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Abstract

Local inhomogeneous electrode utilization in recent lithium-ion batteries

tends to increase due to larger sizes and/or higher densi�cation, which poses

a challenge for accurate, model-based monitoring. Pseudo-two dimensional

(p2D) physicochemical models (PCM) can o�er such locality via calculating

local potentials and concentrations through the thickness of the electrode

stack and are numerically reduced for implementation in a microcontroller in

this work. Finite di�erence method combined with solid-di�usion approxima-

tions and orthogonal collocation reformulation are applied to generate three

MATLAB- and three microcontroller-suitable C-code p2D-PCMs, which are

experimentally validated towards constant current charge/discharge and driv-

ing cycle loads on a high-energy NMC-811/SiC-18650 lithium-ion battery.

Benchmarking to an equivalent circuit model reveals similar mean cell volt-

age errors below 20 mV for the driving cycle. Reducing spatial elements

reveals errors below 1 % for local (i.e. concentrations/potentials) and global
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states (i.e. cell voltage/temperature) and is applied to speed-up the C-code

p2D-PCMs in the microcontroller (max. 168 MHz with 192 kB RAM) to

calculate at least 37 % faster than real-time. Real-time computability is in-

vestigated via varying processor frequencies and using hardware acceleration

schemes. The memory allocation to solve and store the p2D-PCMs on the

microcontroller require 115 kB and 213 kB at a maximum, respectively.

Keywords: Lithium-ion battery, Model reduction, Pseudo-two dimensional

model, Microcontroller, Nickel-rich, Graphite-silicon composite

1. Introduction

Recent achievements in higher energy density of lithium-ion batteries

(LIBs) promote inhomogeneous usage [1] either along the electrodes or through

the thickness of the cell stack [2]. Therefore, monitoring and controlling of

the battery's states on local scale are necessary to guarantee e�cient uti-

lization and safety during both dynamic (i.e. driving cycle) or rather static

loads (i.e. fast charging).

Beside larger electrodes, thicker composite coatings, higher densi�cation (i.e.

porosity< 20 %) and high capacitive active materials such as nickel-rich cath-

odes (e.g. NMC-811) and graphite-silicon composite anodes (SiC) are applied

to increase the energy density. The resulting increase of capacity can lead to

local current densities along the electrodes exemplarily up to 4.91 mA cm−2

at 1C for a 3.35Ah 18560 LIB (INR18650-MJ1, LGChem) incorporating low

electrode porosities of 21.6 % and 17.1 % for the SiC anode and NMC-811

cathode [2]. As a result, inhomogeneous utilization through the cell stack

and along the electrodes appears [1].
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Beside the global states such as cell voltage, applied current and surface tem-

perature, proper LIB monitoring should estimate also the local states such

as potentials and concentrations in the electrolyte and the active material to

ease harmful side-reactions such as lithium plating [3, 4] or solid-electrolyte-

interphase (SEI) growth and cracking [5] or to avoid critical hot spots [1].

State-of-the-art model-based monitoring incorporate equivalent circuit mod-

els (ECMs) as it o�ers fast calculation and easy parameterization. However,

only global states can be simulated. Physicochemical models (PCMs) such

as the newman-type [6] pseudo-two dimensional (p2D) model o�er simu-

lated local states based on porous electrode, concentrated solution theory

and electrode kinetics through the thickness of the cell stack. However, this

model comes with computational complexity due to solving its di�erential

algebraic equation (DAE) system, which signi�cantly slows down the calcu-

lation. Together with the complex parameterization, application in battery

management system (BMS) outside the research �eld is hindered.

In this matter, we want to investigate the suitability of the p2D model in

embedded systems (i.e. microcontroller) via evaluating the computational

perfomance and simulation accuracy of p2D-PCMs using di�erent spatial

and time discretizations, approximation schemes for the particle domain and

solvers. Three di�erent p2D-PCMs are parameterized for a 18650 NMC-

811/SiC LIB (INR18650-MJ1 [2]) and implemented �rst in MATLAB R© and

second transferred into a stand-alone C-code for microcontroller implemen-

tation. Errors of parameterization, model reduction, transfer into the micro-

controller and validation via measurements are outlined for constant current

(CC) charge and discharge and a driving cycle scenario to evaluate the suit-
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ability of the p2D-PCMs for real-time simulation in embedded systems.

2. Model reduction of the p2D physicochemical model

To ease the computational ine�ciency, model reduction can be applied

to the p2D-PCM [6], which is summarized in fundamental reviews [7, 8].

In this work, its actual implementation in the STM32F407VGT6 microcon-

troller (STM32, STMicroelectronics [9]) is evaluated towards computation

speed and simulation accuracy, coming with crucial limitations in computa-

tion power (max. 168MHz in a 32-bit ARM R© Cortex R©-M4 core) and memory

ressources o�ering only a maximum of 1024 kB �ash memory to store and

a maximum of 192 kB static random accessible memory (RAM) to solve the

model. These limitations are often not considered in research as reductions

are investigated on desktop computers.

In this matter, low spatial discretizations with su�cient accuracy are fa-

vored as the total number of spatial elements de�nes the size of the DAE,

the related memory requirements and thus the computational e�ort. Spatial

discretization of the particle domain (i.e. 'pseudo'-domain, r-coordinate) can

cause a large DAE system via discretizing the solid-di�usion partial di�eren-

tial equation (PDE). At every node in the electrolyte domain (x-coordinate),

this PDE is solved for the concentration cs of lithium-ions, which tremen-

dously raises the allocated memory. As only the particle-surface concentra-

tion cs,s is needed for the kinetics, its numerical reduction is feasible. Ap-

proximation methods for the concentration pro�le in the particle were imple-

mented in literature via volume averaging together with a parabolic pro�le

(PP) [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21] or di�usion length ap-
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proaches [22, 23, 24], which suggests linearity between surface- and average-

concentration cs,ave. Su�cient accuracy and computation e�ciency appeared

via using an eigenfunction method (EM) [25, 26, 27, 28], where the solution

is derived from a truncated, analytical solution of an in�nite series of eigen-

functions. Maintaining a spatial discretization of the PDE, reformulations to

an ordinary di�erential equation (ODE) in time via spectral methods (e.g.

orthogonal collocation (OC)) [29, 30, 31, 32, 33, 34, 35] showed an enormous

calculation acceleration while guaranteeing su�cient accuracy. Also stan-

dard discretization schemes such as �nite volume methods (FVM) (e.g �nite

di�erence method (FDM) or �nite element method (FEM)) [36, 30, 37, 38]

were investgated next to integral methods such as the duhamel superposition

integral (DSI) [6, 39, 40, 41, 42]. Reducing the entire solid phase to a single

particle (SPM, [43, 16, 44, 45]) revealed promising computational e�cicency,

but is not regarded in the following as the original p2D-PCM [6] is focussed

in this work.

Referring to real-time computability and su�cient simulation accuracy as

seen in our previous work [46], we focus on a FDM discretization for the

electrolyte domain accompanied with two di�erent approximation schemes

(i.e. PP- [11] and EM [25]) for the particle domain. For comparison, the

third p2D-PCM uses orthogonal collocation and thus maintains a spatial

discretization of the particle domain.

As the PP- [47] and EM-approximation are adopted from the corresponding

original work, which have already shown its validity, accuracy and computa-

tional e�ciency, the reader is referred to these works [13, 14, 48, 15, 17, 26, 27]

for more information. The OC-method was used as well in literature be-
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fore [49, 31] and a single work [34] investigated the performance on a micro-

controller (ATMEL 32UC3A1512 at 16MHz and 512 kB RAM [34]) including

21 DAE which could be solved in at least 190 ms under 1C CC discharge.

Unfortunately, no description of the actual implementation on this microcon-

troller is shown [34] and the work misses implementation recommendations,

detailed computational performance analysis and application-near load sce-

narios.

According to literature, the PP-, EM- and OC-PCM o�er signi�cant compu-

tation speed, reduction of DAE size and maintain su�cient accuracy to be

implemented in the STM32 [9] used in this work. Far to little work [34] had

focussed on an actual microcontroller implementation of the p2D-PCM in the

past, which is one of the main objectives of this work together with evaluat-

ing the most suitable discretization/approximation scheme to gain real-time

computation and low simulation error in embedded systems.

