the sign of the �rst entry: +,− and 0. Each row, with a non-zero
�rst entry, is normalised by dividing it through the absolute value of its �rst entry. This
results in: 

1 g′1
...

...

1 g′mf

−1 g′mf+1

...
...

−1 g′mf+mb

0 g′mf+mb+1

...
...

0 g′mf+mb+mp



xb
xa

 ≤



g′c,1
...

g′c,mf+mb

gc,mf+mb+1

...

gc,mf+mb+mp


(4.16)

Where g′i ∈ R1×(d−1) represents the modi�ed i-th row of the initial matrix G excluding
the �rst entry and g′c,i ∈ R represents the modi�ed i-th entry of gc. Considering the �rst
mf +mb inequalities of equation (4.16), the following has to be true for xb:

xb ≤ g′c,i − g′ixa, i = 1, ...,mf (4.17a)

xb ≥ −g′c,i + g′ixa, i = mf + 1, ...,mf +mb (4.17b)

46 Advanced Solution Space Methods in Systems Design.

Marc Eric Vogt

Combining equations (4.17) yields:

max
i=mf+1,...,mf+mb

−g′c,i + g′ixa ≤ xb ≤ min
j=1,...,mf

g′c,j − g′jxa (4.18)

In case mf = 0/mb = 0, the upper/lower bound for xb becomes inf/− inf. In these cases,
inequality (4.18) can be ignored for the further construction of the projected system.
After eliminating xb from equation (4.18) and adding the inequalities in lines mf +mb+1
to mt of equation (4.16), the projected system can be written as:

(g′i + g′j)xa ≤ g′c,i + g′c,j , i = 1, ...,mf , j = mf + 1, ...,mf +mb (4.19a)

gixa ≤ gc,i, i = mf +mb + 1, ...,mf +mb +mp (4.19b)

The new system, which is the solution to problem statement 7, is given by equation
(4.19). Equation (4.19a) poses a total ofmf×mb constraints and equation (4.19b) poses a
total of mp constraints. Hence, the new system G̃xa ≤ g̃c consists of mt1 = mf×mb+mp

constraints and is (d− 1)-dimensional. This derivation is based on [58, 67, 72, 73].
Step (2). After projecting the system in step (1), all redundant constraints are

removed by applying the Clarkson Algorithm. The idea is that the amount of non-
redundant constraints is generally much smaller than the total amount of constraints.
Hence, the double exponential growth is prevented. For a more detailed explanation see
subsection 4.2.3. Note that the system G̃xa ≤ g̃c derived in step (1) is considered the
initial system for step (2) and hence the variables are renamed to Gx ≤ gc.
Redundancy is de�ned as follows:

De�nition 4.2. Redundant: An inequality Gix ≤ gc,i, Gi ∈ R1×d, gc,i ∈ R is called
redundant in Gx ≤ gc, G ∈ Rm×d, gc ∈ Rm×1 if the set of solutions to Gx ≤ gc, stays
unchanged when the inequality is removed.

The following problem needs to be solved:

Problem Statement 8. (H-Redundancy Removal/ Half-Space Redundancy Removal)
Given G ∈ Rm×d, gc ∈ Rm �nd an equivalent subsystem of Gx ≤ gc, which is free of
redundancies.

Problem statement 8 can be solved by individually checking the redundancy of each
constraint Gkx ≤ gk. Therefore, the following linear program denoted as Red(M,k)
needs to be solved:

max Gkx

s.t. Gix ≤ gi, ∀i = M/k

Gkx ≤ gk + ε, ε > 0,

(4.20)

where Gk, Gi ∈ R1×d, gk, gi ∈ R,M = {1, ...,mt}, and x∗ is the optimal solution. If Gkx∗

is strictly greater than gk, the constraint is non-redundant. Otherwise, it is redundant

Advanced Solution Space Methods in Systems Design. 47

Marc Eric Vogt

(a)

(b)

(c)

Figure 4.7 (a) A projected system after applying the FME. The green area is the complete Solution
Space. The grey dashed lines are redundant constraints. The green dashed lines are non-redundant
constraints. (b)&(c) The red dashed lines represent the relaxed constraint Gix ≤ gi + ε and the red dot
represents x∗, which is the optimal solution to Red(M, i).

and can be removed from the set of constraints [27]. Adding ε to gk can be considered
as a relaxation of the concerning constraint. In order to visualise this, the initial system
shown in �gure 4.7 (a) is considered. Figure 4.7 (b) and �gure 4.7 (c) show the relaxation
of a single constraint (red dashed line). In �gure 4.7 (c) the result of the optimisation
x∗ is not part of the initial polytope. Hence, adding ε to gk enlarges the initial polytope
and the constraint is non-redundant. The opposite is true for the constraint in �gure 4.7
(b).
Often, the amount of redundant constraints is considerably higher than the amount of

non-redundant constraints. This is visualised in �gure 4.7 (a) where the grey dashed lines
are redundant and only the green dashed lines are non-redundant constraints. Hence,
the optimisation problem of equation (4.20) has a high number of constraints and solving
it for each constraint is computationally expensive. Clarkson proposes a more e�cient
way to �nd all non-redundant constraints [9].
In the following, the Clarkson Algorithm is explained. Proof of why the Clarkson

Algorithm can be applied in order to solve problem statement 8 is given in [69]. An
interior point solution of the system, which satis�es Gx < gc, can be found by using
a classical interior point optimisation [46]. If an interior point is known, the Clarkson
Algorithm (algorithm 3) returns the indices of the non-redundant constraints [9]. The
Clarkson Algorithm consists of a while-loop, which runs through each single constraint
and classi�es it as either being redundant (Set R) or being non-redundant (Set S).
When all constraints are classi�ed, the algorithm concludes. At the beginning, the sets

48 Advanced Solution Space Methods in Systems Design.

Marc Eric Vogt

Algorithm 3: Clarkson Algorithm [9]
Data: Initial System Gx ≤ gc and an interior point z that satis�es Gz < gc with

G ∈ Rm×d, z ∈ Rd and gc ∈ Rm
Result: The set of all indices S of the non-redundant constraints
begin

R := {}, S := {}
while R ∪ S 6= [d] do

Choose any i ∈ {1, ..., d}/(R ∩ S) and check whether i is redundant with
respect to in S using Red(S, i). x∗ is the solution found for Red(S, i);
if Gix

∗ ≤ gi (i is redundant with respect to S) then
R = R ∪ {i} ;

else
S = S ∪ {j}, with j = RayShoot(G, gc, z, ray), with ray = x∗ − z

end

end

end

Algorithm 4: RayShoot Algorithm [27]
Data: Initial System Gx ≤ gc, an interior point z ∈ Rd that satis�es Gz < gc,

with G ∈ Rm×d, Gi ∈ R1×d, gc ∈ Rm and a ray ∈ Rd
Result: The index j of the facet that is hit �rst by the ray
begin

∆ = 1
for i = 1, ...,m do

if Giray > 0 then

δ =
gc,i−Giz
Giray

;

if δ < ∆ then
∆← δ;
j ← i;

end

end

end

end

Advanced Solution Space Methods in Systems Design. 49

Marc Eric Vogt

of classi�ed constraints are empty. Starting with a chosen uncategorised constraint i, the
algorithm checks whether it is redundant with respect to the Set S of already classi�ed
non-redundant constraints Red(S,i). Since S is empty at the beginning, the �rst chosen
constraint i is always non-redundant with respect to S. Constraints that are checked
later during the execution of the algorithm might be redundant with respect to S and
hence can immediately be classi�ed redundant to M since S ⊂ M . This is visualised
in �gure 4.8a where the red constraint is redundant with respect to the green set of
classi�ed non-redundant constraints S. In case the chosen constraint i is not redundant
with respect to S the associated ray is calculated. The ray is the vector, which connects
the interior point z to the optimal solution x∗ found for Red(S, i). A ray is visualised in
�gure 4.8b. Then, the RayShoot Algorithm is executed RayShoot(G, gc, z, ray) returns
the index j of the constraint hyper-plane Gjx = gc,j , which is hit �rst by the ray that
shoots from the interior point z in the direction of x∗. Then the constraint j is categorised
as non-redundant.

The RayShoot Algorithm (algorithm 4) [27], which is denoted asRayShoot(G, gc, z, ray)
consists of a for-loop that runs through each constraint i of the initial system Gx ≤ gc.
If the ray hits the considered constraint (Giray > 0), then δ is calculated. δ is a measure
that determines which constraint hyper-plane Gix = gc,i is hit �rst by the ray. The
smaller the value of δ the earlier the constraint is hit. In �gure 4.8c the purple constraint
is hit before the blue constraint, which was initially moved, hence δ2 < δ1. If δi is less
than the value of any constraint checked before δ < ∆, then ∆ is updated with δ and
the index i is saved as the currently �rst-hit constraint. The initial value of ∆ is set to
1 since this assures that at least one constraint (namely the constraint that was relaxed
in order to generate x∗, see �gure 4.8c) ful�ls the inequality δi < 1.

(a) (b) (c)

Figure 4.8 (a) The green two-dimensional polygon represents the complete Solution Space (see �gure
4.7). Green dashed lines represent a subset S of all non-redundant constraints. The red line represents
the relaxed constraint Gix ≤ gi + ε. The red dot x∗ represents the optimised solution of Red(S, i). (b)
The black arrow represents the ray from inside the polygon z to the optimised solution x∗. (c) The
blue and the purple dashed lines represent constraints that are hit by the ray.

50 Advanced Solution Space Methods in Systems Design.

Marc Eric Vogt

Computational E�ort

In the majority of applications where Solution-Compensation Spaces are applicable, mul-
tiple late-decision variables are considered. Therefore, the FME needs to be applied
multiple times (equivalent to the amount of late-decision variables). The computational
e�ort for multiple FME steps can be estimated with the number of constraints, which
need to be calculated. In the worst case, the number of constraints splits evenly between
front facing and back facing facets in each projection step, leading to

mr1 =
(mt

2

)2
(4.21)

constraints per step. Equation (4.21) is an appropriate estimate for real-world applica-
tions since the design space constraints xlds ≤ x ≤ xuds are always evenly split between
front facing and back facing facets.
Generalizing equation (4.21) for a total of q projected dimensions, without any RR

between the steps, results in

mrq =

q∑
k=1

m
(2k)
t

2
∑k
i=1 2i

(4.22)

constraints, which need to be calculated. Hence, the number of constraints grows double
exponentially with the number of projected dimensions. Even though calculating a new
constraint is a simple operation where a front facing constraint is subtracted from a back
facing constraint, the number of operations needed grows so fast, with the number of
projections, that the computational e�ort becomes unbearable very quickly. Hence, RR
is applied after each projection step of the FME. This prevents the exponential growth
rate of the number of constraints [28].
In order to describe the computational e�ort of the RR techniques, which were intro-

duced in this section, the number of Linear Programming Problems (LPPs), which need
to be solved is crucial, since their computation dominates the other tasks. LP (d,m)
denotes the computational e�ort needed in order to solve an LPP Ax ≤ fc with m
constraints and d dimensions: A ∈ Rm×d.
In order to check a single constraint for redundancy, the optimisation problemRed(M,k)

(see equation (4.20)) needs to be solved. Therefore, the constraints require us to solve an
LPP of size d×m. Hence, the computational e�ort is LP (d,m). Repeating this process
for each constraint individually results in a total computational e�ort of m× LP (d,m).
In order to check all m constraints for redundancy by applying the Clarkson Algorithm
(see algorithm 3), the optimisation problem Red(S, i) has to be solved m times. S is the
set of already classi�ed non-redundant constraints. The upper boundary for elements of
the set S is s, which denotes the total amount of non-redundant constraints in the system
s ≤ m. Hence, the computational e�ort for the Clarkson Algorithm can be estimated
with the upper boundary of m×LP (d, s), which is always less than the e�ort needed to
check each constraint individually [27].
The combined computational e�ort of the FME in combination with the Clarkson Algo-

rithm can be estimated with the computational e�ort needed for the Clarkson Algorithm

Advanced Solution Space Methods in Systems Design. 51

Marc Eric Vogt

only. This is due to the following facts:

• RR prevents the double exponential growth rate of the constraints,

• Calculating a new constraints is a simple subtraction operation, which gets domi-
nated by the LPPs.

4.3. Non-linear Performance Constraints

In case the considered system includes non-linear performance constraints and cannot be
linearised without losing signi�cance, neither the basic projection algorithm (see subsec-
tion 4.2.2) nor the enhanced FME algorithm (see subsection 4.2.3) are applicable. Hence,
in this chapter, new approaches to derive Solution-Compensation Spaces for highly non-
linear and high-dimensional problem statements are examined. In section 4.3.2, a new
algorithm based on the stochastic Solution Space algorithm by Zimmermann & von
Hoessle [83] is introduced.

4.3.1. Support Vector Machine

One of the fundamental problems of learning theory is binary pattern recognition. Con-
sider an empirical data set where each input vector x is assigned to either 1 or −1. The
set is given by

x1, . . . , xi ∈ X×±1. (4.23)

Based on this information, a new function f : x → {±1}, which predicts the a�liation
of a formerly unknown design x, is derived. There exists a plethora of machine learning
methods that solve this problem, the most prominent ones are Arti�cial Neural Networks
(ANNs) [3] and Support Vector Machines (SVMs) [31]. When applied to the binary
pattern recognition problem, SVMs have several advantages compared to alternative
machine learning techniques: absence of deceptive local minima in the optimisation,
small amount of tuneable parameters, and excellent performance on high-dimensional
data [31].

Idea

Considering the early-decision variable space only, Solution-Compensation Spaces can
be seen as a classi�cation problem. Each design inside the early-decision variable space
can be classi�ed as either good or bad depending on whether a design for late-decision
variables exists such that all requirements are ful�lled (see problem statement 3).
A four-step procedure to compute Solution-Compensation Spaces using pattern recog-

nition is proposed. In the �rst step, a set of MC samples in the early-decision variable
design space is computed. In the second step, an optimisation for each sample is run,
which aims to �nd a �tting late-decision design such that all requirements are ful�lled.
Based on the result of the optimisation each sample is labelled as either good or bad. In
the third step, the binary pattern recognition problem is solved by applying SVM. In

52 Advanced Solution Space Methods in Systems Design.

Marc Eric Vogt

the fourth step, a stochastic Solution Space algorithm [83] is run on the SVM classi�er
in order to optimise the Solution-Compensation Space with respect to the size measure
µ.

Computational E�ort

The e�ectiveness of SVM is directly linked to the volume fraction of good designs in the
early-decision variable space. If the fraction is very low, then most sample points are
assigned as bad designs. Hence, a large number of sample points needs to be computed.
Considering an example problem with eight dimensions d = 8 and assuming 10% of each
dimension contains acceptable values vi = 0.1, i = 1, . . . , 8 leads to a very small total
fraction of good designs V = vd = 0.18. This means that on average 100, 000, 000 MC
samples are needed to �nd just one good design. Keep in mind that for each sample an
optimisation for the late-decision variables needs to be run. The computational e�ort is
very high and usually grows exponentially with the number of dimensions.
Unfortunately, the SVM is hence not applicable to the eight-dimensional vehicle dy-

namics problem introduced in section 7.1. Therefore, the SVM approach is not expanded
upon in this thesis. An in-depth analysis of SVM for Solution-Compensation Spaces can
be found in [67].

4.3.2. Stochastic Solution-Compensation Space Algorithm

The original stochastic algorithm to compute Solution Spaces for robust design [83] was
developed in order to optimise the size of box-shaped Solution Spaces for arbitrary non-
linear high-dimensional systems (see section 2.1). With some modi�cations, its procedure
can be applied to Solution-Compensation Spaces as well. In this section, a modi�cation
of the stochastic Solution Space algorithm is introduced in order to compute Solution-
Compensation Spaces with non-linear performance constraints of equation (4.2). Un-
fortunately, the algorithm does not guarantee a resulting Solution-Compensation Space,
which ful�ls all constraints. Instead a relaxed problem statement of equation (4.24) is
solved. It demands, with a certain con�dence, that at least a certain fraction of the
resulting Solution-Compensation Space ful�ls all constraints. It is shown that this al-
gorithm scales very well with the number of dimensions d and thus can be applied to
high-dimensional problems.

Idea

Since the design space for the early-decision variables Ωds,a is assumed to be continuous,
any considered subspace Ωa includes an in�nite number of designs. In addition, the
performance function f(xa, xb) is usually unknown. Hence, it is impossible to check
whether for each design xa ∈ Ωa an xb exists such that the constraint f(xa, xb) ≤
fc is ful�lled. Instead of solving the non-linear Solution-Compensation Space problem
statement of equation (4.2), a relaxed Solution-Compensation Space problem based on
Bayesian probabilities as described in [44] is solved:

Advanced Solution Space Methods in Systems Design. 53

Marc Eric Vogt

Problem Statement 9.

maximise
Ωa⊆Ωds,a

µ(Ωa) (4.24a)

s.t. P (al < a|m,N) > 1− αc, (4.24b)

where N is the number of MC early-decision variable sample designs xa ∈ Ωa, m is
the number of good sample designs xa ∈ Ωa ∃xb ∈ Ωb, f(xa, xb) ≤ fc, al is the lower
boundary of the con�dence interval and 1− αc is the con�dence level. Since the relaxed
problem statement 9 does not ensure full feasibility any more, it is only applicable to
certain real world application. It is not recommended for safety relevant designs.
The introduced algorithm starts with an initial box around a good design, the box

is iteratively modi�ed in order to optimise its size, while retaining a certain likelihood
that at least a certain fraction of the volume consists of good designs. This condition is
checked by applying Bayesian statistics to a set of MC sampled designs (see Section 2.1.2).
The stochastic Solution Space algorithm is executed with two major modi�cations:

• The optimal box is searched within the subspace of the complete design space
Ωds,a ⊂ Ωds. Hence, the box is only optimised with respect to the early-decision
variables xa. The late-decision-variable space Ωb is �xed.

• For each sample design xa in the early-decision-variable space, an optimisation in
the late-decision-variable space Ωb is executed in order to determine whether it
ful�ls f(xa, xb) ≤ fc and hence, is a good design.

Details

In the following, the steps of the stochastic Solution-Compensation Space algorithm (alg.
5) are explained in detail.
Initialisation. In order to be able to construct a �rst candidate box, a good design

f(xa, xb) ≤ fc needs to be known. Therefore, a classical optimisation such as di�eren-
tial evolution [66] is carried out. In case no good design can be found, the algorithm
is aborted. Otherwise a �rst candidate box Ωa including the optimised design xopta is
constructed. Its volume is zero and it is part of the early-decision variable design space
Ωds,a.
Phase I. In phase I the box is iteratively modi�ed until its size µ(Ωa) does not change

signi�cantly any more. The iterative procedure to modify the box consists of four steps.
Step (1). In the �rst step, the candidate box is extended. Since there is no information

on the structure of the performance function f , the algorithm enlarges the boundaries
of the candidate box equally by adding a constant interval size to each boundary. The
interval size is determined by the product of the growth rate g and the size of the design
space (xuds,j − xlds,j) in the early variable dimension j ∈ 1, . . . , p. This results in:

Ωupdate
a = [xlds,1 − g(xuds,1 − xlds,1) xuds,1 + g(xuds,1 − xlds,1)]× · · ·

54 Advanced Solution Space Methods in Systems Design.

Marc Eric Vogt

(a) Initialisation (b) Phase I-(1)

Figure 4.9 A four-dimensional problem with two early- and two late-decision variable dimensions. (a)
The green area represents the complete Solution-Compensation Space for the early-decision variable.
The blue area represents the complete Solution Space for a �xed early-decision variable design xopta .
The green cross represents the resulting design of a classical optimisation algorithm xopt. (b) The black
box represents the initial candidate box. The dashed box represents the candidate box after a single
extension step.

(a) (b) (c) (d)

Figure 4.10 Phase I-(2). (a) The crosses represent sample designs in the early-decision variable space.
(b)-(d) For each speci�ed set of early-decision variables the space of permissible late-decision variable
values is shown.

· · · × [xlds,p − g(xuds,n − xlds,p) xuds,n + g(xuds,n − xlds,p)]. (4.25)

Step (2). In the second step, N MC samples in the early-decision variable space
xja ∈ Ωa for j = 1, . . . , N are computed.
Step (3). In the third step, good and bad sample designs are determined. For each

sample design xja a classical optimisation is run to solve

minimise
xb∈Ωb

f(xja, xb). (4.26)

The optimisation is terminated once a valid design f(xja, xb) ≤ fc is found or a maximum
number of iteration steps is reached. In case a valid design is found, the design xja is
categorised as a good design. Else, it is categorised as a bad design. As the optimisation
algorithm of choice "a modi�ed particle swarm optimiser" [60] is suggested in this thesis.

Advanced Solution Space Methods in Systems Design. 55

Marc Eric Vogt

Particle swarm optimisation has received broad attention in recent years since it has a
fast convergence to acceptable solutions [4]. Those attributes make it especially �tting
for the posed optimisation problem of equation (4.26) since the convergence speed of the
algorithm is very important, due to the fact that it has to be executed for each single
sample design, while the accuracy is not as important, since it is su�cient to �nd any
valid design. This might lead to some sample designs being classi�ed as false negatives.

(a) Phase I-(3) (b) Phase I-(4)

Figure 4.11 (a) Green/Red Crosses represent good/bad designs. (b) The dashed/continuous black
box represents the candidate box before/after a removing all bad designs.

Step (4). The fourth step is only executed if the fraction of good designs m/N is not
su�ciently large to ful�l equation (4.24b). In this case, bad sample designs are removed
from the candidate box Ωa until only good designs are left. Therefore, algorithm 6 is
executed. In accordance with Zimmermann & von Hössle [83], the removal is performed
in three nested loops. In the outer loop each single good design xia is considered. For each
good design a new Solution-Compensation Space Ωi,N

a , including only good designs, is
derived. In the �rst inner loop each bad design is considered. Therefore, the bad designs
are sorted according to their performance f(xia, xb) where xb is the best design found in
the step "Determine good and bad sample designs" of algorithm 5 for the respective xia.
Starting with the highest performance bad design, Ωi,j

a is modi�ed for each bad design
such that the current bad design is cut o�, while the current good design is retained. In
the second inner loop each early variable dimension is considered in order to determine
the optimal cut. Figure 4.12 shows a two-dimensional example for the second inner loop.
Considering the highlighted green and red crosses as currently considered designs in the
loop, there are two options on how to perform the current cut 1. Option 1 is superior
since no good sample designs are lost. In case multiple options to perform the cut are
equal, the option where the least amount of volume is lost is chosen. The resulting cut
shown in �gure 4.12 (c) is obtained after iterating through the second inner loop once.
Since there are still bad designs left, a second cut is needed as shown in �gure 4.12 (d).
After executing the outer loop for each good sample design, the optimal candidate box
with respect to its size maxi µ(Ωi

a) is chosen.
Phase 1 of algorithm 5 is executed until the size of the candidate box does not change

signi�cantly any more ‖Ωi+1

Ωi
‖ ≤ ctol. After Phase 1 there are a couple of interim steps

where a new MC sample is computed and all sample designs are categorised.

