
1 INTRODUCTION 
 

Capturing construction sites in their as-built state 
has become a central point in the automation of con-
struction site management and quality control. In the 
past this was achieved with a high amount of manual 
labour and untraceable results. Within the digitaliza-
tion process of multiple disciplines in the construction 
industry, new opportunities to increase the degree of 
automation occur. Processed and presented in the 
right way, the captured data will provide useful infor-
mation, not only to the main contractor due to a good 
overview over the progress but also to architects and 
engineers working in existing context and even insur-
ance companies. The primary step is capturing and 
documenting the site of interest. Although laser 
scanned point clouds are of high quality, the expense 
to create them is rather high. If needed for visualiza-
tion, colour needs to be added later via images. Cap-
turing images and the photogrammetric reconstruc-
tion of point clouds by the combination of Surface 
from Motion (SfM) and Multiview reconstructions 
(MVS) are a cheaper and more widely used alterna-
tive.  

As different automation processes will use the cap-
tured data as a basis, the point cloud must suffice spe-
cific requirements. Factors as coverage, recording in-
terval, colour schemes, resolution, speed, trueness, 
precision, observational error and robustness must be 
taken into consideration. In the workflow of photo-
grammetric 3D reconstruction, these parameters can 
be influenced directly, e.g. coverage (our definition in 
section 4.3) by changing the position of images, or 

indirectly, depending on the chosen toolchain and re-
construction parameters. Considering 3D reconstruc-
tion is a highly computational intensive task and a 
tradeoff must be made in speed versus quality. For 
practitioners and early adaptors, this means that using 
a finished solution may result in insufficient results or 
unnecessary expenses.  

This work will define several indicators and factors 
that will help the users to evaluate their toolchain. Af-
ter a brief summary of related research in Section 2, 
Section 3 will introduce the processes of SfM/MVS 
that are the algorithm classes used by most applica-
tions. In Section 4 we will introduce metrics and de-
duct how they can be measured before summarizing 
and suggesting further research topics in Sections 5 
and 6. 

2 RELATED WORK 

In recent years, multiple advances for monitoring 
construction sites via laser scanners or images were 
developed. Using the base idea of comparing a geo-
metric representation of a construction site and 
matching it with a captured point cloud (Fischer and 
Aalami, 1996) lead to several detection algorithms for 
planed building elements (Scan-vs-BIM). First ap-
proaches went from a simple point to surface with a 
linear thresholded (<50mm) recognition of objects 
(Bosché et al., 2008) over machine learning  recogni-
tion (Kim 2015) to rasterized point projections onto 
the geometric model (Rebolj et al., 2017).  
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While all these publications tend to apply slightly 
different use cases, the first hurdle for a successful 
identification is registration of the captured point 
cloud to the geometric representation. For the relative 
registration of the geometric model, two base ap-
proaches exist in literature: feature-based recognition 
and the reduction of distances between the alignments 
(optimization). An Iterative Closes Point (ICP) (Besl 
and McKay, 1992) showed good results (Bosché, 
2010; Masuda et al., 1996) after a successful manual 
initial alignment. It also worked well in combina-
tional approaches (Huang and You, 2013). A gener-
alized approach for surface to pointcloud was de-
ducted by Segal (Holz et al., 2015; Segal et al., 2009). 
All these approaches need initial alignment or filter-
ing since the ICP is a non-convex method. This prob-
lem leads to a global alignment when dealing with 
noisy construction site captures (Braun et al., 2016; 
Tuttas et al., 2017)￼. 

The SfM/MVS based approach was identified as 
less accurate but much cheaper (Golparvar-Fard et al., 
2011) compared to laser scanning and lead to a dis-
cussion of quality (Toth et al., 2013).  

To predict the quality of site captures, recent devel-
opments showed two different approaches: deducing 
the quality of the recording based on the result of the 
identification process (Rebolj et al., 2017) or using 
pure point cloud related properties and toolchains 
(Angel Alfredo Martell, 2017; Dyer, 2001; Haala et 
al., 2013). Following up on these publications, we 
present simple metrics of quality and emphasize on 
developing robust independent criteria. 

3 PROCESS OF RECONSTRUCTION 

3.1 Structure from Motion 

The structure from motion pipeline provides us with 
the first step to create a 3D model from taken images. 
It eliminates the need of a calibrated camera where 
the extrinsic and intrinsic parameters are fixed and 
known. In all taken images, points of interest are cal-
culated and their correspondence is determined. Re-
jecting flawed correspondences, each camera is reg-
istered relative to the initial match. With the help of 
the bundle adjustment, the overall error is reduced 
significantly as multiple images will be refitted to the 
current model.  