3. Modeling of a 18650 NMC-811/SiC lithium-ion battery

As shown in Table 1, three di�erent p2D-PCMs are investigated incorpo-

rating di�erent spatial discretizations/approximations and two benchmark

models (COMSOL-PCM and ECM) are used to simulate a 18650 NMC-

811/SiC LIB [2]. The three p2D-PCMs are used as stand-alone MATLAB R©-

and C-code to simulate on a desktop computer and the STM32 microcon-

troller, respectively. The MATLAB R©-codes are used for model parameteri-

zation and validation, determining the simulation error via reducing spatial

discretization and evaluate the implementation error for the C-code equiva-

lents in the microcontroller. As benchmarks, the COMSOL-PCM uses COM-

6



Table 1: Model overview

Model
Spatial discretization

Framework Thermal
x−domain r−domain model

PP-PCM FDM Parabolic I

MATLAB III &

√

EM-PCM FDM Eigenfunction II

C-code IV

√

OC-PCM Orthogonal collocation
√

COMSOL-PCM FDM COMSOL V

√

ECM n.a. MATLAB/Simulink III

√

I Ref.[11] II Ref.[25] III Ref.[50] IV for STM32 microcontroller V Ref. [51]

SOL Multiphysics R© and the ECM is implemented in MATLAB/Simulink to

simulate on a desktop computer. The PP- and EM-PCM revealed di�erent

suitability in terms of constant and dynamic loads [46] and are chosen in this

work for evaluating a standard, equidistant spatial FDM discretization paired

with di�erent solid-approximations on a microcontroller instead of hardware

and software oversized desktop PCs, which are not suitable to evaluate em-

bedded system applicability. The OC-PCM uses no solid-approximation and

no standard FDM-dicsretization, but a reformulation of the p2D-PCM equa-

tions to exclusively ODEs in time via Chebyshev orthogonal collocation,

which revealed distinct speed-up on desktop PCs compared to models like

the PP- and EM-PCM. However, this reformulation must be evaluated in

a microcontroller to evaluate its suitability for embedded systems, which is

investigated here.

The DAE system of the p2D-PCM is shown in Table A.14 and the parame-

terization [2] is shown in Table A.12 and A.13.
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3.1. Equivalent circuit model

The ECM consists of a single capacitor/resistor networkR1 and C1 ('RC'),

an ohmic resistance Ri and an open-circuit voltage VOCV . As the tempera-

ture has signi�cant in�uence on the cell behavior [52], the parameterization

tests of the ECM were proceeded at 25 and 40 ◦C beside the state of charge

(SoC) dependency. This �rst-order model [26] o�ers the best compromise of

accuracy and compexity [53] incorporating the fundamental equations as

Icell = C1 · d V1d t
+ V1

R1

Vcell = VOCV + V1 + Icell ·Ri

mcp
d Tcell
d t

= (VOCV − Vcell − d VOCV
d T

· T ) · Icell − I2
cellRi − α∞Asurf (Tcell − T∞)

with Icell > 0 for charge and Icell < 0 for discharge

The resistance Ri represents the ohmic resistance on the current collector

foils, the RC network accounts for any transient dynamics referring to elec-

trochemical processes [54] and the voltage source VOCV represents the equi-

librium state. To parameterize the ECM variables (i.e. VOCV , Ri, R1, C1,

d VOCV
d T

), three di�erent INR18650-MJ1 cells were tested and the generated

data was averaged and interpolated in 1 % SoC steps. The tests included CC,

constant voltage (CV), pulse current (PC) and electrochemical impedance

spectroscopy (EIS) periods as summarized in Table 2. In terms of VOCV , the

charge and discharge measurement were averaged to compensate cell polar-

ization e�ects. The entropic coe�cient d VOCV
d T

was derived from accelerated

rate calorimetry (ARC) [2] and validated via the potentiometric method ac-

cording to Zilberman et al. [55]. The passive components Ri, R1 and C1

were parameterized by pulse �tting as depicted in Table 2. 88 pulses for

each temperature were used and a graphical illustration of the ECM and its
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Table 2: Measurements for parameterizing the ECM

Parameter Measurement Voltage Current Temperature

VOCV
CC charge/discharge 2.5 - 4.2 V 0.033C

25 ◦C
CV 2.5 / 4.2 V +0.01C/-0.01C I

d VOCV

d T

CC charge/discharge 2.5 - 4.2 V 0.2C ARCRef. [55]

Potentiometric method according to Zilberman et al. [55]

R1, C1 PC 2.5 - 4.2 V
±0.5/1C 25 ◦C

for 10/20 s II 40 ◦C

Ri PC/EIS III 2.5 - 4.2 V
±0.5/1C 25 ◦C

for 10/20 s II 40 ◦C

I Measurement equipement (BaSyTec CTS) de�nes charge > 0 and discharge < 0 II 1 h rest before

PC, applied in 10 % SoC steps from 2.5 to 4.2 V and vice versa III EIS at 0.042C before PC and

zero-crossing at Re{Z} = 0 as initial point for the �tting algorithm of Ri

parameters is shown in our supplementary part. The input variable is the

applied current Icell from which the SoC variable is integrated over time. The

ECM is implemented in MATLAB R©/Simulink and solved via the ode14x [56]

solver at a step-size of 1 s.

The solving process and the necessary parameterization �les are expected

neither to overload the RAM and �ash memory nor to exceed the computa-

tion power of the STM32 and other works [57, 58, 59] have already shown

the actual implementation in microcontrollers. As this work focusses on the

implementation and solving of the p2D-PCM, the ECM is not transferred

into the microcontroller but used as a benchmark for state-of-the-art model-

based monitoring of LIBs in real-time operating systems and is referenced for

computation speed and simulation accuracy of the MATLAB R©-code PCMs.
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3.2. PP- and EM-PCM using FDM and solid-di�usion approximation

The PP- and EM-PCMwere already presented in our previous work [46] in

terms of steady-state representation together with a non-linear Kalman Fil-

ter [60, 61, 62] for state estimation of a LiCoO2/LiC6 LIB. In this work, the

MATLAB R©-code PP- and EM-PCM are parameterized for a NMC-811/SiC

LIB and transferred into stand-alone C-codes for the microcontroller.

Figure 1 shows the �ow chart of the PP- and EM-PCM, which di�er in

the approximation of the solid-di�usion PDE ('Mass Balance (solid)'). The

MATLAB R© codes start with the parameterization (see Table A.12 and A.13)

and calculate the initial states by assuming an equilibrium state [42]. In the

main part, a new time period4 t is added until a stop condition as tmax, Vmin

or Vmax is met. The initial state vector for the iterative time step k is set

to the previous, consistent solution k− 1 and the model is run to compute a

new consistent solution of the state variables xk. The iterative approxima-

tion i of the model equations refers to every node j in the electrolyte domain

and calculates the model equations g (see Table A.14) and the corresponding

jacobian J [46]. The Crank-Nicolson method [40] is used for �rst order time

derivatives [46] and the time step is set to 1 s. Next, the matrix inversion [63]

(A/b, MATLAB R©) is used to generate the state update dx. Note, that the

temperature is calculated afterwards [46] according to heat generation q and

heat loss to the ambience q∞. The heat calculation proposed from COM-

SOL Multiphysics R© and other works [49] revealed similar results with small

deviations up to 0.2 /0.7 % on average for 1C CC charge/discharge as the

computational less expensive calculation [52, 64, 65] used in this work (see

Table A.14).
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Parameterization

Initial states

Initialization

tk = tk−1 +4t
xk = xk−1

New time period 4t

Tk = Tk−1 + f(q, q∞)

Temperature

End

tk < tmax

Vk ∈ [Vmin,Vmax]

No

Yes
dx < {εabs, εrel} j > nj

i = i+ 1

dx = −J/g
Newton iterative solvingRun model

Yes

No

Approximation of PCM
Model equations

Mass Balance (liquid)

Mass Balance (solid)

Jacobian matrix (J)

Potential (liquid)

Potential (solid)

Charge balance

Electrode kinetics

j = j + 1

Yes

No

x
r

Porous
Anode

Porous
Cathode

Separator

PP-/EM-PCM
(p2D)

State update

xk = xk + dx

Figure 1: Simpli�ed �ow chart of the stand-alone-codes of PP- and EM-PCM imple-

mented in MATLAB R©2017b. The approximation of the solid-di�usion PDE ('Mass bal-

ance (solid)') is either implemented via the polynomial pro�le (PP) [11] or an eigenfunction

method (EM) [25] for the PP- and EM-PCM, respectively.

