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Abstract—Today’s networks lack the support to satisfy the
highly diverse and fast changing demands of emerging ap-
plications and services. The paradigms Network Virtualization
(NV) and Software-Defined Networking (SDN) can potentially
overcome this impasse. The virtualization of software-defined net-
works is expected to bring dynamic resource sharing with guar-
anteed performance through NV and programmability through
SDN; for the first time, tenants can program their requested
network resources according to their service demands in a timely
manner. However, the virtualization of SDN-based networks
introduces new challenges for operators, e.g., a virtualization
layer that provides low and guaranteed control plane laten-
cies for tenants. Moreover, tenants’ expectations range from a
fast, nearly-instantaneous provisioning of virtual networks to
predictable operations of virtual networks. With this paper, we
give a comprehensive overview of the thesis, which can be split
into three parts — a journey in three acts. The thesis first
presents a measurement procedure and a flexible virtualization
layer design for the virtualization of software-defined networks.
Focusing on the control plane, it introduces mathematical models
for analyzing four virtualization layer architectures. Third, for a
fast and efficient virtual network provisioning on the data plane,
the thesis proposes optimization systems using Machine Learning
and Neural Computation.

Index Terms—Network Virtualization, Software-Defined Net-
working, Network Measurements, Optimization, Machine Learn-
ing, Neural Computation

I. INTRODUCTION

Existing problems: Network traffic of today’s applications,
like in cloud-computing or machine-to-machine communica-
tion networks, can fluctuate on time scales from minutes to
milliseconds and are possibly highly diverse with respect to
their required network resources [28]–[31]. However, com-
munication networks with their current protocol stacks lack
adequate mechanisms to handle changing application require-
ments in a timely manner. Hence, today’s communication
networks lack the flexibility in providing efficient resource
sharing with a high level of adaptability, needed to support
demands with diverse network resource requirements changing
over time. Overall, this can result in a performance that is far
from perfect for the network operator and the network users.

Two paradigms, namely Network Virtualization (NV) [32]
and Software-Defined Networking (SDN) [33], are expected
to cope with requirements for flexible network resource shar-
ing and adaptability. Whereas NV is seen as a key enabler
to overcome the ossification of the Internet by introducing
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Fig. 1. Thesis structure - motivational and related work conducted by the
author and the main investigated and contributed fields of the thesis. Thesis
publications are classified into three chapters: hypervisor measurement and de-
sign, Control Plane (CP) resource management, and Data Plane (DP) resource
management. Different methodologies are applied in each area. Whereas the
first content chapter focuses on practical methods, both resource management
chapters focus on simulation-based studies of optimization problems related
to combining SDN and NV.

flexible resource sharing [32], SDN introduces a new way of
flexibly programming the shared resources at runtime [33]. NV
abstracts physical resources of Infrastructure Providers (InPs)
and enables tenants, i.e., Service Providers (SPs), to use virtual
resources according to their users’ demands. Due to NV, both
InPs and SPs are expected to control physical and virtual re-
sources in a dynamic and independent manner. SDN decouples
the control plane (CP) of network devices, such as routers and
switches, from their data plane (DP). Using open interfaces
and protocols such as OpenFlow (OF), SDN provides new
means of network programmability [33]. With networks being
completely programmable, SDN can realize control logics, i.e.,
network operating systems (NOSs) integrating new concepts;
new NOSs can be tailored to application-, service-, and user-
specific demands.

Potential solution: Combining NV and SDN is expected to
offer the advantages of both worlds: a flexible and dynamic
resource acquisition by tenants through NV and a standardized
way to program physical and virtual resources through SDN.
This is called the virtualization of software-defined networks,
leading to multiple virtual software-defined networks (vSDNs)
sharing one infrastructure [34], [35]. In such setting, multiple



vSDNs coexist while each one is individually managed by its
own network operating system through SDN. The combination
should make it possible to implement, test, and even introduce
new control logic at runtime into existing networking infras-
tructures. However, to realize the combination of SDN and NV,
a so-called virtualization layer becomes necessary [36]. This
virtualization layer is realized by one or many SDN network
hypervisors or briefly also hypervisors in this paper. Interest-
ingly, the virtualization layer itself can lead to unpredictable
network management and control. For instance, as hypervisors
are processing control plane packets of tenants, they can add
additional processing latency even with high variation in case
of high-load scenarios. Hence, tenants could perceive less
predictable network CP latency.