56 Advanced Solution Space Methods in Systems Design.

Marc Eric Vogt

(a) cut 1 - option 1 (b) cut 1 - option 2 (c) cut 1 (d) cut 2 - option 1

Figure 4.12 Green/red crosses represent good/bad designs. The dashed lines represent di�erent
options on how to cut the candidate box. The continuous line in (c) represents the �rst cut, which is
chosen.

Phase II. Phase 2 is also called the consolidation phase. It is similar to Phase 1 with
the most important di�erence being the missing growth step. At the start of each loop we
check whether the amount of good samples in the candidate box Ωa is su�cient to ful�l
the requirement P (al < a|m,N) > 1 − αc. If it is, Phase 2 is immediately terminated
and the current box is the �nal result. Otherwise, in step (1) bad sample designs are
removed according to algorithm 6. Then, an MC sample is calculated, all sample designs
are categorised, and Phase 2 starts over.

Computational E�ort

Computational runtime for the stochastic algorithm (alg. 5) is usually dominated by the
runtime of the function evaluation f(x) and hence, scales linearly with the number of
iterations, samples, and particles:

∼ v1N1v2N2F, (4.27)

where v1 equals the number of iterations for the box algorithm from both Phase I and
II as well as the transition step v1 = vPhase I1 + vPhase II1 + 1. v2 equals the number
of iterations needed during the particle swarm optimisation. N1 equals the number of
samples per iteration while N2 equals the number of particles used in the particle swarm
optimisation.
The amount of iterations needed in Phase I, vPhase I1 , is not predetermined, instead a

boundary ctol for the minimal change of the box size is given. If ‖Ωi+1

Ωi
‖ ≤ ctol then Phase

I is terminated. In order to keep the computational e�ort in check, an upper boundary
for the number of iterations can be implemented. The number of iterations for Phase
II, vPhase II1 , is also not predetermined. Phase II aborts as soon as a su�cient amount
of samples in the current candidate box is classi�ed as good designs. Usually, Phase II
needs very few iterations compared to Phase I.
N1 is prede�ned. In most applications 100 samples are su�cient. According to

Bayesian theory if 100/100 random samples are good designs with a likelihood of 95%,
at least 97% of the candidate box are good designs [83]. Since no knowledge about the

Advanced Solution Space Methods in Systems Design. 57

Marc Eric Vogt

vPhaseI1 vPhaseII1 N1 v2 N2

parameter value ↑ ↑ ↑ ↑ ↑

size µ(Ω) ↑ ↓ ↓ ↑ ↑

con�dence level 1− αc → ↑ ↑ → →
Table 4.1 The in�uence of the parameters of the Stochastic SCS Algorithm on the size and the
con�dence level of the resulting SCS

shape of the complete Solution Space is available in advance, a prior with a β-distribution
of β(1, 1) is assumed [44]. These statements are independent from the number of dimen-
sions.
v2 di�ers based on the termination criterion. In order to keep the computational e�ort

in check, a maximum number of iterations is prede�ned. If that number is reached, the
design is classi�ed as a bad design. Hence, a lower maximum number of iterations leads
to more false negative classi�cations.
Since the computational e�ort of the PSO algorithm gets dominated by the function

evaluations, it makes sense to choose N2 such that the expected number of function
evaluations is minimised. Therefore, Trelea [70] suggests a medium number of particles.
In his experiments, the optimum was generally between 15 and 30 particles. When using
too few particles, the success rate went down signi�cantly. Using too many particles
resulted in a higher computational e�ort. F is the time needed for a single function
evaluation. Table 4.1 summarises the in�uence of the parameters on the size and the
con�dence level of the resulting Solution-Compensation Space. As long as saturation is
not reached, an increased number of iterations v1 leads to a better solution with respect
to the size measure. The number of samples per box N1 increases the con�dence level
but decreases the size of the box since the size of the bad solution space included in the
�nal result decreases. The opposite is true for the particle swarm parameters v2 and
N2. If they are increased, the number of false negative design points decreases, which
increases the size of the resulting Solution Space.
Since neither v1, v2, N1 nor N2 depend on the dimensionality of the problem, the

stochastic Solution-Compensation Space algorithm is independent from the number of
dimensions. Despite this fact, in most real world applications higher dimensions will
still lead to an increased computational e�ort. First, more di�erent options for possible
cuts need to be considered in step (4). Second, in most cases high-dimensional function
evaluations are more costly. Third, more iterations are needed to improve the likelihood
to �nd the global optimum.
In general, even if the optimisation parameters v1, v2, N1, and N2 are chosen opti-

mally, the number of function evaluations needed to obtain a satisfying result is still
relatively high. Hence, this method is mostly recommended for systems with a low e�ort
of evaluating a single design. In case function evaluations are too expensive to apply the
stochastic Solution-Compensation Space algorithm, ANNs are a recommended method

58 Advanced Solution Space Methods in Systems Design.

Marc Eric Vogt

to speed up the process by approximating the original function [3].

Advanced Solution Space Methods in Systems Design. 59

Marc Eric Vogt

Algorithm 5: Algorithm for the stochastic SCS algorithm based on [83]
Data: Initial System f(xa + xb) ≤ fc with xa ∈ Ωds,a and xb ∈ Ωds,b

Result: Optimised box Ωa s.t. at least al percent of the volume of Ωa consists of
good designs with a likelihood of at least 1− αc

begin
Initialisation

Classical optimisation on Ωds to identify a good design xopta ;
Construct a �rst candidate box Ωa with zero volume.;
Phase I

while µ(Ωa) is changing signi�cantly do
(1) Extend candidate box;
(2) Compute MC sample in Ωa;
(3) Determine good and bad sample designs:
for each sample design xja of the MC sample do

Optimise xb to check if an xb ∈ Ωb exists such that f(xja, xb) ≤ fc;
end

(4) Remove bad sample designs.;
end

Compute MC sample in Ωa;
Determine good and bad sample designs:
for each sample design xja of the MC Sample do

Optimise xb to check if an xb ∈ Ωb exists such that f(xja, xb) ≤ fc;
end

Phase II

while the threshold for the fraction of good sample designs in the candidate
box is not reached do

(1) Remove bad sample designs.;
(2) Compute MC sample in Ωa;
(3) Determine good and bad sample designs:
for each sample design xja of the MC Sample do

Optimise xb to check if an xb ∈ Ωb exists such that f(xja, xb) ≤ fc;
end

end

end

60 Advanced Solution Space Methods in Systems Design.

Marc Eric Vogt

Algorithm 6: Algorithm to remove bad sample designs in accordance with [83]
Data: Initial candidate box for the early-decision variables Ωa including N

sample designs xia ∈ Ωa, i = 1, . . . , N of which m < N are categorised as
good and a size measure µ. The bad sample designs xia, i = m+ 1, . . . , N
are sorted by performance f(xia, xb) in descending order.

Result: New candidate box for the early-decision variables Ωa including only
good sample designs xia ∈ Ωa, i = 1, . . . ,m.

begin

for each good sample design xia, i = 1, . . . ,m do

Set Ωi,0
a := Ωa;

for each bad sample design xja, j = m+ 1, . . . , N do
for each early variable dimension k = 1, . . . , p with
Ωi,j
a = [xl1 x

u
1]× . . .× [xlp x

u
p] do

if xia,k < xja,k then

Nk := number of good designs contained in Ωi,j,k
a . Ωi,j,k

a

represents a modi�ed Ωi,j
a with xuk := xsa,k. Choosing

s ∈ [1, . . . ,m] such that xsa,k ∈ Ωi,j
a minimises xja,k − x

s
a,k > 0.

else

Nk := number of good designs contained in Ωi,j,k
a . Ωi,j,k

a

represents a modi�ed Ωi,j
a with xlk := xsa,k. Choosing

s ∈ [1, . . . ,m] such that xsa,k ∈ Ωi,j
a minimises xsa,k − x

j
a,k > 0.

end

end

Choose s ∈ [1, . . . , p] such Ns is maximised and set Ωi,j+1
a := Ωi,j,s

a

end

Set Ωi
a := Ωi,N

a .
end

Set Ωa := maxi µ(Ωi
a).

end

Advanced Solution Space Methods in Systems Design. 61

Marc Eric Vogt

Chapter 5

Optimal Constraint Relaxation for Solution Spaces

The size of box-shaped Solution Spaces is optimised in order to maximise the size of the
permissible intervals and hence enable maximum robustness of the development process.
In case the speci�c robustness requirements for each optimisation variable are known,
a minimal size for each permissible interval can be derived. The Cartesian product of
these permissible intervals represents a box of �xed size. An Solution Space algorithm
using Vertex Tracking can be applied to optimise the position of the box centre un-
til all performance constraints are ful�lled and a valid Solution Space containing only
good designs is found. In case no such position is found, an Solution Space, which ful-
�ls the performance as well as the robustness requirements does not exist. Hence, the
problem statement is infeasible. In this case, a set of relaxed constraints is optimised
such that a feasible problem statement is obtained. The set of relaxed constraints is op-
timal with respect to a target function that weighs the relaxation of di�erent constraints
and aims to relax each constraint as little as possible. We call this Optimal Constraint
Relaxation (OCR). Optimal Constraint Relaxation is categorised as a penalty method.
Penalty methods are used to analyse infeasible problem statements [7]. In this chapter,
mathematical formulations of the underlying optimisation problem are stated and an
approach to compute Optimal Constraint Relaxation for Solution Space with linear and
non-linear performance constraints is proposed.

62 Advanced Solution Space Methods in Systems Design.

Marc Eric Vogt

5.1. Idea, overview, and problem statement

As introduced in section 2.1.2, box-shaped Solution Spaces are maximised with respect
to a size measure in order to maximise the size of the permissible intervals. In many
industrial applications, the size of the permissible intervals for crucial design variables
derived by the Solution Space approach is not su�ciently large to compensate for all
uncertainties during the development process. In chapter 4, a method to enlarge the
size of permissible intervals for a crucial subset of all design variables was introduced.
Unfortunately, the method is only applicable if a subset of late-decision variables can be
identi�ed. Even if that is the case, the resulting intervals might still not be large enough to
compensate for all uncertainties during the development process. Hence, a new method is
introduced in this chapter, which is able to compute an optimal set of relaxed performance
constraints. The relaxed constraints are such that a box-shaped Solution Space can be
optimised, which ful�ls all robustness requirements while containing a su�ciently large
fraction of good designs.

5.1.1. Basic idea of Optimal Constraints Relaxation for Solution Spaces

In order to illustrate the basic idea of computing Optimal Constraint Relaxation for
Solution Space, a two-dimensional example problem is shown in �gure 5.1a. The three
straight lines forming the grey triangle represent the constraints. The triangle depicts the
area of all good designs. The design space Ωds is represented by the grey lines. Inside
of the complete Solution Space, the box-shaped Solution Space is shown (black). In
addition, a box of �xed size is shown (blue). The box is such that the interval sizes for
x1 and x2 exactly ful�l the robustness requirements, meaning they have a �xed length.
Unfortunately, the box does not �t inside the complete Solution Space. Hence, an optimal
set of relaxed constraints is computed, which provides a complete Solution Space that is
large enough to include the box, as shown in �gure 5.1b.
According to Chinneck there are three di�erent ways in which a design can be optimal

with respect to the violation of constraints: NINF, SINF, and SLVF (see subsection
2.3.2) [7]. For our applications in chassis design the amount by which a constraint
is violated is essential, therefore we will focus on minimising the SINF in this thesis.
SLVF could be considered as an alternative to SINF in order to circumvent the row
scaling problem (=scaling of the output space). But we do not apply SINF in this thesis
since the computational e�ort to compute it is too high. For SINF several versions
are commonly used, e.g. weighed �xed penalties (independent of the magnitude of the
individual violations) and weighed linearly and quadratically increasing penalties. How
to apply these methods for single design optimisation for linear problem statements is
shortly introduced in subsection 2.3.2 and described in detail by Chinneck [7]. In the
following, we extend these ideas for box-shaped designs of �xed size and for monotonic
non-linear constraint functions (see Section 5.3).
Even though the general purpose of Optimal Constraint Relaxation is to analyse an

infeasible problem statement the algorithms we introduce in this chapter are applicable
to both feasible and infeasible systems:

Advanced Solution Space Methods in Systems Design. 63

Marc Eric Vogt

(a) (b)

Figure 5.1 (a) The box-shaped Solution Space (black) and the box of �xed size, which ful�ls the
robustness requirements (blue). (b) An optimised set of relaxed constraints and the resulting Solution
Space (blue).

• If the problem statement is feasible the result of Optimal Constraint Relaxation
for Solution Spaces will be a position for the box of �xed size such that it includes
only good designs.

• If the problem statement is infeasible the result of Optimal Constraint Relaxation
for Solution Spaces will be a position for the box of �xed size such that all con-
straints are violated as little as possible. The amount of violation at critical vertices
of the box determines by how much each constraint needs to be relaxed in order to
�t the box. Thus, this also determines the optimal set of relaxed constraints.

5.1.2. Design Process with Optimal Constraint Relaxation for Solution

Spaces

Optimal Constraint Relaxation for Solution Spaces is applied in the system design phase
when, in addition to the classical performance constraints, robustness requirements exist.
In industry, this is often the case if the design variables cannot be set to an arbitrarily
precise value since they depend on additional factors. A typical example is tyre design
where the design variables are the Functional Tyre Characteristics (FTCs), which are
adjusted by varying the rubber compounds. Unfortunately, the dependence of the FTCs
on the rubber compounds is highly non-linear and underlies statistical deviations. Hence,
a minimal interval size for each FTC is required. In this case, we need to check whether
the problem statement is feasible. In other words: Does the box with the minimal interval
size for each design variable �t into the complete Solution Space? This can be checked by
applying the Optimal Constraint Relaxation algorithms introduced in sections 5.2.1 and
5.3 for linear and non-linear constraints, respectively. If the box �ts into the complete
solution space, we can apply one of the classical Solution Space optimisers (e.g. SSA,

64 Advanced Solution Space Methods in Systems Design.

Marc Eric Vogt

Figure 5.2 Approach using system and component design of classical Solution Spaces with the
addition of a pre-optimisation step for infeasible problem statements.

VT). Therefore, we use the box found by Optimal Constraint Relaxation as the starting
box and we add additional constraints to the optimisation algorithm such that no interval
can shrink below its initial size. This way we maximise the size of the Solution Space
while ensuring that all robustness constraints are ful�lled. This design process matches
the classical Solution Space approach with a system design and a component design step
(see �gure 4.3). If the box does not �t in the complete solution space, the Optimal
Constraint Relaxation algorithm minimises the SINF. The result is used to determine an
optimal set of relaxed constraints, which can then be used to make the problem feasible.
No additional optimisation algorithm is needed afterwards since we already know the
optimal position and size of the Solution Space with respect to the relaxed constraints.
As shown in �gure 5.2, the determination of the relaxed set of constraints can be seen as
a pre-optimisation step during the system design phase.

5.1.3. Problem statement

The initial problem statement, which shall be solved is the classical Solution Space prob-
lem statement [83] with additional robustness constraints. Recall that a box-shaped
Solution Space can be written as Ω = I1× . . .×Id with Ii = [xlbi x

ub
i]. Where xlbi / x

ub
i are

the lower/ upper boundary of the design interval in dimension i. Robustness constraints
refer to the size of the permissible intervals for the design variables: xub−xlb ≥ xr. This
leads to the following problem statement:

Problem Statement 10.

maximise
Ω⊆Ωds

µ(Ω) (5.1a)

s.t. ∀x ∈ Ω, f(x) ≤ fc; xub − xlb ≥ xr. (5.1b)

As visualised in �gure 5.1 (a), this problem statement can be infeasible, in which case
no result is obtained. The idea of Optimal Constraint Relaxation for Solution Space
is to reformulate problem statement 10 such that it is feasible for any arbitrarily strict
requirements. Instead of optimising the size of an Solution Space, the goal is to optimise
an Solution Space, which ful�ls the robustness requirements exactly xub−xlb = xr. This
leads to a box-shaped Solution Space of �xed size Ω = [xc− 1

2xr; xc+
1
2xr], xc is the centre

Advanced Solution Space Methods in Systems Design. 65

Marc Eric Vogt

of the Solution Space. In case no such Solution Space can be found, the performance
constraints are relaxed fc + ∆fc. The new objective function minimises the amount of
relaxation. The degrees of freedom are the position of the centre of the Solution Space xc
as well as the relaxation of the performance constraints ∆fc. This leads to the following
problem statement:

Problem Statement 11.

minimise
∆fc,xc

g(∆fc) (5.2a)

s.t. ∆fc ≥ 0; ∀x ∈ Ω, f(x) ≤ fc + ∆fc; Ω ⊆ Ωds . (5.2b)

with Ω = [xc −
1

2
xr; xc +

1

2
xr] .

Since the goal is to relax the performance constraints as little as possible the target
function g : Rm → R has to ful�l the following criteria for any ∆fc ≥ 0, ∆fc ∈ Rm

1. g(∆fc) ≥ 0

2. g(∆fc) = 0⇔ ∆fc = 0

3. g(∆fc) is strictly monotonically increasing with respect to each of its variables,
which means:

g(∆f̃c)− g(∆fc) > 0 ∀ ∆f̃c,∆fc, ∆f̃c,i > ∆fc,i, ∆f̃c,j = ∆fc,j , (5.3)

for any i ∈ {1, . . . ,m} with j = {1, . . . ,m}/{i} [25].

Shao proposes the following target function [59]

g(∆fc) =
m∑
i=1

gi(∆fc,i) =
m∑
i=1

qi(∆fc,i)
2 + ci∆fc,i + disign(∆fc,i), (5.4)

with qi > 0 and ci, di ≥ 0, since it is applicable to many industrial problems due to
its �exibility and can be computed e�ciently with the application of classical quadratic
programming approaches [5]. In this thesis, we apply a distinct version of Shao's target
function with ci, di = 0. This target function relates to the Euclidean distance. It
penalises large relaxations for individual constraints and hence results in a balanced
relaxation of all constraints.

5.2. Linear Performance Constraints

In this thesis, we introduce an algorithm to compute Optimal Constraint Relaxation for
Solution Spaces in systems with linear performance constraints (see Section 5.2.1):

f(x) = Fx+ c F ∈ Rm×d; c ∈ Rm. (5.5)

66 Advanced Solution Space Methods in Systems Design.

Marc Eric Vogt

5.2.1. Problem statement

Similarly to expression (5.2), an optimal set of relaxed constraints as well as an optimal
position for the centre of the Solution Space are sought.

Problem Statement 12.

minimise
∆fc,xc

g(∆fc) (5.6a)

s.t. ∆fc ≥ 0; ∀x ∈ Ω, Fx ≤ fc + ∆fc; Ω ⊆ Ωds . (5.6b)

with Ω = [xc −
1

2
xr; xc +

1

2
xr]

Note that the constant c is included in fc.
In this section, the idea, the notation, and the computational e�ort for Optimal Con-

straint Relaxation for Solution Space with linear performance constraints are described.

5.2.2. Idea

In order to solve the linear problem statement 12, we can apply the VT idea �rst in-
troduced in [19, 21]. According to Erschen, for box-shaped Solution Spaces with linear
performance constraints, it is su�cient to assess only particular vertexes of the polytopes
to ensure that the enclosed set contains only good designs. Hence, we can modify the
constraint function (5.6b) such that a �nite number of designs x have to be checked,
namely particular vertices.

5.2.3. Details

In the following, we apply the VT idea to modify problem statement 12 such that it can
be solved by a classical interior point optimisation [80]. The target function is unchanged
but the degrees of freedom are reduced to the centre of the box xc.
Figure 5.3 visualises the idea of Vertex Tracking. It is su�cient to check a critical

vertex, which is determined by the normal direction of the respective constraint hyper-
plane. If the critical vertex is a good design each design included in the considered
Solution Space is a good design. A detailed proof that this idea is applicable for any
linear constraint in arbitrary dimensions can be found in [20].
The following derivation is done in accordance with [59]. For simplicity we consider

only a single performance constraint, which is determined by the i-th row of the constraint
function (5.6b):

∀x ∈ [xc −
1

2
xr; xc +

1

2
xr], fix ≤ fc,i + ∆fc,i with F =


f1

...

fm

 . (5.7)

Advanced Solution Space Methods in Systems Design. 67

Marc Eric Vogt

Figure 5.3 Example for VT. If the critical vertex is a good design the entire Solution Space contains
only good designs with respect to the considered performance constraint.

According to VT, the critical vertex for the i-th constraint is

xcritj = xc +
1

2


sign(fi,1)xr,1

...

sign(fi,d)xr,d

 . (5.8)

The combination of equation (5.7) and (5.8) yields:

fixcriti ≤ fc,i + ∆fc,i (5.9)

as the new constraint function. In contrast to equation (5.7), only a single vertex xcritj
and not all designs inside the box [xc− 1

2xr; xc + 1
2xr] is considered. Equation (5.9) can

be further simpli�ed to:

fixc ≤ fc,i + ∆fc,i −
1

2
|fi|xr with |fi| =

[
|fi,1| . . . |fi,d|

]
. (5.10)

We apply VT to each constraint. Hence, problem statement 12 can be simpli�ed to:

Problem Statement 13.

minimise
∆fc,xc

g(∆fc) (5.11a)

s.t. ∆fc ≥ 0; Fxc ≤ fc + ∆fc −
1

2
|F |xr; xc ±

1

2
xr ∈ Ωds, (5.11b)

with |F | = [|f1| . . . |fm|]T .
In the following, we show that ∆fc can be eliminated as a degree of freedom. This

will result in a highly non-linear target function but will also reduce the amount of
constraints. In order to modify problem statement 13 such that its only degree of freedom

68 Advanced Solution Space Methods in Systems Design.

Marc Eric Vogt

is the centre of the box xc, we introduce the function ∆fcopt(xc) : Rd → Rm, which
depends on the centre of the box xc and determines the minimum relaxation required
for each performance constraint depending on the positioning of the box. Its i-th entry
is calculated as follows:

∆fcopt,i(xc) =


fixc + 1

2 |fi|xr − fc,i for fixc + 1
2 |fi|xr − fc,i > 0

0 else
(5.12)

We eliminate the performance constraint in equation (5.11b) by inserting fcopt into the
target function. This yields:

Problem Statement 14.

minimise
xc

g(∆fcopt(xc)) (5.13a)

s.t. xc ±
1

2
xr ∈ Ωds . (5.13b)

5.2.4. Computational E�ort

In order to compute Optimal Constraint Relaxation for Solution Spaces with linear per-
formance constraints, we can choose whether we want to solve problem statement 13 or
14. With respect to the global optimum they are interchangeable. For this thesis, the
target function g(∆fc) is quadratic with respect to its argument ∆fc (see equation (5.4)).
Hence, we choose to compute problem statement 13 since it can be solved very e�ciently
by the interior point algorithm.
For a �xed gap reduction, a mathematically proven upper boundary for the number

of Newton iterations is given by O(
√
m). Although, in most technical applications the

number of iterations needed grows even more slowly with O(logm). In order to derive
the computational e�ort, this has to be multiplied with the cost of one Newton iteration,
which depends on the number of problem dimensions d [5].

