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Abstract

Immersing humans to virtual driving environments involves a realistic reproduction of the
motion simulation. This thesis covers methods for the trajectory generation of driving simu-
lators which aim to increase the motion fidelity. An essential task of these motion cueing al-
gorithms (MCAs) is to generate realistic motions by adhering to the motion system’s physical
limits. Simulations and experiments were performed with a nine degrees of freedom driving
simulator located at the BMW Group, Research, New Technologies, Innovations. A special fo-
cus is put on optimization-based MCAs which minimize deviations between desired vehicle
motions and actual simulator motions over a future time horizon. For real-time interactions,
allowing an active drive, model predictive control techniques are used. An MPC-scheme
solves the optimal control problem at discrete time steps to obtain an optimal motion for the
redundant motion system. As a prediction, the current vehicle motions are kept constant over
the time horizon. For open-loop interactions, where the driver sits passively in the simulator
and is being driven through a pre-recorded driving manoeuvre, an ideal driving dynamics
prediction over the complete manoeuvre is applied to obtain an optimal trajectory for the
pre-defined manoeuvre. Experimental studies with participants demonstrate an increase in
motion cueing quality of these passive algorithms compared to real-time capable MCAs. The
thesis proposes a method to make use of this optimal trajectory in an active drive in order to
improve the motion system’s workspace exploitation. Experimental studies show the poten-
tial of the presented MCAs and give good evidence to increase the motion fidelity compared
to state-of-the-art algorithms. Hereby, various rating systems, such as the continuous rating,
post-hoc rating and section-wise post-hoc rating, are applied which aim to measure devia-
tions between expected vehicle motions and actual simulator motions.

KEYWORDS: Motion cueing algorithms, trajectory optimization, model predictive control,
prediction, driving simulation, motion cueing rating methods
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Chapter 1

Introduction

Content of this thesis have been published in the following author’s publications: [47–56].

Due to the increasing performance of computers, employing simulation tools is becom-
ing more and more important in research and development. Nowadays, applying simulation
environments is common practice in the design of components or the control of dynamic sys-
tems, to name just a few examples. It offers advantages to replace practical experiments by
a computer-based calculation in order to safe time and to reduce cost. Apart from these gen-
eral aspects, the feasibility of practical experiments, using current measurement techniques,
is often restricted. For example, physically measuring certain states of a system, can be as-
sociated with large efforts. A further complicating factor is that some states are not directly
measurable, but can only be estimated from other states. A model of the system may there-
fore be a common approach to approximate the desired system states rather than conducting
cumbersome experiments.
Driving simulation is another application area, where driving simulators emulate a real vehi-
cle drive in a virtual environment. Based on the driver inputs, simulation models calculate
the states of the virtual scenery. The simulation hardware deploys the models’ outputs to give
feedback to the driver in form of visuals, acoustics and motions.
In recent years, employing driving simulators in research and development has increased
significantly. Along with the advantages mentioned above, driving simulation offers repro-
ducible and safe test conditions. These specifications play an important role, for instance,
in investigating the driving behaviour and/or in testing safety-critical functions. Driving
simulation opens new doors to relocate practical studies from a real vehicle to a virtual envi-
ronment. Though, this requires that results of a driving simulation study have a comparable
significance, saying that the scientific insights can be adapted to real vehicles [148].
This Chapter gives an introduction to the application fields of driving simulation. Based on
this, the problem of using driving simulators for replicating urban scenarios is described.
Finally, the contribution of this thesis and the structure of the work is briefly presented.

1.1 Driving Simulation

Immersing humans to virtual environments has its origin in flight simulation. In the late
1920s, the first pilot training device was developed which showed positive effects on pilots’
performance. The dynamic flight simulator was pneumatically actuated and allowed a safe
and improved pilot training environment in instrument flight. Due to progress in digital
computer technology in the 1960s and 1970s, great improvements in the motion and vision

1



2 1 Introduction

systems of flight simulators were accomplished. [3]
In the 1980s, the first vehicle manufactures, such as Volkswagen [43], Daimler [46] and
VTI [126], began to employ concepts of flight simulators for use in vehicle development.
Different requirement profiles between flight simulators and driving simulators represented
major challenges in the adaptation process. Passenger aircraft exhibit relatively low dynamic
requirements during a usual flight phase (neglecting the take-off and landing manoeuvre).
Whereas, high dynamic manoeuvres may occur with road vehicles, for example, during sharp
turns or abrupt stopping manoeuvres. Thus, driving simulators require high dynamic capa-
bilities in the longitudinal, lateral and yaw direction whereas for flight simulators the vertical
direction is more dominant. In order to quantify the accelerations which are to be repro-
duced during a virtual driving session, Figure 1.1 shows the results of an experimental study
conducted by [14]. The authors measured the maximum acceleration ranges for different
driver types with the distinction between average drivers and sportive drivers. Comparing
these profiles to the average and maximum acceleration potential of a vehicle, indicates the
high dynamics which are acting on the driver.
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Figure 1.1: Ranges for maximum accelerations for average drivers and for sportive drivers compared to the
average and maximum acceleration potential (Adapted from [14]).

Considering the application areas, flight simulators preferably have been used for pilot
training. Tasks mainly involve the simulation of realistic operations and controls in the cock-
pit, whereas reproducing realistic flight motions is not the primary focus. In contrast to that,
driving simulators are mainly employed in research and development, where the validity of
the results are paramount. Motion incongruencies between a real vehicle drive and a simu-
lator drive can considerably influence the purpose of the study. Reproducing a real vehicle
drive more realistically leads to a higher immersion of the driver, and thus increases the driv-
ing experience. [17, 143]
Driving simulators are primarily applied in research areas which deal with questions about
the driving behaviour during primary and secondary tasks or the interaction of the driver
with the environment [19]. Using driving simulators enables an efficient way to include the
human factor at an early stage of development; thus, avoiding time- and cost-intensive tests



1.1 Driving Simulation 3

with prototypes. Employing driving simulators instead of real vehicles can provide benefits
which are described in [140] to:

1. Safety: Some experimental studies are too dangerous to conduct with real vehicles,
such as driving behavioural tests under the influence of drugs or collision-avoidance
tests.

2. Equipment cost: Changing the interior/cockpit or installing measurement techniques
are often less expensive in simulator environments with standardized measurement
interfaces than in real vehicles.

3. Experimental control: Repeatable and consistent test environments under freely defin-
able weather, traffic and road conditions are crucial in driving behavioural analysis.
Along with these aspects, weather plays an important role for using driving simula-
tors. In some places, conducting experiments is not feasible because of bad weather
conditions, such as rain and snow.

However, validating driving simulation studies is generally complex in order to show that the
results are significantly transferable to real driving scenarios. Not all scenarios are replicable
in a sufficient quality. For example, limitations of the visualization system regarding bright-
ness (e.g. daylight, night drives) but also the limiting workspace capabilities (reproducing
deceleration manoeuvres, turns, roundabouts, etc.) restrict the driving simulation capabili-
ties.
Possible application areas for using driving simulators instead of real vehicles are for example
mentioned in [7, 19, 67, 150, 152]:

• Determination of driver-related parameters (reactivity, fatigue, concentration, etc.)

• Development of driver assistance systems (tuning, controllability, evaluation, etc.)

• Testing of new operating concepts (human-machine-interfaces, driver distraction, han-
dling, etc.)

• Design of chassis components (steering system, suspension system, etc.)

Evaluating In-Vehicle Information Systems (IVIS) and Advanced Driving Assistant Systems
(ADAS) show valid results in driving simulators, test tracks and real environments [57, 184].
In order to immerse a driver to a virtual reality, acoustic, visual, somatosensory (e.g. haptic)
and vestibular (perception by the equilibrium organ) stimuli can be provided by the driving
simulator. Visual perception gives the driver an impression about the virtual environment of
the driving manoeuvre. The immersion depends on the reality level of the simulation. The
visual system usually consists of screens, projectors, virtual reality (VR) headsets, etc. . [182]
Acoustic perception channels are stimulated with an integrated sound system to provide an
appropriate background sound for the driver. In particular, the speed perception can be
significantly improved by acoustic impressions including sounds for wind, engine and tyre
rolling. [66] The interaction between the driver and the simulator takes place in a mockup,
i.e. a vehicle body with a complete interior and cockpit. Typically, the same interfaces as
in a real vehicle are present which include steering wheel, pedals, input devices, displays,
etc. . [150]
Dynamic simulators contain a motion system for the representation of somatosensory and
vestibular stimuli. To reproduce high frequent motions, shakers are often installed in the
driver seat and/or the steering wheel. The motion system aims at providing the same angular
velocities and translational accelerations to the driver as in a real vehicle. By contrast, static
simulators are limited to visual and acoustic stimuli. [150]
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Due to increasing demands on driving simulators, motion system structures are becoming
more and more complex [61, 157, 190]. Redundant degrees of freedom are integrated in
the motion system to increase the motion space. Distributing the redundant DoFs depending
on the driving dynamics demands is a challenging task, since the kinematic dependencies
between the subsystems as well as workspace restrictions have to be considered.

1.2 Problem Statement

Vehicle motion

Simulator
motion

Simulator
workspace

Physical space

Figure 1.2: Schematic figure of the physical space of a vehicle and the workspace of a motion simulator.

Motion Cueing Algorithms (MCAs) compute the simulator’s control inputs based on the
desired motions of the simulated vehicle. The technical restrictions of the simulator’s ac-
tuators constitute the main limitation in the execution of these input commands. The blue
sphere in Figure 1.2 schematically represents the physical space of a real vehicle which is re-
stricted by the vehicle’s motion capabilities, such as the course of the road, traffic regulations,
driving dynamics restrictions. The orange sphere depicts the workspace envelope of a motion
simulator which is bounded by its kinematics and dynamics. Comparing both spheres, the
workspace of the motion simulator is usually much smaller than the physical space of a real
vehicle. To say it in other words, most often motion simulators cannot directly provide the
demanded vehicle motions because of workspace restrictions. This thesis covers methods on
how to transform vehicle motions to the simulator’s workspace envelope under considera-
tion of the actuator limitations. Discrepancies between desired vehicle motions and provided
simulator motions can cause motion sickness which can lead to high drop-out rates during
experiments with participants. Intending to improve the motion cueing quality, MCAs aim at
reducing discrepancies between desired and provided motions by coping with the simulator’s
workspace capabilities.
These discrepancies highly depend on the driver commands and the choice of the course.
Urban driving manoeuvres often involve large vehicle motions, which are difficult to repro-
duce by the driving simulator. Typical urban scenarios, such as roundabouts, sharp curves,
lane-changes, etc., induce high lateral accelerations and yaw rates. Considerable longitudi-
nal accelerations are acting on the driver during starting and stopping manoeuvres, which
can occur in front of traffic lights, junctions or in traffic jams. Realizing these motions on a
simulator often leads to large deviations from the demanded vehicle motions.
Since the simulator excursions are limited, significant improvements in motion capabilities
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can be achieved by expanding the simulator with redundant degrees of freedom (DoFs) by
means of additional actuators. Aiming at increasing the motion cueing quality, several gen-
eral questions arise:

1. How to solve the redundant DoFs?
Motion perception can be divided into six main motion channels, three rotational mo-
tion channels and three translational motion channels. Based on the kinematic struc-
ture of the motion system, several DoFs of the driving simulator have an impact on a
single motion channel of the driver.

2. Do simulator motions adhere to the workspace capabilities?
Workspace capabilities have to be considered in the MCA.

3. How to evaluate the motion cueing quality?
Motion cueing discrepancies have to be rated by simulator users.

In case the simulator driver is actively driving, the real-time capability of the MCA is another
crucial point. The MCA framework has to provide simulator controls within hard response
deadlines in the range of a few milliseconds. The main research platform for this work is
the Driver-in-Motion-simulator (DiM, shown in Figure 1.3) at the BMW Group, Research, New
Technologies, Innovations. The developed MCAs are applied and tested with this simulator
but can be applied to other simulator kinematics.

Figure 1.3: Nine DoFs driving simulator (DiM) consisting of tripod and hexapod.

1.3 Contribution of this Thesis

The first objective of the thesis is the development of MCA methods for a redundant driving
simulator. These MCAs calculate control inputs for the motion system subject to the simula-
tor’s workspace capabilities. A driving dynamics model estimates the vehicle motion based
on the driver commands. The vehicle motion is used as input for the MCAs. Two interaction
types between simulator and driver are distinguished. For the first type, algorithms estimate
the simulator motions in a pre-processing step for a pre-recorded manoeuvre so that the
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driver sits passively in the simulator. The second interaction type constitute MCAs which are
developed with the special effort to be real-time capable, meaning that the driver can actively
drive in the simulator. A special focus is put on optimization-based MCAs which minimize
deviations between desired vehicle motions and actual simulator motions over a future pre-
diction horizon. Actuator limitations are included as constraints in the optimization.
The second objective is the experimental evaluation of the MCAs. Studies are performed
which compare the developed MCAs to benchmark algorithms in order to determine the mo-
tion cueing potential. Published rating methods but also novel rating methods are used in
the experiments to determine the motion cueing quality. Experimental results are analysed
for significance.

The main contributions of the thesis are:

• Development of optimization-based MCAs that calculate an optimal motion for a re-
dundant driving simulator. Two types are distinguished:

– Real-time trajectory optimization using quadratic programming:

- The optimization problem is included into a model predictive control algo-
rithm

- A linearized prediction model predicts the motions acting on the simulator
driver and calculates the simulator states

- The actuator constraints are considered by using a linearized, inverse kine-
matics model for parallel robots

- Adhering to the hard response deadline within a few milliseconds of the sim-
ulation framework

– Offline trajectory optimization using direct, multiple shooting methods:

- Calculation of simulator motions for a pre-recorded manoeuvre
- Consideration of the nonlinear kinematics of the redundant motion system to

predict the motions acting on the simulator driver
- Accounting for the nonlinear actuator constraints by using the inverse kine-

matics for parallel robots

• Development of an MCA that combines the benefits of real-time capable MCAs and
precalculated simulator trajectories:

– Merging an optimal trajectory of a pre-recorded manoeuvre with a real-time capa-
ble MCA

– Quasi-optimal pre-positioning techniques in lateral and yaw directions

– Heuristic pre-positioning techniques in longitudinal directions

• Experimental evaluation of the developed MCAs by:

– Comparing the developed MCAs with state-of-the-art MCAs

– Using the continuous rating method to measure perceived motion incongruencies
in a passive drive

– Using the section-wise post-hoc rating method to measure perceived motion in-
congruencies in an active drive

• Analysis of rating models which predict perceived motion incongruencies from objective
motion incongruencies.
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The thesis is structured as follows: Chapter 2 gives backgrounds on the considered driving
simulator and describes basic preliminaries of the human motion perception. An overview
of filter-based MCAs and pre-positioning techniques is part of Chapter 3. Chapter 4 presents
an MCA which is based on an optimal control problem to calculate an optimal simulator
trajectory for a pre-recorded manoeuvre. An optimization-based MCA, which uses a linear
prediction model and linear inequality constraints, is part of Chapter 5. The quadratic pro-
gramming problem is integrated into a model predictive control scheme. The algorithm was
evaluated twice in an experimental study. In the first development stage, the algorithm was
not ready for real-time applications. The experiment, described in Chapter 6, aimed at mea-
suring the potential of the algorithm. In the second development stage, shown in Chapter 7,
the algorithm was real-time capable. In the evaluation, the MCA was compared to a bench-
mark MCA and an optimal trajectory for a pre-recorded manoeuvre. Chapter 8 presents
a novel motion cueing approach, called “Hybrid MCA”, which combines a filter-based MCA
with a precalculated optimal trajectory for a pre-recorded manoeuvre. Chapter 9 summarizes
the thesis and concludes with a discussion of the results.





Chapter 2

Motion Cueing Preliminaries

The following Chapter has partly been published in: [51, 52].

This Chapter gives an overview about the structure of motion systems and the human
perception system which are essential components in the development of Motion Cueing
Algorithms.

2.1 Motion Cueing Algorithms (MCAs)

In flight simulation and driving simulation, the term motion cue (MC) describes the immer-
sion of pilots or drivers in virtual environments. A MC stimulates the respective sensory
channels of the driver to replicate a real drive. A MC is generated by motion from a motion
system’s hardware which is commanded by the motion software. Both components are used
to reproduce a real driving experience by using haptic, visual, acoustic and vestibular stim-
uli. Merging these sensory channels results in the human motion perception. The vestibular
perception mainly triggers stimuli in response to velocity and orientation changes. These
stimuli support the driver during his driving task and allow an immersion of the driver to
the virtual world. Simulator motions give feedback about the strength and the direction of
driving manoeuvres. Along with vestibular stimuli, other perception channels are stated in
literature. Visual stimuli are a precise sensor to provide information about positions and ve-
locities. Somatosensory stimuli and acoustic stimuli also play an important role to immerse
the driver into the dynamic scenario. Vibrations, for instance, are perceived by haptic stimuli
over the whole body. [6, 78]
Following [67], and in order to distinguish between the different perception channels, the
term MC is associated with the vestibular perception system in the present work. The term
cue, for distinction, is used for any stimuli type reproducing a driving dynamics task.
Taking these specifications into account, a Motion Cueing Algorithm (MCA) computes driving
simulator motions subject to driver demands. These simulator motions are to replicate the
driving dynamics of the virtual vehicle by providing MCs. An essential task consists in tak-
ing into account the simulator’s workspace capabilities. Thus, a congruence must be made
in providing a realistic driving experience but at the same time keep the simulator’s states
within the workspace envelope. Weaknesses of the human perception system are considered
in order to exploit the motion system’s workspace capabilities as far as possible.

9
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2.2 Vehicle Kinematics

V x - longitudinal
V y - lateral

V z - vertical

ϕ - roll

θ - pitch
ψ - yaw

V

I

axial plane

Figure 2.1: Vehicle coordinate system according to ISO 8855 [92].

In order to describe the kinematics of a virtual vehicle, two frames of reference (FoRs),
V and I , are defined. The body fixed, relative FoR V is located at the driver’s head. The
orientation of the axes are chosen according to ISO 8855 [92] (cf. Figure 2.1). Its v x-axis
(and the origin of the FoR V ) lies in the vehicle’s axial plane and is pointing in the positive
longitudinal direction. The V y-axis is on the same axial plane and perpendicular to V x .
The z-axis is orthogonal to the axial plane and is directed upwards. For the rotations, one
distinguishes between roll (ϕ), pitch (θ) and yaw (ψ) rotations according to the axis. It
is worth to mention that there are other conventions to define the coordinate system. In
flight dynamics, the z-axis of the coordinate system usually points downwards [91, 142].
The notation of the relative kinematics, used throughout the work, can be found in Table 2.1.
The transformation from the inertially fixed FoR I to the FoR V employs the Cardan’s rotation
sequence which is defined by

V RI(β) = IR
T
V (β) = Rx(ϕ) R y(θ ) Rz(ψ) with β =





ϕ

θ

ψ



 . (2.1)

Rotations about the z-, y- and x- axis are defined by

Rz(ψ) =





cos(ψ) sin(ψ) 0
− sin(ψ) cos(ψ) 0

0 0 1



 , R y(θ ) =





cos(θ ) 0 − sin(θ )
0 1 0

sin(θ ) 0 cos(θ )



 and

Rx(ϕ) =





1 0 0
0 cos(ϕ) sin(ϕ)
0 − sin(ϕ) cos(ϕ)



 . (2.2)

Relevant equations for using the Cardan angles are listed in Appendix A.

2.3 Simulator Topologies

In recent years, engineers have developed new driving simulators with a variety of topolo-
gies. Dynamic simulators are associated to robotic systems which can exhibit a serial or
parallel topology (cf. Figure 2.2). The tool centre point (TCP) of a parallel structure is linked
with at least two actuators. The topology leads to a closed-loop kinematic chain between the
fixed platform, the independent actuated joints and the motion platform. [22, 115]
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Table 2.1: Notation of the relative kinematics.

Translational
K r AB Vector with respect to the FoR K with the start point A and the end

point B.

Rotational
KRB Rotation matrix transforming a vector from FoR B to FoR K.

Example: K r AB = KRB B r AB.
KωN M Relative angular velocity between the FoR N and the FoR M , de-

noted in the FoR K.

I
I x I y

Iz
fixed
platform

actuated joint
body

passive joint

moving
platform

R x
R y

Rz

R

I x I y

Iz

I

TCP
R x

R y
Rz

R

Figure 2.2: Schematic structures for a serial topology (left) and a parallel topology (right).

For serial topologies, the actuators are lined in rows and exhibit an open kinematic chain.
The first actuator is connected to the surroundings and the last joint fixes the TCP of the
manipulator. [160]
Both topologies find applications in driving simulation. A widely used parallel structure is
the hexapod (also Stewart/Gough Platform) [76, 165]. It was developed by Gough/Stewart
in the 1960s and exhibits six degrees of freedom (DoFs). A fixed base is connected to a mo-
tion platform by six translational actuators. The system is usually actuated by electric servo
technology or hydraulics. Several driving simulators are based on this type, such as [79, 150,
167]. The compact design with high load capacity proves to be an advantage, in order to
move complete vehicles with high dynamics. A disadvantage consists in the limited work-
space capacities, which means that large accelerations can only be realized to a very limited
temporal extent as otherwise position or velocity limits are reached. Thus, combinations of
several parallel motion systems, which are modularly linked, are state-of-the-art. For exam-
ple, a hexapod is fixed on top of an additional motion platform to increase the workspace.
Most often, these platforms just exhibit motion space in a single plane, like a rail system or a
tripod (three DoFs) [7, 33, 94, 170, 190] as the longitudinal, lateral and yaw motions are the
main directions in driving simulation. These combinations result in redundant motion systems
meaning that certain motions are reproducible by at least two parallel subsystems [159]. Re-
search institutes, such as [162, 181], install rubber tires at the lower platform of parallel
systems to additionally provide accelerations. These accelerations are restricted by the avail-
able area where the wheeled simulator is capable to move.
Motion simulators, based on serial robots, are described in [96, 156]. The simulators consist
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of industrial robots with a mockup mounted at the TCP. Advantages generally lie in larger
workspace capacities in the vertical direction and in the rotational DoFs compared to parallel
systems. This allows to reproduce manoeuvres with greater height differences and angles of
attack. Thus, these simulator topologies are mainly used for flight simulation.
Throughout the thesis, the term simulator is associated to a motion system with a parallel
kinematic chain. The algorithms proposed in this thesis can generally be applied to different
parallel simulator topologies. The validation and evaluation of the algorithms is performed
on a simulator at the BMW Group [77]. Throughout the thesis, the dynamic simulator is
called Driver-in-Motion (DiM) simulator. The motion simulator consists of a tripod and a
hexapod mounted on top of the tripod’s motion platform (cf. Figure 1.3). The tripod is
driven by three linear actuators in the horizontal plane to perform longitudinal, lateral and
yaw motions. The tripod platform slides on a polished steel plate using a combination of air
bearings and magnets to minimize friction. This combination effectively restricts the three
DoFs motion to the plane. The hexapod has a smaller workspace but higher dynamic capabil-
ities compared to the tripod. Therefore, particularly high frequency motions are performed
by the hexapod, whereas low frequent motions are realized by the tripod. The system’s work-
space dimensions on position, velocity and acceleration level are listed in Table 2.2 . [51]

2.4 Simulator Kinematics

Referring to Figure 2.3, the position vector r I P from the FoR I to the point P on the motion
platform N can be described using vector notation from Table 2.1,

I r I P = I r IN + IRN (β) N r N P (2.3)

where IRN defines a rotation from the FoR N to the inertial FoR I with the angle parameters
β . The FoR I is spatially fixed to the surroundings and the FoR N is fixed to the motion
platform. For the sake of simplicity, β is not written in the following formulations.
The absolute velocity of the point P can be expressed by a time derivative of equation (2.3)

Table 2.2: Tripod’s and hexapod’s workspace limitations on position, velocity and acceleration level [77].

Tripod

xT ± 0.80 m ẋT 1.7 m/s ẍT 12 m/s2

yT ± 0.75 m ẏT 1.5 m/s ÿT 10 m/s2

ψT ± 25 ◦ ψ̇T 165 ◦/s ψ̈T 900 ◦/s2

Hexapod

xH ± 0.28 m ẋH 2.0 m/s ẍH 25 m/s2

yH ± 0.25 m ẏH 1.7 m/s ÿH 25 m/s2

zH ± 0.22 m żH 1.6 m/s z̈H 25 m/s2

ϕH ± 20 ◦ ϕ̇H 135 ◦/s ϕ̈H 2500 ◦/s2

θH ± 20 ◦ θ̇H 130 ◦/s θ̈H 2000 ◦/s2

ψH ± 20 ◦ ψ̇H 135 ◦/s ψ̈H 3000 ◦/s2
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Figure 2.3: Relative kinematics of a rigid motion platform and kinematic chain of an actuator i of a parallel robot
structure.

in the inertial FoR I

I v I P =
dI r I P

dt
= I ṙ IN + I ṘN N r N P + IRN N ṙ N P (2.4)

The time derivative of equation (2.4) yields the absolute acceleration of the point P

I aI P =
dI v I P

dt
= I r̈ IN + I R̈N N r N P + 2 I ṘN N ṙ N P + IRN N r̈ N P . (2.5)

A left multiplication of equation (2.5) with the rotation matrix N RI leads to a transformation
of the acceleration from the FoR I to the relative FoR N

N aI P = N RI
dI v I P

dt
= N r̈ IN + N RI I R̈N N r N P + 2 N RI I ṘN N ṙ N P + N r̈ N P (2.6)

= N r̈ IN
︸︷︷︸

(1)

+ N
˙̃ω N r N P

︸ ︷︷ ︸

(2)

+ N ω̃ N ω̃ N r N P
︸ ︷︷ ︸

(3)

+ 2 N ω̃ N ṙ N P
︸ ︷︷ ︸

(4)

+ N r̈ N P
︸ ︷︷ ︸

(5)

with the abbreviations:

N RI I R̈N = N
˙̃ω+ N ω̃ N ω̃, N RI I ṘN = N ω̃

and the tilde-operator ω̃=





0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0



.

The terms in equation (2.6) are categorized in:

(1) absolute acceleration of the point N ,

(2) tangential acceleration,

(3) centripetal acceleration,

(4) Coriolis acceleration and

(5) relative acceleration. [20, 134]
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I

T

H

CRP Hexapod Platform

Tripod Platform

Mockup

T r̈ T H

HωT H

I r̈ I T

TωI T

Figure 2.4: Schematic structure of the nine DoFs motion system. A coordinate system is introduced for each
motion subsystem to describe the kinematics.

To describe the kinematics of the DiM simulator, three FoRs are introduced, as depicted
in Figure 2.4. The inertial FoR I is earth-fixed, and the FoR T and FoR H are anchored
at the middle position of the tripod’s and hexapod’s platform, respectively. The CRP point
represents the cockpit reference point and is rigidly fixed to the cockpit, where the driver’s
head is assumed to be located.
The transformation from the FoR I to the FoR T is a rotation about the Iz−axis

T RI(ψI T ) =





cosψI T sinψI T 0
− sinψI T cosψI T 0

0 0 1



 (2.7)

with the rotational DoF β I T = [0 0ψI T ]T of the tripod. Cardan angles β T H = [ϕT H θT H ψT H]T

define a Cardan transformation from the FoR T to the FoR H

HRT (ϕT H , θT H , ψT H) = Rx(ϕT H) R y(θT H) Rz(ψT H) (2.8)

with the rotation matrices defined in equation (2.2). Relevant equations for using the Cardan
angles are listed in Appendix A.

The resulting angular velocities HωIH are calculated by

HωIH = HωI T + HωT H (2.9)

=





ϕ̇T H
0
0



+Rx(ϕT H)





0
θ̇T H

0



+Rx(ϕT H)R y(θT H)





0
0

ψ̇T H + ψ̇I T





= H Jω(ϕT H , θT H)
�

β̇ I T + β̇ T H

�

(2.10)

with the Jacobian matrix H Jω.

The following Section describes the steps to estimate the resulting accelerations H aCRP
that act on the driver at the CRP. Similar to the relative kinematics in equations (2.3)-(2.5),
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the position vector r I ,CRP from the FoR I to the CRP is described by

I r I ,CRP = I r I T + I r T H + I r H,CRP (2.11)

= I r I T + IRT T r T H + IRH H r H,CRP . (2.12)

The velocity of the CRP is expressed by a time derivative of equation (2.12)

I v I ,CRP = I ṙ I T + I ṘT T r T H + IRT T ṙ T H + I ṘH H r H,CRP . (2.13)

The time derivative of equation (2.13) yields the acceleration at the CRP

I aI ,CRP = I r̈ I ,CRP + I g (2.14)

= I r̈ I T + I R̈T T r T H + 2 I ṘT T ṙ T H + IRT T r̈ T H + I R̈H H r H,CRP + I g (2.15)

with the gravitational force I g = [0, 0, g]T . A left multiplication of equation (2.15) with the
rotation matrix HRI leads to the resulting accelerations H aCRP that act on the driver at the
CRP

H aCRP = HRI I aI ,CRP (2.16)

= HRI I r̈ I T + HRT T r̈ T H

+ 2 HRT T ω̃I T T ṙ T H + HRT (T ˙̃ωI T + T ω̃I T T ω̃I T ) T r T H

+ (H ˙̃ωIH + Hω̃IH Hω̃IH) H r H,CRP + HRI I g (2.17)

with the tripod’s angular velocity TωI T = β̇ I T . [52]
Throughout this work, the CRP is set to

H r H,CRP = [−0.435 0.2815 1.04]T [m]. (2.18)

2.5 Workspace and Actuator Space

The workspace of a manipulator defines the accessible space of the TCP with respect to its
actuator limitations [159].
The TCP P of a manipulator can be expressed in workspace coordinates w S and in actuator
coordinates qS. Referring to Figure 2.3, workspace coordinates use global coordinates (trans-
lation r P and orientation β) to define the position and orientation of the point P. Actuator
coordinates qS are defined in relation to a respective actuator i and include its state. Using
the direct or inverse kinematics, a transformation between workspace coordinates w S and
actuator coordinates qS can be performed. [159]
The following Section describes the transformation between workspace and actuator space
for parallel motion systems, where

• Inverse Kinematics: w S → qS,

• Direct Kinematics: qS → w S.

For the description of the serial kinematics, it is referred to [29, 154, 159].
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2.5.1 Parallel Kinematics

The closed-loop vector chain, as shown in Figure 2.3 for a single actuator i, including the
CRP (point P in Figure 2.3), is given by

Iq
CRP
Li Ui
= −I l I Li

+ I r CRP + IRN (β) (N uNUi
− N r N ,CRP) (2.19)

where I l I Li
and N uNUi

are the lower and upper vector from the platform FoR to the Cardan
joints. The parallel chain which directly connects the origins of the FoR I and the FoR N
is [115]

Iq
IN
Li Ui
= −I l I Li

+ I r IN + IRN (β) N uNUi
. (2.20)

The workspace of a parallel motion system is composed of

w CRP
S = [I r CRP , β], w IN

S = [I r IN , β], (2.21)

depending on whether the CRP is considered. The parameters l I Li
, uNUi

and r N ,CRP are
known from the geometry of the motion system.

Inverse Kinematics

The inverse kinematics of a parallel structure can – in contrast to serial robot systems – be
solved analytically. Herein, the absolute value of the vector Iq Li Ui

yields the length of the
actuator i as a nonlinear function of the generalized workspace coordinates w S with

qS,i =
q

Iq Li Ui
T

Iq Li Ui
= ||Iq Li Ui

||= fi(w S). (2.22)

The actuators’ velocities are obtained by the time derivative of equation (2.22)

q̇S,i =
dqS,i

dt
= J i ẇ S . (2.23)

The derivation of the matrix/vector form q̇S,i = J i ẇ S in equation (2.23) is exemplarily shown
using the time derivative of equation (2.20)

I q̇S,i = I ṙ IN + I ṘN N uNUi

= I ṙ IN + I ṘN N RI
︸ ︷︷ ︸

I ω̃

IRN N uNUi

= I ṙ IN + Iω̃ IRN N uNUi
(2.24)

Introducing the actuator’s unit vector I q̄S,i yields the following relation

I q̇S,i = I q̄S,i q̇S,i with q̇S,i = I q̄
T
S,i I q̇S,i . (2.25)

Inserting equation (2.24) in equation (2.25) yields

q̇S,i = I q̄
T
S,i I ṙ IN + I q̄

T
S,i (Iω̃ IRN N uNUi

). (2.26)

Transforming equation (2.26) to vector/matrix form, one obtains

q̇S,i =
�

I q̄
T
S,i I q̄

T
S,i I ũ

T
NUi

�

�

I ṙ IN

Iω

�

(2.27)
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with I uNUi
= IRN N uNUi

and Iω̃ I uNUi
= I ũ

T
NUi Iω.

The extension of equation (2.27) to all actuators n yields the desired form
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T
NUn







︸ ︷︷ ︸

J

�

I ṙ IN

Iω

�

︸ ︷︷ ︸

ẇ S

(2.28)

with the Jacobian matrix J .

The actuators’ accelerations

q̈S,i =
d2qS,i

d2 t
for i = actuator number (2.29)

are the second time derivatives of equation (2.22). Analogously to the actuator velocities,
equation (2.29) can be transformed to a vector/matrix representation. Therefore, equa-
tion (2.24) is derived with respect to time

I q̈S,i = I r̈ IN + I R̈N N uNUi

= I r̈ IN + IRN N RI I R̈N N RI IRN N uNUi

= I r̈ IN + IRN ( N
˙̃ω + N ω̃ N ω̃) N RI I uNUi

= I r̈ IN + ( I
˙̃ω + Iω̃ Iω̃) I uNUi

. (2.30)

Applying the unit vector in the form q̈S,i = I q̄
T
S,i I q̈S,i, yields

q̈S,i = I q̄
T
S,i I r̈ IN + I q̄

T
S,i I

˙̃ω I uNUi
+I q̄ T

S,i Iω̃ Iω̃ I uNUi
. (2.31)

Employing equation (2.31) to all actuators n yields





q̈S,1
...

q̈S,n





︸ ︷︷ ︸

q̈S

= J ẅ S +







I q̄
T
S,1 Iω̃ Iω̃ I uNU1

...
I q̄

T
S,n Iω̃ Iω̃ I uNUn






(2.32)

with the Jacobian matrix J from equation (2.28).

Direct Kinematics

The direct kinematics yields the solution of the nonlinear system of equations (2.22)

qS,i = fi(w S), ∀ qS,i . (2.33)

The solution is in general not unique. Still, there are ways to deal with this problem by using
numerical approaches. For a fast numerical analysis, it is important to get the best possible
information of the current robot’s pose as a starting point since the direct kinematics can
have several solutions. On basis of the nonlinear system of equations

0=





qS,1 − f1(w S)
...

qS,n − fn(w S)



 = qS − F(w S) = G(w S), (2.34)
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the Newton-Raphson method for root finding can be applied [13]. The vectors qS and F in
equation (2.34) include the parallel vector chains from equation (2.22) for all n actuators.
For a workspace starting value w S0

and a given actuator configuration qS, an iteration step k
is expressed by

w S[k+ 1] = w S[k] −
�

∂G(w S[k])
∂ w S[k]

�−1

G(w S[k]) (2.35)

= w S[k] − J−1(w S[k]) G(w S[k])

whereas J(w S[k]) =
∂G(w S[k])
∂ w S[k]

is the Jacobian matrix of the system, already derived in equa-
tion (2.28). The stopping criterion of the iterative algorithm is fulfilled for

||qS[k]− F(w S[k])
︸ ︷︷ ︸

τres

||< ε (2.36)

where ε is a fixed error threshold. The residuum τres means that equation (2.34) is only
satisfied to a certain extent. [115]

2.5.2 Singularities

Singular configurations of parallel manipulators can lead to uncontrollable operating config-
urations which can damage the parallel structure [146]. Singularities can be distinguished
in boundary singularities (outstretched or retracted manipulator) and internal singularities
(inside reachable workspace) [159].
In [75], three different kinds of singularities are described which are combinations of bound-
ary and internal singularities. To derive and to better differentiate the three cases, equa-
tion (2.27) is transformed to

qS,i q̇S,i = Iq
T
S,i I ṙ IN + Iq

T
S,i I ũ

T
NUi Iω with I q̄

T
S,i =

IqS,i

qS,i
(2.37)

Applying equation (2.37) to all actuators n yields a differential equation in the form

qS,diag q̇S − J∗ ẇ S = 0 (2.38)

with the diagonal matrix of the actuator strokes qS,diag = diag(qS,1, . . . , qS,n) and the modified
Jacobian matrix

J∗ =







Iq
T
S,1 Iq

T
S,1 I ũ

T
NU1

...
...