Contribution of this paper: This paper provides an
overview of the thesis [1], which focuses on addressing
problems and challenges arising when combining NV and
SDN. The main research questions addressed in the thesis,
for which we will comprehensively survey potential answers
in Sections III—V, are:

• How to measure and design a virtualization layer for
software-defined networks? (Sec. III)

• How to make a virtualization layer more flexible and still
predictable? (Sec. III)

• How to distribute a virtualization layer and identify its
performance overhead? (Sec. IV)

• How to plan a distributed virtualization layer in case of
dynamics? (Sec. IV)

• How to speed up the provisioning of virtual networks?
(Sec. V)

• How to improve the efficiency of algorithms for virtual
network provisioning? (Sec. V)

Fig. 1 illustrates the structure of the thesis [1] with respect to
research areas and methodologies. The figure first shows the
contributions outlined in the thesis in other research areas, e.g.,
application-aware networking or softwarization of mobile core
networks, that serve as motivational work for the thesis [13]–
[27]. Due to page limitations, we omit a deeper presentation
of the motivational work. To address the aforementioned
research questions, the surveyed thesis is split into three
research areas: (1) measurements and design of SDN network
hypervisor architectures, (2) mathematical models for the static
and dynamic placement of hypervisors, (3) systems improving
the efficiency of algorithms, e.g., Virtual Network Embedding
(VNE) or SDN controller placement algorithms, needed for
provisioning virtual networks. This paper summarizes the
conducted research contributions of the thesis [1] (research
areas (1) – (3)). For each part, it provides brief examples
and explanations. For more details on the results, we refer
the reader to the original thesis [1] and the published papers.

Structure of this paper: Sec. II outlines the challenges
arising when combining NV and SDN. Afterwards, the paper
focuses on the selected contributions outlined in the thesis
structure within three sections: Sec. III outlines measurements
and design for virtualizing software-defined networks, Sec. IV

analysis optimization aspects of a virtualization layer with
respect to the placement of hypervisor entities, and Sec. V
outlines optimization systems for data plane resource provi-
sioning algorithms relying on Machine Learning (ML) and
Neural Computation. Sec. VI concludes the paper with a
discussion on how the thesis addressed the aforementioned
research questions.

II. CHALLENGES WHEN COMBINING NV AND SDN

Within this section, we outline the challenges arising when
combining NV and SDN with respect to the three research
areas (see Fig. 1).

Like in computer virtualization where a hypervisor manages
virtual machines and their physical resource access [37], a so-
called virtualization layer consisting of one or many distributed
hypervisors realizes the virtualization of SDNs [34], [36].
A hypervisors acts as a proxy between the controllers of
tenants (implementing the tenants’ control logic) and the
shared physical infrastructure, where the vSDNs reside. The
main hypervisor functions are translation, abstraction, and CP
and DP isolation. The tenant controllers establish CP connec-
tions with their virtual switches via the hypervisor and its
functions. The translation function translates the CP messages
between tenant controllers and the virtual SDN networks; the
abstraction function provides an abstracted topology view of
the physical SDN network; CP and DP isolation functions
guarantee isolated and predictable performance on both CP
and DP of the virtualized infrastructure. Interestingly, a hy-
pervisor itself can introduce overhead (e.g., CP latency) and
performance interference among tenants. In contrast to SDN
without virtualization, tenants can interfere on the shared con-
trol plane resources of the virtualization layer implementation,
i.e., of the hypervisor functions (translation, abstraction, and
isolation). Hence, a deep understanding of design choices and
performance implications of hypervisor implementations is of
significant importance. Such analysis, however, demands for
emulating potentially multiple tenant controllers and switches
simultaneously in contrast to non-virtualized networks.

