
Technische Universität München

Lehrstuhl für Numerische Mechanik

lnM

An efficient hybrid multigrid solver
for high-order discontinuous Galerkin methods

Master’s thesis

Author:
Peter Münch

Matriculation number:
03614777

Supervisors:
Dr. Martin Kronbichler and Niklas Fehn, M.Sc.

Date of issue: 01.05.2018
Submission date: 31.10.2018

Lehrstuhl für Numerische Mechanik
Prof. Dr.-Ing. Wolfgang A. Wall

Statement of Authorship

Ich erkläre hiermit, dass ich die vorliegende Arbeit selbstständig angefertigt habe, alle Zitate als solche kenntlich
gemacht sowie alle benutzten Quellen und Hilfsmittel angegeben habe.

Garching b. München, October 31, 2018

I

II

Contents

1 Introduction 3

2 Methods 9
2.1 High-order CG discretization . 9
2.2 High-order DG discretization . 9
2.3 Hybrid multigrid preconditioner . 11

2.3.1 Preconditioned conjugate gradient . 11
2.3.2 Chebyshev smoother . 12
2.3.3 Algebraic coarse-grid solver . 12
2.3.4 Intergrid operators . 12

3 Implementation 15
3.1 Efficient matrix-free matrix-vector multiplication . 15
3.2 Extracting a matrix . 18
3.3 Working with existing FE infrastructure . 19

4 Performance analysis of main multigrid components 21
4.1 Hardware . 21
4.2 Discrete operator . 21
4.3 Transfer operators . 23

5 Application: Poisson problem 29
5.1 Problem description . 29
5.2 Default configuration of hybrid multigrid solver . 30
5.3 Convergence . 30
5.4 Node-level performance . 33
5.5 Coarse-grid preconditioner: AMG vs. simple iterative solvers (point Jacobi, Chebyshev solver) . . . 36
5.6 Algebraic coarse-grid solver . 37
5.7 P-sequences . 37
5.8 Strong scaling . 41
5.9 Weak scaling . 42

6 Application: convection–diffusion equation 53
6.1 Spatial discretization . 53
6.2 Numerical results for the boundary-layer problem . 53

7 Application: incompressible Navier–Stokes equations 55
7.1 Governing equations and numerical discretization . 55
7.2 Numerical results for the FDA benchmark nozzle problem . 56

8 Conclusions & outlook 61

Appendices 71

A Thread and cache topology 71

III

IV

List of figures

1 1D prolongation matrices for h-transfer of second-order elements and for p-transfer between second-
order and fifth-order elements . 13

2 Relation of matrix-free/matrix-based and continuous/discontinuous Galerkin methods 18
3 Virtualization of V-cycles belonging to separate dof-handlers to a single V-cycle 19
4 Performance of matrix-free and matrix-based operations of the Laplace operator, provided for all

combinations in the parameter space {2D, 3D}×{CG, DG}×{Cartesian, curved mesh} 25
5 Cache transfer (bandwidth and data volume) for 3D Laplace operator, measured with LIKWID 26
6 Roofline model for matrix-free vmult of the Laplace operator . 27
7 Performance of p- and c-transfer for 2D and 3D . 27
8 Visualization of the function given by Equation (53) for 2D . 29
9 Profiling of conjugate gradient solver preconditioned by p-MG for k = 6 and l = 10/5 for 2D/3D . . 34
10 Time to solution and throughput for different degrees k and refinements l on a single node 35
11 Analysis of the multigrid levels for 2D DG with p-MG for different k and l 36
12 Comparison of different preconditioners (AMG, point Jacobi, Chebyshev solver) for the coarse-grid

solver PCG . 37
13 Comparison of three versions of the algebraic coarse-grid solver: PCG with fixed relative tolerance and

CG coarse-grid discretization (base case: PCG-MG (continuous)), one multigrid preconditioning step
with CG coarse-grid discretization (MG (continuous)), and PCG with DG coarse-grid discretization
(PCG-MG (discontinuous)). 38

14 Different p-sequences . 39
15 Profiling of the preconditioned conjugate gradient solver for k = 6 and l = 10/5 for 2D/3D DG in the

case of alternative p-sequence strategies . 40
16 Visualization of the strong-scaling limit model for h-MG and p-MG with AMG 41
17 Strong scaling for 2D CG curved mesh with p-MG (k=6) . 43
18 Strong scaling for 2D CG curved mesh with h-MG (k=6) . 44
19 Strong scaling for 2D DG curved mesh with p-MG (k=6) . 45
20 Strong scaling for 2D DG curved mesh with h-MG (k=6) . 46
21 Strong scaling for 3D CG curved mesh with p-MG (k=4) . 47
22 Strong scaling for 3D CG curved mesh with h-MG (k=4) . 48
23 Strong scaling for 3D DG curved mesh with p-MG (k=4) . 49
24 Strong scaling for 3D DG curved mesh with h-MG (k=4) . 50
25 Modeling of the strong-scaling limit for 2D CG with p-MG and h-MG 51
26 Profiling of PCG for k = 6 and l = 9 for p-MG/h-MG (with 1 and 60 nodes) for 2D CG 52
27 Dependency of the throughput of the convection–diffusion operator on Pee for different polynomial

degrees k and refinement levels l on a Cartesian 2D mesh for p-MG with AMG 54
28 Exclusive time spent on each multigrid level of h-, p-, and hp-multigrid for two configurations of the

spatial discretization the FDA benchmark nozzle problem . 57

V

VI

List of tables

1 Categorization of multigrid solvers from relevant publications . 6
2 Settings of ML as used in all simulations with the deal.II nomenclature 12
3 P-transfer sequence 2 . 13
4 Comparison between basis change with sum factorization and naïve basis change as well as comparison

of the work of matrix-free and standard computation of the diagonal and block entries of matrices . . 16
5 Matrix-free notation for application of the Laplace operator . 17
6 Overview of the configuration of the Linux-Cluster CoolMUC-2; bandwidth measurements for a single

node . 21
7 Maximum throughput of matrix-free vmult (for 1 ≤ k ≤ 9) . 22
8 Expected data transfer per degree of freedom during matrix-free vmult 23
9 Expected memory transfer per degree of freedom for the transfer operators 23
10 Range of number of cycles n10 for all configurations, extracted from Tables 11 and 12 30
11 Convergence table for 3 ≤ k ≤ 7 . 31
12 Convergence table for 8 ≤ k ≤ 12 . 32
13 Fraction of time spent on solving the pressure Poisson problem and the projection step (h-MG) 59
14 Speedup of solving the pressure Poisson problem with p-MG (with AMG) instead of h-MG 59
15 Speedup of solving the pressure Poisson problem with hp-MG (with AMG) instead of h-MG 59
16 Maximal speedup of solving the overall dual-splitting projection scheme 59
17 Fraction of time spent on solving the pressure Poisson problem and the projection step for the best MG

configuration . 59
18 Maximal average throughput achieved for solving a single pressure Poisson problem 59
19 Performance comparison of the one-step and the two-step hybrid multigrid algorithm (p-MG+AMG)

applied to the 2D DG Poisson problem on non-Cartesian mesh . 62

VII

VIII

Nomenclature
Geometry, domain, and boundaries

Γ Boundary of domain
ΓD Boundary of domain with Dirichlet boundary conditions
ΓN Boundary of domain with Neumann boundary conditions
Ω Domain
∂Ω Boundary of domain
n Outward pointing unit normal vector
x Cartesian coordinates
A Area [m2]
d Number of spatial dimensions
L Length scale [m]
V Volume [m3]

Fluid mechanical quantities
κ, ν Dynamic diffusivity [m2/s]
a Velocity [m/s]
f Body forces per unit mass [N/kg]
v Velocity [m/s]
F (u) Flux tensor [m2/s2]
Fc(u) Convective flux tensor [m2/s2]
Fv(u) Viscous flux tensor [m2/s2]
f Source term per unit mass [1/s]
gD, gN Values and normal gradient at the Dirichlet and Neumann boundary [-]
p Kinematic pressure [m2/s2]
u Generic scalar quantity [-]

Differential operators
∂
∂ t Partial derivative with respect to time
∇ Gradient operator
∇· Divergence operator
∇2 = ∆ Laplace operator

Average and jump operators
{{·}} Average operator
J·K Jump operator

IX

Spatial discretization
∇̂ Gradient on the unit cell
(·)∗ Numerical flux
φ Shape functions/unit cell basis functions
τ Penalty parameter of SIP method
Ωe Region of element e
∂Ωe Boundary of element e
Ωh Computational domain
Γe Boundary of element e
J Variational problem
Th Tessellation
Qk Space spanned by the tensor product of degree-k-polynomials
Vh, Vu

h , V
p
h, S Spaces of test and trial functions

σ∗h Gradient flux term
J = ∂x/∂x̂ Jacobian matrix
x̂ Position on the unit cell
x̂q Position of quadrature point on the unit cell
deh Discretized velocity divergence term
H1 Space of square integrable functions with square integrable derivatives
k, ku, kp Polynomial order of shape function
l Refinement level, multigrid level
L2 Space of square integrable functions
leh Discretized (negative) Laplace operator
Nel Number of elements
p = k + 1 Number of point in 1D
u∗h Value flux term
wq Quadrature weight

Temporal discretization
∆t Time step size [s]
t Time [s]
tn Discrete instant of time (time step number n) [s]
αi, γ0 Constants related to BDF time integration
βi Constant related to extrapolation scheme
J Order of time integration scheme

Dimensionless numbers
Cr Courant–Friedrichs–Lewy number
Pe Péclet number
Pee Element Péclet number

X

Matrices, operators, and vectors
Π Permutation matrix
A, A System matrix
Ab, Ab Boundary stiffness matrix
Ae, Ae Element stiffness matrix
Af , Af Face stiffness matrices
P, P Prolongator
R, R Restrictor
S, S Smoother
α, β, δ, ρ, ω λ Eigenvalue of system matrixA
b Load vector/right-hand side vector
be Element load vector
d Defect vector
p, v, t Arbitrary vectors
r Residuum vector
x Solution vector
Ii Identity matrix of size i× i
M Mass matrix
M−1 Preconditioner
NDoFs Number of unknowns

Computer science
M Normalized memory consumption [-]
BW Bandwidth [GB/s]
En = Sn/n Parallel efficiency (n = number of nodes) [-]
Pmax Peak performance of processor [FLOP/s]
Sn = T1/Tn Speedup (n = number of nodes) [-]

Solver characteristics
n Number of cycles
n10 Number of cycles to reduce order by ten orders
ρ Convergence rate [-]
r Throughput [DoFs/s]

Strong-scaling limit model
α Cost of one matrix-free multigrid level [s]
β Cost of one embedded cycle [s]
Niter Number of cycles
Niter,i, N iter,i (Average) number of inner cycles
Niter,o Number of outer cycles
r Throughput [DoFs/s]

XI

Acronyms
AMG Algebraic multigrid method
BDF Backward differentiation formula
CFL Courant–Friedrichs–Lewy number
CG Continuous Galerkin method
CPU Central processing unit
DG Discontinuous Galerkin method
DoF Degrees of freedom
FDA U.S. Food and Drug Administration
FEM Finite element method
FGMRES Flexible generalized minimal residual method
FVM Finite volume method
GMRES Generalized minimal residual method
h-MG h-multigrid method
hp-MG hp-multigrid method
ILP Instruction-level parallelism
ILU Incomplete LU factorization
INDEXA A high-order discontinuous Galerkin solver for turbulent incompressible flow

towards the EXA scale
KLU Clark Kent LU factorization
LRZ Leibniz Supercomputing Centre
MG Multigrid
MPI Message Passing Interface
NNZ Number of nonzero matrix elements
PCG Preconditioned conjugate gradient method
PDE Partial differential equation
p-MG p-multigrid method
RFO Read for ownership
SIMD Single instruction stream, multiple data streams
SIP Symmetric interior penalty Galerkin method
SpMV Sparse matrix-vector multiplication
SUPG Streamline-upwind Petrov–Galerkin method

XII

AN EFFICIENT HYBRID MULTIGRID SOLVER FOR HIGH-ORDER
DISCONTINUOUS GALERKIN METHODS

MASTER’S THESIS

Peter Münch
Institute for Computational Mechanics

Technical University Munich
Boltzmannstr. 15, 85748 Garching b. München, Germany

petermuench@mytum.de

October 31, 2018

ABSTRACT

A hybrid multigrid solver for high-order discontinuous Galerkin methods combining coarsening in
the mesh size h and the polynomial degree p has been developed and is presented in this Master’s
thesis. It can efficiently solve second-order partial differential equations for complex geometries on
modern CPU hardware as well as on massively parallel and distributed systems. The given operator
is rediscretized on every level, and the size of the coarse-grid problem is reduced as much as possible.
Almost all multigrid components are evaluated in a highly efficient matrix-free way, based on sum
factorization, and an algebraic multigrid solver is applied for solving the coarse-grid problem. A
detailed investigation of a variety of multigrid design choices, including alternative p-coarsening
strategies and the auxiliary space idea, is presented. The implementation efficiency of all multigrid
components on their own is demonstrated using experimental measurements, conducted for standard
finite element methods and discontinuous Galerkin methods for 2D and 3D, as well as for Cartesian
and curved meshes. The results are compared to theoretical expectations. The overall efficiency of the
developed hybrid multigrid solver is demonstrated by its application to the Poisson problem, to the
convection–diffusion equation, and to the unsteady incompressible Navier–Stokes equations. Strong-
and weak-scaling results, showing excellent parallel efficiency, as well as a novel strong-scaling
model of the developed hybrid multigrid solver are presented.

Keywords AMG · convection–diffusion equation · discontinuous Galerkin methods · h-multigrid · hp-multigrid ·
high-order methods · hybrid multigrid methods · incompressible Navier–Stokes equations · matrix-free methods ·
node-level performance analysis · p-multigrid · Poisson problem · strong scaling · weak scaling

mailto:petermuench@mytum.de

2

1 Introduction

The discontinuous Galerkin (DG) method has attained increasing popularity over the last decade as a method for
solving partial differential equations (PDE). Due to its stability for convection-dominated problems, high-order capacity
even on unstructured mesh, geometrical flexibility on curved boundaries, as well as efficiency on massively parallel
high-performance computers, DG is a feasible alternative to finite volume methods (FVM) and to finite element methods
(FEM)1.

In many typical applications of DG (e.g. Navier–Stokes equations with projection method [53], Vlasov–Poisson
equations describing the evolution of a plasma in its self-consisting electromagnetic field [38]), second-order PDEs
have to be solved as a subproblem, e.g. of the Poisson form:

−∆u = f, (1)

or more general, of the convection–diffusive form:

∇ · (au)−∇ · (κ∇u) = f. (2)

Multigrid methods are among the most competitive solvers for such problems [33] where an equation system of the
form Ax = b has to be solved (A is the system matrix, b is the right-hand side vector containing source term and
boundary conditions, and x is the solution vector). A generic way to express the multigrid algorithm in the context
of finite element methods [14, p. 229] for solving the equivalent variational problem J (x)→ min

x∈Sf

in order to find a

solution x from the ’fine’ space Sf is:

1. pre-smoothing: remove the high-frequency error components in the initial guess with a smoother S:

x← S(x), (3a)

2. coarse-grid correction: solve the variational problem on a coarse grid:

J (x+ v)→ min
v∈Sc

↔ Acv = bc, (3b)

and add the coarse-grid correction v which has been interpolated with a prolongator P onto the fine grid:

x← x+ P(v), (3c)

3. post-smoothing: remove the high-frequency error components introduced during the interpolation:

x← S(x). (3d)

Details have been hidden intentionally behind operators, which can be chosen arbitrarily by the user. Questions such
as ’Which smoother S should be chosen?’ or ’How should the coarse problem be solved?’ might arise in regard to
that. Whether the algorithm is called recursively to solve the coarse problem or not, makes the algorithm a multi-level
(multigrid) or a two-level (fine and coarse-grid) algorithm. Probably the most important questions in designing a
multigrid software are concerning how the coarse grid is created and what the variational problem looks like on the
coarse grid. Or in other words, given a fine grid and a matrixA, how is the coarse matrixAc constructed and how is
the prolongation matrix P constructed? Various multigrid approaches tackle the last two problems differently.

Which multigrid approach to choose depends closely on the mesh generation. Let us assume that a coarse (possibly
unstructured) grid is given and the fine mesh is generated by globally refining each cell on the coarse grid – also known
as macro cell – recursively. In that case, it is a natural choice to use the resulting mesh hierarchy also for multigrid.
Since in this case the polynomial shape functions of the elements normally have the same order k on all levels and only
differ in their mesh-size h, this method is referred to as h-multigrid (h-MG).

Alternatively, in the context of high-order finite elements it is possible to create additional levels by sequentially
reducing the polynomial order k of the shape functions of the elements, while keeping the same mesh. This method is
known as p-multigrid (p-MG). The combination of h-multigrid and p-multigrid is referred to as hp-multigrid (hp-MG).

In all three cases (h-MG, p-MG, hp-MG), the definition of the notion of a mesh is indispensable in explicitly creating
the grid levels. The transfer between the levels is trivial because it is either an element-local operation (p-MG) or
an operation between an element and its direct children (h-MG). For a very fine, unstructured mesh with low-order
elements, it is not as trivial to explicitly construct enough multigrid levels. In that case, it is common to use algebraic

1The standard FEM is referred to as continuous Galerkin (CG) methods in this Master’s thesis.

3

multigrid (AMG; see review by Stüben [93])2, which sets up the system matrix Af and exploits its properties to
algebraically create coarse levels and associated transfer matrices P . The coarse matrix Ac is obtained using the
Galerkin multiplication:

Ac = RAfP , (4)

whereR is the restrictor, which restricts the residuum r = b−Ax onto the coarse grid via bc = Rr. For symmetric
matrices, the restrictor is generally selected asR = P T . In contrast to AMG, both h-MG and p-MG offer the possibility
of rediscretizing the PDE for every level with a coarser mesh or with lower-order elements. This approach is highly
efficient in terms of performance and computational resources in combination with matrix-free methods. On the other
hand, matrix-free methods are restricted with regard to the choice of smoothers and often cannot use algebraic smoothers
developed specifically for anisotropic problems3.

This concludes the introduction of terminology. A brief review of the literature on multigrid methods is given below.
Although the focus is on the p-multigrid for high-order discontinuous Galerkin methods, other well-known concepts
that bear the potential to improve the overall efficiency are also outlined. Publications referenced later in this work are
discussed in more detail.

For spectral elements, p-multigrid (’spectral element multigrid’) was first proposed 1987 by Rønquist and Patera [86].
A theoretical justification was provided by Maday and Munoz [66] the following year. In the late 1990, Hu, Guo, and
Katz [35, 36, 48, 49] investigated different aspects of p-multigrid (’multi-p methods’) such as cycle forms, usage as a
preconditioner of conjugate gradient methods, application of condensed finite elements, smoothers, and parallelization.

Helenbrook, Atkins, and co-authors explored p-multigrid in many papers [3, 39–42, 68, 69] over the past two decades.
In [39], they demonstrated its mesh and order-independent properties for the solution of the Poisson equation discretized
with continuous finite elements. In [3, 40, 69], p-multigrid was applied to DG discretization of the Poisson equation
and to the diffusion equation for different DG formulations (Bassi and Rebay [8], Bassi et al. [11], Brezzi et al. [15],
interior penalty by Douglas and Dupont [22], local DG by Cockburn and Shu [18]). In their investigations, the authors
made the following observations:

• Constructing the coarse matrix algebraically is more stable than a rediscretization for each level. Except for
Brezzi et al. [15], all DG formulations resulted in unstable iterations in the case of rediscretization due to
inconsistency between matrices. A remedy for the instability of the interior penalty scheme is to adjust the
penalty parameter with k.

• Coarsening to ki−1 = ki − 1 instead of ki−1 = ki/2 results in only a small improvement of the convergence
rate. It is, however, computationally more expensive. The p-multigrid coarsening strategy ki−1 = (ki+1)/2−1
is also functional.

• The coarse problem does not need to be solved precisely as long as the result is represented well on the coarse
space.

• Long-wavelength modes are not represented well for piecewise constant space (DG with k = 0). Thus,
p-multigrid with p-coarsening to kc = 0 has a poor convergence rate. As a remedy, embedded cycles between
k = 0 and k = 1 have been proposed [3], which restores the convergence rate observed for kc = 1.

• Alternatively, p-multigrid with transfer from linear DG space to piecewise linear CG space shows a convergence
rate that is independent of the grid size and is weakly sensitive to the polynomial order. The coarse matrix for
CG is constructed from the DG coarse matrix in accordance with the Galerkin multiplication:

ACG = P T
CGADGPCG, (5)

using prolongation matricesPCG described in [41]. Since an approximate solution is computed in an ’auxiliary’
continuous space for the original discontinuous problem, this approach is also referred to as auxiliary space
idea or two-level preconditioning [20, 21, 97].

In [69], the authors investigated p-multigrid for convection–diffusion equations and took an in-depth look at the transfer
from DG to CG in this context. They demonstrated that a simple transfer from DG to CG is not applicable in this case.

2An alternative approach – as used by COMSOL [60] as well as by Krause and Zulian [54] – is to construct nonconforming
meshes on multigrid levels. This approach requires general interpolation or projection matrices and cannot exploit the child-parent
relationship between cells on the coarse level and the fine level, preventing the use of highly efficient matrix-free interpolation
procedures (see Subsections 2.3.2 and 4.3). We, therefore, postpone the investigation of the application of this approach as a
possible coarse-grid solver to a later time. It should be noted here though that to make this approach feasible in the context of
high-order methods, the polynomial degree of each element has to be reduced to low order in a sequence of p-coarsening steps (see
Subsection 2.3.4).

3The development of robust and efficient matrix-free smoothers is still a widespread field of research [30, 50, 62, 82].

4

A modified method was proposed, which uses an upwind-weighted restriction operatorRSUPG with the effect that the
resulting coarse matrix is comparable to Streamline-Upwind Petrov–Galerkin (SUPG) discretization without the need
to rediscretize the system, i.e.:

ASUPG ≈ RSUPGADGPCG. (6)

In [39], the authors applied p-multigrid to SUPG discretization and to DG discretization of the convection equation.
They found that isotropic coarsening, as used in p-multigrid, does not dampen well the long-wavelength modes along
and the short-wavelength modes normal to the streamlines. They proposed to use anisotropic multigrid coarsening and
relaxation schemes that exert strong damping along the streamline. In order to find the steady-state solution of DG
discretizations of the compressible Euler equations, p-MG has been applied in [42, 68].

Sundar et al. [95] conducted a comparison of p-MG and h-MG for high-order continuous finite elements. They observed
only a small difference in the number of iterations. Besides this, they also examined another approach4 to constructing
a coarse grid: on the basis of high-order discretization, a linear space was constructed using the same set of nodes. This
approximation, however, is found to be less efficient.

Stiller [91, 92] investigated Schwarz methods for smoothing in the context of p-multigrid for DG. Multiplicative and
weighted additive Schwarz methods with element-centered and face-centered approaches have been tested also for high
aspect ratios in 2D and 3D. Another strategy was investigated by Huismann et al. [50] for p-multigrid in the context of
spectral-element methods: a vertex-based smoother, which utilizes 2d elements as a subdomain.

AMG is not widespread in the context of high-order DG methods because the number of non-zeros in the system
matrix scales polynomially ∼ O((k + 1)2d) (with the exponent 4 for 2D and 6 for 3D), the matrix is not necessarily
diagonal-dominant, and AMG graph algorithms tend to coarsen much too rapidly due to the wide stencil character of
DG methods [90].

Bastian et al. [12] and Siefert et al. [90] extended the given (non-smoothed and smoothed aggregation) AMG im-
plementations for high-order DG methods and used them in the context of heterogenous elliptic problems and the
Darcy problem. Both authors employed the auxiliary space idea to compute an approximate coarse-space correction in
the subspace spanned by continuous, piecewise linear basis functions on the original mesh, using the existing AMG
implementations. Before and after the coarse-grid approximation, smoother steps were performed on the high-order DG
space.

These high-order AMG implementations require the user to provide the matrix on the finest grid Af , a pre- and
post-smoother S, and a transfer matrix P . The coarse matrix Ac is constructed algebraically, using the Galerkin
approachAc = P TAfP . The authors highlighted that due to the need to provide the transfer matrix, which explicitly
uses mesh information, this method is not fully algebraic. Siefert et al. [90] also demonstrated that, if it were a
bottleneck, the multiplication with the global transfer matrix could be replaced by reference-element based transfers,
requiring only a single local transfer matrix. Overlapping and non-overlapping versions of the Gauss–Seidel relaxation
method were used as a smoother. The results of both papers show a linear increase in the numbers of V-cycles with
increasing polynomial order k.

In a recent publication, Bastian et al. [13] presented the integration of their library into a matrix-free environment
outlined by Müthing et al. [73]. The most expensive operations (matrix-vector multiplication, pre- and post-smoothing)
on the finest grid were performed in a matrix-free way, and convection-dominated flow problems were considered.
Only the matrix on the coarse grid has been assembled explicitly and was solved using AMG. Since only matrix-based
components were replaced by equivalent matrix-free implementations, no beneficial effect on the number of V-cycles
could be observed.

O’Malley et al. [80] revisited the auxiliary space idea for linear DG methods. Using either continuous piecewise linear
or discontinuous piecewise constant finite elements on a coarse grid, they employed different publicly available AMG
libraries (AGMG [74, 76–78], ML [31], GAMG [5, 6], BoomerAMG [44]). Similar to Helenbrook and Atkins [41], they were
able to demonstrate that the continuous piecewise linear auxiliary space outperforms the discontinuous piecewise
constant one due to its higher convergence rate. In [79], the same authors extended their investigations to discontinuous
elements with quadratic polynomial shape function, using a p-MG step to reduce the order. In [79, 80], it was shown
that AGMG is the best performing AMG library for first- and second-order DG methods.

For large-scale simulations, it is common to create a hierarchy of meshes by mesh refinement of a given macro
mesh. Highly efficient libraries have been developed for managing such meshes [7] based on space-filling curves
[4]. Kronbichler and Wall [59] demonstrated the suitability of this approach for simple geometries (hypercube with
1 macro cell, hypershell with 6 macro cells) in the context of high-order discontinuous Galerkin methods, using the

4This approach was previously also discussed in [16, 81].

5

Table 1: Categorization of multigrid solvers from relevant publications. Symbol legend: 3= fulfilled, (3) = partly
fulfilled, no symbol = not fulfilled. The present work extends the h-multigrid solver presented in [59] with
new features (highlighted in orange color). If the authors only consider polynomial orders up to k ≤ 2, then
the category ’high-order DG’ is only partly fulfilled [79, 80, 87]. We categorize publications partly fulfilling
the category ’p-MG’ if the authors of the given publications use a two-level p-multigrid algorithm, i.e. jump
directly from high-order to first-order auxiliary space [12, 13, 90].

[3
,3

9–
42

,6
8,

69
]

[1
2,

90
]

[1
3]

[7
9,

80
]

[6
3,

94
]

[8
7]

— Kronbichler and Wall [59]

high-order DG 3 3 3 (3) (3) 3
matrix-free 3 3 3 3
h-MG 3 3 3 3
p-MG 3 (3) (3) 3 3 3
AMG (coarse-grid solver) 3 3 3 3 3 3

FE library deal.II [1]. For more complex geometries and adaptively refined grids in the context of continuous
linear finite elements, Sundar et al. [94] presented the concept of combining a highly efficient matrix-free h-MG
with AMG as a coarse-grid solver, using the library p4est [7] for meshes consisting of quadrilateral and hexahedral
elements. Simulations for more than a quarter million cores have been presented, i.a. using a coarse mesh with 45
thousand macro cells. Lu et al. [63] has developed a similar concept for triangular and tetrahedral meshes. The
recipients of the 2015 ACM Gordon Bell Prize, Rudi et al. [87], extended the algorithm presented in [94] for higher
order and used it to simulate a highly heterogenous flow in the earth’s mantle. They employed a mixed continuous-
velocity/discontinuous-pressure element pair (k, k − 1) and used a hybrid spectral-geometric-algebraic multigrid solver
(involving the transfer from discontinuous modal space to continuous nodal space as well as p-coarsening, h-coarsening,
and algebraic coarsening) for preconditioning. The results considered only orders up to k ≤ 2.

For solving steady-state problems, p-MG methods are also frequently used. They have been employed for the Euler
equations [9, 10, 19, 42, 47, 61, 64, 65, 68, 75], the Navier–Stokes equations [29, 32, 83, 89], and the RANS equations
[51]. Non-linear solvers for high-order problems in general are discussed by Brown [16].