Iq
T
S,n Iq

T
S,nI ũ

T
NUn






. (2.39)

The transformation of equation (2.27) yields the advantage to show the actuator strokes qS,i,
the actuator velocities q̇S,i and the workspace coordinates w S in a separate form which helps
to distinguish between the following three singularities:
In the first case (boundary singularity), the matrix qS,diag shows a drop in rank, which means
that an actuated joint with a velocity vector unequal zero does not lead to a motion at the
TCP. In other words, one can find non-zero actuator velocities q̇S,i, for which the workspace
velocities ẇ S will be zero. This is not possible for a non-redundant motion system. It can
occur, for example, when an actuator qS,i reaches its minimum stroke qS,i,min , as schematically
depicted on the left plot in Figure 2.5. In the second configuration (internal singularity), the
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matrix J∗ shows a drop in rank, which means that the TCP is moveable although all actuators
are locked. In other words, there are configurations where non-zero workspace velocities ẇ S
do not yield an actuator velocity q̇S,i. An example is shown in the right plot of Figure 2.5. In
the third case, both matrices qS,diag and J∗ exhibit a drop in rank. In these configurations,
the parallel structure can undergo finite motions although its actuators are locked or in which
a finite actuator motion does not lead to motions of the TCP.
Boundary singularities have to be avoided by the MCA or a workspace supervision module
which checks the adherence of the minimum and maximum actuator configurations. Internal
singularities occur when

det(J∗) = 0 (2.40)

which indicates a drop in rank of the matrix J∗. The considered manipulators throughout
the thesis do not exhibit internal singularities for which reason only workspace limitations
on position, velocity and acceleration level of the motion systems are taken into account.

ẇ S

Figure 2.5: Schematic examples of singularities for parallel structures. Left: Boundary singularity. Right: Internal
singularity.

2.6 Open-Loop and Closed-Loop Interaction Types

In this work, two types of control loops are distinguished in the field of driving simulation,
which are schematically demonstrated in Figure 2.6. In the upper part of Figure 2.6, the
closed-loop approach is shown, where the driver is actively driving and interacting with the
driving simulator. In the closed-loop process, a driving dynamics model is used to model
the dynamics of a virtual vehicle which is controlled by inputs from the driver. The MCA
calculates the inputs for the simulator. The generated simulator motions are perceived by
the driver which lead to further driver inputs. On the lower part of Figure 2.6, an open-loop
structure is depicted, where the driver is located at the end of the process chain. Thus, the
driver sits passively in the vehicle without any control possibilities and is driven through a
pre-defined and pre-recorded manoeuvre. The simulator motions are estimated in an offline
process by using pre-recorded driving dynamics data as input parameters for the open-loop
MCA. [52]
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Driving
Dynamics MCA Simulator Driver

Driving
Dynamics MCA Simulator Driver

Offline Estimation

Closed-Loop

Open-Loop

Figure 2.6: In a closed-loop simulation, the driver is actively driving. Whereas, in an open-loop simulation, the
driver sits passively in the simulator mockup.

2.7 Motion Perception

Immersing humans to virtual environments, Motion Cueing intends to realize as many real-
istic vestibular stimuli to the driver as necessary. As workspace and technical capabilities are
limited, it is important to be aware of the human perception channels. Thus, thresholds of the
human perception system can be exploited and only perceivable cues can be provided by the
simulator. Weaknesses of the perception system can be used to create an illusion of motions.
The following Chapter describes functions of relevant perception organs. The information is
taken up in perception model approaches which can be applied to an MCA.

2.7.1 Human Perception Systems

Perception of motion and position is based on different sensory channels which can be divided
into:

• auditory perception,

• visual perception,

• somatosensory perception and

• vestibular perception.

It may occur that perceived stimuli from various sensory channels show a disparate, in-
complete or erroneous behaviour. Thus, an integration process weights the stimuli according
to the advantages of each perception system. Motion cues can exploit this behaviour by
adjusting motion to the respective perception system. Severe incongruencies between the
motion channels can however cause motion sickness. The following subsections discuss the
different perception systems and introduce the vestibular organ in more detail as it represents
the most important motion perception channel. [67, 183]

Auditory Perception

Auditory motion perception implies all vehicle and road noises such as sound from the engine,
tyres rolling and wind. In [174], three different types of cues are described:

• intensity cues,
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• binaural cues and

• Doppler effect.

Intensity cues focus on moving auditory emitters according to changes in sound pressure
level. Binaural cues reproduce interaural time and level differences (ITD and ILD) at the
receiving ear. [174] ITD specify the difference in arrival time of sound between the left and
right ear. ILD implies the perceived level difference in sound between left and right ear.
Both mechanisms are responsible for the localization of sound sources. [63] Doppler effect
considers perceived frequency shifts between listener and sound source [174].

Visual Perception

In [183], it is described that exclusive visual stimuli are not a sufficient motion perception
channel as humans need further information in terms of a fixed reference point or feedback
from an additional perception system. Without any further information, the perception sys-
tem cannot differentiate between own and observed motions. Velocity perception depends
on the surroundings which means that velocity can be sensed more accurately in an environ-
ment with distinctive reference points. The visual system is especially sensitive to position
and velocity perception whereas vestibular perception is primarily sensitive to acceleration
perception. In [31], it is shown that the visual perception is more reliable compared to the
vestibular one.

Somatosensory Perception

The somatosensory system gives feedback about position and motion of our body parts (pro-
prioception), through the stimulation of skin (haptics), muscles, sinews and joints. Along
with the vestibular system, the somatosensory system detects static and dynamic forces. The
perceived stimuli allow conclusions to be drawn about accelerations which are working on
the body. Mechanical changes of body parts induce these stimuli. Joint positions and passive
stretches of muscles give feedback about body positions and length variations of body parts.
Receptors under the skin surface perceive changes in pressure. [138] There are two different
types of receptors. First, muscle spindles detect the muscles’ length and the changing rate.
Second, Golgi Tendon organs detect muscle contractions in reaction to external forces. [171]
With regard to driving simulation, the somatosensory system detects pressure changes be-
tween back, buttocks, legs and vehicle seat as well as between hands and steering wheel.
These stimuli give feedback about the vehicle acceleration. Thus, especially the interface
between driver and vehicle is important. Additional artificial seat and steering wheel vibra-
tions can simulate the oscillations of the vehicle. Actuators integrated in the seat can conduct
forces on the driver, for example during turning manoeuvres. [83]

Vestibular System

The vestibular organ is located in the labyrinth of the inner ear and consists of two macula
organs and three semicircular canals per body side. Figure 2.7 shows the labyrinth together
with the cochlea. The semicircular canals are grouped into the posterior, anterior and hor-
izontal canal. All five organs exhibit hair cells which are surrounded by a gelatinous mass.
The viscous membrane is called cupula in the three semicircular canals and otolith membrane
in the macula organs. Hair cells are able to transform mechanical stimuli in chemical and
electrical signals. [86, 191]
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Figure 2.7: Upper figure: Location and orientation of the vestibular organs (based on [169]). Lower figure:
Schematic diagram of the vestibular organ which can be classified into the labyrinth and the cochlea. The labyrinth
can be subdivided into the cupula and the macula which are shown in detail on the right hand side (based on [191]).

The semicircular canals mainly perceive rotational accelerations. The canals are ordered
perpendicular to each other in order to detect each of the three dimensions in space. The
orientation of the canals to the head is shown in Figure 2.7. Both horizontal canals are tilted
by about 30◦ to the earth-horizontal plane. Left and right anterior canals are inclined about
45◦ to the frontal plane of the head. The elliptical canals are filled by the fluid endolymph. At
one point, the canals are interrupted by the cupula which is anchored to the bony canal wall.
An applied rotational motion deflects the cupula in the opposite direction of the head motion.
Deviations in inertia between the fluid endolymph and the cupula result in shearing of the
sensory hairs. A hair cell exhibits several stereocilia and one kinocilium. In each cupula, the
kinocilium is located on the same side next to all the stereocilia. Depending on the direction,
a deflection of the stereocilia causes an excitation or inhibition of the hair cells. This motion
alters the polarization in the hair cells which can be detected by afferent nerve fibres. [86,
168, 191]
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The otolith membrane, which is on top of the macula, detects translational accelerations.
The organ is divided into the utricle, which primarily perceives motions in the horizontal
plane, and the saccule which mainly senses motions in the vertical plane. By this means,
translational accelerations in all three directions of space can be detected with only two
organs. The otoliths are located directly next to the inner ear with an inclination of about
20◦ to 30◦ to the earth-horizontal plane (see Figure 2.7). The structure of the otoliths can
be divided into two layers. The otolith membrane is in touch with the fluid endolymph
and consists of calcium carbonate crystals embedded in a gelatinous material. The lower
gelatinous layer is in contact with the sensory hairs of the macula which is fixed to the skull.
An applied acceleration leads to shearing of the sensory hairs whereby the hair cells are
stimulated. The hair cells are excited or inhibited depending on the orientation of shearing.
This inclination results in a polarization which is detected by the afferent nerve cells. [73,
86, 191]
The otolith system cannot distinguish between accelerations and tilts without any additional
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Figure 2.8: Schematic figure of the applied forces under gravity and acceleration. Left: Distribution of forces by
an acceleration in x-direction. Right: Distribution of forces by tilting the body by an angle θ . (based on [67])

information. Figure 2.8 shows two heads of a human. The left one undergoes a linear
acceleration ax in x-direction whereas the right one is tilted by an angle θ around the y-axis.
The applied specific force f a of the left Figure results from the effective force F e and the
accelerated mass m

f a = −
F e

m
. (2.41)

with

F e = F g + F x (2.42)

is a superposition of the gravity force F g = −m · g and the inertia force F x = −m · ax which
results from a translational acceleration.
The effective force F g of the right head, which is tilted and non-moving, is composed of
the apparent gravity force Fg,z = −m · g · cos(θ ) as well as the apparent inertia force Fg,x =



24 2 Motion Cueing Preliminaries

m · g ·sin(θ ). The otolith system interprets the rotated position as a translational acceleration.
In literature, a maximum tilt angle of 20-30◦ and a maximum tilting rate of 3 ◦/s is common
before humans perceive the tilt motion [116, 144].
Throughout the thesis, the resulting translational accelerations H aCRP (cf. equation (2.17))
are called specific forces f and are described in the relative FoR H of the driver. The simulator
reference motions yS are composed of

yS =

�

H f CRP

HωCRP

�

(2.43)

with the specific forces H f CRP and the resulting angular velocities HωCRP .

2.7.2 Perception Thresholds

Perception thresholds describe the minimum physical motions which are detected by the per-
ception system. Driving simulation utilizes these thresholds through non-detectable motions
by the driver. In literature, a variety of thresholds is present depending on the measur-
ing methods, the experimental setup and the experimental conduction. In [139], a range
for the translational acceleration threshold and the rotational velocity threshold is given to
0.014−0.25 m/s2 and 0.1−3.0◦/s, respectively. Detailed analysis on perception thresholds is
still subject of current research. [168]
The following items describe several, among others, effects found in literature which affect
the measurement of perception thresholds:

• Adaptation: In [67], adaptation describes the process that humans habituate to mo-
tions. The author exemplifies the effect with a fast highway drive where the human
body familiarizes with the high visual flow. In a subsequent slow urban drive, the per-
ception system underestimates the speed as the perception system is still habituated to
the high visual flow.

• Absence of visualization: In [82, 87], the perception threshold for angular accelerations
is measured. The experiments were conducted in darkness.

• Presence of visualization: In [81], the perception of rotational motions is analysed in
combination with visual stimuli (such as in a simulator). Results suggest that low scale
rotations in combination with visual stimuli are initially interpreted as linear acceler-
ations. Additional, distractive motion cues can enhance this interpretation by increas-
ing the rotational perception threshold. In such environments, perception thresholds
are mostly higher compared to experiments which are conducted in complete dark-
ness [144].

• Human expectation: In [186], an experimental study shows that the rating of the per-
ceived motion intensity differs whether the participants have seen the experimental
setup before or not.

Table 2.3 and 2.4 lists some threshold values from literature. The list distinguishes between
the kind of motion and whether the experiment was conducted with visualization or in dark-
ness. The current thesis assumes a perception threshold for longitudinal and lateral accel-
erations of 0.17 m/s2 and a rotational velocity threshold of 3 ◦/s according to [141]. The
rotational acceleration threshold is not taken into account in this work.
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Table 2.3: Comparison of translational acceleration thresholds in [m/s2] for longitudinal, lateral and vertical
direction.

Absence of Visualisation Presence of Visualization
Reference ẍ / ÿ / z̈ Reference ẍ ÿ z̈

Hosman and
Van der Vaart
(1978) [87]

0.04 - 0.085 Reid and Nahon
(1985) [141]

0.17 0.17 0.28

Kingma
(2005) [99]

0.065 - 0.085 Reymond
and Kemeny
(2000) [144]

0.05

Zacharias
(1978) [189]

0.02 - 0.3 Chapron and Col-
inot (2007) [33]

0.15

Table 2.4: Comparison of rotational velocity thresholds [◦/s] and rotational acceleration thresholds [◦/s2] for roll,
pitch and yaw motions.

Absence of Visualization
Roll Pitch Yaw

Reference
ϕ̇ ϕ̈ θ̇ θ̈ ψ̇ ψ̈

Greig (1988) [80] 0.44 2.9

Hosman and Van der Vaart
(1978) [87]

0.022 -0.035 0.035-0.072

Zacharias (1978) [189] 2.5 - 4 2.5 - 4 2.5 - 4

Presence of Visualization
Roll Pitch Yaw

Reference
ϕ̇ ϕ̈ θ̇ θ̈ ψ̇ ψ̈

Gundry (1977) [84] 0.12 1.6 - 9

Reymond and Kemeny
(2000) [144]

0.3 0.3 0.3

Fortmüller and Meywerk
(2005) [69]

2.5

Nesti et al. (2012) [124] 6.3

Reid and Nahon
(1986) [141]

3.0 3.6 2.6

2.7.3 Motion Sickness

Motion sickness can occur in virtual environments causing the following symptoms [71]:

• Mild symptoms: eyestrain, sleepiness, overstrain.

• Mid symptoms: sweating, headache, dizziness.

• Severe symptoms: unbalancing, nausea, vomitus.
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The disease and the symptoms are comparable to seasickness. In literature [12, 119], a dis-
tinction is made between motion sickness which is provoked by uncomfortable motions in a
boat or a vehicle and simulator sickness which is caused by missing or incorrect simulator
motions. In both cases, stimuli of different perception channels are in conflict. In [105], it
is shown that motion sickness depends on several factors, such as the mental rotation ability,
gender, age, illness and simulator experience.
The following Section introduces several hypothesis to describe the causes of motion sick-
ness.
The first approach is called Sensory Conflict Theory or Cue Conflict Theory and is the most ac-
cepted theory in literature. It can arise according to several scenarios: In the first scenario, the
visual information (e.g. provided by a projector) about position, speed and acceleration does
not correlate with the vestibular information (e.g. provided by the motion system). Thus,
sensory conflicts occur between visual and vestibular percepts. The inconsistent, contrary
stimuli can cause the above mentioned symptoms. Reasons for these perception discrepan-
cies are all kinds of simulation errors, such as motion cueing errors, delays between driver
command and motion execution, visualization errors, etc. . [105, 111, 119] In the second
scenario, the sensory conflict is provoked by missing cues. An example is when the driver
sits in a static simulator, and thus only observes motions by visual stimuli. Since this theory
describes causes of the sickness, it cannot answer the question why sensory conflicts provoke
simulator sickness. [74, 105]
A further hypotheses, known as Poison or Intoxication Theory, includes an approach to explain
the occurrence of the symptom nausea. Herein, the human body interprets contrary stimuli
in the perception system as poisoning. The presumed poison in the stomach is removed by
vomiting to enhance survival. The theory gives no explanation why, for the same response,
some people get sick and some not. [105, 118, 173]
In [145], an ecological approach, called Postural Instability Theory, is shown. It states that
humans try to maintain within a postural stability in their surrounding environment. For ex-
ample, humans perform a different walking pattern depending on whether they are walking
on a solid ground or on an ice covered terrain. If humans perform the same walking pattern
on ice as they do on a solid ground, they probably will fall down. In order to maintain a
postural stability, the walking pattern changes depending on the terrain. On the contrary,
postural instability occurs when humans loose their postural control. To apply this theory
to simulators, motion sickness can occur in situations where participants do not maintain in
posture stability. The longer participants feel an unstable situation, the stronger the likeli-
hood and intensity of the symptoms. The authors mention four factors for causing a postural
instability, such as: 1) weightlessness, 2) altered specificity, 3) changing relations between
the gravitational force vector and the surroundings, and 4) low-frequency vibrations. It is
assumed that motion sickness is provoked by altered specificities. Persons cannot develop
postural control strategies for gaining postural stability as virtual environments create accel-
erations and rotations that are unrelated to the control of the body.
Another hypothesis [74] states that motion sickness is caused by increasing blood pressure
and cardiac output. Simulator motions lead to an aberrant activation of neural pathways
which function to maintain in a stable environment.
The eye movement theory is based on the vestibular nystagmus. The perception mechanism
is a muscle reflex executed by the eyes and relates the visual system and the vestibular sys-
tem. The reflex positions the eyes at a stationary point while moving the head. Hereby, the
vestibular system retain control over the eyes. Each of the three vestibular canals interacts
with one of the three muscles of an eye. By a movement of the head for example to the right
side, the eyes slowly stir to the left side by focussing on one point. If the eyes reach the max-
imum position, they quickly move to the right side, followed again by a movement to the left
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side. The automatic stabilization of the eyes during head movements enables a stable view.
Deviations in this process can cause headache, eye strain and lack of concentration. [23, 86,
105]

2.7.4 Perception Models

As mentioned in Section 2.7.1, the vestibular organ is divided into a semicircular and an
otolith part. The semicircular canal mainly perceives rotational motions whereas the otolith
organ primarily detects translational motions. Regarding this division, modelling of the
vestibular functions is classified into two groups. Transfer functions relate the physical input,
acting on the respective organ, with the perceived values. The following subsections outline
some modelling approaches.

Semicircular Canal

In [164], the functions of the cupula are examined and two different ways for stimulation
are described. First, investigations showed a deflection of the cupula induced by a rotational
motion. Second, a deflection is measured, introduced by a stimulation with an electrically
heated platinum. The deflection of the cupula increased shortly after terminating the stimu-
lation and finally drops to the neutral position again. The analysis revealed the perception of
rotational motion by the cupula and its transformation to an electrical signal.
In [175], the observations from [164] are used to describe the mechanism of the semicircu-
lar canal. The cupula-endolymph system is modelled as a heavily damped torsion pendulum.
The differential equation with input angular velocity ω of the head and output angular devi-
ation δ of the cupula in relation to the skull can be expressed in Laplace space as

δ(s)
ω(s)

=
K s

(1+τ1s) (1+τ2s)
(2.44)

with the time-constants τ1, τ2 and the static gain K. A suggestion for the time constants is
made to τ1 ≈ 10 s and τ2 ≈ 0.1 s with a probable error of 20 - 25 %. In [189], it is noted
that the time constants of the gain bandpass filter can be divided into a long time constant
τL and a short time constant τS. The model assumes a linear relation between the cupula
displacement δ and the perceived angular velocity ω̂. In addition, it is proposed to add a
gain which is equal to the long time constant τL. The transfer function in equation (2.45)
puts the applied angular velocity ω and the angular velocity ω̂, perceived by the hair cells, in
relation

ω̂(s)
ω(s)

=
τL s

(1+τLs) (1+τSs)
. (2.45)

Further investigations revealed that an exclusive model of the cupula is not sufficient as other
mechanisms, such as the nystagmus and subjective responses, have to be taken into account
as well. The authors in [188] showed deviations between the model in equation (2.44) and
observations concerning the response to acceleration and velocity steps. Beside, there is a
difference between the nystagmus estimated by eye-movement and the subjective perception
of rotation.
To overcome these discrepancies a control-theory model is developed which includes an adap-
tation operator Hadp. The resulting model

Hsemi,1 =
ω̂(s)
ω(s)

=
τA s

1+τA s
︸ ︷︷ ︸

Hadp

·
τL s

(1+τL s) (1+τSs)
(2.46)
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predicts the response to an angular velocity under exclusion of linear accelerations. Limi-
tations of the model parameters include insufficient predictions for specific angular stimula-
tions. Habituating to repeated stimulus patterns is also disregarded in the model. [188]
In [141], the authors used the model from equation (2.46) for their observations which dis-
tinguishes between pitch, roll and yaw rotations. The parameters for the different rotation
axis are listed in Table 2.5.

Table 2.5: Parameters for model 2.46 in [141].

Parameters Pitch Roll Yaw

τL - [s] 5.3 6.1 10.2
τS - [s] 0.1 0.1 0.1
τA - [s] 30 30 30

In [189], a lead sensitivity in vestibular perception of angular velocities is noted. To
consider the lead behaviour, a second adaptation term (1 + τB s) is introduced with the
time constant τB. Having regard to the previously introduced models, the authors in [168]
proposed a model

ω̂(s)
ω(s)

=
κτL τA s2 (1+τB s)

(1+τL s)(1+τS s)(1+τA s)
(2.47)

with the time constants τL = 5.73 s, τS = 0.005 s, τA = 80 s, τB = 0.06 s, κ = 28.65. The
authors in [168] remark that numerical stability problems during an integration process can
occur. A time step should be at least ten times smaller than the smallest time constant for
numerical integration. For that reason, the authors in [168] propose a reduced order transfer
function by neglecting the short time constant τS and the lead time constant τB to yield a
reduced model

Hsemi,2 =
ω̂(s)
ω(s)

=
τAτL s2

(1+τL s)(1+τA s)
(2.48)

with the time constants τL = 5.73 s and τA = 80 s.
In [130], a similar model is proposed

Hsemi,3 =
ω̂(s)
ω(s)

=
τL τA s2

(1+τL s) (1+τA s)
(2.49)

with the time constants τL = 18 s and τA = 30 s.
In order to add the perception threshold, the work [141] proposes a block diagram as shown
in Figure 2.9.

τA s
τA s+1

ω ω̂δ ∆τL s
(τL s+1)(τS s+1)

Semicircular
system

Perception
threshold

Human
respond

mechanism

Figure 2.9: Block diagram of the semicircular perception system including the perception threshold [141].

The first block of Figure 2.9 refers to the cupula displacement model adapted from equa-
tion 2.46. The second block describes the perception threshold of humans (cf. Table 2.4).
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The third block specifies the human response mechanism.
The first and the third block can be modelled in state space form. Adding the perception
threshold leads to a nonlinear relation between the input and the perceived rotation rate.

Otolith Organ

Modelling of the otolith system can be made in a fashion similar to the semicircular system.
Movements of the otolith membrane are assumed to be proportional to the hair cell deflec-
tions. An overdamped mass-spring-damper accelerometer functions as a model of the otolith
system. [131]
In [113], a model is proposed

v̂(s)
v(s)

=
κτL s

(1+τ1s) (1+τ2s)
(2.50)

with the time constants τ1 = 10 s and τ2 = 0.66 s. The transfer function relates the transla-
tional input velocity v and the perceived velocity v̂.
Using more modern measuring techniques, in [112], a lead term in response to a constant
linear acceleration stimulus is added

Hoto,1 =
f̂
f
=

κ (1+τA s)
(1+τLs) (1+τSs)

(2.51)

with the time constants τA = 13.16 s, τL = 5.26 s, τS = 0.67 s, κ = 0.4, the perceived specific
force f̂ and the applied specific force f . The author in [113] mentions that the lead term
could be referred to a more complex mechanical model, like a second mass-spring-damper
combination, which models the movements of the macula with respect to the bony structure.
Secondly, the lead term could be ascribed to the neurological processing of the otolith dis-
placement signals.
In [131], a model for the response of the mechanical and afferent otolith system is developed
which gives a relation between the input specific force f and the afferent firing rate (AFR
- response to a neuron) as depicted in Figure 2.10. The second model H(s), as shown in
Figure 2.10, presumes that higher centres of the neuronal system process the AFR in order to
obtain the perceived specific force f̂ .

Bs+(B+C)A
s+A H(s)

f (s) AFR(s) f̂ (s)

Combined mechanical
and afferent

otolith system

Neuronal
processing

Figure 2.10: Block diagram of otolith model in [131].

In [168], updated model coefficients are proposed based on the model from equation (2.51).
The specifications of the model in [168] are

Hoto,2 =
f̂
f
=

κ (1+τA s)
(1+τLs) (1+τSs)

(2.52)

with the time constants τA = 10 s, τL = 5 s, τS = 0.016 s and κ= 0.4.
In [72], a simplified model is proposed

Hoto,3 =
f̂
f
=
κ (1+τA s)
(1+τLs)

(2.53)
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with time constants τA = 20 s, τL = 7.5 s and κ = 0.4. Herein, the short time constant τS is
neglected.

The otolith signal flow, including the perception threshold, is shown in Figure 2.11 and
exhibits a similar structure to the semicircular system in Figure 2.11. Hereby, the first block
describes the mechanical behaviour of the otolith organ. The second and third block model
the perception threshold and the neural processing of the stimuli, respectively. Again, there
is a nonlinear relation between input and output specific force.

τAs+ 1
f (s) f̂ (s)κ

(τL s+1)(τS s+1)

Otolith system Perception
threshold

Neural
processing

Figure 2.11: Block diagram of the otolith system including the otolith perception threshold [141].

2.7.5 Discussion

To compare the transmission behaviour of the various vestibular models, introduced in the
previous Section, Figures 2.12 and 2.13 show the bode diagrams of Hsemi,i and Hoto,i for the
three models i = 1 . . . 3, respectively. The magnitude plots of the semicircular and otolith
models reveal similar characteristics for low to middle frequencies. Lower frequencies are
less detected by the vestibular system. Secondly, the models’ pass bands lie in comparable
frequency ranges for the semicircular and otolith models, respectively. Though, the models’
transmission behaviour differs for higher frequencies.
To observe the transmission behaviour of the vestibular organ for a real vehicle drive, the
measured physical yaw angular velocity and the measured physical lateral accelerations of
a roundabout crossing is shown in Figure 2.14 (blue plots). Using the perception models
Hsemi,i and Hoto,i for i = 1 . . . 3, the perceived yaw angular velocity and the perceived lateral
accelerations are calculated, respectively. The outputs of the transfer functions are included
in the Figure 2.14. For short-time, constant values (yaw velocity ≈ 30 ◦/s; lateral accelera-
tion ≈ 5m/s2), the amplitude of the perceived values decreases over time which correlates
with the high-pass characteristics of the vestibular models. The otolith model Hoto,1 shows a
pronounced phase delay in the bode diagram and in the time domain.
Since the considered motion simulators throughout the work can only realize frequencies up
to 30 Hz, there are no pronounced differences in the transmission behaviour between the
models. Due to its low model order, the semicircular model Hsemi,2 and otolith model Hoto,2
of Telban et al. [168] is taken for further developments which is also the applied perception
model in state-of-the-art works, such as [9, 26, 28, 62].

2.8 Chapter Summary

This Chapter introduces the kinematics of the motion simulator which is considered through-
out the thesis. Based on the simulator’s structure, the specific forces and the resulting angular
velocities are derived. The specific forces are the resulting accelerations working on the driver
in the simulator. As the motion commands, estimated by an MCA, have to cope with the simu-
lator limitations, the workspace and actuator space of a parallel motion system are described.
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Figure 2.12: Bode plots of the semicircular models Hsemi,1, Hsemi,2 and Hsemi,3.
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Figure 2.13: Bode plots of the otolith models Hoto,1, Hoto,2 and Hoto,3.

The inverse and direct kinematics transform motions between workspace and actuator space.
The inverse kinematics can be solved analytically for a parallel robot, whereas the direct
kinematics typically uses numerical schemes to solve a nonlinear system of equations.
In the second part of the chapter, the human motion perception system is described in order to
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Figure 2.14: Measured yaw angular velocity (left) and lateral acceleration (right) of a roundabout crossing and
outputs of the semicircular models Hsemi,1, Hsemi,2 and Hsemi,3 and the otolith models Hoto,1, Hoto,2 and Hoto,3,
respectively.

analyse the motions induced to the simulator driver. With regard to MCAs, only the vestibu-
lar system is considered, which consists of the otolith organ and the semicircular canals. The
otolith organ mainly perceives translational motions and the semicircular canals primary per-
ceive rotational motions. Vestibular models estimate the perceived motions in relation to the
physical motions which are acting on the human. These models can be included in an MCA
in order to consider the actual perceivable motions which are to be reproduced by a motion
simulator.



Chapter 3

Filter-Based MCAs

The content of the following Chapter have been published in [47, 50, 52, 53].

St rans

Low-Pass
Filter (LP)

High-Pass
Filter (HP) Transformation

Tilt
Coordination

Washout

Srot Washout Integration

V aV

V aV,low

I r̈S

β t il t

β̇V βS
+

Scaling Frequency Divider

Figure 3.1: Structure of the filter-based, Classical Washout MCA.

As described in Figure 2.8, there are generally several ways to replicate horizontal motions
with a simulator which exhibits more than one DoF. Translational motions can be replicated
by translational accelerations and tilt motions. Filter-based MCAs split the motions by a
frequency divider between high-frequency motions and low-frequency motions.
One of the earliest filter-based MCAs was most likely developed by [151] for a flight simulator
and is known as the Classical Washout MCA. Even though a lot has changed since then, the
basic operating principle of filter-based MCAs is still the same. Figure 3.1 shows a principal
structure of a filter-based MCA. The algorithm mainly consists of linear transfer functions,
such as high-pass and low-pass filters. Due to its simple, modular structure, the algorithm
is still in use and finds application in flight and driving simulations. A major advantage is
the relatively simple tuning process of the algorithm’s parameters. Typical parameters and
tuning sets are found in [78, 122, 142, 147]. Though, determining the cut-off frequency
of the frequency splitters is a cumbersome task as it depends on the driving dynamics data
and on the specificities of the simulator. The algorithm can be employed in a closed-loop
and open-loop simulation. Actuator limitations are typically not directly included in a filter-
based MCA, but can be integrated by an additional control algorithm. Inputs consist of the
translational accelerations V aV and the time-derivatives of the vehicle’s Cardan angles β̇V .
Outputs are the simulator’s translational accelerations T r̈ S and the rotational DoFs βS of the
motion system. The following Sections describe the principal functions of the blocks shown

33
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in Figure 3.1. Along with this, also extensions of filter-based approaches are presented, such
as optimal filters, a workspace supervision method and pre-positioning techniques.

3.1 Scaling

The scaling blocks St rans and Srot transform the driving dynamics inputs V aV and β̇V to re-
producible ranges for the motion system. Thus, scaling values depend on the motion system’s
workspace capabilities and the maximum values of V aV and β̇V . In [11, 67, 101, 136], stud-
ies show that scaling values in the range of 0.4 − 0.75 are acceptable, whereas lower values
lead to a reduced driving performance.

3.2 Frequency Divider

Long-lasting, low-frequency accelerations yield large platform deflections which can cause
workspace overruns. Whereas translations in the high-frequency range are reproduced by
translational simulator movements, accelerations in the low frequency range are emulated
by tilt motions (cf. Figure 2.8). Due to the gravitational force, pitching and rolling simula-
tor motions below the rotational perception threshold are perceived as translational accel-
erations [121]. This effect is used when tilting the motion platform in order to represent
persistent longitudinal and lateral accelerations. Typically, these filter-based algorithms are
designed for non-redundant motion systems, like hexapods [150]. High-pass (HP) and low-
pass (LP) filters divide the translational accelerations into two different frequency ranges
which are defined by

HP(s) =
κHP s

s+ωHP
, LP(s) =

κLP
s
ωLP
+ 1

(3.1)

with the gains κHP /κLP . The factors ωHP/ωLP indicate the break frequency which separates
the frequency ranges into a pass-band and a stop band. For the parametrization, complemen-
tary break frequencies

ωHP =ωLP (3.2)

are proposed in [150]. Thus, no frequency ranges are lost since the initial signal is composed
of the summation of the low-pass and high-pass filtered signal (for κHP = κLP). In [142], a
transition between the break frequencies with the relation

2 ·ωHP =ωLP (3.3)

is used. In [67, 68], some default filter parametrizations can be found for a three DoFs, six
DoFs and eight DoFs motion system. Based on the analysis in [67, 150], complementary
filters are used throughout this work. As the parametrization also depends on the inputs V aV
and β̇V , the filter parameters are chosen to maximally exploit the motion system’s workspace
capabilities for a pre-defined reference manoeuvre.

3.3 Tilt Coordination

Low frequency signals are reproduced by tilt coordination replicating long-lasting acceler-
ations. As the otolith system cannot differentiate between translational and gravitational
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Figure 3.2: Left plot: Rotation about x -axis to replicate long-lasting, lateral accelerations. Right plot: Rotation
about y-axis to replicate long-lasting, longitudinal accelerations.

accelerations, the platform is inclined by an angle to take advantage of the gravitational
force (limited to approx. 20− 30◦ [122, 141]), as depicted in Figure 2.8. Herein, the rota-
tional platform velocity is preferably below the human perception threshold (often 3 ◦/s [122,
141]). Thus, the perception system is not able to distinguish between the body inclination
around the longitudinal or lateral axis and a translational acceleration. Figure 3.2 shows the
tilting positions of a hexapod platform for replicating a lateral acceleration (left plot) and a
longitudinal acceleration (right plot).
An approach to estimate the tilt-angle of a filter-based MCA is taken from [150]. The ap-
proach neglects coupling effects between the angles which are considered by the transforma-
tion between the inertial FoR I and the platform FoR N . For a general transformation N RI ,
the long lasting specific force N f LP resulting from the gravitational force I g is obtained by

N f LP = N RI I g . (3.4)

Applying these considerations to the tripod / hexapod system yields

H f LP = HRI

�

ϕT H,t il t , θT H,t il t , ψIH,t il t

�

I g (3.5)

with

H fLP,x = − g · sin
�

θT H,t il t

�

(3.6)

H fLP,y = g · cos
�

θT H,t il t

�

· sin
�

ϕT H,t il t

�

(3.7)

H fLP,z = g · cos
�

θT H,t il t

�

· cos
�

ϕT H,t il t

�

. (3.8)

The tilting angles θT H,t il t and ϕT H,t il t are obtained by

ϕT H,t il t = arctan
�

H fLP,y/H fLP,z

�

≈ arctan
�

V aV,low,y

g

�

(3.9)

θT H,t il t = −arctan
�

H fLP,x/H fLP,z · cos
�

ϕT H,t il t

��

≈ −arctan
�

V aV,low,x

g

�

. (3.10)

using a small angle approximation cos
�

ϕT H,t il t

�

≈ 1 and the approximation H fLP,z ≈ g. The
terms V aV,low,y and V aV,low,x indicate the scaled, low-pass filtered input signal V aV in V y− and
V x−direction, respectively (cf. Figure 3.1).
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3.4 Classical Washout
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Figure 3.3: Upper plot: Step response applied to high-pass filters with order 1-3 on the acceleration (acc.) level.
Middle and lower plots: Velocities (vel.) and positions (pos.) for the respective filter types.

First order high-pass filters of the frequency divider block (cf. Figure 3.1) are not sufficient
to keep simulator motions within the workspace envelope as an additional acceleration is
necessary to return the motion platform to the neutral position. In order to enable such a
washout function, further higher order filters are integrated as washout blocks. Outputs of
these washout blocks often result in perceivable contrary motions to the desired simulator
motions in order to prevent workspace exceedance. In other words, these washout motions
often have a negative impact on the driver perception as they yield deviations to the desired
driver commands. The following paragraph exemplifies this functionality.
Figure 3.3 shows the step response on position, velocity and acceleration level for a uniform
jump of the acceleration signal at the time step 1 s. First to third order filters are applied to
the acceleration signal in the form
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HP1st order(s) =
κHP · s

s+ωHP
(3.11)

HP2nd order(s) =
κHP · s2

s2 + 2 DωHP s+ω2
HP

(3.12)

HP3rd order(s) =
κHP · s3

s3 + 3ωHP s2 + 3ω2
HP s+ω3

HP

(3.13)

with the damping coefficient D = 1, the scaling factor κHP = 1 and the break frequency
ωHP =rad/s.
The upper plot of Figure 3.3 shows the desired acceleration step (blue colour) to replicate
the desired driver command. Since a constant, long-lasting, translational acceleration de-
mand is usually not replicable on a motion system with workspace restrictions, the desired
acceleration is modified through high-pass filters. On acceleration level, a first order filter is
sufficient for the convergence of the unit jump to zero. The plot also reveals the deviations
between the desired acceleration signal and the actual accelerations provided by the motion
system. On velocity level (middle plot), the first order high-pass filtered signal goes to an
asymptote so that the respective position signal diverges, demonstrating that a filter of at
least second order is necessary for convergence. The lowest plot reveals that at least a third
order filter is necessary to converge the position signal to zero, meaning that the motion plat-
form returns to its neutral position. The observations can be explained by applying the limit
theorem [129]. Herein, the output signal y(t) is a function of the high-pass filter hp and the
input u(t) in time-domain

y(t) =

∫ t

0

hp(τ) u(t −τ)dτ (3.14)

Transforming equation (3.14) to Laplace-space, the acceleration step U(s) = 1/s is integrated
twice to receive a response on position level. Applying the limit theorem on a third order
high-pass filter HP3rd order yields

lim
t→∞

y(t) = lim
s→0

s · Y (s) = lim
s→0

s ·HP3rd order(s) ·
1
s2
·U(s) = lim

s→0
HP3rd order(s) ·

1
s2
−→ 0 (3.15)

Transferring this knowledge to a filter-based MCA from Figure 3.1, the frequency divider
functions as a first order high-pass filter. In order to enable a washout function on position
level, an additional second order filter (washout) is necessary to yield a third order trans-
mission behaviour between input accelerations V aV and simulator positions I r S. For the
rotational inputs β̇V , a second order washout filter is sufficient to return the platform angles
βS to zero.