5.3. Non-linear Performance Constraints

In this section, we extend the idea of Optimal Constraint Relaxation for Solution Spaces
to systems with non-linear performance constraints. Therefore, an iterative algorithm is
introduced and reviewed with respect to its computational e�ort.

5.3.1. Idea

Recall that in order to solve the linear problem statement 12 we apply the VT idea. This
idea can be extended to non-linear monotonic performance constraints [20]. Figure 5.4
gives an example of how monotonic constraints look like and connects them with the
properties of the resulting complete Solution Space. In order to apply VT to non-linear
constraints, these constraints need to be linearised. An algorithm is introduced, which

Advanced Solution Space Methods in Systems Design. 69

Marc Eric Vogt

iteratively moves the centre of the box towards an optimal point such that g(∆fc) is
minimised. The system is linearised twice in each iteration loop: �rst to determine the
critical vertices, second to linearise the system around the critical vertices. The double
linearisation is executed in order to reduce the linearisation error. According to the
Taylor series, the linearisation error grows with the distance to the point at which the
function was linearised at (see equations (5.14) and (5.16)). We are most interested in the
change of the function value close to the critical design. Hence, it is crucial to linearise
each constraint fix ≤ fc,i at the critical vertices xcriti . The critical vertices are derived
by VT (see equation (5.15)) in the linearised system around the centre of the current box
xc:

fi(x)
linearised−−−−−−→
at xc

∇fi(xc)(x− xc) + f(xc). (5.14)

The critical vertices are

xcriti = xc +
1

2


sign(∂fi(x)

∂x1

∣∣∣
x=xc

)xr,1

...

sign(∂fi(x)
∂xd

∣∣∣
x=xc

)xr,d

 . (5.15)

The linearised constraints are derived with a second linearisation:

fi(x)
linearised−−−−−−→
at xcriti

∇fi(xcriti)(x− xcriti) + f(xcriti). (5.16)

Finally, the problem statement to be solved in each iteration loop is obtained. It is a
modi�ed version of the original linear problem statement 13:

Problem Statement 15.

minimise
∆fc,xc

g(∆fc) (5.17a)

s.t. ∇fi(xcriti)xc ≤ fc,i − fi(xcriti) +∇fi(xcriti)xcriti + ∆fc,i −
1

2
|∇fi(xcriti)|xr,

for i = 1, . . . ,m; ∆fc ≥ 0; xc ±
1

2
xr ∈ Ωds. (5.17b)

5.3.2. Details

In the following, a de�nition for monotonic constraints is given and the steps of the
Optimal Constraint Relaxation algorithm for Solution Space with non-linear performance
constraints (alg. 7) are explained in detail.
A performance function f(x) is monotonically increasing with respect to the design

70 Advanced Solution Space Methods in Systems Design.

Marc Eric Vogt

Figure 5.4 Type of Solution Space constraints, shape of Solution Spaces and examples according to
[20].

variable xi if it ful�ls the following condition:

f(x̃)− f(x) ≥ 0 ∀ x̃, x, x̃i > xi, x̃j = xj , (5.18)

with i ∈ {1, . . . ,m} and j = {1, . . . ,m}/{i}. Similarly, a performance function f(x) is
monotonically decreasing with respect to the design variable xi if it ful�ls the following
condition:

f(x̃)− f(x) ≤ 0 ∀ x̃, x, x̃i > xi, x̃j = xj , (5.19)

with i ∈ {1, . . . ,m} and j = {1, . . . ,m}/{i} [25].
In order to compute Optimal Constraint Relaxation for Solution Space with non-

linear monotonic constraints, algorithm 7 is executed in an iterative loop. The loop is
terminated if either the solution converges, a maximum number of iterations is reached
or a feasible Solution Space without any constraint relaxation is found:
If all constraints are monotonic, we can be sure the Optimal Constraint Relaxation

algorithm, introduced in this chapter, converges to the optimal solution. For engineering
purposes we can also apply the algorithm to arbitrary non-linear problems. The idea is
that if the performance constraints behave monotonically in a certain area around the
box, the algorithm converges to a local optimum. In order to optimise the result, the
algorithm can be executed several times with di�erent starting points. In addition, a pre-
optimisation can be run to compute a single optimal starting point for xc,opt. Therefore,
the non-linear Optimal Constraint Relaxation problem statement 11 is computed without
robustness constraints xr = 0. Then, the Solution Space includes only a single design

Advanced Solution Space Methods in Systems Design. 71

Marc Eric Vogt

Algorithm 7: Optimal Constraint Relaxation for Solution Spaces with non-linear
performance constraints
Data: Initial System with performance constraints f(x) ≤ fc, design space

constraints Ω ⊆ Ωds, robustness constraints xub − xlb ≥ xr and the target
function g(∆fc).

Result: Position of the Solution Space and relaxation ∆fc optimised with
respect to the target function g(∆fc).

while xc changes signi�cantly and |∆fc| > 0 and maximum number of iterations
has not been reached do
(1) Linearise each performance constraint around the current centre of the box.
(2) The critical vertices according to VT are determined (see equation (5.10))
for the linearised system derived in step (1).
(3) Each constraint is linearised again at its respective critical vertex.
(4) Problem statement 13 is computed for the linearised system derived in
step (3).

end

Ω = xc and a classical single point optimiser such as particle swarm optimisation can
be applied [60]. If the additional computational e�ort is acceptable, instead of checking
only critical vertices, each vertex can be checked with respect to performance constraint
violation. Hence, step (3) of algorithm 7 is modi�ed such that each constraint is linearised
at each vertex. This helps to track convex constraints such as the sphere shown in �gure
5.4.D. Unfortunately, the computational e�ort to compute all vertices grows exponentially
with the number of dimensions O(d2) and hence, is not applicable for high dimensions.

5.3.3. Computational E�ort

The total computational e�ort to compute Optimal Constraint Relaxation for Solution
Spaces with non-linear monotonic performance constraints can be estimated by:

i× cps15 = i× [(2m× clin) + cps13] , (5.20)

where cps13 and cps15 represent the computational e�ort required to solve problem state-
ment 13 and 15. clin represents the computational e�ort required to linearise the system.
i is the number iterations and m the number of constraints.
The total computational e�ort depends linearly on the number of iterations i needed to
compute algorithm 7. In each iteration, the non-linear Optimal Constraint Relaxation
problem statement 15 needs to be solved. Therefore, a number of linearisation steps
equal to twice the number of constraints m is necessary. Their computational e�ort lin
depends on the system dimensions, on how expensive a single function evaluation is and
whether the �rst derivatives are known explicitly. If the derivatives are unknown, they
need to be estimated by �nite di�erences. In addition, the linear Optimal Constraint
Relaxation problem statement 13 needs to be solved in each iteration. If the quadratic
target function (see equation (5.4)) is used this can be e�ciently computed with an

72 Advanced Solution Space Methods in Systems Design.

Marc Eric Vogt

interior point optimiser.

5.4. Determination of the weighting factors

In order to apply Optimal Constraint Relaxation for Solution Spaces, a target function
g(∆fc) needs to be de�ned. As introduced in subsection 5.1.3 for this thesis, we use the
following target function:

g(∆fc) =
m∑
i=1

qi(∆fc,i)
2, (5.21)

where qi are the weighting factors. In the following, a generic approach, a case-speci�c
approach and an interactive approach to determine the weighting factors are introduced.

5.4.1. Generic weighting factors

Deriving the target function based on generic weighting factors works for any application
of Optimal Constraint Relaxation for Solution Spaces. The idea is to model the weighting
factors q based on the critical performance values fc, such that the units of the outputs get
eliminated and the relaxation of di�erent performance constraints becomes comparable.
For each performance constraint fi(x) ≤ fc,i three di�erent scenarios are possible:

1 The performance fi(x) has both an upper and a lower boundary. Hence, a
related constraint fj(x) ≤ fc,j exists, which ful�ls the following criteria: fc,jfc,i < 0
and ∀x ∈ Ωds, fj(x) = −fi(x). If that is the case, the weighting factor qi is
determined as follows:

qi =
1

(fc,i − fc,j)2
. (5.22)

2 The performance fi(x) has either an upper or a lower boundary, which means
no related constraint fj(x) ≤ fc,j exists, which ful�ls the aforementioned conditions
and the critical value of the constraint is not zero: fc,i 6= 0. If that is the case,
the weighting factor qi is determined as follows:

qi =
1

f2
c,i

. (5.23)

3 The performance fi(x) has either an upper or a lower boundary and the
critical value of the constraint is zero: fc,i = 0. If that is the case, no weighting
according to the critical value is possible and qi is set to 1.

5.4.2. Case-speci�c weighting factors

As the name suggests, case-speci�c weighting factors depend on the case and are only
applicable if additional information about the performance constraints is available. In
this section, an example for case-speci�c weighting factors is introduced. The example

Advanced Solution Space Methods in Systems Design. 73

Marc Eric Vogt

Figure 5.5 Example on how to calculate the Rating Index for vehicle dynamics for the maximum
lateral acceleration zay .

is applicable to the chassis design problem considered in this thesis. Therefore, we con-
vert the di�erent performances fi(x) into a uniform scale, which is speci�c to driving
dynamics. The scale describes the Rating Index for vehicle dynamics (RI) and ranges
from 1.0 to 10.0. 1.0 describes the worst possible performance and 10.0 the best possible
performance. The critical values are designed such that they represent exactly the value
eight on the rating scale RI(fc,i) = 8. Hence, each performance that is eight or better
ful�ls the performance constraint:

RI(fi(x)) ≥ 8.0. (5.24)

Since an RI of 8.0 is su�cient, we are not interested in the precise RI value if the
performance constraints are ful�lled; we simply set it to 8.0. If the performance constraint
is not ful�lled, the value for the RI decreases linearly. The individual gradients ∆RIi > 0
are known, hence we can de�ne the RI function as follows:

RI(fi(x)) =


8− fi(x)−fc,i

∆RIi
for fi(x) > fc,i

8.0 for fi(x) ≤ fc,i
(5.25)

Figure 5.5 shows how the RI is calculated for the constraint with respect to maximum
lateral acceleration (see table 3.2). Note that generally the RI is capped at a value of
1.0 and cannot decrease any further. For industrial applications, such low RIs are not
interesting anyway due to the fact that a vehicle with an RI value of 5.0 would never be
built.

Since the RI system allows us to translate each constraint violation into the same
scale it is perfectly suitable to determine the weighting factors for the target function of
Optimal Constraint Relaxation for Solution Spaces. The weighting factors are chosen as

74 Advanced Solution Space Methods in Systems Design.

Marc Eric Vogt

(a) (b)

Figure 5.6 Example for interactive optimisation.(a) Each constraint is weighed equally q1 = q2 = q3.
(b) Constraint one q1 is more important q1 = 10q2 = 10q3.

follows:

qi =
1

∆RI2i
. (5.26)

Considering equations (5.25), (5.26) and RI(fi(x)) = RI(fc,i + ∆fc,i) the target function
can be simpli�ed to:

g(∆fc) =
m∑
i=1

[8−RI(fc,i + ∆fc,i)]
2 . (5.27)

5.4.3. Interactive Optimisation

Interactive optimisation is often used in industrial applications where an expert is able to
evaluate the result of the Optimal Constraint Relaxation. In order to apply interactive
optimisation, an initial weighting system has to be chosen e.g. generic or case-speci�c
weighting factors. After calculating the results of Optimal Constraint Relaxation for
Solution Spaces with the initial weighting factors, the result is reviewed. In case it is not
satisfactory because some constraints have been relaxed by too much, their weighting
factors can be increased. A new Optimal Constraint Relaxation for Solution Spaces is
executed where it is more costly to relax the chosen constraints. The result is reviewed
once more. This way, the weighting factors can be adjusted in an iterative loop. Figure
5.6 shows an example for interactive optimisation. In �gure 5.6 (a), each constraint
violation is weighed identically. The user decides that constraint one is more important
and hence multiplies its respective weighting factor by 10. The new result is shown in
�gure 5.6b.

Advanced Solution Space Methods in Systems Design. 75

Marc Eric Vogt

Chapter 6

Optimal Constraints Relaxation for Solution-Compensation

Spaces

Solution-Compensation Spaces (SCSs) where introduced in chapter 4. They are an evo-
lution of the classical Solution Space approach introduced by Zimmermann & von Hössle
[83]. In order to compute Solution-Compensation Spaces, the design variables are divided
into a set of early- and a set of late-decision variables. Solution-Compensation Spaces
have the property that for all values within the early-decision permissible intervals there
exists at least one set of values from the late-decision intervals such that the resulting
design ful�ls all design goals.
In case the typical Solution-Compensation Space problem statement is infeasible or

the acquired permissible intervals for the early-decision variables are not large enough
to encompass all uncertainties, Optimal Constraint Relaxation (OCR) for Solution-
Compensation Spaces can be applied. In this case, a minimal size for each early-decision
permissible interval needs to be de�ned. The Cartesian product of these intervals repre-
sents a box of �xed size. This box exists only in the early-decision parameter dimensions.
The goal of Optimal Constraint Relaxation for Solution-Compensation Spaces is to seek
a set of relaxed constraints and the position of the box such that for all values within
the early-decision permissible intervals there exists at least one set of values within the
late-decision variable intervals such that all relaxed design goals are ful�lled. The set of
relaxed constraints is optimal with respect to a target function that weighs the relax-
ation of di�erent constraints and aims to relax each constraint as little as possible. In this
chapter, mathematical formulations of the underlying optimisation problem are stated
and an approach to compute Optimal Constraint Relaxation for Solution-Compensation
Spaces with linear performance constraints is proposed.

76 Advanced Solution Space Methods in Systems Design.

Marc Eric Vogt

6.1. Idea, overview, and problem statement

In the early stages of product development, it is crucial to derive designs, which are
su�ciently robust with respect to changes, which are made in the later stages of the
development process. Therefore, the size of Solution Spaces is optimised. Unfortunately,
in many industrial applications the resulting Solution Spaces either do not exists or are
too small. In order to enlarge these Solution Spaces, Solution-Compensation Spaces and
Optimal Constraint Relaxation for Solution Space were introduced in chapters 4 and 5.
The main advantages of the Solution-Compensation Space method are:

• Enlarged intervals for all early-decision parameters.

• The set of performance constraints does not need to be relaxed.

The main advantages of Optimal Constraint Relaxation for Solution Space are:

• The performance constraints are relaxed optimally with respect to a target function.

• Any Solution Space problem statement with arbitrarily strict performance and
robustness constraints becomes feasible.

In this chapter, a new method is introduced, which aims to combine the advantages
of both former approaches: Optimal Constraint Relaxation for Solution-Compensation
Spaces. The idea is to make any Solution Space problem statement with robustness con-
straints feasible by taking advantage of the �exibility provided by Solution-Compensation
Spaces. In addition, to all the advantages of Optimal Constraint Relaxation for Solution
Spaces, the method relaxes the performance constraints by a smaller margin due to the
increased �exibility of the early-decision parameters.

6.1.1. Basic idea of Optimal Constraint Relaxation for

Solution-Compensation Spaces

In order to illustrate the basic idea of Optimal Constraint Relaxation for Solution-
Compensation Spaces, a two-dimensional example problem is shown in �gure 6.1. The
three straight lines forming the blue triangle represent the constraints. The triangle de-
picts the area of all good designs where all requirements are satis�ed. Inside the complete
Solution Space of �gure 6.1a a classical box-shaped Solution Space is shown, which is
optimised with respect to its volume. More robustness is required with respect to the
design variable xa. In order to increase the interval size for xa, Ωb is used as a compensa-
tion space. The optimised Solution-Compensation Space is depicted in �gure 6.1b. Even
though the interval size of xa is increased signi�cantly, it is still not su�ciently large to
account for all uncertainties. Hence, Optimal Constraint Relaxation for Solution Spaces
is applied in order to derive an optimal set of relaxed performance constraints such that
the robustness requirement with respect to xa is ful�lled xuba − xlba ≥ xr,a. The required
box size for xb is therefore set to zero xubb = xlbb . The result is shown in �gure 6.1c.
Unfortunately, the relaxation of the performance constraints is too big.

Advanced Solution Space Methods in Systems Design. 77

Marc Eric Vogt

(a) (b)

(c) (d)

Figure 6.1 (a) An optimised box-shaped Solution Space (black). (b) An optimised SCS (blue box).
(c) An optimised set of relaxed performance constraints (grey dashed lines) derived by OCR for
Solution Spaces and the optimised box-shaped Solution Space (blue line). (d) An optimised set of
relaxed performance constraints (grey dashed lines) derived by OCR for SCSs and the optimised SCS
(blue box).

Figure 6.1d shows the result of Optimal Constraint Relaxation for Solution-Compensation
Space. The variable xb is de�ned as a late-decision variable. In addition, the perfor-
mance constraints are relaxed by ∆fc such that an Solution-Compensation Space with
the required interval size for xa becomes feasible. Therefore, compared to the classical
Optimal Constraint Relaxation for Solution Spaces approach a far smaller relaxation of
the performance constraints is needed. xoptc,a is the optimised position of the �nal Solution-
Compensation Space, which ful�ls the robustness requirements xuba − xlba ≥ xr,a as well
as the relaxed performance requirements Fx ≤ fc + ∆fc.

78 Advanced Solution Space Methods in Systems Design.

Marc Eric Vogt

Figure 6.2 Approach using system and component design of classical Solution Spaces with the
addition of a pre-optimisation step for infeasible problem statements.

6.1.2. Design Process with Optimal Constraint Relaxation for

Solution-Compensation Spaces

As introduced in subsection 4.1.2, the classical Solution Space approach consists of a
system design phase and a component design phase. During the system design phase
permissible intervals are derived. In the component design phase the value for each
variable is speci�ed. Similarly to the design process with Solution-Compensation Spaces,
Optimal Constraint Relaxation for Solution-Compensation Spaces adds a compensation
phase in which the permissible intervals for all late-decision variables xb are computed
and a �nal design is realised. As shown in �gure 6.2, Optimal Constraint Relaxation for
Solution-Compensation Spaces requires a pre-optimisation of the performance constraints
during the system design phase. After the early- and the late-decision variables are
identi�ed, an algorithm is executed, which determines whether an Solution-Compensation
Space, which ful�ls all robustness requirements can be found. If not, the constraints are
relaxed until the problem becomes feasible. For this, the SINF is minimised.

6.1.3. General problem statement

The initial problem statement, which shall be solved is the Solution-Compensation Space
problem statement (see equation (4.2)) with additional robustness constraints for the
early-decision variables. Robustness constraints refer to the permissible interval sizes for
the design variables: xuba − xlba ≥ xr,a. This leads to the following problem statement:

Problem Statement 16.

maximise
Ωa⊆Ωds,a

µ(Ωa) (6.1a)

s.t. ∀xa ∈ Ωa, ∃xb ∈ Ωds,b, f(xa, xb) ≤ fc;xuba − xlba ≥ xr,a . (6.1b)

Advanced Solution Space Methods in Systems Design. 79

Marc Eric Vogt

As visualised in �gure 6.1d, this problem statement can be infeasible, in which case no
result is obtained. Similarly to Optimal Constraint Relaxation for Solution-Compensation
Spaces, the idea is to reformulate problem statement 17 such that it is feasible for any
arbitrarily strict requirements. Instead of optimising the size of an Solution Space, the
goal is to optimise an Solution Space, which ful�ls the robustness requirements exactly
xuba − xlba = xr,a. This leads to an Solution-Compensation Space of �xed size Ωa =
[xc,a − 1

2xr;xc,a + 1
2xr] and Ωb = Ωds,b, xc,a is the centre of the Solution-Compensation

Space in the early-decision dimensions. In case no such Solution-Compensation Space can
be found, the performance constraints are relaxed. The new objective function minimises
the amount of relaxation. The degrees of freedom (dofs) are the position of the Solution-
Compensation Space centre in the early-decision dimensions xc,a as well as the relaxation
of the performance constraints ∆fc. This leads to the following problem statement:

Problem Statement 17.

minimise
∆fc,xc,a

g(∆fc) (6.2a)

s.t. ∆fc ≥ 0; ∀xa ∈ Ωa ∃xb ∈ Ωb, f(xa, xb) ≤ fc + ∆fc; Ωa ⊆ Ωds,a . (6.2b)

with Ωa = [xc,a −
1

2
xr,a; xc,a +

1

2
xr,a] .

Similarly to Optimal Constraint Relaxation for Solution Space, the target function
g(∆fc) has to have the properties de�ned in subsection 5.1.3.

6.2. Linear Performance Constraints

In this thesis we introduce an algorithm to compute Optimal Constraint Relaxation for
Solution-Compensation Spaces in systems with linear (or linearised) performance con-
straints. Linear constraints are de�ned in equation (4.3). Similarly to problem statement
17, an optimal set of relaxed constraints as well as an optimal position for the centre of
the Solution-Compensation Space is sought. Since the late-decision parameter are always
bounded by the design space xb ∈ Ωds,b, the optimal position is only computed for the
early-decision parameters. Hence, the dof is xc,a rather than xc:

Problem Statement 18.

minimise
∆fc,xc,a

g(∆fc) (6.3a)

s.t. ∆fc ≥ 0; ∀xa ∈ Ωa ∃xb ∈ Ωb, Axa +Bxb ≤ fc + ∆fc; Ωa ⊆ Ωds,a . (6.3b)

with Ωa = [xc,a −
1

2
xr,a; xc,a +

1

2
xr,a] .

80 Advanced Solution Space Methods in Systems Design.

Marc Eric Vogt

Figure 6.3 Overview of the algorithms to compute Optimal Constraint Relaxation for SCSs

In this section, the idea, the notation, and the computational e�ort for three di�erent
algorithms to compute Optimal Constraint Relaxation for Solution-Compensation Spaces
are introduced. Each of them solves problem statement 18. Due to its e�ciency, the
Bisection Algorithm introduced in subsection 6.2.1 is used as a pre-optimisation for the
Static and the Shifting Algorithm introduced in subsections 6.2.2 and 6.2.3.

6.2.1. Bisection Algorithm to compute Optimal Constraint Relaxation for

Solution-Compensation Spaces

Idea

As indicated in �gure 6.3, the Bisection Algorithm to compute Optimal Constraint Re-
laxation for Solution-Compensation Spaces consists of two steps. The idea is that in
the �rst step we �nd a feasible set of relaxed performance constraints in the original
non-projected system (Step (1) of algorithm 8). In the second step bisection is applied
in order to iteratively scale the relaxed set to a point where it is only just su�cient in
the projected system (Steps (2)-(5) of algorithm 8).

