
Toward Consistent State Management of Adaptive
Programmable Networks Based on P4

Mu He, Andreas Blenk,
Wolfgang Kellerer

Chair of Communication Networks
Technical University of Munich

Stefan Schmid
Faculty of Computer Science

University of Vienna

ABSTRACT
Emerging network applications (augmented reality, industrial In-
ternet, etc.) introduce stringent new requirements on the perfor-
mance, dependability, and adaptability of communication networks.
Programmable data planes (e.g., based on P4) provide new opportu-
nities to meet these requirements, by enabling adaptive network
reconfigurations. However, ensuring consistency during such re-
configurations remains challenging. This paper makes a first step
toward amore automated state management of adaptive data planes.
In particular, we present an efficient P4 state management frame-
work, P4State, which allows to quickly identify the network states
from the source code that are critical for data plane reconfigurations
(e.g., due to scaling, failure recovery). We report on first promising
evaluation results of our prototype implementation in terms of
correctness and efficiency, also considering two case studies us-
ing HULA (load balancing in data center) and HashPipe (line-rate
measurement in data plane).
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1 INTRODUCTION
Emerging applications in the context of, e.g., smart city, autonomous
driving, virtual reality, or robotics, to just name a few, revolutionize
the way that humans interact with the physical world [28]. Such
applications often involve large amounts of data and require tactile

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
NEAT’19, August 19, 2019, Beijing, China
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6876-6/19/08. . . $15.00
https://doi.org/10.1145/3341558.3342202

control loops, introducing stringent requirements on the underlying
communication network: not only in terms of performance (e.g.,
throughput and latency) and dependability (e.g., fast failover), but
also in terms of adaptability. The ability to reconfigure and adapt the
network to the current workload (e.g., by scaling out/in resources in
a demand-aware manner) or context (e.g., in terms of fast reactions
to failures), allows to operate networks at new levels of efficiency.

Over the last years, the advent of the Programmable Data Plane
(PDP) with P4 [7] assists flexible and dynamic slicing of end-to-end
network and service resources [13, 28]. However, leveraging PDP
toward efficient and consistent network reconfigurations remains
challenging. In particular, many PDP operations are stateful: the
forwarding devices maintain states for the network services, e.g.,
registers for forwarding port mapping and meters for traffic rate
control. In order to provide a predictable data plane behavior, we
need to ensure state consistency, at any time. For example, in an
autonomous driving context, network services provisioned by the
vehicles should be migrated together with their states (e.g., service
ports and IP addresses), to guarantee connectivity and QoS.

This paper is motivated by the observation that a prerequisite to
preserve state consistency is to automatically recognize all the states
in a PDP program (e.g., P4) that should be maintained during recon-
figuration: an aspect which to the best of our best knowledge has
not been addressed in the P4 literature yet. State recognition how-
ever is challenging because of the wide range of possible notions
of states (and access methods) in P4-based PDPs.

We present P4State, a first step toward automated P4 state
management. Our framework includes an analyzer that takes a P4
program as input, collects state access along the packet processing
pipelines, and visualizes the analysis output for P4 programmers
and operators. To recognize the states, we apply control-flow analy-
sis [21] on top of the Control Flow Graph (CFG), which is built out
of the program. We prune the original CFG graph and only keep the
nodes with state access, i.e., read or write, to make it more accessi-
ble. Finally, all stateful paths within the CFG with involved state
entities are available as output and therefore can help to maintain
consistency during network reconfiguration.

Contributions. Succinctly, our contributions are:
• We characterize the states of P4 data planes and provide a
taxonomy of the usage of registers (which store states) in
open-source P4 programs.

• We propose a suite of algorithms to analyze P4 programs
and to identify the states that need to be maintained during
reconfiguration.

• We report on the implementation and evaluation of the
program analyzer, considering synthetic and real programs
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(namely HULA and HashPipe), and in terms of correctness
and efficiency.

Organization. The remainder of this paper is organized as fol-
lows. Section 2 characterizes states in P4 data plane. Section 3
describes the algorithms to analyze the register accesses within a
P4 program. Section 4 introduces the prototype of P4State and
two case studies. We discuss related works in Section 5. In Section 6
we conclude the paper and discuss possible extensions of P4State.