Beside implementation aspects of vSDNs, resource planning
and management is another challenging task when combining
NV and SDN. With SDN, the control logic (i.e., the SDN con-
trollers) can be flexibly distributed among the network [38].
Similar, network hypervisors implementing the logic for vir-
tualization can also be distributed among the network. Since
the tenant CP traffic needs to pass through hypervisors, the
placement of network hypervisors is crucial for providing
low and predictable CP latencies for tenants. Placing network
hypervisors, however, is an algorithmically hard problem. In
contrast to the placement of SDN controllers, it even adds
a new dimension: hypervisors must serve multiple vSDNs.
Moreover, in case of dynamic scenarios where virtual networks
arrive over time, the virtualization layer, i.e., the hypervisor
placements, might need to change for achieving an always
low CP latency. Adapting the virtualization layer can intro-
duce reconfigurations that should be considered; neglecting



reconfigurations can lead to network instabilities resulting in
service interruptions or network outages [39]–[42].

The virtualization of software-defined networks also intro-
duces new challenges with respect to resource allocation on
the DP: vSDNs can be requested and instantiated by SPs at any
time. The allocation of arriving requests, i.e., the embedding of
virtual networks, needs to be solved fast and efficiently for an
overall optimal network performance: e.g., fast and low-cost
acquisition is a competitive advantage when virtualizing an
infrastructure like in cloud environments [43], [44]. However,
solving the VNE problem is algorithmically hard as well [45].
Hence, managing virtualization layers requires new mecha-
nisms to improve the embedding quality of virtual networks
and to speed up existing embedding algorithms.

In the following three Sections III — V, we comprehen-
sively summarize how the thesis [1] addresses the aforemen-
tioned challenges with respect to each area.

III. ACT I: MEASUREMENTS AND DESIGN FOR VIRTUAL
SOFTWARE-DEFINED NETWORKS

This section summarizes the first contribution chapter of
the thesis [1]. The chapter starts by analyzing existing SDN
network hypervisor architectures and outlines their shortcom-
ings. As there has been no measurement framework for SDN
hypervisors in literature so far, the chapter presents a compre-
hensive benchmarking framework for making measurement-
based analysis of hypervisors. To conduct hypervisor measure-
ments, the tool perfbench is presented [6], [16]. In order to
mitigate the sources of unpredictability in existing hypervisor
architectures, this chapter outlines and implements concepts
for isolation and CP adaptation support [2]–[4].

A. Comprehensive Survey of SDN Network Hypervisors

The thesis [1] conducts a survey of existing hypervisors
with respect to their implementations of hypervisor functions
(translation, abstraction, isolation) [5]. Furthermore, the net-
work hypervisors are classified into centralized and distributed
hypervisor architectures. The main centralized hypervisor is
FlowVisor [34], which built the basis for many upcoming
hypervisor proposals. Distributed hypervisor architectures are
further subclassified according to their execution platforms:
hypervisors that only rely on general computing platforms,
hypervisors that additionally make use of the features of
general purpose networking elements, and hypervisors that
additionally use network elements that are adapted to the
virtualization of SDN networks. Generally, hypervisor ar-
chitectures whose virtualization functions can be distributed
are seen as most flexible. For instance, isolation functions
can be implemented on network elements while translation
functions can remain on software implementations hosted on
virtual machines. Thereby, isolation functions can protect the
performance of translation functions, e.g., by delaying CP
messages of tenants. Although there exists a wide range of
hypervisor designs, we observed the following shortcomings
from our analysis: (1) the lack of a comprehensive benchmark-
ing framework to quantify performance and (2) the lack of a

virtualization layer design that provides flexible virtualization
mechanisms with guaranteed network performance.