To conclude, the PP- and EM-PCM use FDM together with solid-di�usion

approximation and in this work we want to evaluate, if such standard tech-

niques are su�cient to gain real-time computability of the p2D-PCM in the

STM32 microcontroller.
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3.3. OC-PCM using orthogonal collocation on Chebyshev nodes

The OC-PCM uses a spectral method to reformulate the spatial dis-

cretization on Chebyshev collocation nodes [49] of the DAEs in both the

x and r domain. The resulting ODEs in time and algebraic equations (AEs)

form a DAE system as

Mx′ = f(tk,x)

which is solved via the ode15s [66, 67, 68] solver of MATLAB R©. In terms

of the reformulation, an unknown continuous function is approximated by

a polynomial, which is determined by its values at the so called Chebyshev

nodes (i.e. xj = cos (π j
nj

) ) for a given number of nodes j after rescaling

each domain into [−1, 1] [49]. In contrast to other work [49], the electrolyte

potential Φl accounts for activity formulation f± [6] as

∂Φl(x,t)
∂x

= − il(x,t)

κeffl

+ 2RT
F

(1− t0+) ·
[
1 + d ln f±

d ln cl(x,t)

]
· ∂ ln cl(x,t)

∂x

and the temperature calculation is identical to the PP- and EM-PCM [52,

64, 65]. Figure 2 shows the �ow chart of the OC-PCM. It starts with the

calculation of the required Chebyshev di�erentiation matrix D, which is cal-

culated once together with the mass matrixM and the Clenshaw quadrature

weights ω to evaluate the sum of �nite integrals to determine the jacobian

matrix J . Next, the initialization of the ODE solver (ode15s [66, 67, 68])

is de�ned via calculating an initial jacobian (daeic12 [69]) and a �rst time

step is estimated. The following Newton iterative solving uses the same

thresholds for the tolerances εabs and εrel within the cell voltage range and

the time span as given for the PP- and EM-PCM. If four iterations o�er no

convergence, the solver updates the jacobian and respectively the iteration
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Approximation of PCM
Model Equations

Parameterization

Precomputation

Initialization

End

tk < tmax

Vk ∈ [Vmin,Vmax]

No

Yes

Converge in i < 4

j > nj

Chebyshev differentiation matrix D

xk = xk + dx

State update

Run model

No

j = j + 1

Yes

No

x
r

Porous
Anode

Porous
Cathode

Separator

Initial states

OC-PCM

(p2D)

Clenshaw-Curtis weights ω

Mass matrix M

Mass Balance (liquid)

Mass Balance (solid)

Jacobian matrix (J)

Potential (liquid)

Potential (solid)

Charge balance

Electrode kinetics

Temperature

Initial J (daeic12)

Initial stepsize

ODE Solver (ode15s)

tk = tk−1 +4t

xk = xk−1

ODE Solver (ode15s)

Mx′ = f(tk,x)
Newton iterative solving

Yes

Reduce
4t

i = i+ 1

Yes
dx < {εabs, εrel}

No

J current?
No

Yes

Figure 2: Simpli�ed �ow chart of the stand-alone-code of the OC-PCM implemented in

MATLAB R©2017b. The spatial discretization is reformulated using Chebyshev orthogonal

collocation [49] and the resulting DAE system is solved using an ODE solver (ode15s [66,

67, 68]) of MATLAB R©.

matrix Mi and the process starts again. If the jacobian is current and no

convergence is expected, the step-size is decreased [66]. The solver itself uses

a linearly implicit, one-step method based on numerical di�erentiation for-

mulas (NDFs) implemented in backward di�erences [66, 67, 70], which uses
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an iteration matrixMi as

Mi = M − 4t
(1−k)γk

· J

to generate the state update dx. The term γk represents the coe�cients of

the NDFs [66], k the order of the NDF and κ is a scalar factor [70]. At this

point, the reader is referred to the original work [66, 67] for more informa-

tion about the solver itself and the iterative state update is outlined in more

detail in our supplementary part.

Note, the jacobian is calculated analytically at every spatial node j for every

derivative ∂f
∂y

and passed directly to the solver instead of using the incor-

porated ode15s FDM. Thus, a discretization of 10-10-10-30 (i.e. 'anode-

separator-cathode-particle' domain) reveals approximately a 20 times faster

calculation as seen in this work. Further improvement was achieved by using

sparse structure (sparse [69]) of the jacobian and the mass matrix. Even if

the used spectral method leads to full di�erentiation matrices while the ja-

cobian for the DAE system is still sparse (≈ 4 % are non-zero), using sparse

linear algebra reduces the computational cost by a factor of 4 (referring to

10-10-10-30), which tends to increase for �ner discretizations.

In sum, the OC-PCM uses reformulation, which shows signi�cant compu-

tational acceleration of the solving process on a desktop computer. In this

work we evaluate the transfer of the OC-PCM into a stand-alone C-code

including the ODE solver and the real-time ability of simulating a LIB on a

microcontroller.
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3.4. Rigorous COMSOL-PCM

As a benchmark, the liion-model [51] of COMSOL Multiphysics R© is used

and run via the LiveLink [44] application using MATLAB R©2017b. The ap-

proximation functions are set to linear and a total 53, 8 and 40 of spatial

nodes in the anode, separator and cathode domain are used with 20 nodes in

the particle domain. The temperature is calculated with a single ODE (see

Table A.14). The DAE system is solved with the 'Multifrontal massively

parallel sparse direct solver' (MUMPS) [71] at a �xed step-size of 1 s.

3.5. Spatial con�guration and DAE size of the PCMs

The spatial discretization for the PP- and EM-PCM is denoted as nneg -

nsep -npos, which corresponds to the respective number of nodes in the anode,

separator and cathode domain. The total number of DAEs calculates as

nDAEs = (nneg + npos + 2) · 6 + (nsep − 1) · 3

referring to the boundary interfaces ('+2') and electrode domains ('nneg +

npos') with six (cl, cs, il, jn, Φl, Φs) and three DAEs (cl, il, Φl) at the internal

nodes of the separator ('nsep − 1'), respectively. In terms of the OC-PCM,

the spatially discretized particle domain ('nP') must be included as well as

the calculation of the temperature ('+1'):

nDAEs = (nneg + nsep + npos − 2) · 2 + (nP + 3) · (npos + npos) + 1

Again, the term '−2' is referring to the boundary interfaces of the electrodes

and the separator, which are implemented in a common node for the de�ni-

tion of cl and il. The term 'nP + 3' refers to the solid-concentration cs and

the molar �ux jn/ionic current density il as well as the solid-potential Φs.
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Table 3 summarizes the spatial discretizations used in this work for the p2D-

PCMs with the corresponding number of DAEs.

Table 3: Spatial discretizations of the PCMs

Model Indices
Number of spatial nodes Number of

Anode Separator Cathode Particle DAEs

PP-PCM

1-1-1 1 1 1

PP I

24

2-1-2 2 1 2 36

5-3-5 5 3 5 78

10-5-10 10 5 10 144

EM-PCM

1-1-1 1 1 1

EM II

24

2-1-2 2 1 2 36

5-3-5 5 3 5 78

10-5-10 10 5 10 144

OC-PCM

5-3-5-2 5 3 5 2 73

5-3-5-3 5 3 5 3 83

5-3-5-5 5 3 5 5 103

20-10-20-25 20 10 20 25 1217

COMSOL-PCM 53-8-40-20 53 8 40 20 2338 III

I Ref. [11] II Ref. [25] III referring to linear element order

4. Microcontroller implementation

Primarily the small-sized RAM of microcontrollers and low processor fre-

quencies imply challenges for solving the p2D-PCM, which poses no challenge

for a standard desktop computer equipped exemplarily with 16 GB RAM at

3.2 GHz as used in this work for the MATLAB R©-code PCMs. 192 kB of

RAM and a maximum of 168 MHz are o�ered by the chosen microcontroller

to solve the C-code p2D-PCMs in this work.

Beside working without an operating system and with hardware modules like

universal asynchronous reciever transmitter (UART) for data transmission,

the transfer from the scripting language MATLAB R© to the programming
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language C is a signi�cant step as some framework related options such as

matrix inversion (A/b [63]), linear algebra operations (sparse [69]) or solvers

(ode15s [66, 67, 68]) are not available and must be transferred without over-

loading the memory. Note, that most of these speci�c functions cannot be

exported via the MATLAB R© to C export option [72] and even if, they would

not be necessarily runnable on a microcontroller.

Basically, the hardware abstraction layer (HAL) library (Cortex microcon-

troller software interface standard (CMSIS), ARM [73]) and the STM32

CubeMX software [74] were used to con�gure the system clock, peripher-

als and an initial code structure. The �ow chart of both stand-alone C-codes

(PP-/EM-PCM and OC-PCM) are shown in Figure 3. Via running the C-

code PCMs on the STM32 and sending the simulation results (UART-to-USB

converter) to a desktop computer, computation e�ciency and simulation ac-

curacy can be analyzed and compared to the correponding MATLAB R©-code

PCMs. The analysis using the MATLAB R©-code PCMs on a desktop com-

puter is not useful to evaluate the performance in low-hardware/software

environment, as multi-threading calculation, oversized memory capacities,

the comprehensive operating system and the framework MATLAB R© itself

would distort the results.
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Figure 3: Flow chart of the stand-alone C-codes of the PP-/EM-PCM (left) and the OC-PCM (right)

implemented in the microcontroller (STM32F407VGT6, STMicroelectronics [9]). The PP-/EM-PCM and

OC-PCM routines refer to the p2D-PCMmodels shown in Figure 1 and 2. The generated simulation results

are sent per converged time step via an UART-to-USB converter to a desktop computer and evaluated in

terms of computation performance and simulation accuracy.
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4.1. PP- and EM-PCM stand-alone C-code

After power up (see Figure 3, left), global variables with �xed memory

allocation are set, which are accessible in any case whilst the remaining vari-

ables are allocated and freed with every function call. Next, the processor

calls the main function to con�gure the system clock, initialize the peripher-

als, load the parameterization including analytical functions, look-up tables

and single parameters, set the stop conditions and call the initialization. Via

UART the messages to be transmitted are intialized and the initial states

are sent to the desktop computer using the UART-to-USB converter. The

main loop is entered next and the time simulation is started. It ends as soon

as a stop condition is met (see Figure 1). Note, that only the current state

k and the previous state k − 1 are stored on the STM32 - otherwise the

microcontroller's memory would be exceeded after a short time period. The

main loop runs the PCM as depicted in Figure 1 and transmits the current

states to the desktop computer at every converged time step.