2 CHARACTERIZING P4 PDP STATES
P4 is a domain specific language that can describe the packet pro-
cessing behavior of programmable data plane [7]. The programma-
bility exists in the parser, the match-action pipeline, and the de-
parser. The parser can extract any customized fields from the header,
whereas the deparser insert values back to the fields in the end.
The match-action pipeline consists of multiple stages, each with a
matching table and customized action(s) of packet processing. P4
programs are supported in various data plane targets, such as BMv2
[3], SmartNIC [2] and NetFPGA [31].

The definition of states in a P4 data plane is quite broad [6, 22].
States include (i) table entries, (ii) stateful variables defined in the
P4 specification, and (iii) (some) temporary variables defined in a
program. We include the temporary variables only if they act like
pointers that refer to stateful variables (details in Sec. 3.2). Since
the table entries can be recognized and maintained by the control
plane during data plane reconfiguration without much effort, we
do not consider them in this paper.

The P4 specification defines three types of stateful variables:
register, meter, counter. The variables need to be persistent, i.e.,
their values should persist beyond a single iteration of the packet
processing loop [21]. In this paper, we focus on the register variable,
as it is commonly adopted in real P4 programs. Regarding meter
and counter, we briefly discuss the mechanism to maintain their
consistency in Sec. 6.

Register Usage. We identify the following scenarios when reg-
isters can be declared:

• a value that the processing of the following packets would
access, e.g., packet counter1 [29].

• a value that the control plane can access for making control
decisions, e.g., the status of a port [27].

• a value that controls the packet processing in a P4 node, e.g.,
a flag enabling on-demand functionality [14].

The usage of a register is one of the factors indicating whether
it should be transfered during data plane reconfigurations. As an
example, Figure 1 shows the declaration (line 2) and read-access
(line 5) of the content of register flag_reg. Note that in this example,
we denote flag_reg as a register type and the content as a register
entry. Table 1 gives an overview of the P4 programs that leverage
registers in their implementation2.

Register access within a P4 program can be either read or write
(both directly and indirectly). In Figure 1, the binary register value
decides the following packet processing path: either line 6 or line
7. This is an indirect access in an if-conditional, i.e., a temporary

1Similar to the usage of a native counter, but supported by more P4 targets.
2For a more detailed description of all P4 programs we have surveyed, please refer to
https://github.com/muhe1991/p4-programs-survey.

Table 1: Overview of Register’s Usage in P4 Programs

Program Name LoC Types of Reg. # Reg. Ent.
heavy hitter 178 2 32

flowlet 203 2 16384
netpaxos [8] 210 6 256002
ndp [12] 223 2 4

hashpipe [29] 229 8 224
hula [20] 289 4 65632

dapper [11] 535 22 86
sketchlearn [15] 646 32 8192
linearroad [17] 789 11 6096
netcache [18] 1427 40 6784

Note: LoC calculation based on programs written with P4-16 for the BMv2
simple switch target. Programs written in P4-14 are translated to P4-16.

1 control ingress (...) {

2 register <bit <1>>(32w1) flag_reg; ...;

3 apply {

4 bit <16> flag;

5 reg.read(flag , 0);

6 if (flag == 1) {...;}

7 else {...;}

8 }

9 }

Figure 1: Register declaration and indirect register access.

1 action read_register () {

2 hash(reg_index , HashAlgorithm.crc16 , (bit <32>)0,

3 {...}, (bit <32 >)65536);

4 reg.read(meta.custom_metadata.val , reg_index );

5 }

Figure 2: Direct access in an action.

variable that refers to the value of a register entry is evaluated.
Register entries can only be directly accessed in actions. Figure 2
demonstrates an example, where a register entry is read and copied
to one field in the user-defined custom metadata. Actions are al-
ways associated with tables; an action is called either based on the
matching result of a table or when a packet processing path tra-
verses a table. Meanwhile, the value of a register entry can impact
the decision of an if-conditional.