Details

In the following, the steps of the Bisection Algorithm to compute Optimal Constraint
Relaxation for Solution-Compensation Spaces with linear performance constraints (see
algorithm 8) are explained in detail.
Step (1). We know that with the original set of performance constraints problem

statement 16 is infeasible, therefore Optimal Constraint Relaxation is needed. Problem
statement 16 becomes feasible when a relaxed set of performance constraints is applied.
In order to derive the relaxed set, Optimal Constraint Relaxation for Solution Spaces
(see Section 5.2.1) is used to solve the following modi�ed version of problem statement
13:

Problem Statement 19.

minimise
∆fc,xc,a,xc,b

g(∆fc) (6.4a)

Advanced Solution Space Methods in Systems Design. 81

Marc Eric Vogt

s.t. ∆fc ≥ 0; Axc,a +Bxc,b ≤ fc + ∆fc −
1

2
|A|xr,a;

xc,a ±
1

2
xr,a ∈ Ωds,a; xc,b ∈ Ωds,b, with |A| =


|a1,1| . . . |a1,p|
...

. . .
...

|am,1| . . . |am,p|

 . (6.4b)

The goal is to derive ∆fc and xc,a for a box, which ful�ls the robustness constraints with
respect to the early-decision parameter xuba − xlba ≥ xr,a and has an interval size of zero
for all late-decision variables. This set of relaxed performance constraints was optimised
with respect to problem statement 11 where a box for a speci�c value for each late-
decision variable is computed. Hence, we can be sure that this set of relaxed constraints
will also ful�l the constraints of problem statement 17. Since for problem statement 17
the existence of any feasible value for the late-decision variables is su�cient.

Step (2) - (5). Now that we found a set of constraints, which is feasible, we can
try to improve that set, with respect to the target function g(∆fc). Therefore, we apply
the Solution-Compensation Space method for linear constraints, which is introduced in
section 4.2. We project the relaxed performance constraint by applying Fourier-Motzkin
Elimination:

∀xa ∈ Ωa∃xb ∈ Ωb, Axa +Bxb ≤ fc + ∆f ic
FME−−−→ ∀xa ∈ Ωa, Ãixa ≤ f̃ ic. (6.5)

Unfortunately, the projected system refers to a speci�c ∆fc. If ∆fc changes FME needs to
be applied again in order to determine a new projection. Hence, the index i is introduced.
It indicates that Ãi and f̃ ic refer to ∆f ic. With VT and linear constraints we are able to
check whether problem statement 17 is feasible by examining the projected system:

xa ∈ Ωds,a, Ãixa ≤ f̃ ic −
1

2
|Ãi|xr,a (6.6)

If a solution for xa exists, we know that the problem is feasible with a performance
constraint relaxation of ∆f ic. This idea can be applied in order to start an iterative
procedure to determine the optimal relaxation. For performance reasons we do not
change the entries of ∆fc arbitrarily. Instead we scale the entire vector by multiplying
it with a scalar value t ∈ R. This lets us optimise t via Bisection [48]. We know that if
a certain t is feasible, the relaxation and hence all values for t that are higher are also
feasible. If a certain t is not feasible, the relaxation is insu�cient and hence all values
that are lower are also not feasible. Figure 6.4 visualises how the optimal scaling factor
for constraint relaxation t is derived. The two initial sets of constraints are shown in red
and blue. The non-relaxed one t = 0 (red) is infeasible while the fully relaxed one t = 1
(blue) is feasible. We always test the middle point of the current interval. Hence, the
�rst scaling factor, which is tested with respect to feasibility is t = 0.5. In the example

82 Advanced Solution Space Methods in Systems Design.

Marc Eric Vogt

Figure 6.4 Example for the Bisection Algorithm.

shown t = 0.5 is infeasible. The next scaling factor tested is t = 0.75. This iterative
process is executed a prede�ned number of times n. The upper boundary of the �nal
interval (which is always feasible) is then taken as the �nal result.

Computational E�ort

In order to estimate the computational e�ort of the Bisection Algorithm to compute
Optimal Constraint Relaxation for Solution-Compensation Spaces (see algorithm 8) the
di�erent steps have to be considered. In Step (1) Optimal Constraint Relaxation for
Solution Spaces with linear constraints is computed. Therefore, a quadratic programming
problem with linear constraints has to be solved. As explained in section 5.2.1, the
computational e�ort for this is low and grows with O(

√
m). The feasibility check in Step

(5) is computationally cheap as well, it can be implemented with just summation and
multiplication operations. For the Bisection Algorithm the computationally dominant
part is step (4) where the FME is computed. As explained in section 4.2.3, the FME is
only recommended in combination with RR, in which case its computational e�ort can
be estimated by q ×m × LP (d, s). Where q is the number of projected dimensions, m
is the total number of performance constraints and s is the number of non-redundant
performance constraints. LP (d, s) represents the computational e�ort needed to solve
an LPP of size d times s. Since the FME is computed once in each iteration, the
computational e�ort for the Bisection Algorithm can be estimated by

n× q ×m× LP (d, s). (6.7)

6.2.2. Static Algorithm to compute Optimal Constraint Relaxation for

Solution-Compensation Spaces

Idea

As indicated in �gure 6.3, the Static Algorithm to compute Optimal Constraint Relax-
ation for Solution-Compensation Spaces uses the very e�cient Bisection Algorithm as a

Advanced Solution Space Methods in Systems Design. 83

Marc Eric Vogt

Algorithm 8: Bisection Algorithm to compute OCR for Solution-Compensation
Spaces with linear performance constraints
Data: Initial System with performance constraints f(x) ≤ fc, design space

constraints Ω ⊆ Ωds, early- and late-decision variables x = [xa;xb],
robustness constraints for all early-decision variables xuba − xlba ≥ xr,a and
the target function g(∆fc).

Result: Position of the Solution Space xc and relaxation ∆fc optimised with
respect to the target function g(∆fc).

begin
(1) Apply Optimal Constraint Relaxation for Solution Spaces to determine a
∆f ic optimised with respect to g(∆fc) for an Solution Space of size
Ω = Ωa × Ωb, with Ωa = [xc,a − 1

2xr,a;xc,a + 1
2xr,a] and Ωb = xc,b.

(2)Set current best value t = 1, current test value ttest = 1, counter j = 0,
current test value on feasible k = 1 (1: feasible/ 0: infeasible) and de�ne
number of iterations n.
while Pre-de�ned number of iterations is not reached j < n do

Count the number of iteration steps: j = j + 1
if Current test value is feasible k == 1 then

(3) Modify the current test value for the scaling factor: ttest = ttest − 1
2

j

else

(3) Modify the current test value for the scaling factor: ttest = ttest + 1
2

j

end

(4) Apply FME to project the constraints relaxed by ttest∆fc (see equation
(6.5)).
if Projected system is feasible (see equation (6.6)) then

(5) k = 1 and the best value is updated t = ttest.
else

(5) Projected system is infeasible k = 0.
end

end

end

pre-optimisation. The Static Algorithm got its name because it assumes a �xed position
for the centre of the Solution Space in the early-decision variable space xc,a. Therefore,
xc,a is provided by the Bisection Algorithm. Due to the nature of the Bisection Algo-
rithm it can only modify the scaling factor for the initial constraints relaxation ∆f ic and
cannot change the direction of the vector (see �gure 6.4). The Static Algorithm explores
di�erent directions for ∆fc to further optimise the set of relaxed constraints with respect
to the target function g(∆fc). As shown in �gure 6.5(a), the information gained by the
Bisection Algorithm can be used to signi�cantly reduce the size of the search area for
∆fc.

84 Advanced Solution Space Methods in Systems Design.

Marc Eric Vogt

(a) static (b) shifting

Figure 6.5 Example for the search area (green) of the Static and the Shifting Algorithm with respect
to ∆fc.

Details

The problem statement, which is solved by the Static Algorithm relates to problem
statement 19 with the premise that xc,a and xc,b are given and that two additional
constraint are introduced to reduce the search area:

Problem Statement 20.

minimise
∆fc

g(∆fc) (6.8a)

s.t. ∆fc ≥ 0; ∃xb ∈ Ωds,b, Axc,a +Bxb ≤ fc + ∆fc −
1

2
|A|xr,a;

g(∆fc) ≤ g(t∆f ic); ∆fc,j ≥ t∆f jc,j , for j ∈ [1, ...,m]. (6.8b)

The Bisection Algorithm result is used as starting point for the optimisation ∆f startc =
t∆f ic. The constraint g(∆fc) ≤ g(t∆f ic) ensures that the area where the result is worse
than the initial relaxation given by the bisection is not searched. For the target function
used in this thesis g(∆fc) =

∑m
i=1 qi(∆fc,i)

2, this boundary is visualised in �gure 6.5(a)
by the green sphere. Note that this constraint is not necessary when gradient-based
optimisation is applied, since the relaxation cannot become worse with respect to the
target function anyway.
The constraint ∆fc,j ≥ t∆f ic,j , for j ∈ [1, ...,m] ensures that the area is searched where

all entries of ∆fc are smaller than the entries of t∆f ic is not searched. These relaxations
cannot be feasible since the Bisection Algorithm would have found them otherwise. This
boundary is visualised in �gure 6.5(a) by the black box. Only the green area is searched
in order to improve ∆fc.
In order to optimise ∆fc a gradient-based method such as interior point optimisation

is recommended [80]. It can deal with non-linear constraints and is very e�cient for

Advanced Solution Space Methods in Systems Design. 85

Marc Eric Vogt

quadratic target functions. The performance constraint Axc,a + Bxc,b ≤ fc + ∆fc −
1
2 |A|xr,a needs to be checked via projection with FME, similar to steps (4) and (5) of the
Bisection Algorithm 8. The violation c is then evaluated based on a modi�ed version of
equation (6.6):

c = −f̃ ic +
1

2
|Ãi|xr,a + Ãixc,a, [xc,a −

1

2
xr,a;xc,a +

1

2
xr,a] ∈ Ωds,a. (6.9)

If c ≤ 0 the constraint is ful�lled. If the projection yields no feasible result the con-
straint is maximally violated. In this case, c is set to an arbitrarily high number in our
MATLAB c© implementation. While the gradient of the quadratic target function can
easily be derived in explicit form, the gradient of the constraints needs to be evaluated
via �nite di�erences. It cannot be determined explicitly since the parameters Ãi and f̃ ic
depend on the current position of the Solution Space and can only be determined via
projection.

Computational E�ort

Similarly to the Bisection Algorithm, the computational e�ort is dominated by the LPPs
computed during the FME projections. Since the Interior Point Algorithm usually has
no prede�ned number of iterations it is hard to estimate the total computational e�ort.
In each iteration the �nite di�erence method is applied, which depending on whether the
forward or the central method is applied needs an amount of function evaluations equal
to the number of dimensions of the target function m or twice that amount 2m. Usually
the central method is recommended in order to get a better estimate of the gradient [79].
In addition, at least one new design point is evaluated. Sometimes multiple new design
points are evaluated instead, in order to adapt the step length. Assuming n iterations are
required and the central method is applied, the computational e�ort can be estimated
by:

n× (2m+ 1)× q ×m× LP (d, s). (6.10)

6.2.3. Shifting Algorithm to compute Optimal Constraint Relaxation for

Solution-Compensation Spaces

Idea

Similarly to the Static Algorithm, the Shifting Algorithm to compute Optimal Constraint
Relaxation for Solution-Compensation Spaces uses the Bisection Algorithm as a pre-
optimisation (see �gure 6.3). The Shifting Algorithm got its name because the position
of the Solution Space centre in the early-decision variable space xc,a is an optimisation
parameter; the position of the Solution Space is shifted during the optimisation. The
Shifting Algorithm explores di�erent directions for ∆fc while optimising the position of
the Solution Space centre xc,a with respect to the target function g(∆fc). The starting
value for both the box centre xc,a and the relaxation ∆fc is provided by the Bisection

86 Advanced Solution Space Methods in Systems Design.

Marc Eric Vogt

Algorithm. As shown in �gure 6.5(b), the information gained by the Bisection Algorithm
can be used to reduce the size of the search area for ∆fc. Unlike the Static Algorithm
no area inside the sphere can be excluded, since the t∆f ic optimised by the Bisection
Algorithm is only valid for that speci�c centre.

Details

The problem statement, which is solved by the Static Algorithm relates to problem
statement 19 with an additional constraint, which is introduced to reduce the search
area: g(∆fc) ≤ g(t∆f ic). Note that for high-dimensional problems it can be bene�cial to
apply the Static Algorithm as an additional pre-optimisation algorithm to further reduce
the search area g(∆fc) ≤ g(∆f static Algorithmc). In order to solve the optimisation problem
for the Shifting Algorithm, gradient-based optimisation methods, such as interior point,
are recommended [80]. Since the target function only depends on ∆fc, the gradient
of the Solution Space position with respect to the target function is always zero. But
according to equation (6.9) the position of the Solution Space xc,a in�uences whether the
constraints function is ful�lled or not. Similarly to the Static Algorithm, the gradient
of the constraint function is evaluated via �nite di�erences. As a starting point for the
optimisation the results of the Bisection Algorithm xc,a = xic,a and ∆f startc = t∆f ic are
used (if the Static Algorithm was used as a pre-optimiser, its results should be used as a
starting point instead).

Computational E�ort

Again, the computational e�ort is dominated by the LPPs computed during the projec-
tions done via FME. In order to estimate the computational e�ort a similar logic can be
applied as with the Static Algorithm. The two main di�erences are:

• In order to compute the �nite di�erences more designs need to be evaluated since
the position of the Solution Space xc,a is an additional optimisation parameter. It
adds an amount of dofs equal the number of early-decision variable dimensions p.
Hence, for the central �nite di�erence methods 2m+ 2p+ 1 designs are evaluated
in each iteration step of the Shifting Algorithm.

• As visualised in �gure 6.5 the search area for ∆fc cannot be reduced within the
sphere. This usually means that more iteration steps n + ∆n are needed for the
optimisation algorithm to converge.

With these modi�cations of equation (6.10) the computational e�ort can be estimated
by:

(n+ ∆n)× (2m+ 2p+ 1)× q ×m× LP (d, s). (6.11)

Advanced Solution Space Methods in Systems Design. 87

Marc Eric Vogt

Chapter 7

Application and Comparison

In the following, the approaches proposed in this thesis are applied to the chassis design
problem to demonstrate their applicability and to point out the di�erences between them,
therefore the chassis design problem is described in detail. Based on the results from the
application, the di�erent methods are compared with respect to the size of the resulting
Solution Spaces, the runtime, the accuracy, the ful�lment of the robustness constraints,
the amount of relaxation required with respect to the performance constraints, and their
applicability to non-linear problem statements.

88 Advanced Solution Space Methods in Systems Design.

Marc Eric Vogt

7.1. Exemplary chassis design problem

The chassis design problem considered in this thesis was brie�y introduced in section
3.1 as motivation for the aims and objectives. It is a typical engineering problem in the
early stage of vehicle design. We assume that conceptional decisions with respect to the
structure of the vehicle have already been made. Therefore, the genes of the car such
as mass, rear axle load, and the height of the centre of gravity are �xed. Now chassis
components need to be designed so that customer relevant properties with respect to
vehicle dynamics are optimised. The chassis design dynamics problem is formulated in
accordance with [74]. In the following, details about the design variables, the performance
measures, their physical relations, the physical simulation model as well as the response-
surface meta-model are described.

7.1.1. Design variables and vehicle parameters

The input space is created by eight design variables, which are listed in table 3.1. These
variables refer to the tyres, suspension, bump-stop, and anti-roll bar, which all have a
signi�cant in�uence on the driving dynamics behaviour of a vehicle. The design variables
µmax, carb, and cbs are directly linked to the component properties of the tyres, anti-roll
bars, and bump stops. An axle including these components is shown in �gure 7.1. The

Figure 7.1 Front axle of a passenger vehicle [18] with the chassis components bump stop (1), tyre(2)
and anti-roll bar (3)

remaining design variable hRo (roll centre height) depends on the roll centre (Ro), which
is the current pole around which the vehicle body rotates relative to the wheel contact
points without any elasticity due to kinematic laws. The front and rear axle each have
one roll centre. When stationary, the roll centre is located in the transverse axis plane.
Figure 7.2 visualises the roll centre height. For the construction of the roll centre Ro,
the rotational poles of the wheels in relation to the road surface (wheel contact points
W) and the turning points of the wheels in relation to the vehicle (transverse poles P)
are used. The roll centre Ro is determined by the intersection of the two straight lines
through W and P for the left and right half of the car. Its distance to the ground is

Advanced Solution Space Methods in Systems Design. 89

Marc Eric Vogt

Figure 7.2 Centre of Gravity CoG and construction of the rolling centre Ro of a double wishbone axle
when stationary.

the roll centre height hRo [71]. Tyres and axles usually have more design variables then
just the maximum friction coe�cient and the roll centre height. However, in this thesis,
in order to keep this example design problem comprehensible, those design variables are
kept �xed.

7.1.2. Performance measures

Three standardised driving manoeuvres, which allow for an objective and reproducible
assessment of the performance of the vehicle, are regarded here:

• Quasi-Steady State Cornering (QSSC), see [35]: the vehicle follows a circular tra-
jectory with a speci�ed radius of 105 m while the velocity is increased so slowly,
such that it can be estimated as being constant at any time step. The velocity is
increased up to a point where the vehicle can no longer follow its speci�ed trajec-
tory.

• Ramp Steering (RAST): the vehicle maintains a constant velocity while cornering
with an increasing steer angle until a certain lateral acceleration is reached.

• Sine with Dwell (SWD), see [34]: the vehicle performs a lane change manoeuvre
with maximal lateral acceleration.

Di�erent vehicle designs are simulated and assessed with respect to customer relevant
properties, which are objecti�ed by the performance measures f(x) listed in table 3.2.
All design goals are met when the performance measures are between their lower and
upper bound, i.e., f(x) ≤ fc.
The methods considered in this thesis can be divided into two groups: computational

algorithms for linear Fx ≤ fc and non-linear performance constraints f(x) ≤ fc. In
order to be able to apply both types of methods, a linearised function flin(x) = Ax + b
is considered in addition to the original non-linear vehicle performance measure f(x).

90 Advanced Solution Space Methods in Systems Design.

Marc Eric Vogt

Therefore, the original system output is linearised by a stepwise regression algorithm
[14]. 10, 000 samples have been evaluated to derive the linear model. The coe�cients of
determination R2 [50] for the linearised models are shown in table 7.1. They indicate
how well each of the outputs can be linearised. Since the R2 values are all close to a
value of 1.0 it is assumed that the linearised models approximate the original models to
a su�cient extent.

zα zay zFz zzRA zzFA zΦ zC zδ

0.9868 0.9347 0.9496 0.9676 0.9467 0.9855 0.9995 0.9947

Table 7.1 Coe�cient of determination R2 for the stepwise linearised models of the individual
performance constraints. N = 10, 000 samples have been used as training data for each of the models.

7.1.3. Physical relations between design variables and performance

measures

In this section, the in�uence of the design variables (see table 3.1) on the performance
measures (see table 3.2) is analysed. The qualitative in�uence of the design variables on
the outputs is summarised in table 7.2. In order to elucidate these relations, the design
variables are divided into two groups:

• Variables that in�uence the grip: The maximum friction coe�cient µmax is a mea-
sure for the force transmission between the tyre and the street. The friction co-
e�cient is almost constant for low loads on the tyres. At higher loads, a lateral
force saturation occurs and the lateral force decreases [32]. Hence, a high maxi-
mum friction coe�cient in transversal direction µmax,Y leads to a high maximum
lateral acceleration zay as well as a high maximum steering angle factor zδ of the
vehicle. Concurrently, the minimal vertical tyre force zFz , which is needed to keep
the vehicle stable, decreases. The maximum friction coe�cient in longitudinal di-
rection µmax,X has a similar e�ect on these performance measures but has a smaller
impact. The self-steering gradient zα is only in�uenced by µmax,Y . A higher grip
in transversal direction leads to a lower self-steering gradient as well as a lower
vertical displacement zz of the front/rear part of the car.

• Variables that in�uence rolling behaviour: The roll centre height hRo in�uences the
roll moment ratio while cornering. A high roll centre leads to jacking. The vehicle
bends less on the outside than it bends on the inside, i.e. the centre of gravity is
raised and thus the rolling moment is increased unfavourably. Changing the height
of the rolling centre reduces this asymmetry [71]. The sti�ness of the anti-roll bars
carb as well as the sti�ness of the bump stops cbs in�uence the vertical sti�ness
of the respective axle. A higher vertical sti�ness of the front axle compared to
the rear axle leads to a higher roll moment ratio and vice versa. A higher roll
moment ratio results in an increased self-steering gradient zα, maximum steering

Advanced Solution Space Methods in Systems Design. 91

Marc Eric Vogt

angle factor zδ, and vertical displacement of the front part of the car zzFA , while
the maximum lateral acceleration zay , the minimum vertical tyre forces zFz as well
as the vertical displacement zzRA of the rear part of the car decrease. Increasing
the overall vertical sti�ness leads to a lower roll angle zΦ while leading to a higher
amplitude of the frequency response when passing a one-sided road bump zC since
forces are carried over to the other side of the axle more easily.

zα zay zFz zzFA zzRA zΦ zC zδ

µmax,X 0 + - - - 0 0 +

µmax,Y - + - - - 0 0 +

hRo,RA - + + - + - - -

hRo,FA + - - + - - - +

carb,RA - + + - - - + -

carb,FA + - - + - - + +

cbs,RA - + + - + - + -

cbs,FA + - - + - - + +

Table 7.2 Changes of the performance measures with respect to the design variables. +/−: the
performance measure increases/decreases if the respective design variable increases. 0: the performance
measure is not in�uenced by the respective design variable

7.1.4. Physical simulation model and Response-Surface Metamodel

In order to simulate the manoeuvres introduced in subsection 7.1.2, a modi�ed version
[40] of the classical two-track model proposed in [32] is used. The model is implemented
in MATLAB R©. Tyres are modelled with the Pacejka's empirical Magical Formula [51].
Based on the simulation results of a high-�delity simulation model ADAMS R©, a look-up
table for the interaction of the car body and the tyres is derived.
In the following, a Response-Surface Metamodel (RSM) is used to replace the actual

expensive computer analyses of the modi�ed two-track model. On the one hand, this
facilitates the execution of non-gradient-based optimisation, since these methods usually
need thousands of function evaluations. On the other hand, gradient-based optimisation
is enabled since gradient information can easily be derived on RSMs [61]. On an Intel
Xeon E5-2650 v2 @ 2.6 GHz processor a single design evaluation on the modi�ed two-
track model (simulating the QSSC, RAST, and the SWD manoeuvre) takes 28 s. On the
RSM, the same evaluation takes 7.0× 10−3 s.
The speci�c RSM used is a single layer ANN with a sigmoid basis function and 5 to 30

neurons. We tried to apply more than one hidden layer and found that the results where
worse due to over-�tting. The numbers of neurons we tried were 5, 10, 15, . . . , 30 for each

92 Advanced Solution Space Methods in Systems Design.

Marc Eric Vogt

(a) (b)

Figure 7.3 Regression plots for the maximum steering angle factor trained with (a) the full data set zδ
and with (b) a �ltered data set z∗δ (the black sample points were discarded).

output. We always chose the variant with the best coe�cient of determination R2. It
was trained with a classical back propagation algorithm [77] based on a dataset of 10, 000
sample designs. The evaluated designs were created by MC sampling in the design space
Ωds. Only 90% of the samples were used during training. The rest was used to validate
the model by computing the coe�cient of determination R2 [50]. As can be inferred
from table 7.3, the RSM describes the dependence of the performance measures on the
design variables almost perfectly. The only coe�cient of determination lower then 0.99
is obtained for the maximum steering angle factor zδ. Figure 7.3a shows the regression
plot for zδ. As can be inferred from the regression plot, the original model includes a
jump in the performance measure. This is due to the fact that some designs will cause
instability in the two-track model during the SWD manoeuvre. Sudden jumps in the
output cannot be described appropriately by an ANN. In addition, we are not interested
in these unstable outputs, since they do not describe the actual vehicle behaviour. Hence,
these outputs are �ltered before training the ANN. The �lter discards all samples, which
exceed a certain critical output value (black sample points in �gure 7.3 (a)). The cluster
of samples of these �ltered training points leads to a coe�cient of determination of 0.989.
The associated regression plot is displayed in �gure 7.3b. For the purpose of this thesis
the newly trained model z∗δ is used for all applications.

zα zay zFz zzRA zzFA zΦ zC zδ / z∗δ

1.000 0.998 0.999 0.999 0.999 0.999 0.997 0.836 / 0.989

Table 7.3 Coe�cient of determination R2 for the RSM. 10, 000 samples have been used as training
data for each of the models. The �ltered Set for z∗δ contained 9, 925 samples.

