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Abstract: Grating-based X-ray phase-contrast (gbPC) is an X-ray phase-contrast imaging method
involving optical gratings that typically employs the Talbot self-imaging effect. X-ray phase
contrast is known to provide significant benefits for biomedical imaging. To investigate these
benefits for gbPC, a high-sensitivity gbPC micro-CT setup for small biological samples has
been constructed. A gbPC projection measurement simultaneously retrieves the transmittance,
differential-phase and dark-field modalities of a sample. Phase stepping, the most common gbPC
acquisition technique, involves several acquisitions at different lateral positions of one of the
gratings. The three modalities can then be retrieved by least-squares- or FFT-based methods.
Unfortunately, increasing differential-phase sensitivity also leads to an increased magnitude

of artifacts introduced during retrieval of the modalities from the phase-stepping data, which
limits image quality. Most importantly, processing of phase-stepping data with incorrect stepping
positions (i.e., spatial sampling jitter) can introduce artifacts to the modalities. Using data from
the high-sensitivity gbPC setup, as well as simulations, we show that an artifact is introduced
by the jitter which is correlated with the phase of the stepping curve. We present a theoretical
explanation for this correlation by introducing small deviations to an equidistant sampling of a
stepping curve and approximating the effect on the calculation of the three gbPC modalities with
a first-order Taylor approximation. Finally, we present an algorithm for the detection and removal
of these artifacts that exploits these correlations. We show that this algorithm is able to eliminate
these artifacts without degrading true image information.
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
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1. Introduction

1.1. Grating-based X-ray phase-contrast

Grating-based X-ray phase-contrast (gbPC) imaging has been shown to provide better soft-
tissue contrast than regular attenuation-based imaging [1], while still working efficiently with
conventional X-ray sources. [2, 3]. Three modalities can be retrieved from a single gbPC
measurement: Besides transmittance, information about the angle of refraction is encoded in the
differential-phase modality, and loss of visibility is encoded in the dark-field modality [4].
In gbPC, a Talbot interferometer is used to generate a periodic intensity pattern at certain

positions downstream of a modulation grating (G1). This is done by exploiting the Talbot effect,
or, if a phase grating is used, the fractional Talbot effect [8]. Absorption, refraction and coherent
scattering of X-rays by a sample have different effects on this periodic pattern: Absorption leads
to uniform attenuation of the pattern, refraction affects its phase (i.e., the lateral shift), and
small-angle scattering components orthogonal to both grating structures and beam direction
causes a reduction in amplitude (see Fig. 1).
The primary cause of dark-field signal is small-angle scattering generated by electron den-

sity fluctuations on the micron scale, as exploited by (ultra-)small-angle X-ray scattering
(USAXS/SAXS) experiments [5]. Besides sample thickness, dark-field signal strength depends
on the autocorrelation function of the sample’s electron density at the so-called correlation length,
which is a function of X-ray energy and setup parameters. A detailed analysis of this relation can
be found in [6, 7].
The resulting intensity patterns are typically too fine to be detected directly. Therefore, a

transmission grating with the same period as the intensity pattern (the analyzer grating G2) is
introduced in front of the detector. This produces detectable moiré fringes due to a superposition
of the periodic intensity pattern with the periodic G2 transmittance function. By introducing a
lateral displacement of one of the gratings, the phase of the moiré pattern is shifted. The observed
intensity as a function of lateral displacement is typically sinusoidal. Amplitude, offset and phase
of this sinusoidal function provide information about amplitude, offset and phase of the original
intensity oscillations, and therefore about the amount of attenuation, refraction and small-angle
scatter caused by the sample [4, 9].

Observation of this effect with a two-grating interferometer requires high transverse coherence
of the X-ray source, prohibiting the use of standard X-ray tubes. However, the Talbot interferometer
can be expanded to a Talbot-Lau interferometer by insertion of an attenuation grating (the source
grating G0) upstream of the modulation grating. This effectively separates the source spot into a
periodic array of narrow, but mutually incoherent line sources. Each line source has sufficient
transverse coherence to allow observation of the (fractional) Talbot effect, and the distance of
adjacent line sources is matched so that the intensity modulations they produce at G2 add up
constructively [2].
To obtain a baseline reference, the above-mentioned phase-stepping procedure is performed

twice: once with and once without a sample in the beam. The dependence of measured intensity
on the lateral shift x can be described as:

Is(x) = as
0 + as

1 cos
(
x − Φs

1
)
, (1)

If(x) = af
0 + af

1 cos
(
x − Φf

1
)
. (2)

Here, p denotes the analyzer grating period. The index s refers to the model parameters
corresponding to the sample projection, the index f to those from the reference projection, the
so-called flat-field. By lateral displacement of one of the three gratings, Is and If are sampled at
different values of lateral shift (x = x1, . . . , xN ). A fit of the model functions in Eq. (1) and (2) to
the data can then be performed using least-squares- or FFT-based methods, which yields values
for the curves’ offsets as/f

0 , amplitudes as/f
1 , and phases Φs/f

1 . Transmittance T , differential phase
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Fig. 1. (a): Effect of absorption, refraction and small-angle scattering on downstream
intensity patterns in the Talbot-Lau interferometer. (b): The intensity patterns are resolved
indirectly by recording the detector signals I for different lateral shifts x of either of the three
gratings (of period p).