Register Classification. We classify registers into two cate-
gories: flow-based and device-based. A flow-based register saves
per-flow state, and typically instantiates a large number of entries
(e.g., 65536), which can be migrated on the data plane and control
plane. A device-based register saves the state that is device-specific.
It has less entries, but may need to be migrated with the help of the
controller. The classification helps to coordinate the maintenance
of various registers at runtime, i.e., decide how to migrate them.

Luo et al. [22] advocate that it is not necessary to migrate the
flow-based register that is computed from the events of arriving

https://github.com/muhe1991/p4-programs-survey
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packets, e.g., the flowlet_id, which denotes a flowlet and is calculated
from the header field tuple. However, we argue that in order to
maintain the consistency requirement, we have to migrate those
flow-based registers. For example, when the flowlet_id determines
the egress port, the loss of its values might lead to the following
packets of the same flowlet to be forwarded on a different path; this
can induce jitter and delays.

Register Migration. States can be migrated either through the
data plane [22], where register values are carried as specific header
fields, or migrated through the controller [14], which performs di-
rect register read/write. For the first approach, a flow-based register
entry needs an exact flow to piggyback its value, which can lead to
long migration latencies when flow patterns change quickly and the
expected flows do not show up on time. For the second approach,
since the state values need to be copied first from the source node
to the controller and then copied to the destination node, we need
to take into account the extra forwarding time from the nodes to
the controller. Note that we assume the controller integrates the
functionalities of both the control plane and the management plane.

No matter which approach is applied, we can assume that the
total migration time increases with the number of register entries,
no matter which migration approach we would apply. Here the
migration time is defined as the overall time spent for migrating
all necessary states before the new node can work correctly. For
the flow-based registers, i.e., the ones with indices calculated with
hash functions, we may potentially create many (more than 216)
entries, depending on an initial guess of how many flows can show
up in the network. However, not all entries are filled with effective
values that need migration. In other words, an intuitive approach
that strives to migrate all register values would induce a long total
migration time. Therefore, we propose P4State which recognizes
only necessary register values.

3 P4STATE: DESIGN AND ALGORITHMS
In this section, we describe the algorithm set to analyze the register
accesses of a P4 program. Instead of directly parsing the P4 code,
we leverage the P4 compiler to produce a compiled .json file and
feed it to the algorithm suite [23]. The basic idea is to identify state
accesses in tables and conditionals (Sec. 3.1 and 3.2), translate the
P4 program into a Control Flow Graph (CFG) (Sec. 3.3), delete all
nodes in the CFG without references to registers (Sec. 3.4), traverse
all paths in the CFG to collect register accesses, and conclude the
registers that need to be migrated (Sec. 3.5). The CFG represents all
paths that might be traversed in a program during its execution.

3.1 Identifying States
As first step, we collect all the declared registers (including their
depths and widths) and classify them as flow-based or device-based.
The classification criterion is the width of the register. As a common
practice, a flow is identified by a hash value with width 16 or 32
[1], which corresponds to hashing algorithms defined in v1 model
[5] (CRC16 or CRC32). Therefore, a register whose width is larger
or equal than 16 is classified as flow-based register. In order to
be comprehensive, we also classify the registers, whose indexes
are calculated with hash functions, as flow-based registers. Those

Algorithm 1: Register Binding
Data: p4prog.json
Result: set of registers R , headers H , actions A, tables T and

conditionals C
1 Fill R , H and A;
2 T = ∅, C = ∅; // Initiate set of tables and conditionals

3 Extract ingress/egress pipeline;
4 for t in pipeline do
5 Rt = ∅; // for all tables

6 for a in At do
7 for r in ar do
8 Rt = Rt ∪ {r };
9 T = T ∪ {t };

10 for c in pipeline do
11 Rc = ∅; // for all conditionals

12 for h in associated headers do
13 Update set of registers Rc through hr ;
14 C = C ∪ {c };

that are not classified as flow-based registers will be treated as
device-based registers.

3.2 Table/Conditional Register-Binding
Algorithm 1 traverses all tables and if-conditionals defined in the
.json file and associates the registers that are accessed by them.
In order to do this, it first collects all defined registers, headers,
actions, tables and conditionals in the pipelines.