The main goal of the SfM is to generate the initial 
camera configurations of a scene captured by one or 
more cameras with multiple images. Since on con-
struction sites, the images are quasi random, it is the 
first step in retrieving correct 3D information. The 
correspondences exist as a point cloud deduced for 
the camera alignment. They already have partial geo-
metric information of the dense reconstruction. The 
camera alignment is the basis for all common recon-
struction pipelines used in construction site monitor-
ing. 

3.2 Multi View Stereo 

Multi-view stereo algorithms vary significantly in 
their principles. Seitz categorized the existing meth-
ods by six major properties (S. M. Seitz et al., 2006). 

 
1. Scene representation 

Voxels, volumes or levelset methods represent the 
approximate surface, polygon meshes as facets 
and depth maps as 2D representation. 

2. Photo consistency 
Two main competitors: Determined by the dis-
cretization and projection in scene (reconstruction 
grid) or image space (pixels of the image).  

3. Visibility model 
The model verifies, if the view needs to be con-
sidered during calculation. This is especially im-
portant with larger scenes. 

4. Shape prior 
During the reconstruction, assumptions for the 
shapes are imposed e.g. approaches that minimize 
surfaces. 

5. Reconstruction algorithm 
Different types are used: calculating the cost of 
voxels, evolving a surface iteratively, enforced 
consistency in depth maps and merging them into 
a 3D scene, fitting a surface to an extracted set. 

6. Initialization requirements 
Needed initialization may be bounding boxes, 
fore-/background separation. Image-space algo-
rithms restrict the disparity or depth values. 

 
These properties will later define the quality of differ-
ent algorithms and in case of 1.) if a point cloud is a 
suited output. In the next section we will look at cur-
rent applications available and group them regarding 
to these fundamental properties. 

3.3 Applications 

In the construction industry, only a few selected soft-
ware solutions are commonly used. Most tools sup-
port SfM and MVS and do not need a complementary 
part. For practitioners the ease of use and the cost can 
play an important part in their selection of the tool-
chains. Table 1 lists a selection of applications and 
their pipelines. When benchmarking different solu-
tions comparing the output of interim results of each 
reconstruction step helps to identify their limitations.  
Working with a dataset (construction site 
48°08'50.6"N 11°31'33.4"E, 25th of June 2017, 1087 
images) showed that not all software solutions are 
able to handle the big amount of data from a construc-
tion site sufficiently well and that some need a con-
siderable amount of computational resources.  

  



 
Application License SfM MVS 

Agisoft Photoscan c ✔ depth-map  

Pix4DMapper c ✔ PDE (whitepaper) 

ContextCapture c ✔ polygon mesh 

VisualSFM nc ✔ patch expansion 

Colmap o ✔ depth-map 

Sure nc ✘ extracted set 

openMVS o ✔ depth map 

Table 1: Selection of available software solutions for 3D recon-

struction from multiple unsorted images. Licenses are commer-

cial (c), non-commercial (nc), and open source solutions. 

Agisoft (Dmitry Semyonov, 2011), Pix4DMapper (Strecha et al., 

2003), ContextCapture (Acute3D, 2018), Visual SFM (CMVS) 

(Furukawa and Ponce, 2007 - 2007), Colmap (Schönberger et 

al., 2016), Sure (Rothermel et al., 2012) openMVS (Demetrescu 

et al., 2011). 

4 METRICS 

4.1 Baseline 

For the definition of the quality criteria of a point we 
will make several assumptions. First, while most of 
these criteria will also work with all point clouds we 
will only reference to MVS generated point clouds. 
Some measurements cannot be performed with the 
point cloud alone and need a ground truth. For us, 
there are two possible ways to provide this ground 
truth. We either generate the point cloud from a syn-
thetically generated set of images (Eickeler and Jahr, 
2017; Rebolj et al., 2017) or use actual data (e.g. cap-
tured by laser scanning) for the ground truth. With 
synthetic data generated from a model, it is hard to 
verify the process of reconstruction due to the as-
sumptions made in the camera model. Opposed to 
synthetic data, a ground truth from a laser scanner 
will always have measurement errors and deviations. 