3.5 Optimal Washout Filter

In order to differentiate optimal filters from optimization-based MCAs, optimal washout fil-
ters are shortly introduced in this Section. The structure of these filter-based MCAs is broadly
reported in several works, such as [34, 89, 123, 161, 168]. In contrast to Classical Washout
algorithms, the structure of optimal filters are based on a linear-quadratic-Gaussian control.
Figure 3.4 shows the structure of the algorithm which rests upon an optimization problem.
The translational accelerations V aV and the Cardan angles’ time-derivatives β̇V of the vehi-
cle are the inputs V uV = [V aV , β̇V ]. The upper part of the scheme SV estimates the driver’s
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ŷS
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Figure 3.4: Structure of the offline optimization to estimate the optimal washout filters.

perception in a real vehicle where a human perceptional model is used (cf. Section 2.7.4).
On the lower part of the scheme, a second system SS provides an estimate of the driver’s
perception in the simulator ŷ and the simulator motions dS, given by the simulator inputs
uS. The simulator inputs uS are unknown and the optimal control problem can be formu-
lated as solving the simulator’s inputs which minimizes a cost function without violating the
simulator’s dynamics. The quadratic cost function consists of three terms: (a) The difference
between the motion a driver would perceive in a real vehicle ŷV and the motion actually felt
by the driver in a simulator yS, (b) the platform kinematics dS and (c) the simulator inputs
uS. Symmetrical, positive-definite matrices provide a weighting between the optimization
parameters influencing the used workspace and the motion cueing fidelity.
The optimal filter MCA [169] solves the continuous-time optimal control problem on basis of
a linear-quadratic-Gaussian control (Figure 3.4) by applying the Riccati equation [15]. The
method is executed in an offline calculation and generates a multidimensional filter W(s)
transforming the input V uV into a feasible control vector uS for the simulator providing tilt
coordination and washout functions in the form

uS = W(s) V uV . (3.16)

Due to the linear-quadratic-Gaussian control of the optimal filter MCA, future trajectories are
not considered in the optimization problem for which reason pre-positioning of the platform
is not performed. As the optimization problem does not include hard workspace constraints,
violations of the simulator’s technical restrictions have to be checked for each driving ma-
noeuvre with a verification program.
Figure 3.5 exemplarily shows the closed-loop MCA for the longitudinal acceleration and the
pitch rotation. The translational acceleration I aV,x is represented in the FoR I . Similar to the
Classical Washout MCA, the input signals are scaled by St rans and Srot . The washout functions
and tilt coordination are provided by the matrix W(s) in the form

uS =

�

θ̇S

I r̈S,x

�

=

�

W11(s) W12(s)
W21(s) W22(s)

��

Srot · θ̇V
St rans ·I aV,x

�

(3.17)

The transfer function W21 is neglected in the algorithm. The coefficients of the transfer
functions in W(s) are constant during a closed-loop driving session. The simulator’s lateral,
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Figure 3.5: Blockdiagram of the optimal filter MCA.

vertical and rotational motions can be estimated in a similar way, which is shown in [168] in
more detail.

3.6 Prepositioning

In order to increase the workspace for a specific manoeuvre, a pre-positioning technique
can be used (e.g. [150]). Herein, the platform is moved in advance to future manoeuvre(s)
(usually to the direction opposite to the direction of future manoeuvre(s) ). For example,
the motion platform is slowly moved to the right position when the virtual vehicle is on the
right lane of a multilane road, such that, in case of a lane change to the left, there is more
workspace available. The pre-positioning motion preferably is below the human perception
threshold. Previous pre-positioning techniques are mainly used for longitudinal and lateral
accelerations in combination with a filter-based MCA. The following Section presents two
techniques from literature.

rpp,x(t)

v1

rpp,x ,1

v2

rpp,x ,2

vmax vx(t)

workspace
limitation

mockup

Figure 3.6: Predictive pre-positioning based on the vehicle speed (adopted from [150]).

In [150, 185], possibilities to predict upcoming driving manoeuvres for certain situations
are stated. The following exemplary use-cases are described: for longitudinal dynamics,
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low-speed and high-speed scenarios are distinguished. Figure 3.6 depicts the longitudinal
platform pre-positioning depending on the vehicle speed. In case the virtual vehicle is stand-
ing still, an acceleration manoeuvre is expected and the platform moves to the rear position
(platform position rpp,x ,1 in Figure 3.6). By contrast, when the virtual vehicle runs at high
speed, a deceleration manoeuvre is highly possible and the platform moves to the front po-
sition (platform position rpp,x ,2 in Figure 3.6). Linear functions enable a smooth transition
between the front and rear pre-positioning covering the possible vehicle speed range.
In case the virtual vehicle is on the right lane of a multilane road, a lane change to the right
is highly probable. Hereby, extreme cases, such as leaving the road, are neglected. In prepa-
ration for the predicted manoeuvre, the motion platform moves to the right position in order
to increase the workspace capabilities for a future motion to the left.
These considerations are summed up as case-differentiations depending on the vehicle’s
speed. For the longitudinal pre-positioning (assumption: vx(t) ≥ 0), they are defined by

rpp,x =



















rpp,x ,1

v1
· vx(t)− rpp,x ,1 , 0≤ vx(t)≤ v1

0 , v1 ≤ vx(t)≤ v2

(vx(t)− v2) · rpp,x ,2

vmax−v2
, v2 ≤ vx(t)≤ vmax

rpp,x ,2 , vx(t)≥ vmax

(3.18)

and can be applied to the lateral dynamics in a similar manner.
In [85], a related approach to [150] for the longitudinal pre-positioning is shown. The au-
thors considered variable maximum positive accelerations apos,max and maximum negative
accelerations aneg,max depending on the current vehicle speed and driving dynamics model
as shown in Figure 3.7. The acceleration capabilities decrease at higher vehicle speeds and
the acceleration capabilities depend on the vehicle model. For the estimation of the pre-
positioning signal, an empirical function approximates the maximum accelerations apos,max
depending on the current vehicle speed and the vehicle model. Since the maximum vehi-
cles deceleration aneg,max does not depend on the current vehicle speed, the vehicle model,
aneg,max is considered constant. The averaged acceleration is estimated by

ā(vx) =
apos,max(vx) + aneg,max

2
. (3.19)

Vehicle velocity vx - [km/h]
150100 20050

aneg,max

0
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m
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Figure 3.7: Averaged acceleration ā based on the maximum positive accelerations apos,max and maximum nega-
tive accelerations aneg,max (based on [85]).
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The pre-positioning signal rpp,x is calculated by

rpp,x(vx) = ā(vx) ·
rpp,x ,max

max(|ā|)
(3.20)

with the maximum averaged acceleration of ā and the maximum pre-positioning rpp,x ,max .
The pre-positioning can be integrated to an MCA by setting the washout’s neutral position to
the pre-positioning signal.

3.7 Filter-Based MCA for Redundant Motion Systems (MCAFILT)
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Figure 3.8: Structure of the filter-based MCA solving the redundant DoFs with a frequency divider.

In [68, 94, 135, 149], approaches to run a filter-based algorithm on a redundant mo-
tion system is introduced by using a frequency splitter. Figure 3.8 shows the structure of
a filter-based MCA (called MCAFILT throughout the work) for the redundant motion system
introduced in Figure 1.3. The algorithm mainly differs from the general version in Figure 3.1
by the extended frequency divider. The block solves the redundancy in the DoFs and splits
scaled translational accelerations into three signal domains. Low frequency signals V aV,low
are performed by tilt coordination replicating long-lasting accelerations. Mid-frequency sig-
nals V aV,band are realized by the tripod because of its higher workspace and its lower dynamic
capabilities compared to the hexapod. Thus, high-frequency signals V aV,high are performed
by the hexapod. The redundant rotational yaw motion ψ̇V is also split by a low/high-pass
filter combination (this is simply indicated by a frequency divider block in the graph). Com-
plementary filters are used which exhibit an equal break frequency for high/low-pass filter
combinations as described in Section 3.2. Thus, the original signal is obtained when com-
bining the filtered signals. Washout blocks are inserted, consisting in additional high-pass
filters which ensure motions to the neutral platform position in order to take into account the
workspace capabilities.
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3.7.1 Workspace Restrictions
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Figure 3.9: Example of a limitation procedure at the time instant t1. After fulfilling the workspace restrictions and
after expiration of the hold time thold (at the time instant t2), the limited trajectory follows the desired trajectory
(Upper plot: on position level. Lower plot: on acceleration level).

The MCA scheme in Figure 3.8 does not include workspace supervision, i.e. a monitoring
function which checks whether the estimated platform motions are realizable or not. It is
not guaranteed that the commanded hexapod and tripod motions stay within actuator limi-
tations.
A workspace supervision module was developed for this purpose. It is the result of collab-
oration with Maximilian Spannagl [163]. As the platform motions are sent in workspace
coordinates w S, the inverse kinematics, using equation (2.22), is applied to calculate the
current actuator strokes q. In case an actuator limit exceeds, the workspace signal inWS
changes from 1 to 0.
The limitation function is performed by a cascade control [90], defining the desired work-
space coordinates w d , ẇ d , ẅ d as inputs. If an actuator overshoot is detected, a stop trajec-
tory halts the respective system by setting ẇ d , ẅ d to zero. The system is held at least for
a time duration thold before the reactivation begins in order to avoid on/off effects in the
inWS-signal. On reactivation of the motion cueing by the workspace supervision module, the
desired platform motions estimated by the MCA are set as inputs again, leading to a fade into
the desired trajectory.
Figure 3.9 exemplarily shows a limitation event. The supervision module detects a workspace
overshoot at the time instant t1 (signal inWS changes from “1”- in workspace - to “0” - work-
space exceedance). The desired trajectory rx ,y is no longer feasible and the accelerations
r̈x ,y and the velocities ṙx ,y of the motion system are modified to the limitation trajectories
r̈x ,y,l im/ṙx ,y,l im. At the time instant t2, the workspace limitations are fulfilled (and expiration
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of thold) and the limitation trajectories r̈x ,y,l im/ṙx ,y,l im tracks the desired trajectories ṙx ,y/r̈x ,y
again.

3.7.2 Evaluation

Figure 3.10 shows a double lane change manoeuvre including a longitudinal acceleration
phase and deceleration phase (at the beginning and at the end of the manoeuvre, respec-
tively). In the upper two plots of Figure 3.10 (left: longitudinal, right: lateral), the frequency
divider separates the scaled reference signal V aV (scaling factor: kx = 0.3, ky = 0.6) into
the low frequency signal V aV,low for the tilt coordination, the middle-frequency signal for the
tripod V aV,band and the high-frequency signal for the hexapod V aV,high (see Figure 3.8). These
signals are not filtered by the washout function so that a summation of these three signals
results in the scaled reference V aV . Aside from this, the plots demonstrate the resulting accel-
eration H aS which is acting at the CRP of the simulator (after washout). The left plot focuses
on the longitudinal and the right plot on the lateral direction. Deviations between the signals
V aV and H aS are caused by the washout filter.
The lower two plots in Figure 3.10 (left: longitudinal, right: lateral) demonstrate the result-
ing motion of the tripod I r I T and hexapod T r T H as well as the tilting angles ϕtilt and θtilt.
The same output variable names as in Figure 3.8 are used. The positions return to the neutral
zero position as the signals pass through a washout filter.

3.8 Chapter Summary

The Chapter describes the main structure of filter-based MCAs for non-redundant and re-
dundant motion systems. Linear transfer functions make a simple usage of these algorithms
possible. Since the algorithms do not include the workspace restrictions of the motion sys-
tem, the parametrization (scaling, washout) of the algorithm is mainly based on the most
challenging manoeuvre. Considering the complete course, this tuning strategy yields a mo-
tion cueing that depends on the cueing of these challenging sections. In other words, in case
the challenging manoeuvres make up only a small proportion of the complete course, the
workspace exploitation of the low to medium challenging manoeuvres is probably quite low.
In order to not exceed the workspace limitations, this Section proposes a workspace super-
vision module which modifies infeasible simulator inputs to feasible ones. However, a work-
space intervention occurs with a high acceleration peak which strongly affects the motion
cueing quality.
In order to stick to the workspace limitations of the motion system, washout functions move
the platform to its neutral position. The estimated accelerations are often acting in opposite
direction to the desired accelerations which leads to false cues. Prepositioning techniques en-
able possibilities to integrate additional driving dynamics information to the motion cueing
in order to enhance the workspace exploitation. The pre-positioning procedure preferably
has to be below the perception threshold, as it otherwise would lead to false cues.
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Figure 3.10: Top plots: The frequency divider separates the scaled reference signal V aV into the low frequency
signal V aV,low, the middle-frequency signal V aV,band and the high-frequency signal V aV,high as introduced in Fig-
ure 3.8. Lower plots: Resulting motions of tripod and hexapod and tilting angles.



Chapter 4

Open-Loop, Full-Time Prediction MCA (MCAOFF)

The content of the following Chapter have been published in [52].

Platform
Kinematics

Optimization
Parameters oS

Vehicle
Motions yV

Simulator
Motions yS

-

+ Minimize
Deviations

Figure 4.1: Schematic scheme of the optimal control problem.

This Chapter presents an MCA which calculates the simulator motions based on an opti-
mization scheme, in contrast to Chapter 3, where the simulator motions are mainly calculated
by transfer functions. The open-loop, optimization-based MCA computes an optimal trajec-
tory for a pre-defined manoeuvre in an offline calculation step. Herein, the pre-recorded
driving dynamics data is taken as a reference over the complete manoeuvre in a single opti-
mal control problem. The MCA is abbreviated throughout the work with MCAOFF.
The basic structure of the algorithm is shown in Figure 4.1. The upper input is composed of
the vehicle’s reference data

yV =

�

V f re f
V

Vω
re f
V

�

=

�

V are f
V

V J β̇
re f
V

�

(4.1)

which includes the specific forces V f re f
V and angular velocities Vω

re f
V at the CRP, herein the in-

dex re f indicates the reference data base. The angular velocity is obtained by Vω
re f
V = V J β̇

re f
V ,

where the Jacobian matrix V J describes a transformation between the Cardan angles’ deriva-
tives β̇

re f
V and the angular velocities Vω

re f
V . The lower inputs in Figure 4.1 contain the

optimization parameters oS, which are the motion system’s states on position, velocity and
acceleration level. The platform kinematics estimate the resulting motions yS from equa-
tion (2.43) acting at the motion system’s CRP containing the specific forces (cf. equa-
tion (2.17)) and angular velocities (cf. equation (2.10)). An optimal control problem mini-
mizes deviations between the vehicle’s reference data yV and the simulator motions yS. In
other words, the simulator motions yS aims at tracking the vehicle reference motions yV . The
minimization is constrained by the workspace restrictions of the motion system on position,
velocity and acceleration level. Besides, the optimization problem considers the nonlinear
kinematic chain of the motion system and includes the actuator limitations as constraints to
exploit the workspace to a large extent.

45



46 4 Open-Loop, Full-Time Prediction MCA (MCAOFF)

The minimization is performed over the complete time horizon of the pre-defined manoeuvre
and uses an ideal reference signal yV . Thus, depending on the chosen weighting parameters
and the used simulator model, an optimal platform trajectory is given. For an open-loop
application, real-time requirements do not have to be fulfilled. Thus, the difference between
desired and provided percepts can be minimized further compared to a closed-loop applica-
tion.
The following Sections describe the kinematics of the platform motions, the integration of
the workspace restriction and finally introduces the considered optimization problem.

4.1 Related Work

In [36, 97, 137], an optimization-based MCA is proposed which exhibits a structure similar
to the MCAOFF. A cost function minimizes deviations between desired vehicle motions and
actual simulator motions. Constraints bound the workspace within the limits of the motion
system on actuator level. As the algorithm is used for open-loop simulations, the pre-recorded
driving dynamics data were used for an ideal prediction strategy. In [36], the optimization-
based algorithm is compared to a filter-based MCA in order to measure the motion cueing
quality. For filter-based MCAs, only the current driving dynamics states are considered in
the calculation of the simulator motions. Whereas, for optimization-based MCAs, the driving
dynamics states over a future time horizon are taken into account in the simulator’s motion
calculation. Thus, pre-positioning is provided to exploit the simulator’s workspace capabil-
ities to a larger extent and to replicate the desired driver motions with a greater fidelity.
Results show that the motion cueing quality of the optimization-based algorithm is higher,
which points out the potential of these algorithms. One reason is the usage of predictions for
upcoming driving manoeuvres. In [53, 95], it is shown that deviations between expected and
actual motion percepts are reduced to a greater extent with increasing time horizon lengths.
For the analysis, a perfect prediction is taken for pre-defined manoeuvres. A long time hori-
zon enables an earlier pre-positioning of the motion platform yielding a better workspace
exploitation.

4.2 Inverse Kinematics

The actuator limitations are included by integrating the inverse kinematics on position, veloc-
ity and acceleration level (see Section 2.5.1). Figure 2.3 shows the vector chain for a parallel
robot, where the FoR I is fixed to the lower platform and the FoR N is anchored at the upper
platform. The kinematic chain described in Figure 2.3 (see Section 2.4) represents either the
kinematics of the actuation of the tripod (in which case N in Figure 2.4 is to be seen as T)
or the actuation of the hexapod (in which case N in Figure 2.4 is to be seen as H). The aim
of the inverse kinematics is to calculate the length of the actuators of the tripod q t and the
hexapod qh (and the actuator velocities and actuator accelerations). Herein, the given posi-
tions, velocities and accelerations of the tripod’s reference point I r I T (and orientation β I T )
and the hexapod’s reference point T r T H (and orientation β T H) are used. The actuator states
will be employed later as constraints in the optimization. For the hexapod, the CRP has to
be considered in the closed-loop vector chain of the parallel robot structure. The stroke of a
single hexapod actuator qh,i is given by the quadratic norm

qh,i = ||q Li Ui
||2

= || − T l I Li
+ T r I ,CRP + T RH (H uHUi

− H r H,CRP)||2 (4.2)
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for i = 1 . . . 6, where T l I Li
and H uHUi

describe the relative position of the lower and upper
Cardan joint of actuator i [115]. These are known properties of the simulator.
The actuator stroke of the tripod is calculated by

qt,i = || − I l I Li
+ I r I T + IRT T uT Ui

||2 (4.3)

for i = 1 . . . 3, where I l I Li
and T uT Ui

describe the position of the lower and upper rotational
joint of actuator i of the tripod [115].
The actuators’ velocities

q̇ j,i =
dq j,i

dt
for

¨

j = t, h

i = actuator number
(4.4)

and the actuators’ accelerations

q̈ j,i =
d2q j,i

d2 t
for

¨

j = t, h

i = actuator number
(4.5)

are expressed in equations (2.28) and (2.32), respectively. For the MCAOFF, the derivation
with respect to time for the inverse kinematics in equations (4.2) and (4.3) is calculated in
the symbolic toolbox CasADI which is a symbolic framework for algorithmic differentiation
and numeric optimization [4]. CasADI offers an option to build a C-function of the derivative
which can be directly integrated to the optimization solver. Thus, programming of the com-
plicated results in equations (2.28) and (2.32), which are prone to errors, is not necessary.

4.3 Optimization Problem

The optimization problem is defined as

min
oS

J =
Hp
∑

i=1

||yS[i]− yV [i]||
2
Q +

Hp
∑

i=1

||oS[i]||2R (4.6)

s.t. :

∀i = 1 . . . Hp FS[i] = 0

for j = t, h oS,min ≤ oS[i]≤ oS,max

qS, j,min ≤ qS, j[i]≤ qS, j,max

q̇S, j,min ≤ q̇S, j[i]≤ q̇S, j,max

q̈S, j,min ≤ q̈S, j[i]≤ q̈S, j,max

with the optimization parameters

oS = [ T r T H , T ṙ T H , T r̈ T H , β T H , β̇ T H , (4.7)

I r I T , I ṙ I T , I r̈ I T , β I T , β̇ I T ].

In this formulation the simulator dynamics are not considered, but limits related to the dy-
namics of the simulator are indirectly included by the constraints. The choice of the optimiza-
tion parameters enables the calculation of the actuators’ states, using the inverse kinematics.
But also, regarding equations (2.10) and (2.17), the reference signal yS can be obtained
by oS. The objective function in equation (4.6) is divided into two parts. The first term
tracks the reference signal yS over the time horizon Hp · Tsamp weighted by the matrix Q. The
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second term penalizes the optimization parameters for deviations from the neutral position.
The weighting matrix R defines the intensity of a “neutral push" to the middle of the motion
system’s workspace (similar to the washout feature of the filter-based MCA described in Sec-
tion 3.4). The hand-tuned weights are shown in Appendix D in Table D.4.
The parameters oS can be used to determine the states of the actuators by the inverse kine-
matics, described in Section 4.2. The actuator states are included to the optimization as
nonlinear inequality constraints. The term qS contains all actuator strokes qi of the respec-
tive motion subsystem. Analogously, the actuator velocities q̇i and actuator accelerations q̈i
are contained in q̇S and q̈S, respectively. The indices min and max indicate the limitations
for the respective states. The optimal control problem is discretized with a multiple-shooting
approach. The method discretizes the optimization parameters oS over the complete time
horizon. Thus, all time steps of the discretization are considered in the optimization prob-
lem at once. Different numerical optimization methods (including multiple-shooting) and
optimization solvers are described in Appendix C. As a distinction to the formulation of the
optimization problem in the appendix, the differential constraints in the form ẋ = f (x) con-
sist of the derivative relations of the optimization parameter oS. Time-differential relations
between the optimization parameters are approximated as a double integrator. Positions,
velocities and accelerations are described as relative parameters concerning their subsystem
in the form

tripod: I ṙ I T [i] =
I r I T [i + 1]− I r I T [i]

Tsamp
, (4.8a)

I r̈ I T [i] =
I ṙ I T [i + 1]− I ṙ I T [i]

Tsamp
, (4.8b)

β̇ I T [i] =
β I T [i + 1]− β I T [i]

Tsamp
, (4.8c)

hexapod: T ṙ T H[i] =
T r T H[i + 1]− T r T H[i]

Tsamp
, (4.8d)

T r̈ T H[i] =
T ṙ T H[i + 1]− T ṙ T H[i]

Tsamp
, (4.8e)

β̇ T H[i] =
β T H[i + 1]− β T H[i]

Tsamp
. (4.8f)

Equality constraints FS[i] = 0 with the time-discretization steps i ∈ [1 . . . Hp] include the
derivative relations between positions, velocities and accelerations, described in equations
(4.8), of the motion systems j = I T, T H

FS, j[i] =





r j[i + 1] − r j[i] − Tsamp ṙ j[i]
ṙ j[i + 1] − ṙ j[i] − Tsamp r̈ j[i]
β j[i + 1] − β j[i] − Tsamp β̇ j[i]



= 0 (4.9)

which are discretized by an explicit Euler approach with the sample time Tsamp. The simula-
tor exhibits limitations not only due to the working range of its actuated legs (so at actuator
level), but also due to the available space in the room to move the platform (hence in the
workspace). These workspace limitations are a safety redundancy by the manufacturer and
are included as constraints (summarized in Table 2.2) to the simulator control software.
Therefore the optimization problem (4.6) also includes inequality constraints for the opti-
mization parameters oS in addition to those on the kinematics of the legs.
Actuator limitations are included for tripod and hexapod on position, velocity and acceler-
ation level. Therefore, the inverse kinematics introduced in equations (4.2) and (4.3) are
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considered in the optimization problem shown in equation (4.6).
The optimization problem is solved in a C++ environment using the software package IPOPT
for large-scale nonlinear optimization [180].

4.4 Simulative Analysis of MCAOFF and MCAFILT
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Figure 4.2: Resulting specific forces fx , f y and angular velocities ωz for the MCAFILT (input scaling factor = 0.3)
and the MCAOFF compared to the unscaled reference motions of a virtual vehicle.

Figure 4.2 shows the simulative motion cueing results for the manoeuvre described in
Section 8.2 as a reference manoeuvre. The main motion channels are shown for the unscaled
reference signal, a filter-based MCAFILT and the optimization-based MCAOFF in longitudinal,
lateral and yaw direction at the CRP. For the MCAFILT, the input signal is scaled by a factor
of 0.3 to maximally exploit the motion system’s workspace. The plots reveal that better
cueing is provided by the MCAOFF compared to the MCAFILT. In [67, 78], these deviations
are categorized in groups:

1. Missing cues: Not provided cues.
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2. False cues: Cues without a stimuli demand.

3. Phase errors: Temporarily shifted stimuli.

4. Scaling errors: Different magnitude between provided and demanded stimuli with cor-
rect sign.

5. Sign errors: Opposite signs between provided and demanded stimuli.

Errors, such as the ones defined above, can generally be observed more significantly for the
MCAFILT than for the MCAOFF. To quantify the deviations between both algorithms, the root-
mean-square (rms) error to the reference signal is shown in Table 4.1. The rms-values are
higher for the MCAFILT considering all six motion channels.

Table 4.1: Root-mean-square of the objective motion incongruencies for MCAFILT and MCAOFF to the reference
motions of a virtual vehicle.

Trans. acc. - [m/s2] Ang. vel. [rad/s]

x y z x y z

MCAFILT 0.516 0.775 0.15 0.03 0.014 0.051
MCAOFF 0.196 0.394 0.15 0.02 0.012 0.029

4.5 Chapter Summary

This Chapter proposes an open-loop, optimization-based MCA which includes an optimal
control problem to minimize deviations between desired and actual simulator motions. As the
driving dynamics data was known a priori for a pre-defined manoeuvre, an ideal prediction
over the complete manoeuvre was applied. In a comparison with the filter-based MCAFILT,
the MCAOFF shows considerably less motion incongruencies which indicates its potential in
motion cueing quality towards closed-loop MCAs.



Chapter 5

Structure of Model Predictive Control (MPC)-Based
MCA

The content of the following Chapter have been published in [51, 52, 56].

This Chapter presents the optimization-based MCAMPC which is similar to the MCAOFF
(described in Chapter 4), but differs in the capability to run in a closed-loop simulation.
The architecture of the open-loop MCAOFF does not enable online applications, since it
solves a single optimization problem to obtain the simulator motions over the complete pre-
recorded manoeuvre. Moreover, it uses a complex nonlinear description of the relative and
inverse simulator kinematics.
The MCAMPC also uses a global optimization scheme to solve the nine redundant DoFs sub-
ject to the technical restrictions of the motion system, shown in Figure 1.3. However, the
algorithm distinguishes from the MCAOFF in the following aspects:

• The global approach of the MCAMPC pursues the goal to be more efficient regarding the
computational time of the optimization problem. Thus, a linearized prediction model
is used in the optimization to calculate:

– the relative kinematics (specific forces and angular velocities),

– the inverse kinematics (actuator constraints) and

– the predicted trajectories (simulator states).

• The optimization process of the MCAMPC is included into a model predictive control
(MPC) scheme which yields the general advantages:

– to run in real-time,

– to cope with multivariable control problems,

– to consider actuator limitations and

– to allow operations closer to the constraints. [106]

• The MCAMPC includes a model of the vestibular system so that only perceivable motions
are replicated by the simulator.

• In a closed-loop simulation, the future driving dynamics data is not known for gener-
ating the reference signal. Thus, a strategy to predict the future driving behaviour is
necessary.

51
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5.1 Related Work

Optimization-based MCAs are composed of an objective function which is minimized while
subjected to constraints. For driving simulation, the objective function minimizes deviations
between simulator motions and a reference trajectory describing the future motions in a vir-
tual vehicle over a prediction horizon [5, 9, 41, 62]. The following Section gives a brief
overview about various prediction strategies and ways to consider the simulator’s technical
restrictions.

Prediction: Optimization parameters aim to replicate the reference signal and ensure that
the simulator constraints, such as actuator limitations, are not violated. Hence, a prediction
model is necessary to forecast the future driving behaviour. However, in many practical cases,
accurate information about future motions of the virtual vehicle is not available, for which
reason it has been proposed to keep the current driving input constant over the prediction
horizon [26]. The assumption is sufficiently valid for a short time horizon, for which reason in
a later work [24], a Look-Ahead prediction is presented. Herein, the authors used the driving
dynamics data of previously driven round courses for the reference prediction. The approach
leads to an effective pre-positioning, as long as the driver behaviour does not vary strongly
between the laps, as otherwise, an unreliable behaviour is used in the prediction. In [45],
an online capable driver, environment and vehicle model was introduced which follows a
two-dimensional road centreline. Because of the simplicity of the model, they were able to
predict the driving behaviour for the upcoming ten seconds. Their results demonstrate that
small improvements in the prediction method can result in considerable improvements in
the motion cueing quality. These algorithms are based on an MPC-scheme, which enables
closed-loop applications. An MPC-scheme solves an optimization problem at discrete time
steps. The optimization includes the current driving dynamics state in the reference signal
and sends the optimal motion inputs to the simulator.
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Figure 5.1: Left: translational workspace of a hexapod with ϕ = θ = ψ = 0◦. Right: rotational workspace with
x = y = z = 0 m.

Constraints: For a six DoFs hexapod simulator, an approach is to define the constraints
on position, velocity and acceleration level in workspace coordinates. In [5, 9], the trans-
lational and rotational limitations are modeled as constraints in workspace coordinates that
show a fast handling by the optimization solver. However, the approximation of the work-
space displays relatively large deviations since the DoFs are coupled to each other. Workspace
limitations are a function depending on the simulator’s DoFs, meaning that variations of the
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Figure 5.2: Left: the translation workspace of a hexapod with ϕ = θ = ψ = 10◦. Right: rotational workspace
with x = 0.5 m, y = 0.5 m, z = 0 m.

simulator configuration result in an adjustment of the workspace limitations. This fact applies
for the position, velocity and acceleration level. To illustrate this characteristics, an example
is shown in the following:
The left part of Figure 5.1 shows the approximated translational workspace of a hexapod,
where the rotational DoFs are set to zero (ϕ = θ =ψ= 0◦). The right part of Figure 5.1 shows
the approximated rotational workspace of the same hexapod structure in the neutral transla-
tional position (x = y = z = 0m). A grid search algorithm estimates the workspace envelope
of the parallel robot, where the approximation error depends on the chosen grid size. The dis-
crete, geometrical approach uses iteration loops to check compliance with the actuator length
for each point in a three-dimensional set of points [102, 114]. In case different sets of dots
in the workspace are kept constant as used in Figure 5.1, the workspace envelope varies. The
left part of Figure 5.2 shows the approximated translational workspace (ϕ = θ = ψ = 10◦)
and the right part the approximated rotational workspace (x = 0.5m, y = 0.5m, z = 0m).
Comparing Figure 5.1 and Figure 5.2, a significant variation in the workspace envelope is
apparent. Approximating the workspace envelope as an analytical function depending on a
current platform configuration w S is still part of current research. [114, 115]
Based on these observations, different approaches are reported in literature to consider the
simulator restrictions in an optimization-based MCA.
In [41, 62], an MPC-based approach is proposed for an eight DoFs simulator, consisting of an
x − y− table and hexapod. The work separates longitudinal and lateral motions by a respec-
tive MPC scheme. Each MPC scheme exhibits two DoFs, comprising a translational motion
executed by the x − y− table and a rotational motion performed by the hexapod. Tilting the
hexapod platform supports translational acceleration by using the gravitational force so that
low frequency accelerations can be realized. The optimization problem proposed by those
authors does not include hard workspace constraints. Instead, a washout filter is integrated
to limit the output of the MPC scheme.
A nonlinear MPC scheme for a nine DoFs simulator introduced by [25, 27] considers the
nonlinear relations between tripod and hexapod. Driving dynamics data is prefiltered to dis-
tribute translational motions between high frequency translational signals and low frequency
tilting ones. Motion system’s limitations are included as nonlinear constraints on actuator
level. The inverse kinematics is hereby solved by transforming workspace coordinates to ac-
tuator ones. Constraining on actuator level was also realized for an eight DoFs simulator
by [176].
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Including nonlinear constraints is computational expensive and therefore, in [70], a lineariza-
tion approach to approximate the hexapod’s inverse kinematics is shown. A constant Jaco-
bian matrix is used for the kinematic transformation from workspace velocities to actuator
velocities. The linearized actuator velocities are integrated over time to receive the actuator
strokes.
In [60], an MCA approach for a nine DoFs simulator is proposed consisting of x − y− table,
hexapod and yaw-rotation-table. Considering the nonlinear kinematics, the work divided the
motion system up into independent subsystems and implemented MPC-schemes for each of
these. Translational accelerations are split into horizontal ones that are performed by the
x − y− table and tilting ones, executed by the hexapod. Simulator limitations are added on
workspace level.

5.2 Contribution

In this chapter, an MPC-based MCA is proposed that is comparable to the approach in [28],
but differs in the description of the kinematics of the motion simulator. Whereas, in [28],
the angular relations of the redundant motion system are neglected to estimate the driver’s
motion in the simulator, the present optimization scheme includes the kinematic chain to
estimate the perceived driver’s motion, composed of the motions of tripod and hexapod. As
the kinematic chain exhibits nonlinearities, an approximation approach is shown to result in
a linear prediction model. Thus, a convex Quadratic Programming (QP) problem based on a
linear prediction model is solved which reduces the complexity of the optimization problem.
Employing linear models in MPC is widespread as these models provide good results when
operating in the area of the plant’s operating point. By contrast, a nonlinear prediction model
can yield a nonconvex problem, where the robustness and stability are much more difficult
to obtain than for a QP-problem. Along with this, the higher complexity can lead to higher
computational cost which can degrade the real-time capabilities. [32]
An additional distinction to the work [28] persists in the formulation of the optimization
constraints. In [28], the limitations of the simulator are described as nonlinearities on ac-
tuator level. In the present work, the linearization approach based on [70] is applied to
approximate the inverse kinematics in order to obtain linear inequality constraints for the
QP-problem. The linearization is not only applied on a hexapod system but also on a tripod
system. Based on [10], the prediction horizon is divided into three parts, considering input,
constraint and prediction horizons to save further computation time.

5.3 Linearized State Space Model

Figure 5.3 shows the basic structure of the optimization problem. An external software es-
timates the driving dynamics states of the virtual vehicle subject to the driver inputs. The
upper block SV (index V for Vehicle) calculates the vehicle motions’ states uV comprising the
translational accelerations V aV and the derivatives of the Cardan angles β̇V . Hereby, V de-
fines the relative FoR located at the driver’s head as described in Figure 2.1. The Driver block
estimates the specific forces V f V and the angular velocities VωV acting on the driver in the
form

V f V = V aV , (5.1)

VωV = V J β̇V . (5.2)
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The Jacobian matrix V J describes a transformation between the Cardan angles’ derivatives
β̇V and the angular velocities ωV .
The lower block SS (index S for Simulator) represents the simulator system with the unknown
simulator’s input uS taken as optimization parameters. The input

uS = [ϕ̇T H θ̇T H ψ̇T H ψ̇I T T r̈T H,x T r̈T H,y T r̈T H,z I r̈I T,x I r̈I T,y]
T ∈ R9×1 (5.3)

consists of the Cardan angles’ derivatives β̇ T H = [ϕ̇T H θ̇T H ψ̇T H]T of the hexapod and of
the tripod’s yaw-rotation β̇ I T = [0 0 ψ̇I T ]T as well as the relative translational accelerations
T r̈ T H = [T r̈T H,x T r̈T H,y T r̈T H,z]T and I r̈ I T = [I r̈I T,x I r̈I T,y 0]T with the FoR introduced in
Figure 2.4. The input uV is taken as a reference to minimize deviations between vehicle and
simulator motions in an objective function. The following subsections describe the various
blocks of Figure 5.3 in more detail.

Input: Vehicle
Motion uV =
[V aV β̇V βV ]

T
Vestibular

System

Platform
Kinematics

Vestibular
SystemOptimization

Parameters:
Simulator Input uS =
[I r̈ I T T r̈ T H β̇ I T , β̇ T H]

T

Driver in Vehicle

Driver in Simulator

Optimization
with Constraints

Objective
Function over

Prediction
Horizon

ŷV

ŷS

Perception Error

ŷS − ŷV

SV

SS

uSdS

+

-

+

Driver

yV = [V f V VωV ]

yS = [H f S HωS]

Figure 5.3: Structure of the global optimization scheme with the optimization parameters uS functioning to repli-
cate the vehicle’s motion uV .