Since direct register access inside conditionals is not possible, it
is non-trivial to associate registers to conditionals. We first collect
all header fields (including the temporary variables), e.g., flag in
Figure 1 and reg_index in Figure 2. Afterwards, we traverse all
statements in actions and associate the header field with the register
when there is a register access. Note that the statements in the
apply struct are translated into an action associated with a table.
The temporary variable flag is declared as a custom header field
scaler_flag.

Besides the set of all registers R, we also fill the set of accessed
registers for each table t and conditional c . For a table t , we check
all associated actions and place every accessed register in the set Rt
(see line 5-8). Similarly, for a conditional c , we check all associated
headers and place every accessed register in the set Rc .

3.3 Stateful CFG Construction
As mentioned before, the packet processing pipeline (i.e., the CFG)
described by P4 can be decomposed as a bunch of basic entities
(nodes) of tables and conditionals. A table has only one egress,
whereas a conditional has two, each associated with a decision
result (True/False).

We construct a CFG of the P4 program under analysis with Al-
gorithm 2. Following the pattern of p4c-graphs [4], the processing
path of each packet always starts from “START”, traverses different
sets of tables and conditionals, and terminates at “EXIT”. The intro-
duction of START and EXIT (as dummy tables) provides the two
anchor points for all possible processing paths. After adding the
first edge between START and the initial node (table or conditional),
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Algorithm 2: Graph Formulation (GraphForm)
Data: Set of R, H, A, T , C
Result: CFG

1 Initiate CFG as an empty directed graph;
2 Add node START and EXIT as two dummy tables;
3 Extract the first node n1 from the pipeline;
4 Call AddEdge(CFG, START, n1);
5 N = {START};
6 Call ExpNext(n1, N );

Algorithm 3: Explore Next Node (ExpNext)
Data: current node n, node list N

1 N = N ∪ n;
2 if n ∈ T then
3 if next node of n is EXIT then
4 N = N ∪ EX IT ;
5 Call DrawPath(N );
6 else
7 for each node n̂ after n do
8 Call ExpNext(n̂, N );
9 else
10 for each next node n̂ after n do
11 if n̂ is EXIT then
12 N = N ∪ EX IT ;
13 Call DrawPath(N );
14 else
15 Call ExpNext(n̂, N );

it calls ExpNext to further explore the path until EXIT, which is
described in Algorithm 3.

Algorithm 3 works in a recursive manner. It stops calling itself
only if (i) there is no node after the current table (line 3-5), or
(ii) there are no entities on the true or false branch of the current
conditional (line 11-13). In this case, it calls DrawPath to draw a full
path from START to EXIT.

3.4 CFG Pruning
The stateful CFG assists the following register accesses analysis.
In our design, the analysis should be able to return all paths with
state access. However, the original CFG and the paths inside can
come with very large size, which is hard for humans to consume.
Inspired by the idea of Thin Slicing [30], we exclude all stateless
nodes from the CFG, in order to produce a human-friendly (pruned)
version. The pruned CFG provides an evident view of all stateful
operations.

The pruning process consists of two steps (described in Algo-
rithm 4 and 5). The first step detects all nodes that do not have
access to registers, i.e., nR == ∅ in line 5, and removes these nodes.
The nodes before any node to be removed, i.e., n, and after it, i.e., n,
should be reconnected to ensure complete path(s) from START to
EXIT. The second step merges consecutive tables on a single path,
if they access the same registers, i.e., nR == nR . Only the first table
stays, whereas the following tables are replaced with edges in the
graph.

Algorithm 4: Pruning - Stateless Node Elimination
Data: Original CFG
Result: Intermediate CFG

1 Call UpdateNeighbourNodes();
2 for each node n in CFG do
3 if n is START or EXIT then
4 continue;
5 if nR == ∅ then // nR denotes the register set
6 Call RemoveNode(CFG, n);
7 for n in N n do
8 for n in N n do
9 Call AddEdge(CFG, n, n);

10 Call UpdateNeighbourNodes();
11 for each conditional c in C do
12 if c in CFG then
13 Get all paths P from START to c ;
14 for p ∈ P do
15 R̂ = ∅;
16 for node n in p[1 : −1] do
17 R̂ = R̂ ∪ nR ;
18 if R̂ == ∅ then
19 Call RemoveNode(CFG, c );
20 for n of c do
21 for n of c do
22 Call AddEdge(n, n);

