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Preface

The development of the port-Hamiltonian (PH) approach in the past three
decades led to a structured, energy-based framework for modeling, system-
theoretic analysis and control of interconnected multi-physics systems, which
gathers researchers and practitioners from mathematics and engineering. With
the growing complexity of the considered application cases – dimensionality,
spatial extent, nonlinearity, non-trivial geometries and interconnections, or net-
work aspects to mention only a few – also the use of numerical methods gains
importance. In order to obtain consistently discretized models in space and/or
time, which feature the characteristic structural properties of the original sys-
tem, the numerical methods must be structure-preserving. In the context of PH
systems, this means the conservation of a structural balance equation – in gen-
eral for power – which also preserves the modularity, i. e. the compositionality
via power ports, of the considered models.

This monograph, which is a slightly edited version of the submitted ha-
bilitation thesis, presents new approaches for the structure-preserving spatial
discretization and numerical integration of PH systems. In addition to classi-
cal numerical techniques, the open character of PH systems must be taken into
account. Pairs of in- and output variables, whose product represents the power
flow through the system boundary must retain this interpretation in the finite-
dimensional approximation. The vehicle to achieve structure-preservation is to
maintain the separation of (i) the power interconnection structure, (ii) dynam-
ics and (iii) the constitutive equations in the numerical scheme. This imposes,
for example, a mixed approximation of the power variables or the discretization
over dual meshes.

The contributions of this book extend the state of the art in several direc-
tions. Direct discrete modeling of systems of conservation laws on dual com-
plexes is provided with the possibility to consider a non-uniform distribution
of different (Dirichlet or Neumann) input boundary conditions (Chapter 3).
The weak form of the Stokes-Dirac structure is defined as the basis for a mixed
Galerkin approach, which yields finite-dimensional PH approximate models in
an explicit state representation. Power-preserving mappings guarantee that
the subspace of discrete port variables is a Dirac structure, i. e. is endowed
with a non-degenerate power balance. The adequate definition of these map-
pings allows for a structure-preserving discretization of distributed parameter
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PH systems in arbitrary spatial dimension, which is adapted to the nature of
the system, in particular to its hyperbolic or parabolic character (Chapter 4).
A new definition of discrete-time PH systems is introduced, which is based
on the approximation of the power balance with the collocation method. The
new definition generalizes existing approaches towards multi-stage schemes and
makes the link to symplectic numerical integration methods for Hamiltonian
systems (Chapter 5). Finally, the resulting numerical models are analyzed for
the conservation of flatness of given outputs. It is shown on the examples of the
1D heat equation and 1D (non-)linear hyperbolic systems that the considered
discretized models (in space and time) can be exploited for the computation
of state and input trajectories with explicit numerical schemes (Chapter 6). In
the whole book, the numerical quality of the approximate models is analyzed
both by computation of consistency errors and/or numerical experiments.

The book summarizes my research between 2015 and 2018. I am indebted
to Bernhard Maschke, who hosted me at the Laboratory of Automation and
Process Engineering (LAGEP) in Lyon. Not only our excellent scientific ex-
change and the enthusiastic work on joint French-German projects made my
research stay in France unique. He took also care of the well-being of my family
and presented myself to tout le monde, which helped me quickly integrate in
the French PH network. I thank my colleagues at LAGEP, in particular Bous-
sad Hamroun, Françoise Couenne and Isabelle Pitault for their warm welcome
and our discussions. I am grateful for the cordial collaboration with Laurent
Lefèvre, who hosted me in Valence. Our whiteboard discussions were an im-
portant pillar of the work on numerical methods. Merci also to my friends
and colleagues Yann Le Gorrec, Hector Ramírez, Denis Matignon and Flávio
Cardoso for their exceptional hospitality during my visits in Besançon and
Toulouse and the open spirit in our scientific exchange. I want to thank Prof.
Boris Lohmann for his continuous support and the excellent working conditions
at his Chair of Automatic Control at TUM. I thank my colleagues Mei Wang,
Tobias Scheuermann and Hanae Labriji for their enthusiasm about our common
research, as well as Regine Markwort, Ralf Hübner and Thomas Huber for our
outstanding and friendly cooperation. Finally, I express my sincere gratitude
to Prof. Andreas Kugi and Prof. Peter Eberhard for their valuable feedback
and their suggestions, which had important influence on my work.