5.3.1 Platform Kinematics

Simulator motions have to be described in the non-inertial H FoR so as to enable a compar-
ison with the actual driving dynamics data V f V and VωV . Herein, the specific force H f S is
approximated with

H f S ≈ H r̈ I T + H r̈ T H + H g (5.4)

= HRI(ϕT H , θT H , ψIH) I r̈ I T + HRT (ϕT H , θT H , ψT H) T r̈ T H + HRI(ϕT H , θT H , ψIH) I g

using the rotation matrices HRI(ϕT H , θT H , ψIH) and HRT (ϕT H , θT H , ψT H) from equations (2.8)
and (2.7). The last term of equation (5.4) takes into account the gravitational force that in-
fluences translational accelerations by tilt motions. The gravitational force I g is defined in
the inertial FoR with I g = [0 0 g]T . Centripetal-, Coriolis- and rotational acceleration com-
ponents, as introduced in equation (2.6), are neglected to further simplify the optimization



56 5 Structure of Model Predictive Control (MPC)-Based MCA

problem for potential real-time applications.
In order to estimate the error resulting from the approximation in equation (5.4), an analysis
is performed. The specific force error H

¯̄f CRP resulting from the Centripetal-, Coriolis- and
rotational acceleration components is calculated in the form

H
¯̄f CRP = HRT 2 T ω̃I T T ṙ T H + HRT · (T ˙̃ωI T T r T H + T ω̃I T T ω̃I T T r T H) (5.5)

+ H
˙̃ωIH H r H,CRP + Hω̃IH Hω̃IH H r H,CRP .

These are the missing terms in equation (5.4) to estimate the specific force from equa-
tion (2.17). To determine the magnitude of the specific force error H

¯̄f CRP , the motion cueing
data, calculated by the MCAMPC, is taken. A roundabout manoeuvre is taken as a test-case for
benchmarking the different algorithms, which exhibits high yaw rates and exploits the com-
plete workspace of the hexapod and tripod. The maximum specific force error for the con-
sidered manoeuvre is H

¯̄f CRP,max = [0.134 0.187 0.074]T m/s2. This error is a rough indicator
and higher values are possible. Still, assuming a perception threshold of 0.17m/s2 [141], the
range of the error is reasonable to justify the approximations made in equation (5.4). Along
with the dynamic motions of the simulator, the error depends on the geometric structure of
the motion system. The hexapod of the considered motion system exhibits small translational
motion space, yielding low values for T r T H . The vector H r H,CRP depends on the design of the
mockup and is constant throughout the simulation (see equation (2.18)).

In the following, the three rotational DoFs acting on the driver are described for the con-
sidered motion system. Observing that the third axis of the H and T FoR are always aligned,
rotational velocities expressed in the H FoR are transformed by the Jacobian matrix H J

Hω=





1 0 −sθT H
0 cϕT H cθT HsϕT H
0 −sϕT H cθT H cϕT H









ϕ̇T H

θ̇T H

ψ̇T H + ψ̇I T



= H J β̇S . (5.6)

Inputs uS are integrated in a state space model

ḋS = AS dS + BS uS (5.7)

to obtain

dS = [ϕT H θT HψT HψI T (5.8)

T rT H,x T ṙT H,x T rT H,y T ṙT H,y T rT H,z T ṙT H,z

I rI T,x I ṙI T,x I rI T,y I ṙI T,y ]
T ∈ R14×1

with positions r , velocities ṙ and angular configurations β̇ of the relative motion system
needed later to express the constraints of the motion system. The matrices AS and BS include
the derivative relations between uS and dS which are approximated by an explicit Euler dis-
cretization. For the sake of conciseness, the structure of the matrices AS and BS in 5.7 are
described in a reduced formulation by considering just one arbitrary translational accelera-
tion element ẅS,i out of uS in the following way

�

ẇS,i
ẅS,i

�

︸ ︷︷ ︸

part of dS

=

�

0 1
0 0

�

︸ ︷︷ ︸

A∗S,i

�

wS,i
ẇS,i

�

+

�

0
1

�

︸ ︷︷ ︸

B∗S,i

ẅS,i
︸︷︷︸

part of uS

(5.9)

where A∗S,i and B∗S,i are parts of AS and BS from equation (5.7). Angular velocity elements
ẇS,i out of uS are fed to a single integrator to obtain the respective angles.
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5.3.2 Vestibular System

A model of the vestibular system is integrated to calculate the perceived motions of the
simulator driver. Output signals of a vestibular system are indicated with the subscript ‘ˆ’. The
semicircular and otolith model of Telban et al. [168] is used for rotational and translational
inputs, which is already introduced in equations (2.48) and (2.52), respectively. Perception
thresholds are neglected as they would lead to a nonlinear transfer function.
Perceived rotational velocities ω̂ = [ω̂x ω̂y ω̂z]T and specific forces f̂ = [ f̂x f̂ y f̂z]T are
estimated by

ω̂ j,k = Hsemi(s) ω j,k =
τS,semi τL,semi s2

(1+τL,semi s)(1+τS,semi s)
ω j,k (5.10a)

with τS,semi = 5.73, τL,semi = 80

f̂ j,k = Hoto(s) f j,k =
κoto (1+τA,oto s)

(1+τL,otos) (1+τS,otos)
f j,k (5.10b)

with τA,oto = 10, τS,oto = 0.016, τL,oto = 5, κoto = 0.4

where j = S, V , k = x , y, z and Hsemi(s) and Hoto(s) are the Laplace-transformed semicircular
and otolith perception models, respectively. Equations (5.10a) and (5.10b) are transformed
to state space in the form

�

ẋ semi
ẋ oto

�

=

�

Asemi 0
0 Aoto

��

x semi
x oto

�

+

�

Bsemi
Boto

��

ω j
f j

�

(5.11a)

ŷ j =

�

C semi 0
0 C oto

��

x semi
x oto

�

+

�

Dsemi
Doto

��

ω j
f j

�

(5.11b)

with the output ŷ j = [ω̂ j f̂ j]
T for j = S, V . The following Section shows the structure of the

semicircular and otolith state-space model.

Semicircular System, for k ∈ {x , y, z}:

1. State space matrix Asemi

Asemi = blkdiag(Asemi,k), with Asemi,k =

�

0 1
−1

τL,semiτS,semi
−τL,semi+τS,semi
τL,semiτS,semi

�

(5.12)

2. Input matrix Bsemi

Bsemi = blkdiag(Bsemi,k), with Bsemi,k =

�

0
1

�

(5.13)

3. Output matrix C semi

C semi = blkdiag(C semi,k), with C semi,k =
�

−1
τL,semiτS,semi

−τL,semi+τS,semi
τL,semiτS,semi

�

(5.14)

4. Feedthrough matrix Dsemi

Dsemi = I3x3 with the identity matrix I . (5.15)
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Otolith System, for k ∈ {x , y, z}:

1. State space matrix Aoto

Aoto = blkdiag(Aoto,k), with Aoto,k =

�

0 1
−1

τL,otoτS,oto
−τL,oto+τS,oto
τL,otoτS,oto

�

(5.16)

2. Input matrix Boto

Boto = blkdiag(Boto,k), with Boto,k =

�

0
1

�

(5.17)

3. Output matrix C oto

C oto = blkdiag(C oto,k), with C oto,k =
�

1
τL,otoτS,oto

κoto τA,oto
τL,otoτS,oto

�

(5.18)

4. Feedthrough matrix Doto

Doto = 03x3 with the zero matrix 0. (5.19)

5.3.3 Resulting State Space Model

The gravity vector H g in equation (5.4) is linearized by a small angle approximation in the
form

H g =





− sin(θT H)
cos(θT H) sin(ϕT H)
cos(ϕT H) cos(θT H)



 g
linearization
≈





−θT H
ϕT H

1



 g (5.20)

In driving simulation, roll and pitch rotations are typically small, keeping the error of the
linearization in a reasonable range. Since the transformations H r̈ I T = HRI I r̈ I T , H r̈ T H =
HRT T r̈ T H in equation (5.4) and Hω = H J β̇S in equation (5.6) cannot be linearized by
a small angle approximation, the estimated angles ϕT H[k], θT H[k], ψT H[k] and ψI T [k] are
kept constant over a time horizon Hp.
Based on the linearization, the specific forces f S and angular velocities ωS are expressed by

�

ωS
f S

�

=

�

03x1
K1 dS

�

+

�

H J K3 03x5
03x4 K2

�

uS (5.21)

with

K1 =
�

K ∗1 03x10
�

, with K ∗1 =





0 −g 0 0
g 0 0 0
0 0 0 0



 , (5.22)

K2 =
�

HRT HR∗I
�

, with HR∗I = HRT





cψI T sψI T
−sψI T cψI T

0 0



 , (5.23)

K3 =





1 0 0 0
0 1 0 0
0 0 1 1



 . (5.24)
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The specific forces and angular velocity in equation (5.21) are fed to the vestibular model
(5.11). In order to obtain a single state space model, the kinematic model (5.7), the vestibu-
lar model (5.11) and equation (5.21) are combined in the form





ẋ semi
ẋ oto

ḋS





︸ ︷︷ ︸

ẋ S

=





Asemi 06x6 06x14
06x6 Aoto Boto K1
014x6 014x6 AS





︸ ︷︷ ︸

Apred





x semi
x oto
dS





︸ ︷︷ ︸

x S

+





Bsemi H J K3 06x5
06x4 Boto K2

BS





︸ ︷︷ ︸

Bpred

uS

(5.25a)
�

ŷS
dS

�

︸ ︷︷ ︸

YS

=





C semi 03x6 03x14
03x6 C oto 03x14
014x6 014x6 I14x14





︸ ︷︷ ︸

C pred





x semi
x oto
dS





︸ ︷︷ ︸

x S

+





Dsemi H J K3 03x5
03x4 Doto K2

014x9





︸ ︷︷ ︸

Dpred

uS

(5.25b)

The linear MPC-scheme requires a linearized, discrete-time state-space model in the form

x S[k+ 1] = Ad x S[k] + Bd uS[k] (5.26)

Y S[k] = C d x S[k] + Dd uS[k] (5.27)

with

the state vector: x S ∈ Rnx , the state matrix: Ad ∈ Rnx×nx ,

the input vector: uS ∈ Rnu , the input matrix: Bd ∈ Rnx×nu ,

the output vector: Y S ∈ Rny , the output matrix: C d ∈ Rny×nx ,

the feedthrough matrix: Dd ∈ Rny×nu

and where k counts the discrete time steps. For a sample time Tsamp and for piecewise
constant inputs uS, the system from equation (5.25) can be solved analytically with the
following transformation [106]

x S(t) = eApred t x S(0) +

∫ t

0

eApred (t−τ)Bpred uSdτ

= eApred t x S(0) + eApred t(−A−1
pred)

 

e−Apredτ

t
�

�

�

0

!

Bpred uS for uS = const.

= eApred t x S(0) + A−1
pred

�

eApred t − Inx

�

Bpred uS (5.28)

Discretizing and applying equation (5.28) with the sample time Tsamp yields

x S[k+ 1] = eApred Tsamp x S[k] + A−1
pred

�

eApred Tsamp − Inx

�

Bpred uS[k]. (5.29)

The exponential term eApred Tsamp is a convergent power series [117]

eApred Tsamp = I + Apred Tsamp +
A2

pred T2
samp

2!
+ . . . (5.30)

The Taylor-series can be linearized for small sample times Tsamp with

eApred Tsamp ≈ I + Apred Tsamp. (5.31)
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Thus, the system 5.25 can be discretized with

x S[k+ 1] = (I + Apred Tsamp)
︸ ︷︷ ︸

Ad

x S[k] + Tsamp Bpred
︸ ︷︷ ︸

Bd

uS[k] (5.32a)

Y S[k] = C d x S[k] + Dd uS[k], with C d = C pred , Dd = Dpred (5.32b)

which corresponds to an explicit Euler discretization with conditional stability properties. A
linear equation in the form

φ̇(t) = λφ(t) (5.33)

exhibits the stability criteria [30]

|1+λTsamp| ≤ 1. (5.34)

Applying equation (5.34) to the system introduced in equation (5.25), λ complies with the
eigenvalues λi of the system matrix Apred for i ∈ {1 . . . nx}. In order to estimate a lower and
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Figure 5.4: Eigenvalues of the system matrix Apred . The eigenvalue with the largest real portion in terms of
absolute value has the value of λmin = −62.5.

upper limit for Tsamp, equation (5.34) is solved to

Tsamp ≤
2
|λi|

∀i ∈ {1 . . . nx}. (5.35)

Since all eigenvalues λi are located on the left complex half-plane including the origin and
only exhibit a real part, the minimum and maximum sample times yield

Tsamp,min = 0 s Tsamp,max = 0.032 s . (5.36)

The discretized model from equation (5.32) is included to an MPC algorithm. Figure 5.5
schematically shows the principal idea of an MPC method for a single-input, single-output
(SISO) system. The index k counts the discrete MPC time steps and i ∈ [1 . . . Hp], Hp <

∞, counts the discrete steps of the time horizon Hp. The discretized internal model from
equation (5.32) is used to predict the future behaviour of the system, starting at the current
time k, over the prediction horizon i = 1 . . . Hp. The predicted model’s output Y S[k, i] depends
on the input trajectory uS[k, i]. The second argument i of the discrete notation indicates that
the variable depends on the conditions at the time k. The solution of a numerical optimization
problem yields the predicted input uS[k, i]. The system’s output Y S[k, i] is gained by feeding
the prediction model with uS[k, i]. The output ŷS[k, i] (part of Y S) tracks the reference
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trajectory ŷV [k, i] over the future prediction horizon Hp.
For a calculated input trajectory uS[k, i], usually only the first input is send a command to the
simulator uS[k, 1]. The calculation process of the output calculation, the reference generation
and the input prediction is repeated at the time step k + 1 for a shifted time horizon Hp. As
the length of the time horizon Hp stays constant and slides along at each time step k, the
described MPC scheme is called receding horizon strategy. Another possibility is to apply
several discrete inputs [uS[k, 1], . . . , uS[k, i∗]] of the input trajectory uS[k, i] and to shift the
horizon by the number of applied inputs i∗ + 1.[32, 106]

horizon shift

Past Prediction
k k+ 1 k+ 2 k+ 3 k+ 4

k, 1 k, Hpk, i

reference signal ŷV
past output ŷS
predicted output ŷS
applied input uS
predicted input uS

Figure 5.5: Model predictive control scheme by using a receding horizon strategy.

5.4 Objective Function

The applied objective function J

J[k] =
Hp
∑

i=1

|| ŷS[k, i] − ŷV [k, i] ||2Q +
Hp
∑

i=1

|| dS[k, i] ||2R + (5.37)

Hu
∑

i=1

|| uS[k, i] ||2S +
Hu
∑

i=1

|| ∆uS[k, i] ||2T

penalizes deviations between perceived motions in a virtual vehicle ŷV and in a simulator ŷS
over the time horizon Hp. For an open-loop estimation of the MCA, the driving manoeuvre
is known a priori and therefore the inputs uV can be used over the prediction horizon Hp to
calculate the reference trajectory ŷV . In case of a closed-loop simulation with no available
prediction, one possibility is to keep uV [k, i] = uV [k, 1] for i = 1 . . . Hu.
The terms dS , uS and ∆uS penalize deviations from the neutral state to prevent workspace
overshoots on position, velocity and acceleration level. Deviations between two successive
inputs uS in the form

∆uS[k, i] = uS[k, i]− uS[k, i − 1] for i = 1 . . . Hu, (5.38)

with uS[k, 0] = uS[k− 1, 1] for i = 1
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are included to the objective function in order to penalize changes between the predicted
input uS[k, i] to the previous input uS[k, i − 1]. Thus, changes in translational acceleration
and angular velocity of two sequential MPC-steps are considered in the objective function
in order to gain smoother responses for the input uS. In the following, if the index i = 0
in [k, i], the values of the previous MPC-step [k − 1,1] are taken. Figure 5.6 illustrates the
partitioning of the prediction horizon Hp into three parts [106]. Hu is the control horizon
for the input uS with the assumption Hu ≤ Hp and ∆uS[k, i] = 0 for i ≥ Hu, resulting in
uS[k, i] = uS[k, Hu] ∀i ≥ Hu. This approach leads to a reduction in the number of optimiza-
tion parameters, resulting in a lower computation time. However, the performance of the
MPC is also reduced as uS[k, i] stays constant for i ∈ [Hu, Hp]. Still, keeping uS[k, i] constant
over [Hu, Hp] increases the stability of the MPC since a higher weighting is implicitly put on
the last optimization parameter uS[k, Hu] in relation to the other optimization parameters.
This yields that the workspace motions, which are part of the objective function, are taken
into account for a longer time horizon. The constraint horizon Hc assumes the constraints’
adherence for Hc ≤ Hp. As the constraints of the optimization scheme are defined in actua-
tor space and the actuator states dependent on uS and dS of the optimization scheme, both
signals need to be bounded. Decreasing the number of constraints results in a complexity
reduction of the optimization problem to reduce the computation time.
Defining the norms in equation (5.37), Q, R, S and T are diagonal weighting matrices. Ele-
ments of the Q matrix are estimated by

Q i,i =
κi,i

(τsemi/τoto)2
(5.39)

in order to normalize the various optimization parameters to the different units as well as
to the minimum perceived errors. It is assumed that the resolution of the vestibular system
is as large as the perception threshold for accelerations and angular velocities. Herein, the
rotational and translational perception threshold values of [141] are used (τsemi = 3◦/s and
τoto = 0.17m/s2). The factors κi, j additionally weight the optimization parameters relative
to each other. Elements of the R and S matrices are calculated analogously by

Ri,i
Si,i

�

=
ξi,i

(w S,max/w S,min)2
(5.40)

to normalize the different units and to correlate them to the approximated maximum/ min-
imum workspace values (w S,max/w S,min). Herein, the workspace capabilities listed in Ta-
ble 2.2 are used. The parameters κi,i and ξi,i can be set to 1 as an initial assumption,
whereas κi,i weight the perceived translational accelerations and perceived rotational ve-
locities to each other and ξi,i weight the translational and rotational motions of tripod and
hexapod. The hand-tuned weights are shown in Appendix D in Table D.1.

5.5 Prediction

As the objective function in equation (5.37) includes∆uS, which is defined in equation (5.38),
the state-space vector is augmented by

ξ[k, i] =

�

x S[k, i]
uS[k, i − 1]

�

, (with uS[k, 0] = uS[k− 1,1] for i = 1) (5.41)
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horizon shift

Past Prediction
k k+ 1 k+ 2 k+ 3 k+ 4

k, 1 k, Hpk, Hu

dS,max
dS

uS,max
uS

k, Hc

Figure 5.6: Division of the prediction horizon Hp into the control horizon Hu and the constraint horizon Hc .

at a time step k ∈ N over i = 1 . . . Hp, leading to the state-space representation

�

x S[k, i + 1]
uS[k, i]

�

︸ ︷︷ ︸

ξ[k,i+1]

=

�

Ad Bd
0 I

�

︸ ︷︷ ︸

Aaug

�

x S[k, i]
uS[k, i − 1]

�

︸ ︷︷ ︸

ξ[k,i]

+

�

Bd
I

�

︸ ︷︷ ︸

Baug

∆uS[k, i] (5.42a)

Y S[k, i] =
�

C d 0
�

︸ ︷︷ ︸

C aug

�

x S[k, i]
uS[k, i − 1]

�

︸ ︷︷ ︸

ξ[k,i]

+

�

Dd
0

�

︸ ︷︷ ︸

Daug

∆uS[k, i]. (5.42b)

An explicit formulation predicts the future outputs Y S[k, i] of the system over the horizon
i = 1 . . . Hp under consideration of the current state x S[k], the predicted input uS[k, i] for
i = 1 . . . Hu, the previous input u[k, i − 1] and the input changes ∆uS[k, i], i = 1 . . . Hu.
The following estimations are based on the conditions at the time step k over the time horizon
i = 1 . . . Hp. Applying equation (5.42), the following time steps yield

Y S[k, 1] = C augξ[k, 1] + Daug∆uS[k, 1] (5.43)

Y S[k, 2] = C augξ[k, 2] + Daug∆uS[k, 2]

= C aug

�

Aaugξ[k, 1] + Baug∆uS[k, 1]
�

+ Daug∆uS[k, 2]

Y S[k, 3] = C augξ[k, 3] + Daug∆uS[k, 3]

= C aug

�

A2
augξ[k, 1] + Aaug Baug∆uS[k, 1] + Baug∆uS[k, 2]

�

+ Daug∆uS[k, 3]

The procedure for calculating the remaining outputs over Hp can be performed in a similar
manner. The predicted outputs Y S over the prediction horizon Hp can be expressed in matrix
vector form in equation (5.44). The subscript aug of the matrices Aaug , Baug , C aug , Daug is
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neglected in the following for the sake of simplicity
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︸ ︷︷ ︸

∆US[k,:]

where Y S[k, :] and ∆US[k, :] describe the complete column at the time instant k. Similar to
equation (5.38), the input vector is

US[k, :] = κP uS[k− 1, 1]
︸ ︷︷ ︸

US,P

+κ ∆US[k, :] with κP = 1Hu×1 ⊗ Inu×nu
, (5.45)

κ= LHu×Hu
⊗ Inu×nu

, (5.46)

US,P = κP uS[k− 1,1], (5.47)

where LHu×Hu
is a lower triangle-matrix, filled with ones, 1Hu×1 is vector, filled with ones, and

⊗ is the Kronecker product.
The objective function in equation (5.37) can be further reduced. The free response of the
system 5.44 is defined to

Y S, f [k] = Ψ[k]ξ[k, 1] with ∆US[k, :] = 0. (5.48)

The deviation E between the free response Y S, f and the reference trajectory Y V is defined to

E = Y S, f − Y V (5.49)

where Y V includes the reference values ŷV [k, i] for i . . . Hp. The indication of k and i is partly
disregarded in the following transformations for the sake of clarity. The first term in the
objective function from equation (5.37) can be rewritten in the form

Y S − Y V = Ψξ+ θ∆US − Y V = E + θ∆US (5.50)
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Under consideration of equations (5.45) and (5.50), the objective function from equation (5.37)
can be expressed by

J = (E + θ∆US)
T Q (E + θ∆US) + (US,P + κ∆US)

T S (US,P + κ∆US) (5.51)

+ ∆UT
S T ∆US

=∆UT
S (θ

T Qθ + κT Sκ + T)∆US + 2∆UT
S (θ

T QE + κT SUS,P) (5.52)

+
hhhhhhhhhET Q E +UT

S,P SUS

The crossed out terms are constant at every discrete time instance over i = 1 . . . Hp, and hence
cannot be influenced by ∆UT

S . Combining the terms in equation (5.52), the reduced form of
the objective function is

J =
1
2
∆UT

S H∆US + ∆UT
S g (5.53)

with the Hesse matrix H and the gradient g , respectively defined to

H =2(θ T Qθ + κT Sκ + T) (5.54)

g =2(θ T QE + κT SUS,P). (5.55)

5.6 Linearized Actuator Constraints

The tripod’s and hexapod’s actuators exhibit a minimum and a maximum length qn,min, qn,max
for n = t, h by construction. Actuators’ velocities and accelerations are also limited for both
systems. These mechanical restrictions are included into the optimization problem. The
equations for positions, velocities and accelerations of the actuators are nonlinear because of
the kinematic structure of a hexapod/tripod [115]. In this Section, a linearization approach
is used to reduce the computation time for each optimization problem. It is the result of
collaboration with Christoph Lankes [104].
In Chapter 2.4 , Figure 2.3 depicts the parallel kinematic chain of a parallel robot. For the
considered motion system, consisting of tripod and hexapod, the hexapod’s kinematic chain
includes a CRP, for which reason equation (2.19) is applied. For the tripod, the kinematic
chain from equation (2.20) is used. Equation (2.22) calculates the actuator lengths for hexa-
pod qh,i , i = 1 . . . 6 and tripod qt,i , i = 1 . . . 3. The workspace configuration w S is defined for
the tripod as

w S,t = [I rI T,x I rI T,y ψI T ]
T (5.56)

and for the hexapod as

w S,h = [T rT H,x T rT H,y T rT H,z ϕT H θT H ψT H]
T . (5.57)

Starting from the differential equality

q̇n,l =
1

2 qn,l

dq2
n,l

dt
= Jn,l(w S,n) ẇ S,n for

¨

n= t, h

l = actuator number
(5.58)

and considering that the actuator lengths are related to the workspace of the system through
equation (2.22), the change of actuator length in equation (5.58) can also be written in
terms of workspace velocities: applying the chain rule of derivation and considering the
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matrix/vector representation from equation (2.23). Herein, Jn,l(w S,n) defines the inverse Ja-
cobian matrix for n= t, h and the actuator number l. The computation of Jn,l depends on the
current workspace configuration w S,n. These nonlinear terms are kept constant over the time
horizon Hc. Since the workspace variables at the time instant k are not known, the previous
workspace variables w S,n[k − 1,1] are used. The method confers a linear relation between
workspace and actuator space variables over the time horizon which can be transformed to

q̇n,l[k, i] = Jn,l(w S,n[k− 1,1]) ẇ S,n[k, i]

= Jn,l,dS
dS[k, i] + Jn,l,uS

uS[k, i] for i = 1 . . . Hc (5.59)

where the matrices Jn,l,dS
and Jn,l,uS

include the partial derivatives from the Jacobian ma-
trix Jn,l(w S,n) in equation (5.58). The nonlinear terms of Jn,l(w S,n) are derived in equa-
tion (2.27). The structure of matrices Jn,l,dS

and Jn,l,uS
is chosen such that the vector dS (cf.

equation (5.8)) and the input vector uS (cf. equation (5.3)) from the prediction model in
equation (5.25) can be used. The split of ẇ S,n to dS / uS yields, for the tripod,

ẇ S,t = [I ṙI T,x I ṙI T,y
︸ ︷︷ ︸

part of dS

ψ̇I T
︸︷︷︸

part of uS

]T (5.60)

and, for the hexapod,

ẇ S,h = [T ṙT H,x T ṙT H,y T ṙT H,z
︸ ︷︷ ︸

part of dS

ϕ̇T H θ̇T H ψ̇T H
︸ ︷︷ ︸

part of uS

]T . (5.61)

Numerically integrating equation (5.59) yields

qn,l[k, i + 1] = qn,l[k, i] + Tsamp q̇n,l[k, i]

= qn,l[k, i] + A∗actξ[k, 1] + B∗act∆uS[k, i] for i = 1 . . . Hc (5.62)

where the matrices Jn,l,dS
and Jn,l,uS

are augmented to A∗act and B∗act , respectively, using
the augmentation of the model’s input from uS to ∆uS (cf. equation (5.42)). The vector
ξ includes x s (cf. equation (5.41)) and x s includes ds (cf. equation (5.25)). All actuator
lengths qn,l from equation (5.62) for n= t, h and the number of actuators l are included in

qS[k, i + 1] = qS[k, i] + Aactξ[k, 1] + Bact∆uS[k, i] for i = 1 . . . Hc (5.63)

where the matrices A∗act and B∗act are extended to Aact and Bact (considering all actuators).
The equation (5.63) for the actuator lengths qS can be expressed by a vector/matrix descrip-
tion over the constraint horizon Hc > Hu

qS[k, :] =























qS[k, 1]
qS[k, 2]

...
qS[k, Hu]

qS[k, Hu + 1]
...

qS[k, Hc]























= qS,0 + Ψact ξ[k, 1] + θ act∆UT
S [k, :] (5.64)

where the state qS[k, 1] is used over the complete horizon Hc in the form

qS,0 = ( 1Hc×1 ⊗ Ing×ng
) qS[k, 1] (5.65)
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with the number of actuators ng . The set-up of the matrices Ψact and θ act follows a similar
procedure as for the matrices Ψ and θ in equation (5.44). Herein, the prediction model
from equation (5.42) is used to calculate the input uS[k, i] and dS[k, i] over the time horizon
i = 1 . . . Hc. Further results can be found in [104].
To calculate the actuator velocities q̇S over the time horizon Hc, equation (5.59) can also be
transformed to an explicit vector/matrix representation

q̇S[k, :] =









q̇S[k, 1]
q̇S[k, 2]

...
q̇S[k, Hc]









= Ψact,vel ξ[k, 1] + θ act,vel ∆UT
S [k, :] (5.66)

where the matrices Ψact,vel and θ act,vel have a similar structure as the matrices Ψact and θ act .
The actuator accelerations q̈S are estimated by a discrete differentiation of the actuator ve-
locities q̇S in the form

q̈S[k, i + 1] = (q̇S[k, i + 1]− q̇S[k, i])/Tsamp, for i = 1 . . . Hc − 1. (5.67)

5.7 Quadratic Programming Problem

The QP-problem is formulated to

min
∆US

J[k] (5.68)

s.t. ∆uS,min ≤∆uS[k, i]≤∆uS,max , for i = 1 . . . Hu (5.69)

∆uS[k, i] = 0, for i = (Hu + 1) . . . Hp

uS,min ≤ uS[k, i]≤ uS,max , for i = 1 . . . Hc

dS,min ≤ dS[k, i]≤ dS,max , for i = 1 . . . Hc

qS,min ≤ qS[k, i]≤ qS,max , for i = 1 . . . Hc

q̇S,min ≤ q̇S[k, i]≤ q̇S,max , for i = 1 . . . Hc

q̈S,min ≤ q̈S[k, i]≤ q̈S,max , for i = 1 . . . Hc .

Constraints are included in form of inequality equations for the inputs ∆uS and the actu-
ator strokes qS, the actuator velocities q̇S and the actuator accelerations q̈S where the index
min and max indicate the lower and upper limit for the respective variable. The present work
uses the QP-solver qpOASES [65] to solve the optimization problem with quadratic objectives
and linear constraints.

5.8 Simulative Analysis

Results are shown for a manoeuvre which includes an acceleration and deceleration driving
scenario in longitudinal direction. For the estimation, a prediction horizon with the discrete
time steps Hu = 50, Hc = 50 and Hp = 300 and a sampling time Tsamp = 0.01 s is used.
The choice of the applied weighting parameters κi,i and ξi,i, introduced in equations (5.39)
and (5.40), are mainly based on a suitable motion distribution between tripod and hexapod
system to fully exploit their workspace capabilities. The hand-tuned weights are shown in
Appendix D in Table D.1. Perceived motions in a real vehicle using equations (5.10) are
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used as reference signals to determine deviations between the expected driver’s perception
compared to the simulator’s perception. To classify deviations, an error function is defined

eξ[k] = sgn(yS,ξ[k]) · sgn(yV,ξ[k]) · ||yS,ξ[k]− yV,ξ[k]|| (5.70)

for k = 1 . . . kend and ξ = {x , y, z, ϕ, θ , ψ}. The sign of the cues coming from the simulator
and the vehicle are included in the definition of the error amplitude in such a manner that the
error will be negative if the vehicle and the simulator cues are of opposite sign. Participants
typically rate sign errors worse compared to scaling errors as the driver perceives an opposite
motion to its expectation [37].
The left part of Figure 5.7 shows the specific force H f̂S,x as well as the reference trajectory

V f̂V,x . The right part of Figure 5.7 clarifies deviations between H f̂S,x − V f̂V,x . The dashed
line represents the perception threshold based on [141]. Analogous to the estimation of
the weighting parameters in equation (5.39), it is assumed that errors below the perception
threshold are not perceived. The right plot of Figure 5.7 mainly reveals scaling errors when
the reference signal (the left plot) is larger than approximately 1m/s2. Sign errors are gen-
erally below the perception threshold. Figure 5.8 shows the angular velocities Hω̂S,y with
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Figure 5.7: Left Plot: Perceived specific forces H f̂S,x and V f̂V,x . Right plot: Estimated error between H f̂S,x and

V f̂V,x based on equation (5.70).

respect to the y-axes in the H FoR as well as the corresponding reference V ω̂V,y . The right
part of Figure 5.8 applies equation (5.70) to the signals Hω̂S,y and V ω̂V,y with the corre-
sponding perception threshold of [141]. The values for Hω̂S,y significantly exceed those for
V ω̂V,y as a result of the tilting function of equation (5.20) providing a translational accelera-
tion through a corresponding rotation of the hexapod platform. Nevertheless, deviations are
mainly below the perception threshold.

The following Section focuses on approximations of the actuator states. Figure 5.9 shows
the actuator strokes qh,l , velocities q̇h,l and accelerations q̈h,l for the six actuators of the hexa-
pod. For the sake of brevity, the tripod’s actuator strokes qt,l , actuator velocities and actuator
accelerations are depicted in Appendix B. These figures reveal the fulfilment of the corre-
sponding actuator limits. Deviations between the approximated actuator states and the ac-
tual actuator states q real, q̇ real and q̈ real are compared to evaluate the error over the constraint
horizon Hc. The bottom, right plot of Figure 5.9 shows the maximum error of the actuator
length over the considered manoeuvre. Herein, the maximum error at each sampling point k
over the constraint horizon for i = 1 . . . Hc is calculated by

εmax,time[k] =max
i
(||qn,l[k, i]− qn,l,real[k, i]||) (5.71)
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Figure 5.8: Left Plot: Perceived rotational velocity Hω̂S,y and V ω̂V,y . Right plot: Estimated error between Hω̂S,y
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Figure 5.9: Actuator stroke (top, left), velocity (top, right) and acceleration (bottom, left) of the hexapod for the
considered manoeuvre. The values are normalized to the maximum and minimum limits. The maximum error in
the actuator stroke over the constraint horizon Hc (bottom right).
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The maximum magnitudes of the error are in a reasonable range. The error can be com-
pensated by the introduction of safety margins. The estimated error values εmax,time depend
largely on the driving scenario. A correlation can be seen when comparing the time instances
of the error peaks (bottom, right plot of Figure 5.9) and the time instances of the actuator
velocities’ peaks (top, right plot of Figure 5.9). The peaks of both plots relate to the same
time instances which shows that more dynamic motions of the simulator yields higher errors
εmax,time. This is not surprising as at these points the deviation to the operating point in-
creases more rapidly over the time horizon than at time sections with lower actuator motions.

In the following Section, two analyses are performed. First, the influence of the constraint
horizon on the actuator error is shown. Second, the influence of the constraint horizon Hc and
the input horizon Hu on the deviation between perceived and expected motions is analysed.
Regarding the first analysis, Table 5.1 lists two different types of errors for the actuator
lengths and actuator velocities of the hexapod and tripod system:

1. The absolute maximum error εn,max is determined by

εn,max =
max
k,i,l
(||qn,l[k, i]− qn,l,real[k, i]||)

qn,max
· 100%, (5.72)

over the complete manoeuvre k = 1 . . . kend , including the constraint horizon i = 1 . . . Hc,
all actuators l and for the tripod and hexapod n= t, h, respectively. The errors are taken
relative to the maximum actuator strokes of qn,max for the hexapod and tripod. In other
words, the maximum error εn,max is estimated considering all time horizons Hc for the
manoeuvre (kend time instances). Increasing εn,max are assumed for larger Hc as the
deviation to the operating point of the linearization increases.

2. The average errors εn,avg determined from the maximum errors for each time horizon
Hc over the complete manoeuvre kend and actuators l are calculated by

εn,avg =

∑kend
k=1 max

i,l
(||qn,l[k, i]− qn,l,real[k, i]||)

kend qn,max
· 100%, (5.73)

for i = 1 . . . Hc, n= t, h and the number of actuators l. In other words, the average error
εn,avg calculates the maximum errors for each time horizon Hc (kend errors in total) and
averages them for the considered manoeuvre (kend time instances). Thus, a comparison
between εn,avg and εn,max gives an indication about the incidences of εn,max to εn,avg for
the considered manoeuvre.

The errors εn,max and εn,avg are estimated for the actuator velocities q̇ in the same way.
The errors are taken relative to the maximum actuator velocities q̇max for the hexapod and
tripod.
Table 5.1 includes the errors estimated for a constraint horizon with the discrete time steps
Hc = 25, Hc = 50 and Hc = 100 based on the considered driving manoeuvre (Hu = 50 in all
calculations). Comparing both settings, the errors for the longer horizon exhibit higher values
compared to those obtained for the shorter horizon, mainly resulting from the linearization
of the actuator states. The longer the horizon, the more pronounced the deviation to the
operating point of the linearization becomes. Put differently, this shows that εn,max and εn,avg
become smaller towards the beginning of the constraint horizon, which is important in order
not to run into actuator limits. The maximum error gives an indication about the safety
margin which is needed for the constraints in the optimization.
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Table 5.1: Maximal errors εn,max (equation (5.72)) and average errors εn,avg (equation (5.73)) for the hexapod
and tripod based on the linearization on the actuator strokes q and velocities q̇.