B. Measurement Tool and Study of SDN Network Hypervisors

In order to overcome the lack of a comprehensive per-
formance benchmark tool for hypervisors, the thesis propose
perfbench for OF-based SDN network hypervisors [6], [46].
The tool satisfies the requirements for hypervisor benchmarks,
e.g., for datacenters [28]: controllable-high, stable, and vari-
able OF message rates as well as the emulation of multiple ten-
ants and switches simultaneously. Moreover, perfbench can be
used in non-virtualized SDN networks for switch performance
investigations [16]. With perfbench (publicly available [47]),
we find that hypervisors differently impact on the vSDN
performance under varying workloads. For instance, FlowVi-
sor [34] adds less latency overhead than OpenVirteX [48].
For OF FlowMod messages with a rate of 10 000 and 30 000
messages per seconds, FlowVisor adds latency overheads from
0.4ms to 1ms, whereas OpenVirteX adds 1ms − 30ms.
However, given the same processing resources, OpenVirteX
can support larger networking scenarios with up to 100 tenant
controllers and switches, whereas FlowVisor can only support
up to 20 controllers and switches simultaneously.

C. Network Virtualization Architecture Towards Predictable
CP Performance: HyperFlex

The hypervisor measurements reveal CP interference among
tenants [1], [6]. As a consequence, the thesis proposes Hy-
perFlex - a flexible virtualization layer architecture with
improved predictable CP performance for tenants [2]–[4].
HyperFlex (publicly available [49]) decomposes the virtual-
ization layer into software and hardware-based functions; the
functions (i.e., abstraction, translation, and isolation) can be
flexibly distributed among servers or networking hardware.
For more predictable and flexible network management, two
mechanisms are implemented: an adaptation mechanism [3]
and a CP isolation concept [2], [4].

1) CP Isolation: In vSDNs, tenants are sharing the CP
resources of hypervisors and switches. Hence, the CP mes-
sages sent by multiple tenant controllers can interfere on the
shared hypervisor resources. For instance, the messages of one
tenant can overload the translation function, which leads to
potentially high CP latency for all other tenants using the
same translation function. Using the isolation functions, CP
latency guarantees can be achieved by dropping or delaying
CP messages, e.g., of malicious tenant controllers. HyperFlex
provides two isolation function implementations: a software-
based implementation and a hardware-based implementation
that uses traffic policing mechanisms of networking hardware.
The measurement studies on the CP isolation reveal trade-offs
between software and hardware implementations: their usage
depends on the OF message type and current infrastructure
utilization. For instance, hardware isolation on network ele-
ments leads to network packet drops. In contrast, dropping OF
messages in software can protect either hypervisor or switch



performance. However, for proper use, software isolation de-
mands a headroom reservation of CPU resources since it is
processed by the hypervisor CPU.

2) CP Reconfiguration: The adaptation mechanism of Hy-
perFlex addresses the handover of control plane connections
between hypervisor functions and SDN switches. This mech-
anism can help, e.g., to overcome overload situations by
offloading CP connections from one virtualization function
to another. Measurements of the adaptation mechanism show
that the CP assignments of switches to hypervisor functions
can be changed at runtime [15]. This comes, however, at the
cost of increased CP latency during the migration process: for
instance, the CP latency can increase from 30ms to 40ms in
an exemplary networking scenario with 1 000 CP messages per
second. As adaptations induce additional latency, the dynamic
hypervisor placement model will also focus on minimizing
reconfigurations (see Sec. IV).

IV. ACT II: MODELING AND OPTIMIZATION OF NETWORK
VIRTUALIZATION LAYERS

This section briefly summarizes the second contribution
chapter of the thesis [1]. Since no analysis of the impact
of the hypervisor placement exists yet, the thesis chapter
proposes mathematical models for optimizing network hy-
pervisor placements for static and dynamic use [7]–[9]. The
mathematical models can help answer questions such as how
many hypervisors are needed and where to distribute them
among network locations.