I gratefully acknowledge the financial support of the European Commission,
Grenoble INP and Agence Nationale de la Recherche/Deutsche Forschungsge-
meinschaft to enable our two years in France, which remain an unforgettable
experience for our whole family.

I thank my parents for their help over all the years. I am proud of our chil-
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Chapter 1

Introduction

1.1 Port-Hamiltonian Modeling and Control

The port-Hamiltonian (PH) approach has become a powerful framework for the
modeling, simulation and control of heterogeneous multi-physics systems. The
following paragraphs give an overview of the core concepts and highlight the
main directions in theory and applications, which have been developed during
the past three decades.

Modeling. Port-Hamiltonian systems’ theory originates from the idea to ex-
tend the Hamiltonian formalism of analytical mechanics to network models of
multi-domain physical systems, see [131] and the references therein, and to
include control via ports, i. e. pairs of inputs and power-conjugated outputs
[132], [193]. This unifying approach is intrinsically connected with the bond
graph representation [154], [25], [66] of physical systems, which reveals the
power flows (expressed through pairs of dual port variables, so-called flows and
efforts) between subsystems and the environment, as well as the storage, con-
version and dissipation of energy. The PH approach is therefore modular and
the separation of the power-conserving interconnection structure from dynam-
ics (energy storage), dissipation and the constitutive equations (which contain
for example material laws or geometry parameters) is a key feature of the PH
representation of dynamical systems. Interconnections and energy conversion
are described mathematically by so-called Dirac structures [43], i. e. linear sub-
spaces of power-conjugated port variables, on which power-conservation holds
(for example Kirchhoff’s laws in electrical networks or the combination of force
balance and kinematic conditions for mechanical systems). The Dirac struc-
ture is the underlying geometric structure and therefore the “backbone” of a PH
system. The structural power balance on a Dirac structure, in conjunction with
dynamics and constitutive equations that are derived from the total energy –
the Hamiltonian – implies passivity of a PH system. Linearity or nonlinearity
of a finite-dimensional PH system with a constant interconnection structure de-
pends on the Hamiltonian, which is quadratic in the former, and non-quadratic
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in the latter case. Examples for finite-dimensional PH modeling of open phys-
ical systems are power systems networks [58], chemical reaction networks [194]
or analog circuits for the simulation of electronic musical instruments [54], to
mention only a few.

An important recent development is the formulation of irreversible PH sys-
tems [51], [162], [196], which allows to include the principles of thermodynamics
in the structured framework for modeling and control. For irreversible pro-
cesses, the contact structure relates the variables on the thermodynamic phase
space.

The incorporation of constraints, which arise for example when numerical
submodels of multi-physical systems are coupled, leads to descriptor systems,
which are represented by differential and algebraic equations (DAEs). The PH
formulation of DAE systems is an active field of current research, see e. g. [190],
[13], [195].

The books [50], [191] and [192] give a large overview of the field of port-
based modeling and passivity-based control for finite- and infinite-dimensional
systems.

Control of finite-dimensional PH systems. Power ports as interfaces be-
tween system parts and the explicit use of energy1 make the PH approach not
only appealing for structured modeling and simulation of multi-physics, coupled
systems, but also for control. The main mechanism behind Control by Intercon-
nection (CbI) and Interconnection and Damping Assignment Passivity-Based
Control (IDA-PBC) as introduced in [130], [150], [148] is Energy Shaping. In
CbI, a system in PH representation is coupled with a PH dynamic controller in
a power-preserving way, e. g. by a simple feedback interconnection. Structural
invariants of the closed-loop systems, so-called Casimir functions, relate the
states of plant and controller and are used to shape the (artificial) closed-loop
energy function (the article [37] gives a characterization of the Casimirs under
standard feedback interconnection). Lyapunov stability of the desired equilib-
rium is deduced from passivity of the closed loop and follows immediately if the
shaped Hamiltonian has an isolated minimum in this equilibrium. Asymptotic
stability can be achieved by passive output feedback (damping injection) under
the assumption of zero state detectability [31].

Energy shaping may require a modification of the physical interconnection
and damping structure (expressed in terms of a skew-symmetric and a sym-
metric positive semi-definite matrix, respectively), which leads to the IDA-PBC
approach: Closed-loop desired target dynamics in PH form is matched with the
open-loop system representation plus the unknown state feedback control law.
The matching conditions restrict the assignable interconnection and damping
matrices and the closed-loop Hamiltonian in such a way that the open-loop
system must be feedback-equivalent [31] to a passive system with a suitable

1Called the lingua franca in [150], which “facilitates communication [of practitioners]
with control theorists”.