Hc = 25 Hc = 50 Hc = 100

q q̇ q q̇ q q̇

Hexapod

εh,max [%] 1.03 5.70 1.18 10.08 1.73 10.08

εh,avg [%] 0.11 0.94 0.15 1.94 0.22 1.94

Tripod

εt,max [%] 0.22 5.65 0.83 17.33 1.81 42.57

εt,avg [%] 0.01 0.62 0.04 1.92 0.11 4.96

Regarding the second analysis, a comparison is performed. Scaling and sign errors are
summed up over the considered manoeuvre in equations (5.74) and (5.75) and divided by the
number of discrete sampling points kend as well as the otolith’s and semicircular’s perception
threshold (τsemi = 3 ◦/s2 and τoto = 0.17m/s2 [141]).

Eξ,scale =
kend
∑

k=1

εξ[k]

kend τsemi/oto
· 100 % ∀εξ > 0 (5.74)

Eξ,si gn =
kend
∑

k=1

εξ[k]

kend τsemi/oto
· 100 % ∀εξ < 0. (5.75)

Eξ,scale and Eξ,si gn are listed for longitudinal accelerations and pitch velocities in Table 5.2.
In the following, effects of the defined error norms Eξ,scale and Eξ,si gn and the computation
time in relation to horizon’s lengths Hu and Hc are discussed. Hereby, the maximum com-
putation time tmax to solve an optimization problem at an MPC step k for k = 2 . . . kend is
considered. Using a hot-start option in the optimization solver, the initial MPC-step k = 1 is
not considered because it is performed in the initialization phase of the simulator. The esti-
mations are conducted with an i7-6820HQ CPU @ 2.70GHz in Matlab [109]. It is assumed
that a decrease in Hc and Hu leads to a decline in tmax .
Results in Table 5.2 show that variations in Hc do not have much influence on Eξ,scale and
Eξ,si gn. However, smaller values of Hc yield lower tmax because the number of constraints
decreases. As for Hu, modifications have greater effects on Eξ,scale, Eξ,si gn and tmax compared
to Hc since the number of optimization parameters are reduced.
In summary, two assumptions can be verified. Firstly, partitioning of the time horizon has no
significant effect on the quality of the MCA but leads to significant decreases in the computa-
tion time. Secondly, the linearization approach is justifiable because a long-term forecast of
the actuator states over the prediction horizon is not implicitly necessary.

5.9 Discussion

The following Section is a digression which discusses the differences between a workspace-
based and an actuator-based description of the optimization parameters. The MCA approach
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Table 5.2: Summarized sign and scaling errors based on equations (5.74) and (5.75) over the considered
manoeuvre.

Hc = 25 Hc = 50 Hc = 100 Hu = 25 Hu = 50 Hu = 100

Hu = 50 Hc = 50

Longitudinal Accelerations

Ex ,scale [%] 222.98 222.98 222.98 235.41 222.98 220.75

Ex ,si gn [%] -12.93 -12.93 -12.93 -14.41 -12.93 -10.18

Pitch Angular Velocities

Eθ ,scale[%] 0.38 0.38 0.38 0.39 0.38 0.35

Eθ ,si gn [%] -0.02 -0.02 -0.02 -0.01 -0.02 -0.04

Maximal CPU time

tmax [s] 0.042 0.273 0.334 0.012 0.273 3.63

shown in this Chapter uses workspace coordinates as optimization parameters (cf. equa-
tion (5.3)). Thus, the specific forces and the angular velocities can be directly expressed
by the relative kinematics. Including the actuator constraints of the motion system to the
optimization problem requires to compute the nonlinear, inverse kinematics. Since a usual
QP-solver can only handle linear inequality constraints, a direct integration of the inverse
kinematics is not possible. Thus, a linearization scheme is described in this Chapter to ap-
proximate the inverse kinematics for the parallel structure.
Another possibility is to use an actuator-based approach with the actuator accelerations q̈S
defined as the optimization parameters in the form

uS = q̈S . (5.76)

This approach has been published in [49] and the following Section is based on this publi-
cation. It is the result of a collaboration with Florian Oberleitner [128]. Advantages lie in
the linear integration of the actuator constraints on position, velocity and acceleration level
to the optimal control problem. The direct kinematics is used to estimate the specific forces
and angular velocity which are expressed in workspace coordinates. As described in Chap-
ter 2.5.1, estimating the direct kinematics for parallel kinematic structures usually implies
solving a nonlinear system of equations, which can be handled by a numerical scheme, such
as the Newton-Raphson method [115]. This often goes along with a high computational
effort. Thus, in [49], two approximations of the direct kinematics are proposed. Results
demonstrate significant reductions in the computation time, while showing only small devia-
tions from the exact kinematics. Though, the approach is applied to a hexapod structure. An
extension to redundant structures makes a description of the optimization problem consid-
erably more complex. Along with this, the approximations of the direct kinematics are also
based on a linearization scheme which yields deviations over the time horizon. The simula-
tor, used in this thesis, is controlled by workspace-based commands and does not provide an
interface to directly control the actuators. Thus, the following developments are based on a
workspace-based approach of the optimization parameters.
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5.10 Chapter Summary

In this Section, an MCA for a nine DoFs motion simulator based on an MPC-approach is
proposed. The Section focuses on the distribution of the redundant DoFs based on a global
optimization scheme. The algorithm takes into account the nonlinearities of the kinematic
chain, comprising a hexapod mounted on a tripod motion platform. The nonlinear terms are
handled by a linearization approach in order to obtain a linear prediction model. The method
presented here can be applied to other motion systems. The objective function mainly min-
imizes the deviation between perceived motions of a driver in a real vehicle compared to
those of a simulator driver. In order to integrate actuators’ limitations on position, velocity
and acceleration level for the tripod and hexapod, a linearization approach was used that
applied the constraints linearly on the optimization problem, leading to a reduction in com-
putation time.
In the subsequent section, an experiment with test persons is conducted to determine the
motion cueing quality of the proposed MCA compared to a benchmark MCA. The algorithm
at this stage is utilized as an open-loop application.





Chapter 6

Open-Loop, MPC-Based MCA (MCAOPT)

The content of the following Chapter have been published in [54, 55].

This Chapter describes the evaluation of the proposed MCA approach introduced in Chap-
ter 5. The version of the MCA used in this Chapter is abbreviated by MCAOPT. An experiment
was conducted with 35 participants. The experiment aimed at investigating the potentials
of the MCAOPT compared to a benchmark algorithm (MCABM) which is the default motion
cueing that was provided with the motion system (cf. Figure 1.3). The MCABM is based on an
optimization scheme wherein the reference signals are manipulated by filter elements [77].
The evaluation of the MCAOPT is performed by using the continuous rating method (CR). In
the process, discrepancies between the expected motions obtained from the visualization and
the actual perceived motions are rated over time.

6.1 Related Work

Throughout the work, motion discrepancies are divided into [1]

1. Objective Motion Incongruencies (OMIs): Physical deviations between desired vehicle
motions and actual simulator motions.

2. Perceived Motion Incongruencies (PMIs): Perceived deviations between expected vehi-
cle motions and perceived simulator motions.

In the experiment, the continuous rating is used to measure the PMIs. In [37, 38], the
continuous rating was used in a first experiment to measure PMIs between three different
MCAs. Results show that the rating method was able to consistently measure PMIs with
participants of different backgrounds. Results were compared to an offline rating method
to check the validity of the novel rating method. An advantage of the continuous rating
method is that PMIs can be analysed to a higher temporal resolution in order to determine
the origin of the motion cueing errors. In [36], the method was applied in a comparison
between a filter-based MCA and an optimization-based MCA to measure the motion cueing
quality. Similar to the works [37, 38], the rating method showed reliable and repeatable
results within and between the participants.
The basic approach of the continuous rating method was applied in the evaluation of the
MCAOPT. However, as a new rating scale and experimental design are introduced, ratings
are checked for reliability and validity. Additionally, an oral rating is used to validate the
continuous rating [36, 37, 137].

75
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6.2 Contribution

One major objective of this Chapter is the evaluation of MCAOPT which is the reason a driving
simulation experiment was conducted. The first research question is aimed at investigating
whether the continuous rating procedure is a valid method to determine PMIs in the current
setup. Due to the novelty of the rating method, introduced in [36, 37], the current setup
is still to be demonstrated. For this reason, ratings are analysed for reliability and validity
within and between the participants. Reliability is checked by estimating the Cronbach’s al-
pha [40]. Validity is verified by comparing the results with an additional post-hoc rating [37].
The rating methods used in the study are comparable to previous works [36, 37] but differs
in the experimental design. In [36], a comparison between a filter and an optimization-
based MCA is conducted whereas, in this study, the potential of the proposed MCA approach
against a state-of-the-art, optimization-based benchmark algorithm is performed. Comparing
the simulator architectures, the simulator used in [36] probably exhibit higher workspace
capabilities. The second research question aims at illustrating the potential of the novel MCA
compared to a state-of-the-art optimization-based MCA for the nine DoFs motion system. Be-
fore the experiment was conducted, it was unknown whether the two algorithms, which are
both optimization-based, would result in measurably different PMIs. In a last step, a rating
model RMM is developed, which is fitted on the measured ratings to obtain the parameters
for a model that can predict PMIs from OMIs. The structure of the model is based on the
approach in [37] but differs in weighting parameters and transfer functions.

6.3 MCAs Used for Comparison

This Section describes the configuration of the MCAOPT and the structure of MCABMwhich
were used in the experimental study.

6.3.1 MCAOPT

The structure of the MCAOPT is shown in Figure 5.3. The MCAOPT did not have the capability
to run for closed-loop applications at the time of conducting the experiment. Thus, the
algorithm was used as an open-loop MCA. The driving dynamics data was measured for a
pre-defined driving manoeuvre. The MCAOPT calculates the simulator’s motion commands in
an offline pre-processing step using the measured driving dynamics as an input signal. Since
the driving manoeuvre was known a-priori, the inputs uV could be used over the prediction
horizon Hp to calculate the reference trajectory yV which leads to an ideal prediction (c.f.
the objective function introduced in equation (5.37)). The MPC-scheme is conduced with a
sample time of Tsamp = 0.01 s and a time horizon THp

= Hp · Tsamp = 300 · 0.01 s = 3 s. The
hand-tuned weights are shown in Appendix D in Table D.2.

6.3.2 Benchmark MCABM

A benchmark algorithm from the simulator’s manufacturer [77] is taken for evaluation and
comparison on the nine DoFs simulator. The algorithm is also based on an optimization
scheme and includes a vestibular model. The structure of the objective function is compa-
rable to the one in equation (5.37). The benchmark algorithm applies a prefiltering of the
reference ŷV and exhibits the capability to run in real-time, which constitute main differences
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between the two algorithms used in the current study. Translational accelerations are filtered
into high frequency signals functioning as translational references. Low frequency signals are
transformed to respective tilt-angle signals. The MCAOPT, by contrast, uses a single optimiza-
tion problem to solve the redundant DoFs. An additional difference between the algorithms
probably exists on the time horizon. For MCAOPT, the prediction time is 3s with an ideal
prediction reference. The prediction time and the prediction strategy are unknown for the
benchmark algorithm. The integration method of workspace restrictions is also not stated
in [77].

6.4 Experimental Evaluation

The experiment was conducted in the nine DoFs simulator at the BMW Group (cf. Figure 1.3)
with 35 participants (8 females) between the age of 23-59 (µ: 33 (cf. equation (6.4)); σ:
10.34 (cf. equation (6.5))). The participants were students or employees at the Technische
Universität München or the BMW Group. Of the participants, 17 participants had never expe-
rienced a driving simulator. For the remaining participants, the driving simulator experience
ranged between: 1-3 times (7), 4-6 times (5), and more than 6 times (6). All the participants
own a driving licence. The mean mileage is approx. 15286 km per year (σ: 9 829 km). One
participant had to prematurely terminate the experiment due to technical problems. One
participant aborted the experiment because of motion sickness.

6.4.1 Rating Procedure

The measurement procedure and the structure of the experiment follows the procedure pro-
posed in [36, 37]. Participants rate the PMIs continuously using a rotational knob located at
the central console of the mockup, depicted in Figure 6.2. Consequently, a time- and position-
dependent rating is obtained. The PMIs are rated using an 11-point scale that is displayed
on a coloured bar on the driving simulation screen. A rating of 0 represents no PMI („real
driving sensation“) whereas a rating of 10 denotes a high PMI („large motion mismatch“).
The maximum rating was anchored in a training session before the experiment where several
manoeuvres exhibited large OMIs. The participants were instructed such that a rating of 10
was reached at least once in the training session, in order to obtain a reference for the CR
(cf. Figure 6.1).

real driving sensation large motion mismatch

0 1 2 3 4 5 6 7 8 9 10

Figure 6.1: Scale [0-10] rating the PMIs.

An additional post-hoc rating (PR) at the end of each CR is used to evaluate the reliability
and the validity of the CR [37]. The PR uses the same relative scale as the CR with the
exception that ratings higher than 10 are possible to examine the anchoring of the training
session. To ensure comparability, the MCABM and MCAOPT are tested for the same pre-
recorded driving manoeuvre. The driver can completely concentrate on the rating in the
offline simulation as driver inputs are not required.
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Figure 6.2: Rating knob for the CR located on the central console of the mockup.

6.4.2 Structure of the Experiment

A training exercise at the beginning of each experiment is conducted to familiarize partic-
ipants with the simulator environment and the rating procedure. The training exercise is
performed twice. If the ratings during the training exercise was inconsistent (judged by the
experiment leader, based on visual inspection), the training was repeated a third time. The
manoeuvre of the training sessions differs from the above-mentioned manoeuvre used in the
subsequent experiment. The training manoeuvre contains an overland and an inner-city por-
tion with a total duration of about 2 minutes. The track exhibits several turns and curves
with different radii. Besides, various longitudinal acceleration and deceleration manoeuvres
are included to cover a broad range of driving dynamics requirements.
Following training, the experiment commenced, in which a pre-recorded manoeuvre was
used with a duration of five minutes. Participants were asked to rate the PMIs using CR. The
track was repeated four times for each of the two MCAs. Ordering of the eight simulation
trials is randomly permuted during the experiment. After each rating, the participant was
allowed a short break of two minutes before the next rating started. The total experiment for
a participant lasted about 1.5 h.

6.4.3 Independent and Dependent Variables

Independent variable in the experiment is the MCA (two levels: MCABM and MCAOPT). These
algorithms are embedded in a within-subject design. By these means, both algorithms are
compared, in a four-times randomly paired comparison.
The driving manoeuvre used is a representative simulator drive, consisting of overland and
inner-city elements as depicted in Figure 6.3. The track is divided into ten parts which are
listed in Table 6.1.

Dependent variables are the two rating methods (CR and PR). The CR rates the PMIs for each
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of the eight simulation trials. The PR rates the overall PMIs at the end of each simulation
trial.

Table 6.1: The driving manoeuvre used in the experiment is divided following ten parts.

1. Acceleration proce-
dure

Medium-strong acceleration to approx. 80 km/h.

2. Overland course 1 Overland course with long curves at approx. 80 km/h.
3. Roundabout Strong deceleration from approx. 80 km/h to ap-

prox. 30 km/h. Taking the first exit in the roundabout
(75◦ turn). Medium-strong acceleration to approx. 80
km/h.

4. Overland course 2 Overland course with largely long curves at 90 km/h.
5. Sharp hilltop 1 Crossing a hill with a sharp top at approx. 60 km/h.
6. Sharp turn 1 Long right turn followed by a sharp left turn at approx.

60 km/h.
7. Sharp S-curves Sharp S-curves at 50 km/h.
8. Sharp turn 2 Extended 90◦ left turn at approx. 60 km/h.
9. Sharp hilltop 2 Crossing a hill with a medium sharp top 70 km/h.
10. Deceleration proce-

dure
Medium-strong deceleration from 70 km/h to 0 km/h.

Starting point

1

2

3

4 5

6

7
8 9 10

End point

Village B

Village A

80

50

100
80 50

Course length ≈ 5 km
Duration ≈ 5 min

Figure 6.3: The driving manoeuvre used in the experiment, consisting of overland and inner-city elements. The
track is divided into ten parts which are listed in Table 6.1.

6.4.4 Structure of the Rating Model

A model proposed in [37] aimed at describing the CR based on the vehicle and simulator mo-
tions. The model can be divided into the perception subsystem P̃S and the rating subsystem
R̃S (see Figure 6.4). An application area consists in the integration of the model into the cost
function in equation (5.37) replacing the perception system model (cf. Figure 5.3). Thus,
further information is included in the cost function. Besides the perception system model,
ratings of perceived motion incongruencies are considered as well. Furthermore, the tuning
of the algorithm is simplified by finding a compromise between tilt motions and translational
motions.
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In this work, the approaches of [37] are adopted, evaluated and applied on the current ex-
periment. In the following, the original model - as proposed in [37], is briefly described.
Adaptations that were made in the current study will be discussed later. Input of P̃S is the
differences between the simulator motions yS and the expected motions yV of a virtual ve-
hicle for the x−, y− and z− translational and rotational directions (cf. Figure 5.3). The six
weighting parameters W̃ are determined by a least-square approach. A moving averaging
filter in the form

H[z] =
1+ z−1 + · · ·+ z−N+1

N
(6.1)

with the total number of time samples N and with an additional offset C is defined to fit the
output P̃(t) of the system P̃S to the rating R(t). In [37], the parameters are defined to N = 3
and C = 0.087. Output of R̃S is the simulated rating R̃(t).
The rating model by [37] (referred to here as RMC) is modified to a rating model (referred to
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∑
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P̃S R̃S

Figure 6.4: Model of the rating system [37].

here as RMM) that exhibits basically the same structure as in Figure 6.4. Since the parameters
used in RMC are used for lateral motion ratings, a new parameter set is proposed in this work.
The weighting parameters W̃ = [w1 . . . w6] for the RMM are obtained by an optimization
problem which is defined in the form

min
W̃

N
∑

l=1

�

R[l]−H[z]
6
∑

i=1

�

wi ||yS,i[l]− yV,i[l]||
�

�2

(6.2)

s.t. W̃ ≥ 0

where R is the actual rating of the manoeuvre with sampling times [1 . . . N]. The weighting
parameters W̃ transform the six-dimensional deviations of the simulation into one dimen-
sion to make a comparison with the one dimensional rating R(t) possible. The parameter
optimization problem is solved by a global search approach under the use of a multi-start
algorithm [107].
The transfer function’s dimension N in equation (6.1) is estimated by including the opti-
mization problem from equation (6.2) into an additional grid search scheme. Estimating the
root-mean-square (rms) ||R(t) − R̃(t)||rms for each N ∈ [1 . . . Nmax , N], the N -value with the
minimum rms-value is taken for the final model.

6.5 Objective Motion Incongruencies (OMIs)

Figure 6.5 compares the resulting physical motions of the MCABM and MCAOPT and the
reference motions resulting from the vehicle model, for longitudinal accelerations, lateral
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accelerations and yaw velocities (which were the main DoFs in this experiment). From these
data the OMIs of the two MCAs for the manoeuvre used in this experiment can be determined.
The root-mean-squares of ||OMI= ỹV− ỹS|| are listed in Table 6.2 (cf. Figure 5.3). The results
show that the rms-values are smaller for MCAOPT than for MCABM for each DoF, indicating
that the difference between desired (vehicle) and provided (simulator) motions was smaller
for MCAOPT. In addition, the relative deviations

τOMI =
rms(OMIMCAOPT

)− rms(OMIMCABM
)

rms(OMIMCABM
)

[%] (6.3)

of the root-mean-squared OMIs of MCABM and MCAOPT for each DoF are added to Table 6.2.

Table 6.2: Root-mean-square of the OMIs.

Spec. forces. - [m/s2] Ang. vel. [rad/s]
x y z x y z

MCABM 0.625 0.833 0.134 0.017 0.015 0.065
MCAOPT 0.491 0.571 0.118 0.015 0.007 0.055
τOMI [%] -21.4 -31.4 -12.4 -12.1 -54.0 -15.8

6.6 Experimental Results

To answer the research questions, formulated in Section 6.4, first the reliability and the
validity of the rating is examined. In a second step, the ratings of the PMIs between both
algorithms are analysed.
To check the central tendency (significance of mean-values) of two dependent samples, the
paired t-test (test statistic = t) for normally distributed samples and the Wilkoxon signed
rank test (test statistic = z) for non-normally distributed samples is used. The Lilliefors-test
is used for testing normal distribution of a sample. Distinctions between three or more mean
values of dependent samples are tested by a repeated measures ANOVA (test statistic = F) if
Mauchly’s sphericity test is positive (p > 0.05). Otherwise the Friedman-test (test statistic =
χ2) is used.
Throughout the thesis, the following statistical abbreviations are used for a sample x with N
measurements:

• mean value

µ=

∑N
i=1 x i

N
(6.4)

• standard deviation

σ =

√

√

√

∑N
i=1(x i −µ)2

N
(6.5)

• standard error

σ∗ =
σ
p

N
. (6.6)
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Figure 6.5: Longitudinal specific force fx and lateral specific force f y and angular velocityωz for the MCABM and
MCAOPT compared to the reference motions of a real car.

6.6.1 Reliability and Validity

Reliability is a measure of the internal consistency and the interrelatedness of ratings. It is
most commonly estimated by the Cronbach’s α [40]. The author in [127] suggests that a
Cronbach’s α bigger than 0.7 is acceptable. In our experiment, 26 participants out of 33
(2 participants aborted the experiment) obtain a higher Cronbach’s α than 0.7 (cf. green
markers Figure 6.6). Three participants have a Cronbach’s α between 0.65− 0.7 (cf. orange
otimes Figure 6.6). For those, based on the suggestion in [35, 166], the average interitem
correlation is estimated for internal consistency which must be in the range of 0.15 − 0.50.
The average interitem correlations for the three rating trails per participant ID are [ID2 =
0.33; ID4 = 0.19; ID11 = 0.23]. As all values are in the stated range, the three rating trails are
also considered for further evaluations, which increases the content validity and leads to a
visual clustering as depicted in Figure 6.6 [187]. Four Cronbach’s α are in the range between
0.1− 0.5, which is why they are excluded from the study (cf. red circles Figure 6.6). Hence,
a mean Cronbach’s α of 0.77 (σ: 0.06) for the 29 participants is reached.

Validity specifies whether the specification of the experiment is measured [18]. In this
study, the continuous rating is compared to a generally accepted post-hoc rating method [37].
Figure 6.7 shows the course of the mean ratings for MCABM and MCAOPT over the manoeuvre
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Figure 6.6: Cronbach’s alpha for the 33 participants.

for CR and the mean for PR. [37] stated a significant linear relationship between the mean
PR and the maximum value of the CR. In our case, no correlation between those values can
be seen as an offset between both rating methods exists. Nevertheless, deviations between
both MCAs for each rating system exhibit a significant linear relationship which can be es-
timated by the Pearson’s correlation coefficient (r = 0.4358, p < 0.05). Here, the difference
between both MCAs is estimated for the maximum CR as well as for the PR. Both differences
are normalized by a z-transformation because of the different scales. The non-zero correla-
tion confirms the assumption that the CR used in this experiment is a valid method.
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Figure 6.7: Mean CR with standard error (transparent area) and mean PR for the MCABM and MCAOPT over the
complete manoeuvre. Dashed lines separate the manoeuvre into the 10 sections as defined in 6.4.3.
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6.6.2 Overall Rating

Post-hoc Rating: Figure 6.8 shows a significant difference (t(28) = 8.6948, p < 0.001) be-
tween the mean PR for MCABM (µMCABM

= 6.97; σ∗MCABM
= 0.48) and MCAOPT (µMCAOPT

=
3.81; σ∗MCAOPT

= 0.35). As a reminder, the participants rated PMIs, where a higher value
means a larger incoherence, hence worse motion cueing quality. The MCAOPT reveals less
motion discrepancies than the MCABM. The mean of the four rating pairs is depicted in Fig-
ure 6.8. The mean value of the PR does not change significantly for the four trials of the
MCABM (MCABM : F(3, 84) = 0.9648, p > 0.05). This statement cannot be confirmed for the
MCAOPT (MCAOPT : F(3, 84) = 4.333, p < 0.01), which is why the assumption of a consistent
rating for the four trials can only be confirmed for the MCABM. By observing Figure 6.8, the
last three ratings of MCAOPT do not change significantly (MCAOPT : F(2,56) = 0.361, p >
0.05) for which reason the ratings are subjectively assessed as sufficiently consistent.
Continuous Rating: The mean continuous rating of all participants for MCABM and MCAOPT
with the standard-error shows Figure 6.7. The overall mean values between MCABM
(µMCABM

= 2.5467, σMCABM
= 1.9267) and MCAOPT (µMCAOPT

= 1.3347, σMCAOPT
= 1.1929) also

differs significantly (t(28) = 7.2877, p < 0.001).

Overall Trial 1 Trial 2 Trial 3 Trial 4
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Figure 6.8: Mean PR for trails 1-4 with standard error.

6.6.3 Manoeuvre-Based Rating

The continuous rating is divided into different manoeuvres, listed in Section 6.4.3. Table 6.3
lists the mean values for the MCABM and MCAOPT for each section which are checked for
significance (t − /z−statistic). The differences between the mean values are significant for
all values (p < 0.001) except for the „acc. procedure“ and „overland course 1 / 2“ sections.
In the latter sections, there is a significant difference in motion incoherence between both
algorithms. Table 6.4 checks variations between the four ratings per section and MCA (F −
/χ2−statistic). If the ratings do not indicate any significant variations, a consistent rating
between the four trials can be assumed.

6.6.4 Rating Model

In the first step, the weighting parameters W̃ in equation (6.2) of RMM are estimated for
the OMIs yV,MCA − yS,MCA and the mean ratings RMCABM

/RMCAOPT
for all participants which
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Table 6.3: Mean values of the CR of MCABM and MCAOPT within the sections. Largest values are plotted in bold.
For each section the two mean values are checked for significant difference.

mean value µ
Section MCABM MCAOPT t(28)− /z(28)−stat.

Acc. procedure 0.8029 0.7475 z = 0.7 p > 0.05
Overland course 1 1.8262 1.2759 z = 1.4463 p > 0.05

Roundabout 3.3325 1.4353 t = 8.1441 p < 0.001
Overland course 2 1.8374 1.1382 z = 1.6951 p > 0.05

Sharp hilltop 1 2.8810 1.9086 t = 4.5848 p < 0.001
Sharp turn 1 3.9073 1.8207 t = 6.5817 p < 0.001

Sharp S-curves 3.3335 1.4503 t = 7.0959 p < 0.001
Sharp turn 2 2.5012 1.0977 z = 3.7479 p < 0.001

Sharp hilltop 2 2.3722 1.2553 t = 4.8288 p < 0.001
Dec. procedure 1.9297 0.9147 t = 4.818 p < 0.001

Table 6.4: Variations between the four ratings per section and MCA. It is assumed that there is no significant
difference for p > 0.05 between the four ratings (F(3,84)− /χ2(3)− stat.).

Section MCABM MCAOPT

Acc. procedure χ2 = 1.8679 χ2 = 0.8588
Overland course 1 F = 1.0319 χ2 = 2.4201

Roundabout F = 1.5809 F = 0.5917
Overland course 2 F = 1.4773 χ2 = 1.1912

Sharp hilltop 1 F = 2.7891 ∗ F = 2.3507
Sharp turn 1 F = 1.4352 χ2 = 8.7931 ∗

Sharp S-curves F = 2.1041 F = 2.956 ∗

Sharp turn 2 F = 2.3438 F = 0.6744
Sharp hilltop 2 F = 1.1159 F = 3.46 ∗

Dec. procedure F = 2.8125 ∗ F = 0.4241
∗ significant differences between the four ratings (p < 0.05)

Table 6.5: W̃ for RMC , RMM,BM and RMM,OPT.

Roll Pitch Yaw X Y Z

RMC 0.047 0.003 0.012 0.000 0.227 0.389
RMM,BM 0.3822 57.0788 0.1703 0.8030 1.6844 0.3693
RMM,OPT 31.1977 10−5 10−5 1.3744 0.6127 0.8272

are shown in Figure 6.7. Table 6.5 contrasts the estimated weighting parameters W̃ for the
RMM,BM, RMM,OPT and RMC.

The dimension N of equation (6.1), introduced in Section 6.4.4, is estimated to NMCABM
=

10 and NMCAOPT
= 9 for the MCABM and MCAOPT, respectively. The maximum dimension is

chosen to Nmax = 10 with a sample time tsamp = 0.2 s to receive a workable model dimension.
Higher values for Nmax do not change the quality essentially. The offset parameter C of
Figure 6.4 is set to 0. The values of W̃ between the models in Table 6.5 greatly vary which
is a first indicator that the rating models are far from universal. Still, all three rating models
are based on different OMIs resulting in varying weighting parameters. Applicability of the
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models to other OMIs is part of this Section.
In the following, the OMIs and the ratings of both MCAs are used to evaluate the proposed
RMM. Using the procedure described above, the parameters for both models, RMM,BM and
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Figure 6.9: Reference Rating of the MCABM and MCAOPT. Upper plots: Modelled rating from the RMM,BM (model-
fit) and RMM,OPT (model-fit). Lower plots: Modelled rating from the RMM,OPT (cross-check) and RMM,BM (cross-
check).

RMM,OPT, were estimated. The upper left plot of Figure 6.9 shows the resulting model-fit
compared to the normalized reference rating for MCABM, which was obtained by dividing the
measured rating by the maximum rating value (10). The upper right plot shows the results
of the model-fit for RMM,OPT compared to the normalized reference rating for MCAOPT. The
results show that the introduced model approximates the measured rating to an appropriate
degree.
In order to evaluate the adaptivity of the model to other OMIs, the parametrized models
were also used for a cross-check, i.e. RMM,OPT was applied to the MCABM data and vice-versa.
The lower left plot of Figure 6.9 depicts the simulated rating using the RMM,OPT with the
OMIs of the MCABM; the lower right plot of Figure 6.9 vice-versa. Thus, the generality of
the proposed models for the considered manoeuvre can be investigated which is essential
for the integration in a general cost function. The rms of the deviations between reference
rating and the respective simulated rating for the OMIs of MCABM and MCAOPT are listed in
Table 6.6. Additionally, Table 6.6 includes the relative deviation rRM between model-fit and
cross-check results. Comparing the values in both columns of Table 6.6, deviations of the
cross-check are larger compared to the deviations of the model-fit which is corroborated by
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Table 6.6: Rms for model-fit (labelled with ∗) / cross-check to reference rating.

OMIs MCABM OMIs MCAOPT

RMM,BM 0.1071∗ 0.0798
RMM,OPT 0.1568 0.0598∗

rRM [%] 46.41 33.44

the larger visual deviations for the cross-check results visible in Figure 6.9 and large relative
deviations rRM. This indicates that model quality deteriorates when the model is applied to
simulator motions that are different from the ones that the model parameters were fitted
on. Or more accurately phrased: quality was shown to drop when the model was used to
predict the PMIs rating for a different MCA. It should be noted that the vehicle motion was
the same in both cases and only the simulator motion (MCA output) varied. Although this
result is not surprising, it does point out that care should be taken in the use of such models.
If the model is to serve as (part of) an MCA cost function, the model’s capacity to correctly
predict the effect of changes in the MCA is obviously essential. How and by how much the
cross-MCA-validity can be improved is still to be investigated.

6.7 Chapter Summary

This Chapter evaluates the optimization-based MCAOPT in a comparison with a benchmark,
optimization-based algorithm. To outline the potential of the MCAOPT, a time horizon of
3s with an ideal prediction of the vehicle motion is used. The algorithm is evaluated in an
experiment with 35 participants. The continuous rating, introduced in [36, 37], is applied
to obtain a time and position dependent rating. Results show a consistent rating for the
participants with an average Cronbach’s α of 0.77. The continuous rating is also compared to
a generally accepted-, verbal overall rating in order to test the validity of the rating. The paper
shows correlations between the overall rating and the continuous rating. Motion mismatches
were rated higher for the benchmark algorithm which indicates the MCAOPT has the potential
to further improve the motion cueing quality. The ratings are used to assess a rating model
introduced in [37]. As the stated model is not intended to be applied to other OMIs, the
rating model is modified with new weighting parameters and an extended transfer function.
A reasonable prediction of the reference rating can be achieved with the modified model
RMM. However, when the model is used to predict the rating obtained for different MCA
the quality decreases substantially. This indicates that the usage of rating models in an MCA
objective function requires careful evaluation.





Chapter 7

Closed-Loop, MPC-Based MCA (MCAMPC)

The content of the following Chapter have been published in [48].

In this chapter, a closed-loop, optimization-based MCA is proposed, showing the ability
to find an optimal motion during an active drive for the nine DoFs driving simulator (cf.
Figure 1.3). The structure of the algorithm is based on the MCAOPT which is evaluated in
Chapter 6. As further developments and modifications are made to the MCAOPT, the version
described in this Chapter is called MCAMPC. The basic idea of the algortihm is that an MPC-
scheme solves the optimization problem at sampled time instances, minimizing discrepancies
between desired and provided motion percepts. The optimization is solved online, making
the MCA ready for real-time applications. It is the result of collaboration with Dimitar Hris-
takiev [88].
For evaluation of the MCAMPC, an experimental study determines PMIs. The experiment in-
cludes two other MCAs which are classified as open-loop MCAOFF (cf. Chapter 4) and closed-
loop MCABM (cf. Chapter 6.3.2).

7.1 Contribution

One objective of this Chapter is to enable the online capability of the optimization based
MCAMPC. Methods are shown to reduce the computational efforts for solving the optimizat-
ion problem of the proposed MCAMPC in a real time environment.
The second objective includes the evaluation of the MCAMPC. The first research question
intends to evaluate the motion cueing quality of the MCAMPC compared to a closed-loop,
state-of-the-art MCA. The benchmark algorithm (MCABM) was provided by the simulator’s
manufacturer and uses optimization and prefiltering techniques to resolve the redundant
DoFs. The MCAMPC, by contrast, solves the DoFs in a single, constrained optimization prob-
lem which is embedded in an MPC-scheme. The comparison reveals whether the closed-loop
structure of the approach, introduced in Chapter 5, has the potential to increase the mo-
tion cueing quality towards a closed-loop, state-of-the-art algorithm. The second research
question aims to determine the loss of motion cueing quality of the MCAMPC compared to
the open-loop, optimization-based MCAOFF. For the MCAOFF, a global optimal control prob-
lem is solved with an ideal prediction over the complete manoeuvre resulting in an assumed
optimal trajectory for the considered manoeuvre. The MCAMPC, by contrast, uses a simpler
prediction: The current driving dynamics reference values at the current time step are kept
constant over a finite time horizon. Assuming that the MCAOFF sets an upper benchmark,
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results reveal how much the motion cueing quality is influenced by the prediction strategy
and the horizon length.

7.2 Extensions for Real-Time Applications

The basic structure of the MCAMPC is introduced in Chapter 5, including:

1. the basic principals of MPC methods,

2. the kinematic structure of the redundant motion system,

3. the linearized prediction model and the linearized actuator constraints,

4. the formulation of the optimization problem and

5. the distinction to other optimization-based approaches.

In Chapter 6, an open-loop version (MCAOPT) was used in an experimental study. At that
time of research, the MPC-based MCA was not yet ready for closed-loop executions and
the MCAOPT was used as a proof-of-concept. The algorithm runs sequentially and did not
fulfil real-time requirements. The experimental study aimed at illustrating the potential of
the open-loop version, compared to an open-loop, state-of-the-art MCA. To increase the pre-
positioning capabilities, an ideal prediction strategy and a time horizon of 3 s were applied.
The motion cueing quality was obtained with the continuous rating method, which was al-
ready applied in other experiments, such as [36, 37, 137]. In the conducted experiment,
motion mismatches were rated higher for the benchmark algorithm. This indicates that the
MCAOPT has the potential to further improve the motion cueing quality in an open-loop ver-
sion. However, two open questions remained:

1. Which modifications are necessary to achieve a closed-loop execution?

2. What is the influence on the motion cueing quality arising from the modifications (re-
quired to achieve closed-loop execution)?

The following Section describes the extensions of the MCAOPT to the MCAMPC.

7.2.1 Optimization Problem

The optimization problem, described in equation (5.69), is reduced to

min
∆US

J[k] (7.1)

s.t. ∆uS,min ≤∆uS[k, i]≤∆uS,max for i = 1 . . . Hu

∆uS[k, i] = 0 for i = (Hu + 1) . . . Hp

qS,min ≤ qS[k, i]≤ qS,max for i = 1 . . . Hc

where the objective function J , defined in equation (5.37), remains unchanged. The con-
straints on velocity and acceleration level are neglected in order to reduce the computation
time to allow real-time applications. Figure 5.9 and Figure B.1 (cf. Appendix B) show that
the most critical constraints are on position level. Whereas, a relatively large safety margin is
left for the actuator velocities and actuator accelerations. Still, the analysis is limited to one
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example and does not generally guarantee the workspace adherence on velocity and acceler-
ation level.
For the prediction, the current driving dynamics motion percepts ŷV are kept constant. The
discrete horizon steps are chosen to Hp = 150, Hu = 10 and Hc = 30. The hand-tuned weights
are shown in Appendix D in Table D.3.