ϕ, and dark-field D are then derived from these fit parameters via

T =
as

0

af
0
, ϕ = Φs

1 − Φ
f
1, D =

V s

V f =
as

1/a
s
0

af
1/a

f
0
. (3)

For a CT scan, these modalities are acquired for many different projection angles, and three sets
of volumetric data, namely attenuation coefficient µ, refractive index decrement δ, and linear
diffusion coefficient ε, are reconstructed from sinograms of T , ϕ, and D, respectively.

In general, the directional dependence of the dark-field signal must be considered, and may be
modeled e.g. as described in [10]. For X-ray dark-field CT, the situation is further complicated
by the relative rotation of sample and beam direction. In X-ray tensor tomography, a three-
dimensional scatter tensor can be retrieved for each voxel [11]. For a non-directional dark-field
setup such as the one used here, the retrieved scalar volumetric quantity is an average over
components of this tensor in many different directions (perpendicular to grating ridges and beam
direction, for all tomographic angles). This reduction to a scalar quantity ε, as shown in [12], is
however appropriate for the description of isotropic scatterers.
The high soft-tissue contrast of the refractive index decrement suggests future biomedical

applications for gbPC-CT and other X-ray phase-contrast imaging methods [3].

1.2. High-sensitivity gbPC setup

The algorithm presented here was tested on data generated by the setup presented in [13]. This
gbPC micro-CT setup with very high angular sensitivity was primarily used for the detectability
of various pathologies via gbPC [14–16].

1.3. Observations and purpose

When processed with a simple FFT- or least-squares-based signal extraction algorithm, many
gbPC-CT projections from the examined setup exhibit fringe-like artifacts. We found that the
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Fig. 2. Correlation of stepping curve phase Φs
1 (a) and residual oscillations in projections

of transmittance T (b), differential-phase ϕ (c) and dark-field D (d) of a porcine cartilage
sample in saline solution. A PMMA rod used for energy calibration is also visible. The
phase-wrapping pattern in (a) correlates with the pattern of fringe artifacts in all three
modalities. The artifacts in (c) and (d) evidently have twice the spatial frequency of the
pattern in (b). Figs. 2(b)-2(d) were retrieved from a set of 11 phase-stepping images over one
grating period (and another 11 flat-field phase-stepping images). Exposure time per image
was 3 s. Acquisition was performed at the setup in [13], at 40 kVp (Mo anode) and a current
of 70 mA.

spatial pattern of these artifacts correlates with that of the stepping curve phase of both the
sample projection (Φs

1) and the flat-field (Φ
f
1). In visible-light phase-shifting interferometry (PSI),

this type of artifact is known as the fringe-print-through (FPT) error [17]. In PSI, only the phase
difference (i.e. differential phase) is commonly retrieved. We have observed these artifacts in
all three gbPC modalities, but find that they are most prominent in the differential-phase and
dark-field projection images. An example projection is shown in Fig. 2. The image of stepping
curve phases in Fig. 2(a) is dominated by a high spatial gradient, which is mapped to the interval
[−π, π] since it is the argument (angle) of a complex value. Sample differential-phase information
is only faintly visible.

The resulting phase-wrapping pattern shows a striking similarity to the artifacts present in the
processed modalities [Figs. 2(b)-2(d)]. In the differential-phase and dark-field modalities, the
artifact consists of two full oscillations per 2π range of Φ1 values, whereas in the transmittance
image, only one oscillation appears in the same range.
In Sec. 2, it is shown that artifacts exhibiting this correlation can result from jitter, i.e. a

discrepancy of the true sampling positions of the stepping curve and those implicitly assumed by
the signal extraction algorithm. In Sec. 3, an algorithm for the removal (or reduction) of these
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artifacts is presented, which exploits the observed correlations. An example of its application to
measurement data is shown.

2. Calculation of fit coefficient errors due to jitter

2.1. Overview and prior art

In this section, the effect of a deviation of true and assumed stepping positions on the retrieved
images is examined and we show that such deviations can cause a bias resembling the observed
artifacts, as shown in Fig. 2. These deviations are commonly referred to as “jitter”. Several
methods have been developed to minimize the bias caused by jitter from a known or unknown
random distribution [18,19]. However, these publications assume a single signal which is sampled
a large number of times. The case of phase-stepping imaging, where many signals (i.e., pixels) are
acquired simultaneously with the same jitter realization, can not be addressed with these methods.
Additionally, the dependence of jitter-induced bias on the signal for any one particular realization
of jitter values is not examined. In [20], Revol et al. provide variances of the relative error of
the gbPC image modalities T , ϕ, and D due to shot noise and phase-stepping jitter. However,
the interpretation of jitter-related artifacts as "noise" obscures the fact that the artifacts have a
non-random structure in any given noise realization.