Advanced Solution Space Methods in Systems Design. 93

Marc Eric Vogt

7.2. Solution-Compensation Spaces

In the following, the Basic Projection Algorithm (see subsection 4.2.2), the FME Algo-
rithm with and without RR (see subsection 4.2.3) and the Stochastic Solution-Compensation
Space Algorithm (see subsection 4.3.2) are applied to the industrial chassis design prob-
lem. The di�erent approaches are compared with respect to computational e�ort, the
size and accuracy of the derived Solution-Compensation Spaces as well as the scope of
possible applications.

7.2.1. Application of Solution-Compensation Spaces

The vehicle dynamics system considered in this thesis consists of eight design variables
x ∈ Rd, d = 8, eight performance measures as well as eight performance constraints
f(x) ≤ fc ∈ Rm, m = 8. In the following, technical problem statement 1 (see subsection
3.1.2) is considered. The goal is to derive a set-based design Ω = I1×. . .×Id, which ful�ls
both robustness constraints I ≥ Imin and performance constraints ∀x ∈ Ω, f(x) ≤ fc. In
subsection 3.1.3, we showed that state of the art algorithms do not solve this technical
problem statement. The box-shaped Solution Spaces that were computed using state
of the art algorithms are too small for the application. Larger intervals are required to
encompass the deviation between desired and realised design variable values. Therefore,
Solution-Compensation Spaces are computed.
Solution-Compensation Spaces solve a modi�ed problem statement. The performance

constraints are ful�lled such that for each combination of early-decision parameters in-
side the Solution-Compensation Space, a combination of late-decision parameters exists,
which leads to a good design:

∀xa,∃xb, f(xa, xb) ≤ fc.

Since technical problem statement 1 speci�cally states that the design variables of both
the anti-roll bar and the bump can be modi�ed in the later stages of the development
process, these variables are categorised as late-decision variables xb. For the design of
the tyres and the suspensions in an early-development phase, a large Solution Space is
sought. Hence, the corresponding variables are considered as early-decision variables xa.
An overview of all early- and late-decision parameters is given in table 7.4.

µmax,X µmax,Y Zrc,RA Zrc,FA carb,RA carb,FA cbs,RA cbs,FA

early early early early late late late late

xa,1 xa,2 xa,3 xa,4 xb,1 xb,2 xb,3 xb,4

Table 7.4 Early- and late-decision variables

When we compare the application of Solution-Compensation Spaces to the application
of classical Solution Spaces with pre-optimised values for the late-decision variables (see

94 Advanced Solution Space Methods in Systems Design.

Marc Eric Vogt

subsection 3.1), we lose the information about which values the late-decision variables
will assume until all values for the early-decision variables have been chosen. In exchange,
we gain increased interval sizes for all early-decision variables, which provides the much
desired increased robustness.

Since the result of the Basic Projection Algorithm as well as the FME Algorithm
is a projected system and not an Solution-Compensation Space, a post-processing step
is necessary. Therefore, either Vertex Tracking (VT) or the Stochastic Solution Space
Algorithm (SSA) are applied. These algorithms are state of the art (see section 2.1). Both
algorithms maximise the size of the Solution-Compensation Space. While VT guarantees
that only good designs are included, SSA estimates the fraction of good designs in the
box by evaluating an MC sample. Hence, only probabilistic statements on the fraction
of good designs are possible.

Application of the Basic Projection Algorithm

The Basic Projection Algorithm is only applicable to the chassis design problem with
linearised performance constraints. Fortunately, as shown in subsection 7.1.2, it is pos-
sible to linearise the constraint functions su�ciently well. The computational e�ort to
execute the Basic Projection Algorithm is dominated by the computation of all possible
vertices. The chassis design problem has eight input dimensions and eight performance
constraints, this leads to

Λc =

2× d+m

d

 =

2× 8 + 8

8

 = 735, 471

vertices, which need to be calculated when applying the Basic Projection Algorithm.
Computing those took 42 seconds on an Intel Xeon E5-2650 v2 @ 2.6 GHz processor.
The obtained early-decision-variable space after projection is shown in �gure 7.4(a)-(d).
The black box shows the resulting SCS. For an easier comparison, the dashed black boxes
show the required size from scenario 1/2 (see table 3.3). The values of all early-decision
variables not shown in the plot are randomly chosen within the Design Space (DS). For
each green design point in �gure 7.4 there exists at least one combination of late-decision
variables such that all design goals are reached. For each di�erently coloured design point
the opposite is true. Unfortunately, the colour cannot be linked to a single performance
constraint since the projected constraints are generally the result of multiple intersecting
constraints from the original system. Since the results are shown in the projected system,
the late-decision parameter dimensions do not exist and hence are not displayed. The
results for the Basic Projection Algorithm match the results of the FME since in both
cases the linear system is projected and then a classical SS optimiser is applied.

Advanced Solution Space Methods in Systems Design. 95

Marc Eric Vogt

mt mt1 mt2 mt3 mt4

FME without RR 24 144 2.07× 104 2.96× 106 4.30× 108

FME with RR 24 24 52 19 11

Table 7.5 Number of constraints after each projection step for the chassis design problem when
applying the FME with and without RR.

Application of the Fourier-Motzkin Elimination Algorithm

The FME Algorithm is only applicable to the chassis design problem with linearised
performance constraints and can be applied with or without RR.
The computational e�ort to execute FME without RR is dominated by the derivation

of the projected constraints. The projection of the four late-decision variable dimensions
(q=4), when applying FME without RR, requires the computation of up to

mr4 =

q∑
k=1

(
2× d+m

2

)2k

=
4∑

k=1

(
2× 8 + 8

2

)2k

= 432, 988, 560

constraints. As described in subsection 4.2.3, this is a worst case estimation. Unfortu-
nately, this estimation is relatively close to the actual number of constraints, which are
derived. Computing these constraints took over 7 hours on an Intel Xeon E5-2650 v2 @
2.6 GHz processor.
The computational e�ort to execute FME with RR is dominated by the solving of the

LPPs contained in the Clarkson Algorithm (see algorithm 2). The projection of the four
late-decision variable dimensions, when applying FME with RR, requires a total of 1064
LPPs to be solved. The �nal system consists of mt4 = 11 constraints. Computing those
took 0.06 seconds on an Intel Xeon E5-2650 v2 @ 2.6 GHz processor.
Table 7.5 shows the number of constraints considered after each projection step when

applying FME with and without RR. The resulting Solution-Compensation Space is
shown in �gure 7.4 (a)-(d).

Application of the Stochastic Solution-Compensation Space Algorithm

The Stochastic Solution-Compensation Space Algorithm is the only Solution-Compensation
Space algorithm introduced in this thesis, which is applicable to the original chassis design
problem with non-linear performance constraints.
The computational e�ort to execute the Stochastic Solution-Compensation Space Al-

gorithm is dominated by the evaluation of the performance functions. Before the com-
putation starts, the number of iteration steps v1, number of samples per candidate box
N1, maximum number of iterations for the particle swarm optimisation v2, and number
of particles N2 are chosen. According to table 4.1, each number has an in�uence on the
resulting Solution-Compensation Space. We ran three di�erent con�gurations. These

96 Advanced Solution Space Methods in Systems Design.

Marc Eric Vogt

Table 7.6 Parametrisation of the Stochastic SCS Algorithm and the resulting duration of the
computation.

Parametrisation vPhaseI1 vPhaseII1 N1 v2 N2 runtime

1 100 100 100 100 20 337 s

2 200 100 100 200 40 495 s

3 50 100 100 50 10 212 s

con�gurations and their computation time on an Intel Xeon E5-2650 v2 @ 2.6 GHz pro-
cessor are shown in table 4.1. Parametrisation 1 is the standard con�guration, while
parametrisation 2 increases and parametrisation 3 decreases the computational e�ort.
N1 and vPhaseII1 are kept constant in order to ensure a su�cient con�dence level.
In order to properly evaluate the accuracy of the Solution-Compensation Space algo-

rithm, it is executed on the linearised system. Therefore, the result can be validated in the
projected system derived by the FME algorithm. The resulting Solution-Compensation
Spaces are shown in �gure 7.4 (e)-(j).

7.2.2. Comparison of di�erent methods to compute Solution-Compensation

Spaces

In the following, the di�erent methods to compute SCS are compared with respect to
computational e�ort and size accuracy. In the end, a conclusion is drawn, which algo-
rithm �ts the chassis design problem best.

Computational E�ort

In table 7.7, an overview of the di�erent algorithms is given. Note that the runtime for
the Basic Projection and the FME algorithms includes the computation of the Solution-
Compensation Space. Both, the Vertex Tracking and the Stochastic Solution Space
Algorithm, have a low computational e�ort and scale well with the number of dimensions.
The computation of the Solution-Compensation Space in the projected system with the
Vertex Tracking Algorithm took 3.19 s and the computation with the Stochastic Solution
Space Algorithm took 0.53 s.
The computation time for the FME Algorithm without redundancy removal is the

longest. This is due to the fact that its computational e�ort increases double exponen-
tially with the number of projected dimensions. If only one dimension is projected, it is
a valid choice. If more dimensions are projected, the additional RR Algorithm is recom-
mended. For this example, FME with RR is the fastest algorithm taking less than one
second. The Basic Projection algorithm took 42 s. Its computational e�ort grows expo-
nentially with the total number of dimensions. Hence, it is only recommended for low
dimensional problems. Note that even in low dimensions, FME with RR is often faster

Advanced Solution Space Methods in Systems Design. 97

Marc Eric Vogt

Table 7.7 Overview of the results of the SCS algorithms with respect to runtime, size, accuracy,
ful�lment of the requirements from scenario 1/2, and whether an application to systems with
non-linear performance constraints is possible.

Basic FME FME Stochastic SCS
Projection without RR with RR Algorithm

VT SSA VT SSA VT SSA 1 2 3

runtime 45s 43s 7.0h 7.0h 3.3s 0.6s 337s 495s 212s

size µ(Ω)
µ(Ω1) 6.00 7.65 6.00 7.65 6.00 7.65 7.96 8.84 4.02

accuracy 100% 99.8% 100% 99.8% 100% 99.8% 99.1% 98.5% 99.8%

scenario 1 x X x X x X X X x

scenario 2 x x x x x x x x x

non-linear x x x x x x X X X

than Basic Projection. The computational e�ort of the stochastic Solution-Compensation
Space algorithm does not scale with the number of dimensions but is highly dependent on
its parameter con�guration and the computational e�ort of a single function evaluation.
Even though we are working with an RSM, which takes 7.0× 10−3 s to evaluate a single
design, the total computation time is comparatively high with ≥ 212 s. Considering its
computational e�ort, the stochastic Solution-Compensation Space Algorithm is mostly
recommended in combination with RSMs.

Size and accuracy of the Solution-Compensation Spaces

In order to estimate the accuracy of the di�erent algorithms, an MC sample with 10, 000
points is computed in the early-decision dimensions of the �nal Solution-Compensation
Space. Each point is evaluated using the projected system derived with FME. The
results are shown in table 7.7.
When we consider the size of an Solution-Compensation Space, generally two things

are important: the size of the interval of each individual early-decision variable and
the total size of the Solution-Compensation Space µ(Ω). Whether the results ful�l the
robustness requirements of scenario 1/2 is shown in table 7.7. Details about the size of
the intervals are given in table 7.8. The total size of the Solution-Compensation Space
represents the target function for the optimisation algorithm and is maximised. The total
sizes divided by the size of the required Solution-Compensation Space from scenario 1
µ(Ω1) are shown in table 7.7.
The results obtained from the Basic Projection and the FME Algorithm are identical.

This was to be expected since both algorithms simply project a linear system.

98 Advanced Solution Space Methods in Systems Design.

Marc Eric Vogt

When Vertex Tracking is applied after the projection, an Solution-Compensation Space
with 100% accuracy is obtained. Unfortunately, the resulting Solution-Compensation
Space does not ful�l the robustness requirements. This is visualised in �gure 7.4 (a)/(b).
The dashed boxes show the requirements from Scenario 1 and 2. Note that these require-
ments are identical for the roll centre height. Hence, only one dashed box is shown.
When the stochastic Solution Space Algorithm is applied after the projection, the

accuracy is below 100%. Therefore, as shown in �gure 7.4, the size of the Solution Space
is larger. In our test case, the resulting Solution-Compensation Space ful�ls all robustness
requirements and has an accuracy of 99.8%. The location of the resulting Solution Space
is similar to the one derived with VT, only the intervals are enlarged due to less strict
requirements with respect to the performance constraints.
The results from the Stochastic Solution-Compensation Space Algorithm are hugely

dependent on the parametrisation of the algorithm: parametrisation 1 (see �gure 7.4
(e)-(f)) �nds an Solution-Compensation Space, which ful�ls the robustness constraints
and has an accuracy of 99.1%. Parametrisation 2 yields a slightly larger Solution-
Compensation Space but only has an accuracy of 98.5%. The decreased accuracy and
the increased size are likely to be a result of the additional computational e�ort put into
the PSO, which lowers the likelihood that individual samples are wrongly labelled as
bad design (false negatives). Hence, in parametrisation 2, the same candidate Solution-
Compensation Space is more likely to be accepted than in parametrisation 1 because
100/100 are good designs. In both parametrisation 1 and 2 the iterations in Phase II
stopped because an Solution-Compensation Space with 100/100 good MC samples was
found and not because 100 iteration steps where actually reached. Parametrisation 3
yields by far the smallest Solution-Compensation Space. We can assume that in Phase I
not enough iterations were executed.

Conclusion

Depending on the problem statement, a di�erent algorithm to compute Solution-Compensation
Spaces is needed. For most applications with linear constraints, the FME Algorithm with
RR is recommended. It requires low computational e�ort compared to the Basic Pro-
jection Algorithm and the FME Algorithm without RR. Furthermore, it yields an exact
projection of the system. Whether the Vertex Tracking or the Stochastic Solution Space
Algorithm should be applied after the projection depends on the accuracy and the size,
which is required. Vertex Tracking always has 100% good designs but the Stochastic So-
lution Space Algorithm generally yields better results with respect to the size measure.
The main advantage of the Stochastic Solution-Compensation Space Algorithm is that

it is applicable to problem statements with non-linear constraints. Unfortunately, it
is mostly applicable to problems where a single function evaluation is computationally
cheap.
For the chassis design problem discussed here, the Stochastic Solution-Compensation

Space Algorithm with parametrisation 1 is a good choice. With 337 s the runtime is
acceptable. It yields a result, which ful�ls all robustness requirements of scenario 1 and
most importantly it is applicable to non-linear performance constraints. Even though the

Advanced Solution Space Methods in Systems Design. 99

Marc Eric Vogt

Table 7.8 Interval sizes (normalised with respect to requirements of scenario 1) and the resulting
volume of the SCS for µmax and hRo.

µmax,X µmax,Y hRo,RA hRo,FA

scenario 1 (premium) 1.00 1.00 1.00 1.00

scenario 2 (standard) 2.00 2.00 1.00 1.00

Basic Projection or FME with
Vertex Tracking

3.97 0.84 0.90 2.00

Basic Projection or FME with
the stochastic Solution Space
Algorithm

3.29 1.01 1.18 1.96

stochastic SCS Opt. 1 2.36 1.24 1.36 2.00

stochastic SCS Opt. 2 3.81 1.07 1.09 1.99

stochastic SCS Opt. 3 2.57 0.80 1.20 1.63

linearised performance constraints approximate the actual constraints very well, a small
error cannot be prevented. In case a faster solution is needed, the FME Algorithm with
RR plus the Stochastic Solution Space Algorithm is a good choice. It yields a result,
which ful�ls all robustness requirements of scenario 1 with a runtime of only 0.6 s and
accuracy of 99.8%. Of course a minor error due to linearisation has to be accepted.

100 Advanced Solution Space Methods in Systems Design.

Marc Eric Vogt

(a) FME + VT (b) FME + VT (c) FME + SSA (d) FME + SSA

(e) SSCSA Param. 1 (f) SSCSA Param. 1 (g) SSCSA Param. 2 (h) SSCSA Param. 2

(i) SSCSA Param. 3 (j) SSCSA Param. 3

Figure 7.4 (a)-(d) SCS (black box) optimised either with Vertex Tracking (VT) or the Stochastic
Solution-Compensation Space Algorithm (SSCSA) and for reference an SCS, which ful�ls the
robustness requirements (dashed box). (e)-(f) SCS optimised with the Stochastic
Solution-Compensation Space Algorithm (SSCSA) with the 3 di�erent parametrisation from table 7.6.

Advanced Solution Space Methods in Systems Design. 101

Marc Eric Vogt

7.3. Optimal Constraint Relaxation for Solution Spaces

In the following, the algorithm to compute Optimal Constraint Relaxation for Solution
Spaces with linear performance constraints (see Section 5.2.1) as well as the algorithm for
non-linear performance constraints (see Section 5.3) are applied to the industrial chassis
design problem introduced in section 7.1. Therefore, the determination of weighting
factors qi to evaluate the relaxation of di�erent performance constraints according to the
target function (5.4) is crucial. Di�erent approaches on how to determine the weighting
factors were introduced in section 5.4. The di�erent Optimal Constraint Relaxation for
Solution Spaces approaches are compared with respect to computational e�ort, accuracy,
and possible applications.

7.3.1. Application of Optimal Constraint Relaxation for Solution Spaces

In the following, technical problem statement 2 (see subsection 3.1.2) is considered. The
goal is to derive a set-based design Ω = I1 × . . . × Id and a set of relaxed performance
constraints f(x) ≤ fc + ∆fc. The set-based design Ω is such that it ful�ls the robustness
constraints I ≥ Imin and the relaxed performance constraints ∀x ∈ Ω, f(x) ≤ fc + ∆fc.
The set of relaxed performance constraints has to be optimal in the sense that each
constraint is relaxed by as little as possible. In subsection 3.1.3, we introduced a basic
approach to solve this problem statement. Unfortunately, it is computationally expensive,
does not work for arbitrary non-linear performance constraints, and is probably not
optimal concerning minimal constraint relaxation. A more advanced algorithm is needed
that is able to optimise the constraint relaxation and does not scale exponentially with
the number of dimensions. Therefore, Optimal Constraint Relaxation for Solution Spaces
is computed.
In order to be able to compare the results of di�erent approaches, a target function is

introduced, which evaluates the amount of constraint relaxation:

g(∆fc) =

m∑
i=1

qi(∆fc,i)
2. (7.1)

Application of Optimal Constraint Relaxation for Solution Spaces with

linear performance constraints

The Basic Projection Algorithm is only applicable to the chassis design problem with
linearised performance constraints. The computational e�ort to execute Optimal Con-
straint Relaxation for Solution Spaces with linear performance constraints is dominated
by the computation of the Interior Point algorithm, which is computationally cheap for
quadratic target functions. Initially, four di�erent con�gurations are computed: scenario
1/2 with generic and RI-based weighting factors. In scenario 1 the robustness constraints
for the design of the high performance tyres are set. A relatively small Solution Space
is su�cient here. Similarly, scenario 2 sets the robustness constraints for the design of
the standard tyre. Here, a larger Solution Space is required (de�ned in table 3.3). The

102 Advanced Solution Space Methods in Systems Design.

Marc Eric Vogt

RI ∆RIzα ∆RIzay ∆RIzFz ∆RIzzRA ∆RIzzFA ∆RIzΦ ∆RIzC ∆RIzδ

0.13 0.50 200 2.50× 10−4 2.50× 10−4 1.57× 10−2 1 0.5

gen fczα fc,zay fc,zFz fc,zzRA fc,zzFA fc,zΦ fc,zC fc,zδ

0.36 9.1 560 9.00× 10−3 9.00× 10−3 5.50× 10−2 2.90 4.5

Table 7.9 Overview of all ∆RI and fc for the chassis design problem in SI units. The weighting
factors are either generic (gen) or according to RI.

results of Optimal Constraint Relaxation for Solution Spaces are shown in �gure 7.6. The
di�erent colour points represent distinct chassis designs. Green designs ful�l all relaxed
constraints, the other colours depict which constraints are violated (see the colour-code
in table 3.2). As can be seen, the optimal position of the Solution Space changes with
di�erent target functions and di�erent robustness requirements. Especially the permis-
sible intervals for the tyre parameter µmaxX shift depending on whether the constraint
concerning maximum lateral acceleration zay (colour) or minimum vertical tyre force
zFz (colour) is relaxed by a larger margin. Table 7.10 includes the margins by which
the constraints are relaxed and the target function values for the di�erent con�gurations.
Table 7.9 includes the vectors fc and ∆RI, which were used to determine the weighting
factors for the target functions (7.1) according to section 5.4.