Algorithm 5: Pruning - Nodes Merging
Data: Intermediate CFG
Result: Pruned CFG

1 for each node n in CFG do
2 if n is START or EXIT or not a table then
3 continue;
4 for next node n of n do
5 if n is not a table then
6 continue;
7 if nR == nR then
8 Call RemoveNode(CFG, n);
9 for next node n of n do
10 Call AddEdge(CFG, n, n);
11 Call UpdateNeighbourNodes();

As function utilities, the method UpdateNeighbourNodes updates
the previous and subsequent nodes of each node, given the current
status of the CFG. The method RemoveNode removes one node and
all edges connected to it.

3.5 Path & Role Identification
Finally, the analyzer recognizes all paths with state access and gen-
erates the pruned CFG as well as a report listing all stateful paths
and their respective associated state sets. When a P4 program con-
sists of multiple functions, which are enabled/disabled upon startup
(e.g., HULA [1]), the analyzer can also infer such information and
report the enabled functionalities. For this, it leverages both the
pruned CFG and the controller rules such as register initializations
(typically specified in a file). If the controller maintains the state
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Figure 3: An exemplary topology ofHULAwith circled num-
bers representing different types of registers.

consistency, such information can also assist with deciding the
order in which different types of states should be transferred.

4 PROTOTYPE AND EVALUATION
The prototype of P4State mainly includes a code analyzer and the
utilities of P4C compiler [4]. We implement the analyzer in Python
with 500 LoC 3. P4State takes a P4 program as input, analyzes its
compiled .json format, and outputs the paths with state accesses.

We provide a first impression of P4State’s practicability with
case study on two real P4 programs. Afterwards, we evaluate the
efficiency of our propose algorithms with both real and synthetic
programs.

4.1 Case Study
HULA. HULA addresses congestion in data center networks. For
this, HULA switches run two functions: probing and forwarding.
Figure 3 depicts an exemplary data center topology with HULA.
Probing is deployed on the ToR switches for finding best paths in
the core. The probing updates the forwarding function, which then
forwards all data plane traffic. hula.p4 [1] is a simplified version
of HULA with four types of registers: 1 srcindex_qdepth_reg, 2
srcindex_digest_reg, 3 dstindex_nhop_reg and 4 flow_port. 1
and 2 store the queue length and the digest of the best path from
each ToR. 3 keeps the next hop to reach each ToR, and 4 keeps
the next hop for each flow.

hula.p4 merges the pipeline of probing and the pipeline of
forwarding in one program. To decide which pipeline should be
referred to for a single packet, the program checks the hula header
field of the received packet. For the ToR switches, all four types of
registers are needed to enable HULA update and normal packets
switching. For the non-ToR (i.e., core) switches, only type 3 and
4 are needed. P4State successfully recognizes the above two
functions, and outputs the pruned CFG with 12 nodes (original CFG
25 nodes), which is shown in Figure 4. Such knowledge can help to
maintain state consistency during data plane reconfiguration. For
example, when a core switch is about to fail, migrating states of
type 3 and 4 to a backup switch would be sufficient to ensure
that all current best path in the core are preserved.

HashPipe. To perform line-rate measurements in the data plane,
HashPipe [29] implements a pipeline of hash tables to record heavy
flows, i.e., flows with a huge number of packets. There are 8 types of
registers that come within total 224 entries. The flows are tracked
and the tracking information is maintained within three types of
registers (two stages, in total six). One type is used to track the flow

3We plan to make the code public in an extended version of this paper.
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Figure 4: Control Flow Graph (CFG) of hula.p4: ellipses rep-
resent tables, squares represent conditionals, and arrows
represent packet processing paths. Colors indicate the ac-
cesses of respective register types.

identifiers (source IPv4 addresses), and another type is used to store
the packet counts corresponding to the identifiers. The last type
shows whether each table entry is valid, i.e., there are non-zero
values for the previous two types of registers. P4State recognizes
only one function, i.e., counter update, and all registers that needed
to be migrated correctly.