In Sec. 2.2, jitter-induced biases in fit coefficients retrieved from a single stepping, namely a0,
a1, and Φ1 from Eq. (1), (2) are estimated, and their dependence on a given jitter realization and
the true value of Φ1 are examined. In Sec. 2.3, this is expanded to errors in the flat-field-corrected
image modalities T , D, and ϕ from Eq. (3), i.e. data retrieved from two sets of stepping data. The
obtained results then serve as motivation for a correlation-based correction algorithm presented
in Sec. 3. Finally, a statistical treatment of jitter is given in Sec. 2.4, where an approximate
relationship between stepping uncertainty and error variances is presented.
We find that our results are in agreement with those from [20].

2.2. Correlation of single-stepping fit coefficients with stepping curve phase

In the following, we approximate a bias in the estimated values for the fit coefficients a0, a1, and
Φ1 from Eq. (1), (2) when the sampling points of the stepping curve deviate from an equidistant
placement over one period by small amounts. We find a correlation of the biases with sin(Φ1 − c)
and sin(2Φ1 − c′), in agreement with our observations from Sec. 1.3.

In the following, the true values of all variables are differentiated from their estimated values
by the addition of the superscript “t”. We assume sampling of a stepping curve at the positions
®x t = [xt

1, . . . , xt
n]. They are given in radians, consistent with Eq. (1), (2). Furthermore, we assume

that these positions are close to an equidistant sampling ®x = [x1, . . . , xn] over one stepping curve
period (i.e. xk = 2πk/n, k = 1, . . . , n), and we define the deviation of each sampling position
(i.e., the jitter) as ξk ≡ xt

k
− xk . This is a reasonable assumption since gbPC imaging setups are

commonly programmed to sample stepping curves equidistantly, albeit with a positioning device
of finite accuracy (which is reflected by the distribution of the ξk values). The intensity values
measured at the points ®x t are denoted ®y t = [yt

1, . . . , y
t
n]. Image noise, i.e. random fluctuations of

®y t, will be neglected for this calculation. The true model underlying the data is then given by

yt
k = at

0 + at
1 cos

(
xt
k − Φ

t
1
)
, k = 1, . . . , n. (4)

To retrieve estimates for at
0, at

1, and Φ
t
1 (denoted a0, a1 and Φ1), we fit a sinusoidal function to

this data. In our model however, we assume an equidistant stepping, i.e. we incorrectly assume
that the values ®y t were acquired at the equidistant sampling positions ®x. These assumptions are
illustrated in Fig. 3. Our signal extraction model is therefore:

yk = a0 + a1 cos (xk − Φ1) = β1 + β2 cos xk + β3 sin xk, k = 1, . . . , n. (5)
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Fig. 3. Intensities are measured at sampling positions xt
k
[abscissa in (a)], which, due to

limited positioning accuracy, deviate from intended, equidistant stepping points xk [abscissa
in (b)]. Misattribution of the measured values to the stepping points xk lead to a deviation
between true and fitted curve parameters (dashed and dotted lines).

In Eq. (5), the model was converted to linear fit parameters, which are related to the original
parameters via the following equations:

β1 ≡ a0, (6)
β2, β3 ≡ a1 cos (Φ1) , a1 sin (Φ1) , (7)

a1, Φ1 ≡
(
β2

2 + β
2
3

)1/2
, arg (β2 + iβ3) . (8)

This linearization will simplify the calculation later on. To calculate the fit parameters, we can
either use a discrete Fourier transform (DFT) or a least-squares minimization (both are equivalent
for equidistant sampling). The least-squares solution is defined as

β1, β2, β3 = argmin
β′1,β

′
2,β
′
3

n∑
k=1

[
yk(β′1, β

′
2, β
′
3) − yt

k

]2
. (9)

We define the j-th coefficient of the DFT of ®y t as

Yj = F
{
®y t}

j
=

1
n

n∑
k=1

exp(−2πi j k/n)yt
k =

1
n

n∑
k=1

exp(−i j xk)yt
k . (10)

Using this, the solution to Eq. (9) can be expressed as:

β1 = Y0 =
1
n

n∑
k=1

yt
k, (11)

β2 = 2Re(Y1)=
2
n

n∑
k=1

yt
k cos xk, (12)

β3 = −2Im(Y1)=
2
n

n∑
k=1

yt
k sin xk . (13)
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Inserting Eq. (4) for yt
k
in Eq. (11), (12), and (13) yields:

β1(®x t) = 1
n

n∑
k=1

[
at

0 + at
1 cos

(
xt
k − Φ

t
1
) ]
, (14)