In detail, the interpolation of the look-up tables Eeq and
∂ Eeq
∂ T

are de�ned

on the STM32 via spline interpolation at the junction nodes, which o�ers

di�erentiability compared to piece-wise linear approximation. Based on a

MATLAB R© structure (spline [75]), the implementation includes the coe�-

cients c, number of pieces s, order of polynomials l, range of the measured

data and a pointer to the array of single intervals to de�ne a spline as [50, 76]:

f(x) = c0,s(x− xs)l−1 + c1,s(x− xs)l−2 + · · ·+ cl−1,s(x− xs) + cl,s

where the coe�cients di�er in each knot interval of

x ∈ [xs, xs+1[

Not only the value of two adjacent intervals are matched but also their deriva-
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tives, which is a crucial point when calculating the jacobian. To reduce

memory allocation, the coe�cients are stored in an array and evaluated via

pointer function. Using double precision [77], a total of 751 and 41 knots are

used for Eeq and
∂ Eeq
∂ T

allocating 6008 and 328 Byte, respectively.

The matrix inversion to calculate the inverse of the jacobian J−1 uses a

MATLAB R© function (A/b [63]) in the MATLAB R©-code PCMs. As standard

C-algorithms (e.g. CMSIS) failed, the Gauss-Jordan (GJ) algorithm [78]

was implemented, which is not a matrix-type speci�ed algorithm like ex-

isting, tridiagonal-block-type algorithms (e.g. BAND(j), [79]). As �oating

point numbers are used in the processor, the highest accuracy is gained at low

absolute values. In order to minimize the error caused by performing �oating

point operations during the matrix inversion, the concept of pivoting [80] is

applied, which leads to lower absolute values and thus higher accuracy. In

addition, the STM32 provides a �oating point unit (FPU) of single preci-

sion [77]. Before the inversion starts, the matrix-entries are converted into

single precision, next the inversion takes place on the FPU and the results

are converted into double precision in the end. The related loss of accuracy

and computation speed up is discussed in this work.

The 'Transmit states' action (see Figure 3) uses a virtual COM port be-

tween the STM32 and the desktop computer and a UART-to-USB converter

(115200 bit s−1), where the COM port is evaluated via a MATLAB R© script.

In terms of RAM, the size of nx (= 6) state variables x, both the jaco-

bian J and its inverse J−1 as well as the calculation of the solid-di�usion

approximation xs determine the total size in Byte:

size(J ,J−1) = 2 · (nj · nx)2 · 8Byte
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size(x) = (nj · nx) · 2 · 8Byte
size(xs) = (nj · ns) · 2 · 8Byte
with a total number of nodes:

nj = nneg + nsep + npos + 1

The multiplication with '2' for x and xs is necessary for the current and

previous state. The additional states ns are two [11] for the PP- and six [25]

for the EM-PCM. Table 4 shows exemplarily the possible discretizations and

RAM/�ash memory usage in the STM32 for the PP- and the EM-PCM. The

Table 4: Memory usage of the stand-alone C-code PP- and EM-PCM

Model PP-PCM EM-PCM

Discretization 1-1-1 2-1-2 5-3-5 1-1-1 2-1-2 5-3-5

size(J ,J−1) in Byte 9216 20736 112896 9216 20736 112896

size(x) in Byte 384 576 1344 384 576 1344

size(xs) in Byte 128 192 448 384 576 1344

RAM

Total size in Byte 9728 21504 114688 9984 21888 115584

Memory allocation in % I 5.1 11.2 58.8 5.2 11.4 60.2

Flash memory

Total size in kB 173.66 173.95 174.58 177.61 177.88 178.55

Memory allocation in % II ≈ 17 % ≈ 17.4 %

I Referring to the STM32 with 192 kB of RAM I Referring to the STM32 with 1024 kB �ash memory

maximum runnable spatial con�guration included 14 nodes in total as enough

memory space for the variables and the solving process must be reserved. The

minimum converging setup was found to be 2-1-2. The increase in memory by

using the EM-approximation is negligible regarding xs in reference to the PP-

approach. The major in�uence is seen in the increase of spatial discretization

as the jacobian size increases as well and the overall RAM usage increases
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quadratically.

In sum, the PP- /EM-PCM on the microcontroller need at least ≈ 10 kB up

to a maximum of 115 kB during calculation and the maximum �ash memory

allocation consumed around 174 /178 kB of the maximum 1024 kB �ash

memory (≈ 17 /17.4 %).

4.2. OC-PCM stand-alone C-code

The structure of parameters, interpolation schemes and communication

to the desktop computer of the C-code OC-PCM is similar to the C-code PP-

/EM-PCM. A speci�ed version of the ode15s solver [66, 67, 68] is developed

in C o�ering main functionalities as

• Calculation of initial jacobian (daeic12 [68])

• Initial step estimation k = 0

• Calculation of iteration matrixMi

• Iteration with simpli�ed Newton method using GJ-inversion forMi

• Calculating new jacobian J

• Adjusting step-size 4t

For calculating an initial jacobian, daeic12 [68] was extracted from the ode15s

solver and transferred into C right after setting the initial values (see Fig-

ure 3). The sparse function [69] was adopted to gain a sparse jacobian via

neglection of any zeros and the non-zero entries are stored in an array df
dx

together with the respective index coordinate pair df
dx
|index to save memory.

The estimation of the initial step-size is performed according to Curtis et
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al. [81]. The iteration matrixMi is obtained at every iteration and uses the

previously calculated jacobian (see Figure 2). The main loop integrates from

the previous state k − 1 to the current state k and uses simpli�ed Newton

method [67, 82] incorporating the GJ-inversion [78] for inversingMi to gen-

erate the state update dx. Step-size reduction and new jacobian calculation

are implemented as described in section 3.3.

Regarding the memory allocation, the iteration matrixMi contributes as

size(Mi) = {(nneg + npos)(m+ 5) + 2nsep − 3}2 · 8Byte

Similar to the jacobian of the PP-/EM-PCM, the memory usage of the Mi

increases quadratically and the spatial discretization in the particle domain

m is here the main driver. The analytical calculation of the jacobian df
dx

is

stored as array of the non-zero entries as

size(dfdx) = {nneg(5nneg+3m+6)+nsep(3nsep−2)+npos(5npos+3m+6)−5}·8Byte

Therefore, the indices df
dx
|index of the position in the jacobian (i.e. row and

column) are stored as integers with 4 Byte each

size(d fdx |index) = 2·{nneg(5nneg+3m+6)+nsep(3nsep−2)+npos(5npos+3m+6)−5}·4Byte

Improvement using unsigned 16 bit integer is optional but not considered in

this work. The mass matrixM is stored as integer to

size(M ) = {(nneg + npos)(m+ 5) + 2nsep − 3} · 4Byte

and the backward di�erences for the NDFs [66, 70] are crucial to �nd a

consistent solution and their memory usage amounts to

size(∇m) = 7 · {(nneg + npos)(m+ 5) + 2nsep − 3} · 8Byte
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The factor '7' is required by the integration order and two additional states

are saved for following iterations [66, 70]. The variable x stores the states

size(x) = 2 · {(nneg + npos)(m+ 5) + 2nsep − 3} · 8Byte

and the factor '2' accounts for the previous stored iteration. The maximum

runnable spatial con�guration 5-3-5-5 is in the same memory range as for

the PP-/EM-PCM, whereas the most coarse con�guration 5-3-5-2 o�ering

su�cient accuracy needs at least �ve resp. three nodes in the electrode

resp. separator domain for the NMC-811/SiC parameterization. Note, that

the minimum converging con�guration appears to 3-2-3-2, but was neglected

due to insu�cient simulation accuracy. Table 5 shows the range of runnable

C-code OC-PCMs on the STM32.

In sum, the OC-PCM on the microcontroller needs at least 54 kB RAM

during calculation and the maximum allocates around 100 kB. The overall

model size uses around 212 kB of the maximum 1024 kB �ash memory (≈
20.7 %).
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Table 5: Memory usage of the stand-alone C-code OC-PCM

OC-PCM

Discretization 5-3-5-2 5-3-5-3 5-3-5-5

size(Mi) in Byte 42632 55112 84872

size(dfdx) in Byte 3088 3328 3808

size(dfdx |index) in Byte 3088 3328 3808

size(M) in Byte 292 332 412

size(∇m) in Byte 4088 4648 5768

size(x) in Byte 1168 1328 1648

RAM

Total size in Byte 54356 68076 100316

Memory allocation in % I 28.3 35.5 52.2

Flash memory

Total size in kB 212.08 212.27 212.95

Memory allocation in % II ≈ 20.7 %

I Referring to the STM32 with 192 kB RAM II Referring to the

STM32 with 1024 kB �ash memory

5. Results and discussion

5.1. Validation and computational e�ciency under constant load scenarios

The experimental validation of the three PCMs and the benchmark mod-

els is shown via thermographic measurements of the INR18650-MJ1 LIB at

di�erent CC charge (0.2/0.5/1C) and discharge (0.2/0.5/1/1.5/2C) rates at

25 ◦C ambient temperature under convective cooling as presented in previous

work [2]. A desktop computer equipped with a Intel(R) Core(TM) i5-6500

CPU at 3.20 GHz processor and 16 GB of RAM was used for calculation.