7.2.2 Parallelization

The MCAMPC is implemented in a C++ environment in Ubuntu, Linux and uses qpOASES [65]
as an active-set QP-solver. Depending on the system’s states, an active set-algorithm activates
or deactivates constraints in the optimization leading to runtime variances in the optimizat-
ion solver (see Appendix C.3). An increasing number of active-constraints leads to a higher
dimension of the optimal control problem which can increase the computation time [13].
Usually, the implemented MPC-scheme sends the first control output ∆u[k, 1] to the motion
system. Since the execution time for obtaining a solution for the optimal control problem
varies, hard real-time deadlines cannot be guaranteed. Thus, in case a deadline is missed,
the algorithm sends signals from the previous sequence ∆u[k−1, i] until an updated control
output is available.
The preparation and the calculation of the QP-problem is segmented into various threads
which run in parallel. The optimization problem, formulated in equation (5.69), is trans-
formed to a condensed form

min
∆U

1
2
∆UT H∆U +∆UT g (7.2)

s.t. lbAc
≤ Ac∆U ≤ ubAc

lbu ≤∆U ≤ ubu

which is required by the QP-solver. In equation (7.2), H and g are the Hessian matrix and
gradient vector, respectively [13]. The constraint matrix Ac, the lower bound vector lbAc

and the upper bound vector ubAc
contain the inequality constraints. The lower bound vector

lbu and the upper bound vector ubu contain the inequality constraints of ∆U. Six parallel
computation threads separate the calculation of:

1. the reference generation,

2. the matrix H ,

3. the vector g ,

4. the constraint matrices/vectors,

5. the prediction model update and

6. the QP-solver.

An additional parent thread manages the six child threads, refreshes the system with up-
dated inputs and sends the outputs to the simulator.

Figure 7.1 schematically shows the synchronization strategy of the threads which are di-
vided into two systems: A real-time system with hard feedback deadlines (driving simulation
framework) and a real-time system with soft real-time deadlines (MCAMPC) [158].
The driving simulation framework (upper system in Figure 7.1) constitutes an interface with
the MCAMPC by updating the vehicle motions (inputs for the MCAMPC) and sending out-
puts to the simulator (outputs of the MCAMPC). The framework runs with a sampling time
Tsamp = 10 ms under hard feedback deadlines with the discrete time steps k. Missing to send
an output to the simulator within the hard feedback deadline can lead to a failure of the
system [158].
The parallel calculation of the threads described above is synchronised with the simulation
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Figure 7.1: Schematically synchronization strategy between the driving simulation framework and the MCAMPC.

framework. A lot of effort is put into merging a hard feedback deadline system with a soft
feedback deadline system. The MCAMPC exhibits a soft feedback deadline as the computation
times of the QP-solver vary, and thus cannot guarantee hard feedback time. Two tasks are
distinguished in the MCAMPC: First, updating the inputs for the QP-solver (“Update solver in-
puts” in Figure 7.1), including: the reference generation, the Hessian matrix H , the gradient
vector g , the constraint matrices/vectors, the prediction model. Executing these steps is com-
putationally expensive and can take a few milliseconds which is especially caused by building
the high dimensional terms H and g . The dimension of these terms depends on the chosen
number of discrete time steps Hp for the prediction horizon as shown in equation (5.44). The
discrete time steps Hp for the prediction horizon is chosen to obtain computation times which
are considerably less than 10 ms for the task “Update solver inputs”. In the second task, the
QP-solver is running to compute the optimal control problem (“Calculation time QP-solver”
in Figure 7.1).
Thus, not only the varying computation times of the QP-solver but also the computational
efforts for updating the QP-solver inputs are considered in the synchronization. For the cho-
sen prediction lengths, a sequential execution of these tasks is hardly possible in real-time.
Thus, a parallelization technique is used by running the QP-solver in the upcoming discrete
time step k + 1 as depicted in Figure 7.1. This method generally leads to a system feedback
latency of at least two discrete time steps. Though, in case the computation time of the QP-
solver takes less than 10 ms, a simulator output at every discrete time step k is available. The
latency depends on the computation time of the QP-solver and is considered in the system by
predicting the QP-solver’s computation time. Otherwise, the induced system delay could lead
to an instability of the MPC-scheme as the delay is not implied in the prediction model [39].
The calculated system states ξ of the prediction model in equation (5.44) are updated with
the actual duration of the task “Calculation time QP-solver” to prevent a divergence between
the states ξ of the prediction model and the states of the real plant, which can cause insta-
bility. The discrete time steps Hp, Hc and Hu for the prediction horizons are chosen to obtain
calculation times for the solver which are less than 10 ms for most of the runs.
Figure 7.2 shows the number of sent optimal control solutions per optimization step for an
online drive. In case the number of optimal solutions is one, only the first optimal control
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output is sent to the simulator hardware and the hard cycle time requirements of 10 ms are
ensured. For higher numbers, also a quasi-optimal solution is sent, as the current optimal
control step is still running and the 10 ms update cycle time cannot be fulfilled. For the con-
sidered manoeuvre (same as in the experiment), the runtime requirements are ensured in
99.73% (Intel i7-6820HQ CPU 2.70GHz, 8 cores).
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Figure 7.2: Number of sent optimal control outputs for each optimization step during an online drive.

7.2.3 Handling Infeasibility

Due to large disturbances in the objective function or different behaviours between the real
system and the prediction model, the optimal control problem can become infeasible. This
means that the system cannot be kept within the defined constraints. Excessively large driver
demands (large values of ŷV in equation (5.37)) are a typical reason when the optimizer may
be faced with an infeasible problem, for example by executing an extremely strong deceler-
ation manoeuvre. The growing deviation between desired motions and provided simulator
motions increases the objective function J extensively. The optimizer calculates outputs with
high accelerations and tilting angles. As a consequence, some of the system’s actuators are
brought to their limits. There are many more possibilities for the occurrence of these issues
which are very difficult to anticipate [106]. In this Section, three features of the MCAMPC are
presented to circumvent these problems:

1. Slack variables η are additional virtual control inputs, which are added to the opti-
mal control problem in order to relax the constraints. The optimal control problem is
modified to

min
∆U ,η

J∗ = J + ||η||2P (7.3)

s.t. lbAc
+η≤ Ac∆U ≤ ubAc

+η

lbu ≤∆U ≤ ubu

0≤ η≤ l bη

where the diagonally structured weighting matrix P contains very large values. In this
case, η is mainly penalized when the constraints are violated, otherwise the optimizer
has the incentive to keep them low [106]. In MCAMPC, slack variables are used for
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the actuator strokes and the yaw angle of the tripod. In order to stay away from the
physical actuator bounds, the actuator limitations are modified for the control problem
by introducing some safety margins.

2. Reference limitation: The reference signal yV can contain large values especially for
longitudinal/lateral accelerations and yaw velocities. The cueing for long-lasting accel-
erations and angular velocities is physically limited by the workspace envelope of the
motion system. Thus, yV is bounded to an upper and lower limit. For the translational
accelerations and the yaw velocity, the bound is set to ±2m/s2 and to ±20◦/s, respec-
tively.

3. Parameter tuning: Generally, longer time horizons Hp, Hu and Hc lead to a more pre-
ventive behaviour of the workspace management. However, a constant, long-lasting
reference can lead to predictions which are not feasible as the prediction strategy is
only a valid approximation for short time intervals. The relation between the weight-
ing parameters in the matrices Q, R, S and T (cf. equation (5.37)) influences the
workspace management. Increasing weighting values in the matrices R, S and T en-
hances the neutral push which leads to more conservative motions, and thus reduces
the risk for obtaining infeasible solutions.

7.3 Experimental Evaluation

The experiment compares three MCAs:

1. Closed-loop MCAMPC (cf. Chapter 7.2)
The computations were done offline and applied in open-loop tests in order to be able
to compare the algorithm in an objective manner and use the CR.

2. Open-loop MCAOFF (cf. Chapter 4)
The optimization is performed over the complete, pre-defined manoeuvre, and hence
uses an ideal reference signal. Depending on the chosen weighting parameters and
the used simulator model, an optimal platform trajectory is obtained. The hand-tuned
weights are shown in Appendix D in Table D.5.

3. Closed-loop MCABM (cf. Chapter 6.3.2)
The computations were done offline and applied in open-loop tests.

The following research questions are formulated for the experiment:

1. Does the CR method show a reliable and valid rating between the three MCAs?

2. Does the MCAOFF exhibit the lowest PMIs?

3. Does the MCAMPC have a higher motion cueing quality compared to the MCABM?

4. Which motion channels are mainly responsible for the PMIs?

The experiment was conducted in the nine DoFs simulator at the BMW Group with 30
participants (4 females) between the age of 18-63 (µ: 35.9 years; σ: 13.2). The participants
were employees from the BMW Group. Nine participants had never experienced a driving
simulator. For the remaining participants, the driving simulator experience ranged between:
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1-3 times (9), 4-6 times (4), and more than 6 times (8). All the participants have a driving li-
cence. The average mileage is approx. 19 667 km per year (σ: 11342 km). Three participants
aborted the experiment because of motion sickness.

7.3.1 Rating Procedure

The measurement procedure and the structure of the experiment follows the procedure de-
scribed in Chapter 6. Participants rate the PMI continuously using a rotational knob located
at the central console of the mockup. Consequently, a time- and position-dependent rating
is obtained. The PMI is rated using an 11-point scale that is displayed by a bar which length
and colour depends on the current rate value. The bar is shown in front of the driver inside
the virtual world. A rating of 0 represents no PMI (“real driving sensation”) whereas a rating
of 10 denotes a high PMI (“large motion mismatch”). The maximum rating was calibrated
in a training session before the experiment where several manoeuvres exhibited large OMIs.
The participants were instructed such that a rating of 10 was reached at least once in the
training session, in order to obtain a reference for the CR. The manoeuvre of the training
sessions differs from the manoeuvre used in the subsequent experiment. The three dropouts
already felt motion sick after the training session.
Following the training phase, the experiment commenced, in which the same pre-recorded
driving manoeuvre as in the experimental study, described in Chapter 6.4.3, was used. The
manoeuvre is a representative simulator drive, consisting of overland and inner-city elements
with a duration of 5 min. The track is divided into ten sections listed in Table 6.1.
Participants were asked to rate PMIs using the CR. The track was repeated three times for
each of the three MCAs. Ordering of the nine simulation trials is randomly permuted during
the experiment. An additional PR at the end of each CR is used to evaluate the reliability
and the validity of the CR [37]. The PR uses the same relative scale as the CR. To ensure
comparability, the MCABM, MCAMPC and MCAOFF are tested for the same pre-recorded driv-
ing manoeuvre. The driver can completely concentrate on the rating in the offline simulation
as driver inputs are not required. After each rating, participants were allowed a short break
of two minutes before the next rating started. The total experiment for a participant lasted
about 1.5 h.

7.3.2 Independent and Dependent Variables

Independent variable in the experiment is the MCA (three levels: MCABM, MCAMPC, MCAOFF).
Since the CR is not possible during a closed-loop drive and an open-loop MCA is part of the
comparison, the simulator motion with the MCAMPC and MCABM was precomputed. The
MCAMPC was computed in a real-time environment, simulating an online driving session.
The algorithm uses the vehicle inputs of the pre-recorded manoeuvre and saves the simulator
outputs for usage in the experimental open-loop session. The MCAs are tuned to exploit
the motion system’s workspace as much as possible. The three algorithms are embedded
in a within-subject design. By these means, the algorithms are compared, in a three-times
randomly ordered comparison.
Dependent variables are the CR and the PR.
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Figure 7.3: Resulting specific forces fx , f y and angular velocity ωz for the MCABM, MCAMPC and MCAOFF com-
pared to the reference motions of the virtual vehicle.

7.4 Objective Motion Incongruencies

Figure 7.3 compares the resulting physical motions of the three MCAs and the reference
motions resulting from the vehicle model, for longitudinal accelerations, lateral accelerations
and yaw velocities as these were the main motion channels in this experiment. The OMIs of
the three MCAs are determined by the rms over the manoeuvre and are listed in Table 7.1.
The results show that the rms-values are smallest for MCAOFF for each motion channel. This
observation is not surprising as the prediction strategy and the prediction length is ideal for
the MCAOFF. That is why, in this work, the MCAOFF is taken as a reference for the other two
MCAs. Comparing the online-capable MCAs, the rms-values of the MCAMPC are smaller to
the MCABM except for the translational z-direction. In order to evaluate the deviations of the
two online-capable MCAs to the reference MCAOFF, the relative deviations

τOMIk
=

rms(OMIk)− rms(OMIMCAOFF
)

rms(OMIMCAOFF
)

[%] (7.4)

of the rms-OMIs of MCAOFF and k = {MCAMPC, MCABM} for each motion channel are added
to Table 7.1. The τOMIk

values show that the deviations are highest for the longitudinal
acceleration, the lateral acceleration and the yaw velocity for both MCABM and MCAMPC.
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Table 7.1: Rms of the OMIs for MCABM, MCAMPC and MCAOFF and the relative deviations to the reference
MCAOFF. The largest values are plotted in bold.

Trans. acc. - [m/s2] Ang. Vel. [rad/s]

x y z x y z

MCABM 0.5191 0.88 0.134 0.017 0.015 0.065
MCAMPC 0.500 0.791 0.144 0.013 0.010 0.062
MCAOFF 0.346 0.560 0.110 0.014 0.009 0.018

τOMIMCABM
50.1 % 57.8% 22.1% 21.2% 58.4% 261.7%

τOMIMCAMPC
44.6% 41.2% 30.3 % 5.9 % 3.9 % 244.9%

7.5 Experimental Results

The following Section firstly examines the reliability and the validity of the ratings, before
analysing the ratings of the PMI. To check the central tendency (significance of mean-values)
between three or more dependent samples, a repeated measures ANOVA (test statistic = F)
is tested if Mauchly’s sphericity test is positive (p > 0.05). Otherwise the Friedman-test (test
statistic = χ2) is used. Definitions for the mean value µ, the standard deviation σ and the
standard error σ∗ can be found in Section 6.6 in equations (6.4)-(6.6).

7.5.1 Reliability and Validity

Reliability is a measure of the internal consistency and the interrelatedness of ratings [18].
In this experiment, reliability is estimated by the interitem correlation. Therefore, for each
participant, the Pearson correlation matrix between the three trails of each independent vari-
able (MCABM, MCAMPC and MCAOFF) is calculated. The mean value of the side diagonals
is estimated as they indicate the linear relationship between the trails. In order to obtain
a single value for the reliability criterion, the average of the mean correlation values of the
three independent variables is used. Figure 7.4 shows the correlation values for 27 partic-
ipants of the experiment (3 participants aborted the experiment). Based on the suggestion
in [35], a critical value for the interitem correlation of 0.15 is assumed for the experiment.
Participants with a interitem correlation between 0.15− 0.2 are individually analysed for the
rating’s consistency by visual examination of the data. Generally, excluding ratings from the
analysis reduces the statistical power of the experiment. Based on the examination, the three
critical participants (ID5, ID15, ID17) are included in the evaluation (cf. orange markers in
Figure 7.4) and one participant (ID14) is excluded from the study (cf. red marker Figure 7.4)
because of a too low correlation value.
In order to analyse whether the specification of the experiment is measured (validity), the

continuous rating is compared to the generally accepted PR method [37].
Figure 7.5 shows the course of the mean ratings for MCABM, MCAMPC and MCAOFF over the
manoeuvre for CR and for PR (dashed lines). [37] used the Pearson correlation to show a
significant linear relationship between the mean PR and the maximum value of the CR. In the
experiment, we also identify a correlation between those values for the MCAMPC and MCAOFF
as depicted in Table 7.2. There is an additional, significant linear relationship for deviations
between the MCAs for each rating system. These correlations are also included in Table 7.2.
The three MCAs yield three differences using the maximum CR and the PR. The non-zero cor-
relations confirm the assumption that in this experiment the CR measures the motion cueing
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Figure 7.4: Internal consistency of the ratings per participant.

quality.

Table 7.2: Pearson correlations between the CR and the PR to analyse the validity of the CR.

MCABM MCAMPC MCAOFF
r = 0.29, p < 0.20 r = 0.43, p < 0.05 r = 0.47, p < 0.05

MCABM / MCAMPC MCAMPC / MCAOFF MCABM / MCAOFF
r = 0.44, p < 0.05 r = 0.33, p < 0.15 r = 0.32, p < 0.15
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Figure 7.5: Mean CR with standard error (transparent area) and mean PR for the MCABM, MCAMPC and MCAOFF

over the complete manoeuvre. Dashed lines separate the manoeuvre into the 10 sections as defined in Sec-
tion 6.4.3.
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7.5.2 Overall Rating

In the following, the statistics of the PR and the CR are shown, whereas a higher value means
large PMI, hence worse motion cueing quality.
Post-hoc Rating: Figure 7.6 shows a significant difference (χ2(2) = 44.06, p < 0.001) between
the mean PR for MCABM (µMCABM

= 6.5; σ∗MCABM
= 0.47), MCAMPC (µMCAMPC

= 4.42; σ∗MCAMPC
=

0.36) and MCAOFF (µMCAOFF
= 2.87; σ∗MCAOFF

= 0.23). The MCAMPC reveals less PMI than the
MCABM. The MCAOFF exhibits the highest motion cueing quality of the three MCAs. This
suggests that improving the prediction quality and the prediction length of MCAMPC could
further increase its motion cueing quality. The mean value of the PR does not change signifi-
cantly for the three trials of the MCAs as apparent in Figure 7.6 (MCABM : F(2, 50) = 1.32, p >
0.05, MCAMPC : F(2,50) = 1.05, p > 0.05, MCAOFF : F(2,50) = 0.76, p > 0.05).
Continuous Rating: The mean continuous rating of all participants for the three MCAs with the
standard-error shows Figure 7.5. The overall mean values between MCABM (µMCABM

= 2.53,
σMCABM

= 2.23), MCAMPC (µMCAMPC
= 1.65, σMCAMPC

= 1.55) and MCAOFF

(µMCAOFF
= 1.04, σMCAOFF

= 1.16) also differs significantly (χ2(2) = 37.23, p < 0.001).
Considering the results of the CR and the PR, the MCAMPC has the potential to further im-
prove the motion cueing quality compared to a state-of-the-art MCA.
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Figure 7.6: Overall mean PR and mean PR for trails 1-3 with standard error.

7.5.3 Manoeuvre-Based Rating

The continuous rating enables a manoeuvre based evaluation. Therefore, the track is divided
into manoeuvres as listed in Section 6.4.3. Table 7.3 lists the mean values for the MCABM,
MCAMPC and MCAOFF for each section which differ significantly (F −/χ2-statistic) except for
the overland course 2. This section mainly consists of a straight road with long lasting curves,
resulting in low/medium driver demands. Almost each section (except acc. procedure),
MCAOFF exhibits the lowest mean values, followed by the MCAMPC. The MCABM reveals the
highest ratings in each section.
Table 7.3 checks variations between the three ratings per section and MCA (F−/χ2−statistic).
If the ratings do not indicate any significant variations, a consistent rating between the three
trials can be assumed. The consistency is shown for each section of the three MCAs, except
for two sections of the MCAOFF.
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Table 7.3: Mean values of the CR of MCABM, MCAMPC, and MCAOFF within the sections. Largest values are
plotted in bold. For each section the three mean values are checked for significant difference.

mean value µ
Section MCABM MCAMPC MCAOFF F(2,50)− /

χ2(2)−stat.

Acc. procedure 0.65 0.33 0.39 χ2 = 13.03∗

Overland c. 1 1.50 1.21 0.98 F = 7.02∗

Roundabout 3.51 2.00 1.39 χ2 = 34.85∗

Overland c. 2 1.94 1.38 0.93 χ2 = 5.41∗∗∗

Sharp hilltop 1 3.11 1.97 1.38 χ2 = 31.00∗

Sharp turn 1 3.62 2.47 1.27 χ2 = 30.69∗

Sharp S-curves 3.19 2.14 1.13 χ2 = 23.38∗

Sharp turn 2 2.58 1.73 0.91 χ2 = 40.69∗

Sharp hilltop 2 2.79 1.59 0.87 χ2 = 33.77∗

Dec. procedure 2.40 1.18 0.74 χ2 = 21.55∗

∗(p < 0.01), ∗∗(p < 0.05), ∗∗∗(p > 0.05)

Table 7.4: Variations between the three ratings per section and MCA. It is assumed that there is no significant
difference for p > 0.05 between the three ratings (F(2, 50)− /χ2(2)− stat.).

Section MCABM MCAMPC MCAOFF

Acc. procedure χ2 = 1.14 χ2 = 2.34 F = 1.39
Overland c. 1 F = 0.04 F = 1.46 χ2 = 1.46
Roundabout F = 0.35 χ2 = 0.69 F = 1.03
Overland c. 2 F = 1.02 F = 1.67 χ2 = 3.2
Sharp hilltop 1 F = 0.20 F = 2.37 χ2 = 0.79
Sharp turn 1 F = 0.04 F = 1.62 F = 1.14
Sharp S-curves F = 0.10 χ2 = 0.92 F = 0.68
Sharp turn 2 F = 0.48 F = 0.57 χ2 = 6.32∗

Sharp hilltop 2 F = 0.31 χ2 = 1.09 F = 4.11∗

Dec. procedure χ2 = 2.39 χ2 = 4.54 χ2 = 4.72
∗ significant differences between the three ratings (p < 0.05)

7.5.4 Correlations between OMIs / PMIs (Perceived Motion Incongruencies)

In order to determine which OMI have the greatest impact on the resulting rating in Fig-
ure 7.5 for each MCA, correlations between the different motion channels of the OMI and
the mean CR are estimated. The OMI are split into six motion channels: Three specific forces
f and three rotational angular velocities ω which are acting at the cockpit reference point
of the driver. The correlation value r is estimated for each specific manoeuvre outlined in
Section 6.4.3 (cf. Table 6.1), using the OMIs of the respective MCA and the respective mean
CR. In order to make general statements, the specific manoeuvres are grouped according to
the main motion channels in the manoeuvre. As described in Section 7.4, the longitudinal
and lateral accelerations as well as the yaw angular velocity are the main motion channels
in the study. Thus, the specific manoeuvres are classified according to these channels and
are listed in Table 7.6. Group 1 includes accelerations and decelerations in the longitudinal
direction. Lateral accelerations and yaw angular velocities are combined in Group 2 as both
motion channels occur in combination (e.g. turns and curves).
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Table 7.5: Correlations r between OMI and mean ratings and maximum OMI εOM I depending on group 1 and
group 2 (cf. Table 7.6) for the six motion channels. Largest and second largest r for each motion channel are
plotted in bold.

Group 1:
Longitudinal acceleration manoeuvres

MCABM MCAMPC MCAOFF

r εOM I r εOM I r εOM I

[-] [m/s2] [-] [m/s2] [-] [m/s2]
fx 0.34 2.314 0.50 2.045 0.44 1.199
f y 0.12 1.893 0.39 1.64 0.21 0.941
fz 0.44 0.401 0.40 0.399 0.57 0.29

[-] [rad/s] [-] [rad/s] [-] [rad/s]
ωx −0.08 0.036 −0.10 0.029 −0.06 0.023
ωy 0.22 0.061 0.22 0.029 0.29 0.023
ωz 0.24 0.095 0.47 0.087 0.45 0.037

Group 2:
Lateral acceleration and yaw angular velocity manoeuvres

MCABM MCAMPC MCAOFF

r εOM I r εOM I r εOM I
[-] [m/s2] [-] [m/s2] [-] [ m/s2]

fx 0.02 1.519 0.11 1.590 0.133 0.795
f y 0.74 2.930 0.63 2.626 0.70 1.838
fz −0.1 0.698 −0.01 0.751 0.07 0.431

[-] [rad/s] [-] [rad/s] [-] [rad/s]
ωx 0.09 0.067 0.18 0.052 0.31 0.062
ωy −0.04 0.108 0.27 0.041 0.23 0.039
ωz 0.82 0.33 0.71 0.304 0.43 0.067

The maximum OMI εOM I for each group are shown in order to validate the plausibility of the
correlation factor r. Table 7.5 lists the correlation factors r and the maximum OMI εOM I for
each motion channel in relation to the specified groups in Table 7.6. The significant values
are estimated for the three MCAs. The largest and second largest r of the six motion channels
are plotted in bold.
Considering Group 1, the first thing to notice is the high correlations in fx for all three MCAs.
These relations are plausible as this channel is mainly responsible for the perception of longi-
tudinal accelerations. The large correlations in fz for all three MCAs in Group 1 do not match
with the relatively smaller ones of Group 2, since we do not assume considerable deviations
between both groups in fz. With regard to the maximum OMI εOM I , which are even larger for
Group 2, we assume that the correlations between the OMI in fz and the CR are not reason-
able. The correlations of Group 1 in ωz for the MCAMPC and MCAOFF exhibit relatively large
values although the yaw velocity is not a main motion channel for longitudinal accelerations.
Comparing the maximum OMI εOM I of Group 1 and Group 2, the values are considerably
greater for Group 2. This deviation is plausible as ωz constitutes a main motion channel of
Group 2. Thus, the high correlations of Group 1 in ωz are questionable.
Evaluating the results of Group 2 indicates that correlations are greatest in ωz and in f y for



102 7 Closed-Loop, MPC-Based MCA (MCAMPC)

the three MCAs. This analysis is not surprising, as these motion channels are primarily active
for the considered manoeuvres. These observations correlate with the εOM I values in ωz and
in f y .
To sum up, analysing the correlations between OMI and PMI is an indicator to determine the
dominant OMI for the CR method. Still, a bare comparison between the correlation values
can lead to misleading conclusions.

Table 7.6: Classification of the specific manoeuvres defined in Section 6.4.3.

Group 1: Acc. procedure, Sharp hilltop 1,
(Long. acc.) Dec. procedure

Group 2: Curves roundabout, Sharp turn1,
(Lat. acc./yaw vel.) Sharp S-curves, Sharp turn 2

7.6 Chapter Summary

This Chapter shows methods to execute an MPC-based MCA in an online application for a
nine DoFs driving simulator. Difficulties consist in the sequential calculation of an optimal
control problem under the restrictions of hard real-time execution and deadlines. The paral-
lel execution of calculation processes reduces the computation time considerably and makes
a stable online drive possible. Other problems arise due to infeasible solutions of the optimal
control problem. Introducing slack variables and limiting the reference signal improves sta-
bility. For the evaluation, the MCAMPC is executed in a real-time environment. Motion cueing
quality is measured in an experimental study, with the following results:

1. The continuous rating can be applied for a comparison with three different MCAs. Sta-
tistical analysis indicates valid and reliable results compared to a general accepted PR.

2. Participants’ rating show strong correlations to the dominant motion channels (longi-
tudinal / lateral acceleration and the yaw velocity).

3. The structure of the closed-loop MCAMPC has the potential to further improve the mo-
tion cueing quality compared to a commercially available state-of-the-art, closed-loop
MCA. Ratings of the MCAMPC exhibits less perceived motion incongruencies for the
continuous rating and the PR compared to a closed-loop, benchmark MCA.

4. The open-loop, optimization-based MCAOFF shows the lowest PMIs, and thus the high-
est motion cueing quality of the compared MCAs. The algorithm exploits the full ref-
erence over the complete manoeuvre to optimize the simulator motion. The difference
between the ratings of the MCAMPC and the MCAOFF indicates the further potential of
the proposed closed-loop algorithm. Moreover, it shows the influence of the prediction
strategy and the prediction length on the PMIs.

Regarding the results of the study, improving the prediction strategy and extending the time
horizon can significantly increase the motion cueing quality.



Chapter 8

Closed-Loop, Hybrid MCA (MCAHYB)

The content of the following Chapter have been published in [52].

Current closed-loop, optimization-based motion cueing algorithms (MCAs) use a driver
model to predict a future driving dynamics reference. These models are often inaccurate
and/or computationally expensive because the future driving behaviour is unknown. In some
cases the vehicle’s trajectory is known in advance. In such open-loop simulations a driver sits
passively in a vehicle and is being driven through a pre-recorded manoeuvre. In this case,
optimization-based MCAs can compute an optimal trajectory for a pre-defined manoeuvre in a
pre-processing step as described in Chapter 4 and 6. This Chapter presents the development
of an MCA which uses the optimal trajectory of an open-loop, optimization-based MCA as
a reference in a closed-loop simulation resulting in a quasi-optimal pre-positioning of the
motion platform. Deviations between closed-loop driver and the reference are compensated
by a closed-loop, state-of-the-art MCA. By combining a closed-loop MCA with the predictions
obtained by an open-loop MCA, a hybrid motion cueing algorithm is obtained. One of the
challenges for the implementation of a hybrid MCA is how to merge the data of the driver
with the reference. Therefore, in a preparatory experiment, the driving behaviour of various
drivers was measured and analysed. Then, a follow-up experiment was conducted to evaluate
the novel hybrid MCA using the continuous rating method in an open-loop simulation. In
order to analyse deviations between open-loop and closed-loop rating, a novel rating method
for closed-loop simulations was developed and applied. Here, participants gave a section-
wise oral rating during a closed-loop drive. Results show correlations between the open-loop
and the closed-loop rating method. Both ratings indicate an improvement in motion cueing
quality for the hybrid MCA.

8.1 Contribution

For the redundant motion system shown in Figure 1.3, a novel MCA approach is proposed in
the present work. The so-called hybrid MCA (MCAHYB) combines a closed-loop MCA and the
optimal motion cueing results of an open-loop approach. In this study, a filter-based MCA is
employed as a closed-loop algorithm which mainly consists of linear transfer functions [151].
Advantages of this approach lie in the relatively low computational cost for a closed-loop ap-
plication. Nevertheless, the exploitation of the workspace by such an algorithm is typically
quite low. For the open-loop algorithm, an optimization-based MCA is employed where an
optimal motion cueing, and thus an optimal pre-positioning is obtained during the offline
pre-processing. Based on a driver pool for a pre-defined manoeuvre, an average driver is

103
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calculated to obtain a driving dynamics reference. An optimal control problem minimizes de-
viations between the resulting accelerations and angular velocities at the simulator’s driving
position and the driving dynamics reference. The minimization is performed over the com-
plete time horizon of the pre-defined manoeuvre. Thus, depending on the chosen weighting
parameters and the used simulator model, an optimal platform positioning is obtained. Aside
from this, the optimization problem considers the nonlinear kinematic chain of the motion
system and includes the actuator limitations as constraints which allows exploiting the full
extent of the workspace. For an open-loop method, real-time requirements do not have to
be fulfilled. Thus, the difference between desired and provided percept can be minimized
further compared to a closed-loop application. During the online simulation in the simulator,
the results from the previously obtained output from the open-loop algorithm is used as a
reference for the simulator’s motions. Differences between the inputs from the online driver
and the reference are corrected by the filter-based MCA. This way, a hybrid MCA merges the
benefits of a perfectly predictive, optimization-based MCA with a real-time capable algorithm.
It is the result of collaboration with Maximilian Spannagl and Samir Agabekov [2, 163].

8.2 Use Case

In order to employ the hybrid MCA, the route that is to be simulated should be known before-
hand. This is however usually the case in most driving simulation studies. A reference for this
route needs to be obtained, i.e. the data of a “reference driver”. During the closed-loop simu-
lation, the data of the closed-loop driver and the reference are combined. For the reference,
where the driving dynamics data is known, an optimal simulator trajectory is calculated with
the optimization-based MCA. During the closed-loop simulation, the differences between the
reference driver and the current simulator driver are corrected by a closed-loop MCA. For
good results, it is therefore required that the reference driver is representative, or in other
words that the differences between the reference and closed-loop driver are not too large.
This Section deals with the question to which extent the driving profiles of various drivers dif-
fer for the same pre-defined course. The focus is put on the longitudinal acceleration, lateral
acceleration and the yaw velocities, as realizing these motions on a motion system are typ-
ically particularly challenging. For this purpose, three test persons performed a five-minute
drive five times each on the simulator presented in Table 2.2. An optimization-based MCA
provided by the manufacturer was used to provide motion cueing for these drives [77]. To
compare between the different manoeuvres, the individual signals of all manoeuvres have to
be interpolated as a function of the position along the drive. The manoeuvre exhibits several
acceleration and deceleration profiles, turns with different radii, hill-tops, urban sections and
a roundabout, resulting in a broad range of driving manoeuvres (see red marked sections in
Figure 8.1), listed in Table 8.1. The overall manoeuvre is the same as in the Chapters 6 and
7 but the choice of the sections differs. This is because a closed-loop rating method is used
which requires sufficient time between the specific manoeuvres defined in Table 8.1.

8.2.1 Lateral Dynamics

For the lateral acceleration ay , a relation between the longitudinal velocity vx and the curve
radius R exists [153]

ay =
v2

x

R
[m/s2]. (8.1)
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Table 8.1: The driving manoeuvre used in the experiment is divided following seven parts.

1. Acc. procedure: Medium-strong acceleration to approx. 80 km/h.
2. Roundabout: Strong deceleration from approx. 80 km/h to approx.

30 km/h. Taking the first exit in the roundabout (75◦

turn). Medium-strong acceleration to approx. 100
km/h.

3. Sharp hilltop: Crossing a hill with a sharp top at approx. 60 km/h.
4. Sharp turn 1: Sharp left turn at approx. 60 km/h.
5. Sharp S-curves: Sharp S-curves at 60 km/h.
6. Sharp turn 2: Extended 90◦ left turn at approx. 60 km/h.
7. Dec. procedure: Medium-strong deceleration from 50 km/h to 0 km/h.

Starting point1

2 3

4 5 6 7

End point

Village B

Village A

80

50

100

80
50

Figure 8.1: Course of the considered manoeuvre with speed limits.

Based on equation (8.1), there are two factors which influence the reference of ay . First,
the longitudinal velocity vx has a quadratic influence on ay . Assuming that the driver sticks
to speed limits and considers the appropriate velocity for the course, differences between
various manoeuvres are limited. Second, as a single-lane course was used in this study, the
variability between R across drives was relatively small.
Figure 8.2 shows the lateral acceleration for the considered course. Although the profiles
indicate various amplitudes, the data is quite homogeneous. The mean variance over the
manoeuvres is significantly smaller compared to the longitudinal acceleration (cf. Table 8.2).
Thus, in contrast to the longitudinal acceleration, the quality of the reference that can be
obtained for the lateral direction is reasonable.

Table 8.2: Mean variance between the various manoeuvres for longitudinal acceleration, lateral acceleration and
yaw velocity.

Longitudinal acceleration Lateral acceleration Yaw velocity

Mean(Var(X )) 0.2681 [m/s2] 0.0576 [m/s2] 0.00014 [rad/s]
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Figure 8.2: Comparison of the lateral acceleration of 15 recorded manoeuvres for the defined reference course.

8.2.2 Yaw Dynamics

The yaw velocity ψ̇ shows characteristics similar to the lateral dynamics concerning the com-
parability of various drivers. The equation

ψ̇=
vx

R
[rad/s] (8.2)

indicates a linear relation between the longitudinal velocity vx and the curve radius R [153].
Assuming only minor trajectory deviations between the drivers in the single-lane course,
the variability in R between drives is relatively small and the yaw velocity mainly depends
on vx . As most drivers adjust their longitudinal velocity depending on the curvature, the
yaw velocities deviate slightly between the drivers (cf. Figure 8.3). The low mean variance
between the manoeuvres in Table 8.2 supports this statement.
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Figure 8.3: Comparison of the yaw velocity of 15 recorded manoeuvres for the defined reference course.

8.2.3 Longitudinal Dynamics

Several events affect the longitudinal dynamics of a driver. Traffic rules can cause positive or
negative longitudinal accelerations at certain points. These include speed limit signs, traffic
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lights or road signs. Moreover, a change in the longitudinal velocity can result from the road
ahead, for example when approaching sharp turns, junctions or roundabouts. To a certain
extent, all these events allow conclusions about the expected longitudinal acceleration.
However, there are a number of uncertainties that make an accurate prediction difficult.
For example, the point of acceleration or deceleration is uncertain, in case of a speed limit
change. Most drivers do not precisely adhere to speed limits. Individual driving style can
be seen as another factor since, for instance, the acceleration profile of sporty drivers differs
from comfortable drivers.
Figure 8.4 shows the longitudinal accelerations for the considered course which indicates
that the acceleration profiles are only roughly comparable for the 15 manoeuvres. To further
quantify the variations, the mean variance (Mean(Var(X ))) over the manoeuvres is listed in
Table 8.2. Compared to the results of the lateral and the yaw dynamics, the estimated vari-
ance value is fairly high. Summarizing, longitudinal dynamics vary strongly, both between
drivers and across drives the point of acceleration differs significantly which makes obtaining
a reliable reference in longitudinal direction difficult.
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Figure 8.4: Comparison of the longitudinal acceleration of 15 recorded manoeuvres for the defined reference
course.