β2(®x t) = 2
n

n∑
k=1

[
at

0 + at
1 cos

(
xt
k − Φ

t
1
) ]

cos xk, (15)

β3(®x t) = 2
n

n∑
k=1

[
at

0 + at
1 cos

(
xt
k − Φ

t
1
) ]

sin xk . (16)

For equidistant stepping (®x t = ®x), the error of all fit coefficients is zero (βt
j = βj , and therefore

at
0 = a0, at

1 = a1, Φt
1 = Φ1). We assume that ξk = xt

k
− xk is small for all k. Therefore, we

approximate the error in all βj due to the incorrect sampling positions via a first-order Taylor
series around the point ®x t = ®x:

δβj = βj(®x t) − βj(®x) (17)

≈
n∑

k=1

∂βj

∂xt
k

�����
®xt=®x
(xt

k − xk)︸    ︷︷    ︸
=ξk

(18)

A similar approach has previously been used for estimations of bias due to jitter, e.g. in [19].
Evaluation of Eq. (18) for j = 1, 2, 3 by using Eq. (14), (15), and (16) yields:

δβ1 ≈ −
at

1
n

n∑
k=1

ξk sin
(
xk − Φt

1
)
, (19)

δβ2 ≈ −
2at

1
n

n∑
k=1

ξk sin
(
xk − Φt

1
)
cos xk, (20)

δβ3 ≈ −
2at

1
n

n∑
k=1

ξk sin
(
xk − Φt

1
)
sin xk . (21)

Since a0 = β1, the dependence of δa0 on Φt
1 is already fully described by Eq. (19). To estimate

the errors δa1 and δΦ1, we can apply another first-order Taylor expansion, in equivalence to
Eq. (18). Below, all partial derivatives are understood to be evaluated for ®x t = ®x, which is denoted
by the subscript “|®x”:

δa1 ≈
n∑

k=1

∂a1

∂xt
k

�����
®x
ξk =

n∑
k=1

(
∂a1
∂β2

�����
®x

∂β2

∂xt
k

�����
®x
+
∂a1
∂β3

�����
®x

∂β3

∂xt
k

�����
®x

)
ξk (22)

=
∂a1
∂β2

�����
®x

n∑
k=1

∂β2

∂xt
k

�����
®x
ξk +

∂a1
∂β3

�����
®x

n∑
k=1

∂β3

∂xt
k

�����
®x
ξk (23)

(18)≈ ∂a1
∂β2

�����
®x
δβ2 +

∂a1
∂β3

�����
®x
δβ3. (24)

An equivalent result can be obtained for δΦ1:

δΦ1 ≈
∂Φ1
∂β2

�����
®x
δβ2 +

∂Φ1
∂β3

�����
®x
δβ3. (25)
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Using Eq. (8), the derivatives of a1 and Φ1 with respect to β2 and β3 are given as:

∂a1
∂β2
=

β2

(β2
2 + β

3
2)1/2

=
β2
a1
= cosΦ1,

∂a1
∂β3
=

β3

(β2
2 + β

3
2)1/2

=
β3
a1
= sinΦ1, (26)

∂Φ1
∂β2

=
−β3

β2
2 + β

2
3
=
−β3

a2
1
=
− sinΦ1

a1
,

∂Φ1
∂β3

=
β2

β2
2 + β

2
3
=
β2

a2
1
=

cosΦ1
a1

. (27)

When setting the true sampling positions ®x t equal to the equidistant sampling positions ®x, the
estimated fit coefficients are equal to their true values. Therefore:

∂a1
∂β2

�����
®x
= cosΦt

1,
∂a1
∂β3

�����
®x
= sinΦt

1, (28)

∂Φ1
∂β2

�����
®x
=
− sinΦt

1
at

1
,

∂Φ1
∂β3

�����
®x
=

cosΦt
1

at
1

. (29)

Inserting Eq. (20), (21), and (28) into Eq. (24) yields:

δa1 ≈ cosΦt
1 ×
−2at

1
n

n∑
k=1

ξk sin(xk − Φt
1) cos xk + sinΦt

1 ×
−2at

1
n

n∑
k=1

ξk sin(xk − Φt
1) sin xk

=
−2at

1
n

n∑
k=1

ξk sin(xk − Φt
1)(cosΦt

1 cos xk + sinΦt
1 sin xk)

=
−2at

1
n

n∑
k=1

ξk sin(xk − Φt
1) cos(Φt

1 − xk)

δa1

at
1
≈ 1

n

n∑
k=1

ξk sin(2Φt
1 − 2xk). (30)

Likewise, plugging Eq. (29), (20), and (21) into Eq. (25) yields

δΦ1 =
1
n

n∑
k=1

ξk
[
cos(2Φt

1 − 2xk) − 1
]
. (31)

Regardless of the values for ξk or xk , Eq. (19), (30), and (31) can always be expressed as
simple sinusoidal dependencies on Φt