The multigrid solvers from relevant publications discussed so far are categorized in Table 1, which summarizes and
concludes this literature review. The categories are • high-order DG, • matrix-free operator evaluation, • h-MG, • p-MG,
and • AMG as a coarse-grid solver. They are chosen in this way because we believe that an efficient solution of linear
equation systems originating from high-order DG (k ≥ 3) discretizations for non-trivial geometries can be obtained on
modern CPU hardware only

1. if operator applications (incl. transfer operations) are performed in a matrix-free way on all but the coarsest
level,

2. if the size of the coarse problem is decreased as much as possible during a sequence of p- and h-coarsening
and during a possible rediscretization step to continuous elements, and

3. if on the coarsest level, the most efficient algebraic solver (AMG) is used.

The reader can conclude from Table 1 that individually none of the present multigrid solvers completely fulfills all
categories. They do, however, when taken together as a whole. It should be noted here that Rudi et al. [87] presented a
multigrid algorithm, which in principle fulfills all categories of Table 1. The authors of that publication, however, did
not consider high-order DG in their experiments and only used polynomial orders up to k ≤ 2 for continuous velocity
space and k ≤ 1 for discontinuous pressure space (i.e. their solver only ’partly fulfills’ the category ’high-order DG’ in
Table 1). Hence, this Master’s thesis aims at extending the multigrid solver [59]5 by applying well-established features
from [3, 12, 13, 39–42, 63, 68, 69, 79, 80, 87, 90, 94] to an efficient hybrid multigrid solver, which completely fulfills
all categories of Table 1, and intends to investigate the benefits of such a solver for both high-order continuous and
high-order discontinuous Galerkin methods, considering also polynomial orders k > 2. In doing so, we intend to focus

5 This solver has been modularized recently, extended to vector quantities, and successfully applied in solving a scalar convection-
diffusion equation and the Navier–Stokes equations [23–28, 53].

6

on efficient matrix-free implementations of all components. This also entails a rediscretization of the given PDE on
every level.

Such a hybrid solver allows us to revisit questions discussed in the reviewed publications from a new perspective and to
quantify the exact influence of individual components:

• We are able to compare different p-sequences from the literature [41, 72]. As an extreme p-sequence, we also
consider the two-level p-multigrid algorithm, in which a direct jump from high-order to first-order auxiliary
space is performed, in order to mimic the results obtained by Bastian et al. [12, 13] and Siefert et al. [90]. In
this way, we can quantify the exact benefit of the intermediate step (p-multigrid) in the overall algorithm.
• We can perform a fair comparison of h-MG and p-MG. We consider h-MG for a simple Poisson problem with

only a single coarse-grid cell as the lower limit of the achievable time to solution. In contrast to Sundar et al.
[95], we can also compare the parallel efficiency and strong-scaling limits since deal.II [1] is written for
efficient, large-scale and massively-parallel simulations [7].

This Master’s thesis relies on publicly available libraries such as the finite element infrastructure in deal.II [1] (its
matrix-free support is indispensable), the library p4est [17] used by deal.II for efficiently managing distributed
hierarchical meshes, and the distributed sparse-matrix support from the library Trilinos [45]. In particular, we used
its AMG implementation from the package ML [31].

The remainder of this work is organized as follows. In Section 2, the key methods of the developed hybrid multigrid
solver are presented. Section 3 provides some implementation details. Sections 4, 5, 6, and 7 show performance results
of the implemented components and of the application of the new multigrid solver for Poisson, convection–diffusion,
and incompressible Navier–Stokes problems. The conclusions of this Master’s thesis are presented in Section 8.

7

8

2 Methods

We consider the Poisson equation as a model problem to introduce the reader to the developed hybrid multigrid solver:

−∆u = f in Ω, (7)

where u is the solution variable and f is the source term. The physical domain Ω is bounded by ∂Ω = Γ, which is
partitioned into the Dirichlet part ΓD, where u = gD, and the Neumann part ΓN, where −n · ∇u = gN is prescribed.
The vector n donates the unit outer normal vector on the boundary Γ.

For discretization, we assume a tessellation Th of the computational domain Ωh into Nel elements Ωe and use a
mesh consisting of quadrilateral (2D) or hexahedral (3D) elements, which allows us to express the shape functions as
tensor product of 1D shape functions. We assume an element to be the image of the reference element [0, 1]d under a
polynomial mapping of degree km, based on Gauss–Lobatto support points, which are placed according to a manifold
description of the computational domain.

The bilinear forms that are associated with volume and face integrals of one element are donated by

(v, u)Ωe =

∫
Ωe

v � u d Ω and (v, u)∂Ωe =

∫
∂Ωe

v � u d Γ, (8)

where the operator � symbolizes inner products.

2.1 High-order CG discretization

For continuous Galerkin methods, we assume a polynomial approximation of the solution of elements from the space

V CGh,gD
=
{
vh ∈ H1(Ω) : vh|Ωe ∈ Qk(Ωe)∀Ωe ∈ Th ∧ vh|ΓD = gD

}
. (9)

H1 is the space of square integrable functions with square integrable derivatives. It has the inner product (x, y)Ωh
and

the norm ||x||Ωh
:

(x, y)Ωh
=

∫
Ωh

(xy +∇x · ∇y) d Ω and ||x||2Ωh
=

∫
Ωh

(
x2 + |∇x|2

)
d Ω. (10)

Qk(Ωe) donates the spaces spanned by the tensor product of degree-k-polynomials in element Ωe. We consider a basis
representation by Lagrange polynomials: the nodes coincide with the (k + 1)-points of the Gauss–Lobatto–Legendre
quadrature rule. The solution space satisfies the boundary conditions gD on ΓD by projection or interpolation.

The discrete finite element version of the Poisson equation (7) is found by multiplication with a test function, integration
over Ωh, integration by parts of the left-hand side and insertion of the Neumann boundary condition. The final weak
form is to find a function uh ∈ Vh,gCG

D
such that

(∇vh,∇uh)Ωh
= (vh, f)Ωh

− (vh, gN)ΓN
∀vh ∈ V CGh,0D

. (11)

On each element, the left-hand side gives rise to an element stiffness matrixAe and the right-hand side to an element
load vector be:

Ae,ij = (∇φi,∇φj)Ωe and be,i = (φi, f)Ωe − (φi, gN)Γe∩ΓN
. (12)

The local quantitiesAe and be are assembled into the global stiffness matrixACG and the global load vector bCG in
the usual finite element way6.

2.2 High-order DG discretization

For discontinuous Galerkin methods, we assume a polynomial approximation of the solution of elements from the space

V DGh = {vh ∈ L2(Ω) : vh|Ωe ∈ Qk(Ωe)∀Ωe ∈ Th} . (13)

Dirichlet boundary conditions are enforced weakly. No continuity over element boundaries is enforced. Only L2

regularity of the solution is required. L2 is the space of square integrable functions with inner product (u, v)Ωh
and

norm ||u||Ωh
:

(u, v)Ωh
=

Nel∑
e=1

(u, v)Ωe with (u, v)Ωe =

∫
Ωe

uv d Ω and ||u||2Ωh
= (u, u)Ωh

. (14)

6 In this Master’s thesis, we do not eliminate the Dirichlet rows and columns via static condensation to make the transfer between
CG space and DG space simpler.

9

As a discontinuous Galerkin representation, we use the symmetric interior penalty (SIP) discontinuous Galerkin method.
Two alternative derivations of SIP can be found in [2] and [59]. The weak form for a single element is as follows:

(∇vh, ∇uh)Ωe
− (∇vh, (uh − u∗h)n)Γe

− (vh, σ
∗
h · n)Γe

= (vh, f)Ωe
, (15a)

with appropriate value flux term u∗h and gradient flux term σ∗h:
u∗h = {{uh}} and σ∗h = {{∇uh}} − τJuhK. (15b)

The average operator is given as {{�}} = (�−+�+)/2, and the jump operator is given as JuK = u−⊗n−+u+⊗n+.
The superscript �− donates interior information at a face and the superscript �+ donates exterior information from the
neighbor. The interior and the exterior side of a face can be chosen arbitrarily. Its normal n points in the same direction
as n− does, i.e. n = n− = −n+. For each element, the penalty parameter τe is defined as:

τe = (k + 1)2A(∂Ωe \ Γh)/2 +A(∂Ωe ∩ Γh)

V (Ωe)
, (16)

with volume V and surface area A [46]. The actual penalty parameter is chosen at internal faces as τ = max(τe− , τe+)
and at boundary faces as τ = τe.

Boundary conditions are imposed weakly by defining suitable extension values u+ as a function of the boundary
conditions and the inner solution u−:

(17)u+ = −u− + 2gD, ∇u+ = ∇u−, on ΓD,
u+ = u−, ∇u+ · n = −∇u− · n− 2gN, on ΓN.

The face integrals in Equation (15) can be split into inner-face terms Γe \ (ΓD ∪ ΓN) and boundary-face terms (ΓD, ΓN).
During insertion of the definitions of the boundary conditions, additional contributions of known quantities arise, which
are moved to the right-hand side. The final weak form is to find a function uh ∈ V DGh such that
(∇vh, ∇uh)Ωe

− (∇vh, (uh − u∗h)n)Γe\(ΓD∪ΓN) − (vh, σ
∗
h · n)Γe\(ΓD∪ΓN)

− (∇vh, uh)Γe∩ΓD
− (vh, +∇uh · n− 2τuh)Γe∩ΓD

= (vh, f)Ωh
− (∇vh, gDn)Γe∩ΓD

+ (vh, 2τgD)Γe∩ΓD
− (vh, gN)Γe∩ΓN

∀vh ∈ V DGh ∧ ∀e, (18)
where the red terms relate to the homogeneous parts and the blue terms to the inhomogenous parts of the boundary-face
integrals. Inserting the numerical fluxes per Equation (15b) into the inner-face terms results in the following form:

−
(
∇vh, (u−h − {{uh}})n

)
Γe\(ΓD∪ΓN)

− (vh, {{∇uh}} · n− τJuhK · n)Γe\(ΓD∪ΓN) , (19)

which can be specialized for shape functions living on the element on the negative side of the face:
−
(
∇v−h , 0.5(u−h − u

+
h)n

)
Γe\(ΓD∪ΓN)

−
(
v−h , 0.5(∇u−h +∇u+

h) · n− τ(u− − u+)
)

Γe\(ΓD∪ΓN)
, (20a)

and for shape functions living on the element on the positive side of the face:
−
(
∇v+

h , 0.5(u−h − u
+
h)n

)
Γe\(ΓD∪ΓN)

+
(
v+
h , 0.5(∇u−h +∇u+

h) · n− τ(u− − u+)
)

Γe\(ΓD∪ΓN)
. (20b)

On each element, the cell integral on the left-hand side gives rise to an element matrixAe and the right-hand side to an
element load vector be:
Ae, ij = (∇φi,∇φj)Ωe

and be, i = (φi, f)Ωe
− (∇φi, gDn)Γe∩ΓD

+ (φi, 2τgD)Γe∩ΓD
− (φi, gN)Γe∩ΓN

. (21a)
Up to here, a certain similarity to CG can be discerned: the orange terms are identical to the definition of Equation (12).
However, additional terms to the right-hand side vector (see Equation 18) and to the matrixA arise in the case of DG.
On each inner face f , the face integrals on the left-hand side give rise to four matrices (A−−f ,A−+

f ,A+−
f ,A++

f):
(21b)

A��
f, ij − +

− +
(
φ−i , τ φ

−
j

)
−
(
∇φ−i ,

φ−j
2 n

)
−
(
φ−i ,

∇φ−j
2 · n

)
−
(
φ−i , τ φ

+
j

)
+

(
∇φ−i ,

φ+
j

2 n

)
−
(
φ−i ,

∇φ+
j

2 · n
)

+ −
(
φ+
i , τ φ

−
j

)
−
(
∇φ+

i ,
φ−j
2 n

)
+

(
φ+
i ,
∇φ−j

2 · n
)

+
(
φ+
i , τ φ

+
j

)
+

(
∇φ+

i ,
φ+
j

2 n

)
+

(
φ+
i ,
∇φ+

j

2 · n
)

where φ± donates shape functions associated with test and solution functions of elements at the interior or the exterior
of a face. On each boundary face b, the following contribution arises:

Ab, ij = − (∇φi, φj)Γe∩ΓD
− (φi, ∇φj · n− 2τφj)Γe∩ΓD

. (21c)

These local quantities are assembled into the global stiffness matrixADG and the local load vector bDG in the usual
finite element way. Due to the disjointed character of the test and the solution functions, the element and face matrices
correspond to blocks in the resulting block-sparse matrix.

10

2.3 Hybrid multigrid preconditioner

The discretization of the Poisson equation with continuous and discontinuous Galerkin methods leads to a linear
equation system of the form:

A�x = b� � ∈ {CG,DG}, (22)
as shown in Subsections 2.1 and 2.2. The hybrid multigrid algorithm presented here targets the solution of the linear
equation system for CG and DG discretization. This Master’s thesis focuses on the efficient solution of the equation
system resulting from DG discretization, for which optionally – as an auxiliary problem – the continuous version is also
solved.

The general multigrid solution process is summarized below (see also Section 1). For levels l ≥ 1, the following steps
are performed:

1. A pre-smoothing is carried out. Subsequently, a new defect d′ is computed:
x← S(d), d′ ← d−A(x). (23a)

2. A coarse-grid correction is performed. To perform this, the defect vector is restricted to the coarse grid
lc = lf − 1. The multigrid algorithm is called recursively on this defect vector. The result of the call, the
coarse-grid correction xc, is prolongated to the fine grid and added to x:

dc ← R(d′), xc ←Multigrid(dc), x← x+ P(xc). (23b)

3. Finally, the same substeps are performed as in step 1, but in reverse order:
d← −d+A(x), returnx− S(d). (23c)

The recursive multigrid algorithm is called initially with the residuum r = b −Ax, as a right-hand side vector, by
a preconditioned conjugate gradient solver (see Section 2.3.1). The recursion is terminated if the base case, i.e. the
coarsest level l = 0, is reached. This level has to be treated differently by calling a coarse-grid solver.

The key components of a multigrid solver are:

• an operator A on each level l, . matrix-based/matrix-free CG/DG
• a smoother S on each level l, . i.a. (block) Jacobi, Chebyshev smoother
• intergrid operators P andR between each level l and l − 1, . matrix-free h-, p-, c-transfer
• a coarse-grid solver on level l = 0. . i.a. AMG, matrix-free conjugate gradient

The comments (on the right) list and specify the implementations of the components in the developed hybrid multigrid
solver7. Detailed descriptions of three individual components (smoother, coarse grid solver, and intergrid operators),
as used in the simulations in this Master’s thesis, are given in Subsections 2.3.2-2.3.4. Implementation details on the
operator serving as the link between matrix-free and matrix-based implementations as well as between CG and DG
implementations will be discussed in Section 3.

2.3.1 Preconditioned conjugate gradient

The precondititioned conjugate gradient (PCG) method is employed as a solver. It is preconditioned by one V-cycle of
the hybrid multigrid algorithm.

PCG updates sequentially the solution vector x and the residual vector r until the residual norm is smaller than a
tolerance or the maximum number of iterations is exceeded:

x← x+ ωp, r ← r − ωq, (24a)
where ω is the step length and p the search direction. The step length is updated as follows:

v ← Ap, ω ← δ/pTv, (24b)
and the search direction thus:

v ←M−1r, δ′ ← δ, δ ← rTv, β ← δ/δ′, p← βp− v. (24c)

The iteration is started with: r0 = b −Ax0, v = M−1r0, δ = rT0 v, p0 = −v. M−1 is the preconditioner; in the
specific instance of the Poisson problem, the presented hybrid multigrid solver is used. For detailed information on
PCG, the reader is referred to Braess [14, 185 ff.].

7 The terms in italics indicate implementations that had already existed in the given h-multigrid solver before the author of this
Master’s thesis extended it with new features (printed in bold).

11

2.3.2 Chebyshev smoother

We use a Chebyshev smoother by default on each level as pre- and post-smoother. It has the following update
scheme [56, 98]:

tj = ρjtj−1 − θjM−1rj−1, (25a)

xj = xj−1 − tj , (25b)

where tj is a temporary vector, rj = b−Axj is the residuum,M−1 is the preconditioner, and ρj and θj are scalar
factors.8 The iteration is started with t0 = 0 and the initial guess x0. The superscript �j refers to the inner iterations
within a single Chebyshev smoothing step. The number of inner iterations determines the degree of the Chebyshev
polynomial. We assumeM to correspond to the diagonal of the matrixA. The diagonal is precomputed once during
the setup phase, using the procedure described in Section 3.2, and is loaded on demand from main memory.

2.3.3 Algebraic coarse-grid solver

We use a conjugate gradient method preconditioned by a single AMG-V-cycle of Trilinos’ ML [31] as a coarse-grid
solver on a continuous, piecewise linear coarse space. Similarly to O’Malley et al. [79, 80], we construct this coarse
space after explicitly performing a sequence of matrix-free p- and c-transfers. In this way, we can reach the best
performance of ML.

We have chosen ML because of its integration into deal.II and regarded it as a black box – no tuning of the parameters
was performed9. Table 2 below shows the settings used in all simulations with the deal.II nomenclature: A single
V-cycle is carried out. On each level, two non-overlapping ILU sweeps are performed as pre- and post-smoothing. The
coarse-grid problem is solved by the direct sparse solver KLU from the Trilinos’ Amesos package.

Table 2: Settings of ML as used in all simulations with the deal.II nomenclature
elliptic: true constant modes: -
higher-order elements: false smoother sweeps: 2
n cycles: 1 smoother overlap: 0
w cycle: false smoother type: ILU
aggregation threshold: 1e-4 coarse type: Amesos-KLU

A comparison with alternative coarse-grid solver variants is shown in Section 5.5.

2.3.4 Intergrid operators

Our multigrid algorithm requires prolongators in three instances: h-transfer (for h-MG), p-transfer (for p-MG), and
c-transfer (for CG↔ DG). The implementation of the p-transfer and the c-transfer operators is the major contribution
by the author of this Master’s thesis.

The projection from a coarse grid to a fine grid can be generically expressed as a sparse matrix-vector multiplication
with the prolongation matrix P�:

xf = P�xc =
∑

e∈{cells}

ΠT
e,fP

(e)
� Πe,c (xc) � ∈ {c, h, k}. (26)

As an alternative to the global prolongation, it is possible to express the prolongation algorithm locally, element by
element. In that case, the following sequence of operations is performed for each element: element-local quantities are
gathered, the prolongation is performed on the element with the element-local prolongation matrix P (e), and the results
are added to the global results. In doing so, Πe,c and Πe,f should be regarded as operators that, besides their actual task
(to scatter/gather element-local quantities), also weight values of quantities shared by multiple elements on the fine grid.

8The factors ρj and θj are precomputed and set in such a way that high-frequency modes, corresponding to eigenvalues in the
smoothing range [λmax/α, λmax] with α = 30, are damped. An estimation of λmax is found after a sequence of conjugate gradient
iterations.

9The scope of the tasks of this Master’s thesis involved the creation of the conditions for efficiently integrating the matrix-based
AMG-algorithms of ML, provided by deal.II, in our matrix-free framework. This task comprised the following subtasks: extending
discrete operators such that they can return their matrix representation (see Section 3.2), as well as implementing p- and c-transfer
operators (see Section 2.3.4) to be able to transform the high-order DG-space to a piecewise linear CG-space, which is the most
suitable space for ML. Tuning the parameters of ML should be investigated in a future study.

12

P
h→2h
2 =


+1.000
+0.375 +0.750 −0.125

+1.000
+1.000

−0.125 +0.750 +0.375
+1.000

 P
h
2→5 =


+1.000
+0.675 +0.415 −0.090
+0.183 +0.919 −0.102
−0.102 +0.919 +0.183
−0.090 +0.415 +0.675

+1.000



Figure 1: 1D Prolongation matrices for h-transfer of second-order elements and for p-transfer between second-order
and fifth-order elements. The examples for h- and p-transfer have been chosen in such a way that they
are comparable: the coarse and the fine level have the same number of degrees of freedom in both cases.
Similarity of the matrix entries is clearly visible.

The element-local prolongation matrices P (e) for CG and DG do not differ from each other. Whether CG or DG is
used, is only reflected in the choice of Πe,f and Πe,c.

The definition of the element-local projection matrix is as follows:

P
(e)
� = M−1

e,f

∫
Ωe

φfφ
T
c dΩ with Me,f =

∫
Ωe

φfφ
T
f dΩ, (27)

where φ� is the vector of the shape functions. The subscript f stands for the fine grid and c for the coarse grid.

All three transfer operations can be implemented in a matrix-free way. The h-transfer and the p-transfer are implemented
using sum factorization. This requires the evaluation of the prolongation matrix for 1D – according to Equation (27) –
only once at start-up for every transfer combination occurring in the particular simulation. Details on sum factorization
in the context of matrix-vector multiplication v = Au will be given in Section 3.1.

In accordance with Equation (26), the element-by-element definition of the restrictor can be expressed, assuming
R = P T , as follows:

rc = R�rf = P T
� rf =

∑
e∈{cells}

ΠT
e,c

(
P

(e)
�

)T
Πe,f (rf) � ∈ {c, h, k}, (28)

applying the transpose of the element-local prolongation matrix.

H-transfer: The h-transfer prolongates the results from a coarse cell to its direct children with the same degree k.
Projection matrices can be computed based on reference elements for the prolongation to each of the two children in 1D
separately, i.e. P (1)

h ,P
(2)
h ∈ R(k+1)×(k+1). The separate projection matrices can be combined afterwards:

P
(e)
h =

[
P

(1)
h

P
(2)
h

]
∈ R2·(k+1)×(k+1). (29)

Figure 1 shows the 1D prolongation matrix for k = 2.

P-transfer: The p-transfer is performed between elements of order kf and order kc, i.e. P (e)
k ∈ R(kf+1)×(kc+1). The

coarsening sequence can be chosen arbitrarily. We only consider the following three p-sequences:

1 ki−1 = 1, 2 ki−1 = max(1, bki/2c) 3 ki−1 = max(1, ki − 1). (30)

By default, sequence 2 is used because this approach halves the number of degrees of freedom in each direction just as
h-MG does. The recursive formula is evaluated for up to order k = 13 in the table below (example: 9→ 4→ 2→ 1):

Table 3: P-transfer sequence 2
ki 1 2 3 4 5 6 7 8 9 10 11 12 13
ki−1 - 1 1 2 2 3 3 4 4 5 5 6 6

As an example, the element prolongation matrix between kf = 5 and kc = 2 is shown in Figure 1.

C-transfer: For the transfer between continuous and discontinuous elements, the element-local projection matrix
simplifies due to φf = φc to a simple identity matrix, i.e. P e

c = Ik+1. The work of the c-transfer consists only of
applying the two permutation matrices in sequence. The result is that the value of the nodes shared by neighboring
elements in CG is simply injected into the corresponding nodes in DG during prolongation. In instances of restriction,

13

residuums belonging to the same vertex are summed up. This makes sense since test functions sharing the same
supporting point have to be recombined during the transfer to CG.

In contrast to some authors, we perform each h-, p-, and c-transfer separately. Siefert et al. [90], for example, transfers
directly between first-order continuous and high-order discontinuous space. Such a transfer, however, is equivalent to
the composition of two transfer operators in the following way (example: kc = 1 and kf = 7):

P1→7
p ◦ P1

c = P1→7
pc , (31)

and, if the p-transfer is split up in accordance with the p-transfer strategy introduced above, the transfer proposed by
Siefert et al. [90] is equivalent to the following sequence of compositions:

P3→7
p ◦ P1→3

p ◦ P1
c = P1→7

pc . (32)

The latter formulation highlights the advantage of our method: by splitting up the transfer from high-order to low-order
space, we can introduce cheap smoothers on the intermediate coarse grids.

14

3 Implementation

Section 2 described the discretization of the Poisson equation and the overall algorithm of the hybrid multigrid solver
presented in this Master’s thesis. Its main components are smoothers, coarse-grid solvers, and three types of intergrid
transfer operators. Furthermore, a discrete operator A, which hides the implementation details of the matrix A, is
needed to provide the minimum set of the following functionalities for the listed components:

• efficient matrix-vector multiplication v = Au or v = A(u) for the multigrid algorithm, for the smoothers,
and for the preconditioned conjugate gradient method (see Equations (23), (24), (25)),

• construction of the inverse of the diagonal and/or the block diagonal of the matrixA for the smoothers,

• ability to simply rediscretize the PDE for a coarse mesh and for continuous or discontinuous elements of
arbitrary order k, and

• construction of an explicit matrix representation of the matrixA for algebraic coarse-grid solvers, e.g. AMG.

Key aspects of efficient matrix-free matrix-vector multiplications for high-order CG and DG discussed by Kronbichler
and Kormann [57, 58] are revisited in Subsection 3.1 from a matrix-based point-of-view. Based on the formalization
of matrix-free and matrix-based algorithms in this review, we propose in Subsection 3.2 the construction of discrete
operators A capable of providing also the remaining functionalities required by the multigrid solver presented here.
Finally, in Subsection 3.3 we address the practical problems that arose during the integration of the algorithm of this
solver into an actual finite element library (here: deal.II [1]) and the important role of the newly implemented transfer
operators in this respect.

3.1 Efficient matrix-free matrix-vector multiplication

This subsection revisits the matrix-free matrix-vector multiplication for continuous Galerkin methods, closely follow-
ing [57]. The approach used in that paper is applied here also to explain matrix-free matrix-vector multiplications for
discontinuous Galerkin methods.

Continuous Galerkin Methods

The traditional way to perform a matrix-vector multiplication for a linear system of equations arising from a continuous
Galerkin discretization consists of two distinct steps [88, p. 65]:

• Step 1: the construction of matrixACG by element assembly

ACG =
∑

e∈{cells}

ΠT
eAeΠe. (33a)

This step consists of the construction of the element stiffness matrices Ae for each element e (as per Equa-
tion (12)) and their insertion into the global stiffness matrix with the help of element permutation matrices Πe

10.

• Step 2: the application of matrixACG to an input vector u

v = ACGu. (33b)

This approach – considered by Saad [88, p. 65] to be more appealing than the approach we will present next – is the
standard for first-order finite element methods, yet it does become a bottleneck for high-order methods, as discussed
in [59] and in Subsection 4.2 of this paper. The main reason for that is the increasing Number of Non-Zeros (NNZ)
in the matrix. The NNZ per row is approximately proportional to the number of degrees of freedom per element and
increases polynomially with the orderO

(
kd
)
. Since sparse matrix-vector multiplications are inherently memory-bound,

the increase in NNZ translates directly to a rapid decrease in the performance of matrix-vector multiplication for
high-order elements. Readers interested in the topic ’sparse matrix formats’ (e.g. Compressed Row Storage and Jagged
Diagonal Storage) and their performance are referred to Hager and Wellein [37, p. 86-91].

Based on the observation that many iterative solvers do not need the actual matrixA but rather the effect ofA, i.e. the
result of the matrix-vector multiplication Au, one can derive the idea that instead of precomputing the matrix, the

10For the sake of simplicity, we do not detail the constraints (Dirichlet boundary and hanging nodes) here. The reader may consider
the imprinting of constraints as a subtask of ΠK . Interested readers are referred to [57].