Before measuring deviations between captured 
data and ground truth, the MVS generated model 
needs to be perfectly aligned. While we can do this 
with the help of control points, the most suitable 
alignment (registration) method needs to be deter-
mined and the relation to the considered metric must 
be investigated. This is of particular interest if we take 
scaling and warping into account. In this regard, we 
must compare between two different concepts: the 
alignment via control points with an affine transfor-
mation, and the alignment with a ridged transfor-
mation to the minimal error. While the first method 
may induce additional error by distorting the point 
cloud and fitting the control points to their reference, 
it may also reduce the error introduced by warping.  

Because we cannot assume evenly distributed den-
sity, it is not possible to align both point clouds with 

a point-to-point ICP algorithm and compare the re-
sults of the error. Therefore, we will use the general-
ized ICP approach with point-to-plane matching with 
a meshed version of the ground truth (or the model 
itself). Since laser scans are usually much denser than 
the point cloud generated from an MVS, the intro-
duced error is smaller than the resolution of the tested 
point cloud (nyquist criteria (Shannon, 1948)). 

All criteria will be defined without any relation to 
the underlying analytical process for Scan-to-BIM, 
the object recognition. It is our understanding that if 
we considered these processes, we would bias and tai-
lor the results to any chosen algorithm. Hence, we 
will only consider metrics that are self-contained 
within the point cloud, the process of creation or those 
that we are able to deduce by comparing the recon-
struction with the ground truth. 

Starting from process parameters that are only 
partly applicable to all named pipelines in Section 
3.2, we will look at the point cloud as an isolated en-
tity and then follow with the comparisons. 

4.2 Process criteria 

Evaluating the process of point cloud creation is 
meaningful on its own for comparing the resulting 
quality. Using different configurations and software 
tools we want to establish some properties for tools 
first before continuing to investigate point clouds as 
isolated data structures. This will help to identify pos-
sible errors in the image space. 

4.2.1 SFM Accuracy 
As all pipelines need to find the original camera con-
figuration with SfM, we define the mean error and the 
variance of the camera positions as our first process 
criteria. Taking the ridged transformation matrix 𝐻 
where 𝑅 is a 3 x 3 rotation matrix and 𝒕 the translation 
vector of the camera.  

 

𝐻 = [
𝑅 𝒕
𝟎𝑇 1

] (1) 

With this we define the absolute mean error and the 
variance as our first two process indicators.  
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𝐻𝑠𝑓𝑚  is the calculated alignment and 𝐻𝑡  the recorded 
camera positions. For construction sites, the camera 
positions are not determinable. However for smaller 
objects, datasets that provide the exact camera posi-
tions and orientations exist, (S. M. Seitz et al., 2006). 



4.2.2 Depth maps, deviation, and noise ratio 

Many state-of-the-art reconstruction pipelines use 

depth maps fusion (see table 1) to generate a point 

cloud. These maps can easily be compared to the de-

rived depth-map from the ground truth. For this we 

must create the depth mapping as colour coded view. 

We use the camera projection matrix from the SfM 

for this process. A depth map extracted from MVS is 

shown in Figure 1. After generating the ground truth 

and normalizing the depth map, the images can be 

subtracted, and the intensity map evaluated. The var-

iance of this intensity map 𝒱dm
2 is an indicator for the 

expected accuracy of the point cloud, as it shows the 

difference before the fusion step. Comparing the Fou-

rier transform in a desired spectrum will compare the 

spatial resolution of the depth-maps. It is possible to 

determine the maximal reliable resolution of the re-

sulting point cloud and compare them to the SNR 

(signal to noise ratio) of the images. 

 

 

 

Figure 1,2: The upper figure shows a depth map from 

colmap as example. This depth-map has the same resolu-

tion as the input images. Figure 2 is the Fourier transform 

of the same image. A high amount of high frequency 

spectrum can be seen. The lower image is the result of a 

low-cut filter. The image set and ground truth was pro-

vided by Prof. Nüchter & Helge Lauterbach, Chair of 

Computer Science VII – Robotics and Telematics, Uni-

versity Würzburg (Helge and Nuechter, 2018). 

 
Figure 3: While higher contours result in higher noise 

there is also a high frequency interference in the X direc-

tion of the depth-map.  