1 or 2Φt
1, using the definition of complex amplitudes A j :

δa0

at
0
≈

at
1

at
0

Im
[
A1 exp(iΦt

1)
]
=

at
1

at
0
|A1 | sin

(
Φ

t
1 + argA1

)
, (32)

δa1

at
1
≈ Im

[
A2 exp(2iΦt

1)
]
= |A2 | sin

(
2Φt

1 + argA2
)
, (33)

δΦ1 ≈ Re
[
A2 exp(2iΦt

1) − A0
]
= |A2 | cos

(
2Φt

1 + argA2
)
− A0, (34)

A j =
1
n

n∑
k=1

ξk exp (−i j xk) =
1
n

n∑
k=1

ξk exp (−2πi j k/n). (35)

Comparing Eq. (35) and (10) shows that the arising complex amplitudes are simply components
of the DFT of the vector ®ξ of all jitter values. This shows that within the scope of this calculation,
®ξ is sufficiently described by only three coefficients of its DFT. Note in particular that A0 in
Eq. (34) is the mean of all elements of ®ξ. A systematic offset of all sampling positions by the
same value yields a nonzero value for A0 and therefore translates to an offset in the Φ1 estimate.
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2.3. Dependence of the image modality errors on Φr
1

The process described in Sec. 2.2 occurs in both sample scans and flat-field scans. The stepping
jitter within these two acquisitions is typically not correlated and must therefore be described by
two separate amplitudes A j,s, A j,f ( j = 0, 1, 2). The modalities are then calculated using Eq. (3),
and the artifacts in T , ϕ, and D as shown in Fig. 2 are hence each a combination of two artifacts,
both being described by a separate complex amplitude. Since ϕ = Φs

1 − Φ
f
1, it follows that

δϕ = δΦs
1 − δΦ

f
1. (36)

T , V , and D are results of a division of fit parameters. The error of these modalities can
therefore not directly be expressed as a sinusoidal dependency on Φ1. However, assuming that
the errors in a1 and a0 are small, they can again be estimated with a first-order approximation
with respect to a1 and a0 around the point (at

1, a
t
0):

δT =
as,t

0 + δas
0

af,t
0 + δaf

0

−
as

0

af
0

⇒ δT
T t ≈

δas
0

as,t
0
−
δaf

0

af,t
0

, (37)

δV =
at

1 + δa1

at
0 + δa0

−
at

1
at

0
⇒ δV

V t ≈
δa1

at
1
− δa0

at
0
, (38)

δD =
V s,t + δV s

V f,t + δV f −
V s,t

V f,t ⇒ δD
Dt ≈

δV s

V s,t −
δV f

V f,t ≈
δas

1

as,t
1
−
δaf

1

af,t
1

+
δaf

0

af,t
0

−
δas

0

as,t
0
. (39)

Combining Eq. (32) and (33) with Eq. (36), (37), and (39), and assuming that ϕ � 2π, so that
Φ

s,t
1 ≈ Φ

f,t
1 ≡ Φ

t
1 leads to the results shown in Table 1.

Table 1. Dependence of stepping-jitter-induced artifacts on stepping curve phase Φt
1

and complex amplitudes A j . These amplitudes are coefficients of the discrete Fourier
transform of the jitter vector ®ξ, see Eq. (35). A distinction between flat-field and sample
phase-stepping is therefore necessary for T , ϕ, and D.

δa0/at
0 ≈ V tIm

[
A1 exp(iΦt

1)
]

δT/T t ≈ Im
[
(V s,tAs

1 − V f,tAf
1) exp(iΦt

1)
]

δΦ1 ≈ Re
[
A2 exp(2iΦt

1)
]
− A0

δϕ1 ≈ Re
[
(As

2 − A
f
2) exp(2iΦt

1)
]
− (As

0 − A
f
0)

δV/V t ≈ Im
[
A2 exp(2iΦt

1) − V tA1 exp(iΦt
1)

]
δD/Dt ≈ Im

[
(As

2 − A
f
2) exp(2iΦt

1) + (V
f,tAf

1 − V s,tAs
1) exp(iΦt

1)
]

Since T , ϕ, and D are retrieved from two phase-stepping procedures (sample and flat-field
measurement), jitter in both measurements may contribute to the artifacts, and is characterized by
As

k
and Af

k
, respectively. Using these equations together with the definition for Ak in Eq. (35),

shape and amplitude of artifacts can be approximately retrieved. For example, drawing ξk values
from a zero-mean normal distribution with standard deviation of 20% of the inter-step distance for
an equidistant 7-step stepping yields good agreement between the results in Table 1 and ground
truth in the majority of cases. The results from one such realization of ®ξ are shown in Fig. 4.
Due to the limited quantitative use of the above equations for artifact correction (as ®ξ is

typically not known), we do not present an extensive analysis of their degree of accuracy. We
believe that their value primarily lies in illustrating qualitatively the correlation with the stepping
curve phase. In Sec. 3, we do however present an artifact correction algorithm based on these
calculations, which is applicable even without knowledge of ®ξ.
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Fig. 4. Simulation of two non-equidistant stepping curves, followed by signal extraction
with the assumption of equidistant sampling leads to errors in the three sample modalities,
depending on the stepping curve phase (solid line). Knowing the exact stepping positions,
the errors can be approximated with the results in Table 1. The step deviations ξk were
independently drawn from a normal distribution with mean zero and standard deviation
σ = 20% × 2π/n, where n = 7 is the total number of steps. It was assumed that Vs,t = V f,t.