15

Table 4: Left column: comparison between basis change with sum factorization and naïve basis change; Right column:
comparison of the work of matrix-free and standard computation of the diagonal and block entries of matrices
(�∗: normalized by the number of degrees of freedom per block pd; �∗∗: normalized by the number of entries
per block p2·d; p = k + 1)

sum-factorization naïve
work∗ O(p) O(pd)
memory traffic∗ O(1) O(pd)
arithmetic intensity∗ O(p) O(1)

matrix-free standard
block∗∗ O(p) O(pd)
diagonal∗ O(pd+1) O(pd)

matrix entries could be "computed" on the fly. This idea corresponds to an interchange of the summations as shown
here:

ACGu =

 ∑
e∈{cells}

ΠT
eAeΠe

u =
∑

e∈{cells}

ΠT
eAe (Πeu) , (34)

and leads to an algorithm with smaller matrix-vector multiplications ve = Aeue at the element level. To make this
work, element local values ue have to be extracted via ue = Πeu, and local contributions ve have to be added into the
global result vector via v = ΠT

e ve. In this respect, the multiplication with the element stiffness matrix ve = Aeue
should not be considered strictly as an actual matrix-vector multiplication, but rather as an operator application:

ACGu =
∑

e∈{cells}

ΠT
e Ae (Πeu) , (35)

since the structure ofAe can be exploited to construct a sequence of cheap operations applied to an input vector ue.
To explain this with the aid of an example, let us turn back to our model problem, the Laplace operator. By inserting
the definition of the element stiffness matrix of the Laplace operator into ve = Aeu and replacing the integrals with
quadratures, the result is:

v(i)
e =

(k+1)d∑
j=1

∑
q

(
∇̂φ̂i (x̂q)

T ·
(
J−Tk (x̂q)

)T · wq · | det Jk (x̂q) | · J−Tk (x̂q) · ∇̂φ̂j (x̂q)
)

︸ ︷︷ ︸
Ae,ij

u
(j)
k , (36)

where φ̂i donates the unit cell basis functions, x̂q the position of the quadrature point on the unit cell, ∇̂ the gradient
on the unit cell, and Jk(x̂q) is the Jacobian of the transformation from the unit to the real cell. Moving the outer loop
inside results in the following form:

v(i)
e =

∑
q

∇̂φ̂i (x̂q)
T ·
(
J−Tk (x̂q)

)T · wq · | det Jk (x̂q) | · J−Tk (x̂q) ·
(k+1)d∑
j=1

∇̂φ̂j (x̂q)u
(j)
k

 . (37)

Three distinct steps (highlighted in the equation in orange, blue, and red) that are executed in sequence can be identified
and have been generalized in [57]. For the Laplace operator, they are:

1. computation of the gradients on the unit cell for all quadrature points,
2. determination of the gradients in real space and weighting of the contribution of each quadrature point, and
3. multiplication by unit-cell gradient of shape functions and summation over all quadrature points.

The complexity of step 2 is obviously O(1) per quadrature point. For steps 1 and 3, sum factorization [71, 81] can be
employed. This scheme exploits the tensorial structure of the shape functions to reduce the complexity of the basis
change toO(k+1) per degree of freedom. The overall complexity can be reduced fromO((k+1)2d) toO((k+1)d+1)
per element if sum factorization is used instead of a naïve matrix-vector multiplication. Additionally, the memory traffic
is significantly reduced as shown in Table 4. This reduction takes place, although additional data structures regarding
the mapping between real and reference space have to be loaded.

Discontinuous Galerkin Methods

For discontinuous Galerkin methods, besides cell contributions, inner-face and boundary-face matrix contributions also
have to be computed. Following the matrix-based notation used for continuous Galerkin methods, we can express the

16

Table 5: Matrix-free notation for application of the Laplace operator

• Ak: cell integral (→ CG, DG): (
∇v−, ∇u−

)
Ωe

• Af : inner-face integral - contribution to �− (→ DG):

−
(
∇v−, u

− − u+

2
n

)
Γe\(ΓD∪ΓN)

−
(
v−,
∇u− · n+∇u+ · n

2
− τ

(
u− − u+

))
Γe\(ΓD∪ΓN)

• Af : inner-face integral - contribution to �+ (→ DG):

−
(
∇v+,

u− − u+

2
n

)
Γe\(ΓD∪ΓN)

+

(
v+,
∇u− · n+∇u+ · n

2
− τ

(
u− − u+

))
Γe\(ΓD∪ΓN)

• Ab: boundary-face integral (→ DG):(
∇v−, u−

)
Γe∩ΓD

+

(
v−, −∇u− · n+ 2τu−

)
Γe∩ΓD

original matrix-vector multiplication as the sum of three simpler matrix-vector multiplications:
ADGu = (AC +AF +AB)u = ACu+AFu+ABu, (38)

where �C is the cell contribution, �F is the inner-face contribution, and �B the boundary contribution. The contribution
of the cell stiffness matrixAC is computed in exactly the same way as shown above for CG in Equation (21a):

ACu =

+∑
e∈{cells}

ΠT
e Ae (Πeu) . (39)

The only difference is that another set of permutation matrices is used. The block entries contribute to disjoint blocks in

the matrix.
+∑

represents - analogically to the symbol
⊎

from the set theory - disjoint additions. For inner faces, we
obtain:

AFu =
∑

f∈{faces}

[
(Π−f)T (Π+

f)T
] [A−−f A−+

f

A+−
f A++

f

] [
Π−f
Π+
f

]
u, (40)

with Π−f and Π+
f , being the permutation matrices of the degrees of freedom residing on the negative and the positive

side of the face. The definition of A−−f , A−+
f , A+−

f , and A++
f can be found in Equation (21b). The same optimization

steps used for the cell stiffness matrices can be applied here; we can rewrite the formula, using the operator Af :

AFu =
∑

f∈{faces}

[
(Π−f)T (Π+

f)T
]
Af
([

Π−f
Π+
f

]
u

)
, (41)

and apply sum factorization inside the operator. This makes the matrix-vector multiplication on cell faces highly
efficient. The application of boundary faces is analogous to that of cell matrices as per Equation (21c):

Abu =

+∑
b∈{boundary}

ΠT
b Ab (Πbu) . (42)

The sequence in Equation (38), according to which cell, face and boundary evaluations (Equations (39), (41), and (42))
are performed after each other, should not be considered static. By contrast, cell, face and boundary evaluations are
grouped in such a way that the data can be reused from the cache.

If no matrices are assembled, but the operators are applied directly, it is legitimate to drop the matrix notation and to
introduce a notation inspired by the weak form of Equation (18). The notation includes explicitly face contributions
on both sides of an inner face (see Table 5) and clearly shows which quantities (value, gradient) are needed on the
quadrature points and what operations have to be performed on these points. This notation is the basis of the matrix-free
implementation in deal.II [1] and in the application codes in which we use the presented hybrid multigrid solver.

17

3.2 Extracting a matrix

The discussion in Subsection 3.1 has shown that a matrix-free evaluation is a highly efficient way to perform matrix-
vector multiplications for CG and DG. It is the reason why our application codes, and the operators in particular, are
built around highly efficient matrix-free kernels. Let us go on now to discuss how the matrix-free implementation of the
operators can be used to compute their matrix-based representation that is needed for the smoothers and for AMG. To
be precise, we need the inverse of either the diagonal or the block diagonal of matrixA on every multigrid level, and
we also need the actual explicit matrix representation ofA only on the coarsest, lowest-order level.

In order to derive an efficient way of computing the global matrixA in a matrix-free framework in which operators are
expressed as they are in Table 5, let us again turn to the element stiffness matrices as they are defined in Equations (12),
(21a), (21b) and (21c). Based on the observation that the multiplication of an arbitrary matrix with a basis vector ei
(where all entries are zeros, only the ith entry is 1) returns the ith column of the matrix:

column(Ae)i = Aeei, (44)
it is obvious that the matrix-free operator Ae also does the same:

column(Ae)i = Ae(ei). (45)
The full element matrix can be reconstructed by a sequence of basis-vector applications. This algorithm can be easily
generalized for handling cell, inner-face and boundary-face element matrices:

A� = [A�(ei) for i in [0, len(u�)[] , (46)
with � ∈ {c, f, b}. The computed element matrices can be stored in appropriate global data structures such as the
diagonal in a vector, the block diagonal in a vector of full matrices, and the global stiffness matrix in a sparse matrix.
Table 4 proves the efficiency of the presented approach for computing the full block of an element stiffness matrix. The
computational complexity of this approach is significantly lower, compared to a standard implementation based on
three-level nested loops consisting of iterations over all ansatz-functions, test-functions and quadrature points. The
complexity estimate is valid for the computation of the explicit matrix representation as well as of the block diagonal.

For computing the diagonal of an element matrix, the same algorithm can be used as before, but only entries on the
diagonal are kept, i.e.

diag(A�) = [A�(ei)[i] for i in [0, len(u�)[] . (47)
This somewhat wasteful approach has a worse complexity than the standard implementation, as shown in Table 4.
This implementation only has to iterate over all quadrature points and over all test-functions in a two-level nested
loop (ansatz-function is chosen to be the same as the test-function). In practice, however, our approach turns out to be
efficient due to the highly optimized building blocks (see Section 4.2).

The discussion of Subsections 3.1 and 3.2 concludes that:

1. given a DG implementation, it is straightforward to obtain a CG implementation by not looping over faces in
a matrix-free implementation case or by not assembling face stiffness matrices in the case of matrix-based
implementations, and that

2. given a matrix-free implementation, it is possible to construct a matrix-based implementation via a columnwise
reconstruction of the matrix.

In other words, given a matrix-free framework for DG, it is straightforward to mimic matrix-free CG and the appropriate
matrix-based versions. This advantageous connection between the four implementations is depicted in Figure 2. Based
on the aforementioned conclusions, the author of this Master’s thesis has restructured the discrete operators such that
they, by providing the presented hybrid multigrid algorithm with a clearly defined interface, enable its functioning in a
transparent way.

matrix-free DG

matrix-based DG

matrix-free CG

matrix-based CG

columnwise reconstruction

ignore faces

ignore face element matrices

Figure 2: Relation of matrix-free/matrix-based and continuous/discontinuous Galerkin methods. Matrices can be
constructed simply via columnwise reconstruction using matrix-free methods. DG can be simplified to CG by
ignoring the flux terms on the faces.

18

= h-coarsening = c/p-coarsening

virtualization

l = 0

l = 1

l = 2

l = 3

l = 4

l = 5

l = 0, k = 1, CG

l = 1, k = 1, CG

l = 2, k = 1, CG

l = 2, k = 1, DG

l = 2, k = 3, DG

l = 3, k = 3, DG

Figure 3: Virtualization of V-cycles belonging to separate dof-handlers to a single V-cycle

3.3 Working with existing FE infrastructure

This subsection describes how to integrate the presented hybrid multigrid solver into the Finite Element library
deal.II [1]. The description applies to any high-order FE library as long as it supports h-multigrid as well as DG and
CG discretization.

The FE library deal.II [1] has a strong support for h-multigrid. The user generally provides a coarse mesh consisting
of macro cells. Each macro cell is refined adaptively and recursively by halving the cell in each direction, leading to a
forest-of-trees of quadtrees (2D) or octrees (3D). The information regarding the hierarchy of cells is saved internally
in the triangulation. Based on the triangulation and on a selected finite element (FE_Q for continuous and FE_DGQ for
discontinuous elements) with a user-specified degree k, the degrees of freedom can be setup on the active cells11. The
information is saved in a dof-handler. Optionally, degrees of freedom necessary for multigrid can be setup on local,
non-active cells on all levels. This process leads to a fully populated dof-handler.

If one assumes that the additional data structures scale directly with the number of additional unknowns, memory
consumption overhead of using h-multigrid implementation can be estimated using a geometric series:

MV =

l∑
i=0

(
1

2d

)i
≤
∞∑
i=0

(
1

2d

)i
=

1

1− 0.5d
=

{
1.3333 for d = 2
1.1429 for d = 3.

(48)

It is obvious that the current implementation of the dof-handler in deal.II suits neither p-multigrid nor the approxima-
tion space idea because it does not support the creation of a hierarchy of changing element types that have varying
polynomial orders. Writing a new dof-handler is impractical for many reasons. One of them is the large amount of
useful utility functions provided by/for the dof-handler, many of which have been used in the implementation of the
hybrid multigrid solver presented here.

As a way out, one could create fully populated dof-handlers for each element type (see in Figure 3, left-hand side). In
this context, each multigrid level can be identified by the following triple:

(level, degree, FE-type) ∈ N0 × N× {FE_Q, FE_DGQ}, (49)

where multigrid levels with the same degree and FE-type, i.e. (∗, degree, FE-type), share the same dof-handler.
The label level specifies the level inside a dof-handler. The following transition functions have been implemented:

(level, degree, FE-type)
h→ (level-1, degree, FE-type), (50a)

(level, degree, FE-type)
p→ (level, next(degree), FE-type), (50b)

(level, degree, FE_DGQ)
c→ (level, degree, FE_Q). (50c)

As the characters above the arrows indicate, these transitions correspond directly to the three transfer operators
introduced in Section 2.3.4. During h-transfer, the level inside the dof-handler is changed. A p-transfer and a c-transfer
lead to the change of the dof-handler, while keeping the level constant. By choosing appropriate transfer functions, the
complexity of the existence of multiple V-cycles is hidden, and the user has the impression of working only on a single
cycle. This hiding of complexity is called "virtualization" in Figure 3.

The fact that this naïve approach, as described above, does not introduce excessive overhead is shown – ignoring the FE
type – in the following estimation of memory consumption for p-coarsening strategy 2 for degree k and refinement

11Active cells are cells that are not refined and thus make up the fine grid.

19

level l (with the same assumption as in Equation (48)):

MF =

lk∑
j=0

l∑
i=0

(
1

2d

)j (
1

2d

)i
︸ ︷︷ ︸

cost of level
(l− i, klk−j)

=

 lk∑
j=0

(
1

2d

)j · [l∑
i=0

(
1

2d

)i]
≤M2

V =

{
1.7778 for d = 2
1.3061 for d = 3,

(51)

where lk = dlog2 (k + 1)e − 1 is the number of p-coarsening levels, not counting the lowest-order level.

Because this approach leads at most to an additional overhead as large as h-multigrid does, which is acceptable in our
use cases, it was employed in the implementation of the hybrid multigrid solver presented here.

20

4 Performance analysis of main multigrid components

This section provides a short introduction to the results presented in Sections 5-7. In Subsection 4.1, the hardware used
for the simulations is described. Subsections 4.2 and 4.3 take a look at two components of the hybrid multigrid solver
presented in this Master’s thesis, the discrete operator and the transfer operators, from a performance point of view.

All C++ code was compiled using the GNU compiler gcc, version 7.3.0, with optimization target AVX2 (Haswell). The
minimum runtime out of ten experiments is presented in the next sections.

4.1 Hardware

All simulations and performance tests of this Master’s thesis were performed on the Linux-Cluster CoolMUC-2,
provided by the Leibniz Supercomputing Centre (LRZ), in Garching, Germany. An overview of the configuration of the
cluster, extracted from the website of LRZ12, is shown in Table 6.

Table 6: Left: overview of the configuration of the Linux-Cluster CoolMUC-2; Right: bandwidth measurements for a
single node (BW: bandwidth output by STREAM benchmark; BW†: bandwidth taking also read for ownership
into account)

Architecture Intel Xeon E5-2697 v3 ("Haswell")
Cores per node 28
RAM per node 64 GB
Max job nodes 60
Max job cores 1680

Function BW [GB/s] BW† [GB/s]

Copy 83 124
Scale 83 124
Add 88 118
Triad 93 124

The CoolMUC-2 cluster is equipped with an FDR14 Infiniband interconnect and 28-core Intel Xeon E5-2697 v313

Haswell-based nodes. The processor offers the AVX2 instruction set, which operates either on four double-precision or
on eight single-precision floating-point numbers in parallel. The maximum accumulated bandwidth of a single node has
been measured with the STREAM benchmark [70], which has been adjusted for MPI. The detailed results of these
measurements are shown in Table 6. A maximum bandwidth of about 120GB/s was measured. Additional information
on the thread topology and the cache topology of the nodes has been extracted by the tool likwid-topology from the
LIKWID-suite [85, 96] and is shown in Appendix A.

Per default, simulations have been performed on a single node with one single-threaded MPI process per core, i.e. with
28 MPI processes. In Subsections 5.8 and 5.9, we will present strong- and weak-scaling results, in which we one by one
increase the number of nodes to 60, the maximum number of nodes for a job.

For the throughput experiments analyzed in this section, the problem size of approximately 50 million unknowns was
used such that the solution vectors (and all other global data) need to be fetched from main memory rather than from
caches.

4.2 Discrete operator

In our code, the discrete operator, an implementation of the abstract class OperatorBase, hides the implementation
details of matrix-free and matrix-based CG and DG. Besides providing the highly efficient matrix-free matrix-vector
multiplication vmult for CG and DG on the basis of the description given in Section 3.1, the discrete operator also
provides helper functions for constructing the (inverse) diagonal, the (inverse) block diagonal, and the explicit matrix
representation of the given operator, based on the procedures described in Section 3.2. In the following, we will only
consider the construction of the (inverse) diagonal and of the explicit matrix representation since only they are needed
by the Chebyshev smoother and by AMG, used in this Master’s thesis.

The (inverse) diagonal is generally computed once during the startup by the function update, according to Equation (47),
and is stored in a distributed vector. The Chebyshev smoother reads, when needed, this vector from memory, performs
an element-wise multiplication with the source vector src, and stores the result in dst. The vectors src and dst
are generally selected to be the same so that the same bandwidth as in the case of Add and Triad in the STREAM
benchmark can be expected (2 reads + 1 store).

12Overview of the cluster configuration: https://www.lrz.de/services/compute/linux-cluster/overview/
13Product specification by Intel:

https://ark.intel.com/products/81059/Intel-Xeon-Processor-E5-2697-v3-35M-Cache-2_60-GHz

21

https://www.lrz.de/services/compute/linux-cluster/overview/
https://ark.intel.com/products/81059/Intel-Xeon-Processor-E5-2697-v3-35M-Cache-2_60-GHz

The setup of a sparse matrix14 is a two-step process: initially, the sparsity pattern is determined and then the entries in
the matrix are determined. The latter step comprises the computation of the element matrices according to Equation (46)
and the assembly of the element matrices into the global matrix. It should be noted that the current implementation
computes the whole stiffness matrices in a vectorized fashion for 4/8 elements in parallel and only at the end inserts the
entries into the matrix in one go15.

Figure 4 shows the throughput of the application of the matrix-free vmult, of the application of the (inverse) diagonal,
and of the sparse matrix-vector multiplication (SpMV) for all combinations of CG/DG, 2D/3D, and Cartesian/curved
mesh for the Laplace operator. Additionally, the costs of the corresponding setup phases are shown. We define
throughput as the processed number of degrees of freedom per time unit. In the case of the setup of a sparse matrix, the
time unit corresponds to the time to build the matrix16. In Figure 4, the following observations can be made:

• For all cases, the application of the (inverse) diagonal has an order-independent throughput of ≈ 5GDoF/s,
which exactly meets the expectation (120[GB/s]/24[Byte/DoF]).

• The throughput of the sparse-matrix based algorithms and of the computation of the (inverse) diagonal
decreases with the complexity O

(
k2·d) for the considered degree range, indicating a work of O

(
kd
)

per
degree of freedom and per diagonal entry. While the work complexity for sparse-matrix based algorithms is
consistent with the expectations, the work complexity for the computation of the (inverse) diagonal exceeds
the expectations since theoretical estimations in Section 3.2 have shown a worse complexity O

(
kd+1

)
. This

reveals the excellent implementation of the sum-factorization kernels in deal.II, which hides computation
behind memory transfer. In the case of CG, a SpMV is faster than the computation of the diagonal; in the case
of 3D DG, the time to setup the diagonal is comparable to the time of one SpMV.

• Matrix-free vmult is faster than SpVM for all but for first order elements. This is not surprising since the
throughput of vmult is only weakly dependent on k.

Due to its fundamental role in our hybrid multigrid solver, the performance of the matrix-free vmult should be analyzed
in more detail in the following. Table 7 summarizes the maximal throughput of vmult for all combinations, as
extracted from Figure 4. Generally, the following observations can be made regarding the throughput: three-dimensional
simulations are 30-50% slower than two-dimensional ones, using a non-Cartesian (curved) mesh leads to a penalty of
30-60%, discretization with DG results in a normalized overhead of 15-30%, and the throughput of curved CG and of
curved DG is comparable.

Table 7: Maximum throughput [GDoF/s] of matrix-free vmult (in brackets: kmax with 1 ≤ k ≤ 9)
CG 2D 3D

Cartesian 2.5 (6) 1.7 (4)
Curved 1.3 (9) 0.7 (9)

DG 2D 3D

Cartesian 1.7 (9) 1.1 (4)
Curved 1.2 (9) 0.6 (4)

Figure 5 shows the measurements of the cache transfer of the matrix-free vmult, taken with the tool likwid-perfctr
of the LIKWID-suite. Measured transferred data volume per degree of freedom is shown for 3D, along with theoretically
expected ideal values. The expected bandwidth to RAM is 120GB/s (see Subsection 4.1). Simple estimation of the
data transfer per degree of freedom is provided in Table 8. It considers in all cases read for ownership as well as in the
case of CG indices to be loaded, in the case of curved mesh mapping information (J and |J | × w), and in the case of
DG additional face quantities. Measurements match well with expectations. Differences for DG might be related to an
increase in MPI communication.

14We use sparse matrix for both CG and DG. CRS, a sparse-matrix format used in Trilinos [31], has to store the actual non-zero
matrix entries as well as following information in two additional data structures [37]: column indices of each non-zero matrix entry
and pointers to the start of each row. In the case of DG, a reasonable alternative would be to use a block-sparse matrix, which
makes storing the column indices of each non-zero entry superfluous. This would lead to halving of the data volume to load and
consequently to a speedup of approximately 2 for sparse matrix-vector multiplications (SpMV) with single-precision floating point
numbers. Experiments have shown that it is true, however, setting up a block-sparse matrix in deal.II [1] is significantly slower
than setting up a simple sparse matrix. This observation and the fact that we use matrix-based algorithms only on the coarsest level,
lead us to use the suboptimal data structure for now and to postpone the integration of block-sparse matrices as an optimization
strategy when the algebraic coarse problem becomes a bottleneck.

15 Since we reconstruct element matrices columnwise, a more sound approach would be not to wait until the end of the construction
of the whole element matrix, but rather to insert entries into the matrix columnwise as soon as they are available.

16 In contrast to Kronbichler and Wall [59], we normalize by the actual number of degrees of freedom.

22

Table 8: Expected data transfer per degree of freedom during matrix-free vmult (for V=double and I=float: [V]=8 and
[I]=4; numbers in red indicate ’read for ownership’)

Cartesian curved

CG
(2 + 1) · kd[V] + 1 · (k + 1)

d
[I]

kd
· Byte

DoF
(2 + 1) · kd[V] + (k + 1)

d ·
(
1[I] + d2[V] + 1[V]

)
kd

· Byte
DoF

DG (2 + 1)[V] · Byte
Dof

((
2 + 1 + d2

)
· (k + 1)d + d · (k + 1)d−1(2 · d+ 1)

)
[V]

(k + 1)d
· Byte

DoF

Table 9: Expected memory transfer per degree of freedom for the transfer operators (for V=double and I=float: [V]=8
and [I]=4; numbers in red indicate ’read for ownership’

restriction prolongation

CG-DG
(k + 1)d[V] + 1[I] + 2 · kd[V] + kd[I]

(k + 1)d
· Byte

Dof
2 · (k + 1)d[V] + 1[I] + kd[V] + kd[I]

(k + 1)d
· Byte

Dof

P (DG)
(k + 1)d[V] + 2 · (bk/2c+ 1)d[V]

(k + 1)d
· Byte

Dof
2 · (k + 1)d[V] + (bk/2c+ 1)d[V]

(k + 1)d
· Byte

Dof

P (CG)
kd[V] + 2 · bk/2cd[V] + (k + 1)d[I] + (bk/2c+ 1)d[I]

kd
· Byte

Dof
2 · 2 · kd[V] + bk/2cd[V] + (k + 1)d[I] + (bk/2c+ 1)d[I]

kd
· Byte

Dof

H (DG)
2d[V] + 2 · 1[V]

2d
· Byte

Dof
2 · 2d[V] + 1[V]

2d
· Byte

Dof

In the case of 3D DG, a drop in throughput and an increase in loaded data volume per degree of freedom can be
observed for k ≥ 5. A calculation by hand shows that the memory consumption of the loaded data of 4/8 elements
is (k + 1)3 · 32Byte ≈ 6.9KB for k = 5. This value is significantly lower than the size of the CPU private L1-cache
(32KB, see Appendix A), indicating that the drop in throughput might be due to non-optimal reusage of data already
loaded for cell evaluation in cases of face evaluation.

The observation that matrix-based matrix-vector multiplication for CG is at least as fast as the matrix-free version
for linear elements (see Figure 4) justifies – from a performance point-of-view – the change from matrix-free to
matrix-based implementation on the coarsest level using linear elements in the developed hybrid multigrid solver.

For the sake of completeness, a Roofline model [43, 99] is shown in Figure 6 for the given hardware. Performance
ceilings are inserted, based on the maximum memory bandwidth and on the theoretical peak performance, which can be
estimated as follows:

Pmax =
Instruction

Time︸ ︷︷ ︸
Clock frequency

× Flops
Instruction︸ ︷︷ ︸
ILP & SIMD

×Core count. (52)

With 2.6GHz, 16Flops/Instr.17, and 28 cores, we get Pmax = 1164GFLOP/s. The vmult-operation of the Laplace
operator is largely memory-bound, and nearly a quarter of peak performance can be reached.

4.3 Transfer operators

The hybrid multigrid solver presented here has three transfer operations (h-, p-, c-transfer), each with two methods:
restrict_and_add and prolongate. In the following, we take a look at the performance of the p-transfer and the
c-transfer operators. Similarly, as in Subsection 4.2, we compare measured and expected throughput for 2D and 3D.
Results are independent of the type of mesh since mapping information does not have to be loaded. The measured
values are plotted with solid lines in Figure 7. The dashed lines represent the expected throughput, which are based on
the formulas presented in Table 9.

17The value 16 can be derived with the following computation: 2 FP units × 2 (for FMA) × 4 SIMD lanes for DP (see
https://en.wikichip.org/wiki/intel/microarchitectures/haswell_(client))

23

https://en.wikichip.org/wiki/intel/microarchitectures/haswell_(client)

General observation based on Figure 7 is that the restriction is faster than the prolongation in all cases. The reason
for this is that, in cases of prolongation, the destination vector is living on the fine grid, containing more degrees of
freedom, i.e. read for ownership leads to the fact that these degrees of freedom are touched twice in main memory,
resulting in a lower overall performance. The following further observations can be made:

• P-transfer, in cases of DG, matches well with expected values. The maximum throughput for restriction is
≥ 10GDoF/s, which is higher than the application of the (inverse) diagonal. The reason for this is significantly
less read for ownership. The throughput of prolongation is 6-7GDoF/s.

• P-transfer, in cases of CG, also matches well with expected values for high order. The discrepancy between
the results and the expectations for low order is probably because of lower memory bandwidth due to irregular
memory access (which can also be observed for vmult). Since indices for all degrees of freedom on the coarse
and on the fine space have to be loaded, the throughput of p-transfer for CG is continuously lower than for DG.
Additionally, in the cases of prolongation an explicit zeroing of the destination vector is required because the
degrees of freedom on the fine grid are shared.

• C-transfer has overall the lowest throughput of all three cases and does not match with expected values at all
(≥ 50% difference). This is due to the implementation limitations of deal.II, which does not allow for work
on vectors from DG and CG space (with ghost cells) at the same time with the same Matrixfree object. An
explicit copy of the data, contained in the DG vector, to the right format is required18.

In Section 5.4, we will discuss the cost of performing a single transfer operation in the light of the total cost of the
complete multigrid algorithm.

18An alternative implementation, which did not require the creation of a temporal array, showed that it is possible to come close to
the expected throughput also in cases of the c-transfer.