Application of Optimal Constraint Relaxation for Solution Spaces with

non-linear performance constraints

Optimal Constraint Relaxation for Solution Spaces with non-linear performance con-
straints is applied to the original chassis design problem. Similarly to the application
with linear performance constraints, scenario 1/2 and two di�erent sets of weighting fac-
tors are considered (see table 7.9). The results are visualised in �gure 7.7. The position of
the resulting Solution Space varies more than in the linear approach. The bu�er spring
sti�ness at the front axles assumes values within the whole range of its design space.
For reference, the results from the basic approach (introduced in subsection 3.1.3) are
visualised in �gure 3.3.
As described in section 5.3, Optimal Constraint Relaxation for Solution Spaces can

be applied to any problem statement with arbitrary non-linear performance constraints.
But the accuracy of the result can only be guaranteed if all constraints are monotonic.
Unfortunately, that is not the case for the non-linear chassis design problem. Instead,
we validate the resulting Solution Space by evaluating 10,000 MC sample designs. An
overview of the runtime, size, accuracy, number of iterations, constraint relaxation, and
target function values for all non-linear approaches is given in table 7.11. The accuracy
is 100% for all approaches. As was to be expected, the target values obtained by Optimal
Constraint Relaxation for Solution Spaces are superior to the basic approach due to the
use of an appropriate target function.

Advanced Solution Space Methods in Systems Design. 103

Marc Eric Vogt

(a) (b)

Figure 7.5 (a) Example for a constraint, which is globally non-monotonic, but is monotonic in a
su�ciently large area around the critical vertex. (b) Example for a constraint, which is globally
non-monotonic and is not monotonic in a su�ciently large area around the critical vertex to ensure
100% accuracy.

7.3.2. Comparison of di�erent methods to compute Optimal Constraint

Relaxation for Solution Spaces

In the following, the di�erent methods to compute Optimal Constraint Relaxation for
Solution Spaces are compared with respect to computational e�ort, performance, and
accuracy. In the end, a conclusion is drawn which algorithm �ts the chassis design
problem best. In tables 7.10 and 7.11, an overview of the results of the di�erent algorithms
is given. These results are used as a basis for the following analysis.

Computational E�ort

The runtime for the linear systems is signi�cantly lower than for non-linear systems. In
the linear case, the optimisation problem needs to be solved only once and no linearisation
is needed. Here, the computational e�ort mainly scales with the number of constraints
O(
√
m). Hence, the method is applicable for high-dimensional linear problems. The

computation time of Optimal Constraint Relaxation for Solution Spaces with non-linear
performance constraints is highly dependent on the computational e�ort needed to ex-
ecute a linearisation. Since the non-linear chassis design problem is computed on an
RSM, a single function evaluation is cheap and the �rst derivative is given in explicit
form, which makes the linearisation relatively cheap. No �nite di�erences need to be
computed. As long as the linearisation is computationally cheap, Optimal Constraint
Relaxation is applicable for non-linear high-dimensional problems. It outperforms the
basic approach in 8 dimensions. With an increasing number of dimensions, Optimal
Constraint Relaxation will outperform the basic approach even more signi�cantly since
the basic approach considers all vertices and hence its computational e�ort scales expo-
nentially O(2d).

104 Advanced Solution Space Methods in Systems Design.

Marc Eric Vogt

Accuracy and performance with respect to the target function

For the chassis design problem the accuracy of all the tested algorithms is 100%. This
implies that a su�ciently large area around the critical vertices exists in which the non-
linear performance constraints behave monotonously. An example for such a constraint
is shown in �gure 7.5(a). The required size of the area depends on the pre-de�ned box
size. If the box size is decreased, the required area, in which the constraint needs to
behave monotonously, becomes smaller. Figure 7.5(b) shows a constraint, which is not
monotonic in a su�ciently large area around the critical vertex to ensure feasibility for
the entire Solution Space. Hence the accuracy is < 100%.
As expected, the target values reached with Optimal Constraint Relaxation are gen-

erally better than the target values reached with the basic approach. When comparing
Optimal Constraint Relaxation for the linear and non-linear system, we see that the
target values for the linear problem are superior. In each instance, the iterative pro-
cess for the non-linear system terminated because the position of the Solution Space
did not change signi�cantly any more. For the RI-based target function the di�er-
ence with respect to the target values for the linear and non-linear approach is small
enough (5.58× 10−3/6.71× 10−3 and 6.95× 10−2/8.11× 10−2) that we can assume it
is mostly a result of the linearisation error. This proposition is further con�rmed by
�gures 7.6(e)-(h)/(m)-(p) and 7.7(e)-(h)/(m)-(p) where we can see that the position-
ing of the Solution Spaces is relatively similar. For the generic target function, this is
not the case. The substantial di�erences in the target values (3.60× 10−5/1.90× 10−4

and 4.66× 10−4/1.37× 10−3) and the signi�cantly di�erent positioning of the Solution
Spaces are visualised in �gures 7.6(a)-(d)/(i)-(l) and 7.7(a)-(d)/(i)-(l) indicating that the
non-linear algorithm did not �nd the global minimum, but got stuck in a local minimum.

Conclusion

Depending on the problem statement, a di�erent algorithm to compute Optimal Con-
straint Relaxation for Solution Spaces is needed. For most applications with linear con-
straints, the linear approach (problem statement 13) with the generic target function is
recommended. It requires low computational e�ort, always converges towards the global
optimum and no additional gradient information is required. In case additional gradi-
ent information is available, case-speci�c weighting factors (as introduced in subsection
5.4.2) are recommended.
In case the system has non-linear performance constraints, only the iterative Opti-

mal Constraint Relaxation algorithm (alg. 7) is applicable. It is computationally more
expensive than the linear algorithm. Generally, a large number of linearisations is nec-
essary. Hence, the algorithm is mostly applicable to systems where the linearisation is
computationally cheap. Note that the linearisation is computationally cheap if function
evaluations are cheap. 100% accuracy as well as convergence towards the global opti-
mum of the iterative algorithm can only be guaranteed if all constraints are monotonic
(as de�ned in (5.19) and (5.18)).
For the chassis design problem discussed here, Optimal Constraint Relaxation for So-

Advanced Solution Space Methods in Systems Design. 105

Marc Eric Vogt

lution Spaces with non-linear performance constraints and RI-based weighting factors
are recommended. With a runtime of less than one second, the algorithm yields a result,
which has 100% accuracy and is likely to be very close to the global optimum. At the
same time, the linearisation error is minimised since, instead of a global stepwise lineari-
sation, each constraint is linearised around its critical vertex. The �nal result is then
displayed in the original non-linear system. In addition, the available expert knowledge
is included in the �nal result by applying RI-based instead of generic weighting factors.

7.4. Optimal Constraint Relaxation for Solution-Compensation

Spaces

In the following, the algorithm to compute Optimal Constraint Relaxation for Solution-
Compensation Spaces with linear performance constraints (see Section 6.2) is applied
to the linearised industrial chassis design problem introduced in section 7.1. Therefore,
the weighting factors qi to evaluate the relaxation of di�erent performance constraints
were chosen according to the generic approach introduced in section 5.4. The di�erent
algorithms to compute Optimal Constraint Relaxation for Solution-Compensation Spaces
are compared with respect to computational e�ort and target value.

7.4.1. Application of Optimal Constraint Relaxation for

Solution-Compensation Spaces

Technical problem statements 1 and 2 (see subsection 3.1.2) are considered. In order
to further decrease the amount of relaxation needed compared to Optimal Constraint
Relaxation for Solution Spaces, we determine a subset of early- and late-decision pa-
rameters (according to table 7.4). The goal here, is to derive a set-based design for the
early-decision parameters Ωa = I1× . . .× Ip and a set of relaxed performance constraints
f(xa, xb) ≤ fc + ∆fc with the following properties:

• For each combination of early-decision parameters xa ∈ Ωa a combination of late
decision parameters exists such that the relaxed constraints are ful�lled: ∀x ∈
Ω, ∃xb ∈ Ωb,ds, f(xa, xb) ≤ fc + ∆fc

• The robustness constraints are ful�lled exactly Ii = Ii,min for i = 1, . . . , p.

• The set of relaxed performance constraints has to be optimal in the sense that each
constraint is relaxed by as little as possible; minimise g(∆fc).

Therefore, Optimal Constraint Relaxation for Solution-Compensation Spaces is com-
puted. This approach combines the advantages of Solution-Compensation Spaces and
Optimal Constraint Relaxation for Solution Spaces, since it uses late-decision parameters
to compensate larger early-decision variable intervals while also being able to compute a
solution for any arbitrarily strict performance and robustness constraints.
In section 7.3 we used two di�erent sets of weighting factors in order to show that

di�erent types of weighting factors can be applied depending on the problem statement.

106 Advanced Solution Space Methods in Systems Design.

Marc Eric Vogt

linear scenario 1 scenario 2

OCR gen OCR RI OCR gen OCR RI

runtime [s] 0.031 0.025 0.027 0.026

size µ(Ω)
µ(Ω1) [−] 1.00 1.00 4.00 4.00

∆zα
[
rad/m

s2

]
0 0 0 0

∆zay
[
m/s2

]
4.96× 10−2 2.34× 10−2 0.159 8.87× 10−2

∆zFz [N] 0.423 8.40 2.43 26.9

∆zzRA [m] 0 0 0 0

∆zzFA [m] 0 0 0 0

∆zΦ [rad] 0 6.34× 10−5 0 3.24× 10−5

∆zC [−] 0 0 3.21× 10−3 0

∆zδ [−] 1.07× 10−2 2.00× 10−2 5.31× 10−2 7.08× 10−2

ggen(∆fc) 3.60× 10−5 2.53× 10−4 4.66× 10−4 2.64× 10−3

gRI(∆fc) 1.03× 10−2 5.58× 10−3 0.113 6.95× 10−2

Table 7.10 Linearised chassis design problem. Overview of the results of OCR for Solution
Spaces for the linearised chassis design problem with respect to runtime (on an Intel Xeon E5-2650 v2
@ 2.6 GHz processor), size, constraint relaxation, and value of the target function from scenario 1/2.

Advanced Solution Space Methods in Systems Design. 107

Marc Eric Vogt

non-linear scenario 1 scenario 2

OCR gen OCR RI Basic OCR gen OCR RI Basic

runtime [s] 0.613 0.621 7.47 0.428 0.553 7.50

size µ(Ω)
µ(Ω1) [-] 1.00 1.00 1.00 4.00 4.00 4.00

accuracy 100% 100% 100% 100% 100% 100%

Iterative Loops 8 6 - 6 7 -

∆zα
[
rad/m

s2

]
0 0 0 0 0 0

∆zay
[
m/s2

]
0.107 2.67× 10−2 0 0.225 0.103 0.359

∆zFz [N] 1.56 9.38 0 4.46 31.0 10.6

∆zzRA [m] 0 0 2.00× 10−4 5.43× 10−5 0 2.00× 10−4

∆zzFA [m] 1.55× 10−5 3.22× 10−7 0 0 2.76× 10−6 0

∆zΦ [rad] 3.14× 10−4 2.01× 10−4 7.15× 10−4 5.26× 10−4 6.68× 10−4 2.02× 10−3

∆zC [-] 0 1.23× 10−3 0 0 0 0

∆zδ [-] 1.23× 10−2 1.93× 10−2 6.00× 10−2 0.107 5.63× 10−2 0.110

ggen(∆fc) 1.90× 10−4 3.21× 10−4 8.41× 10−4 1.37× 10−3 3.50× 10−3 4.35× 10−3

gRI(∆fc) 5.10× 10−2 6.71× 10−3 0.656 0.297 8.11× 10−2 1.22

Table 7.11 Non-linear chassis design problem. Overview of the results of OCR for Solution
Spaces for the non-linear chassis design problem with respect to runtime (on an Intel Xeon E5-2650 v2
@ 2.6 GHz processor), size, constraint relaxation and target function value from scenario 1/2.

108 Advanced Solution Space Methods in Systems Design.

Marc Eric Vogt

linear scenario 1

(a) OCR gen (b) OCR gen (c) OCR gen (d) OCR gen

(e) OCR RI (f) OCR RI (g) OCR RI (h) OCR RI

linear scenario 2

(i) OCR gen (j) OCR gen (k) OCR gen (l) OCR gen

(m) OCR RI (n) OCR RI (o) OCR RI (p) OCR RI

Figure 7.6 Linearised chassis design problem. (a)-(h)/(i)-(p) an Solution Space (black box) that
ful�ls the robustness requirements for scenario 1/2 (see table 3.3) while ful�lling the relaxed
performance constraints for scenario 1/2 (see table 3.5). The constraints are relaxed with respect to
the target function (5.4). The weighting factors are either generic (gen) or according to RI.

Advanced Solution Space Methods in Systems Design. 109

Marc Eric Vogt

non-linear scenario 1

(a) OCR gen (b) OCR gen (c) OCR gen (d) OCR gen

(e) OCR RI (f) OCR RI (g) OCR RI (h) OCR RI

non-linear scenario 2

(i) OCR gen (j) OCR gen (k) OCR gen (l) OCR gen

(m) OCR RI (n) OCR RI (o) OCR RI (p) OCR RI

Figure 7.7 Non-linear chassis design problem. (a)-(h)/(i)-(p) an Solution Space (black box) that
ful�ls the robustness requirements for scenario 1/2 (see table 3.3) while ful�lling the relaxed
performance constraints for scenario 1/2 (see table 3.5). The constraints are relaxed with respect to
the target function (5.4). The weighting factors are either generic (gen) or according to RI.

110 Advanced Solution Space Methods in Systems Design.

Marc Eric Vogt

In order to decrease the complexity in this section we only compute Optimal Constraint
Relaxation for SCS with generic weighting factors.

7.4.2. Comparison of di�erent algorithms to compute Optimal Constraint

Relaxation for Solution-Compensation Spaces

In the following, the Bisection Algorithm, the Static Algorithm, and the Shifting Algo-
rithm to compute Optimal Constraint Relaxation for Solution-Compensation Spaces are
compared with respect to computational e�ort and target value. In the end, a conclusion
is drawn which algorithm �ts the chassis design problem best. In tables 7.12 and 7.13
an overview of the results for scenario 1 and 2 of the di�erent algorithms is given. These
results are used as a basis for the following analysis.

Computational E�ort

The main computational e�ort for all the algorithms comes from the projection step.
Depending on the algorithm, the system needs to project multiple times in each iteration
step. Formulas to estimate the computational e�ort for the di�erent algorithms are given
in section 6.2.
The runtime for the Bisection Algorithm is by far the lowest of the three algorithms

introduced. This was to be expected since the Bisection Algorithm is used as a pre-
optimisation in the other algorithms. Table 7.12 shows that for scenario 1 the Static
Algorithm is the slowest. This is unexpected since the number of dofs is lower and the
search area is smaller compared to those of the Shifting Algorithm. In order to restrict
the search area we introduced an additional constraint. Unfortunately, this con�guration
led to an increased number of iteration steps for scenario 1. Table 7.13 shows that in
scenario 2 this is di�erent. Here we can see that the Shifting Algorithm takes a longer
time as well as more iteration steps to converge.
Comparing the runtime of any Optimal Constraint Relaxation for Solution-Compensation

Spaces algorithm (50− 2500 s) to the Solution-Compensation Space algorithms (1− 45
s) or Optimal Constraint Relaxation for Solution Space algorithms (0.03 s), we can see
that it is signi�cantly higher. This was to be expected since for Solution-Compensation
Space only a single projection is required, while for Optimal Constraint Relaxation for
Solution Spaces no projection is required at all.

Performance with respect to the target function

Figures 7.8 (a)-(f)/ (g)-(l) visualise the results of Optimal Constraint Relaxation for
Solution-Compensation Spaces for scenario 1/2 (high performance/ standard tyre, see
table 3.3). Only the early-decision parameter dimensions are visualised. The black boxes
are resulting Solution-Compensation Spaces. The constraints are relaxed according to the
results denoted in tables 7.12, 7.13. Note that green points visualise good designs while
any other colour represents bad designs. The results for the Bisection Algorithm and the
Static Algorithm look similar since the resulting Solution-Compensation Space is at the

Advanced Solution Space Methods in Systems Design. 111

Marc Eric Vogt

exact same position. The di�erence is that the constraints are relaxed slightly di�erently.
The shifting algorithm changes the position of the Solution-Compensation Spaces with
respect to a single variable, the maximum friction coe�cient in the tyre longitudinal axle
µmax,X . In both scenarios it increases the value for the friction coe�cient, which enables
it to lower the necessary relaxation for the maximum lateral acceleration zay . In scenario
1 this also enables it to lower the maximum steering angle factor zδ to zero. In scenario
2 it enables signi�cantly lower relaxation of the performance with respect to zδ as well
as the minimal vertical tyre force zFz . Note that even though in scenario 2 the target
values for ZzRA and ZzRA are relaxed as a result of the Shifting Algorithm, the overall
value for the target function ggen(∆Fc) is smaller compared to the other algorithms.
When we compare the results of Optimal Constraint Relaxation for Solution Spaces

(table 7.10) and Optimal Constraint Relaxation for Solution-Compensation Spaces (ta-
bles 7.12, 7.13) we can see that the necessary amount of relaxation with respect to the
performance constraints is decreased signi�cantly. For problem statement 1, the value for
the target function with generic weight factors lies at 2.05× 10−7 or lower for Optimal
Constraint Relaxation for Solution-Compensation Spaces, while the best result obtained
with Optimal Constraint Relaxation for Solution Spaces was 3.60× 10−5. On the one
hand, this was to be expected, due to the existence of late-decision variables in Optimal
Constraint Relaxation for Solution-Compensation Spaces. On the other hand, the mag-
nitude of the di�erence is surprisingly high. Comparing the best results of both methods,
the value of the target function can be decreased by a factor of 9.0× 10−5. Since the Bi-
section Algorithm decreases the relaxation by scaling ∆fc, we can see that its results are
7.54% / 72.6% of the result obtained with Optimal Constraint Relaxation for Solution
Spaces for scenario 1 / 2.
Note that we do not consider scenario 1 (high performance tyre, see table 3.3) any more.

This is due to the fact that we already showed that (see section 7.2) for scenario 1 the
Solution-Compensation Space approach is su�cient to ful�l all non-relaxed performance
requirements as well as the robustness requirements. Hence, when we apply Optimal
Constraint Relaxation for Solution-Compensation Spaces, the result is that no relaxation
∆fc = 0 is required.

Conclusion

Depending on the problem statement, a di�erent algorithm to compute Optimal Con-
straint Relaxation for Solution-Compensation Spaces is needed. For applications with
linear constraints and low computational capacity, the Bisection Algorithm with generic
weighting factors is usually recommended. It is very e�cient, can be applied to any
problem with linear performance constraints and o�ers results, which are, compared
to Optimal Constraint Relaxation for Solution Spaces, always superior with respect to
minimizing the target function. For applications with linear constraints and high compu-
tational capacity the Shifting Algorithm is recommended. It has by far the best results
of all newly introduced Optimal Constraint Relaxation algorithms with respect to min-
imising the target function. The price you pay is a high computational e�ort. Note that
even though the static algorithm seems like a bad choice now, for future applications the

112 Advanced Solution Space Methods in Systems Design.

Marc Eric Vogt

performance of the Static Algorithm could be improved by providing the analytical gradi-
ent of the additional constraint (box inside the sphere see �gure 6.5) to the optimisation
algorithm.
For the chassis design problem discussed here, the Shifting Algorithm to compute Op-

timal Constraint Relaxation for Solution-Compensation Spaces with linear performance
constraints is recommended. With a runtime of about one hour, the algorithm takes quite
long but yields an Solution-Compensation Space, which is also optimised with respect to
its position. Hence, the Shifting Algorithm yields signi�cantly better results with respect
to the value of the target function. For the chassis design it is of utmost importance to
decrease all relaxation of the target values to their absolute minimum, since decreasing
a target value means decreasing the quality of the vehicle.
Note that even though we only introduced algorithms to compute Optimal Constraint

Relaxation for Solution-Compensation Space for systems with linear constraints it is
possible to apply any of these algorithms to non-linear problems by linearising the system
in each iteration step similarly to the idea introduced for Optimal Constraint Relaxation
for Solution Space. Since this idea does not work for arbitrary non-linear systems, it
is important to check the accuracy of the result. This can be done by Monte Carlo
sampling.

Advanced Solution Space Methods in Systems Design. 113

Marc Eric Vogt

generic weighting scenario 1

Bisection A. Static A. Shifting A.

runtime [s] 52.5 1952.8 386.8

iteration steps 15 15+578 15+100

size µ(Ω)
µ(Ω1) [−] 1.00 1.00 1.00

∆zα
[
rad/m

s2

]
x x x

∆zay
[
m/s2

]
3.70× 10−3 3.90× 10−3 x

∆zFz [N] 3.19× 10−2 3.19× 10−2 3.19× 10−2

∆zzRA [m] x x x

∆zzFA [m] x x x

∆zΦ [rad] x x x

∆zC [−] x x x

∆zδ [−] 8.08× 10−4 2.42× 10−4 x

ggen(∆fc) 2.05× 10−7 1.92× 10−7 3.24× 10−9

Table 7.12 Linearised chassis design problem. Scenario 1. Generic weighting factors.
Overview of the results of OCR for SCSs with generic weighting factors for the linearised chassis design
problem with respect to runtime (on an Intel Xeon E5-2650 v2 @ 2.6 GHz processor), size, constraint
relaxation, and value of the target function from scenario 1.

114 Advanced Solution Space Methods in Systems Design.

Marc Eric Vogt

generic weighting scenario 2

Bisection A. Static A. Shifting A.

runtime [s] 54.0 2474.9 3762.8

iteration steps 15 15+719 15+1470

size µ(Ω)
µ(Ω1) [−] 1.00 1.00 1.00

∆zα
[
rad/m

s2

]
x x x

∆zay
[
m/s2

]
0.116 0.120 5.69× 10−2

∆zFz [N] 1.77 1.77 0.176

∆zzRA [m] x x 2.16× 10−7

∆zzFA [m] x x 2.42× 10−7

∆zΦ [rad] x 9.93× 10−6 x

∆zC [−] 2.33× 10−3 x 1.54× 10−5

∆zδ [−] 3.86× 10−2 1.32× 10−2 5.80× 10−3

ggen(∆fc) 2.46× 10−4 1.91× 10−4 4.09× 10−5

Table 7.13 Linearised chassis design problem. Scenario 2. Generic weighting factors.
Overview of the results of OCR for SCSs with generic weighting factors for the linearised chassis design
problem with respect to runtime (on an Intel Xeon E5-2650 v2 @ 2.6 GHz processor), size, constraint
relaxation, and value of the target function from scenario 2.

Advanced Solution Space Methods in Systems Design. 115

Marc Eric Vogt

linear scenario 1

(a) OCR gen (b) OCR gen (c) Static A. gen (d) Static A. gen

(e) Shifting A. gen (f) Shifting A. gen

linear scenario 2

(g) OCR gen (h) OCR gen (i) Static A. gen (j) Static A. gen

(k) Shifting A. gen (l) Shifting A. gen

Figure 7.8 Linear chassis design problem. (a)-(b) & (g)-(h)/(c)-(d) & (i)-(j)/(e)-(f) & (k)-(l) The
early-variable design spaces of SCSs (black boxes) optimised by the Bisection/Static/Shifting
Algorithm. These SCSs ful�l the robustness requirements for scenario 1 & 2 (see table 3.3) while
ful�lling the relaxed performance constraints for scenario 1 (see table 7.12). The constraints are
relaxed with respect to the target function (5.4). The weighting factors are generic (gen).