A. Hypervisor Placement for Static Use

The thesis chapter starts with the investigation of the
placement of hypervisor instances for static use — the set
of vSDNs will not change over time [7], [8]. We define
mixed-integer linear programming (MILP)-based models for a
centralized and three distributed hypervisor architectures. The
distributed hypervisor architectures can either not use, partially
use, or fully use special hardware features of the infrastructure.
In particular, we investigate the impact of multi-controller
switches that can simultaneously connect to multiple hyper-
visor instances. For evaluation of the four architectures, we
investigate the impact of the hypervisor placement on the CP
latencies of the entire network as well as individual vSDNs. In
order to account for the individual vSDNs, two virtualization-
related CP latency measures are defined: maximum-average
and average-maximum. The measures are defined to particular
count for the virtualization use case: the maximum-average
measure addresses the maximum of all average CP latencie of
vSDNs whereas the average-maximum addresses the average
of all maximum CP latencies of vSDNs. This extends the
basic CP latencies, namely average and maximum CP latency,
of controller placements in non-virtualized networks [38]. We
identify the CP latency overhead due to the requirement for the
tenants’ control connections to traverse a hypervisor instance:
we call this the cost of virtualization [8].

Exemplary observations: virtualization can add significant
CP latency overhead for individual vSDNs. For instance, with

only one hypervisor, the (average/maximum) CP latencies for
75 % of vSDNs can increase by a factor of 2 compared to an
non-virtualized SDN network. We also show that for wide area
networks with 30 to 50 nodes, seven hypervisor instances and
50% switches supporting the multi-controller feature leads to
no overhead for more than 75 % of vSDNs, i.e., CP latencies
are equal to the non-virtualized case.

B. Hypervisor Placement for Dynamic Use

We extend the study of the hypervisor placement for a
static use case to dynamic use: a virtual network request
arrives over time and needs to be served by the virtualization
layer [9]. We extend the MILP model for static use to count
for reconfigurations. We model the update of CP connections
and the migration of network hypervisors as reconfigurations.
As minimizing reconfigurations and minimizing latency are
conflicting objectives, the ε-constraint method is used to solve
the multi-objective optimization problem [50]. We analyze the
trade-off between reconfigurations and latency and the impact
of relaxing the latency for reducing reconfigurations. Relaxing
latency represents the cost of adaptation; a new angle when
looking at dynamic hypervisor deployments.

We first notice that average CP latencies change with a
probability of 75 % when a new virtual network arrives,
whereas maximum control latencies change only with a prob-
ability of roughly 25 % when a new virtual network arrives.
The observation might lead to a false hypothesis: maximum
objectives might not demand reconfigurations. However, for
three hypervisors, up to 40 % of vSDNs are affected by recon-
figurations for maximum and average objectives. Relaxing the
latency can help to reduce the amount of hypervisor location
changes; however, for maximum objectives, it is harder to
avoid reconfigurations.

V. ACT III: MACHINE LEARNING-BASED ALGORITHM
PREPROCESSING FOR VIRTUAL NETWORK PROVISIONING

The third content chapter of the thesis [1] investigates
the potential of Machine Learning (ML) and Neural Com-
putation to provide more efficient and faster virtual network
provisioning. It first presents NeuroViNE, a system that uses
Neural Computation [11]. Second, it outlines o’zapft is, an
ML approach that leverages the available data of previously
solved problem instances to improve the efficiency of future
executions of network algorithms [10], [12].

A. Preprocessing Using Neural Computation: NeuroViNE

NeuroViNE is a preprocessor for VNE algorithms [11].
NeuroViNE is motivated by the observation that efficient
solutions to the VNE problem place frequently communicating
nodes close to each other. Accordingly, NeuroViNE extracts
subgraphs that provide (1) a high probability for being able
to accommodate a virtual network and (2) ensure a low-cost
embedding. In order to find valuable subgraphs, NeuroViNE
uses a Hopfield neural network [51], [52].