24

matrix-free: vmult diagonal: update ...: vmult sparse matrix: sparsity pattern ...: assembly ...: vmult

1 2 3 4 5 6 7 8 9
100

101

102

103

104

Degree [-]

T
hr

ou
gh

pu
t[

M
D

oF
s/

s]

2D Cartesian mesh, CG

1 2 3 4 5 6 7 8 9
100

101

102

103

104

Degree [-]

T
hr

ou
gh

pu
t[

M
D

oF
s/

s]

3D Cartesian mesh, CG

1 2 3 4 5 6 7 8 9
100

101

102

103

104

Degree [-]

T
hr

ou
gh

pu
t[

M
D

oF
s/

s]

2D curved mesh, CG

1 2 3 4 5 6 7 8 9
100

101

102

103

104

Degree [-]

T
hr

ou
gh

pu
t[

M
D

oF
s/

s]

3D curved mesh, CG

1 2 3 4 5 6 7 8 9
100

101

102

103

104

Degree [-]

T
hr

ou
gh

pu
t[

M
D

oF
s/

s]

2D Cartesian mesh, DG

1 2 3 4 5 6 7 8 9
100

101

102

103

104

Degree [-]

T
hr

ou
gh

pu
t[

M
D

oF
s/

s]

3D Cartesian mesh, DG

1 2 3 4 5 6 7 8 9
100

101

102

103

104

Degree [-]

T
hr

ou
gh

pu
t[

M
D

oF
s/

s]

2D curved mesh, DG

1 2 3 4 5 6 7 8 9
100

101

102

103

104

Degree [-]

T
hr

ou
gh

pu
t[

M
D

oF
s/

s]

3D curved mesh, DG

Figure 4: Performance of matrix-free and matrix-based operations of the Laplace operator, provided for all combinations
in the parameter space {2D, 3D}×{CG, DG}×{Cartesian, curved mesh}

25

L1↔L2 L2↔L3 L3↔System Memory Left: max. memory bandwidth; Right: ideal data volume

1 2 3 4 5 6 7 8 9
101

102

103

Degree [-]

B
an

dw
id

th
[G

B
/s

]
3D Cartesian mesh, CG

1 2 3 4 5 6 7 8 9
100

101

102

Degree [-]

D
at

a
vo

lu
m

e
pe

rD
oF

[d
ou

bl
e]

3D Cartesian mesh, CG

1 2 3 4 5 6 7 8 9
101

102

103

Degree [-]

B
an

dw
id

th
[G

B
/s

]

3D curved mesh, CG

1 2 3 4 5 6 7 8 9
100

101

102

Degree [-]

D
at

a
vo

lu
m

e
pe

rD
oF

[d
ou

bl
e]

3D curved mesh, CG

1 2 3 4 5 6 7 8 9
101

102

103

Degree [-]

B
an

dw
id

th
[G

B
/s

]

3D Cartesian mesh, DG

1 2 3 4 5 6 7 8 9
100

101

102

Degree [-]

D
at

a
vo

lu
m

e
pe

rD
oF

[d
ou

bl
e]

3D Cartesian mesh, DG

1 2 3 4 5 6 7 8 9
101

102

103

Degree [-]

B
an

dw
id

th
[G

B
/s

]

3D curved mesh, DG

1 2 3 4 5 6 7 8 9
100

101

102

Degree [-]

D
at

a
vo

lu
m

e
pe

rD
oF

[d
ou

bl
e]

3D curved mesh, DG

Figure 5: Cache transfer (bandwidth and data volume) for 3D Laplace operator, measured with LIKWID[85, 96]

26

CG Cartesian 3D CG Cartesian 2D
CG curved 3D CG curved 2D
DG Cartesian 3D DG Cartesian 2D
DG curved 3D DG curved 2D

1
4

1
2

1 2 4 8 16 32

16

32

64

128

256

512

1024

Pure
loa

d mem
ory

bw
12

0 GB/s

w/o vectorization

w/o FMA

Peak DP 2.6GHz

Arithmetic intensity [FLOP/Byte]
Pe

rf
or

m
an

ce
[G

FL
O

P/
s]

Figure 6: Roofline model for matrix-free vmult of the Laplace operator with Pmax = 1164GFLOP/s for 1 ≤ k ≤ 9.

1 2 3 4 5 6 7 8 9

103

104

Degree [-]

T
hr

ou
gh

pu
t[

M
D

oF
s/

s]

2D Cartesian/curved mesh

1 2 3 4 5 6 7 8 9

103

104

Degree [-]

T
hr

ou
gh

pu
t[

M
D

oF
s/

s]

3D Cartesian/curved mesh

p-transfer (DG): prolongation
p-transfer (DG): restriction
p-transfer (CG): prolongation
p-transfer (CG): restriction
c-transfer: prolongation
c-transfer: restriction

Figure 7: Performance of p- and c-transfer for 2D and 3D. Dashed lines indicate the expected values according to
Table 9. Excellent agreement can be observed for p-transfer. The reason for the significant difference between
expectations and measurements (> 50%) in cases of c-transfer is the current implementation, in which a
temporal copy of the degrees of freedom on the DG grid is created.

27

28

5 Application: Poisson problem

This section investigates the performance of the developed hybrid multigrid solver in the context of the Poisson problem
as stated in Equation (7). In Subsection 2.1 and 2.2, this equation has been discretized for continuous and discontinuous
finite element methods.

Subsection 5.1, giving a problem description, introduces the setup of the experiments, and Subsection 5.2 outlines
the default configuration of the hybrid multigrid solver. The convergence behavior of the multigrid solver is analyzed
in Subsection 5.3. Subsection 5.4 discusses node-level performance. It investigates the costs of each component
of the multigrid algorithm, identifying possible variants to improve the performance. Subsections 5.5-5.7 analyze
these variants and their benefits, considering different ways to solve the coarse-grid problem and various p-coarsening
strategies. Finally, Subsections 5.8 and 5.9 take a look at the parallel performance of the developed hybrid multigrid
solver by investigating the strong and weak scalability, using up to 1680 CPUs.

5.1 Problem description

We consider the Poisson equation with analytical solution [59]

u(x) =

(
1

α
√

2π

)d 3∑
j=1

exp
(
−‖x− xj‖2 /α2

)
, (53)

given as a sum of three Gaussians centered at the positions

xj =
{

(−0.5, 0.5, 0.25)T , (−0.6, 0.5, −0.125)T , (0.5, −0.5, −0.125)T
}
, (54)

and of width α = 1
5 . Equation (53) is visualized in Figure 8 for 2D. The corresponding source term is given by:

f(x) =

(
1

α
√

2π

)d 3∑
j=1

(
2 · d− 4 ‖x− xj‖2 /α2

)
·

exp
(
−‖x− xj‖2 /α2

)
α2

. (55)

The Poisson problem is solved on the unit cube Ω = (−1,+1)d with d ∈ {2, 3} and homogenous Dirichlet boundary
conditions. The mesh is obtained by globally refining one macro cell l times. Points are placed according to the
manifold:

x′i = xi + α
∏

0≤j≤d

sin (0.5 · β · π · (xi + 1)) , (56)

with α = 0.1 and β = 2.0, rendering a non-Cartesian mesh. Spatial discretizations with continuous and discontinuous
elements of order 3 ≤ k ≤ 13 are considered. The total number of degrees of freedom for CG is

(
2l · kf

)d
and for DG(

2l · (kf + 1)
)d

.

Figure 8: Visualization of the function given by Equation (53) for 2D

29

Table 10: Range of number of cycles n10 for all configurations, extracted from Tables 11 and 12
CG 2D 3D

p-MG 5-7 5-10
h-MG 5-10 5-11

DG 2D 3D

p-MG 7-16 11-23
h-MG 8-16 11-22

5.2 Default configuration of hybrid multigrid solver

For solving the Poisson problem19, a preconditioned conjugate gradient solver is used as a solver. This solver is iterated
until the L2-norm of the residual has been reduced by 10−8 compared to the residual norm of the initial guess20 in the
conjugate gradient solver or the absolute value of the residual norm goes below 10−20. It is preconditioned either by a
matrix-free h-multigrid preconditioner or by a matrix-free p-multigrid preconditioner. Since multigrid is only used for
preconditioning, the whole V-cycle is done in single precision. A matrix-free Chebyshev smoother (with polynomial
degree 5, smoothing range 20, and 20 iterations eigenvalue calculation) is employed as a smoother, which uses the
diagonal of the system matrix as a preconditioner.

To construct coarser levels, two methods are employed: h-coarsening and p-coarsening. In cases of p-coarsening, the
p-coarsening strategy ki−1 = max(1, bki/2c) is applied.

PCG (with absolute tolerance 10−20 and relative tolerance 10−2) is also used as a coarse-grid solver. In cases of
h-multigrid, PCG is preconditioned by the diagonal of the coarse matrix and in cases of p-multigrid, by AMG (see
Subsection 2.3.3 for the configuration of AMG).

In the case of DG and p-multigrid, we switch from linear DG space to linear CG space via c-transfer for linear elements.
Since we consider the linear DG space to be a multigrid level on its own, we also perform pre- and post-smoothing on
this level.

5.3 Convergence

This subsection compares the convergence dependency of the developed hybrid multigrid solver on increasing degree k
and refinement l in four cases for 2D and 3D: CG + h-MG and CG + p-MG as well as DG + h-MG and DG + p-MG.
We consider h-multigrid with one macro cell as an optimal reference.

Tables 11 and 12 summarize the results of performed simulations for polynomial degrees 3 ≤ k ≤ 12 as well as
for global refinements 1 ≤ l ≤ 9 (2D) and 1 ≤ l ≤ 5 (3D), using three assessment criterions: average multigrid
convergence rate after the nth cycle [92]:

ρ = n
√
||rn||2/||r0||2, (57a)

the number of cycles n10 to reduce the absolute norm of the residuum by ten orders [92]:

n10 = d−10/ lg ρe, (57b)

and the throughput

r =
actual number of dofs

time to solution
. (57c)

The following observations are stated in Tables 11 and 12:

• All solver variants converge, even though we rediscretized the operator on every level and used SIP in the case
of DG. The latter observation matches well with results of Helenbrook and Atkins [40] since we also adjust
the penalty parameter on every level according to the polynomial degree.

• The difference in the number of iterations between h-MG and p-MG is small for both CG and DG, as had
been shown already by Sundar et al. [95] for continuous finite elements. Generally, h-MG is faster for
low-order problems (k < 5). For high-order problems, p-MG needs 1-3 iterations less due to its better order
independence, making its throughput higher, as also shown by Figure 10.

19The default configuration described here has been also used for solving the convection–diffusion problem (Section 6) and the
Navier–Stokes equations (Section 7) with small adjustments. These adjustments are discussed in the corresponding sections.

20All conjugate gradient solvers are started with a zero initial guess.

30

Ta
bl

e
11

:C
on

ve
rg

en
ce

ta
bl

e
fo

r3
≤
k
≤

7
k

=
3

k
=

4
k

=
5

k
=

6
k

=
7

C
G

D
G

C
G

D
G

C
G

D
G

C
G

D
G

C
G

D
G

#r
ef

s
pM

G
hM

G
pM

G
hM

G
pM

G
hM

G
pM

G
hM

G
pM

G
hM

G
pM

G
hM

G
pM

G
hM

G
pM

G
hM

G
pM

G
hM

G
pM

G
hM

G

2D

n10

1
5

5
8

8
5

5
7

8
5

5
8

9
5

5
8

9
5

5
9

10
2

5
5

9
9

5
5

8
9

5
5

10
10

5
5

10
11

6
6

12
12

3
6

5
10

9
5

5
8

9
6

5
10

11
6

5
11

11
6

6
12

13
4

6
5

9
9

5
5

7
9

6
5

10
11

6
5

10
11

6
6

11
13

5
7

5
9

9
5

5
7

9
6

6
10

10
6

6
9

10
7

6
10

12
6

6
5

9
9

5
5

7
9

6
6

9
10

6
6

9
10

7
6

10
11

7
7

5
8

9
5

5
7

8
6

6
9

10
6

6
8

10
7

6
10

11
8

6
5

8
8

5
5

7
8

6
6

9
9

6
6

8
10

7
6

10
11

9
6

5
8

8
5

5
7

8
6

6
9

9
6

6
8

10
7

6
10

11

ρ

1
0.

00
4

0.
00

4
0.

04
3

0.
03

9
0.

00
5

0.
00

6
0.

02
7

0.
04

5
0.

00
6

0.
00

6
0.

05
6

0.
06

3
0.

00
6

0.
00

6
0.

05
0

0.
07

0
0.

00
7

0.
00

9
0.

07
6

0.
08

6
2

0.
00

8
0.

00
5

0.
07

2
0.

06
8

0.
00

5
0.

00
5

0.
04

8
0.

06
4

0.
01

0
0.

00
6

0.
09

9
0.

10
0

0.
00

8
0.

00
8

0.
09

2
0.

11
1

0.
01

2
0.

01
2

0.
13

7
0.

14
1

3
0.

01
5

0.
00

5
0.

08
4

0.
06

5
0.

00
7

0.
00

6
0.

04
3

0.
06

8
0.

01
6

0.
00

7
0.

09
9

0.
10

7
0.

01
2

0.
00

9
0.

10
3

0.
10

8
0.

01
7

0.
01

4
0.

14
4

0.
15

4
4

0.
02

1
0.

00
6

0.
07

7
0.

06
5

0.
00

9
0.

00
7

0.
03

7
0.

07
0

0.
01

9
0.

01
0

0.
09

0
0.

10
6

0.
01

8
0.

01
0

0.
08

3
0.

10
7

0.
02

1
0.

01
6

0.
11

5
0.

14
7

5
0.

02
2

0.
00

7
0.

06
1

0.
06

6
0.

00
9

0.
00

8
0.

03
2

0.
06

6
0.

01
4

0.
01

0
0.

08
3

0.
09

5
0.

01
8

0.
01

0
0.

06
6

0.
09

3
0.

02
4

0.
01

7
0.

09
4

0.
12

8
6

0.
01

9
0.

00
8

0.
05

6
0.

06
2

0.
00

9
0.

00
8

0.
03

3
0.

06
0

0.
01

3
0.

01
2

0.
07

2
0.

08
5

0.
01

6
0.

01
1

0.
05

7
0.

08
6

0.
02

4
0.

01
8

0.
08

9
0.

12
0

7
0.

02
2

0.
00

8
0.

05
6

0.
05

7
0.

00
9

0.
00

9
0.

03
2

0.
05

6
0.

01
4

0.
01

3
0.

06
9

0.
07

8
0.

01
9

0.
01

2
0.

05
6

0.
08

3
0.

02
5

0.
01

9
0.

08
7

0.
11

5
8

0.
01

7
0.

00
9

0.
05

6
0.

05
4

0.
00

7
0.

01
0

0.
03

3
0.

05
5

0.
01

2
0.

01
4

0.
07

1
0.

07
7

0.
01

6
0.

01
3

0.
05

6
0.

08
1

0.
02

5
0.

02
0

0.
08

6
0.

11
3

9
0.

01
9

0.
00

9
0.

05
6

0.
05

4
0.

00
8

0.
00

9
0.

03
3

0.
05

5
0.

01
3

0.
01

5
0.

07
1

0.
07

6
0.

01
8

0.
01

4
0.

05
6

0.
08

0
0.

02
5

0.
02

1
0.

08
6

0.
11

0

r[MDoF/s]

1
7.

3e
-2

6.
5e

-2
4.

8e
-2

4.
0e

-2
1.

1e
-1

1.
1e

-1
5.

6e
-2

7.
0e

-2
1.

6e
-1

1.
5e

-1
6.

6e
-2

7.
7e

-2
2.

1e
-1

1.
7e

-1
8.

6e
-2

8.
9e

-2
2.

6e
-1

1.
8e

-1
9.

3e
-2

8.
5e

-2
2

1.
7e

-1
1.

3e
-1

1.
0e

-1
8.

5e
-2

2.
4e

-1
2.

3e
-1

1.
2e

-1
1.

4e
-1

2.
9e

-1
3.

1e
-1

1.
5e

-1
1.

6e
-1

5.
0e

-1
4.

0e
-1

1.
9e

-1
1.

7e
-1

5.
2e

-1
3.

8e
-1

1.
9e

-1
1.

8e
-1

3
4.

3e
-1

3.
2e

-1
3.

1e
-1

2.
6e

-1
7.

6e
-1

6.
1e

-1
4.

8e
-1

4.
2e

-1
9.

3e
-1

8.
3e

-1
5.

1e
-1

4.
3e

-1
1.

3e
+0

1.
1e

+0
5.

9e
-1

5.
3e

-1
1.

7e
+0

1.
1e

+0
6.

6e
-1

5.
3e

-1
4

1.
3e

+0
1.

0e
+0

9.
2e

-1
8.

5e
-1

2.
3e

+0
1.

7e
+0

1.
4e

+0
1.

1e
+0

2.
8e

+0
1.

9e
+0

1.
5e

+0
1.

2e
+0

3.
9e

+0
2.

6e
+0

1.
8e

+0
1.

5e
+0

5.
0e

+0
3.

2e
+0

2.
0e

+0
1.

5e
+0

5
4.

5e
+0

3.
3e

+0
3.

3e
+0

2.
5e

+0
7.

2e
+0

5.
4e

+0
4.

3e
+0

3.
4e

+0
8.

5e
+0

6.
0e

+0
4.

4e
+0

3.
8e

+0
1.

1e
+1

7.
9e

+0
6.

2e
+0

4.
6e

+0
1.

4e
+1

9.
3e

+0
6.

6e
+0

4.
6e

+0
6

8.
7e

+0
9.

6e
+0

6.
2e

+0
6.

3e
+0

1.
3e

+1
1.

5e
+1

7.
9e

+0
8.

2e
+0

1.
5e

+1
1.

6e
+1

8.
9e

+0
8.

8e
+0

2.
0e

+1
1.

9e
+1

1.
1e

+1
1.

0e
+1

2.
4e

+1
2.

1e
+1

1.
1e

+1
9.

6e
+0

7
1.

8e
+1

2.
2e

+1
1.

1e
+1

1.
2e

+1
2.

5e
+1

3.
0e

+1
1.

2e
+1

1.
4e

+1
2.

4e
+1

2.
6e

+1
1.

3e
+1

1.
3e

+1
2.

7e
+1

2.
8e

+1
1.

4e
+1

1.
4e

+1
2.

9e
+1

2.
8e

+1
1.

4e
+1

1.
3e

+1
8

2.
2e

+1
3.

0e
+1

1.
3e

+1
1.

4e
+1

2.
7e

+1
3.

3e
+1

1.
3e

+1
1.

5e
+1

2.
3e

+1
2.

4e
+1

1.
2e

+1
1.

2e
+1

2.
0e

+1
2.

1e
+1

1.
2e

+1
1.

2e
+1

1.
9e

+1
1.

9e
+1

1.
1e

+1
9.

7e
+0

9
1.

5e
+1

2.
2e

+1
9.

8e
+0

1.
1e

+1
1.

8e
+1

1.
7e

+1
1.

0e
+1

1.
1e

+1
1.

5e
+1

1.
6e

+1
9.

7e
+0

9.
6e

+0
1.

5e
+1

1.
5e

+1
9.

8e
+0

9.
6e

+0
1.

6e
+1

1.
6e

+1
9.

2e
+0

8.
5e

+0

3D

n10

1
5

5
12

11
5

5
11

11
5

5
13

13
5

5
13

13
5

6
15

15
2

5
5

14
13

5
5

13
13

6
5

15
15

6
6

15
15

7
7

18
17

3
6

5
14

12
6

5
12

13
7

6
15

15
6

6
15

15
7

7
17

17
4

7
5

14
13

6
5

11
12

7
6

14
14

7
6

14
14

8
8

16
16

5
7

5
13

13
6

6
11

12
7

6
13

14
7

6
13

14
8

8
15

16

ρ

1
0.

00
5

0.
00

5
0.

13
1

0.
12

1
0.

00
4

0.
00

5
0.

10
8

0.
11

7
0.

00
5

0.
00

5
0.

15
0

0.
16

5
0.

00
6

0.
00

8
0.

15
2

0.
16

5
0.

01
0

0.
01

5
0.

19
9

0.
21

3
2

0.
00

8
0.

00
5

0.
17

5
0.

14
7

0.
00

6
0.

00
5

0.
14

9
0.

15
8

0.
01

5
0.

00
9

0.
21

4
0.

19
8

0.
01

1
0.

01
0

0.
20

7
0.

20
7

0.
02

3
0.

02
4

0.
26

5
0.

25
4

3
0.

01
9

0.
00

6
0.

18
0

0.
14

3
0.

01
1

0.
00

8
0.

12
8

0.
15

0
0.

02
3

0.
01

2
0.

19
5

0.
20

0
0.

01
7

0.
01

6
0.

20
0

0.
20

0
0.

03
1

0.
03

1
0.

25
0

0.
24

7
4

0.
02

6
0.

00
8

0.
18

2
0.

15
1

0.
01

5
0.

01
0

0.
11

7
0.

14
6

0.
02

5
0.

01
7

0.
17

4
0.

18
9

0.
02

4
0.

02
0

0.
17

8
0.

19
1

0.
03

9
0.

03
8

0.
22

0
0.

23
1

5
0.

03
3

0.
01

0
0.

16
5

0.
14

8
0.

01
2

0.
01

1
0.

10
6

0.
13

8
0.

02
4

0.
01

9
0.

16
2

0.
17

7
0.

02
8

0.
02

1
0.

16
3

0.
17

9
0.

04
3

0.
04

0
0.

19
9

0.
21

8

r[MDoF/s]

1
3.

7e
-1

3.
1e

-1
1.

2e
-1

1.
2e

-1
5.

7e
-1

5.
6e

-1
1.

8e
-1

1.
9e

-1
8.

1e
-1

6.
7e

-1
2.

1e
-1

1.
7e

-1
9.

5e
-1

7.
2e

-1
2.

2e
-1

1.
7e

-1
1.

1e
+0

5.
9e

-1
2.

1e
-1

1.
5e

-1
2

1.
3e

+0
9.

9e
-1

5.
8e

-1
5.

2e
-1

2.
2e

+0
2.

1e
+0

8.
0e

-1
7.

8e
-1

2.
8e

+0
2.

8e
+0

9.
0e

-1
7.

5e
-1

3.
8e

+0
2.

6e
+0

1.
0e

+0
7.

6e
-1

4.
8e

+0
2.

9e
+0

9.
7e

-1
6.

7e
-1

3
3.

6e
+0

4.
7e

+0
2.

4e
+0

2.
5e

+0
5.

7e
+0

8.
4e

+0
3.

1e
+0

3.
2e

+0
9.

2e
+0

9.
0e

+0
3.

4e
+0

3.
0e

+0
1.

2e
+1

1.
0e

+1
3.

5e
+0

2.
9e

+0
1.

2e
+1

9.
0e

+0
3.

3e
+0

2.
4e

+0
4

1.
1e

+1
1.

6e
+1

6.
0e

+0
6.

6e
+0

1.
5e

+1
2.

0e
+1

7.
0e

+0
6.

8e
+0

1.
5e

+1
1.

7e
+1

6.
2e

+0
5.

5e
+0

1.
6e

+1
1.

5e
+1

5.
4e

+0
4.

7e
+0

1.
2e

+1
1.

1e
+1

4.
4e

+0
4.

0e
+0

5
8.

9e
+0

1.
4e

+1
5.

1e
+0

6.
1e

+0
1.

1e
+1

1.
2e

+1
5.

4e
+0

5.
5e

+0
1.

1e
+1

1.
1e

+1
4.

6e
+0

4.
7e

+0
9.

3e
+0

1.
1e

+1
4.

3e
+0

4.
5e

+0
9.

8e
+0

9.
5e

+0
4.

1e
+0

3.
7e

+0

31

Ta
bl

e
12

:C
on

ve
rg

en
ce

ta
bl

e
fo

r8
≤
k
≤

1
2

k
=

8
k

=
9

k
=

1
0

k
=

1
1

k
=

1
2

C
G

D
G

C
G

D
G

C
G

D
G

C
G

D
G

C
G

D
G

#r
ef

s
pM

G
hM

G
pM

G
hM

G
pM

G
hM

G
pM

G
hM

G
pM

G
hM

G
pM

G
hM

G
pM

G
hM

G
pM

G
hM

G
pM

G
hM

G
pM

G
hM

G

2D

n10

1
5

5
9

10
6

6
10

11
5

6
10

12
6

7
11

13
6

7
11

13
2

5
6

12
13

6
7

14
14

6
7

14
15

7
8

15
16

7
8

16
16

3
5

6
11

13
6

7
13

15
6

7
13

15
7

8
14

16
7

8
14

16
4

5
6

10
12

6
7

11
14

6
7

11
14

7
8

13
15

7
9

12
15

5
5

6
10

12
6

7
11

14
6

8
11

14
7

9
12

15
7

9
12

15
6

5
6

9
12

6
8

11
13

6
8

10
13

7
9

12
15

7
9

12
15

7
5

6
9

12
6

8
11

13
7

8
10

13
7

9
12

14
7

9
12

14
8

5
7

9
11

6
8

11
13

6
8

10
13

7
9

12
14

7
10

12
14

ρ

1
0.

00
6

0.
01

0
0.

06
5

0.
09

3
0.

01
0

0.
01

5
0.

08
6

0.
11

6
0.

00
9

0.
01

8
0.

09
1

0.
13

3
0.

01
3

0.
02

7
0.

12
3

0.
15

3
0.

01
6

0.
02

7
0.

11
6

0.
15

8
2

0.
01

0
0.

01
5

0.
14

3
0.

15
8

0.
01

7
0.

02
3

0.
17

3
0.

18
0

0.
01

5
0.

02
8

0.
18

1
0.

19
5

0.
02

9
0.

04
0

0.
21

1
0.

22
3

0.
03

0
0.

04
7

0.
21

9
0.

22
5

3
0.

01
0

0.
01

5
0.

11
5

0.
15

8
0.

01
8

0.
02

8
0.

15
3

0.
19

6
0.

02
0

0.
03

2
0.

14
8

0.
19

7
0.

03
2

0.
05

2
0.

17
5

0.
23

2
0.

02
8

0.
05

5
0.

17
4

0.
23

7
4

0.
01

0
0.

01
8

0.
08

6
0.

14
7

0.
02

0
0.

03
4

0.
12

0
0.

18
1

0.
02

1
0.

03
7

0.
11

8
0.

18
3

0.
03

5
0.

05
6

0.
15

1
0.

21
5

0.
03

6
0.

05
9

0.
14

5
0.

21
4

5
0.

01
0

0.
01

8
0.

07
8

0.
14

0
0.

01
9

0.
03

6
0.

12
0

0.
17

3
0.

02
1

0.
03

8
0.

10
9

0.
17

5
0.

03
3

0.
06

2
0.

14
1

0.
20

5
0.

03
4

0.
06

5
0.

14
0

0.
20

4
6

0.
00

9
0.

01
9

0.
06

9
0.

12
9

0.
01

8
0.

03
8

0.
11

6
0.

16
6

0.
02

1
0.

04
0

0.
09

9
0.

16
6

0.
03

3
0.

06
6

0.
12

8
0.

19
8

0.
03

0
0.

07
0

0.
12

8
0.

19
4

7
0.

00
9

0.
02

0
0.

06
9

0.
12

4
0.

01
8

0.
04

0
0.

11
6

0.
15

4
0.

02
2

0.
04

2
0.

09
8

0.
15

3
0.

03
4

0.
06

9
0.

12
8

0.
19

3
0.

03
1

0.
07

5
0.

12
9

0.
18

4
8

0.
00

8
0.

02
2

0.
06

9
0.

12
1

0.
01

6
0.

04
1

0.
11

9
0.

15
0

0.
02

1
0.

04
5

0.
09

9
0.

14
8

0.
03

3
0.

07
1

0.
13

7
0.

18
4

0.
02

9
0.

07
8

0.
13

9
0.

18
0

r[MDoF/s]

1
2.

2e
-1

1.
9e

-1
1.

1e
-1

7.
7e

-2
2.

5e
-1

1.
7e

-1
1.

1e
-1

8.
5e

-2
3.

6e
-1

1.
9e

-1
1.

2e
-1

8.
1e

-2
3.

3e
-1

1.
7e

-1
1.

3e
-1

8.
2e

-2
3.

7e
-1

1.
7e

-1
1.

3e
-1

8.
3e

-2
2

5.
3e

-1
4.

1e
-1

1.
9e

-1
1.

8e
-1

6.
2e

-1
4.

0e
-1

2.
1e

-1
1.

9e
-1

7.
4e

-1
4.

4e
-1

2.
4e

-1
1.

9e
-1

7.
2e

-1
4.

6e
-1

2.
3e

-1
1.

8e
-1

8.
2e

-1
4.

2e
-1

2.
5e

-1
1.

8e
-1

3
1.

5e
+0

1.
3e

+0
7.

3e
-1

6.
1e

-1
2.

1e
+0

1.
2e

+0
7.

9e
-1

5.
6e

-1
2.

5e
+0

1.
3e

+0
9.

1e
-1

5.
8e

-1
2.

4e
+0

1.
2e

+0
9.

5e
-1

5.
8e

-1
2.

8e
+0

1.
3e

+0
1.

0e
+0

5.
9e

-1
4

6.
0e

+0
3.

8e
+0

2.
3e

+0
1.

7e
+0

6.
0e

+0
3.

5e
+0

2.
4e

+0
1.

7e
+0

7.
1e

+0
3.

9e
+0

2.
7e

+0
1.

8e
+0

6.
9e

+0
3.

7e
+0

2.
7e

+0
1.

7e
+0

7.
7e

+0
3.

9e
+0

2.
9e

+0
1.

7e
+0

5
1.

4e
+1

1.
1e

+1
6.

3e
+0

4.
5e

+0
1.

7e
+1

9.
9e

+0
6.