4.2 General Performance Measurement
To evaluate the efficiency of P4State, we measure the runtime of
the CFG construction module and the CFG pruning model, which
together account for the most algorithmic execution time. The
measurement is performed on both synthetic and real P4 programs.
We use Whippersnapper [9] to generate synthetic programs having
20 to 300 tables. The realistic programs are selected from Table 1.

Figure 5a presents the runtimes when analyzing synthetic pro-
grams; each data point is the average of 30 measurement runs. It
shows comparable runtimes of CFG construction and pruning: they
increase exponentially with the number of tables. Nevertheless, a
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Figure 5: Runtime of CFG construction and pruning.

program with 300 tables (which is more than all realistic P4 pro-
grams that we have collected) can be analyzed in around 100 ms.
Figure 5b presents the results for real programs, which we sort
according to the program’s complexity (represented as LoC) along
the x-axis. We observe that the code analysis takes up to 15 ms for
the CFG construction and pruning (the case of dapper.p4). Even
though linearroad.p4 has the highest LoC, its analysis time is
not necessarily the highest, due to its simpler pipeline structure. In
conclusion, the analyzer is very efficient.

5 RELATEDWORK
To the best of our knowledge, we are the first to study the consistent
state management in an elaborated manner for P4 data plane. How-
ever, there is much interesting previous work on state management
in the context of general NFV and P4, as well as analyzing P4 code.

Data Plane State Management. The research of state manage-
ment of data plane is quite abundant. Split/Merge [26] requires
middleboxes to allocate and access all states through a customized
shared library. OpenNF [10], however, transfers directly the serial-
ized states between different middleboxes. From a different perspec-
tive, StatelessNF [19] requires middleboxes to create/read/update
states in a central data store, which allows any middlebox to access
any state at any time. SNAP [6] considers state allocation in a static
scenario; the whole network is considered as a single switch and
the location of states in the form of forwarding rules are optimized
to enforce policy.

State Management of P4. SwingState [22] initiates the study
of state transfer during reconfiguration by piggybacking states on
the data plane packets. P4NFV [14] recommends managing the
state with the controller, which has a holistic view of the data plane
states and can perform operations such as merging on the states
during reconfiguration.

NFV ProgramAnalyzer.Many tools were proposed to analyze
data plane program for performance or security. CASTAN [25] and
BOLT [16] discover execution paths within the code of an NF and
recognize potentially large resource consumptions, e.g., CPU cycles
and memory accesses. P4pktgen [24] analyzes a P4 program and
generates input packets and table entries that cover all execution
paths. Assert-P4 [23] leverages assertions and symbolic execution
to validate the general network correctness properties. However,
the analysis for data plane reconfiguration is still missing in the
literature.

6 CONCLUSION & DISCUSSION
Motivated by the need for more adaptive networks and the chal-
lenge of consistent reconfigurations of stateful data planes, we
presented, implemented, and evaluated P4State, an automated
mechanism to recognize states in P4. P4State is able to quickly
analyze programs and successfully recognizes the register types
that need migration during data plane reconfiguration. With syn-
thetic and real programs, we show the efficiency of our proposed
algorithms in terms of runtime.

We understand P4State as a very first step, but believe that it
readily provides many interesting and promising extensions, which
we discuss as follows.

Line-rate Processing and Verification. P4State outputs an
overview of multiple register accesses in a P4 program. With that,
we can identify when a read or a write operation is performed more
than one time to the same register type, which can lead to longer
processing times [29]. Moreover, the analyzer can automatically
detect race conditions of register access and write-before-read error.

Group Transfer. Currently the controller only accesses one
register entry at a time. If multiple entries can be transferred simul-
taneously, the forwarding latency can be greatly reduced. In that
case, P4State can be extended to detect the valid entries that will
be transferred all at the once.

Counters & Meters. Since the data plane cannot read counters,
the control plane reads and stores all values before reconfiguration,
and if possible, updates the counted values afterwards. For the me-
ters, the control plane is always in charge of their configurations,
therefore the controller only needs to configure the previous me-
ter settings upon startup of new data plane entity. P4State can
be extended to recognize counters and meters and facilitate the
maintenance of them during runtime.