The mean cell voltage error (a, b), temperature error (c, d), overall simula-

tion time (e, f) and averaged calculation time per step (g, h) are shown in
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Figure 4. Regarding CC charging in Figure 4 a and c, the mean cell voltage

error ranges from 10 mV for the ECM up to 20 mV for the OC-PCM until

0.5C and increases for the ECM at 1C up to 29 mV while a decreasing trend

can be seen for all PCMs. The mean temperature error appears below 0.6 K

for all models. Regarding discharge, the ECM matches quite well the mea-

surements with errors on average below 21 mV and 0.1 K until 2C while all

PCMs show increasing errors for higher C-rates (e.g. max. 68 mV for the

PP-/EM-PCM and max. 1.5 K for the OC-PCM at 2C CC). The ECM shows

increased modeling errors at 1C charging, which may be linked to limitations

in the pore of the porous electrodes [2] and improvements can be achieved

via using physically more meaningfull, distributed-parameter ECMs [83] or

adaptive, online-paramater estimation [84].

In general, all PCMs show increasing errors with higher applied C-rates (>

1C) as inhomogeneities along the electrodes (61.5×5.8 cm, width×height)
increase as shown in our previous work [2], which cannot be modeled with

a single-PCM as the electrode utilization is assumed to be homogeneous.

Nevertheless, certain di�erences appear between the MATLAB R©-code PCMs

compared to the COMSOL-PCM. The temperature calculation is included

in the jacobian of the OC-PCM, which is not implemented for the remaining

PCMs and may have a signi�cant in�uence on the cell voltage and tempera-

ture calculation beside the di�erent spatial discretization and approximation

schemes.
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Figure 4: Experimental validation with the INR18650-MJ1 NMC-811/SiC LIB of the simulation results

including the ECM, the MATLABR©-code PCMs ('PP-PCM 10-5-10', 'OC-PCM 20-10-20-25' and 'EM-

PCM 10-5-10') and the rigorous benchmark PCM ('COMSOL-PCM 53-8-40-20'). The mean cell voltage

error (a, b) and temperature error (c, d) are shown together with the overall computation time (e, f) and

averaged calculation time per converged time step (g, h) for the di�erent CC charge (a, c, e and g) and

discharge (b, d, f and h) tests at 25 ◦C ambient temperature and convective cooling conditions [2].
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The reformulation and solving of the solid-di�usion PDE in the OC-PCM

instead of using approximations contributes to the di�erent cell voltages com-

pared to the PP- and EM-PCM. The error for the OC-PCM remains at ≈ 22

mV for all scenarios, whereas the used approximations (PP [11] and EM [25])

lead to increased errors for 1.5 and 2C discharge (≈ 68 mV at 2C). As the

liion-module [51] for the COMSOL-PCM o�ers only the particle concentra-

tion at the center, the surface and on average, an approximation may be used

here as well, which may explain the appearing deviations.

In sum, all MATLAB R©-code PCMs reveal su�cient accurate simulation of

the electrochemical-thermal behaviour throughout the thickness of the NMC-

811/SiC electrode stack under CC charge and discharge scenarios compared

to the measured electrical-thermal behaviour of the INR18650-MJ1 LIB. In-

creasing errors appear, when inhomogeneities of the current density [2] along

the electrodes are expected to increase for high applied C-rates (> 1C).

The computation times in Figure 4 e and f of the COMSOL-PCM appear to

be the slowest and the fastest appear for the ECM, as expected. The same

trend can be seen for the averaged calculation time per step (see Figure 4 g

and h). Approximately 6.3 ms per step are needed at 1C CC discharge for

the OC-PCM, while the ECM needs only 0.2 ms. This results in an ap-

proximately 32, 470, 865 and 1085 times faster computation for the ECM

compared to the OC-, EM-, PP- and COMSOL-PCM, respectively. The

bene�t of using explicit functions of state and input variables to solve the

ECM [83] instead of solving the DAE system of the PCM is not questioned

here. Even if large frameworks are used, lean computational costs con�rm

that implementation in the microcontroller would lead to similar results.
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Therefore, the ECM is used as benchmark only and not implemented in the

microcontroller.

Around 16, 67 and 26 % of the desktop computer's CPU and approximatly

660, 670 and 793 MB RAM for the PP- /EM-, OC- and COMSOL-PCM

are used at a full 1C CC discharge. Considering also the computation time,

the OC-PCM may be most suitable for fast computation but preferring low

memory usage and CPU load, the PP- or the even faster calculating EM-

PCM seem more suitable. The ECM allocates ≈ 1400 MB at ≈ 10 % CPU,

which is mainly caused by using the MATLAB/Simulink framework.

The simulation results are run on a desktop computer o�ering su�cient com-

putation ressources of 3.20 GHz and 16 GB RAM. The STM32 o�ers maxi-

mum 168 MHz and 192 kB RAM and evaluating the most suitable PCM for

embedded systems must be based on adequate conditions as proposed in con-

trol devices for a BMS, which are similar to the microcontroller of this work

and o�er similary no commercial framework tool or a sophisticated operating

system.

5.2. Reducing memory allocation via coarser spatial discretizations

For implementation in the microcontroller, the number of spatial elements

in the PP-/EM-PCM and the OC-PCM is gradually reduced to save RAM

and decrease computation time. The related increase of modeling error for

the cell voltage Vcell, temperature Tcell, surface concentration cs,s and the

potential drop Φs − Φl both at the anode-separator interface is analyzed in

reference to the validated MATLAB R©-code PCM con�gurations shown in

Figure 4. Figure 5 shows the increase of error exemplarily for the 1C CC

charge and discharge scenario.
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Figure 5: The relative (%) increase of modeling error for the cell voltage (a, b), the cell temperature

(c, d), the surface concentration (e, f) and the potential drop Φs − Φl (g and h) both located at the

anode-separator interface x = Lneg is shown for gradually reducing the total number of spatial nodes in

the MATLABR©-code PCMs (PP-, EM- and OC-PCM) in reference to the experimentally validated PCMs

shown in Figure 4('PP-PCM 10-5-10', 'EM-PCM 10-5-10' and 'OC-PCM 20-10-20-25').
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Regarding the global cell variables Vcell and Tcell, similar error increase

appears for charge and discharge for all PCMs. The PP- and EM-PCM show

mean cell voltage error increase of ≈ 0.6 % for the minimum con�guration

(1-1-1), whereas the OC-PCM shows errors below 0.1 % in all cases. The

deviance for the cell temperature is around 1.2 % for the PP- and EM-PCM,

whereas nearly no deviance could be seen for the reduced con�gurations of

the OC-PCM. Note, a minimum of 5 and 3 nodes for the electrodes and

separator domain in the OC-PCM appeared for guaranteeing convergence.

Regarding the internal variables cs,s and Φs − Φl, higher deviances for the

charge than for the discharge scenario appear with the chosen parameteri-

zation, which di�ers between charge and discharge to account for hysteresis

e�ects of the open-circuit potentials [2]. Regarding the most coarse discretiza-

tion, errors up to 7.3 /3 % compared to 2.7 /1.2 % for charge/discharge of the

PP-/EM-PCM and the OC-PCM respectively appeared for cs,s. In terms of

Φs−Φl, the errors increase up to 16 % for charging regarding PP-/EM-PCM,

whereas lower errors appear for the OC-PCM (≈ 1.4 %).

The results indicate no distinct di�erence between the PP- and EM-PCM,

when lean spatial discretization is chosen even at the lowest con�guraiton of

1-1-1. The OC-PCM shows less error with decreasing number of nodes when

mainly the spatial discretization in the particle is reduced - which reduces

the overall size of the DAE enormously. In general, the error on global vari-

bles such as cell voltage and temperature seems acceptable but when internal

variables are used such as the potential drop at the anode-separator inter-

face to indicate the onset of lithium plating [4, 85], disctinct errors due to

a lean spatial discretization must be considered for interpreting the results
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correctly.