2.4. Relation of artifact magnitude to stepping accuracy

The connection of stepping accuracy and artifact magnitude has previously been studied in [20].
In a similar approach, we assume that the error of the positioning device follows a normal
distribution of mean 0 and standard deviation σmech, and that errors of consecutive positioning
steps are not correlated. The elements of ®ξ then also follow a zero-mean normal distribution,
albeit with the standard deviation

σ = σmech
2π
pG
,

where pG is the period of the stepped grating. It then follows from Eq. (35) that ReA j and ImA j

are normally distributed with mean 0 and variance σ2/(2n), with zero covariance (for j > 0).A0
is real-valued with mean 0 and variance σ2/n.
The distributions of the quantities in Table 1 can then be easily calculated: Considering that
A j is a bivariate Gaussian with zero mean and equal variances along the real and imaginary
axis, it is rotationally invariant, which allows neglecting the complex exponentials exp(iΦt

1),
exp(2iΦt

1). It follows that the terms enclosed in square brackets in Table 1 are also such bivariate
Gaussians with mean zero and identical standard deviations along the real and imaginary axes.
The standard deviations are given by the rule for summing (uncorrelated) normally distributed
variables and are compiled in Table 2. The result is valid for any given value of Φt

1, and does not
incorporate fluctuations due to a particular distribution of Φt

1 values.
The results for the flat-field-corrected quantities (T , ϕ, and D) are in agreement with those

in [20], but equations for the quantities retrieved from a single phase-stepping (a0, V , and Φ1) are
not part of that publication. The "background case" described there refers to flat-field-corrected
quantities in the absence of a sample. The equation for σ(δϕ) differs from its equivalent in [20]
because the latter includes a prefactor of 1/(2π) in the definition of the differential-phase signal.
This agreement therefore validates the calculations presented in Sec. 2.2 and 2.3.

For practical purposes, the ratio of positioning accuracy σmech and period of the stepped
grating pG ought to be selected such that the artifact amplitudes resulting from the equations in
Table 2 are significantly smaller than the range of signals expected from the samples of interest.
In the following section, we present a method for the detection and removal of these artifacts,
based on their correlation with the stepping curve phases Φ1 (as given in Table 1).
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Table 2. Standard deviations of relative artifact amplitudes, in agreement with the
values presented by Revol et al. in [20].

σ(δa0/at
0) = π (2/n)1/2 V t σmech/pG

σ(δT/T t) = π (2/n)1/2 [(V s,t)2 + (V f,t)2]1/2 σmech/pG

σ(δΦ1) = π (6/n)1/2 σmech/pG

σ(δϕ1) = π (12/n)1/2 σmech/pG

σ(δV/V t) = π (2/n)1/2 [1 + (V t)2]1/2 σmech/pG

σ(δD/Dt) = π (2/n)1/2 [2 + (V f,t)2 + (V s,t)2]1/2 σmech/pG

3. Algorithm for artifact removal

Since the amounts of stepping deviation ®ξ can often not be measured, the equations in Table 1
can not be solved explicitly for calculating artifacts in real data. However, the general shape
of the correlations is independent of the particular values of ®ξ. Variation of ®ξ merely affects
amplitude and phase of this correlation (i.e., A0, A1, and A2). We therefore attempted to find
approximations to the functions in Table 1 from the analysis of correlations between stepping
curve phase Φ1 and the estimated modalities (T , ϕ, and D) in sample-free regions. Subsequent
subtraction of the detected correlation from the images over the entire field of view then leads to
a reduction in artifacts, ideally without compromising true image data.