5e
+0

4.
4e

+0
1.

9e
+1

1.
1e

+1
7.

0e
+0

4.
6e

+0
1.

8e
+1

9.
9e

+0
7.

1e
+0

4.
4e

+0
1.

9e
+1

1.
0e

+1
7.

2e
+0

4.
4e

+0
6

2.
9e

+1
2.

3e
+1

1.
2e

+1
9.

9e
+0

2.
6e

+1
2.

0e
+1

1.
0e

+1
8.

3e
+0

2.
7e

+1
2.

0e
+1

1.
2e

+1
8.

2e
+0

2.
3e

+1
1.

8e
+1

1.
1e

+1
7.

6e
+0

2.
4e

+1
1.

7e
+1

1.
1e

+1
7.

3e
+0

7
3.

3e
+1

2.
8e

+1
1.

4e
+1

1.
2e

+1
2.

7e
+1

2.
2e

+1
1.

2e
+1

1.
1e

+1
2.

6e
+1

2.
1e

+1
1.

2e
+1

1.
0e

+1
2.

0e
+1

1.
6e

+1
1.

1e
+1

7.
8e

+0
1.

9e
+1

1.
3e

+1
10

.0
e+

0
8.

0e
+0

8
2.

2e
+1

1.
8e

+1
1.

1e
+1

9.
1e

+0
1.

8e
+1

1.
4e

+1
8.

6e
+0

8.
1e

+0
1.

7e
+1

1.
4e

+1
9.

3e
+0

7.
7e

+0
1.

4e
+1

1.
2e

+1
7.

6e
+0

6.
9e

+0
1.

4e
+1

1.
0e

+1
7.

3e
+0

6.
8e

+0

3D

n10

1
5

6
14

16
6

7
17

18
6

7
17

18
7

8
19

19
7

8
19

19
2

7
7

18
18

8
8

20
20

8
9

21
21

9
10

23
22

9
10

23
22

3
7

8
15

18
8

9
18

19
8

9
18

19
10

10
19

21
9

11
19

21
4

7
8

14
17

8
9

16
18

8
10

17
18

10
11

18
21

10
11

19
21

ρ

1
0.

00
7

0.
01

5
0.

19
1

0.
22

5
0.

01
7

0.
02

3
0.

24
2

0.
26

7
0.

01
8

0.
02

7
0.

24
6

0.
26

0
0.

03
1

0.
04

4
0.

28
7

0.
29

7
0.

03
3

0.
04

7
0.

28
1

0.
28

6
2

0.
02

4
0.

03
2

0.
27

2
0.

27
4

0.
04

6
0.

05
6

0.
31

4
0.

30
8

0.
04

3
0.

06
2

0.
31

9
0.

32
0

0.
07

3
0.

08
9

0.
35

9
0.

34
2

0.
07

7
0.

09
5

0.
35

8
0.

35
0

3
0.

02
8

0.
03

8
0.

20
9

0.
25

9
0.

05
5

0.
06

1
0.

26
4

0.
29

0
0.

05
2

0.
07

1
0.

26
5

0.
29

1
0.

08
0

0.
09

8
0.

29
1

0.
33

1
0.

07
4

0.
10

7
0.

29
5

0.
32

8
4

0.
02

9
0.

04
8

0.
18

5
0.

24
1

0.
05

2
0.

07
7

0.
23

7
0.

27
2

0.
05

2
0.

08
4

0.
24

8
0.

27
8

0.
07

9
0.

11
6

0.
27

5
0.

32
3

0.
07

9
0.

12
2

0.
27

9
0.

32
1

r[MDoF/s]

1
1.

1e
+0

5.
7e

-1
1.

9e
-1

1.
3e

-1
9.

3e
-1

5.
6e

-1
1.

7e
-1

1.
1e

-1
9.

3e
-1

4.
4e

-1
1.

5e
-1

9.
8e

-2
8.

4e
-1

4.
2e

-1
1.

5e
-1

8.
6e

-2
8.

6e
-1

3.
6e

-1
1.

4e
-1

8.
5e

-2
2

4.
9e

+0
2.

4e
+0

9.
2e

-1
5.

9e
-1

4.
7e

+0
2.

1e
+0

9.
0e

-1
5.

2e
-1

5.
0e

+0
2.

0e
+0

7.
8e

-1
4.

4e
-1

4.
2e

+0
1.

7e
+0

8.
1e

-1
4.

2e
-1

4.
4e

+0
1.

7e
+0

7.
2e

-1
3.

8e
-1

3
1.

1e
+1

8.
5e

+0
3.

5e
+0

2.
3e

+0
1.

0e
+1

7.
0e

+0
3.

1e
+0

2.
0e

+0
1.

0e
+1

6.
7e

+0
2.

7e
+0

1.
8e

+0
9.

4e
+0

5.
7e

+0
2.

5e
+0

1.
5e

+0
8.

4e
+0

4.
7e

+0
2.

1e
+0

1.
4e

+0
4

1.
1e

+1
9.

0e
+0

4.
5e

+0
3.

6e
+0

9.
4e

+0
7.

5e
+0

3.
7e

+0
2.

9e
+0

9.
1e

+0
7.

2e
+0

3.
1e

+0
2.

6e
+0

7.
9e

+0
6.

2e
+0

2.
9e

+0
2.

2e
+0

7.
6e

+0
6.

0e
+0

2.
6e

+0
2.

1e
+0

32

• In all cases, CG outperforms DG. The iteration count of CG is up to 50% less than the one of DG. Since the
throughput of the matrix-free matrix-vector multiplication vmult for CG and DG on non-Cartesian mesh
is comparable, a reduction of the iteration count by up to 50% means that the throughput of CG is up to
2× higher than the throughput of DG. This, in turn, leads – if it is considered that CG has fewer degrees of
freedom – to CG being up to more than 2× faster in solving an equivalent linear system of equations.
• Overall, p-MG seems to work better for CG than for DG. Increasing the order k from 3 to 12 leads in the case

of CG to an increase of iterations by 1-3, but in the case of DG by 3-9.

5.4 Node-level performance

This subsection analyzes the node-level performance of the presented hybrid multigrid solver for CG/DG and 2D/3D.
The amount of time spent on each multigrid level and spent in each operation is looked at in detail. As an example, the
configuration k = 6, l = 10 (2D) and l = 5 (3D) with p-multigrid is considered. In the case of CG, there are three
multigrid levels for the analyzed configuration: k = 1, 3, 6. In the case of DG, there is an additional coarse level with
continuous elements.

In Figure 9, two plots are shown for each spatial discretization-dimension configuration. The left pie diagram indicates
the fraction of time of each multigrid level in the overall algorithm. The right bar diagram shows each level on its
own and the fraction of time spent in each function call on that level. The function calls are: pre-smoothing (incl.
an additional matrix-vector multiplication to update the defect), restriction, coarse-grid correction, prolongation, and
post-smoothing. Furthermore, the expected value of the fraction of time spent on the coarse-grid correction of each
level is indicated with a horizontal red line: its value is according to

cost of correction
inclusive cost of level

=

∑∞
i=1 0.5d·i∑∞
i=0 0.5d·i

=

∑∞
i=0 0.5d·i − 1∑∞
i=0 0.5d·i

= 0.5d, (58)

25% for 2D and 12.5% for 3D.

Generally, the following observations can be made, based on Figure 9. Only about 15% of the time is spent in the
conjugate gradient solver, the remainder is spent in the multigrid preconditioner. The most expensive operations on
each multigrid level are the pre- and post-smoothing steps. The costs of transfer operations are negligible. A significant
fraction of time is spent on the coarse-grid correction of each level. This fraction of time matches well with the
aforementioned expectations for CG. For DG, however, the coarse-grid corrections are more expensive. A possible
explanation for this observation can be derived from Figure 10, which shows the time to solution for increasing problem
size (expressed by number of degrees of freedom) and the throughput for solving the pressure Poisson problem. It
clearly shows a strong increase in throughput in the case of CG with decreasing problem size as the loaded data fits
better into the cache. This effect is not that pronounced in the case of DG. For 3D DG, it can be also observed that the
fraction of time spent on solving the matrix-based coarse-grid problem (41%) is significantly higher than the expected
value. This might be due to the fact that the data structures of the calling matrix-free level fit into the cache (making the
smoothing steps relatively cheap), whereas the AMG data structures do not.

Figure 11 generalizes the investigation of the costs of the coarse-grid problems, by taking a look at a large variety of
degree k- and refinement l-combinations for DG. The general observations are that the coarse-grid problems tend to be
more expensive than the expectations and the coarse-grid problems become cheaper in proportion to the costs of the
overall algorithm with increasing problem size.

The following general possibilities to accelerate the algorithm are the result of the previous discussion. The references
in brackets indicate which topic will be discussed in which subsection:

• reducing the costs of the coarse-grid problem, e.g. by using a simpler coarse-grid preconditioner (see
Subsection 5.5) or by replacing the AMG-preconditioned coarse-grid solver PCG with a single AMG V-cycle
(see Subsection 5.6),
• reducing the number of multigrid levels, e.g. by increasing the jumps between p-levels in the case of p-MG

(see Subsection 5.7) or by solving the coarsest problem using discontinuous elements in the case of DG,
leading to one level less (see Subsection 5.6), or
• reducing the number of V-cycles, e.g. by selecting stronger (but potentially more expensive) smoothers. This

topic is outside the scope of this Master’s thesis. We will only consider the influence of the aforementioned
design decisions on the total number of cycles.

33

Pre-smoothing Restriction Coarse-grid correction Prolongation Post-smoothing PCG MG

2D, curved mesh, CG:

conjugate gradient

14.2 %
level 2

61.8 %

level 1

17.5 %

level 0
6.4 %

level 1
(l=10, k=3)

level 2
(l=10, k=6)

0

20

40

60

80

0

10

20

30

40

50

60

70

80

90

AMGTi
m

es
ha

re
[%

]

PCG
0

20

40

60

80

0

10

20

30

40

50

60

70

80

90

2D, curved mesh, DG:

conjugate gradient

14.7 %

level 3

55.7 %

level 2

19.2 %
level 1

6.8 %
level 0

3.6 %

level 1
(l=10, k=1)

level 2
(l=10, k=3)

level 3
(l=10, k=6)

0

20

40

60

80

0

10

20

30

40

50

60

70

80

90

AMG

Ti
m

es
ha

re
[%

]

PCG
0

20

40

60

80

0

10

20

30

40

50

60

70

80

90

3D, curved mesh, CG:

conjugate gradient

15.5 %

level 2
72.6 %

level 1

9.7 %
level 0

2.3 %

level 1
(l=5, k=3)

level 2
(l=5, k=6)

0

20

40

60

80

0

10

20

30

40

50

60

70

80

90

Ti
m

es
ha

re
[%

]

PCG
0

20

40

60

80

0

10

20

30

40

50

60

70

80

90

3D, curved mesh, DG:

conjugate gradient

15.1 %

level 370.2 %

level 2

11.3 %
level 1

2.0 %level 0
1.4 %

level 1
(l=5, k=1)

level 2
(l=5, k=3)

level 3
(l=5, k=6)

0

20

40

60

80

0

10

20

30

40

50

60

70

80

90

Ti
m

es
ha

re
[%

]

PCG
0

20

40

60

80

0

10

20

30

40

50

60

70

80

90

Figure 9: Profiling of conjugate gradient solver preconditioned by p-MG for k = 6 and l = 10/5 for 2D/3D

34

k=3/3 (2D/3D) k=4/4 k=7/5 k=10/6 k=13/7 p-MG h-MG

102 103 104 105 106 107 108
10−3

10−2

10−1

100

101

O(N
)

DoFs [-]

Ti
m

e
to

so
lu

tio
n

[s
]

102 103 104 105 106 107 108
0

0.5

1

1.5

2

2.5

3

L
3

ca
ch

e

18
M

B
·4

/8
B

yt
e

DoFs [-]

T
hr

ou
gh

pu
t[

1e
7

D
oF

/s
]

2D, curved mesh, CG

102 103 104 105 106 107 108
10−3

10−2

10−1

100

101

O(N
)

DoFs [-]

Ti
m

e
to

so
lu

tio
n

[s
]

102 103 104 105 106 107 108
0

0.5

1

1.5

2

2.5

3

L
3

ca
ch

e

18
M

B
·4

/8
B

yt
e

DoFs [-]

T
hr

ou
gh

pu
t[

1e
7

D
oF

/s
]

2D, curved mesh, DG

102 103 104 105 106 107 108
10−3

10−2

10−1

100

101

O(N
)

DoFs [-]

Ti
m

e
to

so
lu

tio
n

[s
]

102 103 104 105 106 107 108
0

0.5

1

1.5

2

L
3

ca
ch

e

18
M

B
·4

/8
B

yt
e

DoFs [-]

T
hr

ou
gh

pu
t[

1e
7

D
oF

/s
]

3D, curved mesh, CG

102 103 104 105 106 107 108
10−3

10−2

10−1

100

101

O(N
)

DoFs [-]

Ti
m

e
to

so
lu

tio
n

[s
]

102 103 104 105 106 107 108
0

0.5

1

1.5

2

L
3

ca
ch

e

18
M

B
·4

/8
B

yt
e

DoFs [-]

T
hr

ou
gh

pu
t[

1e
7

D
oF

/s
]

3D, curved mesh, DG

Figure 10: Time to solution and throughput for different degrees k and refinements l on a single node

35

k=3 k=4 k=5 k=6 k=7 k=8 k=9

101 102 103 104 105 106 107 108

10−3

10−2

10−1

100

101

DoFs [-]

Ti
m

e
[s

]

coarse, linear CG
overall, high-order DG

101 102 103 104 105 106 107 108
100

101

102

fine

coarse

0

1

2

3

1/4
1/4

1/4

DoFs [-]

Fr
ac

tio
n

of
tim

e
of

ea
ch

m
g

le
ve

l[
%

]

2D, curved, DG

expectation
measurement

100 101 102 103 104 105 106 107 108

10−3

10−2

10−1

100

101

Coarse/overall DoFs [-]

Ti
m

e
[s

]

coarse, linear CG
overall, high-order DG

-
Figure 11: Analysis of the multigrid levels for 2D DG with p-MG for different k and l. Left: time to solution for solving

the fine-grid problem and time spent on the corresponding coarse-grid problem (indicated exemplarily by an
arrow for one configuration). Right: fraction of time of each level. The levels are enumerated increasingly
from the fine to the coarsest level, starting with 0.

5.5 Coarse-grid preconditioner: AMG vs. simple iterative solvers (point Jacobi, Chebyshev solver)

The h-multigrid solver described in [59] uses PCG preconditioned by point Jacobi as a coarse-grid solver. It works well
if it is possible to create enough multigrid levels such that the coarse-grid problem can be reduced as much as possible,
ideally, to 1 macro cell. Generally, however, this is not the case. For instance, in the case of p-multigrid the problem size

can be only decreased by the factor of
(
kf
kc

)d
for CG or by

(
kf+1
kc+1

)d
for DG, rendering NDoFs = O

(
2d·l
)

unknowns
on the coarse level. Increasing the refinement level l also translates directly into an increase in unknowns on the coarsest
level and leads to a slowdown of the convergence of PCG applied on the coarsest level. The reason for this slowdown is
the increase in the number of iterations of PCG on the coarsest level to meet the same tolerance criterion with Niter ∼√
κ ∼

√
1/h2 = 1/h ∼ d

√
NDoFs, leading to an increase of time to solution with O(Niter ·NDoFs) = O(N1.5

DoFs)
for 2D. The disproportional increase in the costs of the coarse-grid solver on the coarsest level leads to a preponderance
of the coarse-grid solver in the whole multigrid algorithm and, consequently, to the preponderance of the multigrid
preconditioner in the whole solution procedure, as shown in Figure 12.

The same observations can be made if the point Jacobi coarse-grid solver is replaced by a Chebyshev solver (see
Subsection 2.3.2): the time spent on solving the coarse-grid problem also increases with O(N1.5

DoFs), leading to the
preponderance of the coarse-grid solver in the whole solution process. The multigrid algorithm, which is solved on the
coarse grid by Chebyshev iterations, is faster for small problem sizes (by ≤42%) and slower for large problem sizes (by
≤45%) than if it were solved by the point Jacobi solver.

By contrast, the iteration numbers of AMG are only weakly dependent on problem size O(NDoFs), i.e. on the
refinement level. If AMG is used as preconditioner of the coarse-grid solver PCG, the fraction of time of the coarse-grid

36

102 103 104 105 106 107 108

10−3

10−2

10−1

100

101

102

103

DoFs [-]

Ti
m

e
to

so
lu

tio
n

[s
]

AMG ∼ O(n)

Jacobi ∼ O(n1.5)
Chebyshev

102 103 104 105 106 107 108
0

20

40

60

80

100

DoFs [-]

Fr
ac

tio
n

of
tim

e
[%

]

2D, k=6, curved mesh, DG

coarse-grid problem
multigrid preconditioning

Figure 12: Comparison of different preconditioners (AMG, point Jacobi, Chebyshev solver) for the coarse-grid solver
PCG

problem stays approximately the same as the problem size increases, as does the fraction of time of the whole multigrid
preconditioner (see Figure 12).

The observation that AMG iterations are independent of problem size underlies the benefit of using an optimal algorithm
for a high number of unknowns also on the coarse level.

5.6 Algebraic coarse-grid solver

We use PCG preconditioned by AMG by default as a coarse-grid solver in the developed hybrid multigrid solver when
the polynomial degree has been reduced to one via a sequence of p-coarsening steps. For DG, we use in addition the
auxiliary solution from the coarse-grid problem solved for continuous elements (CG). In the following analysis, the
default coarse-grid solver should be referred to as PCG-MG (continuous), which we will compare with two alternative
coarse-grid solver versions:

1. MG (continuous), which replaces PCG with a single AMG V-cycle step, and
2. PCG-MG (discontinuous), which solves the coarse-grid problem with PCG for DG discretization, reducing

the number of levels by one.

In order to judge the performance of one method against the other, we solve the 2D Poisson problem discretized with
DG for a large amount of combinations of degrees 3 ≤ k ≤ 9 and refinements l such that the number of degrees of
freedom is < 81622. The results are presented in Figure 13. The default configuration shows the best performance
overall, for which the reason is twofold, namely a moderate number of iterations with only a few coarse-grid iterations.
By contrast, MG (continuous) shows a significant increase in V-cycles. Consequently, the expensive operation
applications on the fine levels have to be performed more often, leading to a deteriorated performance despite having
the cheapest coarse-grid problem. PCG-MG (discontinuous) needs as many iterations as PCG-MG (continuous)
does (in isolated cases it needs less). However, it is the slowest version due to the slow convergence of the library ML
for DG (up to 9 coarse-grid iterations are needed per iteration for a significantly larger system of equations). As a
consequence, the coarse-grid problem takes up to 80% of the overall time. This observation underscores the necessity
of AMG implementations specialized for DG discretization. Such a solver becomes crucial once convection-dominated
problems are to be solved, in which a switch to continuous space with the currently implemented c-transfer operator
does not provide a useful auxiliary-space correction.

5.7 P-sequences

Three different p-sequence approaches were introduced in Subsection 2.3.4. Sorted according to the resulting number
of multigrid levels, they are as follows:

1 ki−1 = 1, 2 ki−1 = max (1, bki/2c), 3 ki−1 = max (1, ki − 1). (59)

By default, we use approach 2 because of its similarity to the coarsening properties of h-multigrid. The choice of
a p-sequence strategy has a direct influence on the number of multigrid levels and consequently on the cost of the

37

PCG-MG (continuous) MG (continuous) PCG-MG (discontinuous) k=3 k=4 k=5 k=6 k=7 k=8 k=9

101 102 103 104 105 106 107 108
0

0.2

0.4

0.6

0.8

1

1.2

1.4

DoFs [-]

T
hr

ou
gh

pu
t[

1e
7

D
of

s/
s]

101 102 103 104 105 106 107 108

4

5

6

7

8

9

10

11

12

13

14

DoFs [-]

C
lo

ba
lc

on
ju

ga
te

gr
ad

ie
nt

ite
ra

tio
ns

[-
]

2D, curved, DG

101 102 103 104 105 106 107 108
0

20

40

60

80

DoFs [-]

Fr
ac

tio
n

of
tim

e
of

co
ar

se
pr

ob
le

m
[%

]

101 102 103 104 105 106 107 108

1

2

3

4

5

6

7

8

9

10

direct solution of
coarse-grid problem

DoFs [-]

A
ve

ra
ge

nu
m

be
rc

yc
le

s
on

co
ar

se
-g

ri
d

pr
ob

le
m

[-
]

Figure 13: Comparison of three versions of the algebraic coarse-grid solver: PCG with fixed relative tolerance and CG
coarse-grid discretization (base case: PCG-MG (continuous)), one multigrid preconditioning step with
CG coarse-grid discretization (MG (continuous)), and PCG with DG coarse-grid discretization (PCG-MG
(discontinuous)).

coarse-grid problem as well as on the quality of the preconditioning, which - for its part - influences the total number of
iterations. As a consequence, it has a direct influence on overall performance.

Figure 14 presents the order dependency of the iteration number of the three approaches for a problem of fixed size.
While approach 3 shows an order independence, the number of iterations of approach 1 increases linearly with
increasing order. The latter was also observed by Bastian et al. [13] and Siefert et al. [90]. Approach 2 , which halves
the orders of the fine levels during coarsening, shows only a weak dependency on the order and has only a few more
iterations than approach 3 .

Until now, we have considered the number of iterations. Let us now take a look at the cost of a single preconditioning
step. The cost of approach 2 has been discussed already in Subsection 5.4. Prompted by the statistical evaluation of
the cost of each level in Figure 9 for approach 2 , the same plots are created also for approach 1 and 3 in Figure 15.
In the given example for k = 6, one preconditioning step is only slightly cheaper in approach 1 than in approach
2 . The reason for this is that the number of levels is decreased only by one in approach 1 . For approach 3 , a

well-visible significant increase in the cost of the coarse-grid corrections and thereby the increase of the overall cost of
preconditioning can be observed where more than 90% of the execution time is spent in the preconditioner in this case
as opposed to the generally observed 85%.

The opposing trends in iteration numbers and in the cost of preconditioning in the case of approach 1 and 3 produce
similar overall performance trends for both coarsening strategies. As shown in Figure 14, the throughput decreases with
increasing order in the case of both approaches with approach 3 being slightly faster. A good compromise between

38

3 4 5 6 7 8 9
0

5

10

15

20

25

30

35

Degree [-]

It
er

at
io

ns
[-

]

(1) ki−1 = 1

(2) ki−1 = bki/2c
(3) ki−1 = ki − 1

3 4 5 6 7 8 9
0

2

4

6

8

10
10 MDoF/s

Degree [-]

T
hr

ou
gh

pu
t[

M
D

oF
/s

]

2D, curved mesh, DG, ≈ 40002 DoFs

3 4 5 6 7 8 9
0

5

10

15

20

25

30

35

Degree [-]

It
er

at
io

ns
[-

]

(1) ki−1 = 1

(2) ki−1 = bki/2c
(3) ki−1 = ki − 1

3 4 5 6 7 8 9
0

2

4

6

8

10

4.5 MDoF/s

Degree [-]

T
hr

ou
gh

pu
t[

M
D

oF
/s

]

3D, curved mesh, DG, ≈ 2503 DoFs

Figure 14: Different p-sequences

approach 1 and 3 , is approach 2 , which needs a few more iterations than approach 3 and whose iterations are
negligible more expensive than the ones by approach 1 . Approach 2 exhibits an order-independent throughput for
the considered order range, maintaining 10MDoF/s for 2D and 4.5MDoF/s for 3D over the whole considered degree
range. These values are about twice as high as for approach 1 with k = 9. The speedup corresponds directly to the
reduced number of iterations by about 50%. We believe that the integration of approach 2 would be a remedy against
the strong order dependency of the multigrid solver presented by Bastian et al. [12, 13] and Siefert et al. [90].

Besides the performance, it is essential to also consider memory consumption by the three analyzed p-sequence
approaches. The maximal value regarding memory consumption (see also Equation (48) in Subsection 3.3) can be
estimated for all three cases using the following formulas:

M1 = 1 +
2d

(k + 1)d
� 2 = O(1), M2 ≤

1

1− 0.5d
≤ 2 = O(1), M3 =

∑k
i=1(i+ 1)d

(k + 1)d
≤ k = O(k).

(60)

While approach 1 and 2 are independent of degree k, the memory consumption of approach 3 is bounded by k,
making it unsuitable for very high orders and resulting in this approach running out of memory earlier.

39

Pre-smoothing Restriction Coarse-grid correction Prolongation Post-smoothing PCG MG

2D, curved mesh, DG, p-sequence 1 :

conjugate gradient

16.4 %

level 2
71.0 %

level 1

8.5 %
level 0

4.1 %

level 1
(l=10, k=1)

level 2
(l=10, k=6)

0

20

40

60

80

0

10

20

30

40

50

60

70

80

90

Ti
m

es
ha

re
[%

]

PCG
0

20

40

60

80

0

10

20

30

40

50

60

70

80

90

2D, curved mesh, DG, p-sequence 3 :

conjugate gradient
7.4 %

level 6

30.7 %

level 5
22.5 %

level 4

16.0 %

level 3

10.7 %level 2

6.7 %
level 1

3.7 %level 0
2.3 %

level 1
(l=10, k=1)

level 2
(l=10, k=2)

level 3
(l=10, k=3)

level 4
(l=10, k=4)

level 5
(l=10, k=5)

level 6
(l=10, k=6)

0

20

40

60

80

0

10

20

30

40

50

60

70

80

90

Ti
m

es
ha

re
[%

]

PCG
0

20

40

60

80

0

10

20

30

40

50

60

70

80

90

3D, curved mesh, DG, p-sequence 1 :

conjugate gradient

17.1 %

level 2

77.8 %

level 1
3.2 %level 0
1.9 %

level 1
(l=5, k=1)

level 2
(l=5, k=6)

0

20

40

60

80

0

10

20

30

40

50

60

70

80

90

Ti
m

es
ha

re
[%

]

PCG
0

20

40

60

80

0

10

20

30

40

50

60

70

80

90

3D, curved mesh, DG, p-sequence 3 :

conjugate gradient
9.0 %

level 6

40.9 %

level 5

26.2 %

level 4

13.4 %
level 3

6.5 %
level 2

2.4 %level 1
1.0 %level 0 0.7 %

level 1
(l=5, k=1)

level 2
(l=5, k=2)

level 3
(l=5, k=3)

level 4
(l=5, k=4)

level 5
(l=5, k=5)

level 6
(l=5, k=6)

0

20

40

60

80

0

10

20

30

40

50

60

70

80

90

Ti
m

es
ha

re
[%

]

PCG
0

20

40

60

80

0

10

20

30

40

50

60

70

80

90

Figure 15: Profiling of the preconditioned conjugate gradient solver for k = 6 and l = 10/5 for 2D/3D DG in the case
of alternative p-sequence strategies (1 : ki−1 = 1; 3 : ki−1 = ki − 1)

40

α · lh

Niter,o

Niter,i

Niter,o

Niter,i

βAMG · lh

α · lk

β

h-MG: p-MG with AMG:

V-cycle embedded cycle

Figure 16: Visualization of the strong-scaling limit model for h-MG and p-MG with AMG

5.8 Strong scaling

Figures 17-24 present strong-scaling results for 2D/3D, h-MG/p-MG, and CG/DG. For this purpose, problems of
fixed size k = 6, l = 7, 8, 9, 10, 11, 12 (2D) and k = 4, l = 5, 6, 7, 8 (3D) were solved on an increasing number of
compute nodes. A maximum of 60 nodes with a total of 1680 CPUs were used. For each configuration, time to solution,
accumulated throughput, throughput per CPU, speedup Sn = T1 node/Tn nodes, parallel efficiency En = Sn/n, and
fraction of time of the coarse-grid problem are shown for 1 ≤ n ≤ 60 nodes. To be able to make a fair comparison of
the fraction of time of the coarse-grid problem within the context of h-MG and p-MG, measured timings of multiple
coarse levels have been summed up to an effective coarse value such that the number of ’fine’ levels equals the number
of p-MG ’fine’ levels21.

We observe ideal strong scaling of both the p- and h-multigrid solvers (even superlinear speedup is observed for
simulations with a high refinement level l ≥ 9) until a low threshold where communication latency becomes dominant.
Until that threshold, timings of p-MG and h-MG are comparable. However, thenceforward they start to differ
significantly due to differing costs for the coarse-grid problem in the case of p-MG with AMG and of h-MG (90%
vs. 75% of the overall time is spent on the coarse-grid problem). A maximum throughput of 970MDoF/s for 2D and
230MDoF/s for 3D was reached in the case of CG with h-MG. With p-MG, maximum throughput of 810GDoF/s for 2D
and 270GDoF/s for 3D was reached for CG.