116 Advanced Solution Space Methods in Systems Design.

Marc Eric Vogt

Chapter 8

Conclusion

The following chapter refers back to the stated aims and research questions and provides
a critical re�ection on what has been achieved. In addition, the challenges concerning
the newly introduced methods to compute set-based designs, which where encountered
when applying these to the chassis design problem, are discussed. In the end, an outlook
is given in which the approaches introduced in this thesis as well as the key �ndings,
are summarised, the main conclusions are drawn and ideas for future research work are
given.

Advanced Solution Space Methods in Systems Design. 117

Marc Eric Vogt

8.1. Critical Re�ection

In chapter 1 the necessity for providing larger Solution Spaces in early development stages
of complex products was presented. A literature review was conducted in chapter 2 and
aims and research questions were derived in chapter 3. In order to solve the research
questions, new methods to compute set-based designs were introduced in chapters 4,
5, and 6. In chapter 7 the newly developed methods were applied to a chassis design
problem, which was not solvable with state of the art methods. In the following, we
review the research questions and discuss to which extend they were ful�lled.

Aim 1: Provide a method, which computes box-shaped Solution Spaces with signi�cantly
increased interval sizes (compared to classical Solution Spaces [83]) for crucial design
variables. Solution-Compensation Spaces were introduced in chapter 4 as a new method
to derive box-shaped designs. Solution-Compensation Spaces build on the fact that in
most industrial applications not all parameters are designed simultaneously. If that is
the case, the variables, which are designed later in the process (late-decision variables)
can be used to compensate for larger permissible interval sizes. We validated the newly
introduced method by applying it to an industrial example the chassis design problem
(see section 7.2). We increased all early-variable interval sizes compared to the classical
Solution Space approach and more than doubled the volume of the resulting box (see
tables 3.4, 7.8). Hence, aim 1 is ful�lled: a new method with the speci�ed properties was
developed. With the caveat that the new method is only applicable to sequential design
processes.

Aim 2: Provide a method, which computes a minimal set of changes, which need to be
applied to the performance constraints such that any Solution Space problem statement
with robustness constraints becomes feasible. Optimal Constraint Relaxation for Solution
Spaces was introduced in chapter 5 as a new method to derive a minimal set of changes to
the performance constraints to make any Solution Space problem statement feasible. The
target function, which is minimised is the weighed sum of all relaxations with respect to
the performance goals. We introduced an algorithm for problem statements with linear-
and monotonous non-linear performance functions. The newly introduced method always
converges towards the global optimum. Hence, aim 2 is ful�lled: a new method with
the speci�ed properties was developed. With the caveat that the new method is not
applicable to arbitrarily non-linear performance functions. In addition, the result of the
algorithm is signi�cantly dependent on the chosen target function.

Aim 3: Provide a method, which combines the advantages of Solution-Compensation
Spaces with the advantages of Optimal Constraint Relaxation for Solution Spaces. Thus
making any Solution Space problem statement with robustness constraints feasible while
deploying the increasing �exibility gained from applying Solution-Compensation Spaces.
Optimal Constraint Relaxation for Solution-Compensation Spaces was introduced in
chapter 6. It works similarly to Optimal Constraint Relaxation for Solution Spaces,
with the di�erence that it uses late-decision variables to further decrease the required
relaxation. Hence, Optimal Constraint Relaxation for Solution-Compensation Spaces
is only applicable to a sequential design processes. We validated the newly introduced

118 Advanced Solution Space Methods in Systems Design.

Marc Eric Vogt

method by applying it to the chassis design problem. Compared to Optimal Constraint
Relaxation for Solution Spaces we decreased the relaxation according to the target func-
tion (with generic weighting factors, see 5.4) by 99.9% for scenario 1 and by 91.2% for
scenario 2 (see tables 7.10, 7.12, and 7.13). Hence, aim 3 is ful�lled: a new method with
the speci�ed properties was developed. With the caveat that the new method is only ap-
plicable to sequential design processes with linear (or linearised) performance functions.
In addition, the result of the algorithm is signi�cantly dependent on the chosen target
function.
Note that both Optimal Constraint Relaxation for Solution Spaces and Optimal Con-

straint Relaxation for Solution-Compensation Spaces are also applicable if no robustness
constraints are required. In this case the result will be a single feasible design and not a
set-based design.
Summary: It is shown that the methods introduced eliminate the de�ciencies of the

state of the art algorithms pointed out in chapter 3 and hence, ful�l the objectives of
this thesis. Which approach is recommended depends on the problem statement.
Figure 8.1 gives a recommendation on which Solution Space approach to apply depend-

ing on the type of design problem. In case that all variables of the considered system
are designed simultaneously, the classical Solution Space approach is recommended (see
chapter 2). In case the variables of the considered system are designed sequentially,
the Solution-Compensation Space approach is applicable (see chapter 4). It enables
larger intervals for the early-decision variables and is hence recommended over the clas-
sical Solution Space approach. In case no solution is found or the resulting Solution
Space/Solution-Compensation Space is too small, Optimal Constraint Relaxation for
Solution Spaces/Solution-Compensation Spaces can be applied to determine a set of re-
laxed constraints such that the problem becomes feasible (see chapter 5 and 6). Optimal
Constraint Relaxation for Solution-Compensation Spaces yields solutions with less re-
laxation compared to Optimal Constraint Relaxation for Solution Spaces and is hence
recommended in the sequential design process.

8.2. Outlook

Even though we covered a lot of the de�ciencies of state of the art methods concern-
ing Solution Spaces many questions remain unanswered, which can be addressed in the
future:

• How can Solution-Compensation Spaces be optimised if a minimal interval size
for certain parameters is required (robustness constraints)? Currently, we are only
able to optimise the Solution-Compensation Space according to a size measure (e.g.
volume).

• Is it possible to compute Optimal Constraint Relaxation for Solution Spaces/Solution-
Compensation Spaces for arbitrarily non-linear constraint functions? So far mono-
tone functions are required for Optimal Constraint Relaxation for Solution Spaces

Advanced Solution Space Methods in Systems Design. 119

Marc Eric Vogt

Figure 8.1 Recommendation on which Solution Space approach to apply depending on the design
problem.

and linear functions are required for Optimal Constraint Relaxation for Solution-
Compensation Spaces.

• How can we modify the target function in order to improve the result of Optimal
Constraint Relaxation for Solution Spaces/Solution-Compensation Spaces? User
de�ned parametrisation was introduced in 5.4. One idea would be to train a ma-
chine learning algorithm based on user evaluation.

• In which industrial applications can Solution-Compensation Spaces and Optimal
Constraint Relaxation be bene�cial, apart from chassis design?

As shown in chapter 7, the methods introduced in this thesis, bring great advantages
with respect to robustness and �exibility during the chassis design process. From a
mathematical standpoint these methods can be applied to any development process where
design parameters shall be optimised and objective requirements can be formulated. I
�rmly believe that in the future Solution-Compensation Spaces and Optimal Constraint
Relaxation will be applied in di�erent �elds of the vehicle industry such as crash design
and engine mount systems design. Even applications in other industries where complex
products are designed, such as aircraft or aerospace industry are possible.

120 Advanced Solution Space Methods in Systems Design.

Marc Eric Vogt

List of acronyms

ANN Arti�cial Neural Network

DS Design Space

FME Fourier-Motzkin Elimination

FTC Functional Tyre Characteristic

LPP Linear Programming Problem

MC Monte-Carlo

NINF Number of Infeasibilities

OCR Optimal Constraint Relaxation

PSO Particle Swarm Optimisation

QSSC Quasi-Steady State Cornering

RAST Ramp Steering

RI Rating Index for vehicle dynamics

RR Redundancy Removal

RSM Response-Surface Metamodel

SCS Solution-Compensation Space

SINF Sum of Infeasibilities

SLVF Sum of the lengths of the feasibility vectors

SS Solution Space

SSA Stochastic Solution Space Algorithm

SSCSA Stochastic Solution-Compensation Space Algorithm

SVM Support Vector Machine

SWD Sine with Dwell

VT Vertex Tracking

bad design design that does not ful�l all performance requirements

dof degrees of freedom

good design design that ful�ls all performance requirements

Advanced Solution Space Methods in Systems Design. 121

Marc Eric Vogt

List of variables

A System matrix A of the early-decision variable space. A ∈ Rm×p. See
equation (4.3)

B System matrix B of the late-decision variable space. B ∈ Rm×q. See
equation (4.3)

d Total number of variable dimensions. (early and late-decision variable
dimensions d = p+ q)

Deltafc Relaxation of the performance constraints f(x) ≤ fc +Deltafc.

fc Minimal threshold to ful�l the performance requirement: f(x) ≤ fc.

G Extended system matrix A and B including the design space constraints.
G ∈ Rmt×d. See equation (4.5)

gc Extended constraints vector fc including design space constraints. gc ∈ Rmt .
See equation (4.5)

I Identity Matrix

m Number of performance constraints.

mt Total number of constraints. mt = m+ 2d. (performance and design space
constraints)

mti Number of constraints after eliminating a total of i dimensions with the
FME.

mb Number of back facing constraints in in the direction −ei.

mf Number of front facing constraints in in the direction −ei.

mp Number of parallel constraints in the direction −ei.

p Number of early-decision variable dimensions.

q Number of late-decision variable dimensions.

xc Centre of the box-shaped Solution Space

122 Advanced Solution Space Methods in Systems Design.

Marc Eric Vogt

List of Figures

Figure 1.1 Complete solution space (grey area) and a box-shaped Solution Space

(blue box) for a two-dimensional problem. ... 7

Figure 1.2 The classical development approach and the design according to the

V-model [82]. Arrows show the shift of focus during the development. .. 8

Figure 1.3 (a) Example for the classical point-based design process applied to

chassis design. The blue box represents the starting point (e.g. a

predecessor design) (b) Target regions from di�erent disciplines. The

green area represents the complete Solution Space [53]. 9

Figure 2.1 Example for Vertex Tracking. The grey area represents the complete

solution space and the blue box represents a box-shaped Solution Space. 16

Figure 2.2 2d-examples for the di�erent types of requirements. The grey area

shows the complete Solution Space. The arrows represent the normals

of the constraints.. 21

Figure 2.3 An example for optimal designs concerning di�erent size measures:

NINF, SINF, and SLVF . .. 23

Figure 3.1 Approach (1). Nominal design (black cross) and cross-sections of the

complete Solution Space (feasible designs are marked as green area)

and two Solution Spaces, which ful�l the robustness requirements with

respect to scenario 1 and 2 (dashed boxes, identical for the dimensions

shown in (b)-(d)). ... 30

Advanced Solution Space Methods in Systems Design. 123

Marc Eric Vogt

Figure 3.2 (a)-(h) Approach (2). Classical box-shaped Solution Space (black

box) optimised either with Vertex Tracking (VT) or the Stochastic

Solution Space Algorithm (SSA) and an Solution Space, which ful�ls

the robustness requirements (dashed box). (i)-(p) Approach (3).

Combination of Particle Swarm Optimisation (PSO) and a classical

box-shaped Solution Space (black box) optimised either with Vertex

Tracking or the SSA. .. 33

Figure 3.3 Approach (4). (a)-(d)/(e)-(h) An Solution Space (black box) that

ful�ls the robustness requirements for scenario 1/2 (see table 3.3) while

ful�lling the relaxed performance constraints for scenario 1/2 (see table

3.5). .. 34

Figure 4.1 (a) The box-shaped Solution Space (black) and the SCS (blue). Dashed/-

solid lines indicate that the respective axis is associated with a late/early-

decision variable. (b) A realised value for the early-decision variable x∗a

and the resulting late-decision variable permissible interval Ω∗b (blue

solid line). ... 37

Figure 4.2 Iterative design process according to [43]. .. 38

Figure 4.3 Approach using system and component design of classical Solution

Spaces according to [83]. ... 38

Figure 4.4 Extension to a three-step design approach for sequential development

using SCSs... 38

Figure 4.5 (a) Step (1) of the Basic Projection Algorithm: intersection points of

all constraints hyper-planes (black crosses) (b) In Step (2) and (3):

projection of all feasible intersection points (green crosses) 42

124 Advanced Solution Space Methods in Systems Design.

Marc Eric Vogt

Figure 4.6 (a) Two-dimensional polygon, which represents the complete Solution

Space before projection and the corresponding facets. Blue arrows

indicate front facing facets, red arrows indicate back facing facets and

black arrows represent parallel facets. (b) One-dimensional projected

polygon (green arrow) and the corresponding constraints (blue lines).... 45

Figure 4.7 (a) A projected system after applying the FME. The green area is

the complete Solution Space. The grey dashed lines are redundant

constraints. The green dashed lines are non-redundant constraints.

(b)&(c) The red dashed lines represent the relaxed constraint Gix ≤

gi + ε and the red dot represents x∗, which is the optimal solution to

Red(M, i). .. 48

Figure 4.8 (a) The green two-dimensional polygon represents the complete Solu-

tion Space (see �gure 4.7). Green dashed lines represent a subset S of

all non-redundant constraints. The red line represents the relaxed con-

straint Gix ≤ gi + ε. The red dot x∗ represents the optimised solution

of Red(S, i). (b) The black arrow represents the ray from inside the

polygon z to the optimised solution x∗. (c) The blue and the purple

dashed lines represent constraints that are hit by the ray.................... 50

Figure 4.9 A four-dimensional problem with two early- and two late-decision vari-

able dimensions. (a) The green area represents the complete Solution-

Compensation Space for the early-decision variable. The blue area

represents the complete Solution Space for a �xed early-decision vari-

able design xopta . The green cross represents the resulting design of a

classical optimisation algorithm xopt. (b) The black box represents the

initial candidate box. The dashed box represents the candidate box

after a single extension step. .. 55

Advanced Solution Space Methods in Systems Design. 125

Marc Eric Vogt

Figure 4.10 Phase I-(2). (a) The crosses represent sample designs in the early-

decision variable space. (b)-(d) For each speci�ed set of early-decision

variables the space of permissible late-decision variable values is shown. 55

Figure 4.11 (a) Green/Red Crosses represent good/bad designs. (b) The dashed/-

continuous black box represents the candidate box before/after a re-

moving all bad designs. ... 56

Figure 4.12 Green/red crosses represent good/bad designs. The dashed lines repre-

sent di�erent options on how to cut the candidate box. The continuous

line in (c) represents the �rst cut, which is chosen. 57

Figure 5.1 (a) The box-shaped Solution Space (black) and the box of �xed size,

which ful�ls the robustness requirements (blue). (b) An optimised set

of relaxed constraints and the resulting Solution Space (blue). 64

Figure 5.2 Approach using system and component design of classical Solution

Spaces with the addition of a pre-optimisation step for infeasible prob-

lem statements. .. 65

Figure 5.3 Example for VT. If the critical vertex is a good design the entire Solu-

tion Space contains only good designs with respect to the considered

performance constraint. ... 68

Figure 5.4 Type of Solution Space constraints, shape of Solution Spaces and ex-

amples according to [20]. ... 71

Figure 5.5 Example on how to calculate the Rating Index for vehicle dynamics

for the maximum lateral acceleration zay . .. 74

Figure 5.6 Example for interactive optimisation.(a) Each constraint is weighed

equally q1 = q2 = q3. (b) Constraint one q1 is more important q1 =

10q2 = 10q3. ... 75

126 Advanced Solution Space Methods in Systems Design.

Marc Eric Vogt

Figure 6.1 (a) An optimised box-shaped Solution Space (black). (b) An opti-

mised SCS (blue box). (c) An optimised set of relaxed performance

constraints (grey dashed lines) derived by OCR for Solution Spaces and

the optimised box-shaped Solution Space (blue line). (d) An optimised

set of relaxed performance constraints (grey dashed lines) derived by

OCR for SCSs and the optimised SCS (blue box). 78

Figure 6.2 Approach using system and component design of classical Solution

Spaces with the addition of a pre-optimisation step for infeasible prob-

lem statements. .. 79

Figure 6.3 Overview of the algorithms to compute Optimal Constraint Relaxation

for SCSs .. 81

Figure 6.4 Example for the Bisection Algorithm. ... 83

Figure 6.5 Example for the search area (green) of the Static and the Shifting

Algorithm with respect to ∆fc. .. 85

Figure 7.1 Front axle of a passenger vehicle [18] with the chassis components

bump stop (1), tyre(2) and anti-roll bar (3) 89

Figure 7.2 Centre of Gravity CoG and construction of the rolling centre Ro of a

double wishbone axle when stationary. .. 90

Figure 7.3 Regression plots for the maximum steering angle factor trained with

(a) the full data set zδ and with (b) a �ltered data set z∗δ (the black

sample points were discarded). .. 93

Figure 7.4 (a)-(d) SCS (black box) optimised either with Vertex Tracking (VT)

or the Stochastic Solution-Compensation Space Algorithm (SSCSA)

and for reference an SCS, which ful�ls the robustness requirements

(dashed box). (e)-(f) SCS optimised with the Stochastic Solution-

Compensation Space Algorithm (SSCSA) with the 3 di�erent parametri-

sation from table 7.6. .. 101

Advanced Solution Space Methods in Systems Design. 127

Marc Eric Vogt

Figure 7.5 (a) Example for a constraint, which is globally non-monotonic, but is

monotonic in a su�ciently large area around the critical vertex. (b)

Example for a constraint, which is globally non-monotonic and is not

monotonic in a su�ciently large area around the critical vertex to

ensure 100% accuracy. ... 104

Figure 7.6 Linearised chassis design problem. (a)-(h)/(i)-(p) an Solution

Space (black box) that ful�ls the robustness requirements for scenario

1/2 (see table 3.3) while ful�lling the relaxed performance constraints

for scenario 1/2 (see table 3.5). The constraints are relaxed with re-

spect to the target function (5.4). The weighting factors are either

generic (gen) or according to RI. .. 109

Figure 7.7 Non-linear chassis design problem. (a)-(h)/(i)-(p) an Solution

Space (black box) that ful�ls the robustness requirements for scenario

1/2 (see table 3.3) while ful�lling the relaxed performance constraints

for scenario 1/2 (see table 3.5). The constraints are relaxed with re-

spect to the target function (5.4). The weighting factors are either

generic (gen) or according to RI. .. 110

Figure 7.8 Linear chassis design problem. (a)-(b) & (g)-(h)/(c)-(d) & (i)-

(j)/(e)-(f) & (k)-(l) The early-variable design spaces of SCSs (black

boxes) optimised by the Bisection/Static/Shifting Algorithm. These

SCSs ful�l the robustness requirements for scenario 1 & 2 (see table

3.3) while ful�lling the relaxed performance constraints for scenario 1

(see table 7.12). The constraints are relaxed with respect to the target

function (5.4). The weighting factors are generic (gen)........................ 116

Figure 8.1 Recommendation on which Solution Space approach to apply depend-

ing on the design problem.. 120

128 Advanced Solution Space Methods in Systems Design.

Marc Eric Vogt

List of Tables

Table 1.1 Overview of the methods included in the thesis. The methods

are categorised column-wise according to their applicability to systems

with linear or non-linear performance constraints. The methods are

categorised row-wise according to their result. 11

Table 3.1 Overview of the design variables .. 25

Table 3.2 Vehicle performance measures and the associated requirements repre-

sented by lower and/or upper bounds... 26

Table 3.3 Examples for the minimal interval sizes for axle and tyre parameters to

ensure su�cient robustness of the derived design. 27

Table 3.4 Approach (2) & (3). Normalised interval sizes (normalised with

respect to requirements of scenario 1) and the resulting volume of the

Solution Space for µmax and hRo.. 30

Table 3.5 Approach (4). Relative amount of relaxation with respect to the

performance constraints. ... 31

Table 4.1 The in�uence of the parameters of the Stochastic SCS Algorithm on

the size and the con�dence level of the resulting SCS........................... 58

Table 7.1 Coe�cient of determination R2 for the stepwise linearised models of

the individual performance constraints. N = 10, 000 samples have been

used as training data for each of the models.. 91

Table 7.2 Changes of the performance measures with respect to the design vari-

ables. +/−: the performance measure increases/decreases if the re-

spective design variable increases. 0: the performance measure is not

in�uenced by the respective design variable .. 92

Advanced Solution Space Methods in Systems Design. 129

Marc Eric Vogt

Table 7.3 Coe�cient of determination R2 for the RSM. 10, 000 samples have been

used as training data for each of the models. The �ltered Set for z∗δ

contained 9, 925 samples. .. 93

Table 7.4 Early- and late-decision variables... 94

Table 7.5 Number of constraints after each projection step for the chassis design

problem when applying the FME with and without RR. 96

Table 7.6 Parametrisation of the Stochastic SCS Algorithm and the resulting du-

ration of the computation. .. 97

Table 7.7 Overview of the results of the SCS algorithms with respect to runtime,

size, accuracy, ful�lment of the requirements from scenario 1/2, and

whether an application to systems with non-linear performance con-

straints is possible.. 98

Table 7.8 Interval sizes (normalised with respect to requirements of scenario 1)

and the resulting volume of the SCS for µmax and hRo. 100

Table 7.9 Overview of all ∆RI and fc for the chassis design problem in SI units.

The weighting factors are either generic (gen) or according to RI. 103

Table 7.10 Linearised chassis design problem. Overview of the results of OCR

for Solution Spaces for the linearised chassis design problem with re-

spect to runtime (on an Intel Xeon E5-2650 v2 @ 2.6 GHz processor),

size, constraint relaxation, and value of the target function from sce-

nario 1/2. ... 107

Table 7.11 Non-linear chassis design problem. Overview of the results of

OCR for Solution Spaces for the non-linear chassis design problem with

respect to runtime (on an Intel Xeon E5-2650 v2 @ 2.6 GHz processor),

size, constraint relaxation and target function value from scenario 1/2. .. 108

130 Advanced Solution Space Methods in Systems Design.

Marc Eric Vogt

Table 7.12 Linearised chassis design problem. Scenario 1. Generic weight-

ing factors. Overview of the results of OCR for SCSs with generic

weighting factors for the linearised chassis design problem with respect

to runtime (on an Intel Xeon E5-2650 v2 @ 2.6 GHz processor), size,

constraint relaxation, and value of the target function from scenario 1. .. 114

Table 7.13 Linearised chassis design problem. Scenario 2. Generic weight-

ing factors. Overview of the results of OCR for SCSs with generic

weighting factors for the linearised chassis design problem with respect

to runtime (on an Intel Xeon E5-2650 v2 @ 2.6 GHz processor), size,

constraint relaxation, and value of the target function from scenario 2. .. 115

Advanced Solution Space Methods in Systems Design. 131

Marc Eric Vogt

Bibliography

[1] M. L. Ajspur and R. M. Jensen. �Using Fourier-Motzkin-Elimination to Derive
Capacity Models of Container Vessels�. In: IT University Technical Report Series
(2017).