Based on our simulation results, we observe that existing
time-intensive VNE algorithms benefit if they can be executed



on subgraphs selected intelligently from the substrate net-
work (wide area networks, datacenter, and random networks):
NeuroViNE can potentially shorten network algorithm runtimes
while preserving a high embedding quality, e.g., by more than
80 % for virtual networks with 15 nodes on a 100 node
substrate. Moreover, NeuroViNE reduces the embedding cost
of the GRC algorithm [53] by roughly 25%.

B. Data-Driven Algorithm Optimization: o’zapft is

This section presents o’zapft is, an ML-based system that
shows how to exploit the wealth of data generated by algo-
rithms [12]. o’zapft is relies on supervised learning. In the
thesis [1], o’zapft is is applied to the VNE problem and the
SDN controller placement problem. Based on the collected
data from previous embedding solutions (i.e., whether requests
can be embedded or their embedding quality), o’zapft is learns
to predict the outcome of embedding algorithms. For the
embedding of networks, using this knowledge, hard-to-model
problem instances can be rejected without triggering a runtime
expensive embedding algorithm. For the placement of tenant
SDN controllers, o’zapft is learns from previous placement
solutions to provide initial solution guesses for future place-
ment problems. By predicting the chance of a node to host
a controller, o’zapft is preselects valuable network nodes to
create initial solutions. Thereby, it can shrink the search space
before algorithms effectively search for controller locations.

By making prediction on the feasibility of arriving virtual
networks, the o’zapft is framework reduces the runtime of an
exact VNE algorithm [54] by roughly 50% on a 100 node
substrate network. When placing SDN controllers for tenants,
o’zapft is preselects 50% of substrate nodes as candidate
nodes. When executing an exact algorithm on the subset of
candidate nodes, still the best possible latency objective can be
achieved while effectively shrinking the search space; hence,
o’zapft is saves computational algorithm cost and speeds up
the execution time.

VI. DISCUSSION AND OUTLOOK

Virtualizing SDN networks introduces new problems and
challenges. Indeed, our SDN network hypervisor measure-
ments and analysis reveal that the virtualization itself intro-
duces unpredictability. With our tool perfbench, hypervisors
can now be quantified in much more detail; hence, more
precise performance models can be created and sources of un-
predictability can be detected. We believe that such knowledge
is important when dimensioning and designing virtualization
layers for SDN networks. As a step towards more predictable
virtualization layer management, HyperFlex can better isolate
the control plane performance of tenant controllers. Further-
more, with its adaptation mechanism, it can also prevent
SDN network hypervisors from over-utilization. For future, we
believe that more focus should be put on potential interference
on CP and DP in virtualized SDN networks.

When looking at the distribution of SDN network hyper-
visors, we introduce optimization models that let network
operators rigorously examine the trade-offs between using

different numbers of SDN hypervisor instances and multi-
controller SDN switches. The static models are additionally
extended to more dynamic use cases where virtual networks
arrive over time. Revealed as sources of performance over-
heads (i.e., additional control plane latency), reconfigurations
could be efficiently reduced. However, this comes at the
cost of additional control plane latency during operation.
Again, operators should take this trade-off into account when
dimensioning virtualization layers for dynamic scenarios. As
a next step, new models should also analyze the capacitated
case of the investigated problems.

When virtualizing SDN networks, the algorithmically hard
VNE problem needs to be addressed. To fully unleash the
advantages of both NV and SDN, new (heuristic) ways of
improving the algorithm performance and embedding quality
of virtual networks are needed. Here, our simulation-based
results show that Machine Learning and Neural Computation
offer new optimization opportunities. The runtime and solution
quality of existing VNE algorithms is rigorously improved.
Using our solutions, exact algorithms based on mathematical
programming can become credible alternatives to heuristics
on larger topologies. Moreover, as more general problems
are underlying the embedding problem, our concepts could
be extended to other research areas (network protocol design,
scheduling etc.).
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