3.1. Principle

A set of linearized model functions for stepping jitter artifacts, derived from Table 1, is introduced:

F [s0, s1, c1, s2, c2;Φ1] = s0 + s1 sin(Φ1) + c1 cos(Φ1) + s2 sin(2Φ1) + c2 cos(2Φ1) (40)

Comparing Eq. (40) to Table 1, s1 and c1 represent A1, s2 and c2 represent A2, and s0
represents A0. The set of all pixels with non-zero visibility in the projection image is denoted
R0. For a given projection from a gbPC setup, a sample-free, high-visibility subregion R ⊂ R0
is identified. Within this region, a least-squares fit of F to each of the modalities T , ϕ, and D
is performed (below: X ∈ {T, ϕ,D}), yielding an estimate for the correlation amplitudes and
phases:

(ŝX0, , ŝ
X
1 , ĉ

X
1 , ŝ

X
2 , ĉ

X
2 ) = argmin

s0,s1,c1,s2,c2

∑
p∈R
{F [s0, s1, c1, s2, c2;Φ1(p)] − X(p)}2 (41)

ForΦ1, the stepping curve phase from either the sample projection or the flat-field may be used:
Since ϕ = Φs

1 − Φ
f
1 = 0 in R, they should be identical. Subsequently, the determined correlation

is subtracted from the entire image:

Xcorr(p) = X(p) − F
[
ŝX0, , ŝ

X
1 , ĉ

X
1 , ŝ

X
2 , ĉ

X
2 ;Φ1(p)

]
+ ŝX0 ∀p ∈ R0 (42)

In this step, an approximation is made that the artifact magnitude is independent of the true
signal. Although incorrect, this approximation typically yields good results.

Note that, although the constant termsAs
0 andA

f
0 do not occur for δT/T

t or δD/Dt in Table 1,
inclusion of ŝT0 and ŝD0 is necessary for fit convergence: they describe the portions of the signal not
correlated with Φ1, i.e. the mean “true” signal over the region R. Hence, they are not subtracted
from the initial image in Eq. (42). For ϕ, offsets may have other sources beside stepping jitter,
such as grating drifts. It may be determined after applying the above correction by subtracting its
mean over the region R.
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Fig. 5. Effect of the fringe artifact removal algorithm on projection modalities. Left and
right columns: Before and after application of the correction. (a), (b): transmittance, (c), (d):
differential-phase (values in radians), (e), (f): dark-field of an example projection. Narrow
windowing was used to highlight artifacts. This is one of 801 projections comprising the
gbPC-CT scan shown in Fig. 6.

Table 1 suggests that some fit coefficients should be set to zero (s1 and c1 for ϕ, s2 and c2 for
T). However, correction of data from the setup described in Sec. 1.2 with different sets of active
fit parameters revealed that activation of all fit coefficients appears to have no negative effects to
correction quality. The veracity of the equations for δϕ and δD/Dt can be confirmed by fixing
the important fit parameters to zero (s2 and c2 for ϕ, s1 and c1 for T), which results in incorrect
treatment of stepping jitter artifacts, often leading to an increase in artifact amplitude.

3.2. Results

Figure 5 shows the effect of applying the algorithm to the transmittance (T), differential-phase
(ϕ) and dark-field (D) modalities of one example projection from a gbPC micro-CT scan. The
reduction in fringe artifact amplitude is immediately visible. Although not all projections of the
associated CT scan feature such strong artifacts, artifact amplitude could be systematically reduced
for nearly all projections in the scan. As can be seen in Fig. 6, reconstruction of differential-phase
data treated with these algorithms yields a more homogeneous background in refractive index
tomograms.

We have found that, if the sample-free region R over which the fit is performed [cf. Eq. (41)] is
chosen too small, random correlations between image noise (in T , D, and ϕ) and Φ1 will have a
negative impact on the fit and the quality of the correction.
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Fig. 6. Effect of the fringe artifact removal algorithm on tomograms of refractive index
decrement δ of a liquid phantom submerged in a water bath [(a), (b): without correction,
(c), (d): with correction, (e), (f): difference]. The phantom consists of seven plastic tubes
containing different liquids (center: water, from bottom left clockwise: 5% / 10% NaCl in
water; 25% / 50% / 75% / 100% glycerol in ethanol). The gbPC-CT scan consists of 801
phase-stepping projections, each composed of 11 individual phase-stepping images and an
exposure time of 3 s per step. The acquisition was performed at the setup from [13], at 40 kVp
(Mo anode) and a current of 70 mA. To show the image’s dynamic range, but also highlight
reconstruction artifacts, each image is shown with two different gray-value scales (top and
bottom row). Simultaneous integration and filtered backprojection of differential-phase data
was performed using an imaginary Hilbert filter [21, 22]. Since samples are immersed in
a water bath, all flat-fields are acquired with the water bath in the beam. Therefore, the
refractive index decrement δ is determined relative to water.

If a sufficiently large sample-free area is not available, it can be attempted to extend R to
sample-covered areas. If the sample’s signal is sufficiently weak across a large range of Φ1 values,
correct treatment of artifacts will often work, although care must be taken: The success depends
on the severity of the artifacts (i.e., the magnitudes of A1 and A2), compared to the strength
(and distribution) of the sample signal in R: High signal variations within R effectively lead to
"averaging" over variable correlation amplitudes and a decreased performance.

Furthermore, image noise affects the quality of detected correlation. If possible, increasing the
size of R ameliorates this problem. A comparison of the image before and after correction may
help to decide whether or not to apply the algorithm in each case.