Consistent Network Update. Updating a network policy can
involve the reconfiguration of multiple P4 nodes which is not trivial.
It would be interesting to investigate the order of state update in a
multi-node P4 environment, to avoid data plane misbehaviors (e.g.,
routing loops and black-holes) during policy update.

ACKNOWLEDGMENT
This work is part of a project that has received funding from the
European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation program (grant agreement
No 647158 - FlexNets). The authors alone are responsible for the
content of the paper.

REFERENCES
[1] 2019. HULA. https://github.com/p4lang/tutorials/tree/sigcomm_17/SIGCOMM_

2017/exercises/hula. (2019).
[2] 2019. Netronome SmartNIC. https://www.netronome.com/blog/

p4-programmability-for-the-netronome-agilio-smartnic/. (2019).
[3] 2019. P4 behavioral-model. https://github.com/p4lang/behavioral-model. (2019).
[4] 2019. P4C. https://github.com/p4lang/p4c. (2019).
[5] 2019. V1 Model. https://github.com/p4lang/p4c/blob/master/p4include/v1model.

p4. (2019).
[6] Mina Tahmasbi Arashloo, Yaron Koral, Michael Greenberg, Jennifer Rexford,

and David Walker. 2016. SNAP: Stateful network-wide abstractions for packet
processing. In SIGCOMM. ACM, 29–43.

[7] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer
Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, et al.
2014. P4: Programming protocol-independent packet processors. SIGCOMM CCR
44, 3 (2014), 87–95.

https://github.com/p4lang/tutorials/tree/sigcomm_17/SIGCOMM_2017/exercises/hula
https://github.com/p4lang/tutorials/tree/sigcomm_17/SIGCOMM_2017/exercises/hula
https://www.netronome.com/blog/p4-programmability-for-the-netronome-agilio-smartnic/
https://www.netronome.com/blog/p4-programmability-for-the-netronome-agilio-smartnic/
https://github.com/p4lang/behavioral-model
https://github.com/p4lang/p4c
https://github.com/p4lang/p4c/blob/master/p4include/v1model.p4
https://github.com/p4lang/p4c/blob/master/p4include/v1model.p4


Toward Consistent State Management of
Adaptive Programmable Networks Based on P4 NEAT’19, August 19, 2019, Beijing, China

[8] Huynh Tu Dang, Daniele Sciascia, Marco Canini, Fernando Pedone, and Robert
Soulé. 2015. Netpaxos: Consensus at network speed. In SOSR. ACM, 5.

[9] Huynh Tu Dang, Han Wang, Theo Jepsen, Gordon Brebner, Changhoon Kim,
Jennifer Rexford, Robert Soulé, and HakimWeatherspoon. 2017. Whippersnapper:
A p4 language benchmark suite. In SOSR. ACM, 95–101.

[10] Aaron Gember-Jacobson, Raajay Viswanathan, Chaithan Prakash, Robert Grandl,
Junaid Khalid, Sourav Das, and Aditya Akella. 2014. OpenNF: Enabling innovation
in network function control. In SIGCOMM CCR, Vol. 44. ACM, 163–174.

[11] Mojgan Ghasemi, Theophilus Benson, and Jennifer Rexford. 2017. Dapper: Data
plane performance diagnosis of tcp. In SOSR. ACM, 61–74.

[12] Mark Handley, Costin Raiciu, Alexandru Agache, Andrei Voinescu, Andrew W
Moore, Gianni Antichi, and Marcin Wójcik. 2017. Re-architecting datacenter
networks and stacks for low latency and high performance. In SIGCOMM. ACM,
29–42.

[13] Mu He, Alberto Martínez Alba, Arsany Basta, Andreas Blenk, and Wolfgang
Kellerer. 2019. Flexibility in Softwarized Networks: Classifications and Research
Challenges. IEEE Comm. Surveys & Tutorials (2019).

[14] Mu He, Arsany Basta, Andreas Blenk, Nemanja Deric, and Wolfgang Kellerer.
2018. P4NFV: An NFV Architecture with Flexible Data Plane Reconfiguration. In
CNSM. IEEE, 90–98.

[15] Qun Huang, Patrick PC Lee, and Yungang Bao. 2018. Sketchlearn: relieving user
burdens in approximate measurement with automated statistical inference. In
SIGCOMM. ACM, 576–590.