[2] C. B. Barber, D. P. Dobkin, and H. Huhdanpaa. �The quickhull algorithm for con-
vex hulls�. In: ACM Transactions on Mathematical Software 22.4 (1996), pp. 469�
483. issn: 00983500. doi: 10.1145/235815.235821.

[3] I. A. Basheer and M. Hajmeer. �Arti�cial neural networks: fundamentals, comput-
ing, design, and application�. In: Journal of Microbiological Methods 43.1 (2000),
pp. 3�31. doi: 10.1016/S0167-7012(00)00201-3.

[4] M. R. Bonyadi and Z. Michalewicz. �Particle swarm optimization for single ob-
jective continuous space problems: a review�. In: ECJ Evolutionary Computation
Journal 25.1 (2017), pp. 1�54.

[5] S. Boyd and L. Vandenberghe. Convex optimization. Cambridge University Press,
2004. isbn: 978-0521833783.

[6] B. Chazelle. �An optimal convex hull algorithm in any �xed dimension�. In: Discrete
& Computational Geometry 10.4 (1993), pp. 377�409. doi: 10.1007/BF02573985.

[7] J. W. Chinneck. Feasibility and Infeasibility in Optimization. Vol. 118. 2008. isbn:
978-0-387-74931-0. doi: 10.1007/978-0-387-74932-7.

[8] J. W. Chinneck. �The constraint consensus method for �nding approximately fea-
sible points in nonlinear programs�. In: INFORMS Journal on Computing 16.3
(2004), pp. 255�265. doi: 10.1287/ijoc.1030.0046.

[9] K. L. Clarkson. �More output-sensitive geometric algorithms�. In: Proc. 35th An-
nual Symposium on Foundations of Computer Science. IEEE. 1994, pp. 695�702.
doi: 10.1109/SFCS.1994.365723.

[10] I. Cuevas Salazar, F. Duddeck, and L. Song. �Small overlap assessment for early
design phases based on vehicle kinematics�. In: International Journal of Crashwor-
thiness (2019), pp. 1�16. doi: 10.1080/13588265.2018.1514689.

[11] G. B. Dantzig and B. C. Eaves. The Basic. Stanford University Press, 2003, p. 255.

[12] S. Das. A brief note on estimates of binomial coe�cients. http://page.mi.fu-
berlin.de/shagnik/notes/binomials.pdf. Accessed: 2019-05-09.

[13] M. Daub and F. Duddeck. �Complex systems design under non-reducible lack-
of-knowledge uncertainties�. In: ASCE-ASME Journal of Risk and Uncertainty in
Engineering Systems: Part B. Mechanical Engineering (2019).

[14] N. R. Draper and H. Smith. Applied regression analysis. Vol. 326. John Wiley &
Sons, 2014. isbn: 978-0471170822.

132 Advanced Solution Space Methods in Systems Design.

https://doi.org/10.1145/235815.235821
https://doi.org/10.1016/S0167-7012(00)00201-3
https://doi.org/10.1007/BF02573985
https://doi.org/10.1007/978-0-387-74932-7
https://doi.org/10.1287/ijoc.1030.0046
https://doi.org/10.1109/SFCS.1994.365723
https://doi.org/10.1080/13588265.2018.1514689
http://page.mi.fu-berlin.de/shagnik/notes/binomials.pdf
http://page.mi.fu-berlin.de/shagnik/notes/binomials.pdf

Marc Eric Vogt

[15] F. Duddeck and E. Wehrle. �Recent advances on surrogate modeling for robustness
assessment of structures with respect to crashworthiness requirements�. In: 10th
European LS-DYNA conference, Würzburg, Germany (2015).

[16] M. Eichstetter. Design of vehicle system dynamics using solution spaces. PhD the-
sis, Technische Universität Berlin, Berlin, Germany, 2017.

[17] M. Eichstetter. �Solution spaces for damper design in vehicle dynamics�. In: 5th
International Munich Chassis Symposium. Springer. 2014, pp. 107�132. doi: 10.
1007/978-3-658-05978-1_10.

[18] M. Eichstetter, S. Müller, and M. Zimmermann. �Product Family Design With
Solution Spaces�. In: Journal of Mechanical Design 137.12 (2015). issn: 1050-0472.
doi: 10.1115/1.4031637.

[19] S. Erschen, F. Duddeck, M. Gerdts, and M. Zimmermann. �On the optimal decom-
position of high-dimensional solution spaces of complex systems�. In: ASCE-ASME
Journal of Risk and Uncertainty in Engineering Systems 4.2 (2017), p. 021008. doi:
10.1115/1.4037485.

[20] S. Erschen. Optimal Decomposition of High-Dimensional Solution Spaces for Chas-
sis Design. PhD thesis, Technische Universität München, Munich, Germany, 2018.

[21] S. Erschen, F. Duddeck, and M. Zimmermann. �Robust Design using classical op-
timization - Computation of Solution Spaces with application to chassis design�.
In: Proc. Appl. Math. Mech. 15.1 (2015), pp. 565�566. doi: 10.1002/pamm.
201510272.

[22] J. Fender, F. Duddeck, and M. Zimmermann. �Direct computation of solution
spaces�. In: Struct. Multidisc. Optim. 55.5 (2017), pp. 1787�1796. issn: 1615-147X.
doi: 10.1007/s00158-016-1615-y.

[23] J. Fender, F. Duddeck, and M. Zimmermann. �On the calibration of simpli�ed
vehicle crash models�. In: Struct. Multidisc. Optim. 49 (2013). doi: 10.1007/
s00158-013-0977-7.

[24] J. Fender, L. Gra�, H. Harbrecht, and M. Zimmermann. �Identifying key param-
eters for design improvement in high-dimensional systems with uncertainty�. In:
Journal of Mechanical Design 136.4 (2014). doi: 10.1115/1.4026647.

[25] W. W. Finch and A. C. Ward. �Quanti�ed Relations: A Class of Predicate Logic
Design Constraints Among Sets of manufacturing, Operating, and Other Varia-
tions�. In: Proceedings of the 8th International Conference on Design Theory and
Methodology, Irvine, California. 1996.

[26] J. Fox. Applied regression analysis and generalized linear models. Sage Publications,
2015. isbn: 978-1452205663.

[27] K. Fukuda. Lecture notes on Polyhedral Computation. ETH Zürich, Switzerland.
2014.

Advanced Solution Space Methods in Systems Design. 133

https://doi.org/10.1007/978-3-658-05978-1_10
https://doi.org/10.1007/978-3-658-05978-1_10
https://doi.org/10.1115/1.4031637
https://doi.org/10.1115/1.4037485
https://doi.org/10.1002/pamm.201510272
https://doi.org/10.1002/pamm.201510272
https://doi.org/10.1007/s00158-016-1615-y
https://doi.org/10.1007/s00158-013-0977-7
https://doi.org/10.1007/s00158-013-0977-7
https://doi.org/10.1115/1.4026647

Marc Eric Vogt

[28] K. Fukuda, B. Gärtner, and M. Szedlák. �Combinatorial redundancy detection�. In:
Annals of Operations Research (2014), pp. 1�19. doi: 10.4230/LIPIcs.SOCG.
2015.315.

[29] G. Fung, S. Sandilya, and R. B. Rao. �Rule Extraction from Linear Support Vector
Machines�. In: Proc 11th ACM SIGKDD int. Conf. on Knowledge Discovery in
Data Mining, Chicago, Illinois, USA (2005), pp. 32�40. doi: 10.1145/1081870.
1081878.

[30] L. Gra�. �A stochastic algorithm for the identi�cation of solution spaces in high-
dimensional design spaces�. PhD thesis. University of Basel, Basel, Germany, 2013.

[31] M. A. Hearst, S. T. Dumais, E. Osuna, J. Platt, and B. Scholkopf. �Support vector
machines�. In: IEEE Intelligent Systems and their applications 13.4 (1998), pp. 18�
28. doi: 10.1109/5254.708428.

[32] B. Heiÿing, M. Ersoy, and S. Gies. �Fahrdynamik�. In: Fahrwerkhandbuch. Wies-
baden: Vieweg+Teubner, 2011, pp. 37�154. doi: 10.1007/978-3-8348-8168-
7_2.

[33] J.-L. Imbert. �Fourier's Elimination: Which to Choose?� In: PPCP (1993), pp. 117�
129.

[34] International Organization for Standardization. �ISO 19365:2016 - Passenger cars �
Validation of vehicle dynamic simulation � Sine with dwell stability control testing�.
In: Passenger cars. Caravans and light trailers (2016).

[35] International Organization for Standardization. �ISO 4138:2012 - Passenger cars �
Steady-state circular driving behaviour � Open-loop test methods�. In: Passenger
cars. Caravans and light trailers (2012).

[36] L. Kettner and E. Welzl. �Contour edge analysis for polyhedron projections�. In:
Geometric Modeling: Theory and Practice. Springer, 1997, pp. 379�394. doi: 10.
1007/978-3-642-60607-6_25.

[37] N. Khan, S. Inayatullah, M. Imtiaz, and F. H. Khan. �New arti�cial-free phase 1
simplex method�. In: arXiv preprint arXiv:1304.2107 (2013).

[38] H. M. Kim, N. F. Michelena, P. Y. Papalambros, and T. Jiang. �Target cascading
in optimal system design�. In: Journal of Mechanical Design 125.3 (2003), pp. 474�
480. doi: 10.1115/1.1582501.

[39] S. Königs and M. Zimmermann. �Resolving con�icts of goals in complex design
processes � application to the design of engine mount systems�. In: 7th Interna-
tional Munich Chassis Symposium. Springer Fachmedien Wiesbaden, 2017. doi:
10.1007/978-3-658-14219-3_14.

[40] P. Kvasnicka, G. Prokop, M. Dorle, A. Rettinger, and H. Stahl. �Dürchgangige Sim-
ulationsumgebung zur Entwicklung und Absicherung von fahrdynamischen Regel-
systemen�. In: VDI Berichte 1967.1 (2006), p. 387.

134 Advanced Solution Space Methods in Systems Design.

https://doi.org/10.4230/LIPIcs.SOCG.2015.315
https://doi.org/10.4230/LIPIcs.SOCG.2015.315
https://doi.org/10.1145/1081870.1081878
https://doi.org/10.1145/1081870.1081878
https://doi.org/10.1109/5254.708428
https://doi.org/10.1007/978-3-8348-8168-7_2
https://doi.org/10.1007/978-3-8348-8168-7_2
https://doi.org/10.1007/978-3-642-60607-6_25
https://doi.org/10.1007/978-3-642-60607-6_25
https://doi.org/10.1115/1.1582501
https://doi.org/10.1007/978-3-658-14219-3_14

Marc Eric Vogt

[41] V. A. Lange, J. Fender, and F. Duddeck. �Relaxing high-dimensional constraints
in the direct solution space method for early phase development�. In: Optimization
and Engineering (2018), pp. 1�29. doi: 10.1007/s11081-018-9381-x.

[42] V. A. Lange, J. Fender, L. Song, and F. Duddeck. �Early phase modeling of frontal
impacts for crashworthiness: From lumped mass�spring models to Deformation
Space Models�. In: Proceedings of the Institution of Mechanical Engineers, Part D:
Journal of Automobile Engineering (2018). doi: 10.1177/0954407018814034.

[43] C. Larman and V. R. Basili. �Iterative and incremental developments: a brief his-
tory�. In: Computer 36.6 (2003), pp. 47�56. issn: 0018-9162. doi: 10.1109/MC.
2003.1204375.

[44] M. Lehar and M. Zimmermann. �An inexpensive estimate of failure probability for
high-dimensional systems with uncertainty q�. In: Structural Safety 36-37 (2012),
pp. 32�38. issn: 0167-4730. doi: 10.1016/j.strusafe.2011.10.001.

[45] U. Lindemann. Handbuch Produktentwicklung. Carl Hanser Verlag GmbH Co KG,
2016. isbn: 978-3446445185.

[46] I. J. Lustig, R. E. Marsten, and D. F. Shanno. �Interior point methods for linear
programming: Computational state of the art�. In: ORSA Journal on Computing
6.1 (1994), pp. 1�14. doi: 10.1287/ijoc.6.1.1.

[47] S. Marsland. Machine learning: an algorithmic perspective. Chapman and Hall/
CRC, 2011. isbn: 978-1439889213.

[48] Math World, Bisection. http://mathworld.wolfram.com/Bisection.
html. Accessed: 2019-05-09.

[49] M. Münster, M. Lehner, and D. Rixen. �Vehicle steering design using solution
spaces for decoupled dynamical subsystems�. In: International Conference on Noise
and Vibration Engineering, ISMA, Leuven, Belgium. 2014.

[50] N. J. Nagelkerke. �A note on a general de�nition of the coe�cient of determination�.
In: Biometrika 78.3 (1991), pp. 691�692.

[51] H. Pacejka. Tire and vehicle dynamics. Elsevier, 2005. isbn: 978-0080543338.

[52] J. H. Panchal, M. G. Fernández, J. K. Allen, C. J. Paredis, and F. Mistree.
�An interval-based focalization method for decision-making in decentralized, multi-
functional design�. In: International Design Engineering Technical Conferences and
Computers and Information in Engineering Conference. American Society of Me-
chanical Engineers. 2005, pp. 413�426. doi: 10.1115/DETC2005-85322.

[53] C. Paredis, J. Aughenbaugh, R. Malak, and S. Rekuc. �Set-based design: a deci-
siontheoretic perspective�. In: Proc. frontiers in design & simulation research 2006
workshop. 2006, pp. 1�25.

[54] K. Pohl. Requirements engineering: fundamentals, principles, and techniques. Springer,
Berlin Heidelberg, Germany, 2010. isbn: 978-3-642-12577-5.

Advanced Solution Space Methods in Systems Design. 135

https://doi.org/10.1007/s11081-018-9381-x
https://doi.org/10.1177/0954407018814034
https://doi.org/10.1109/MC.2003.1204375
https://doi.org/10.1109/MC.2003.1204375
https://doi.org/10.1016/j.strusafe.2011.10.001
https://doi.org/10.1287/ijoc.6.1.1
http://mathworld.wolfram.com/Bisection.html
http://mathworld.wolfram.com/Bisection.html
https://doi.org/10.1115/DETC2005-85322

Marc Eric Vogt

[55] A. J. Qureshi, J.-Y. Dantan, Jérôme, and R. Bigot. �Set-based design of mechanical
systems with design robustness integrated�. In: International Journal of Product
Development 19.1-3 (2015), pp. 64�89. doi: 10.1504/IJPD.2014.060037.

[56] S. J. Rekuc, J. M. Aughenbaugh, M. Bruns, and C. J. Paredis. �Eliminating de-
sign alternatives based on imprecise information�. In: SAE Transactions (2006),
pp. 208�220. doi: 10.4271/2006-01-0272.

[57] C. M. Rocco, J. A. Moreno, and N. Carrasquero. �Robust design using a hybrid-
cellular-evolutionary and interval-arithmetic approach: a reliability application�. In:
Reliability Engineering & System Safety 79.2 (2003), pp. 149�159. issn: 09518320.
doi: 10.1016/S0951-8320(02)00226-0.

[58] A. Schrijver. Theory of linear and integer programming. John Wiley & Sons, 1998.
isbn: 978-0471982326.

[59] R. Shao. �Developing a methodology to increase communality for chassis compo-
nents within the vehicle dynamics design�. Master Thesis. Karlsruhe Institute of
Technology, Germany, 2017.

[60] Y. Shi and R. Eberhart. �A modi�ed particle swarm optimizer�. In: Evolutionary
Computation Proceedings, World Congress on Computational Intelligence, Anchor-
age, AK, USA. IEEE. 1998, pp. 69�73. doi: 10.1109/ICEC.1998.699146.

[61] T. W. Simpson, J. Poplinski, P. N. Koch, and J. K. Allen. �Metamodels for computer-
based engineering design: survey and recommendations�. In: Engineering with Com-
puters 17.2 (2001), pp. 129�150. doi: 10.1007/PL00007198.

[62] D. J. Singer, N. Doerry, and M. E. Buckley. �What Is Set-Based Design?� In: Naval
Engineers Journal 121.4 (2009), pp. 31�43. doi: 10.1111/j.1559-3584.2009.
00226.x.

[63] D. K. Sobek II, A. C. Ward, and J. K. Liker. �Toyota's principles of set-based
concurrent engineering�. In: MIT Sloan Management Review 40.2 (1999), p. 67.

[64] L. Song. �Commonality Design of Vehicle Architectures Concerning Crashworthi-
ness Using Solution Spaces.� PhD thesis. Technische Universität München, Munich,
Germany, 2019.

[65] L. Song, M. Pabst, F. Duddeck, and J. Fender. �A simpli�ed model for barrier�
vehicle interaction in a rear crash for early phase development and solution spaces�.
In: International Journal of Crashworthiness 23.5 (2018), pp. 507�520. doi: 10.
1080/13588265.2017.1350091.

[66] R. Storn and K. Price. �Di�erential evolution�a simple and e�cient heuristic for
global optimization over continuous spaces�. In: Journal of Global Optimization
11.4 (1997), pp. 341�359. doi: 10.1023/A:1008202821328.

[67] F. Stutz. �Computation of Optimized Tolerances for Uncertainty in Systems Design
with Early and Late Decision Variables�. Master Thesis. Faculty of Science of the
University of Basel, Switzerland, 2017.

136 Advanced Solution Space Methods in Systems Design.

https://doi.org/10.1504/IJPD.2014.060037
https://doi.org/10.4271/2006-01-0272
https://doi.org/10.1016/S0951-8320(02)00226-0
https://doi.org/10.1109/ICEC.1998.699146
https://doi.org/10.1007/PL00007198
https://doi.org/10.1111/j.1559-3584.2009.00226.x
https://doi.org/10.1111/j.1559-3584.2009.00226.x
https://doi.org/10.1080/13588265.2017.1350091
https://doi.org/10.1080/13588265.2017.1350091
https://doi.org/10.1023/A:1008202821328

Marc Eric Vogt

[68] R. E. Swaney and I. E. Grossmann. �An index for operational �exibility in chemical
process design. Part I: Formulation and theory�. In: AIChE Journal 31.4 (1985),
pp. 621�630. doi: 10.1002/aic.690310412.

[69] M. Szedlak. �Redundancy in Linear Systems: Combinatorics, Algorithms and Anal-
ysis�. PhD thesis. ETH Zurich, Switzerland, 2017.

[70] I. C. Trelea. �The particle swarm optimization algorithm: convergence analysis and
parameter selection�. In: Information processing letters 85.6 (2003), pp. 317�325.

[71] M. Trzesniowski. Fahrwerk. Springer, 2017. doi: https://doi.org/10.1007/
978-3-658-15545-2.

[72] F. Vallentin and A. Gundert. Das Eliminationsverfahren von Fourier und Motzkin.
http://www.mi.uni-koeln.de/opt/wp-content/uploads/2014/07/
fourier-motzkin.pdf. University of Cologne, Germany, Accessed: 2019-05-09.
2014.

[73] M. Vogt, F. Duddeck, H. Harbrecht, F. Stutz, M. Wahle, and M. Zimmermann.
�Computing solution-compensation spaces using an enhanced Fourier-Motzkin al-
gorithm�. In: PAMM Proceedings in Applied Mathematics and Mechanics (2018).
doi: 10.1002/pamm.201800103.

[74] M. Vogt, F. Duddeck, M. Wahle, and M. Zimmermann. �Optimising Tolerance to
Uncertainty in Systems Design with Early- and Late-Decision Variables�. In: IMA
Journal of Management Mathematics dpy003 (2018). doi: 10.1093/imaman/
dpy003.

[75] A. C. Ward. A theory of quantitative inference applied to a mechanical design com-
piler. http://hdl.handle.net/1721.1/6977. Accessed: 2019-05-09. 1989.

[76] A. C. Ward and D. K. Sobek II. Lean product and process development. Lean
Enterprise Institute, 2014. isbn: 978-1934109434.

[77] P. J. Werbos. �Backpropagation through time: what it does and how to do it�. In:
Proceedings of the IEEE 78.10 (1990), pp. 1550�1560. doi: 10.1109/5.58337.

[78] A. Wieland and C. M. Wallenburg. �Dealing with supply chain risks: Linking risk
management practices and strategies to performance�. In: International Journal
of Physical Distribution & Logistics Management 42.10 (2012), pp. 887�905. doi:
10.1108/09600031211281411.

[79] P. Wilmott, S. Howson, S. Howison, and J. Dewynne. The mathematics of �nancial
derivatives: a student introduction. Cambridge University Press, 1995. isbn: 978-
0521497893.

[80] Y. Zhang. �A review of: Interior Point Algorithms: Theory and Analysis�. In: IIE
Transactions 31.3 (1999), pp. 275�276. doi: 10.1080/07408179908969827.

[81] M. Zimmermann. Lecture notes on methods of product development. Technische
Universität München, Munich, Germany. 2019.

Advanced Solution Space Methods in Systems Design. 137

https://doi.org/10.1002/aic.690310412
https://doi.org/https://doi.org/10.1007/978-3-658-15545-2
https://doi.org/https://doi.org/10.1007/978-3-658-15545-2
http://www.mi.uni-koeln.de/opt/wp-content/uploads/2014/07/fourier-motzkin.pdf
http://www.mi.uni-koeln.de/opt/wp-content/uploads/2014/07/fourier-motzkin.pdf
https://doi.org/10.1002/pamm.201800103
https://doi.org/10.1093/imaman/dpy003
https://doi.org/10.1093/imaman/dpy003
http://hdl.handle.net/1721.1/6977
https://doi.org/10.1109/5.58337
https://doi.org/10.1108/09600031211281411
https://doi.org/10.1080/07408179908969827

Marc Eric Vogt

[82] M. Zimmermann, S. Königs, J. Fender, C. Niemeyer, C. Zeherbauer, R. Vitale, and
M. Wahle. �On the design of large systems subject to uncertainty�. In: Journal of
Engineering Design 28.4 (2017), pp. 233�254. doi: 10.1080/09544828.2017.
1303664.

[83] M. Zimmermann and J. E. von Hoessle. �Computing solution spaces for robust
design�. In: Int. J. Numer. Meth. Engng 94 (2013), pp. 290�307. doi: 10.1002/
nme.4450.

[84] M. Zimmermann and M. Wahle. �Solution Spaces for Vehicle Concepts and Archi-
tectures�. In: 24th Aachen Colloquium Automobile and Engine Technology, Aachen,
Germany, 2015.

138 Advanced Solution Space Methods in Systems Design.

https://doi.org/10.1080/09544828.2017.1303664
https://doi.org/10.1080/09544828.2017.1303664
https://doi.org/10.1002/nme.4450
https://doi.org/10.1002/nme.4450