4.3 Coverage 

The definition of coverage is problematic as we as-
sume knowledge over the following process itself. 
Normally coverage defines a percentage of the cov-
ered ground or volume normed to the overall ground. 
In current recordings we normally record the image 
itself, but also the camera parameters and the rough 
location of where the image was taken and. If (Helge 
and Nuechter, 2018)recordings are to be taken, this is 
done by capturing all faces of the building. From the 
additional data we can determin a rough scale with 
the differential data of the GPS-Tracker. With this in-
formation (and if a higher accuracy is needed, the re-
sults from the SfM pipeline) we can deduce the cov-
erage. The process is to fit a closed spline to the pro-
jected locations. This spline needs to be offset to the 
center by the recorded focal length. The coverage can 
be presented in the length of this offset spline 𝑠𝑐 [m] 
or the inner area 𝐴𝑐 [m²]. 

4.4 Resolution & Details 

4.4.1 Point cloud density 
The probably most mentioned quality metric in the 
context of point clouds in construction is the point 
density. A valid argument considering that most of 
the progress tracking algorithms use the point density 
to identify building elements. However, opposed to 
these concepts, we consider a higher point density 
only as valuable if the information content is increas-
ing. In our studies we realized that with enough com-
putational power increasing the density is possible but 
no additional information could be deducted ergo 
there is no need for a high number of points on a flat 
surface. We therefore propose a normal weighted 
density that will increase or decrease with the change 
of the normal vectors. These will reduce the weighted 
density in high contour areas and increase the density 
on flat surfaces without any further information. 
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In equation 4, 𝑖 is the number of points in the point 
cloud, 𝐩𝑖 the current point and 𝐧𝑖 complementary 
normal. 𝑁𝐷 is a set of 𝑘 nearest neighbors to 𝐩𝑖. 
Again, p nominates the point and n the normal. The 
weighting function c is used to control the influence 
of the normals on the density. This definition also 
evaluates a higher density on boundaries and strong 
contours like corners. 

4.4.2 Resolution 
The resolution cannot be measured from a point cloud 
itself, but we can estimate the maximal possible reso-
lution using the spatial bandwidth. This bandwidth 
was used for example in a method by Steeb (Steeb, 
2005) and applied to point cloud by Graham (Gra-
ham, 2011).  
 

𝑓(𝑥, 𝑦) = 𝑘𝑓(𝑘𝐿𝑥 , 𝑗𝐿𝑦)𝑠𝑖𝑛𝑐(2𝜋𝐵𝑥𝑥 − 𝑘𝜋) - 

𝑠𝑖𝑛𝑐(2𝜋𝐵𝑦𝑦 − 𝑗𝜋) 

 With: 

𝐵𝑥 =
1

2𝐿𝑥
, 𝐵𝑦 =

1

2𝐿𝑦
 

(5) 

 

𝐵𝑥 and 𝐵𝑦  are the spatial bandwidth that maybe inter-

preted as line pairs per millimeter, the optical meas-

urement of resolution during recording. However, 

this formulation must be handled with care and eval-

uated within local boundaries because the distribution 

of points from SfM and MVS is not uniform. 
 

4.5  Error and Robustness 

4.5.1 Warping 
Warping, a geometrical distortion from rotation of 
single elements, of the 3D reconstruction is important 
when analyzing deviation in construction. The error 
of the reconstruction adds to the building errors of the 
construction site. If we want to identify warping in 
comparison to the ground truth, we can use a projec-
tive transformation matrix. The needed points can be 
found using corner detection on both datasets. While 
there are different algorithms for corner detection, we 
achieved good results with a Harris Corner Detector 
(Harris and Stephens, 1988). We consider the non-
euclidean factors as warping. 
 

𝐻𝑤 = [
0 𝟎

𝒗𝑇 𝜗
] (6) 

4.5.2 Spread of points 

Each point cloud that is recorded spreads around the 

real value. We determine the natural spread by con-

sidering the largest 𝑖 patches. The patch is then re-

duced and isolated to isolate the patch from any other 

geometric entity. We fit a plane to this patch with 

PCA and measure the distance to this plane. This dis-

tribution 𝛿𝑝𝑠 can be evaluated to define the minimal 

and maximal spread 𝑠𝑝𝑠 of the point cloud as FWHM 

(full width half maximum). Figure 4 shows an exam-

ple for a photogrammetric reconstruction with Pho-

toscan. 
 

 
Figure 4: Distribution of distances of the selected points to the esti-

mated plane. The width is a guiding indicator for the precision of the 

point cloud. 