Modeling the strong-scaling limit: Based on the gathered data, it is possible to construct a performance model for the
strong-scaling limit. In doing so, it helps to subdivide the multigrid algorithm into two parts (V-cycles and embedded
cycles on the coarse level (for PCG and AMG)) according to Figure 16. A performance model for such a system might
look like this:

t = Niter,o · lo · α+Niter,i · β = Niter,o · (lo · α+N iter,i · β), (61a)

where lo is the number of matrix-free multigrid levels, α is the cost of one matrix-free multigrid level, and β is the cost
of one embedded cycle. The symbols Niter,o and Niter,i denote the number of outer and inner cycles, i.e. V-cycles and
embedded cycles. N iter,i is the average number of embedded cycles per V-cycle. Measurements (see Figure 25) have
shown that the time spent on one matrix-free multigrid level is approximately α = 0.4ms and is the same on every
level since it is not determined by the amount of work to be performed but rather by the number of the communication
instances, which is the same on every level except on the coarsest level22. In the following, the definitions of the
model parameters β and lo are refined, and actual values for β and N iter,i are presented for p-MG and h-MG, collected
representatively from 2D CG simulations (see Figure 17 and 18).

For h-multigrid, post-processing of the measurements results in:

lo = lh, N iter,i · β = 0.0016. (61b)

As also shown in Figure 25, the minimal time to solution increases linearly with an increasing number of refinements
lh. The time to solution N iter,i · β on the coarsest grid (1 macro cell) is independent of the number of refinements.
Figure 26 visualizes the fraction of time of each level in a pie plot for 1 node and 60 nodes. It clearly shows the different
behavior of h-multigrid in the strong-scaling limit: in contrast to 1 node, where the cost of each level is ≈ 0.5d of the
cost of the parent level, the cost of each level is approximately the same in the case of 60 nodes. The cost of the coarsest
level is as expensive as in the case of 1 node since the processing of a single element is not parallelized.

21As an example, let us consider the multigrid levels for l = 6 and k = 6 for CG for p-MG and h-MG:
p-MG: (6, 6) → (6, 3)︸ ︷︷ ︸

’fine’

→ (6, 1)︸ ︷︷ ︸
coarse

vs. h-MG: (6, 6) → (5, 6)︸ ︷︷ ︸
’fine’

→ (4, 6) → (3, 6) → (2, 6) → (1, 6)︸ ︷︷ ︸
effective coarse

.

22In the following, we drop the unit s.

41

For p-multigrid, it is useful to refine the performance model. P-multigrid uses, in the developed hybrid multigrid solver,
AMG as coarse-grid preconditioner. AMG creates algebraically internally lAMG levels of decreasing size. The cost of
an embedded cycle consequently arises from the product β = lAMG · βAMG where βAMG is the cost of one AMG
level. For the sake of simplicity, we set lAMG = lh. The resulting model is as follows:

lo = lk, β = lh · βAMG, βAMG = 0.00029± 0.00014, N iter,i = 4. (61c)

Please note that the cost of an AMG level βAMG varies strongly as shown in Figure 25. The value is generally≈ 0.0002.
For l = 7 and l = 9, the value is surprisingly high. This is also apparent in Figure 18 where the coarse-grid problems
for l = 7 and l = 9 are approximately equally expensive, and the coarse-grid problem for l = 8 is significantly cheaper.
Figure 26 visualizes the fraction of time spent on each multigrid level for 1 and 60 nodes in a pie diagram. In contrast
to h-MG, the majority of time is spent on solving the coarse-grid problem in the scaling limit.

Based on the strong-scaling limit model derived above for p-MG, we can deduce an alternative strategy to minimize the
time to solution for simulations running close to the scaling limit (for the sake of simplicity we assume α = βAMG):

t0
α

= Niter,o ·
(
lk +N iter,i · lh

) !
= min, (62)

which requires a reduction in the total number of level visits (no matter if outer or embedded levels). This strategy is in
clear contrast to the normal strategy in which the primary goal is to reduce the operation evaluations on the fine grid,
readily accepting additional operations on coarser levels. To clarify, let us revisit the observations in Subsection 5.6
where we saw that using coarse PCG with AMG as preconditioner significantly outperforms the coarse-grid solver, in
which only one V-cycle of AMG is employed because it requires only half of the number of iterations. Inserting the
numbers N ′iter,o = 2 ·Niter,o and N

′
iter,i = 1 into Equation (62) results in the following speedup estimate, in favor of

the single V-cycle coarse-grid solver:

Niter,o
2 ·Niter,o

· lk + 4 · lh
lk + 1 · lh

lh=5
=
lk=2

1.57. (63)

This hypothesis requires verification by future experiments. The ad-hoc strong-scaling limit model presented above
should be refined and generalized for all configurations of the developed hybrid multigrid solver (incl. DG, hp-multigrid).
Furthermore, comparisons to performance models documented in the literature should be conducted.

As a final remark, it should be noted here that we can "learn" from h-MG also in regard to the context of p-MG with
AMG. H-multigrid performs significantly more embedded cycles than p-multigrid (×100). Each embedded cycle is very
cheap because it is performed on a system of exactly one macro cell owned by only one process, requiring absolutely
no communication between embedded cycles. Working with only one CPU in the context of p-MG with AMG is
obviously not feasible, however, a repartitioning of the coarse-grid problem and its assignment to a small working set of
CPUs (maybe one node) might be sufficient to reduce the costs of the embedded algebraic cycles such that performing
multiple embedded cycles would not affect the strong-scaling limit in a negative way. Similar repartitioning of the mesh
on coarse-multigrid level has been employed by Rudi et al. [87].

5.9 Weak scaling

As a by-product of the strong-scaling analysis, we can mimic a weak-scaling analysis by connecting data points with
the same dofs

procs , as shown in Figures 17-24. Excellent weak scalability for constant degree k can be observed for all
considered multigrid variants, expressed as nearly horizontal lines. This was expected because of the size-independent
nature of multigrid algorithms.

42

l=7 l=8 l=9 l=10 l=11 weak scaling

28 56 112 224 448 896 1,680
0.01

0.1

1

Number of CPUs [-]

Ti
m

e
to

so
lu

tio
n

[s
]

Time to solution

5 10 15 20 25 30 35 40 45 50 55 60

10

20

30

40

50

60

Number of Nodes [-]
Sp

ee
du

p
[-

]

Speedup

28 56 112 224 448 896 1,680
10

100

1,000

Number of CPUs [-]

T
hr

ou
gh

pu
t[

M
D

oF
/s

]

Throughput

5 10 15 20 25 30 35 40 45 50 55 60
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Number of Nodes [-]

Pa
ra

lle
lE

ffi
ci

en
cy

[-
]

Parallel Efficiency

28 56 112 224 448 896 1,680
0.01

0.1

1

Number of CPUs [-]

T
hr

ou
gp

ut
[M

D
oF

/s
]

Throughput per CPU

28 56 112 224 448 896 1,680
0

20

40

60

80

100

Number of CPUs [-]

Fr
ac

tio
n

of
tim

e
[%

]

Coarse-grid problem

Figure 17: Strong scaling for 2D CG curved mesh with p-MG (k=6)

43

l=7 l=8 l=9 l=10 l=11 weak scaling

28 56 112 224 448 896 1,680
0.01

0.1

1

Number of CPUs [-]

Ti
m

e
to

so
lu

tio
n

[s
]

Time to solution

5 10 15 20 25 30 35 40 45 50 55 60

10

20

30

40

50

60

Number of Nodes [-]

Sp
ee

du
p

[-
]

Speedup

28 56 112 224 448 896 1,680
10

100

1,000

Number of CPUs [-]

T
hr

ou
gh

pu
t[

M
D

oF
/s

]

Throughput

5 10 15 20 25 30 35 40 45 50 55 60
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Number of Nodes [-]

Pa
ra

lle
lE

ffi
ci

en
cy

[-
]

Parallel Efficiency

28 56 112 224 448 896 1,680
0.01

0.1

1

Number of CPUs [-]

T
hr

ou
gp

ut
[M

D
oF

/s
]

Throughput per CPU

28 56 112 224 448 896 1,680
0

20

40

60

80

100

Number of CPUs [-]

Fr
ac

tio
n

of
tim

e
[%

]

Coarse-grid problem

Figure 18: Strong scaling for 2D CG curved mesh with h-MG (k=6)

44

l=7 l=8 l=9 l=10 l=11 l=12 weak scaling

28 56 112 224 448 896 1,680
0.01

0.1

1

Number of CPUs [-]

Ti
m

e
to

so
lu

tio
n

[s
]

Time to solution

5 10 15 20 25 30 35 40 45 50 55 60

10

20

30

40

50

60

Number of Nodes [-]
Sp

ee
du

p
[-

]

Speedup

28 56 112 224 448 896 1,680
10

100

1,000

Number of CPUs [-]

T
hr

ou
gh

pu
t[

M
D

oF
/s

]

Throughput

5 10 15 20 25 30 35 40 45 50 55 60
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Number of Nodes [-]

Pa
ra

lle
lE

ffi
ci

en
cy

[-
]

Parallel Efficiency

28 56 112 224 448 896 1,680
0.01

0.1

1

Number of CPUs [-]

T
hr

ou
gp

ut
[M

D
oF

/s
]

Throughput per CPU

28 56 112 224 448 896 1,680
0

20

40

60

80

100

Number of CPUs [-]

Fr
ac

tio
n

of
tim

e
[%

]

Coarse-grid problem

Figure 19: Strong scaling for 2D DG curved mesh with p-MG (k=6)

45

l=7 l=8 l=9 l=10 l=11 l=12 weak scaling

28 56 112 224 448 896 1,680
0.01

0.1

1

Number of CPUs [-]

Ti
m

e
to

so
lu

tio
n

[s
]

Time to solution

5 10 15 20 25 30 35 40 45 50 55 60

10

20

30

40

50

60

Number of Nodes [-]

Sp
ee

du
p

[-
]

Speedup

28 56 112 224 448 896 1,680
10

100

1,000

Number of CPUs [-]

T
hr

ou
gh

pu
t[

M
D

oF
/s

]

Throughput

5 10 15 20 25 30 35 40 45 50 55 60
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Number of Nodes [-]

Pa
ra

lle
lE

ffi
ci

en
cy

[-
]

Parallel Efficiency

28 56 112 224 448 896 1,680
0.01

0.1

1

Number of CPUs [-]

T
hr

ou
gp

ut
[M

D
oF

/s
]

Throughput per CPU

28 56 112 224 448 896 1,680
0

20

40

60

80

100

Number of CPUs [-]

Fr
ac

tio
n

of
tim

e
[%

]

Coarse-grid problem

Figure 20: Strong scaling for 2D DG curved mesh with h-MG (k=6)

46

l=4 l=5 l=6 l=7 weak scaling

28 56 112 224 448 896 1,680
0.01

0.1

1

Number of CPUs [-]

Ti
m

e
to

so
lu

tio
n

[s
]

Time to solution

5 10 15 20 25 30 35 40 45 50 55 60

10

20

30

40

50

60

Number of Nodes [-]
Sp

ee
du

p
[-

]

Speedup

28 56 112 224 448 896 1,680
10

100

1,000

Number of CPUs [-]

T
hr

ou
gh

pu
t[

M
D

oF
/s

]

Throughput

5 10 15 20 25 30 35 40 45 50 55 60
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Number of Nodes [-]

Pa
ra

lle
lE

ffi
ci

en
cy

[-
]

Parallel Efficiency

28 56 112 224 448 896 1,680
0.01

0.1

1

Number of CPUs [-]

T
hr

ou
gp

ut
[M

D
oF

/s
]

Throughput per CPU

28 56 112 224 448 896 1,680
0

20

40

60

80

100

Number of CPUs [-]

Fr
ac

tio
n

of
tim

e
[%

]

Coarse-grid problem

Figure 21: Strong scaling for 3D CG curved mesh with p-MG (k=4)

47

l=4 l=5 l=6 l=7 weak scaling

28 56 112 224 448 896 1,680
0.01

0.1

1

Number of CPUs [-]

Ti
m

e
to

so
lu

tio
n

[s
]

Time to solution

5 10 15 20 25 30 35 40 45 50 55 60

10

20

30

40

50

60

Number of Nodes [-]

Sp
ee

du
p

[-
]

Speedup

28 56 112 224 448 896 1,680
10

100

1,000

Number of CPUs [-]

T
hr

ou
gh

pu
t[

M
D

oF
/s

]

Throughput

5 10 15 20 25 30 35 40 45 50 55 60
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Number of Nodes [-]

Pa
ra

lle
lE

ffi
ci

en
cy

[-
]

Parallel Efficiency

28 56 112 224 448 896 1,680
0.01

0.1

1

Number of CPUs [-]

T
hr

ou
gp

ut
[M

D
oF

/s
]

Throughput per CPU

28 56 112 224 448 896 1,680
0

20

40

60

80

100

Number of CPUs [-]

Fr
ac

tio
n

of
tim

e
[%

]

Coarse-grid problem

Figure 22: Strong scaling for 3D CG curved mesh with h-MG (k=4)

48

l=4 l=5 l=6 l=7 weak scaling

28 56 112 224 448 896 1,680
0.01

0.1

1

Number of CPUs [-]

Ti
m

e
to

so
lu

tio
n

[s
]

Time to solution

5 10 15 20 25 30 35 40 45 50 55 60

10

20

30

40

50

60

Number of Nodes [-]
Sp

ee
du

p
[-

]

Speedup

56 112 224 448 896 1,680
10

100

1,000

Number of CPUs [-]

T
hr

ou
gh

pu
t[

M
D

oF
/s

]

Throughput

5 10 15 20 25 30 35 40 45 50 55 60
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Number of Nodes [-]

Pa
ra

lle
lE

ffi
ci

en
cy

[-
]

Parallel Efficiency

28 56 112 224 448 896 1,680
0.01

0.1

1

Number of CPUs [-]

T
hr

ou
gp

ut
[M

D
oF

/s
]

Throughput per CPU

28 56 112 224 448 896 1,680
0

20

40

60

80

100

Number of CPUs [-]

Fr
ac

tio
n

of
tim

e
[%

]

Coarse-grid problem

Figure 23: Strong scaling for 3D DG curved mesh with p-MG (k=4)

49

l=4 l=5 l=6 l=7 weak scaling

28 56 112 224 448 896 1,680
0.01

0.1

1

Number of CPUs [-]

Ti
m

e
to

so
lu

tio
n

[s
]

Time to solution

5 10 15 20 25 30 35 40 45 50 55 60

10

20

30

40

50

60

Number of Nodes [-]

Sp
ee

du
p

[-
]

Speedup

56 112 224 448 896 1,680
10

100

1,000

Number of CPUs [-]

T
hr

ou
gh

pu
t[

M
D

oF
/s

]

Throughput

5 10 15 20 25 30 35 40 45 50 55 60
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Number of Nodes [-]

Pa
ra

lle
lE

ffi
ci

en
cy

[-
]

Parallel Efficiency

28 56 112 224 448 896 1,680
0.01

0.1

1

Number of CPUs [-]

T
hr

ou
gp

ut
[M

D
oF

/s
]

Throughput per CPU

28 56 112 224 448 896 1,680
0

20

40

60

80

100

Number of CPUs [-]

Fr
ac

tio
n

of
tim

e
[%

]

Coarse-grid problem

Figure 24: Strong scaling for 3D DG curved mesh with h-MG (k=4)

50

0 1 2 3 4 5 6 7 8 9 10
0

2

4

6

1.6ms

Level [-]

M
ea

su
re

d
tim

e
fo

ra
V

-c
yc

le
[m

s]

h-MG

1.6 + 0.4 · l

5 6 7 8 9 10
0

0.2

0.4

0.6

0.29ms

Level [-]

Ti
m

e
fo

ra
n

A
M

G
-c

yc
le

pe
rr

efi
ne

m
en

t[
m

s]

p-MG

0 1 2 3 4 5 6 7 8 9 10 11
0

2

4

6

8

10

12

AMG p-MG

h-MG

Level lh + lk [-]

E
xp

ec
te

d
tim

e
fo

ra
V

-c
yc

le
[m

s]

Strong scaling limit model: h-MG vs. p-MG

Figure 25: Modeling of the strong-scaling limit for 2D CG with p-MG and h-MG

51

1 node 60 nodes

h-MG:

conjugate gradient

16.3 %

level 968.2 %

level 8

12.3 %
level 7

1.7 %level 6
0.6 %

level 5
0.2 %

level 4
0.1 %level 3 0.1 %level 2 0.1 %level 1 0.1 %level 0 0.2 %

conjugate gradient
7.7 %

level 9

12.7 %

level 8

8.9 %

level 7

8.1 % level 6

7.5 %

level 5
7.5 %

level 4

7.4 %

level 3

6.7 %

level 2

5.8 %

level 1

5.0 %level 0

22.8 %

p-MG:

conjugate gradient

15.6 %
level 2

63.7 %

level 1

14.9 %

level 0
5.8 %

conjugate gradient
2.0 %

level 2
3.6 %

level 1
2.7 %

level 0

91.6 %

Figure 26: Profiling of PCG for k = 6 and l = 9 for p-MG/h-MG (with 1 and 60 nodes) for 2D CG

52

6 Application: convection–diffusion equation

In this section, the solution of the convection–diffusion equation by the presented hybrid multigrid solver is considered:

∂ u

∂ t
+∇ · (au)−∇ · (κ∇u) = f. (64)

The following analysis is restricted to the solution of this equation for stationary and sourceless problems, i.e. ∂u/∂t = 0
and f = 0.

This section is structured as follows. Subsection 6.1 presents the spatial discretization of the convection–diffusion
equation. Subsection 6.2 investigates the suitability of the developed hybrid multigrid solver for convection-dominated
problems, by presenting numerical results for the test case called boundary-layer problem.

6.1 Spatial discretization

The DG discretization of Equation (64) reads as follows for the diffusive term, using SIP (see also Subsection 2.2):

(∇vh, ∇uh)Ωe − (∇vh, (uh − u∗h)n)Γe − (∇vh, σ∗h · n)Γe , (65a)
u∗h = {{uh}}, σ∗h = {{∇uh}} − τJuhK,

and for the convective term:

− (∇vh, auh)Ωe + (vh, (auh)∗ · n)Γe . (65b)

For the flux term (auh)∗, we use the local Lax–Friedrichs method. For a detailed derivation of Equation (65), the reader
is referred to [23].

6.2 Numerical results for the boundary-layer problem

In order to investigate the suitability of the presented hybrid multigrid solver for convection-dominated problems, the
quasi-2D boundary-layer problem is considered. The square domain Ω = [−1,+1]2 is flowed through from left to
right with uniform velocity a = (1, 0)T . At the inlet (u = 1) and the outlet (u = 0), Dirichlet boundary conditions
are applied. At the remaining boundaries, homogeneous Neumann boundary conditions are applied. Diffusivity is
uniform and is varied between 0.001 ≤ κ ≤ 1000 so that Péclet numbers of range 0.002 ≤ Pe = ||a||∞·L

κ ≤ 2000 can
be investigated. The coarse grid is a single macro cell, which is uniformly refined l times. The number of refinements is
varied between 0 ≤ l ≤ 10, and four polynomial degrees (k = 3, 5, 9, 13) are considered. The boundary-layer problem
is preconditioned by p-MG with AMG, approximately inverting the full convection-diffusion operator. A Chebyshev
smoother is applied on all multigrid levels. The preconditioned conjugate gradient method has been replaced by the
flexible generalized minimal residual (FGMRES) method on the fine level and by the generalized minimal residual
(GMRES) method on the coarse level. The diffusive term and the convective term of Equation (65) are implemented in
separate discrete operators, which are applied sequentially to a vector.

Figure 27 shows the throughput dofs
time to solution depicted over the element Péclet number

Pee =
||a||∞ · h

2κ
=
||a||∞ · L

κ
· 1

2l+1
= Pe · 1

2l+1
, (66)

for the investigated polynomial degrees and refinements. The following observations can be made, based on Figure 27.
Throughput (and also the iteration count) is independent of the element Péclet number up to an order-independent
threshold, the critical element Péclet number Pee = 1. For Pee > 1, the drastic increase in iteration numbers23 leads to
a rapid drop in throughput. Based on these observations, the following relationship between refinement level l and the
maximal Péclet number can be derived:

Pee
!
= 1 → Pemax(k, l) = Pemax(l) = 2l+1, (67)

corresponding to a uniform refinement such that for all elements Pee ≤ 1 is fulfilled [84].

For refinement levels 7 ≤ l ≤ 10, the observed throughput lies between 3.0−4.3MDoF/s. These values are significantly
lower than the values measured in the case of the solution of the Poisson-problem (see Figure 10). The main reason

23It is not surprising, that for increasing element Péclet number, the iteration numbers increase since oscillations occur for Pee > 1
and oscillations become widespread for Pee � 1 [34]. Furthermore, the chosen Chebyshev smoother is unsuited for strongly
unsymmetrical matrices as it is the case, for example, for Pee > 1.

53

l=0 l=1 l=2 l=3 l=4 l=5 l=6 l=7 l=8 l=9 l=10

10−6 10−5 10−4 10−3 10−2 10−1 100 101 102 103 104
10−4

10−3

10−2

10−1

100

101

Pee [-]

T
hr

ou
gh

pu
t[

M
D

oF
/s

]
k=3

10−6 10−5 10−4 10−3 10−2 10−1 100 101 102 103 104
10−4

10−3

10−2

10−1

100

101

Pee [-]

T
hr

ou
gh

pu
t[

M
D

oF
/s

]

k=5

10−6 10−5 10−4 10−3 10−2 10−1 100 101 102 103 104
10−4

10−3

10−2

10−1

100

101

Pee [-]

T
hr

ou
gh

pu
t[

M
D

oF
/s

]

k=9

10−6 10−5 10−4 10−3 10−2 10−1 100 101 102 103 104
10−4

10−3

10−2

10−1

100

101

Pee [-]

T
hr

ou
gh

pu
t[

M
D

oF
/s

]

k=13

Figure 27: Dependency of the throughput of the convection–diffusion operator on Pee for different polynomial degrees
k and refinement levels l on a Cartesian 2D mesh for p-MG with AMG

for this is that all data has to be fetched from main memory twice as often as in the Poisson problem case because the
convection operator and the diffusion operator are applied sequentially. Merging of the two operator applications24

promises a speedup by a factor up to 2.

In future work, the influence of matrix-free implementations of alternative smoothers [84] and of anisotropic multgrid
transfer operators [39] on the value of the critical element Péclet number shall be investigated. Additionally, the
discretization of the coarse-grid problem shall be examined. In the investigation presented in this section, we used CG
on the coarse grid since it is the default setting of the developed hybrid multigrid solver. For convection-dominated
problems, however, CG is not stable, resulting in a poor auxiliary-space solution. Rediscretizing the coarse-grid
problem with DG is an alternative. However, we have demonstrated in Section 5.6 that the AMG library used by the
presented hybrid multigrid solver is not suitable for DG. Therefore, alternative libraries shall be tested regarding their
suitability for DG. Alternatively, it would be possible to rediscretize the coarse-grid problem with SUPG, as was done
by Mascarenhas et al. [69], requiring the implementation of a new matrix-free upwind-weighted restriction operator.

24The benefit of merging operator applications has been discussed by Fehn et al. [27] for convection and diffusion operators inside
a compressible Navier–Stokes solver as well as by Kronbichler and Allalen [56] inside a Chebyshev smoother.

54

7 Application: incompressible Navier–Stokes equations

Section 7, the final application section presents the results of the developed hybrid multigrid solver as a part of the
in-house Navier–Stokes solver INDEXA, which stands for: A high-order discontinuous Galerkin solver for turbulent
incompressible flow towards the EXA scale. INDEXA was first presented by Fehn [23] and new features have been
developed and added since then (see [24–28, 53]).

Subsection 7.1 demonstrates the underlying governing equations of the incompressible Navier–Stokes solver INDEXA as
well as its temporal and spatial discretization, focusing on the pressure Poisson equation. In Subsection 7.2, numerical
results are presented for the FDA benchmark nozzle problem, which we discretize with a non-trivial coarse-grid mesh.
Furthermore, the benefits of the developed hybrid multigrid solver for such problems are discussed from a performance
point of view.

7.1 Governing equations and numerical discretization

The unsteady incompressible Navier–Stokes equations consist of the momentum and the continuity equation on a
domain Ω ⊂ Rd:

∂ u

∂t
+∇ · F (u) +∇p = f in Ω × [0, T], (68a)

∇ · u = 0 in Ω × [0, T], (68b)

where f donates the body force vector, u the velocity vector, and p the kinematic pressure. The flux tensor is
F (u) = Fc(u)− Fv(u) = u⊗ u− ν∇u where ν denotes constant kinematic viscosity. For detailed information on
the choice of appropriate boundary conditions, the reader is referred to [24]. As an initial condition, a velocity field is
prescribed that fulfills both the divergence-free constraint (see Equation (68b)) and the Dirichlet boundary conditions.

Temporal discretization: high-order dual-splitting projection scheme

We use the dual-splitting projection scheme [52] based on BDF time integration of order J = 2, which consists of the
following four solution substeps:

γ0û−
∑J−1
i=0

(
αiu

n−i)
∆t

= −
J−1∑
i=0

(
βi∇ · Fc(un−i)

)
+ f (tn+1) , (69a)

−∇2pn+1 = − γ0

∆t
∇ · û, (69b)

ˆ̂u = û− ∆t

γ0
∇pn+1, (69c)

γ0

∆t
un+1 −∇ · Fv

(
un+1

)
=
γ0

∆t
ˆ̂u, (69d)

where the coefficients γ0 and αi are connected to the BDF time integration. In the first substep, the body force term and
the convective term are treated to determine an intermediate velocity û. The convective term is determined, using an
extrapolation scheme of order J with coefficients βi. In the second substep, the pressure Poisson equation is solved
with divergence of û forming the right-hand side. With the help of the received pressure field pn+1, û is projected in
the third substep onto the space of divergence-free vectors, resulting in ˆ̂u. Finally, in the fourth substep the treatment of
the viscous term returns the final velocity un+1.

Spatial discretization: high-order discontinuous Galerkin discretization

The spatial discretization of Equation (69) – based on the discontinuous Galerkin method – is performed using an
approach similar to the one already presented in the context of the Poisson problem in Section 2.2. The spaces of the
test and the trial functions for velocity uh(x, t) ∈ Vuh and pressure ph(x, t) ∈ Vph are given as:

Vuh =
{
uh ∈ [L2(Ω)]

d
: uh|Ωe ∈ [Qku(Ωe)]

d ∀Ωe ∈ Th
}
, (70a)

Vph =
{
ph ∈ L2(Ω) : ph|Ωe ∈ Qkp(Ωe)∀Ωe ∈ Th

}
. (70b)

We use mixed-order polynomials of degree (ku, kp) = (k, k − 1) for velocity and pressure. For the fully discretized
form of Equation (69), the reader is referred to [24, 26]. Here, we shall only present the discretized form of the pressure

55

Poisson equation, which is relevant for testing of the developed hybrid multigrid solver:

leh
(
qh, p

n+1
h

)
= − γ0

∆t
deh (qh, ûh) , (71a)

with leh being the (negative) Laplace operator (see also Section 2.2) and deh being the velocity divergence term:

leh(qh, ph) = (∇qh,∇ph)Ωe
− (∇qh, 1/2JphK)Ωe

− (qh, {{∇ph}} · n)Ωe
− (qh, τJphK · n)Ωe

, (71b)

deh(qh,uh) = − (∇qh,uh)Ωe
+ (qh, {{uh}} · n)∂Ωe

. (71c)

7.2 Numerical results for the FDA benchmark nozzle problem

Problem description

In the following, we consider the FDA benchmark nozzle problem [67]. This problem involves a flow through a
nozzle, which is a cylindrical pipe with gradual and sudden changes in the cross-section area, for different Reynolds
numbers (500 ≤ Reth ≤ 6500), covering laminar, transitional, and turbulent flows. Fehn et al. [28] have recently
investigated the FDA benchmark nozzle problem extensively, using the high-order discontinuous Galerkin method for
Reth ∈ {500, 2000, 3500, 5000, 6500}. Our analysis is restricted to Reth = 6500, but represents the nozzle - as per
the aforementioned publication - by a coarse grid consisting of 440 cells, which are uniformly refined l times. The total
number of degrees of freedom, both of velocity and pressure unknowns, is the result of:

NDoFs(l, k) = 440 · 23·l ·
(
3 · (ku + 1)3 + (kp + 1)3

)
= 440 · 23·l ·

(
3 · (k + 1)3 + k3

)
. (72)

The number of relevant degrees of freedom for the pressure Poisson problem is:

Np
DoFs(l, k) = 440 · 23·l · k3. (73)

Our examination is restricted to configurations {(l, ku) | l ∈ N0 ∧ k ∈ [3, 11] ∧ nl,k ≤ 29e6}, i.e. to a moderate
number of refinement levels and to moderate high-order degrees. This application case is interesting because 440
coarse cells25 are too much for purely matrix-free h-multigrid solvers for high-order DG, in the event that not enough
coarse-grid levels can be created. The coarse PCG, simply preconditioned by the diagonal of the matrix, might need too
much time to find an appropriate approximation of the solution for the system of equations of size np0,k = 440 · k3. This
would lead to the predominance of the coarse-grid problem (see also Section 5.5) and consequently to a disproportional
predominance of the pressure Poisson problem in the overall algorithm of the dual-splitting projection scheme.