8.2.4 Consequences

In order to use the potential of the optimization-based reference trajectory in a hybrid MCA,
it is necessary that differences between the driving dynamics of the closed-loop driver and
the reference are only small. Based on the analysis in Section 8.2, the following summarizing
statements can be made:

• The course of the driving simulation is to be pre-defined and has to be observed by the
closed-loop driver.

• The hybrid MCA is especially suitable for single lane courses, whereas courses with
multiple lanes, like highways, are situations where a hybrid approach might not be
favourable.

• The presence of a speed limit is crucial, as the velocity plays a major role in the reference
of the acceleration.
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• Other road users lead to unpredictable driving manoeuvres which deteriorates the mo-
tion cueing quality. For instance, the driving behaviour under presence of other road
user is difficult to predict.

8.3 Simulative Comparison

Chapter 4.4 includes a simulative analysis between the filter-based MCAFILT and the opti-
mization -based MCAOFF. The evaluation reveals that there is a large potential in the motion
cueing quality, demonstrated by the MCAOFF compared to the MCAFILT. Other works, like [36,
54], compared an open-loop, optimization -based MCA with an online capable MCA, in an
experimental simulation. Participants rated the deviation between perceived and expected
stimuli in order to specify the motion cueing quality. The rating results confirmed the motion
cueing potential of the optimization -based algorithms. A major advantage of these algo-
rithms is that - in contrast to closed-loop MCAs - they have access to a perfect prediction of
the future driving behaviour and can use this information. Thus, in this work, a method is
proposed to use the promising motion cueing potentials of open-loop, optimization -based
MCAs in a closed-loop simulation.

8.4 Structure of MCAHYB

The concept of a hybrid MCA (MCAHYB) is to combine an open-loop, optimization-based
MCA (MCAOFF) with a closed-loop, real-time capable MCA. In this work, a filter-based MCA
(MCAFILT) is taken as a closed-loop algorithm. The motion cueing quality of the MCAFILT
is improved by using additional information of a precalculated, open-loop MCAOFF. In the
following the statements, listed at the end of Section 8.2.4, are employed in the use-case
studied here.
Figure 8.5 illustrates the structure of the hybrid MCA approach. The driving dynamics data
of a pre-defined course serves as a reference. Based on this data, the MCAOFF calculates an
optimal trajectory depending on the chosen weighting parameters and the kinematic motion
system model. Results of the optimal control problem are taken as the reference platform
motion for the open-loop simulation. As the driving behaviour of a closed-loop driver differs
from the reference, deviations are compensated by the closed-loop MCAFILT. Due to speed
differences, the timing of the closed-loop and open-loop driving dynamics data will diverge
over time, as discussed in Section 8.2. In order to account for this, in the block “position
matching”, the reference data is mapped onto the current online data based on the current
position on the road. For each time step tS during the simulation, the position matching finds
the time step tre f at which the reference driver was located closest to the current closed-loop
driver. Based on the observations from Section 8.2, this approach is applied for the lateral
acceleration as well as for the yaw velocity. For the longitudinal direction, where variations
are large, a different approach is taken as will be described later.

8.4.1 Reference Data Base

The following Section describes the calculation of the reference data, consisting of the driv-
ing dynamics data [V are f

V , β̇
re f
V ] and the vehicle positions I p

re f
V , as shown in Figure 8.7. It

is assumed that the motion cueing quality improves, when differences between online and
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Figure 8.5: Schematic structure of the hybrid MCA with the data branches: Online driving dynamics signal (green),
reference driving dynamics data (orange) and reference optimal motion cueing data (blue).

reference drivers are small as less corrective action has to be executed by the MCAFILT. The
question arises, which driving style is appropriate for the reference driver? In a typical ex-
perimental study with test persons, a broad range of driving styles are present. Based on this
fact, a method is required to obtain a representative reference manoeuvre, based on a large
data base of pre-recorded drives. The approach taken in this study was as follows: Several
drivers drove the pre-defined manoeuvre on the considered simulator. During the drives,
motion cueing was provided by a standard MCA that was already available. The average
of the recorded driving data is subsequently taken. This approach yields two advantages:
First, a representative mean velocity is obtained which has a great influence on the lateral-
and yaw dynamics, as seen in equations (8.1) and (8.2). Second, a representative trajectory
concerning the lane position is obtained. Although the use-case concerns a single-lane road,
there are still deviations in the driving positions between different drivers, e.g. due to various
steering corrections.
In support of this argument, the upper plot of Figure 8.6 shows the x/y-positions in a curve
for 15 different simulator drives, as well as their average trajectory obtained from them.
Herein, the different steering points are visible. The lower plot of Figure 8.6 exemplifies the
smooth averaged lateral acceleration compared to individual drives which shows consider-
able deviations in the amplitude and the course.

As shown in Figure 8.5, the averaged driving dynamics data [V are f
V , β̇

re f
V ] is used for the

MCAFILT and the MCAOFF. For the MCAOFF, the reference signal yV is as indicated in equa-

tion (4.1) using [V are f
V , β̇

re f
V ] (cf. Figure 4.1). As a reminder, yV contains the specific forces

and resulting angular velocities at the CRP of the virtual vehicle (cf. equation (4.1)). Based
on the results from Section 8.2, deviations between different drivers are smallest for lateral
and yaw motions. Thus, the reference data yV for the optimization problem, defined in
equation (4.6), are estimated with the following inputs

β̇
re f
V =





ϕ̇
re f
V
0
ψ̇

re f
V



 , V are f
V =





0

V are f
V,y
0



 . (8.3)
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Figure 8.6: Upper plot: x /y-position in a curve for 15 different drives as well as their mean trajectory. Lower plot:
smooth averaged lateral acceleration compared to individual drives.

The solution of the full time optimal control problem yields the reference motion cueing
[r re f

S , β re f
S ]. Although the reference data in equation (8.3) does not include motions in lon-

gitudinal, pitch and vertical direction, the reference motion cueing [r re f
S , β re f

S ] can comprise
motions in these directions because of the redundant motion system structure (cf. equation
(2.17)).

8.4.2 Data Branches and Position Matching

The MCAHYB consists of two data branches as depicted in Figure 8.5 and Figure 8.7. On the
one hand, the reference data base consists of the driving dynamics data [V are f

V , β̇
re f
V ] and the

vehicle positions I p
re f
V defined in an initial FoR I . Based on this data, the MCAOFF calculates

the trajectories [r re f
S , β re f

S ] for the considered reference manoeuvre. Thus, at every time step
tS[k], a position I p

re f
V [k] is associated with a motion cueing signal [r re f

S [k], β re f
S [k]].

On the other hand, the online driver’s data comprises the current driving dynamics state
[V aonline

V , β̇
online
V ] and the current vehicle position I p

online
V . At every time step tonline[l], the

position matching algorithm searches for the minimum distance between the current position

I p
online
V [l] and a reference position I p

re f
V [k]. Subsequently, the following signals are read out

from the reference data branch at the index k:

• The driving dynamics data [V are f
V , β̇

re f
V ], which is partly used for the MCAFILT.

• The reference motion cueing signals [r re f
S , β re f

S ].

The MCAHYB was implemented in MATLAB/Simulink [108] and exported to C++ for inte-
gration into the target system of the driving simulation environment. The reference data is
imported during the initialization phase of the driving simulation experiment.
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Figure 8.7: Schematic scheme of the position matching between an online driver and a reference driver using the
data branches shown in Figure 8.5 (analogue colour selection).

8.4.3 Interpolation

The position matching algorithm needs to account for the varying driving speed of the online
driver, which may differ from the reference manoeuvre. Matching problems can arise when
the index jumps for several increments or stays the same for a number of time samples. In
this case, differentiating leads to discontinuities and numerical problems which arise in the
induced reference signals. For this reason, it is not sufficient to search for a discrete index.
The approach presented in this work is to orthogonally project the online driver’s position
onto the reference driver’s trajectory as depicted in Figure 8.8. The trajectory is a linear
interpolation between the discrete reference positions I p

re f
V . In an interval subsequent to

the last calculated interpolation value IIV , the system searches for the closest appropriated
points of the reference driver. In Figure 8.8, these points are marked with B (nearest index)
and C (second nearest index) and form a triangle with the current online driver’s position
A. The projection onto the reference trajectory, and thus the interpolation value IIV can be
calculated using geometric relationships which are explained in the following Section.
Using the triangle’s side lengths a, b, c estimated by the position values A, B, C , the triangle’s
height ha is calculated by

ha =
2 · Aabc

a
. (8.4)

The triangle’s area is defined by

Aabc =
Æ

s(s− a)(s− b)(s− c) (8.5)

where s = 0.5 · (a + b + c) using the Heron’s formula [98]. The interpolation point IIV is the
intersection of the segment BC and the segment AIIV which are perpendicular to each other.
Based on the index k, IIV is calculated by

IIV =

¨

k+ aI
a , for index of C > index of B

k− aI
a , for index of C < index of B

(8.6)

where aI =
Æ

c2 − h2
a. In the last step, the reference motion cueing signals [r re f

S , β re f
S ] are

interpolated using IIV .



112 8 Closed-Loop, Hybrid MCA (MCAHYB)

I p
online
V [l − 1]

I p
re f
V,re f [k− 1]

I p
online
V [l]

I p
re f
V [k]

I p
re f
V [k+ 1]

I p
re f
V [k+ 2]Reference Driver

Online Driver

B

C

A

c b

a aI I
aI ha

IIV

Figure 8.8: Geometric representation of the orthogonal projection of the online driver’s position onto the reference
driver’s trajectory (analogue colour selection as in Figure 8.5 and Figure 8.7).

8.4.4 Signal Fusion

As shown in Figure 8.5, the platform motions are composed of a superposition between the
correction signals [r comp

S , β comp
S ] (estimated by MCAFILT) and the reference signals [r re f

S , β re f
S ]

(estimated by MCAOFF) in the form

pS,hy b = r comp
S + p re f

S (8.7)

βS,hy b = β
comp
S +β re f

S . (8.8)

The generation of the reference signals [r re f
S , β re f

S ] is described in Section 8.4.1.

8.4.5 Longitudinal Acceleration

As noted in Section 8.4.2, the longitudinal cueing cannot be performed in an analogous
fashion to the lateral and yaw cueing, due to the large variations between drivers and be-
tween drives. Still, certain information about the future longitudinal dynamics is utilized
in the MCAHYB to improve the motion cueing quality with respect to MCAFILT. Here, a pre-
positioning technique is proposed to enhance the workspace management.
Figure 8.4 shows the longitudinal acceleration profiles of 15 drives. The plot indicates ar-
eas with high positive or negative acceleration magnitudes at roughly the same road section.
These acceleration events are associated with specific events or occurrences in the pre-defined
course, like village entrances or speed limits. These occurrences cause similar behaviour
across drivers. An algorithm was developed that automatically extracts the locations where
positive or negative acceleration events can be expected based on the acceleration profiles of
various drives. The algorithm searches for grouped events, which indicate the occurrence of
multiple accelerations or decelerations with a large magnitude. The upper plot of Figure 8.9
shows both the single large events and automatically identified events, resulting in one ac-
celeration manoeuvre and four deceleration manoeuvres.
These events were used to calculate a pre-positioning trajectory in the preparation phase of
the driving simulation experiment. The longitudinal acceleration can be reproduced by a
constant translational motion and/or a tilting motion below the rotational threshold. Both
ways are used for the event based pre-positioning in the present work.
Translational pre-positioning techniques are reported in several works, such as [85, 150].
A translational pre-positioning function moves the motion system in the direction opposite
to the expected manoeuvre. For example, in preparation for a positive acceleration, the
motion platform moves to the rear position of the workspace. Thus, more motion space is
available for the acceleration demand. The pre-positioning motion preferably is below the
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Figure 8.9: Upper plot: Identified (positive and negative) acceleration events of the considered single drives
and the resulting grouped events used by the pre-positioning. Lower plot: Calculated signals for the longitudinal
and angular pre-positioning of tripod and hexapod, respectively. The blue halftone indicates the range of the
longitudinal acceleration.

human perception threshold. A maximum pre-positioning stroke rpp,max for the tripod and a
pre-positioning acceleration r̈ pp, which is below the translational acceleration threshold was
defined. The time tpp to reach the pre-positioning position is estimated by

tpp = kpp

√

√

√

2 · rpp,max

r̈ pp
(8.9)

where kpp is a factor to compensate position deviations of the pre-positioning events. The
pre-positioning distance rpp,x varies depending on the intensity of the manoeuvre. The max-
imum acceleration peak determines the maximum pre-positioning rpp,max . The position rpp
of the remaining events is proportional to rpp,max . The pre-positioning signal was added to
the output of MCAHYB. The position matching synchronizes the pre-positioning signal with
actual road position of the simulator driver. In order to receive a smooth acceleration profile,
the pre-positioning signal is filtered using a third order low-pass filter. The lower plot of Fig-
ure 8.9 shows the filtered pre-positioning signal rpp, f il t,x relative to the reference manoeuvre.
In this study, the translational pre-positioning was only implemented for the tripod because
of the small workspace capacities of the hexapod. The signal rpp, f il t is differentiated twice
and added to the acceleration r̈ S,t r i,x from the MCAFILT.
In order to evaluate the functionality of the longitudinal pre-positioning, the deceleration

manoeuvre before the roundabout from the course described in Section 8.2 is taken here as
an example. Figure 8.10 shows the tripod’s position in I x-direction with and without pre-
positioning function. The workspace restrictions are approximated by a constant upper and
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Figure 8.10: Tripod’s position in I x -direction with and without pre-positioning function. The platform sticks to its
workspace limits applying the pre-positioning function, whereas no pre-positioning leads to a workspace overshoot.

lower bound. Using no pre-positioning leads to a workspace overshoot for the considered
manoeuvre. Whereas, applying the pre-position, the tripod platform prematurely moves to
the opposite direction leading to an effective increase in the available workspace.
The potential of improvement in the motion quality depends on the translational workspace
capabilities of the motion system. Prepositioning for systems with small motion capabilities
is not very effective and only leads to small improvements for short acceleration peaks. In
this work, a tilting pre-positioning is additionally proposed which improves the cueing of
long-lasting accelerations. Reproducing long-lasting accelerations is challenging, as they can
lead to very large position excursions which quickly leads to reaching the simulator posi-
tion bounds. Tilting at a low tilt rate is perceived as a slow-onset long-lasting longitudinal
acceleration. Increasing the tilting rate increases the likelihood of perceiving the rotation.
Analogously to the procedure of the longitudinal pre-positioning, acceleration events are in-
dicated in the reference data which are used to calculate the tilting pre-positioning signal.
Herein, just the positions of the acceleration peaks are relevant. A time period tpp,θ before
the occurrence of an acceleration event, the hexapod is tilted with a constant angular veloc-
ity ωpp,θ . Due to the premature tilting procedure, a perceived translational acceleration is
present before the actual acceleration manoeuvre leading to a higher perceived acceleration
peak. The tilting velocity ωpp,θ and the pre-positioning angle θpp are bound to a maximum
value in order to limit the perception error. Here, the deceleration manoeuvre before the
roundabout was taken as an example again. Figure 8.11 shows the tilting angles with and
without pre-tilting. A maximum pre-positioning angle of 2◦ is applied, resulting in a per-
ceived longitudinal acceleration of approximately 0.34m/s2. The premature tilting angles
lead to an earlier perceived longitudinal acceleration and a false cue. Figure 8.12 shows
the result of combining the translational and rotational pre-positioning techniques. Again,
the previously considered deceleration manoeuvre is used. The pre-positioning techniques
reveal an increase of the maximum deceleration value and a better tracking behaviour of the
reference signal in comparison with using no pre-positioning methods.
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Figure 8.12: Resulting longitudinal accelerations using the translational and rotational pre-positioning techniques
for a deceleration manoeuvre.

8.5 Experimental Evaluation

An experimental study was conducted to evaluate the motion cueing quality of the MCAHYB.
Herein, the MCAHYB is compared to a classical, filter-based MCAFILT (introduced in Section 3)
which functions as a reference algorithm. OMIs and PMIs are used for evaluation.
The experiment was conducted in the simulator shown in Figure 1.3 with twelve participants
between the age of 20-30. The participants were employees of the BMW Group or students
of the Technische Universität München. Of the participants, 7 participants had never experi-
enced a driving simulator. For the remaining participants, the driving simulator experience
ranged between: 1-3 times (3), and more than 6 times (2). All the participants have a driver’s
licence.
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8.5.1 Experimental Structure

The basic layout of the experiment follows previous works, such as [36, 37, 54] and includes
three different rating methods. First, the CR method measured PMIs with a rotational knob
during a simulator drive. This rating method was employed when the MCAs are used in an
open-loop structure, so that the participants were passively driven through a pre-defined ma-
noeuvre. As this work introduces an online-capable MCA, also a new rating method (section-
wise post-hoc rating - SPR) was developed and employed which enables an evaluation of a
closed-loop simulation. Here, the participants were asked to report PMIs orally after pre-
defined sections during an active drive. Finally, after each drive, the participants rated the
PMIs of the whole manoeuvre in a PR.

8.5.2 Research Questions

The study includes the following research questions for evaluation:

• Does the novel MCAHYB have a higher motion cueing quality than the MCAFILT using
the CR in an open-loop simulation and using the SPR in a closed-loop simulation?

• Are significant correlations measurable in the rating results between the CR and the
SPR?

8.5.3 MCAs Used for Comparison

For the comparison, a state-of-the-art, filter-based MCA is taken as a reference. Similar algo-
rithms are used in simulators, such as [135, 144, 150]. In [36], a filter-based MCA was used
as a benchmark in a comparison to an optimization-based MCA. The algorithm proposed in
the current work can be used in an open-loop and in a closed-loop simulation. For the open-
loop test, a recorded drive, which differs from the average drive, was chosen as an input. For
the comparison to MCAHYB, the MCAFILT was selected. This algorithm is already included
inside the MCAHYB. Comparing the two provides the clearest insight in the improvements
that were made by the extensions that MCAHYB provide. Furthermore, the same filter pa-
rameters are chosen for the MCAHYB and the MCAFILT, in order to avoid the possibility that
deviations between both MCAs are based on the parametrization. Both MCAs are scaled to
maximally exploit the workspace of the simulator. A more conservative scaling was used for
the closed-loop simulation than for the open-loop simulation in order to preserve workspace
capacities for unforeseen manoeuvres in the online drive. The applied scaling factors ki for
i ∈ {x , y, z, ϕ, θ , ψ} (six input signals) are listed in Table 8.3. Comparing the scaling factors,
higher values can be used for the MCAHYB because of the improved workspace exploitation
of the algorithm. The hand-tuned weights, used in the MCAOFF to calculate the reference
trajectory for the MCAHYB, are shown in Appendix D in Table D.6.

Table 8.3: Applied scaling factors ki for i ∈ {x , y, z, ϕ, θ , ψ} for the open-loop and closed-loop simulation.

open-loop closed-loop
kx ky, z,ϕ,θ ,ψ kx ky, z,ϕ,θ ,ψ

MCAFILT 0.2 0.3 0.2 0.2
MCAHYB 0.2 0.6 0.2 0.4
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8.5.4 Rating Procedure

For the CR, participants rate PMIs using a rotational knob which is located at the middle
console of the mockup. The scale ranges from 0−10 and a visual representation of the rating
scale was included in the driving scene shown to the driver. The scale was located in the cen-
tre of the driver’s field of view, at approximately the location where a heads-up display would
be located. A rating of 0 means low PMIs, thus a high motion cueing quality and a rating of
10 represents high PMIs (low motion cueing quality). The CR is logged with a sample rate of
10 ms, resulting in a quasi-time-continuous rating profile for the specific manoeuvres. As the
participants have to fully concentrate on the rating, the CR can only be obtained in open-loop
simulations.
As an additional measure to the CR method, an additional PR at the end of each trial is con-
ducted. Thus, correlations between the results of the CR and the PR can be analysed. For the
PR, the same rating scale as for the CR is applied.
As the MCAHYB is online-capable, it can also be evaluated in a closed-loop drive. This, how-
ever, excludes the possibility of obtaining a CR. Therefore, a different approach was devel-
oped for the rating during closed-loop drives, which was the SPR. The seven sections that
were rated using the SPR are indicated in Figure 8.1. The experiment leader kept in con-
stant contact with the actively driving participants. The sections that were to be rated, we
announced in advanced. Participants were asked to give an oral rating for each section using
the same scale as for the previous rating methods. Also here, the participants gave a PR at
the end of each closed-loop drive.

8.5.5 Experimental Design

The experiment was structured in three parts: First, in order to familiarize the participants
with the CR method and the simulation environment, the participants conducted a training
exercise. Some manoeuvres of the training exercise exhibited large PMIs, for which the par-
ticipants were instructed to use the whole rating scale.
In the second part, the experiment started and the CR was used in an open-loop simulation.
The reference manoeuvre for MCAHYB was obtained from a measured data pool, as described
in Section 8.4.1. Data from a single driver were used to as data of the online driver. Prior to
the experiment, the offline motion cueing was calculated for a MCAFILT and a MCAHYB, for
a pre-recorded manoeuvre. During the experiment these results were replayed. Both algo-
rithms were rated twice in a randomly pairwise order. After each trial, the participants were
asked for a PRI . Each trial lasted approximately 5 min. After four ratings, a short break was
taken.
In the last part of the experiment, both MCAs were driven in a closed-loop simulation, so
the participants experienced the MCAHYB and the MCAFILT during an active drive. After de-
fined sections in the manoeuvre, indicated in Figure 8.1, the participants gave an SPR. The
MCAFILT and MCAHYB were rated twice in a random pairwise comparison. The participants
were instructed to adhere the speed limits and the traffic regulations. The SPR were recorded
by the experiment leader. At the end of each drive, a PRI I was conducted to rate the overall
PMIs of the drive.
After each drive, a break was offered. The experiment lasted approximately 2 h per partici-
pant.
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8.5.6 Independent and Dependent Variables

Independent variable in the experiment is the MCA (two levels: MCAFILT and MCAHYB) and the
simulation type (two levels: open-loop and closed-loop). These algorithms are embedded in a
within-subject design. By these means, the algorithms are compared in a two-times randomly
ordered comparison, once in a closed-loop simulation and once in an open-loop simulation.
Dependent variables are the ratings obtained through the three rating methods (CR, PR and
SPR).
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Figure 8.13: Upper plot: Longitudinal specific forces of the unscaled online driver V fV,re f ,x and the motion cueing
signals H fhy b,x and H f f il t,x for a closed-loop test. Lower plot: Respective motion cueing error according to
equation (5.70).

8.6 Objective Motion Incongruencies

In the following Section, the resulting longitudinal and lateral accelerations are analysed as
these DoFs are considered as the most relevant motion channels of the experiment. Fig-
ure 8.13 shows the resulting physical longitudinal accelerations at the CRP of MCAHYB,
MCAFILT and the online driver for the manoeuvre described in Section 8.2. To classify de-
viations to the online driver, the error equation (5.70) from Chapter 5.8 is used which dis-
tinguishes between sign errors and scaling errors using the unscaled yV as reference. Sign
errors are rated worse compared to scaling errors as the driver perceives an opposite motion
to its expectation [67].
The errors εx for the MCAFILT and MCAHYB are plotted on the lower part of Figure 8.13.
The deviations from the online driver, i.e. the errors, for the two algorithms are of a similar
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Figure 8.14: Upper plot: Lateral specific forces of the unscaled online driver V fV,re f ,y and the motion cueing
signals H fhy b,y and H f f il t,y for a closed-loop test. Lower plot: Respective motion cueing error according to
equation (5.70).

magnitude throughout the manoeuvre. At the locations where pre-positioning was applied
(approx. time instances: 80 s, 180 s and 270 s) the MCAHYB shows a smaller error than
MCAFILT, demonstrating the added benefit of the pre-positioning approach. It also reveals
that the pre-positioning motions are mainly below the perception threshold.
The resulting lateral accelerations for the MCAHYB, MCAFILT and the online driver are de-
picted in the upper plot of Figure 8.14. The lower part of Figure 8.14 reveals the resulting
errors ε y applying equation (5.70). Visual observation of the results shows that sign errors of
MCAHYB are mainly below the perception threshold. Scaling errors of the MCAHYB generally
exhibit lower values compared to the MCAFILT. To further quantify the results, the rms-εrms of
the deviations in lateral direction for both algorithms are estimated to: εrms, MCAHYB

= 0.4696;
εrms, MCAFILT

= 0.8394.

8.7 Experimental Results

The evaluation of the experiment is sectioned into three parts: First, the CR in an open-
loop simulation - second, the SPR in a closed-loop simulation and the third part examines
correlations between the CR and the SPR.
To check the central tendency (significance of mean-values) of two dependent samples, the
paired t-test (test statistic = t) for normally distributed samples and the Wilkoxon signed
rank test (test statistic = z) for non-normally distributed samples is used. The Lilliefors-test
is used for testing normal distribution of a sample. Definitions for the mean value µ, the



120 8 Closed-Loop, Hybrid MCA (MCAHYB)

standard deviation σ and the standard error σ∗ can be found in Section 6.6 in equations
(6.4)-(6.6).

8.7.1 Open-Loop Continuous Rating

Reliability and Validity

Reliability is a measure of the internal consistency and the interrelatedness of ratings [18]. In
this experiment, reliability is estimated by the Pearson correlation. Therefore, for each par-
ticipant, the correlation matrix between the two trials of each independent variable (MCAFILT
and MCAHYB) is calculated. The side diagonal value of the correlation matrix indicates the
linear relationship between the two trials. In order to obtain a single value for the reliabil-
ity criterion, the average of the mean correlation values for the two independent variables
is used [93]. Figure 8.15 shows the correlation values for twelve participants which were
included in the analysis. By visual examination of the data, a critical value for the Pearson
correlation of 0.2 is assumed for the experiment. The reliability of the rating method has been
shown in other works, such as [36, 37, 54]. The inclusion of participants is more important
than the exclusion as exclusion reduces the statistical power. Nevertheless, two participants
(ID6, ID7) are excluded from the study (cf. red markers Figure 8.15) because of a too low
correlation value. For the further evaluation, ten participants are considered.
In order to analyse whether the intended property was indeed measured during the experi-
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Figure 8.15: Internal consistency of the ratings per participant.

ment (validity), the continuous rating is compared to the generally accepted PR method [37].
Figure 8.16 shows the mean CR for MCAFILT and MCAHYB obtained during the manoeuvre
and the mean PRI (dashed lines). A significant linear relationship (Pearson correlation) be-
tween the two ratings for both MCAs exists (r = 0.65, p < 0.05). The Pearson correlation is
estimated using the differences between both MCAs for the maximum mean CR and the PRI .
Herein, the respective CR value for each participant is taken at the time step of the maximal,
overall mean CR. The non-zero correlations confirm the assumption that in this experiment
the CR measures the motion cueing quality.

Overall Rating

Participants rated PMIs, where a higher value means a larger incoherence, hence worse mo-
tion cueing quality.
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Figure 8.16: Mean CR with standard error (transparent area) and mean PRI for the MCAFILT and MCAHYB over
the complete manoeuvre. Dashed lines separate the manoeuvre into the seven sections as defined in 8.2.

Post-hoc Rating (PRI): Figure 8.17 shows a significant difference (t(9) = 6.08, p < 0.001)
between the mean PRI for MCAFILT (µMCAFILT

= 6.7; σ∗MCAFILT
= 0.62) and MCAHYB

(µMCAHYB
= 3.60; σ∗MCAHYB

= 0.36). The MCAHYB indicates less motion discrepancies than
the MCAFILT. The mean of the two rating pairs for the PRI is depicted in Figure 8.17.
The mean value of the PRI does not change significantly for the two trials of the MCAFILT
(MCAFILT : z(9) = −0.576, p > 0.05) and the MCAHYB (MCAHYB : t(9) = 0.515, p > 0.05) for
which reason the ratings are assessed as sufficiently consistent.
Continuous Rating: Figure 8.16 shows the mean continuous rating of all participants for
MCAFILT and MCAHYB with the standard error. The overall mean values between MCAFILT
(µMCAFILT

= 2.64, σ∗MCAFILT
= 0.65) and MCAHYB (µMCAHYB

= 1.60, σ∗MCAHYB
= 0.55) do not differ

significantly (z(9) = 1.47, p < 0.15). By visual examination, the CR of the MCAHYB exhibits a
lower rating than the MCAFILT almost over the complete simulation.
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Figure 8.17: Overall mean PRI and mean PRI for trials 1-2 with standard error in an open-loop drive.
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Manoeuvre based Rating

The mean values of the CR for the manoeuvres defined in Section 8.2 are listed in Table 8.4,
including the results of a significance test. For all considered manoeuvres, the MCAHYB ex-
hibits a lower rating compared to the MCAFILT. Especially in manoeuvres with strong lateral
accelerations and high yaw rates, the MCAHYB shows less PMIs. This provides further ev-
idence that using the offline data in the MCAHYB significantly improves the motion cueing
quality.

Table 8.4: Significant differences between the mean values of MCAFILT and MCAHYB within the sections. Largest
values are plotted in bold.

mean value
Section MCAFILT MCAHYB t(9)− /z(9)−stat.

Acc. procedure 1.08 0.87 t = 2.96∗

Roundabout 3.29 1.71 t = 5.04∗

Sharp hilltop 1 2.81 1.72 t = 1.66∗

Sharp turn 1 4.44 2.62 z = 3.55∗

Sharp S-curves 4.77 1.63 z = 3.97∗

Sharp turn 2 2.85 1.78 t = 3.94∗

Dec. procedure 2.32 1.57 t = 3.76∗

∗(p < 0.01)

8.7.2 Closed-loop Section-wise Post-hoc Rating
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Figure 8.18: Overall mean PRI I and mean PRI I for trials 1-2 with standard error in a closed-loop drive.

Overall PRI I : In the second part of the experiment, participants rated PMIs during an
online drive. They gave an oral rating after seven pre-defined sections within a single sim-
ulation and an overall PRI I after each completed simulation trial. Figure 8.18 depicts the
significant difference (t(9) = 5.28, p < 0.01) between the mean of the MCAFILT (µMCAFILT

=
6.4, σ∗MCAFILT

= 0.47) and the MCAHYB (µMCAHYB
= 4.1, σ∗MCAHYB

= 0.56) for the overall PRI I .
Similar to the PRI in the open-loop experimental part, the MCAHYB shows a higher motion
cueing quality compared to the MCAFILT. Figure 8.18 also shows the mean PRI I for the first
and second trial over all participants. The PRI I between the open-loop simulation (cf. Fig-
ure 8.17) and closed-loop simulation (cf. Figure 8.18) indicate a significant correlation. The
Pearson correlation coefficient for the PRI I are:
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1. MCAFILT: r = 0.73, p < 0.05,

2. MCAHYB: r = 0.78, p < 0.01.

Section-wise Post-hoc Rating: The boxplot in Figure 8.19 shows the median SPR for the seven
considered manoeuvres. The boxes indicate the 25th and 75th percentile. The thin vertical
line presents the spread for the minimum and maximum rating. For all seven manoeuvres, the
MCAHYB exhibits a lower median than the MCAFILT. Linear correlations reveal the maximum
SPR of the seven ratings and the overall PRI I at the end of the online drive for each MCA:

1. MCAFILT: r = 0.94, p < 0.01,

2. MCAHYB: r = 0.91, p < 0.01.

The significant values reveal a correlation between the novel SPR and the generally accepted
PRI I .
Table 8.5 lists the Pearson correlation coefficients between the CR of the open-loop simulation
and SPR of the closed-loop simulation for the seven considered manoeuvres. A significant
value is found for 9 out of 14 correlations (all correlations are positive), which provides some
indication of the validity of the applied SPR. On the other hand, there are minor deviations in
the results of both rating systems, which could point to the influence between an open-loop
and a closed-loop rating method.

Table 8.5: Pearson correlation coefficients between the CR and SPR for the seven considered manoeuvres.

Section MCAFILT MCAHYB

Acc. procedure r = 0.26∗∗∗ r = 0.12∗∗∗

Roundabout r = 0.65∗∗ r = 0.76∗∗

Sharp hilltop 1 r = 0.78∗ r = 0.83∗

Sharp turn 1 r = 0.72∗∗ r = 0.81∗

Sharp S-curves r = 0.68∗∗ r = 0.78∗

Sharp turn 2 r = 0.74∗∗ r = 0.59∗∗∗

Dec. procedure r = 0.40∗∗∗ r = 0.59∗∗∗

∗(p < 0.01), ∗∗(p < 0.05), ∗∗∗(p > 0.05)

8.8 Chapter Summary

This Chapter proposes an MCA consisting of a combination between an open-loop optimization-
based MCAOFF and a closed-loop MCAFILT. A preliminary analysis indicated advantages
of an open-loop, optimization-based MCA in contrast to a state-of-the-art filter-based algo-
rithm. Using reference driving dynamics data for a pre-defined manoeuvre in the open-loop,
optimization-based MCA leads to an quasi-optimal pre-positioning motion, entailing an im-
proved workspace management. Thus, deviations between reference motions and motions
provided by the simulator are minimized to a further extent resulting in a higher motion
cueing quality.
The Chapter shows a method on how to use such a precalculated optimal trajectory for a spe-
cific manoeuvre in a closed-loop simulation environment. The driving behaviour of various
drivers was recorded for a pre-defined manoeuvre. Results indicate minor deviations be-
tween the drives for lateral accelerations and yaw angular velocities. Using this knowledge,
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Figure 8.19: Median SPR for the seven considered manoeuvres in a closed-loop drive. The boxes indicate the
25th and 75th percentile and the thin vertical line presents the spread for the minimum and maximum rating.

an open-loop, optimal control problem estimates the optimal trajectory for an averaged driver
in a pre-processing step. In the closed-loop simulation, a position matching function matches
the optimal trajectory with the current state of the online driver. Driving dynamics deviations
between open-loop and closed-loop driver are corrected by a filter-based MCAFILT.
The MCAHYB was evaluated in an experiment with twelve participants in a pairwise com-
parison with the MCAFILT. In an open-loop simulation, the results of the continuous rating
show a significant improvement in motion cueing quality for the MCAHYB. By grouping spe-
cific manoeuvres of the overall simulation into sections, the mean continuous rating of the
MCAHYB reveals less perceived motion incongruencies compared to the MCAFILT. A correla-
tion between the results of the continuous rating and a generally accepted post-hoc rating
method shows the validity of the rating results. For the second part of the experiment, a novel
rating method was introduced consisting of an active drive in a closed-loop simulation. For
pre-defined sections within the overall simulation, participants gave an oral post-hoc rating
(SPR). The results indicate less PMIs for the MCAHYB than for the MCAFILT. Considering the
three applied rating methods, for each, PMIs are rated lower for the MCAHYB, which provides
some good evidence that the algorithm significantly provides a higher motion cueing quality.
Correlations between the CR and the SPR provide some confidence in the validity of the novel
closed-loop rating method.



Chapter 9

Conclusion

The thesis describes several methods of MCAs which calculate the motions of a redundant
driving simulator under consideration of its workspace capabilities. This Chapter summarizes
the methods, discusses the results and gives motivations for future work.