 

4.5.3 Overall correctness 
It is possible to measure the overall distance of a point 
cloud to the ground truth. Before we can use the 
ground truth as reference model we had to align our 
reconstructed model (see paragraph 4.1) in a non-con-
vex optimization. As an error estimate we took the 
overall normalized minimal distance during the fit-
ting process (7 degrees of freedom). We follow the 
generalized approach (Segal et al., 2009). The mini-
mal distances 𝑠𝑚𝑖𝑛(𝑝, 𝑞) and the distance distribution 
of 𝑑(𝑝, 𝑞), 𝛿𝑝𝑞  define the overall fit of the model. The 
distribution can be regarded as a Weibull distribution. 
Sometimes specific areas can contribute unintention-
ally large to this metric. If further investigation is 
needed, the overlay with a color coding of the dis-
tances has proven to be an intuitive tool. 
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0BMetric 1BDescription 

∆𝑯̅̅ ̅̅  3BCamera alignment error 

𝓥𝑯
𝟐  5BVariance of the camera alignment 

𝝆𝒘 7BWeighted density of the point cloud 

𝓥𝒅𝒎
𝟐

  9BVariance of the intensity map  

10Bdifference 

𝜹𝒑𝒔 12BDistance distribution of the point  

13Bspread 

𝒔𝒑𝒔 
15BWidth of the point spread [min, max] 

𝜹𝒑𝒒 17BDistance distribution of the overall     

18Bmodel to ground truth 

𝒇(𝒙, 𝒚) 20BRecoverable Signal e.g. contour 

𝑯𝒘 22BWarping of the model 

𝒔𝒄, 𝑨𝒄 24BCoverage measure 

Table 2: Listing of all metrics that were tend to in this paper.  

5 CONCLUSION 

In this paper, we summarize a list of quality measures 
that can be applied to different point clouds (see table 
2). We concluded that there are three types of metrics 
for 3D reconstructed point clouds from images: pro-
cess metrics (Paragraph 4.1), self-contained infor-
mation (paragraph 4.2) and relative precision (para-
graph 4.3). While the first two types can be used to 
classify the point cloud of the photogrammetric pro-
cess, the latter needs a ground truth and is therefore 
only suited to evaluate the toolchain of the user. This 
is a serious limitation and this third category cannot 
be used to pose requirements on the point cloud con-
suming analysis. In practice knowing the properties 
of the reconstruction pipeline, will help to produce 
point clouds of similar quality. Going even further, 
policies for the reconstruction could serve as require-
ments. This can be regarded as a minimum recon-
struction system requirement. 

With this concept of point cloud and toolchain 
evaluation we can estimate the properties of a newly 
generated point cloud a priori. This information does 
not provide any benefit on its own and must be further 
related to the automation processes.  
 

In progress of object detection used for Scan-vs-
BIM on construction sites, the detection of elements 
is done by local density on the number of the points 
in the vicinity of the building element. The chosen 
thresholds and recognition criteria will directly im-
pose a certain density of points for the correct as-built 
recognition. Since most of the time the cloud has a 
sufficient density for the chosen thresholds (Bosché 
vincinity ±5mm, Rebolji projected coverage of 0.5) 
an analysis with our proposed metrics needs to be 
made to establish a relation between our criteria and 
the performance of the object detection algorithm in 

question. By comparing the needed input quality for 
a successful detection with the output of the chosen 
reconstruction pipeline, we can investigate the met-
rics on their influence and define minimal require-
ments for the Scan-vs-BIM recognition. Separating 
these two steps is important for a generalized selec-
tion of processing parameters and the abstraction of 
the recognition process from the pipeline benchmark. 

6 FUTURE WORK 

We consider the definition of the criteria a first step 
in the benchmarking of algorithms and pipelines. The 
next step would be to create a selection of captures 
either with a mixture of synthetic data or/and precise 
measured data as ground truth.  

With this benchmark, studies can be made that em-
phasize on the pipeline parameters, the needed pro-
cessing size of the images and the selection of views 
during the capture. Further, defining the minimal re-
quirements of proposed algorithms (see section 2) for 
Scan-vs-BIM and combining these insights with the 
input parameter analysis. This should lead to policies 
and best practices for the 3D reconstruction of con-
struction sites for as-built recognition. 

 Other use cases like visualization, documentation, 
process tracking, quality management and digitaliza-
tion of building stock to BIM should also be consid-
ered and opens up further requirement definitions.   

Another research topic would be the use of these 
metrics for object recognition instead of the pro-
posed algorithms (Bosché, Kim, Rebolji). Instead of 
solely using a local density it could be beneficial to 
relate to the weighted density, the coverage, and the 
resolution criteria 𝑓(𝑥, 𝑦). 
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