In terms of the microcontroller, spatial con�gurations of 2-1-2 and 5-3-5 are

used for the PP- and EM-PCM as similar mean errors regarding 2-1-2 of 4

mV (0.12 %), 7E-2 K (0.25 %), 84 molm−3 (0.94 %) and 0.8 mV (0.3 %) are

expected due to modeling error at 1C CC charge and discharge, which o�er

still su�cient accuracy to describe accurately the NMC-811/SiC INR18650-

MJ1 LIB. In terms of the OC-PCM, the 5-3-5-3 and 5-3-5-5 are used which

show maximum averaged errors regarding 5-3-5-3 of 0.25 mV (5E-3 %), 2E-3

K (2E-3 %), 6.7 molm−3 (8E-2 %) and 6E-2 mV (2E-2 %).

5.3. Stand-alone C-code models on the microcontroller under constant load

scenario

The CC charge and discharge loads as shown in section 5.1 are simulated

on the STM32 using the stand-alone C-codes of the PP-, EM- and OC-

PCM. The simulations incorporate the coarse 2-1-2, 2-1-2 and 5-3-5-3 and

the maximum 5-3-5, 5-3-5 and 5-3-5-5 spatial discretizations, respectively.

Figure 6 shows the mean cell voltage and temperature error in reference

to the corresponding MATLAB R©-code. The computational performance is

analyzed via the mean iteration time and total number of iterations per 1

s time step on the STM32 processor at 168 MHz. Table 6 summarizes the

analysis at 1C CC charge and discharge. The lowest mean cell voltage error

for charge and discharge appears for the PP-PCM (< 0.4 mV) and the highest

appears up to 3.8 mV for the EM-PCM. Reducing the number of spatial nodes

(see 'Coarse con�gurations' in Figure 6), leads to higher deviations regarding

the PP-PCM whereas the EM- and OC-PCM reveal less deviations. In terms

of the cell temperature for charge and discharge, similar trends can be seen
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except for the lowest temperature error, which is seen for the OC-PCM.

Table 6: Performance of C-code PCMs on the microcontroller at 1C CC
Model PP-PCM EM-PCM OC-PCM

Discretization 2-1-2 5-3-5 2-1-2 5-3-5 5-3-5-3 5-3-5-5

1C CC charging

Mean4Vcell / mV I 0.255 0.019 0.3956 1.665 0.053 0.262

Mean4Tcell / K I 0.103 0.003 0.003 0.117 <1E-3 <1E-3

Mean number of
4.02 4.31 2.17 2.23 1.22 1.26

iterations per step / -

Mean iteration
219 1052 124 560 550 932

time per step / ms

1C CC discharging

Mean4Vcell / mV I 0.388 0.069 2.126 3.603 0.032 0.195

Mean4Tcell / K I 0.08 0.08 0.10 0.17 <1E-3 <1E-3

Mean number of
3.72 4.17 1.56 2.14 1.25 1.18

iterations per step / -

Mean iteration
205 1021 90 540 563 887

time per step / ms

I in reference to the corresponding MATLABR©-code PCM with the same discretization

In sum, all C-code PCMs on the STM32 show su�cient accuracy below 4 mV

of cell voltage and 0.4 K of cell temperature error, which is mainly caused

by approximations and rounding errors. The analysis of the internal states

such as concentrations and potentials is neglected here as similar low error

ranges appear.
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Figure 6: Evaluation of the simulation accuracy (a, b, c and d) and computational e�ciency (e, f, g,

and h) of the stand-alone C-code PP-, EM- and OC-PCM under constant current charge (0.2, 0.5, and

1C) and discharge (0.2, 0.5, 1, 1.5 and 2C) scenarios. The mean cell voltage (a, b) and temperature error

(c, d) is shown in reference to the corresponding MATLABR©-code PCM for the coarse (2-1-2, 2-1-2 and

5-3-5-3 for PP-, EM- and OC-PCM, 'Coarse con�gurations') and maximum spatial con�guration. The

computational e�ciency is shown similary in form of the iteration time (e, f) and the mean number of

iteration per 1 s step (g, h). 34



Regarding the computational performance in Figure 6 e and f, the fastest

computation appears for the EM-PCM (max. 560 ms per step with min. 2

iterations) whereas the slowest is seen for the PP-PCM (max. 1052 ms per

step with min. 4 iterations). When the coarse discretization is used, the

OC-PCM reveals the slowest calculation (max. 563 ms per 1 s step). For

the OC-PCM, the 1 s time step is set as a maximum as the solver routine

is implemented with the option, to reduce the step-size if no convergence

appears (see Figure 2) and the OC-PCM is thus more susceptible to pro-

long the overall computation time. Thus, the minimal number of iterations

appears for the OC-PCM and the PP-PCM needs the most iterations. The

spatial discretization has less signi�cant in�uence and only slightly reduces

the number of iterations.

In sum, the EM-PCM is the fastest calculating model with 90 respectively

540 ms per 1 s time step for an entire 1C CC discharge using coarse respec-

tively maximum spatial discretization in the STM32. The OC-PCM o�ers

still calculation times below the real-time threshold even if the solver routine

reduces the stepsize during runtime. The PP-PCM is most likely to require

the longest calculation time and number of iterations. Under CC load sce-

narios, the most appropriate choice for simulating the INR18650-MJ1 LIB in

real-time on the microcontroller would be the EM-PCM.

5.3.1. In�uence of the processor frequency

In application, lower processor frequency results in lower energy consump-

tion and reducing the computation power can thus pose a challenge for the

C-code p2D-PCMs to hold real-time computability. The 32-bit ARM Cortex

M4 processor [9] of the STM32 o�ers a frequency range up to 168 MHz and

35



three di�erent con�gurations at 50, 109 and 168 MHz are used to simulate 1C

CC charge and discharge with all C-code PCMs to evaluate the in�uence on

the computation speed. The UART transfer time reveals negligible in�uence

herein.

Figure 7 a and b show the total computation time versus the simulated time

and for all frequencies, the EM-PCM shows the fastest computation, whereas

the PP-PCM the slowest. A more detailed analysis of the computation per-

formance is shown in Table 7. As the simulation accuracy and iteration

number (see Table 6) are not in�uenced by the processor frequency, only

the mean iteration and total calculation time versus the simulated time (see

'Time reduction') are shown in Table 7. Similarly to Figure 7 a and b, Fig-

ure 7 c and d illustrate the average iteration time per 1 s step. The blue

horizontals in Figure 7 mark the real-time suitability, when the calculation

time equals the simulated time (see 'Time factor' in Table 7). At 168 MHz,

the PP-PCM is slightly atop the threshold with +8 % /+6 %, whereas the

OC- and the fastest calculating EM-PCM show time reductions of 6 % /10

% and 41 % /43 % during 1C CC charge /discharge. Only the EM-PCM

reveals su�cient computation speed (max. 872 ms for 1C CC charge) at 109

MHz, whereas at 50 MHz none of the PCMs can simulate in real-time. A

minimum increase of 89 % (1890 ms for 1 s at 1C CC discharge) is seen for

the EM-PCM and over 3 times longer computation times than the actual

simulated time appar for the PP- and OC-PCM.
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Figure 7: Computational performance of the C-code PP-, EM- and OC-PCM for simulating 1C CC

charge (a and c) and discharge (b and d) on the STM32 at 50, 109 and 168 MHz. The horizontal line

depicted in 'blue' marks the real-time threshold when the simulated time equals the total computation

time (see 'Time factor = 1' in a and b) and the average iteration time per converged step equals the

simulation step-size of 1 s (see '1000 ms' in c and d).
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Table 7: Computational performance of C-code PCMs at di�erent processor frequencies
Model PP-PCM 5-3-5 EM-PCM 5-3-5 OC-PCM 5-3-5-5

Load I CH DCH CH DCH CH DCH

Frequency of 168 MHz

Mean iteration
1052 1021 560 540 932 887

time per step / ms II

Time factor III 1.08 1.06 0.59 0.57 0.94 0.90

Frequency of 109 MHz

Mean iteration
1639 1592 872 841 1436 1394

time per step / ms II

Time factor III 1.68 1.63 0.91 0.88 1.46 1.45

Frequency of 50 MHz

Mean iteration
3555 3452 1889 1823 3132 3031

time per step / ms II

Time factor III 3.63 3.55 1.95 1.89 3.16 3.05

I at 1C constant current charge (CH) and discharge (DCH)

II referring to a 1 s step-size III Total calculation time
Simulated time

= Time factor

In sum, real-time suitability poses a challenge for the C-code PCMs on the

microcontroller and under CC loads, the necessary speed-up can be achieved

via using coarser spatial discretizations (e.g. 2-1-2 resp. 5-3-5-3 for the

PP-/EM-PCM and OC-PCM). As seen in Table 6, reducing the spatial con-

�guration reveals the EM-PCM as fastest-calculating C-code PCM. As the

accuracy is not distorted by the frequency, the most appropriate choice at

low frequencies is the EM-PCM.

5.3.2. In�uence of the microcontroller's accuracy

To reduce computation time, the jacobian/iteration matrix inversion is

calculated using the FPU of single precision. The transfer needs two extra

arrays of single precision for a current copy of the matrix and for storing the

inverse. The coarse con�gurations 2-1-2 and 5-3-5-3 for the PP-/EM- and

OC-PCM are used to avoid RAM overloads. 1C CC charge and discharge at
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168 MHz are simulated and the results are shown in Table 8.