[16] Rishabh Iyer, Luis Pedrosa, Arseniy Zaostrovnykh, Solal Pirelli, Katerina Argyraki,
and George Candea. 2019. Performance contracts for software network functions.
In NSDI. 517–530.

[17] Theo Jepsen, Masoud Moshref, Antonio Carzaniga, Nate Foster, and Robert Soulé.
2018. Life in the fast lane: A line-rate linear road. In SOSR. ACM, 10.

[18] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé, Jeongkeun Lee, Nate Foster,
Changhoon Kim, and Ion Stoica. 2017. Netcache: Balancing key-value stores
with fast in-network caching. In SOSP. ACM, 121–136.

[19] Murad Kablan, Azzam Alsudais, Eric Keller, and Franck Le. 2017. Stateless
network functions: Breaking the tight coupling of state and processing. In NSDI.
USENIX, 97–112.

[20] Naga Katta, Mukesh Hira, Changhoon Kim, Anirudh Sivaraman, and Jennifer
Rexford. 2016. Hula: Scalable load balancing using programmable data planes. In
SOSR. ACM, 10.

[21] Junaid Khalid, Aaron Gember-Jacobson, Roney Michael, Anubhavnidhi Ab-
hashkumar, and Aditya Akella. 2016. Paving the Way for NFV: Simplifying
Middlebox Modifications Using StateAlyzr. In NSDI. USENIX, 239–253.

[22] Shouxi Luo, Hongfang Yu, and Laurent Vanbever. 2017. Swing state: Consistent
updates for stateful and programmable data planes. In SOSR. ACM, 115–121.

[23] Miguel Neves, Lucas Freire, Alberto Schaeffer-Filho, and Marinho Barcellos. 2018.
Verification of P4 programs in feasible time using assertions. In CoNEXT. ACM,
73–85.

[24] Andres Nötzli, Jehandad Khan, Andy Fingerhut, Clark Barrett, and Peter Athanas.
2018. P4pktgen: Automated test case generation for p4 programs. In SOSR. ACM,
5.

[25] Luis Pedrosa, Rishabh Iyer, Arseniy Zaostrovnykh, Jonas Fietz, and Katerina
Argyraki. 2018. Automated synthesis of adversarial workloads for network
functions. In SIGCOMM. ACM, 372–385.

[26] Shriram Rajagopalan, Dan Williams, Hani Jamjoom, and Andrew Warfield. 2013.
Split/merge: System support for elastic execution in virtual middleboxes. In NSDI.
USENIX, 227–240.

[27] Roshan Sedar, Michael Borokhovich, Marco Chiesa, Gianni Antichi, and Stefan
Schmid. 2018. Supporting Emerging Applications With Low-Latency Failover in
P4. (2018).

[28] Meryem Simsek, Adnan Aijaz, Mischa Dohler, Joachim Sachs, and Gerhard Fet-
tweis. 2016. 5G-enabled tactile internet. JSAC 34, 3 (2016), 460–473.

[29] Vibhaalakshmi Sivaraman, Srinivas Narayana, Ori Rottenstreich, S Muthukrish-
nan, and Jennifer Rexford. 2017. Heavy-hitter detection entirely in the data plane.
In SOSR. ACM, 164–176.

[30] Manu Sridharan, Stephen J Fink, and Rastislav Bodik. 2007. Thin slicing. In ACM
SIGPLAN Notices, Vol. 42. ACM, 112–122.

[31] Noa Zilberman, Yury Audzevich, G Adam Covington, and Andrew W Moore.
2014. NetFPGA SUME: Toward 100 Gbps as research commodity. IEEE micro 34,
5 (2014), 32–41.


	Abstract
	1 Introduction
	2 Characterizing P4 PDP States
	3 P4State: Design and Algorithms
	3.1 Identifying States
	3.2 Table/Conditional Register-Binding
	3.3 Stateful CFG Construction
	3.4 CFG Pruning
	3.5 Path & Role Identification

	4 Prototype and Evaluation
	4.1 Case Study
	4.2 General Performance Measurement

	5 Related Work
	6 Conclusion & Discussion
	References