For a detailed description of the setup of the FDA benchmark nozzle problem, the reader is referred to [28]. In that
publication, an incremental pressure-correction scheme in rotational formulation was used. It treats the viscous term
and the convective term in the momentum equation implicitly in time. By contrast, we use the high-order dual-splitting
projection scheme (see Section 7.1) and treat the convective term explicitly in time. We compute the time step, using
the CFL criterion [26, 27]:

∆t =
Cr
k1.5
u

· hmin

||u||max
, (74)

where Cr is fixed to 0.15, ||u||max = 2uth, and hmin is the minimum distance between two vertices of the mesh. We
decided to forego the use of a precurser, instead we applied a parabolic inflow profile.

In order to solve the convective step (Equation 69a), the inverse mass matrix is applied to the right-hand side in a highly
efficient matrix-free way [55]. For solving the projection step (Equation 69c) and the viscous step (Equation 69d), PCG
is used with an absolute solver tolerance of 10−12 and a relative solver tolerance of 10−3. It is preconditioned by the
inverse mass matrix in both cases. FGMRES is used for solving the pressure Poisson problem (Equation 69b) with the
same tolerance as above. It is preconditioned by a single V-cycle of the presented hybrid multigrid solver. The levels are
created either via h-coarsening (h-multigrid) or via p-coarsening (p-multigrid) or via consecutive h- and p- coarsening
(hp-multigrid). The hybrid multigrid solver uses a Chebyshev smoother on all levels, and the coarse problem is solved
with PCG preconditioned by point Jacobi in the case of h-multigrid and by a single AMG V-cycle in the case of p- and
hp-multigrid (see also Subsection 3.3).

The results are obtained on the Linux Cluster using 28 processes on a single node (see also Section 4.1). The simulations
were run for 30 time steps.

25440 cells are equivalent to a 3D hypercube refined 2-3 times in each direction: 23·2 = 64 < 440 < 512 = 23·3.

56

0 1 2 3 4 5
0

10

20

30

40

0

5

10

15

20

25

30

35

40

AMG (0,1)

DCG (0,2)

AMG (3,1)

Multigrid level

E
xc

lu
si

ve
tim

e
[s

]

DG, l=3, ku=3, kp=2

h-MG p-MG hp-MG

0 1 2 3 4 5
0

10

20

30

40

0

5

10

15

20

25

30

35

40

AMG (0,1)

DCG (0,3)
AMG (3,1)

Multigrid level

E
xc

lu
si

ve
tim

e
[s

]

DG, l=3, ku=4, kp=3

Figure 28: Exclusive time spent on each multigrid level of h-, p-, and hp-multigrid for two configurations of the spatial
discretization the FDA benchmark nozzle problem. DCG stands for conjugate gradient solver preconditioned
by the diagonal of the system matrix.

Results

Tables 13-18 summarize the results of the performance analysis conducted. As a starting point, let us take a look at the
performance of h-multigrid for solving the FDA benchmark nozzle problem. As an assessment criterion, the fraction
of time spent on solving the pressure Poisson problem and the projection step is used in Table 13. It can be clearly
seen that with a decreasing number of levels l and an increasing polynomial degree k, the fraction of time spent on
solving the pressure Poisson problem increases significantly. For refinements l ≤ 1, more than 90% of time is spent on
solving this problem. As discussed above, this is expected since the size of the coarse-grid problem increases making
the solution of the coarse-grid problem disproportionally expensive. For l = 0, actually no multigrid preconditioning
is/can be performed at all. Only a preconditioning of PCG by the diagonal of the system matrix is possible, leading to a
non-optimal algorithm.

Table 14 shows the speedup of solving the pressure Poisson problem if h-MG is replaced by p-MG with AMG. For
almost all configurations, a significant speedup can be observed. For configurations that are relevant in practice
(1 ≤ l ≤ 2, 3 ≤ k ≤ 7), a speedup of 2-10 is reached. For l = 0, speedup is even more than 65. For l = 3, the speedup
is less pronounced because the coarse-grid problem that is constructed via a sequence of three h-coarsening steps is
significantly smaller than the fine-grid problem. For the configuration (l = 3, ku = 3), pure h-multigrid is even faster
than p-MG with AMG.

Since this is the only configuration in which a slowdown of approx. 10% rather than a speedup can be observed, let us
take a closer look at it to understand why p-MG is slower in this case. Figure 28 breaks down the time spent on each
multigrid level and shows the exclusive time spent on each level both for p-MG and for h-MG for (l = 3, ku = 3).

H-MG consists of one level per refinement, i.e. four multigrid levels. A disproportional amount of time (23%) is spent
on solving the coarse-grid problem. In the case of p-MG, there are only three multigrid levels. On the finest level,
approximately the same absolute time is spent by p-MG as by h-MG. However, on the coarser levels significantly
more absolute time is spent by p-MG, making it slower for this configuration. The slowness of the coarser levels is
understandable since, on the one hand, p-coarsening reduces the order only by one from kp = 2 to kp = 1, and it is
not able to halve the degrees of freedom in each direction. On the other hand, AMG has to solve an equation system
with approximately 18 times more unknowns. In the light of the sheer size difference between the coarse-grid equation
system in the case of h-MG and of p-MG with AMG, it is surprising that AMG needs only approximately twice as
much time for solving the coarse-grid problem.

The observation that, in the case of p-MG for the given configuration, a significant proportion of preconditioning time is
spent on the (coarse) AMG level because the number of unknowns has not been sufficiently reduced due to the lack of
possibility to create additional levels via p-coarsening, motivated us to decrease the number of unknowns even more
by creating new matrix-free coarse levels in a sequence of h- and p-coarsening steps. The time spent on each level of

57

hp-MG using AMG as a coarse-grid preconditioner26 is shown additionally in Figure 28. The timings for the three
finest levels are practically identical to the timings in the case of h-MG. Processing the new matrix-free coarse levels
and the algebraic coarse problem together in a negligible amount of time (0.5% of the whole multigrid preconditioning
time) produces the speedup of 1.26.

Figure 28 also shows the timings of the configuration l = 3 and kp = 3 in which only the polynomial degree has been
increased by one. In this case, we can observe again a speedup of more than 20% in favor of hp-MG against h-MG.
What is different from the previous configuration, is that p-MG is faster (by 3%) than h-MG. This is due, on the one
hand, to p-coarsening, which in this configuration is more efficient in decreasing the number of unknowns, and, on the
other hand, to the time spent on the algebraic coarse-grid problem staying approximately the same, while the time to
solution of the coarse-grid problem in the case of h-MG has doubled in comparison to the results obtained for kp = 2.

Table 15 shows the speedup in solving the pressure Poisson problem if h-MG is replaced by hp-MG with AMG. The
speedup is comparable to the speedup if h-MG is replaced by p-MG (see Table 14), with hp-MG being faster (up to a
factor of two) for moderate high-order elements and few refinement levels.

Until now, we have only discussed the speedup of solving the Poisson problem by using p-/hp-multigrid. However, as
Table 13 indicates, the time reduction of the immensely costly solution process of the Poisson problem also leads to the
speedup of the implementation of the whole dual-splitting projection scheme27. Table 16 shows the maximal speedup
of the overall algorithm reached with either p- or hp-multigrid. For moderate degrees and refinement levels, speedup
ranges between 1.66-7.01. The maximal observed speedup is approximately 42. Table 17 shows the percentual time
spent on solving the Poisson problem and the projection step. It is clear that solving the Poisson problem is still the
most expensive part of the overall algorithm (40-70%). However, it is only three times more expensive than performing
the projection. Finally, Table 18 shows the maximal average throughput achieved for the solution of a single Poisson
problem: for relevant configurations, throughput greater than 5MDoF/s can be observed.

The promising observation obtained by this performance analysis that hp-multigrid with AMG has given the best results
for moderate high-order elements and few refinement levels, should be taken as a reason to investigate hp-multigrid in
more detail in the future.

26In fact, the equation system on the coarsest level is so small that preconditioning with the diagonal of the system matrix only
would probably suffice.

27Please note that the speedup of the pressure Poisson solver by using the developed hybrid multigrid solver also leads to a
speedup of the incremental pressure-correction scheme, as used by Fehn et al. [28], because this scheme consists of the solution
of the pressure Poisson problem in a substep, as does the dual-splitting projection scheme. However, the overall speedup of the
incremental pressure-correction scheme will not be as high because the fraction of time spent on the pressure Poisson solver is not
that significant in this case.

58

Table 13: Fraction of time spent on solving the pressure Poisson problem and the projection step (h-MG)

l
ku

3 4 5 6 7 8 9 10 11

0 96/2 97/1 98/1 98/1 99/1 99/1 99/0 99/1 99/0
1 94/3 93/3 93/3 93/3 94/3 94/3 95/2 96/2 97/1
2 73/13 67/14 70/13 75/10 80/9 - - - -
3 59/19 54/22 - - - - - - -

Table 14: Speedup of solving the pressure Poisson problem with p-MG (with AMG) instead of h-MG

l
ku

3 4 5 6 7 8 9 10 11

0 6.28 12.64 19.13 26.32 34.44 40.53 49.79 56.25 65.68
1 4.68 5.64 7.96 9.40 11.34 12.27 14.82 16.77 20.25
2 2.28 2.21 2.09 2.28 2.45 - - - -
3 0.83 1.03 - - - - - - -

Table 15: Speedup of solving the pressure Poisson problem with hp-MG (with AMG) instead of h-MG

l
ku

3 4 5 6 7 8 9 10 11

0 6.43 13.79 20.76 26.84 35.50 40.62 50.08 55.94 66.39
1 9.48 10.04 11.47 12.52 13.50 13.36 15.31 17.68 20.30
2 3.00 2.51 2.31 2.52 2.72 - - - -
3 1.20 1.26 - - - - - - -

Table 16: Maximal speedup of solving the overall dual-splitting projection scheme

l
ku

3 4 5 6 7 8 9 10 11

0 5.38 10.06 14.10 18.49 23.99 25.77 31.95 34.23 41.74
1 6.18 6.06 6.67 7.01 7.68 7.76 9.09 10.54 12.64
2 1.95 1.69 1.66 1.84 2.02 - - - -
3 1.11 1.34 - - - - - - -

Table 17: Fraction of time spent on solving the pressure Poisson problem and the projection step for the best MG
configuration

l
ku

3 4 5 6 7 8 9 10 11

0 81/9 71/12 66/14 68/15 67/15 63/17 63/16 60/17 62/17
1 61/19 56/21 54/21 52/21 53/21 55/20 57/20 57/20 60/17
2 47/24 45/24 50/22 55/19 59/19 - - - -
3 55/20 58/20 - - - - - - -

Table 18: Maximal average throughput achieved for solving a single pressure Poisson problem [MDoF/s]

l
ku

3 4 5 6 7 8 9 10 11

0 1.07 2.69 3.74 4.11 4.52 5.08 4.72 4.75 4.29
1 5.32 7.57 8.44 8.33 7.42 6.60 6.14 5.73 4.90
2 7.41 8.72 7.97 7.13 6.17 - - - -
3 5.30 5.70 - - - - - - -

59

60

8 Conclusions & outlook

In the course of this Master’s thesis, an existing efficient matrix-free h-multigrid solver [59] for high-order continuous
and discontinuous Galerkin methods was developed further and extended into a hybrid multigrid solver with the aim of
solving high-order DG problems with complex, non-trivial geometries efficiently on modern CPU hardware. The basis
of the efficiency of the developed hybrid multigrid solver is threefold. Firstly, the solver geometrically constructs as
many multigrid levels as possible via h- and p-coarsening such that the given operator can be rediscretized on every level
and the size of the coarse-grid problem is reduced as much as possible. Secondly, the rediscretization of the operator
on every multigrid level enables the evaluation of almost all multigrid components in a highly efficient matrix-free
way, especially for high orders. Thirdly, an efficient algebraic multigrid solver is applied to solve the relatively small
coarse-grid problem.

The application of almost all multigrid components was implemented in a matrix-free way, based on sum factorization. It
includes the application of discrete operators and of intergrid transfer operators as well as the computation of the diagonal
of the system matrix and its matrix representation via columnwise reconstruction. The remarkable implementation
efficiency was demonstrated in the comparison of experimental measurements with theoretical expectations, conducted
for CG/DG, 2D/3D, Cartesian/curved mesh.

In order to demonstrate the overall efficiency of the developed hybrid multigrid solver, it was applied to the Poisson
problem, to the convection–diffusion equation, and to the unsteady incompressible Navier–Stokes equations discretized
in time with the dual-splitting projection scheme. As a performance reference, we used the original h-multigrid solver
that we know to be efficient for simple coarse grids.

Experiments on the Poisson problem on a uniformly refined hypercube were performed for CG and DG in order to
identify the optimal configuration of the hybrid multigrid solver used as a pure p-multigrid solver applying AMG on
the coarsest level. The solver converged for all considered refinement levels and polynomial orders. The difference
in the iteration numbers between h-MG and p-MG was small for both CG and DG. For low-order problems (k < 5),
h-MG was faster; whereas p-MG required fewer iterations for high-order problems due to its better order independence,
raising its throughput. CG outperformed DG by a factor of two in all cases, and p-MG seemed to work generally better
for CG than for DG.

We found that the best performing p-multigrid configuration for DG halves the polynomial order on every level and uses
embedded AMG V-cycles on the auxiliary linear CG space. This p-multigrid configuration exhibits a weak increase in
iteration numbers for higher orders and an order-independent throughput (max. 10MDoF/s for 2D and 4.5MDoF/s for
3D for DG on a single compute node) for the considered order range (k ≤ 9). An alternative p-coarsening approach
frequently used in the literature [12, 13, 90] goes from high-order space directly to first-order auxiliary space. The
integration of this approach into the presented hybrid multigrid solver showed that the number of iterations in the case
of this approach depends strongly on the order, directly resulting in the increase in the time to solution. Computations
of this approach were up to two times slower for high order than those of the approach we identified as optimal.

We presented strong-scaling results for 2D/3D, h-MG/p-MG, and CG/DG, obtained on a maximum of 1680 CPUs. We
observed ideal strong scaling of both p- and h-multigrid solvers until a low threshold. Communication latency of AMG
became disproportionally dominant in the case of p-MG after that threshold.

Based on the gathered data, we constructed a model for the strong-scaling limit of the developed hybrid multigrid
solver, quantifying the cost of each multigrid level. According to this model, the costs of each matrix-free and of
each matrix-based level are the same, with matrix-based levels being slightly less expensive than matrix-free levels.
Nevertheless, the need to perform multiple embedded V-cycles on the cheaper matrix-based levels results in a poor
strong-scaling limit when using AMG as a preconditioner on the coarsest level. Based on the derived strong-scaling
limit model, we were able to show the benefit of only performing a single coarse AMG V-cycle at the cost of performing
more iterations to improve the strong-scaling limit. In addition, the redistribution and repartitioning of the coarse grid
might be beneficial in improving the strong-scaling limit.

In order to quantify the efficiency of the developed hybrid multigrid solver in the context of convection-dominated
problems, the boundary-layer problem was considered. For solving 2D versions of this problem, we observed a maximal
throughput of 4.3MDoF/s. The throughput was independent of the element Péclet number (as was the iteration count)
up to an order-independent threshold, the critical element Péclet number Pee = 1; whereas for Pee > 1, a drastic
increase in iteration numbers led to a rapid drop in throughput. Possible improvements in performance, via the merging
of operator applications, promise a speedup by a factor of up to 2. In future research, the influence of matrix-free
implementations of both alternative smoothers and anisotropic multgrid transfer operators on the value of the critical
element Péclet number ought to be investigated.

61

Table 19: Performance comparison of the one-step and the two-step hybrid multigrid algorithm (p-MG+AMG) applied
to the 2D DG Poisson problem on non-Cartesian mesh as described in Section 5 (degrees of freedom
<4000×4000)

k 3 4 5 6 7 8 9 10 11 12 13

CG
+D

G

cycles CG [-] 5 4 5 5 5 4 5 5 5 5 6
cycles DG [-] 1 1 1 1 1 1 1 1 1 1 1
fraction of time CG [%] 69.0 66.7 73.2 75.0 74.0 70.3 75.2 76.0 76.1 76.9 80.0
fraction of time DG [%] 27.7 29.9 23.8 22.3 23.0 26.4 21.8 21.1 21.0 20.3 17.6
throughput [MDoF/s] 19.2 18.5 16.2 15.1 19.1 19.5 16.4 15.5 15.6 14.7 13.0

DG

cycles [-] 7 6 7 7 8 7 9 8 10 10 10
throughput [MDoF/s] 9.8 10.1 9.7 9.8 10.7 10.8 8.6 9.3 7.7 7.4 7.6

speedup [-] 2.0 1.8 1.7 1.5 1.8 1.8 1.9 1.7 2.0 2.0 1.7

Numerical results are also presented for solving the incompressible Navier–Stokes equations, considering the FDA
benchmark nozzle problem, which we discretized using a non-trivial coarse-grid mesh consisting of 440 cells. As a
temporal discretization, we applied the dual-splitting projection scheme, which required solving the pressure Poisson
equation. It was solved using the developed hybrid multigrid solver. Computations were performed using p-multigrid
with AMG and h-multigrid. For almost all configurations of refinement levels and degrees, a significant speedup – for
moderate refinement levels and degrees a speedup of 2-10 – could be observed in solving the pressure Poisson problem
with p-MG.

Using the presented hybrid multigrid solver as a hp-multigrid solver led to a comparable speedup, with hp-MG being
faster (by up to a factor of two) for moderate high-order elements and few refinement levels than p-multigrid. The
promising observation that hp-multigrid with AMG produced the best results for these configurations, should be taken
as a reason to exploit the structure of the given discretization in order to geometrically reduce the size of the coarse-grid
problem as much as possible. We believe it is always possible to explicitly create 3-4 multigrid levels (1-2 refinements,
2-3 p-levels) such that the developed hybrid multigrid solver remains applicable also to even more complex geometries.

The time spent on solving the pressure Poisson problem and therefore its fraction of time in the dual-splitting projection
scheme was reduced considerably for non-trivial coarse-grid meshes by using the hybrid multigrid solver presented
here. The benefits of also using this solver in solving the projection and viscous substeps in the dual-splitting projection
scheme should be investigated. A prerequisite for such an investigation would be the extension of the hybrid multigrid
solver to vectorial quantities.

Currently, the hybrid multigrid implementation is limited to uniformly refined meshes. Its extension to (dynamically)
adaptive meshes with hanging nodes is straightforward and should be done in the near future.

As a final remark, it should be noted that the analyzed Poisson problem can be solved twice as fast with CG discretization
than with DG discretization because of the need to perform significantly fewer iterations in the CG case. Based on
this observation, one can derive an alternative algorithm for the auxiliary space idea to solve high-order DG problems.
Instead of using CG only on the coarse-grid space, one could first solve the high-order DG problem rediscretized with
continuous elements and then use that solution as the initial solution for finding the actual solution on the DG space.
Such a two-step algorithm can be summarized as follows:

1. construct the right-hand side of the CG problem by restricting the provided right-hand side bDG, solve the
given problem on the finest mesh with continuous elements and prolongate the result back to the high-order
DG space:

x̂DG ← PcA
−1
CGRcbDG with Rc = P T

c , (75a)

2. use x̂DG as initial guess for solving the actual DG problem:

xDG ← A−1
DGbDG with xDG,0 = x̂DG, (75b)

or alternatively:

xDG − x̂DG ← A−1
DG (bDG −ADGx̂DG) with xDG,0 − x̂DG = 0. (75c)

Preliminary results of tests using this two-step algorithm are promising and show that it is sufficient to perform only one
DG V-cycle after solving the given problem with CG. Table 19 revisits the example of the 2D DG Poisson problem from

62

Section 5 and presents the results for this problem solved in the standard, one-step way – as it was done throughout this
Master’s thesis – as well as in the alternative, two-step way proposed here. It is clearly shown that the additional DG
cycle of this two-step approach only introduces an overhead of 20-40% to the CG solution, leading to a speedup of up
to two compared to the one-step approach. Variations of the two-step approach might improve the performance of the
developed hybrid multigrid solver even more and should be investigated more profoundly in the future, along with its
possible limitations.

It should be noted that the two-step algorithm uses all multigrid components developed, analyzed, and presented in
this Master’s thesis only in a slightly different order. All findings of this thesis therefore remain valid irrespective of
whether a one-step or a two-step hybrid multigrid solver is applied.

63

64

References
[1] G Alzetta, D Arndt, W Bangerth, V Boddu, B Brands, D Davydov, R Gassmoeller, T Heister, L Heltai, K Kormann,

M Kronbichler, M Maier, J.-P. Pelteret, B Turcksin, and D Wells. The deal.II Library, Version 9.0. Journal of
Numerical Mathematics, accepted 2018.

[2] D. N. Arnold, F. Brezzi, B. Cockburn, and L. D Marini. Unified Analysis of Discontinuous Galerkin Methods for
Elliptic Problems. SIAM Journal on Numerical Analysis, 39(5):1749–1779, 2002.

[3] Harold Atkins and Brian Helenbrook. Numerical Evaluation of P-Multigrid Method for the Solution of Discontin-
uous Galerkin Discretizations of Diffusive Equations. In 17th AIAA Computational Fluid Dynamics Conference,
pages 1–11, Toronto, Ontario Canada, 2005. 17th AIAA Computational Fluid Dynamics Conference; 6-9 Jun.
2005, American Institute of Aeronautics and Astronautics. ISBN 978-1-62410-053-6. doi: 10.2514/6.2005-5110.

[4] Michael Bader. Space-Filling Curves : An Introduction with Applications in Scientific Computing, volume 9
of Texts in Computational Science and Engineering. Springer Berlin Heidelberg, Berlin, Heidelberg, Springer
edition, 2013. ISBN 978-3-642-31045-4. doi: 10.1007/978-3-642-31046-1.

[5] Satish Balay, William D. Gropp, Lois Curfman McInnes, and Barry F. Smith. Efficient Management of Parallelism
in Object-Oriented Numerical Software Libraries. In Erlend Arge, editor, Modern Software Tools for Scientific
Computing, pages 163–202. Birkhäuser, Boston, 1997. ISBN 978-1-4612-1986-6 (online); 978-1-4612-7368-4
(print). doi: https://doi.org/10.1007/978-1-4612-1986-6_8.

[6] Satish Balay, Shrirang Abhyankar, Mark F. Adams, and Jed Brown. PETSc Users Manual Revision 3.10,
Mathematics and Computer Science Division. Technical report, Argonne National Laboratory (ANL), Argonne, IL
(United States), jun 2018. URL https://www.mcs.anl.gov/petsc/petsc-current/docs/manual.pdf.

[7] Wolfgang Bangerth, Carsten Burstedde, Timo Heister, and Martin Kronbichler. Algorithms and data structures for
massively parallel generic adaptive finite element codes. ACM Transactions on Mathematical Software, 38(2):
1–28, dec 2011. ISSN 00983500. doi: 10.1145/2049673.2049678.

[8] F Bassi and S Rebay. A High-Order Accurate Discontinuous Finite Element Method for the Numerical Solution
of the Compressible Navier-Stokes Equations. Journal of Computational Physics, 131(2):267–279, 1997.

[9] F. Bassi, A. Ghidoni, S. Rebay, and P. Tesini. High-order accurate p-multigrid discontinuous Galerkin solution
of the Euler equations. International Journal for Numerical Methods in Fluids, 60(8):847–865, jul 2009. ISSN
02712091. doi: 10.1002/fld.1917.

[10] Francesco Bassi and Stefano Rebay. Numerical Solution of the Euler Equations with a Multiorder Discontinuous
Finite Element Method. In S.W. Armfield, editor, Computational Fluid Dynamics 2002, pages 199–204. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2003. ISBN 978-3-642-59334-5 (online); 978-3-642-63938-8 (print). doi:
10.1007/978-3-642-59334-5_27.

[11] Francesco Bassi, Stefano Rebay, G. Mariotti, S. Pedinotti, and M. Savini. A high order accurate discontinuous
finite element method for inviscid and viscous turbomachinery flows. In R. Decuypere and G. Dibelius, editors,
2nd European Conference on Turbomachinery - Fluid Dynamics and Thermodynamics : proceedings, pages
99–108. Technologische Instituut, Antwerpen, 1997. ISBN 90-5204-032-X.

[12] Peter Bastian, Markus Blatt, and Robert Scheichl. Algebraic multigrid for discontinuous Galerkin discretizations
of heterogeneous elliptic problems. Numerical Linear Algebra with Applications, 19(2):367–388, 2012. ISSN
10705325. doi: 10.1002/nla.1816.

[13] Peter Bastian, Eike Hermann Müller, Steffen Müthing, and Marian Piatkowski. Matrix-free multigrid block-
preconditioners for higher order Discontinuous Galerkin discretisations. arXiv:1805.11930, 2018.

[14] Dietrich Braess. Finite Elemente. Springer, Berlin, Heidelberg, 2013. ISBN 978-3-642-34796-2. doi: 10.1007/
978-3-642-34797-9.

[15] F. Brezzi, M. Manzini, D. Marini, P. Pietra, and A. Russo. Discontinuous finite elements for diffusion problems,
1999. URL http://arturo.imati.cnr.it/brezzi/papers/lombardo.pdf.

[16] Jed Brown. Efficient nonlinear solvers for nodal high-order finite elements in 3D. Journal of Scientific Computing,
45(1-3):48–63, 2010. ISSN 08857474. doi: 10.1007/s10915-010-9396-8.

65

https://www.mcs.anl.gov/petsc/petsc-current/docs/manual.pdf
http://arturo.imati.cnr.it/brezzi/papers/lombardo.pdf

[17] Carsten Burstedde, Lucas C. Wilcox, and Omar Ghattas. p4est : Scalable Algorithms for Parallel Adaptive Mesh
Refinement on Forests of Octrees. SIAM Journal on Scientific Computing, 33(3):1103–1133, jan 2011. ISSN
1064-8275. doi: 10.1137/100791634.

[18] Bernardo Cockburn and Chi-Wang Shu. The Local Discontinuous Galerkin Method for Time-Dependent
Convection-Diffusion Systems The Local Discontinuous Galerkin Method for Time-Dependent Convection-
Diffusion Systems. SIAM Journal on Numerical Analysis, 35(6):2440–2463, 1998.

[19] David Darmofal and Krzysztof Fidkowski. Development of a Higher-Order Solver for Aerodynamic Applications.
In 42nd AIAA Aerospace Sciences Meeting and Exhibit, number January, pages 1–12, Reston, Virigina, jan 2004.
American Institute of Aeronautics and Astronautics. ISBN 978-1-62410-078-9. doi: 10.2514/6.2004-436.

[20] Veselin A. Dobrev, Raytcho D. Lazarov, Panayot S. Vassilevski, and Ludmil T. Zikatanov. Two-level precondition-
ing of discontinuous Galerkin approximations of second-order elliptic equations. Numerical Linear Algebra with
Applications, 13(9):753–770, nov 2006. ISSN 10705325. doi: 10.1002/nla.504.