4. Discussion

The calculations presented in Sec. 2 examine a special case of parameter estimation bias induced
by phase-stepping jitter, specifically dependence of the bias on the relative phase of the sampling
points with respect to the sampled signal.

We calculated standard deviations of the artifacts and found them to be in agreement with the
values previously reported in [20]. The treatment of phase-stepping jitter as a noise-like quantity
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however obscures the fact that jitter-related artifacts are not really random in any given image,
but appear as smooth features in the entire field of view. The random element is ®ξ, which (along
with the spatial distribution of the visibility V) defines the amplitude of the artifact in the whole
image. We think that the description in Table 1 provides a clearer picture.

Concerning the algorithm presented in Sec. 3, a number of different methods for the correction
of phase-stepping positions have previously been reported: In [23], Wang and Han introduced a
method based on alternating least-squares minimizations for the retrieval of image signals and
stepping positions for use in visible-light phase-shifting interferometry. An adaptation for gbPC
imaging was given by Marschner et al. in [24]. This approach works independently of the shape
of the moiré fringe pattern, but is iterative and may not converge for inaccurate starting values of
step positions. It assumes global step positions, but could be extended to include a model for
spatial dependence of step positions.
An alternative method also originating from visible-light interferometry was presented by

Vargas et al. [25]. Using principle component analysis (PCA), all step positions can be retrieved
in a single, fast computation step. It has been adapted for gbPC imaging by Pelzer et al. [26],
but does not perform well for low numbers of moiré fringes and strongly attenuating samples. A
combination of this method with the one given in [23] was presented in [27], which combines the
applicability of PCA for arbitrary step positions with the high quality of results achieved with the
method from [23]. It has been applied for gbPC phase-stepping data by Seifert et al. in [28].
A method based on the Fourier-transform method for the extraction of image signals was

presented by Wen et al. [29]. The setup is adjusted to produce regular, high-frequency moiré
fringes, and resultant higher harmonics of the Fourier-transformed images are analyzed to retrieve
phase-stepping positions. Unlike the other methods, the retrieved phase-stepping positions even
include spatial dependence, which is beneficial for electromagnetic phase-stepping. The method
is non-iterative and therefore fast, but its applicability is limited in regions of low statistics.
Most recently, an approach has been presented by Kaeppler et al. [30], which first excludes

phase-stepping images with very irregular step positions and then determines step positions
on the remaining data by way of minimizing total variation in low-pass-filtered, normalized
maps of visibility and mean flux. This is likely the most computation-intensive method and
requires efficient nonlinear solvers. Furthermore, excluding measurement data from processing
will inevitably increase noise levels.

Lastly, another option for correction is to apply de-striping algorithms such as the one presented
in [31]. This method however requires horizontal or vertical stripes and therefore an according
adjustment of moiré fringes. Since a "generic" filter does not take the image formation process
into account, special care must be taken not to eliminate stripe-like sample features.
Compared to the above approaches, the method presented in Sec. 3 is easy to implement

and requires little computing power. It benefits from an approximately equal distribution of all
stepping curve phases over the full range [−π, π] across the field of view, but the shape of the
moiré fringes is not critical. It can only correct global step positions, which we believe is sufficient
for ordinary (non-electronic) phase-stepping. Unlike the above methods, it is only accurate for
small deviations from equidistant phase-stepping and can not retrieve true phase-stepping position
values. However, sampling at known irregular step positions also contains a phase-dependent
bias, which causes fringe-like artifacts very similar to the ones described in Sec. 2, and is
not considered by the above-mentioned methods (possibly with the exception of [30]): Data
processed with the method from [24] sometimes still contain visible fringe-like artifacts. Due to
the similar shape of the two types of artifacts, the presented method however is able to remove
both. Importantly, since the presented method operates on the processed gbPC modalities, it can
also be used in addition to any of the other methods, e.g. where the first method was only partly
able to eliminate the artifacts.
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5. Conclusion

We presented observations of a correlation between image artifacts in all three gbPC projection
modalities (transmittance, differential phase, dark-field) and stepping curve phase. We found that
they can be explained by a deviation in true and assumed sampling positions (jitter) during phase
stepping, and presented an approximate mathematical relationship between jitter values and bias
amplitude for all three modalities, which is accurate for small jitter values. A simple and fast
method for the correction of these artifacts, which is based on the determined correlations, was
presented and demonstrated on experimental data.
Systematic investigations concerning the algorithm’s performance for application to sample-

covered areas should be performed. Additional improvements to the method could be attempted
e.g. by incorporating the spatial variation of visibility, as well as a separate treatment of Φs,t

1 and
Φ

f,t
1 for strongly phase-shifting samples. Furthermore, we think that the bias due to non-equidistant

sampling at known positions deserves greater attention and should be evaluated in detail. The
degree to which the presented algorithm is able to correct for this type of error should also be
examined.
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