The maximum mean cell voltage error accounts to 1.862 mV for 1C CC

discharge using the EM-PCM in reference to the corresponding MATLAB R©-

code PCM. The lowest error is seen for the OC-PCM below 0.12 mV. Negli-

gible errors for the cell temperature (see Table 8) appear.

Comparing the results between single- (see Table 8) and double-precision

(see Table 6), a trend of decreasing iterations appears (≈ 19 % less) for the

EM-PCM at 1C CC charge.

The bene�t can be seen in the average iteration times per step in Table 8.

Table 8: Computational performance of C-code PCMs using FPU for 1C CC charge and

discharge

Model PP-PCM 2-1-2 EM-PCM 2-1-2 OC-PCM 5-3-5-3

LoadI CH DCH CH DCH CH DCH

Mean4Vcell / mV II 1.343 0.416 1.683 1.862 0.055 0.115

Mean4Tcell / K II <1E-2 0.08 0.12 0.09 <1E-3 <1E-3

Mean number of
3.90 3.33 1.75 1.59 1.17 1.30

iterations per step / -

Mean iteration
156 134 75 69 76 80

time per step / ms

Time reduction III 29% 35% 40% 23% 86% 86%

I at 1C constant current charge (CH) and discharge (DCH)

II in reference to the corresponding MATLABR©-code PCM with identical spatial discretization

III compared to the calculation time without using the FPU on the STM32

The EM- and OC-PCM show calculation times around 80 ms and the PP-

PCM up to 156 ms. For constant loads, minimum reduction of 29 %, 23 %

and 86 % for the PP-, EM- and OC-PCM appears when the FPU is used.

The mean error of the PCMs may slightly increase while using FPU, but still

su�cient accuracy is o�ered. Regarding the maximum calculation times, sin-
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gle time steps are simulated in ≈ 600 ms for a 1 s time step at a total iteration

number up to 9 for the OC-PCM. This may be critical, when real-time com-

putation must be guaranteed. The PP- and EM-PCM show lower maximum

iteration numbers and computation times, where the PP-PCM appears as

the overall slowest converging model.

In sum, the most bene�t in using the FPU is gained with the OC-PCM but

certain overshoots in calculation time and iteration number may be a prob-

lem for real-time suitablility. The EM- and PP-PCM show a more stable

calculation with slightly increased errors for the EM-PCM and slower com-

putation speed for the PP-PCM. Comparing the total calculation time to the

simulated times for 1C charge and discharge, a minimum reduction of 84 %,

92 % and 92 % appears at constant load simulations for the PP-, EM- and

OC-PCM, respectively.

5.4. Validation and computational e�ciency under driving cycle scenario

Referring to application of LIBs in EVs, the ARTEMIS [86] drive cycle

was adapted to the INR18650-MJ1 LIB current range as seen in Figure 8 a.

For the experiments, a cycler (CTS, BaSyTec) paired with a climate chamber

(VT 4021, Vötsch Industrietechnik GmbH) at 25 ◦C was used at initial 100 %

SoC of the LIB. Figure 8 b illustrates the measured cell voltage together with

a magni�ed region (Figure 8 c) showing the simulation results. The temper-

ature pro�le (see Figure 8 f) and both voltage and temperature error (Fig-

ure 8 d, e and g) of the MATLAB R©-code PP-, EM- and OC-PCM are shown.

Table 9 summarizes the related simulation accuracy for the MATLAB R©-code

PCMs.
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Figure 8: Measurement results of the INR18650-MJ1 LIB ('Measurement MJ1') for the applied current

(a), cell voltage (b) and temperature (f) under the adapted ARTEMIS [86] driving cycle. The subplot (c)

shows a magni�ed part from 1200 to 1260 s for the measured and simulated (MATLABR©-code 'PP-PCM

5-3-5', 'EM-PCM 5-3-5' and 'OC-PCM 5-3-5-5') cell voltages in (b). The resulting error pro�les for the

PCMs are shown for the cell voltage (d) with a magni�ed part similar to (c). Subplot (g) shows the

temperature error.
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In this case, averaged open-circuit potentials (Eeq, see supplementary

part) of lithiation and delithiation [2] were used to ease the e�ect of measurement-

related polarization and improve the simulation of dynamic loads.

The mean cell voltage error for the PP- and EM-PCM appear to be around

18.7 mV on average with a root mean squared error (RMSE) of 23.1 mV.

Reducing the spatial nodes, the error slightly increases but remain below

20 mV. The OC-PCM shows no distinct di�erence between the coarse and

the maximum con�guration and reveals the most accurate simulation with

a mean error of 12.4 mV at a RMSE of 16.6 mV. The temperature error for

all MATLAB R©-code PCMs are below 0.15 K (RMSE< 0.2), which is in the

range of the measurement accuracy (i.e. Pt100 sensor with ± 0.15 K at 0 ◦C,

DIN/IEC Class A). For comparison, the ECM simulation results calculated

on the same desktop computer revealed a mean cell voltage error of 13.7 mV

at a RMSE of 17.5 mV and a mean temperature error of 0.22 K.

The PCMs are in the same range of accuracy as the ECM and choosing the

appropriate discretization or reformulation to gain real-time operability, a

competitive alternative appears for model-based monitoring of LIBs. The

Table 9: Validation of MATLAB R©-code PCMs under the adapted ARTEMIS driving cycle

Model PP-PCM EM-PCM OC-PCM

Load ARTEMIS driving cycle (see Figure 8 a)

Discretization 2-1-2 5-3-5 2-1-2 5-3-5 5-3-5-3 5-3-5-5

Mean4Vcell / mV I 19.3 18.7 19.3 18.7 12.4 12.4

RMSE4Vcell / mV I 23.8 23.1 23.8 23.1 16.6 16.6

Mean4Tcell / K I 0.07 0.06 0.07 0.06 0.13 0.13

RMSE4Tcell / K I 0.09 0.07 0.09 0.07 0.17 0.17

I in reference to the experimentally measured data of the INR18650-MJ1 cell

bene�t of using a PCM lies in the simulated local concentrations and poten-
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tials, which can be used to develop sophisticated control algorithms such as

avoiding lithium plating during fast charging [85].

Finally, the performance of simulating the ARTEMIS pro�le with the C-code

PCMs on the STM32 is evaluated. Table 10 summarizes the simulation ac-

curacy in reference to the MATLAB R©-code PCM (see Table 9) together with

the computation speed. The mean cell voltage deviation is below 0.4 mV for

Table 10: Computational performance of C-code PCMs simulating the adapted ARTEMIS

driving cycle

Model PP-PCM EM-PCM OC-PCM

Load ARTEMIS driving cycle (see Figure 8 a)

Discretization 2-1-2 5-3-5 2-1-2 5-3-5 5-3-5-3 5-3-5-5

Mean4Vcell / mV I 0.153 0.148 0.361 0.330 0.030 0.065

Mean4Tcell / K I 0.15 0.07 0.16 0.15 <1E-3 <1E-3

Mean number of
3.46 4.12 2.68 3.31 3.15 3.15

iterations per step / -

Mean iteration
190 1009 157 838 1250 2072

time per step / ms

Time reduction II 24% n.a. 37% n.a. n.a. n.a.

I in reference to the corresponding MATLABR©-code PCM with the identical discretization

II for a step-size of 250 ms

all PCMs, where the OC-PCM shows the most accurate implementation and

the EM-PCM the maximum deviation to the corresponding MATLAB R©-code

PCM. Again, the temperature deviances are in the range of measurement ac-

curacy. Regarding the computational performance, the OC-PCM is not able

to simulate in real-time due to the step-size reduction option in the solver.

The EM-PCM shows the fastest calculation and for a step-size of 250 ms,

only the coarse con�guration is able to simulate with a time reduction of 37

% under real-time requirements. The PP-PCM required at least 190 ms on
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average, which corresponds to a time reduction of 24 %.

To conclude, the EM-PCM shows the most promising results for simulating

an application-near scenario with ful�lling real-time requirements.

6. Conclusion

Trending towards high-energy LIBs, physicochemical model based mon-

itoring can help to account for inhomogeneties on local scales and improve

the state-estimation process. E�ciently reduced p2D-PCMs are evaluated

on a microcontroller using either FDM together with solid-di�usion approx-

imations or Chebyshev orthogonal collocation to reformulate particle and

electrolyte domain. Experimental validation with CC charge and discharge,

ARTEMIS [86] driving cycle and benchmarking to ECM and rigorous COM-

SOL p2D-PCM showed accurate simulation for a NMC-811/SiC LIB. In sum,

the average cell voltage error of the p2D-PCMs can be summarized as mod-

eling and parameter uncertainties, errors from spatial reduction and errors

from implementation in the STM32 as shown in Table 11.