[21] Veselin A. Dobrev, Raytcho D. Lazarov, and Ludmil T. Zikatanov. Preconditioning of Symmetric Interior Penalty
Discontinuous Galerkin FEM for Elliptic Problems. In Ulrich Langer, editor, Domain Decomposition Methods
in Science and Engineering XVII. Lecture Notes in Computational Science and Engineering, volume 60, pages
33–44. Springer, Berlin, Heidelberg, 2008. ISBN 9783540751984. doi: 10.1007/978-3-540-75199-1_3.

[22] Jim Douglas and Todd Dupont. Interior Penalty Procedures for Elliptic and Parabolic Galerkin Methods. In
R. Glowinski, editor, Computing Methods in Applied Sciences. Lecture Notes in Physics, number 58, pages
207–216. Springer, Berlin, Heidelberg, 1976. ISBN 978-3-540-08003-9. doi: 10.1007/BFb0120591.

[23] Niklas Fehn. A Discontinuous Galerkin Approach for the Unsteady Incompressible Navier–Stokes Equations.
Masterarbeit, Technische Universität München, 2015.

[24] Niklas Fehn, Wolfgang A. Wall, and Martin Kronbichler. On the stability of projection methods for the in-
compressible Navier–Stokes equations based on high-order discontinuous Galerkin discretizations. Journal of
Computational Physics, 351(15 December):392–421, dec 2017. ISSN 00219991. doi: 10.1016/j.jcp.2017.09.031.

[25] Niklas Fehn, Wolfgang A Wall, and Martin Kronbichler. Efficiency of high-performance discontinuous Galerkin
spectral element methods for under-resolved turbulent incompressible flows. International Journal for Numerical
Methods in Fluids, 88(1):32–54, sep 2018. ISSN 02712091. doi: org.eaccess.ub.tum.de/10.1002/fld.4511.

[26] Niklas Fehn, Wolfgang A Wall, and Martin Kronbichler. Robust and efficient discontinuous Galerkin methods for
under-resolved turbulent incompressible flows. Journal of Computational Physics, 372(1 November):667–693,
nov 2018. ISSN 00219991. doi: 10.1016/j.jcp.2018.06.037.

[27] Niklas Fehn, Wolfgang A. Wall, and Martin Kronbichler. A matrix-free high-order discontinuous Galerkin
compressible Navier-Stokes solver: A performance comparison of compressible and incompressible formulations
for turbulent incompressible flows. arXiv:1806.03095, jun 2018. doi: 10.1002/ïňĆd.4683.

[28] Niklas Fehn, Wolfgang A Wall, and Martin Kronbichler. Modern discontinuous Galerkin methods for the
simulation of transitional and turbulent flows in biomedical engineering : A comprehensive LES study of the FDA
benchmark nozzle model. Manuskript, 2018.

[29] Krzysztof J. Fidkowski, Todd A. Oliver, James Lu, and David L. Darmofal. p-Multigrid solution of high-order
discontinuous Galerkin discretizations of the compressible Navier-Stokes equations. Journal of Computational
Physics, 207(1):92–113, 2005. ISSN 00219991. doi: 10.1016/j.jcp.2005.01.005.

[30] Paul F. Fischer and James W. Lottes. Hybrid Schwarz-Multigrid Methods for the Spectral Element Method:
Extensions to Navier-Stokes. In Ralf Kornhuber, Ronald W. Hoppe, Jacques Périaux, Olivier Pironneau, Olof
Widlund, and Jinchao Xu, editors, Domain Decomposition Methods in Science and Engineering, pages 35–49.
Springer-Verlag, Berlin/Heidelberg, 2005. ISBN 978-3-540-22523-2. doi: 10.1007/3-540-26825-1_3.

[31] Michael W Gee, Christopher M Siefert, Jonathan J Hu, Ray S Tuminaro, and Marzio G Sala. ML 5.0 Smoothed
Aggregation User’s Guide. Technical report, 2006. URL https://trilinos.org/oldsite/packages/ml/
mlguide5.pdf.

[32] A. Ghidoni, A. Colombo, F. Bassi, and S. Rebay. Efficient p -multigrid discontinuous Galerkin solver for complex
viscous flows on stretched grids. International Journal for Numerical Methods in Fluids, 75(2):134–154, may
2014. ISSN 02712091. doi: 10.1002/fld.3888.

66

https://trilinos.org/oldsite/packages/ml/mlguide5.pdf
https://trilinos.org/oldsite/packages/ml/mlguide5.pdf

[33] Amir Gholami, Dhairya Malhotra, Hari Sundar, and George Biros. FFT, FMM, or Multigrid? A comparative
Study of State-Of-the-Art Poisson Solvers for Uniform and Nonuniform Grids in the Unit Cube. SIAM Journal on
Scientific Computing, 38(3):C280–C306, jan 2016. ISSN 1064-8275. doi: 10.1137/15M1010798.

[34] P. M. Gresho and R. L. Sani. Incompressible Flow and the Finite Element Method, Volume 1: Advection - Diffusion.
Wiley, Chichester, 2000. ISBN 978-0-471-49249-8.

[35] X.-Z Guo and I.N. Katz. Performance Enhancement of the Multi-p Preconditioner. Computers & Mathematics
with Applications, 36(4):1–8, 1998.

[36] Xian-Zhong Guo and I. N. Katz. A Parallel Multi-p Method. Computers & Mathematics with Applications, 39
(9-10):115–123, 2000.

[37] Georg Hager and Gerhard Wellein. Introduction to High Performance Computing for Scientists and Engineers,
volume 20102232 of Chapman & Hall/CRC Computational Science. CRC Press, Boca Raton, jul 2010. ISBN
978-1-4398-1192-4. doi: 10.1201/EBK1439811924.

[38] R.E. Heath, I.M. Gamba, P.J. Morrison, and C. Michler. A discontinuous Galerkin method for the Vlasov–Poisson
system. Journal of Computational Physics, 231(4):1140–1174, feb 2012. ISSN 00219991. doi: 10.1016/j.jcp.
2011.09.020.

[39] Brian Helenbrook, Dimitri Mavriplis, and Harold Atkins. Analysis of “p”-Multigrid for Continuous and Discontinu-
ous Finite Element Discretizations. In 16th AIAA Computational Fluid Dynamics Conference, Orlando, Florida, jun
2003. American Institute of Aeronautics and Astronautics. ISBN 978-1-62410-086-4. doi: 10.2514/6.2003-3989.

[40] Brian T Helenbrook and H L Atkins. Application of p-Multigrid to Discontinuous Galerkin Formulations of the
Poisson Equation. AIAA Journal, 44(3):566–575, 2006. doi: 10.2514/1.15497.

[41] Brian T Helenbrook and H L Atkins. Solving Discontinuous Galerkin Formulations of Poisson’s Equation using
Geometric and p Multigrid. AIAA Journal, 46(4):894–902, apr 2008. ISSN 0001-1452. doi: 10.2514/1.31163.

[42] Brian T Helenbrook and Brendan S Mascarenhas. Analysis of Implicit Time-Advancing p-Multigrid Schemes
for Discontinuous Galerkin Discretizations of the Euler Equations. In 46th AIAA Fluid Dynamics Conference,
Washington, D.C., 2016. American Institute of Aeronautics and Astronautics. ISBN 978-1-62410-436-7. doi:
10.2514/6.2016-3494.

[43] John L. Hennessy and David A. Patterson. Computer Architecture : A Quantitative Approach. Elsevier, Morgan
Kaufmann, Amsterdam, 5. ed. edition, 2012. ISBN 9780123838728. doi: 10.1.1.115.1881.

[44] Van Emden Henson and Ulrike Meier Yang. BoomerAMG: A parallel algebraic multigrid solver and preconditioner.
Applied Numerical Mathematics, 41(1):155–177, 2002. ISSN 01689274. doi: 10.1016/S0168-9274(01)00115-5.

[45] Michael A Heroux, Eric T. Phipps, Andrew G. Salinger, Heidi K. Thornquist, Ray S. Tuminaro, James M
Willenbring, Alan Williams, Kendall S. Stanley, Roscoe A. Bartlett, Vicki E. Howle, Robert J. Hoekstra, Jonathan J.
Hu, Tamara G. Kolda, Richard B. Lehoucq, Kevin R. Long, and Roger P. Pawlowski. An overview of the
Trilinos project. ACM Transactions on Mathematical Software, 31(3):397–423, sep 2005. ISSN 00983500. doi:
10.1145/1089014.1089021.

[46] Koen Hillewaert. Development of the Discontinuous Galerkin Method for High-resolution, Large Scale CFD and
Acoustics in Industrial Geometries. Presses universitaires de Louvain, Louvain, 2013. ISBN 9782875581198.

[47] Koen Hillewaert, P Wesseling, E Oñate, J Périaux, Jean-François Remacle, Nicolas Cheveaugeon, Paul-Emile
Bernard, and Philippe Geuzaine. Analysis of a hybrid p-multigrid method for the discontinuous Galerkin
discretisation of the Euler equations. In Pieter Wesseling, editor, Proceedings of the European Conference on
Computational Fluid Dynamics, Egmond aan Zee, Netherlands, 2006. ECCOMAS CFD 2006. doi: 90-9020970-0.

[48] Ning Hu and Norman Katz. Multi-P Methods: Iterative Algorithms for the P-Version of the Finite Element
Analysis. SIAM Journal on Scientific Computing, 16(6):1308–1332, 1995.

[49] Ning Hu, Xian-Zhong Guo, and I Norman Katz. Multi-p Preconditioners. SIAM Journal on Scientific Computing,
18(6):1676–1697, 1997.

[50] Immo Huismann, Jörg Stiller, and Jochen Fröhlich. Scaling to the stars - a linearly scaling elliptic solver for
p-multigrid. arXiv:1808.03595, 2018.

67

[51] Zhenhua Jiang, Chao Yan, Jian Yu, and Wu Yuan. Practical aspects of p-multigrid discontinuous Galerkin solver
for steady and unsteady RANS simulations. International Journal for Numerical Methods in Fluids, 78(11):
670–690, 2015. ISSN 10970363. doi: 10.1002/fld.4035.

[52] George Em Karniadakis, Moshe Israeli, and Steven A Orszag. High-order splitting methods for the incompressible
Navier-Stokes equations. Journal of Computational Physics, 97(2):414–443, dec 1991. ISSN 00219991. doi:
10.1016/0021-9991(91)90007-8.

[53] Benjamin Krank, Niklas Fehn, Wolfgang A Wall, and Martin Kronbichler. A high-order semi-explicit discontinu-
ous Galerkin solver for 3D incompressible flow with application to DNS and LES of turbulent channel flow. Journal
of Computational Physics, 348(1 November):634–659, nov 2017. ISSN 00219991. doi: 10.1016/j.jcp.2017.07.039.

[54] Rolf Krause and Patrick Zulian. A Parallel Approach to the Variational Transfer of Discrete Fields between
Arbitrarily Distributed Unstructured Finite Element Meshes. SIAM Journal on Scientific Computing, 38(3):
C307–C333, jan 2016. ISSN 1064-8275. doi: 10.1137/15M1008361.

[55] M. Kronbichler, S. Schoeder, C. Müller, and W. A. Wall. Comparison of implicit and explicit hybridizable
discontinuous Galerkin methods for the acoustic wave equation. International Journal for Numerical Methods in
Engineering, 106(9):712–739, jun 2016. ISSN 00295981. doi: 10.1002/nme.5137.

[56] Martin Kronbichler and Momme Allalen. Efficient high-order discontinuous Galerkin finite elements with
matrix-free implementations. Manuskript, 2018.

[57] Martin Kronbichler and Katharina Kormann. A generic interface for parallel cell-based finite element operator
application. Computers and Fluids, 63:135–147, 2012. ISSN 00457930. doi: 10.1016/j.compfluid.2012.04.012.

[58] Martin Kronbichler and Katharina Kormann. Fast matrix-free evaluation of discontinuous Galerkin finite element
operators. arXiv:1711.03590, 2017.

[59] Martin Kronbichler and Wolfgang A Wall. A Performance Comparison of Continuous and Discontinuous Galerkin
Methods with Fast Multigrid Solvers. SIAM Journal on Scientific Computing, 40(5):A3423–A3448, jan 2018.
ISSN 1064-8275. doi: 10.1137/16M110455X.

[60] Qi Li, Kazumasa Ito, Zhishen Wu, Christopher S. Lowry, and Steven P. Loheide. COMSOL multiphysics:
A novel approach to ground water modeling. Ground Water, 47(4):480–487, 2009. ISSN 0017467X. doi:
10.1111/j.1745-6584.2009.00584.x.

[61] C. Liang, R. Kannan, and Z.J. Wang. A p-multigrid spectral difference method with explicit and implicit
smoothers on unstructured triangular grids. Computers & Fluids, 38(2):254–265, feb 2009. ISSN 00457930. doi:
10.1016/j.compfluid.2008.02.004.

[62] James W Lottes and Paul F Fischer. Hybrid Multigrid/Schwarz Algorithms for the Spectral Element Method.
Journal of Scientific Computing, 24(1):45–78, jul 2005. ISSN 0885-7474. doi: 10.1007/s10915-004-4787-3.

[63] Cao Lu, Xiangmin Jiao, and Nikolaos Missirlis. A Hybrid Geometric+Algebraic Multigrid Method with Semi-
Iterative Smoothers. Numerical Linear Algebra with Applications, 21(2):221–238, 2014. ISSN 10991506. doi:
10.1002/nla.1925.

[64] Hong Luo, Joseph D Baum, and Rainald Löhner. A fast, p-Multigrid Discontinuous Galerkin Method for
Compressible Flows at All Speeds. Technical report, 44th AIAA Aerospace Sciences Meeting and Exhibit, 9–12,
January 2006, Reno, Nevada, 2006.

[65] Hong Luo, Joseph D. Baum, and Rainald Löhner. A p-multigrid discontinuous Galerkin method for the Euler
equations on unstructured grids. Journal of Computational Physics, 211(2):767–783, 2006. ISSN 00219991. doi:
10.1016/j.jcp.2005.06.019.

[66] Yvon Maday and Rafael Munoz. Spectral element multigrid. II. Theoretical justification. Journal of Scientific
Computing, 3(4):323–353, dec 1988. ISSN 0885-7474. doi: 10.1007/BF01065177.

[67] Richard A. Malinauskas, Prasanna Hariharan, Steven W. Day, Luke H. Herbertson, Martin Buesen, Ulrich
Steinseifer, Kenneth I. Aycock, Bryan C. Good, Steven Deutsch, Keefe B. Manning, and Brent A. Craven. FDA
Benchmark Medical Device Flow Models for CFD Validation. ASAIO Journal, 63(2):150–160, 2017. ISSN
1058-2916. doi: 10.1097/MAT.0000000000000499.

68

[68] Brendan S. Mascarenhas, Brian T. Helenbrook, and Harold L. Atkins. Application of p-Multigrid to Discontinuous
Galerkin Formulations of the Euler Equations. AIAA Journal, 47(5):1200–1208, may 2009. ISSN 0001-1452. doi:
10.2514/1.39765.

[69] Brendan S. Mascarenhas, Brian T. Helenbrook, and Harold L. Atkins. Coupling p-multigrid to geometric multigrid
for discontinuous Galerkin formulations of the convection-diffusion equation. Journal of Computational Physics,
229(10):3664–3674, 2010. ISSN 10902716. doi: 10.1016/j.jcp.2010.01.020.

[70] John D. McCalpin. STREAM: Sustainable Memory Bandwidth in High Performance Computers, 2018. URL
https://www.cs.virginia.edu/stream/.

[71] J.M. Melenk, K Gerdes, and Ch. Schwab. Fully discrete hp-finite elements: fast quadrature. Computer Methods
in Applied Mechanics and Engineering, 190(32-33):4339–4364, may 2001. ISSN 00457825. doi: 10.1016/
S0045-7825(00)00322-4.

[72] William F. Mitchell. The hp-multigrid method applied to hp-adaptive refinement of triangular grids. Numerical
Linear Algebra with Applications, 17(2-3):211–228, 2010. ISSN 10705325. doi: 10.1002/nla.700.

[73] Steffen Müthing, Marian Piatkowski, and Peter Bastian. High-performance Implementation of Matrix-free
High-order Discontinuous Galerkin Methods. arXiv:1711.10885, nov 2017.

[74] Artem Napov and Yvan Notay. An Algebraic Multigrid Method with Guaranteed Convergence Rate. SIAM
Journal on Scientific Computing, 34(2):A1079–A1109, 2012. ISSN 1064-8275. doi: 10.1137/100818509.

[75] Cristian R. Nastase and Dimitri J. Mavriplis. High-order discontinuous Galerkin methods using an hp-multigrid
approach. Journal of Computational Physics, 213(1):330–357, 2006. ISSN 00219991. doi: 10.1016/j.jcp.2005.08.
022.

[76] Yvan Notay. An aggregation-based algebraic multigrid method. Electronic Transactions on Numerical Analysis,
37:123–146, 2010. ISSN 1068-9613.

[77] Yvan Notay. Aggregation-Based Algebraic Multigrid for Convection-Diffusion Equations. SIAM Journal on
Scientific Computing, 34(4):A2288–A2316, 2012. ISSN 1064-8275. doi: 10.1137/110835347.

[78] Yvan Notay. User ’ s Guide to AGMG. Technical report, 2018. URL http://agmg.eu/agmg{_}userguide.
pdf.

[79] B. O’Malley, J. Kópházi, R. P. Smedley-Stevenson, and M. D. Eaton. P-multigrid expansion of hybrid multilevel
solvers for discontinuous Galerkin finite element discrete ordinate (DG-FEM-SN) diffusion synthetic acceleration
(DSA) of radiation transport algorithms. Progress in Nuclear Energy, 98:177–186, 2017. ISSN 01491970. doi:
10.1016/j.pnucene.2017.03.014.

[80] B. O’Malley, J. Kópházi, R. P. Smedley-Stevenson, and M. D. Eaton. Hybrid Multi-level solvers for discontinuous
Galerkin finite element discrete ordinate diffusion synthetic acceleration of radiation transport algorithms. Annals
of Nuclear Energy, 102(April):134–147, 2017. ISSN 0306-4549. doi: doi.org/10.1016/j.anucene.2016.11.048.

[81] Steven A. Orszag. Spectral methods for problems in complex geometries. Journal of Computational Physics, 37
(1):70–92, aug 1980. ISSN 00219991. doi: 10.1016/0021-9991(80)90005-4.

[82] Will Pazner and Per-Olof Persson. Approximate tensor-product preconditioners for very high order discontinuous
Galerkin methods. Journal of Computational Physics, 354(1 February):344–369, feb 2018. ISSN 00219991. doi:
10.1016/j.jcp.2017.10.030.

[83] Sachin Premasuthan, Chunlei Liang, Antony Jameson, and Zhi Wang. A p-Multigrid Spectral Difference Method
For Viscous Compressible Flow Using 2D Quadrilateral Meshes. In 47th AIAA Aerospace Sciences Meeting
including The New Horizons Forum and Aerospace Exposition, Orlando, Florida, 2009. American Institute of
Aeronautics and Astronautics. ISBN 978-1-60086-973-0. doi: 10.2514/6.2009-950.

[84] Glyn Owen Rees. Efficient “ Black-Box ” Multigrid Solvers for Convection-Dominated Problems. Promotionsar-
beit, University of Manchester, 2011.

[85] Thomas Roehl, Jan Treibig, Georg Hager, and Gerhard Wellein. Overhead Analysis of Performance Counter
Measurements. In 2014 43rd International Conference on Parallel Processing Workshops, volume 2015-May,
pages 176–185, Minneapolis, Minnesota, USA, sep 2014. IEEE. ISBN 978-1-4799-5615-9. doi: 10.1109/ICPPW.
2014.34.

69

https://www.cs.virginia.edu/stream/
http://agmg.eu/agmg{_}userguide.pdf
http://agmg.eu/agmg{_}userguide.pdf

[86] Einar M. Rønquist and Anthony T. Patera. Spectral element multigrid. I. Formulation and numerical results.
Journal of Scientific Computing, 2(4):389–406, 1987. ISSN 08857474. doi: 10.1007/BF01061297.

[87] Johann Rudi, Omar Ghattas, A. Cristiano I. Malossi, Tobin Isaac, Georg Stadler, Michael Gurnis, Peter W. J.
Staar, Yves Ineichen, Costas Bekas, and Alessandro Curioni. An extreme-scale implicit solver for complex
PDEs. In Proceedings of the International Conference for High Performance Computing, Networking, Storage
and Analysis on - SC ’15, pages 1–12, New York, USA, 2015. ACM Press. ISBN 9781450337236. doi:
10.1145/2807591.2807675.

[88] Yousef Saad. Iterative Methods for Sparse Linear Systems. Society for Industrial and Applied Mathematics,
Philadelphia, PA, 2nd edition, 2003.

[89] Khosro Shahbazi, Dimitri J. Mavriplis, and Nicholas K. Burgess. Multigrid algorithms for high-order discontinuous
Galerkin discretizations of the compressible Navier-Stokes equations. Journal of Computational Physics, 228(21):
7917–7940, 2009. ISSN 00219991. doi: 10.1016/j.jcp.2009.07.013.

[90] C. Siefert, R. Tuminaro, A. Gerstenberger, G. Scovazzi, and S. S. Collis. Algebraic multigrid techniques for
discontinuous Galerkin methods with varying polynomial order. Computational Geosciences, 18(5):597–612, oct
2014. ISSN 1420-0597. doi: 10.1007/s10596-014-9419-x.

[91] Jörg Stiller. Robust multigrid for high-order discontinuous Galerkin methods: A fast Poisson solver suitable for
high-aspect ratio Cartesian grids. arXiv:1603.02524, mar 2016. doi: 10.1016/j.jcp.2016.09.041.

[92] Jörg Stiller. Robust Multigrid for Cartesian Interior Penalty DG Formulations of the Poisson Equation in 3D. In
M. Bittencourt, editor, Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2016.
Lecture Notes in Computational Science and Engineering, volume 119, pages 189–201. Springer, Cham, 2017.
ISBN 978-3-319-65869-8 (print); 978-3-319-65870-4 (online). doi: 10.1007/978-3-319-65870-4_12.

[93] K. Stüben. A review of algebraic multigrid. Journal of Computational and Applied Mathematics, 128(1-2):
281–309, 2001. ISSN 03770427. doi: 10.1016/S0377-0427(00)00516-1.

[94] Hari Sundar, George Biros, Carsten Burstedde, Johann Rudi, Omar Ghattas, and Georg Stadler. Parallel geometric-
algebraic multigrid on unstructured forests of octrees. In Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis, pages 1–11, Salt Lake City, UT, 2012. International
Conference for High Performance Computing, Networking, Storage and Analysis, SC. ISBN 9781467308069.
doi: 10.1109/SC.2012.91.

[95] Hari Sundar, Georg Stadler, and George Biros. Comparison of multigrid algorithms for high-order continuous
finite element discretizations. Numerical Linear Algebra with Applications, 22(4):664–680, 2015. ISSN 10991506.
doi: 10.1002/nla.1979.

[96] Jan Treibig, Georg Hager, and Gerhard Wellein. LIKWID: A Lightweight Performance-Oriented Tool Suite
for x86 Multicore Environments. In Wang-Chien Lee, editor, 2010 39th International Conference on Parallel
Processing Workshops, pages 207–216, Piscataway, NJ, sep 2010. IEEE. ISBN 978-1-4244-7918-4. doi:
10.1109/ICPPW.2010.38.

[97] P. van Slingerland and C. Vuik. Scalable two-level preconditioning and deflation based on a piecewise constant
subspace for (SIP)DG systems for diffusion problems. Journal of Computational and Applied Mathematics, 275:
61–78, feb 2015. ISSN 03770427. doi: 10.1016/j.cam.2014.06.028.

[98] Richard S. Varga. Matrix Iterative Analysis, volume 27 of Springer Series in Computational Mathematics.
Springer, Berlin, Heidelberg, 2000. ISBN 978-3-642-05154-8. doi: 10.1007/978-3-642-05156-2.

[99] Samuel Williams, Andrew Waterman, and David Patterson. Roofline : An Insightful Visual Performance
Model for Multicore Architectures. Communications of the ACM, 52(4):65, apr 2009. ISSN 00010782. doi:
10.1145/1498765.1498785.

70

Appendices
A Thread and cache topology

The following informations of the CPUs used for all simulations have been extracted with the program
likwid-topology from the LIKWID suite [85, 96].

−−
CPU name : I n t e l (R) Xeon (R) CPU E5−2697 v3 @ 2 . 6 0GHz
CPU t y p e : I n t e l Xeon Haswel l EN/ EP /EX p r o c e s s o r
CPU s t e p p i n g : 2
∗∗
Hardware Thread Topology
∗∗
S o c k e t s : 2
Cores p e r s o c k e t : 14
Threads p e r c o r e : 1
−−
HWThread Thread Core S oc ke t A v a i l a b l e

0 0 0 0 ∗
1 0 1 0 ∗
2 0 2 0 ∗
3 0 3 0 ∗
4 0 4 0 ∗
5 0 5 0 ∗
6 0 6 0 ∗
7 0 7 0 ∗
8 0 8 0 ∗
9 0 9 0 ∗

10 0 10 0 ∗
11 0 11 0 ∗
12 0 12 0 ∗
13 0 13 0 ∗
14 0 0 1 ∗
15 0 1 1 ∗
16 0 2 1 ∗
17 0 3 1 ∗
18 0 4 1 ∗
19 0 5 1 ∗
20 0 6 1 ∗
21 0 7 1 ∗
22 0 8 1 ∗
23 0 9 1 ∗
24 0 10 1 ∗
25 0 11 1 ∗
26 0 12 1 ∗
27 0 13 1 ∗
−−
So ck e t 0 : (0 1 2 3 4 5 6 7 8 9 10 11 12 13)
So ck e t 1 : (14 15 16 17 18 19 20 21 22 23 24 25 26 27)
−−
∗∗
Cache Topology
∗∗
Leve l : 1
S i z e : 32 kB
Cache g r ou ps : (0) (1) (2) (3) (4) (5) (6) (7)

(8) (9) (10) (11) (12) (13) (14) (15)
(16) (17) (18) (19) (20) (21) (22) (23)
(24) (25) (26) (27)

−−
Leve l : 2
S i z e : 256 kB
Cache g r ou ps : (0) (1) (2) (3) (4) (5) (6) (7)

(8) (9) (10) (11) (12) (13) (14) (15)
(16) (17) (18) (19) (20) (21) (22) (23)
(24) (25) (26) (27)

−−
Leve l : 3
S i z e : 18 MB
Cache g r ou ps : (0 1 2 3 4 5 6) (7 8 9 10 11 12 13)

(14 15 16 17 18 19 20) (21 22 23 24 25 26 27)
−−
∗∗
NUMA Topology
∗∗
NUMA domains : 4

71

−−
Domain : 0
P r o c e s s o r s : (0 1 2 3 4 5 6)
D i s t a n c e s : 10 11 21 21
Free memory : 13221 .3 MB
T o t a l memory : 15677 .5 MB
−−
Domain : 1
P r o c e s s o r s : (7 8 9 10 11 12 13)
D i s t a n c e s : 11 10 21 21
Free memory : 14434 .3 MB
T o t a l memory : 16384 MB
−−
Domain : 2
P r o c e s s o r s : (14 15 16 17 18 19 20)
D i s t a n c e s : 21 21 10 11
Free memory : 15005 .6 MB
T o t a l memory : 16384 MB
−−
Domain : 3
P r o c e s s o r s : (21 22 23 24 25 26 27)
D i s t a n c e s : 21 21 11 10
Free memory : 15739 .1 MB
T o t a l memory : 16384 MB
−−

72

	Introduction
	Methods
	High-order CG discretization
	High-order DG discretization
	Hybrid multigrid preconditioner
	Preconditioned conjugate gradient
	Chebyshev smoother
	Algebraic coarse-grid solver
	Intergrid operators

	Implementation
	Efficient matrix-free matrix-vector multiplication
	Extracting a matrix
	Working with existing FE infrastructure

	Performance analysis of main multigrid components
	Hardware
	Discrete operator
	Transfer operators

	Application: Poisson problem
	Problem description
	Default configuration of hybrid multigrid solver
	Convergence
	Node-level performance
	Coarse-grid preconditioner: AMG vs. simple iterative solvers (point Jacobi, Chebyshev solver)
	Algebraic coarse-grid solver
	P-sequences
	Strong scaling
	Weak scaling

	Application: convection–diffusion equation
	Spatial discretization
	Numerical results for the boundary-layer problem

	Application: incompressible Navier–Stokes equations
	Governing equations and numerical discretization
	Numerical results for the FDA benchmark nozzle problem

	Conclusions & outlook
	Appendices
	Thread and cache topology