9.1 Summary and Discussion

Developing new approaches of MCAs requires to deal with the simulator kinematics and the
human perception system. Chapter 2 introduces the motion platform (DiM), which is con-
sidered throughout the thesis. The simulator structure, consisting of hexapod and tripod, is
classified among other driving simulator topologies from literature. Using the relative kine-
matics, the three absolute accelerations and the three angular velocities working on the driver
can be expressed. These six motion channels enable a comparison between vehicle motions
and simulator motions to obtain the objective motion incongruencies. The Chapter describes
advantages to integrate information of the vestibular system to an MCA, which can be sum-
marized to: First, the perception thresholds can be exploited in the motion cueing algorithm.
Herein, tilt coordination is a common technique to reproduce long-lasting accelerations by
slowly tilting the motion platform preferably below the rotational perception threshold. Sec-
ond, a vestibular model can be integrated to an MCA to reproduce only perceivable motions
by the motion system. A vestibular model estimates perceived driver motions out of physi-
cal driver motions. In the chapter, different approaches of vestibular models are discussed
and analysed. Results show that the transmission behaviour among the considered vestibular
models is similar for low- to mid-frequency ranges but differs for higher frequencies.
Chapter 3 presents the basic functionalities of filter-based MCAs which mainly consist of
linear transfer functions. The filter-based MCAFILT is applied to the DiM simulator by us-
ing a frequency splitter which divides the signal into three signal domains correlating with
the workspace capabilities of hexapod, tripod and tilt motions. To enhance the workspace
exploitation for a predicted manoeuvre, heuristic pre-positioning techniques are described
which provide an opposite motion in advance to the expected one. As filter-based MCAs
do not consider workspace restrictions, a workspace supervision module is proposed which
checks the workspace adherence of each actuator of a parallel robot. The module stops the
simulator in case of an exceedance and provides a fade-in function to return to the desired
simulator motion.
Chapter 4 proposes the open-loop, optimization-based MCAOFF which uses a single optimal
control problem to calculate the simulator motions. The objective function minimizes devi-
ations between vehicle motions and simulator motions which are acting on the driver. The
algorithm is used for open-loop simulations which enables an ideal prediction strategy for
a pre-recorded manoeuvre over the full time horizon. Results yield an optimal trajectory of
the motion simulator. A simulative comparison shows a significant reduction of objective
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motion incongruencies of the MCAOFF compared to the MCAFILT which gives good evidence
in improving the motion cueing quality.
Chapter 5 shows an approach for an online-capable optimization-based MCA. A model-
predictive control framework solves an optimization problem at discrete time steps with a
sampling time of 10 ms. A linearized prediction model which predicts the future driving
dynamics is included to a quadratic objective function with linear inequality constraints. A
simulative analysis shows two effects. First, a partitioning of the time horizon into a predic-
tion horizon, input horizon and constraint horizon reduces the computational effort without
a significant loss in motion cueing quality. The linearization of the nonlinear inverse kine-
matics between workspace and actuator space is justifiable because a long-term forecast of
the actuator states over the prediction horizon is not absolutely necessary.
In a first development stage, the algorithm (named MCAOPT) was used as a proof-of-concept
in a closed-loop application. An experimental study measured the potential of the MCAOPT to
a state-of-the-art benchmark MCABM. The design and the results of the study are presented in
Chapter 6. The continuous rating (CR) method was used where participants rated perceived
motion incongruencies during an open-loop simulation. Results show a consistent rating
among the participants. Correlations to a general accepted post-hoc rating provides good
evidence that the CR is a valid rating method to measure the motion cueing quality. The
rating of the MCABM shows higher perceived motion incongruencies which demonstrates
the potential of the MCAOPT. Ratings were used to develop a rating model which predicts
perceived motion incongruencies from objective motion incongruencies. A simple baseline
model of [37] was modified with new weighting parameters and an extended transfer func-
tion. Results show a reasonable prediction for inputs which are used for the training of the
model. Applying inputs which are not included in the training decreases the prediction qual-
ity substantially.
As the MCAOPT was only applicable to open-loop simulations, a large effort was put in the
real-time capability of the algorithm. The new developments were integrated to the MCAMPC
which is shown in Chapter 7. The MCAMPC uses the model predictive control scheme which
has to give feedback under hard real-time deadlines. The MCAMPC was evaluated in compar-
ison with the MCABM and the MCAOFF using the CR method. Results show less perceived
motion incongruencies for the MCAMPC compared to the state-of-the-art MCABM. This is an
important result as it indicates the potential of MCAMPC and reveals an improvement in
motion cueing quality for the closed-loop algorithm. The MCAOFF demonstrates the least
perceived motion incongruencies of the three considered MCAs. Showing the highest motion
cueing quality is not surprising, since the MCAOFF uses an ideal prediction strategy and the
full time horizon as a reference. Taking the results of the MCAOFF as an upper benchmark,
a higher prediction accuracy along with a longer time horizon can substantially improve the
motion cueing quality of the MCAMPC. In the study, the MCAMPC takes the current driving
dynamic states as constant over the time horizon which is only a valid prediction for a short
time instant. Thus, extending the time horizon length with this approach yields an increas-
ingly inaccurate prediction as deviations to the current driving dynamics state are rising. The
capability to use quadratic optimization approaches in motion cueing algorithms is a power-
ful approach. However, the optimization-problem can still become infeasible as the motion
cueing highly depends on the choice of the hand-tuned weighting parameters which may not
be the best choice for every driving manoeuvre.
Chapter 8 describes the structure of the MCAHYB which combines the benefits of the MCAFILT
and the MCAOFF. Saying it more precisely, the real-time capability of the MCAFILT is used to
make use of an optimal trajectory, calculated by the MCAOFF, in a closed-loop simulation. An
experimental analysis showed slight variations in driving dynamics data between different
drives for a pre-defined manoeuvre concerning the lateral acceleration and the yaw angular
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velocity. Based on this data, a driving dynamics reference is obtained. The MCAOFF uses
the data as an input to calculate an optimal trajectory for the pre-defined and pre-recorded
manoeuvre. This is only done for lateral acceleration, roll velocity and yaw velocity since the
driving dynamic deviations between drivers are too large for the longitudinal acceleration.
Thus, the longitudinal acceleration, the vertical acceleration and the pitch velocity are gener-
ated by a filter based MCA with pre-positioning derived from the test drives. In a closed-loop
simulation, a function matches the position of the reference with that of the online driver. At
the matching positions, the simulator provides the optimal trajectory. Driving dynamics devi-
ations between reference and online driver are compensated with the MCAFILT. The MCAHYB
is evaluated in an experimental study consisting of two parts. In the first part, the CR was
used which compares the MCAHYB with the MCAFILT in order to evaluate the developments
and extensions of the MCAHYB. Ratings exhibit lower perceived motion incongruencies of the
MCAHYB compared to the MCAFILT which indicates an improvement in motion cueing qual-
ity. The second part uses the section-wise post-hoc rating method in a closed-loop simulation.
Participants gave an oral rating after pre-defined sections during an active drive. Again, mi-
nor perceived motion incongruencies are rated for the MCAHYB. Correlations between the
section-wise post-hoc rating and the CR demonstrate the validity of the closed-loop rating
method.
To give an overview of the motion cueing quality of all MCAs which are used within this work,
Figure 9.1 shows the CR of the MCABM

1 (used in Chapter 6.3.2), MCAOPT, MCABM
2 (used in

Chapter 7.3, same setting between MCABM
1 and MCABM

2), MCAMPC, MCAOFF, MCAFILT and
MCAHYB. The CR was measured in different experiments with different experimental de-
signs. Thus, the following analysis gives only a bare indication about the perceived motion
incongruencies for the manoeuvre described in Chapter 6.4.3. To further quantify the plots,
Table 9.1 lists the rms-values of the CR over the complete manoeuvre. Based on these data,
the following can be observed:

• The plots and the rms-values of the MCABM
1 and the MCABM

2 show a high correlation
(Pearson correlation r = 0.943, p < 0.001). In both studies, described in Chapter 6.3.2
and 7.3, the same benchmark MCA is taken. This observation gives an indication that
the CR-method is a valid procedure to rate motion incongruencies as the results of the
CR are measured from two different groups. Along with this, it increases the signifi-
cance of the following observations as it supports the comparability of the CRs between
the experimental studies.

• The MCAOFF shows the lowest rating of the considered CRs. This observation gives a
good evidence that the motion cueing gained by MCAOFF obtains the highest motion
cueing quality of the considered MCAs in this work.

• The MCAOPT shows less perceived motion incongruencies than the MCAMPC. This sup-
ports the result that a higher prediction accuracy and a longer time horizon can further
improve the motion cueing quality of the MCAMPC.

• Comparing the CR of the MCAHYB and the MCAMPC confirms that both closed-loop
MCAs are valid approaches to improve the motion cueing quality compared to state-of-
the-art approaches.
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Table 9.1: Rms-values of the MCABM
1 (used in Chapter 6.3.2), MCAOPT, MCABM

2 (used in Chapter 7.3), MCAMPC,
MCAOFF, MCAFILT and MCAHYB.

MCABM
1 MCAOPT MCABM

2 MCAMPC MCAOFF MCAFILT MCAHYB

rms-value 2.804 1.425 2.771 1.790 1.106 2.941 1.734

9.2 Recommendations for Future Work

From the experience gained through the work and under consideration of the results and
discussion above, several suggestions for future research can be made:

• Higher prediction accuracy of the MCAMPC:
A limiting factor in the performance of the MCAMPC is the prediction strategy which
takes the current vehicle dynamics states constant over the prediction horizon. A pre-
diction model could include the following components:

– Driving course model: A use-case could be a pre-defined driving course for a closed-
loop simulation which means that all turns, roundabouts, junctions etc. are known
in advance. Based on this information, a driving course model could predict an
average path of a driver (without driving dynamics). The model could use data
from offline drives, such as described in Chapter 8.4.1, or could calculate the path
online based on the current driving position. Typical path planning approaches of
autonomous driving, such as [44, 103], could be applied.

– Driver model: A model of the driver predicts the driver commands. The driver
prediction is the most critical part of the overall prediction model as the time
point and the extent of driver actions are unknown. The analysis in Chapter 8.2
provides good evidence for this observation, which shows large deviations in the
longitudinal acceleration profiles for different drives. Though, a motion profile,
which gives a tendency or probability over the considered time horizon, could be
sufficient to give an estimate of the driver commands.

– Vehicle model: Based on the outputs of the driver model, the vehicle model es-
timates the vehicle dynamics, such as the translational accelerations and angular
velocities. A linear or nonlinear single track model could be a first approach [153].

The following has to be considered: The motion cueing quality depends on the pre-
diction accuracy, saying that a bad prediction yields a minor motion cueing quality. A
limiting factor is the computational effort of the prediction model, meaning: The model
needs to be simple enough to guarantee real-time capability for a closed-loop simula-
tion. But, at the same time, the model has to be sufficiently reliable to predict the
vehicle motions over a future time horizon. Another limiting factor are false predic-
tions. For example in case the model predicts an acceleration manoeuvre but the driver
is actually decelerating. Considering these large deviations between desired vehicle
motions and actual motions in the objective function of the optimal control problem
can lead to infeasibility of the optimization solver. The example demonstrates that the
current driving dynamics states have to be considered in the prediction model as an
initial condition.

• Increase the prediction length of the MCAMPC:
Along with a higher prediction accuracy, increasing the prediction length can further
improve the motion cueing quality. The hard feedback deadlines of the real-time frame-
work combined with uncertain calculation times of the optimizer are restricting factors.
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In the thesis, the prediction model is integrated with an explicit Euler method which
is a common technique in MPC-applications [32, 106]. Still, higher order integration
methods enable larger time step sizes, yielding less optimization parameters over a
consistent time horizon.

• Optimization solver of the MCAMPC:
An active-set QP-solver [65] with a hot-start function, explicitly developed for MPC
real-time applications, is used in the MCAMPC. Still, other real-time capable solvers are
possible. Especially interior-point-based solvers may show advantages towards active-
set methods because of a more efficient handling of the constraints. An analysis of
different solvers concerning their real-time applicability for the considered problem
can be part of future work.

• Variation of the MCAFILT in the MCAHYB:
The MCAHYB uses the filter-based MCAFILT for compensating deviations between the
driving dynamics of the reference and the online driver. The MCAFILT is a simple-
structured motion cueing approach which exhibits good tuning characteristics. In fu-
ture works, other MCAs can be tested instead of the MCAFILT. A possibility could be to
use an optimization-based MCA which includes a prediction model and considers the
constraints of the motion system.

• Reference generation in the MCAHYB:
As described in Chapter 8.4.1, the reference of the MCAHYB constitutes an average of
several simulator drives. The process for preparing these drives with different partic-
ipants for a pre-defined manoeuvre is quite cumbersome. An idea would be to use a
computer-based driver, which includes a prediction model as described in the recom-
mendations above. A limiting factor would be the accuracy of the prediction model
which has a huge influence on the calculated optimal trajectory of the manoeuvre.

• Reference-based MCA:
Extending the single reference-based approach, used by the MCAHYB, with several ref-
erences would yield an exclusively reference-based MCA. The idea is to calculate the
optimal simulator trajectory for various drives of a pre-defined manoeuvre in order to
obtain a motion cueing data base for the considered course. A neural network or a re-
inforcement learning algorithm uses the data to match the appropriate motion cueing
data with the current state of the online driver. Thus, compared to the MCAHYB not
only a single averaged reference is considered but an extensive data base. The data
base could consider different driving styles, vehicle trajectories, traffic situations, etc. .

• Rating models:
The accuracy and the adaptivity of the rating models described in Chapter 6.4.4 are
limited. Other approaches, such as neural networks, often show more accurate model-
fitting characteristics. Rating methods which are based on neural networks are analysed
within the work using the CR data gathered in the experimental studies. Results show
a similar accuracy to the models described in Chapter 6.4.4, generally speaking: The
accuracy for a training-set is significantly higher but validation tests, using non-training
data, reduces the accuracy considerably. Insufficient training data could be the reason
for the decrease in quality. Broadly extending the CR data base by using data from sev-
eral experimental studies could improve the accuracy and adaptivity of these models.



Appendix A

Cardan Angles

In automotive industry, based on ISO8855 [92], Cardan rotations (or Tait-Bryan rotations)
define a rotation sequence between the earth-fixed FoR I and the body-fixed FoR N . The
Cardan angles ψ, θ , ϕ express a rotation sequence of three elementary rotations about the
Iz − 1 y − 2 x − axis as shown in Figure A.1. Hereby, the 1 FoR and the 2 FoR are auxiliary
coordinates systems. In this thesis, the Cardan sequence from an I FoR to an N FoR is defined
as:

1. Rotation about the Iz-axis with the angle ψ,

2. Rotation about the 1 y-axis with the angle θ ,

3. Rotation about the 2 x-axis with the angle ϕ.

I 1 2 N

I x

1 x

2 x = N x

Iz = 1z
2z

N z

I y1 y = 2 y

I y θ̇

ψ
ϕ

ψ
θ

ϕ̇

ψ̇

θϕ

ψ θ ϕ

Iz 1 y 2 x

Figure A.1: Cardan sequence with the Cardan angles ψ, θ , ϕ.
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According to Figure A.1, a Cardan sequence for a vector r can be expressed by

N r = N R2 2R1 1RI I r (A.1)

= Rx(ϕ)R y(θ )Rz(ψ) I r (A.2)

= N RI I r (A.3)

=





c(ψ)c(θ ) c(θ )s(ψ) −s(θ )
c(ψ)s(ϕ)s(θ )− c(ϕ)s(ψ) c(ϕ)c(ψ) + s(ϕ)s(ψ)s(θ ) c(θ )s(ϕ)
s(ϕ)s(ψ) + c(ϕ)c(ψ)s(θ ) c(ϕ)s(ψ)s(θ )− c(ψ)s(ϕ) c(ϕ)c(θ )





I r . (A.4)

with the abbreviations s and c for sin and cos, respectively. Rotations about the z-, y- and
x- axis are defined as

Rz(ψ) =





cos(ψ) sin(ψ) 0
− sin(ψ) cos(ψ) 0

0 0 1



 , R y(θ ) =





cos(θ ) 0 − sin(θ )
0 1 0

sin(θ ) 0 cos(θ )



 and

Rx(ϕ) =





1 0 0
0 cos(ϕ) sin(ϕ)
0 − sin(ϕ) cos(ϕ)



 . (A.5)

An inversion of the rotation sequence is defined as

IRN = ( N RI)
T (A.6)

= RT
z (ψ)R

T
y (θ )R

T
x (ϕ) (A.7)

= Rz(−ψ)R y(−θ )Rx(−ϕ). (A.8)

Following the procedure above, the angular velocity ω is obtained by the sum of relative
angular velocities with the amplitudes ϕ̇, θ̇ , ψ̇ about the relative axis. One finds

ωIN =ωI1 + ω12 + ω2N (A.9)

= ψ̇ e
I z + θ̇ e

1 y + ϕ̇ e
2 x , (A.10)

with a unit vector e defined in the respective FoR. The angular velocity in the N FoR is defined
as

NωIN = ϕ̇ N e
2 x + θ̇ N e

1 y + ψ̇ N e
I z (A.11)

= ϕ̇ N R2 2e
2 x + θ̇ N R1 1e

1 y + ψ̇ N RI 1e
I z (A.12)

=



Rx





1
0
0



 , Rx R y





0
1
0



 , Rx R y Rz





0
0
1













ϕ̇

θ̇

ψ̇



 (A.13)

=





1 0 − sin(θ )
0 cos(ϕ) cos(θ ) sin(ϕ)
0 − sin(ϕ) cos(θ ) cos(ϕ)



 β̇ (A.14)

= N Jω β̇ (A.15)

with the Jacobian matrix N Jω and the Cardan angles’ derivatives summed up in β̇ = [ϕ̇, θ̇ , ψ̇]T .
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Following equation (A.12), the angular velocity IωIN in the I-FoR can be described by

IωIN = ϕ̇ Ie2 x + θ̇ Ie1 y + ψ̇ Ie I z (A.16)

=



RT
z RT

y





1
0
0



 , RT
z





0
1
0



 ,





0
0
1













ϕ̇

θ̇

ψ̇



 (A.17)

=





cos(ψ) cos(θ ) − sin(ψ) 0
sin(ψ) cos(θ ) cos(ψ) 0
− sin(θ ) 0 1



 β̇ (A.18)

= I Jω β̇ (A.19)

In the present work, the Cardan angles between the T FoR and the H FoR, used for the simu-
lator structure in Figure 2.4, are labelled with the subscripts T H to β T H = [ϕT H , θT H , ψT H].





Appendix B

Tripod’s Actuator States

The Figure B.1 corresponds to Section 5.8.
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Figure B.1: Actuator stroke (top, left), velocity (top, right) and acceleration (bottom, left) of the tripod for the
considered manoeuvre. The values are normalized to the maximum and minimum limits. The maximum error in
the actuator stroke over the constraint horizon Hc (bottom right).
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Appendix C

Optimization

Optimization

Dynamic Systems

Direct Optimization

Numerical Optimization Optimization Solvers

Single Shooting

Multiple Shooting
Collocation

Indirect Optimization

Active Set Interior Point

Figure C.1: Overview of numerical optimization approaches.

Figure C.1 shows an overview of numerical optimization methods which are introduced
in the following Section. A model approximates the real system by a dynamic system of
ordinary differential equations (ODE) in the form

ẋ (t) = f ( x (t), u(t), p, t) ∀t ∈ [t0, te] (C.1)

with the time t, the states x (t), the inputs u(t) and the time independent parameters p. The
time t is defined in an interval with the starting time t0 and with the end time te. An optimal
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control problem (OCP) is defined as

min
x (t), u(t), p, te

J( x (t), u(t), p, te) (C.2)

subject to:

∀t ∈ [t0, te] : ẋ (t) = f ( x (t), u(t), p, te)

0 = R( x (t0), u(t0), x (te), u(te), p, te)

0 ≤ S( t, x (t), u(t), p, te)

which minimizes the objective function J over the time interval [t0, te]. The differential
equations (C.1) are considered in the optimization as equality constraints. The vector R
includes the initial and end conditions at the time t0 = 0 and te for the system variables
x (t), u(t), p, te. The vector S contains the system-, input-, parameter- and time-constraints.
Another problem class which is related to OCPs are boundary value problems (BVPs) which
determine the solution of an ODE subject to the boundary conditions, for example at the
initial state t = t0 and at the final state t = te.
A distinction can be made between indirect and direct methods, when solving the problem
described in equation (C.2). [177]
Indirect procedures pursue a "first optimize, then discretize" strategy by transforming the
BVP into an initial value problem (IVP). The IVP is solved iteratively until the boundary
conditions are fulfilled. Direct methods discretize the OCP to a finite-dimensional problem
and then solve a discretized problem with numerical methods. Thus, a "first discretize, then
optimize" strategy is pursued. Typical discretization methods are:

• Single shooting,

• Multiple Shooting and

• Collocation. [132]

C.1 Numerical Optimization

Due to the increasing performance of direct optimization solvers and the rising CPU power
in recent years, the present work uses direct optimization methods. For further information
concerning indirect methods, it is referred to literature, see e.g. [13, 132, 177].

Example: For the sake of simplicity and clarity, the following Section deals with an easier
problem than described in equation (C.2). The example is taken from [16] and it determines
the initial value x(t0) of a BVP, so that the IVP over [t0, te] fulfils the boundary condition at
te in the form

ẋ(t) = f (t, x(t)), ∀t ∈ [t0, te] (C.3)

c = x(te).

C.1.1 Single Shooting

The discretization scheme transforms the BVP, described in equation (C.3), to an IVP. As
illustrated in Figure C.2, an iterative scheme with the loop index k is applied. The IVP is
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Choose an initial s1
0

Integrate the IVP with
ẋ (t) = f ( t, x (t)) t ∈ [t0, te]
x (t0) = s k

0

Solution x̄ (t, t0, s k
0) fulfils

R(s k
0, x̄ (te, t0, s k

0)) < ε

?

STOP

Solve nonlinear equations
F(s k

0) = R(s k
0, x̄ (te, t0, s k

0)) = 0
⇒ For example: Newton-Method
(Gradient of F(s k

0) needed!)

NO

YES

k++

Figure C.2: Single Shooting scheme to solve an IVP.

integrated over the time horizon [t0, te] with the initial guess x (t0) = s k
0. The trajectory

x̄ (t, t0, s k
0) yields the solution of the IVP (but x̄ (t, t0, s k

0) not necessarily fulfils the final condi-
tion c = x(te) of the BVP). In case the solution x̄ (t, t0, s k

0) of the ODE in equation (C.3) fulfils
the boundary conditions R(s k

0, x̄ (te, t0, s k
0)) < ε within a tolerance ε, the iteration scheme

stops. Otherwise, a system of nonlinear equations F(s k
0) = R(s k

0, x̄ (te, t0, s k
0)) = 0 is solved,

for instance, by applying the Newton-Method described in equation (2.35). This step is com-
putationally expensive as the gradient of F(s k

0) is needed to determine the variation of the
upcoming initial guess s k+1

0 . [16]

C.1.2 Multiple Shooting

tt0 t1 t2 tm−1 te

x1(t1, t0, s0)

s1 s2

sm

s0

t i t i+1

si si+1

x i(t i+1, t i , si)

Figure C.3: Multiple Shooting scheme to solve an OCP (based on [16]).

In contrast to the single shooting method, the multiple shooting discretization divides the
interval [t0, te] into m subintervals [t i , t i+1], i = 0, . . . , m− 1 with

t0 < t1 < · · ·< tm = te, (C.4)
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as shown in Figure C.3. The time distance between the intervals can vary. For each subin-
terval, a parameter si ∈ Rn is introduced which defines a parametrized initial value on the
interval [t i , t i+1], i = 0, . . . , m − 1. Thus, compared to single shooting methods, n · m addi-
tional optimization parameters si are used. The ODE ẋ (t) = f ( t, x (t)) is integrated on each
interval [t i , t i+1] for the estimates si. The transition conditions

x (t i+1, t i , s i)− s i+1 = 0, i = 0, . . . , m− 1 (C.5)

are integrated as n·m additional boundary conditions compared to the single shooting method
(cf. Figure C.3). The boundary conditions are transformed to the respective parameters
s0, sm in the form

R(x (t0), x (te)) = 0 ⇐⇒ R(s0, sm) = 0, R ∈ Rn. [16]

Similar to the iterative scheme of the single shooting (described in Figure C.2), the multiple
shooting can also be solved by a Newton Method algorithm. The optimization parameters si
can be integrated simultaneously on each subinterval [t i , t i+1], i = 0, . . . , m−1. The solution
x̄ (t, t i , s i), i = 0, . . . , m− 1 fulfils the ODE at the subintervals t i , i = 0, . . . , m.

C.1.3 Collocation

x

t1 t2 t3 tt1,1 t1,2 t2,1 t2,2

Figure C.4: Numerical discretization of a time interval using the collocation method (based on [16]).

The collocation method transforms the OCP to a subspace, so that the differential equa-
tions are fulfilled at the collocation points, as shown in Figure C.4. A time grid ΠN is intro-
duced which divides the time horizon [t0, te] into N intervals

ΠN : t0 < t1 < · · ·< tN = te (C.6)

The intervals do not necessarily need to be equidistant. A further refinement of the interval
[t i , t i+1]

0≤ ρ0 < ρ1 < · · ·< ρk−1 ≤ 1 (C.7)

leads to the collocation points, which are defined in the form

t i j = t i +ρ j(t i+1 − t i), j = 0, . . . , k− 1 (C.8)

for the interval [t i , t i+1], i = 0, . . . , N −1, resulting in N · k+1 collocation points. Discretizing
the states x (t) and the inputs u(t) at the collocation points leads to the parameter vector Y

Y = [x 0,0, . . . , x 0,k, . . . , x (N−1),0, . . . , x (N−1),k, x N ,0], ∈ RN(nx ·k+1).

Different trial functions can be found in literature, such as [42, 58, 59, 100, 133, 178, 179].
Generally, polynomial functions or splines are introduced within the N -intervals:
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• Polynomials of order d over the complete time horizon [t0, te],

• Piecewise polynomials of order d

xΠN
(τ) =

d
∑

l=0

cl,i

�

τ− t i

t i+1 − t i

�l

for t i ≤ τ≤ t i+1. (C.9)

Since the differential equations are approximated by trial functions, no integration method
is used compared to shooting methods. The fulfilment of the differential equations at the
collocation points is given by the dynamic constraints

ẋΠ(t i j) = f ( t i j , x (t i j)), 0< i < N − 1, 0< j < k− 1. (C.10)

To avoid discontinuities at the interval intersections, equality constraints

xΠi
(t i+1) = xΠi+1

(t i+1), 0< i < N − 1 (C.11)

ensure continuity at the polynomial interfaces. Start conditions and ending conditions of the
OCP are also included as constraints of the trial functions. [16]

C.1.4 Discussion

The pros and cons of the three discretization strategies are listed in Table C.1. The choice
of the discretization method depends on the defined problem. The single shooting is a sim-
ple concept, where the stability highly depends on the initial value s0. Multiple shooting
methods exhibit a higher complexity but generally show a better stability behaviour. Paral-
lel computation methods and the exploitation of matrix structures can further decrease the
computation time. Collocation methods are not based on a numerical integration scheme but
on trial functions which approximate the differential equations. Trial functions ensure the
adherence of the differential equations at the collocation points. Thus, the complexity and
the accuracy of the method depends on the chosen discretization method. [16]

C.2 Optimization with Equality Constraints

The optimization problem is expressed as

min
x

J(x ) x ∈ Rn, n<∞ (C.12)

s. t.:

ce(x ) = 0 (C.13)

with the objective function J(x ) and the equality constraints ce(x ). The scalar Lagrange-
function with the Lagrange-multipliers λ can be described by

L(x ,λ) = J(x )−λT ce(x ) (C.14)

As a condition for a stationary point, the gradient of the Lagrange-function exhibits a zero
crossing at the desired point (x ∗,λ∗), which is defined as

∇x L(x ,λ) = g (x )−GT
e (x )λ= 0 (C.15)

∇λ L(x ,λ) = −ce(x ) = 0 (C.16)
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Table C.1: Comparison of the pros (+) and cos (-) of the three discretization methods: single shooting, multiple
shooting and collocation [16].

Single shooting Multiple shooting Collocation

+ Simple Concept + Integrations are sepa-
rated, thus can be per-
formed simultaneously

+ Polynomials fulfil Cl

continuity (in case: actua-
tor requirement)

+ Simple Implementation + Exploitation of the Gra-
dient’s matrix structure to
reduce the numerical ef-
fort

+ Many options in the
discretization/ approxima-
tion of the OCP

+ Higher stability for
larger time horizons com-
pared to single shooting

- Solution of IVP not guar-
anteed for bad s0

- Higher complexity in im-
plementation compared to
single shooting

- Polynomials can lead to
undesirable oscillations

- Convergence of Newton-
Method not guaranteed for
bad s0

- Larger system of equa-
tions compared to single
shooting

- Solve large system of
equations

- Problems for large time
horizons

with g = ∇x J and Ge = ∇x ce. In order to determine whether the stationary point is a
minimum, a sufficient condition is to verify the Hesse matrix H L for positive definiteness.
The Hesse matrix is defined to

H L =∇x x L(x ,λ) =∇x x J(x )−∇x xλ
T ce(x ). (C.17)

The solution of the equations (C.15) and (C.16) yields the values (x ∗,λ∗), for example by
applying a Newton Method. A 1st -order Taylor-series of the equations (C.15) and (C.16)
obtains the stationary points in the form

0= g (x )−GT
e (x )λ+H L(x ) [x̄ − x ]−GT

e (x )[λ̄−λ] (C.18)

0= −ce(x )−Ge(x ) [x̄ − x ] (C.19)

Further transformations of the equations (C.18) and (C.19) lead to a linear system-of-equations,
which is called Karush-Kuhn-Tucker (KKT) equations

�

H L(x ) GT
e (x )

Ge(x ) 0

��

ρ
−λ̄

�

=

�

−g (x )
−ce(x )

�

(C.20)

with ρ = [x̄ − x ]. The system can be solved by a numerical solver for linear systems of
equations. [13]
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C.3 Optimization with Inequality Constraints

The optimization problem is defined as

min
x

J(x ) x ∈ Rn, n<∞ (C.21)

s. t.:

ce(x ) = 0

c i(x )≥ 0

Several algorithms are available for these problems. As depicted in Figure C.5, the following
Section briefly introduces two commonly used solvers which are applied in the course of the
thesis.

Algorithm

Active-set
...

Interior-Point

Figure C.5: Solvers for optimization problems with inequality constraints.

C.3.1 Active-Set Solver

A feasible region specifies all feasible points of a solution x ∗. By contrast, at least one point
of a solution x ∗ violates the constraints in an infeasible region. At a solution x ∗, constraints
can be distinguished into active and inactive:

1. Active-set A defines the constraints which are treated as equality constraints:

c i(x
∗) = 0 for i ∈ A. (C.22)

2. Inactive-set A′ defines the constraints which are strictly satisfied for x ∗:

c i(x
∗)> 0 for i ∈ A′. (C.23)

Active-set constraints are integrated as equality constraints to the optimization problem, for
example, by using the methods described in Section C.2. Inactive constraints can be neglected
in the optimization step. An active-set strategy identifies the active constraints at the solution
x ∗ by the Lagrange multipliers λ∗ with

λ∗i ≥ 0 for i ∈ A. (C.24)

Consequently, in case λ∗i ≥ 0, the respective solution x ∗i is part of the active-set and in case
λ∗i < 0, the solution x ∗i can be deleted from the active set. [13]
Advantages of active-set methods are that only active-set constraints are considered in the
optimization, which can fasten the optimization process. Since the active-set constraints can
only change slightly between each iteration step, warm start approaches are possible. These
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approaches use the solution of the previous step for the upcoming step, assuming that the
solution only varies slightly. Thus, warm start options are often used in real-time applications.
However, for some problems, active-set methods can be disadvantageous, for example when
the active-set changes from step to step. In these cases, the constraint matrix varies which
makes the solution computationally expensive. [125]

C.3.2 Interior-Point Solver

Interior-point methods introduce slack variables s ∈ Rm to the optimal control problem by

min
x ,s

J(x )−µ
m
∑

i=1

ln(si) (C.25)

s. t.:

ce(x ) = 0

c i(x )− s = 0

(s ≥ 0)

with the weighting µ. One possibility to integrate the slack variables to the objective function
is by a natural logarithm function. As long as s ≥ 0, the inequality constraints c i(x ) ≥ 0
are satisfied. The logarithmic term in the objective function prevents the slack variables s
from becoming negative as the cost of J increases considerably when s converges to 0. In
Figure C.6, a natural logarithm function is shown which demonstrates

lim
s→0
− ln(s) → ∞. (C.26)

The convergence can be specified by modifications of the logarithmic term in the objective
function or by the weighting µ. [125]
Interior-point methods usually show fast convergence properties as the major computational
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Figure C.6: Cost function − ln(s) of the slack variable s.

effort is spent on solving the KKT-equations. By exploiting the structure of the Jacobian
matrix, an efficient linear solver can reduce the computation time. Still, it has to be taken
into account that all constraints are considered in the calculation even if some are inactive.
Another restriction is that for some solvers, the initial values have to be feasible which can
be quite difficult for some problems. [125]



Appendix D

Weighting Parameters

The equations (5.39) and (5.40) show an approach to determine the weighting parameters.
All parameters are additionally hand-tuned, depending on the motion system’s workspace
capabilities and the driving dynamics data.

Table D.1: Hand-tuned weightings parameters for the objective function in equation (5.37). Used for the simula-
tive evaluation in Chapter 5.8.

Weighting matrix Q
Specific forces and angular velocities
fx 103.8063 f y 34.6021 fz 12.7551
ωx 364.7563 ωy 506.6060 ωz 485.6222

Weighting matrix R
Hexapod

xH 19133 yH 24000 zH 30992
ẋH 375 ẏH 519 żH 586
ϕH 7386.3 θH 7386.3 ψH 7386.3

Tripod
xT 109.375 yT 124.446 ψT 262.6250
ẋT 24.220 ẏT 31.108

Weighting matrix S
Hexapod

ẍH 2.4 ÿH 2.4 z̈H 1.23
ϕ̇H 162.09 θ̇H 174.78 ψ̇H 162.09

Tripod
ẍT 0.276 ÿT 0.4 ψ̇T 6.03

Weighting matrix T
T = 100 · S

145
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Table D.2: Hand-tuned weightings parameters for the objective function in equation (5.37). Used for the MCAOPT

in the comparison between the MCAOPT and the MCABM in Chapter 6.3.

Weighting matrix Q
Specific forces and angular velocities
fx 69.2042 f y 103.8063 fz 1530.6
ωx 364.7563 ωy 506.6060 ωz 971.2444

Weighting matrix R
Hexapod

xH 19 133 yH 24 000 zH 10331
ẋH 375 ẏH 519 żH 195
ϕH 7386.3 θH 7386.3 ψH 7386.3

Tripod
xT 46.875 yT 53.334 ψT 68.2825
ẋT 10.38 ẏT 13.332

Weighting matrix S
Hexapod

ẍH 2.4 ÿH 2.4 z̈H 0.246
ϕ̇H 117.065 θ̇H 126.23 ψ̇H 117.065

Tripod
ẍT 0.1035 ÿT 0.15 ψ̇T 1.206

Weighting matrix T
T = S

Table D.4: Hand-tuned weightings parameters for the
objective function in equation (4.6). Used for the
MCAOFF in the comparison between the MCAFILT and
the MCAOFF in Chapter 4.4.

Weighting matrix Q
Specific forces and angular velocities
fx 0.1 f y 0.1 fz 0.1
ωx 0.6 ωy 0.6 ωz 10

Weighting matrix R
Hexapod

xH 0.25 ẋH 0.25 ẍH 0.25
yH 0.25 ẏH 0.25 ÿH 0.25
zH 0.25 żH 0.25 z̈H 0.25
ϕH 3 ϕ̇H 25
θH 3 θ̇H 25
ψH 2 ψ̇H 25

Tripod
xT 0.03 ẋT 0.03 ẍT 0.03
yT 0.03 ẏT 0.03 ÿT 0.03
ψT 0.3 ψ̇T 0.1

Table D.5: Hand-tuned weightings parameters for the
objective function in equation (4.6). Used for the
MCAOFF in the comparison between the MCAMPC,
MCABM and the MCAOFF in Chapter 7.2.

Weighting matrix Q
Specific forces and angular velocities
fx 0.1 f y 0.1 fz 0.7
ωx 1 ωy 1 ωz 70

Weighting matrix R
Hexapod

xH 0.25 ẋH 0.25 ẍH 0.25
yH 0.25 ẏH 0.25 ÿH 0.25
zH 0.25 żH 0.25 z̈H 0.25
ϕH 10 ϕ̇H 25
θH 10 θ̇H 25
ψH 2 ψ̇H 25

Tripod
xT 0.03 ẋT 0.03 ẍT 0.03
yT 0.03 ẏT 0.03 ÿT 0.03
ψT 0.3 ψ̇T 0.1
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Table D.3: Hand-tuned weightings parameters for the objective function in equation (5.37). Used for the MCAMPC

in the comparison between the MCAMPC, MCABM and the MCAOFF in Chapter 7.2.

Weighting matrix Q
Specific forces and angular velocities
fx 0.1 f y 0.1 fz 0.1
ωx 1 ωy 1 ωz 1

Weighting matrix R
Hexapod

xH 0.6 yH 0.6 zH 0.6
ẋH 0.4 ẏH 0.4 żH 0.3
ϕH 6 θH 6 ψH 40

Tripod
xT 0.11 yT 0.11 ψT 2
ẋT 0.01 ẏT 0.01

Weighting matrix S
Hexapod

ẍH 0.5 ÿH 0.5 z̈H 0.5
ϕ̇H 40 θ̇H 40 ψ̇H 25

Tripod
ẍT 0.01 ÿT 0.01 ψ̇T 1

Weighting matrix T
T = S

Table D.6: Hand-tuned weightings parameters for the objective function in equation (4.6). Used for the MCAOFF

to calculate the reference trajectory in Chapter 8.5.3.

Weighting matrix Q
Specific forces and angular velocities
fx 0.1 f y 0.1 fz 0.1
ωx 0.5 ωy 0.5 ωz 1

Weighting matrix R
Hexapod

xH 0.25 ẋH 0.25 ẍH 0.25
yH 0.25 ẏH 0.25 ÿH 0.25
zH 0.25 żH 0.25 z̈H 0.25
ϕH 0.5 ϕ̇H 25
θH 0.5 θ̇H 25
ψH 2 ψ̇H 25

Tripod
xT 0.02 ẋT 0.02 ẍT 0.02
yT 0.02 ẏT 0.02 ÿT 0.02
ψT 0.1 ψ̇T 0.2
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