At low processor frequencies down to 50 MHz, crucial limitations appear for

the p2D-PCMs to calculate in real-time. Using hardware acceleration such

as the FPU, computation acceleration up to 86 % appeared, which can be

recommended at low processor frequencies to gain real-time computability

again. Computation analysis under CC and driving cycle loads revealed the

EM-PCM as best choice for simulating a single LIB at least 37 % faster than

real-time, which consumes 21.9 kB RAM for solving and 175 kB �ash mem-

ory for storing the model on the microcontroller.

Future work can investigate more robust solver in terms of the OC-PCM to
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Table 11: Summary of average cell voltage error for MATLAB R©- and C-code PCMs

Model PP-PCM EM-PCM OC-PCM Code

Error from modeling Compared to experimental data from

MATLAB

and parameters / mV I 3.35 Ah NMC-811/SiC INR18650-MJ1 LIB

1C CC CH/DCH <1/9.7 <1/9.3 17/<1

Driving cycle 18.6 18.6 12.4

Error from spatial
4.1/4 4.1/4 <1/<1

reduction / mV II

Error from STM32 with max. 168MHz @32-bit ARMR© CortexR©-M4

C
microcontroller / mV max. 1024 kB �ash memory and max. 192 kB RAM [9]

1C CC CH/DCH <0.5/<0.5 <0.5/2.1 <0.5/<0.5

Driving cycle <0.5

I for PP-PCM 10-5-10, EM-PCM 10-5-10 and OC-PCM 20-10-20-25

II for PP-PCM 10-5-10 → 2-1-2, EM-PCM 10-5-10 → 2-1-2 and OC-PCM 20-10-20-25 → 5-3-5-3

improve the performance on a microcontroller and test the C-code EM-PCM

model-based monitoring for estimating a LIB online and develope local-anode

potential based fast charging pro�les to avoid lithium plating.
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Appendix A.

Table A.12: Properties of the electrolyte [2]

Electrolyte 1 M LiPF6 in PC/EC/DMC

Salt di�usivity Dl
I / m2 s−1 10E-4·10

−4.43− 54
T−229−5cl

−0.22cl

Ionic conductivity κl
I / S m−1

0.1cl

(
− 10.5 + 0.668cl + 0.494c2l + 0.074T − 0.0178clT

−8.8610−4c2l T − 6.9610−5T 2 + 2.810−5clT
2

)2

Activity
d lnf±
d ln cl

I / -

(
0.601− 0.24c0l .5 + 0.983

(
1− 0.0052(T − 294)

)
c1.5l

)
·(1− t0+)−1 − 1

Transference t0+
I / - 0.38

Ref. concentration cref
I / molm−3 1000

I Ref. [87]
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Table A.13: Parameterization of the p2D-PCM for a NMC-811/SiC LIB [2]

Geometry
Silicon-graphite

Separator
Nickel-rich

(SiC) (NMC-811)

Thickness L 86.7µm m 12 µm m 66.2 µm m

Particle radius Rp 6.1µm m,D50 3.8 µm m,D50

Active material fraction εs 69.4 % e 74.5 % e

Inactive fraction εs,na 9 % e,* 8.4 % e,*

Porosity εl 21.6 % m 45 % e 17.1 % m

Bruggeman coe�cient β VI,** 1.5 1.5 1.85 e

Thermodynamics

Equilibrium potential Eeq Ref. [2] m Ref. [2] m

Entropic coe�cient
∂Eeq

∂T Ref. [2] m Ref. [2] m

Stoichiometry
100% SoC 0.852 0.222

0% SoC 0.002 0.942

Max. theorectical loading bg 415 mAh g−1 I 275.5 mAh g−1 II

Density ρ 2.24 g cm−3 I 4.87 g cm−3 II

Concentration cs,max 34 684 mol m−3 e 50 060 mol m−3 e

Transport

Solid di�usivity Ds
*** 5×10−14 m2 s−1 e,V 5×10−13 m2 s−1 III,V

Speci�c activation
Ea,Ds

R
*** 1200 K e 1200 K e

Solid conductivity σs 100 S m−1 III 0.17 S m−1 e,III

Kinetics

Reaction rate constant k *** 3×10−11 m s−1 e 1×10−11 m s−1 e

Speci�c activation
Ea,k

R
*** 3600 K e 3600 K e

Transfer coe�cient αa/c 0.5 e 0.5 e

m = measured e = estimated * PVDF-binder/Carbon black (Ref. [88, 89])

I Ref. [90] II Ref. [91] III Ref. [92] IV Ref. [93] V Ref. [94] VI Ref. [95]

** E�ective transport correction according to Bruggeman (Ref. [95]): Ψeff = εβ ·Ψ0

*** Arrhenius law (Ref. [96]): k = A · exp
(
Ea,i

R
(T−298[K])
T ·298[K]

)
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Table A.14: Di�erential algebraic equations of the p2D-PCM

Mass balance I
εl

∂cl(x,t)
∂t = ∂

∂x

(
Deff
l

∂cl(x,t)
∂x +

il(x,t) (1−t0+)

F

)
εs
∂ cs(x,t,r)

∂t = 1
r2

∂
∂r

(
Dsr

2 ∂ cs(x,t,r)
∂r

)
Potentials I

∂ Φl(x,t)
∂x = − il(x,t)

κeff
l

+ 2RT
F

(
1− t0+

) (
1 + d lnf±

d ln cl(x,t)

)
∂ ln cl(x,t)

∂x

∂ Φs(x,t)
∂x = − iapp(t)−il(x,t)

σs
with iapp(t) = is(x, t) + il(x, t) ∀x, t

Charge balance I ∂il(x,t)
∂x + ∂is(x,t)

∂x = 0 with ∂is(x,t)
∂x = − 3εs

Rp
Fjn(x, t)

Electrode

jn(x, t) = i0(x,t)
F

[
exp

(
αa F η(x,t)

RT

)
− exp

(
−αc F η(x,t)

RT

)]
kinetics I

η(x, t) = Φs(x, t)− Φl(x, t)− Eeq(x, t)

i0(x, t) = F k (cs,max − css(x, t))αc (css(x, t))
αa (cl(x, t))

αa

Temperature I, II mcp
Aact

∂ Tcell

∂ t = −iapp · Vcell + q − qext − q∞

q = 3εsF
Rp

∫
x∗ jn ·

(
Eeq
( cs(x,rp)
cs,max

)
− ∂Eeq

(
cs(x,rp)

cs,max

)
∂T · T

)
dx

qext = i2app ·Rext q∞ = α∗∞
Asurf

Aact
(Tcell − T∞)

I Ref. [6] II Ref. [52, 64, 65] x∗ = x ∈ [0, Lneg] ∧ [Lneg + Lsep, Lneg + Lsep + Lpos]

α∗∞ = 44.3Wm−2K−1, simpli�ed for combining heat radiation, conduction and convection [2]
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Table A.15: Nomenclature I
Greek symbols
α Transfer coe�cient
α∞ W m−2 K−1 Ambient heat transfer coe�cient
β Bruggeman coe�cient
ε Volume fraction
ε Numerical tolerance
η V Overpotential
κ S m−1 Ionic conductivity
ρ kg m−3 Mass density
σ S m−1 Electrical conductivity
Φ V Electrical potential
Ψ Variable
ω Clenshaw-Curtis weights
Indices
a Anodic reaction (oxidation)
act Active area
app Applied (i.e. current density)
c Cathodic reaction (reduction)
e� Transport corrected (Bruggeman correlation [95])
ext External heat (i.e. from grid resistance)
l Liquid phase (i.e. electrolyte)
max Maximum
neg Negative electrode (i.e. SiC)
pos Positive electrode (i.e. NMC-811)
s Solid phase (i.e. active particle)
sep Separator
s,s Solid phase (i.e. active particle surface)
surf Surface
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Table A.16: Nomenclature II
Latin symbols
a m−1 Speci�c surface
bg mAh g−1 Maximum theoretical loading
c mol m−3 Concentration of lithium cations (Li+)
cs,max mol m−3 Maximum theoretical concentration of Li+

cp J kg−1 K−1 Heat capacity
D m2 s−1 Di�usion coe�cient
D Di�erentiation matrix
Eeq V Equilibrium potential vs. Li/Li+
∂Eeq
∂T V/K Entropic coe�cient
f± Mean molar activity coe�cient of electrolyte
F 96 485 As mol−1 Faraday's constant
g Non-linear equations of p2D-PCM
i A m−2 Current density
iapp A m−2 Applied current density
in A m−2 Current density perpendicular to particle surface
i0 A m−2 Exchange current density
jn mol m−2s−1 Pore-wall �ux
J Jacobian matrix
k m s−1 Reaction rate constant
L m Thickness
m kg Mass of cell
M Mass matrix
Mi Iteration matrix
r m r-coordinate particle domain of p2D-PCM
R 8.314 J mol−1 K−1 Gas constant
Rext Ω m2 Grid resistance
Rp m Particle radius
q W m−2 Heat generation rate per area
t s Time
T K Temperature
t0+ Transport number of Li+

x m x-coordinate in electrolyte domain of p2D-PCM
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