1.1 Port-Hamiltonian Modeling and Control 3

positive-definite storage function. The survey articles [145] and [149] give an
overview of CbI and IDA-PBC and the relations between both approaches. For
linear PH system, the IDA-PBC matching conditions can be expressed in terms
of LMIs [157]. [94] shows, how desired closed-loop dynamics can be incorpo-
rated in the IDA-PBC approach. The formulation of the mentioned energy-
and passivity-based control techniques to implicit PH systems is the topic of
[124]. [161] presents an IDA-PBC like approach for thermodynamic systems,
where an energy-based availability function is shaped.

Passivity-based control techniques from the PH perspective find applica-
tions in electro-mechanical systems [12], power electronics and process control
[85], to mention only a few examples. An important class of systems, to which
energy shaping has been applied, are underactuated mechanical systems [147],
[1], [203], [46]. The duality of PH passivity-based control with the technique
of Controlled Lagrangians [17], [16], [146] is pointed out in [15].

Distributed parameter PH systems. The extension of port-Hamiltonian
systems to the infinite-dimensional case was presented in [197] for open systems
of two conservation laws, i. e. systems with energy flow through the boundary
port. Stokes-Dirac structures2 were introduced as Dirac structures on infinite-
dimensional bond spaces. As in the finite-dimensional case, the Stokes-Dirac
structure is the linear infinite-dimensional space, where the pairs of power vari-
ables on the spatial domain and on its boundary are related such that power
conservation holds. The in- and outputs in the sense of systems’ theory and
control are defined via duality products whose values equal the exchanged pow-
ers at the ports. The constitutive equations, which distinguish between linear
and nonlinear PH systems are derived from a Hamiltonian functional in the
case of hyperbolic conservation laws. In [197], Maxwell’s equations and the
vibrating string are examples for systems that are described by a canonical,
formally skew-adjoint differential operator, which represents the lossless con-
version between energy forms. For flow problems, like the description of the
ideal isentropic fluid or the rotational 2D shallow water equations, the Hamil-
tonian functional is non-quadratic and the canonical operator must be modified
in order to account for the vorticity of the flow, see also [152].

Since the definition of distributed parameter port-Hamiltonian (dPH) sys-
tems in [197], a large number of works was dedicated to their mathematical and
system theoretic analysis and the extension of energy-based control methods to
boundary control of dPH systems in 1D. The article [112] deals with Dirac struc-
tures on (infinite-dimensional) Hilbert spaces based on generalized, higher order
skew-symmetric differential operators. For a given choice of the differential op-
erator, all possible pairs of boundary port variables are characterized to define
an infinite-dimensional Dirac structure. Using this characterization, boundary
conditions are given, such that the differential operator generates a contraction

2The prefix Stokes stems from the application of the generalized Stokes’ theorem, which
is instrumental in proving the structural properties of the linear subspace of power variables.
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semigroup. Together with dynamics and linear constitutive equations (derived
from a quadratic energy functional), dPH systems are defined in the sense of
boundary control systems [44], Section 3.3, [57]. In [216], well-posedness and
regularity of this class of dPH systems is shown under reasonable conditions
on the system operator and the choice of boundary inputs3. The monograph
[89] gives a concise introduction to linear dPH systems on Hilbert spaces over
a one-dimensional domain with the semigroup approach. The thesis [201] ex-
poses several aspects of mathematical modeling and properties of dPH systems,
including the Riesz basis property for the 1D case, and presents prospective
extensions of the semigroup approach to two- and three-dimensional domains.
The recent article [106] treats the formulation of nD linear wave systems as
boundary control systems. The definition of distributed power variables as in-
and outputs is discussed in [140].

The port-based approach, introduced for the structured modeling of open
hyperbolic systems, can also be applied to physical phenomena of different na-
ture. Parabolic adsorption (diffusion) processes, as well as their couplings on
different spatial scales, can be described based on the same Stokes-Dirac struc-
tures as a hyperbolic system of conservation laws [9]. The difference lies in
the definition of dynamics and constitutive equations, which must account for
the thermodynamic laws and properties. In [215], the authors show how to
construct different systems, e. g. the parabolic heat equation, from the hyper-
bolic wave equation by using interconnections and closure equations. The main
feature is that existence and uniqueness of the solution of the wave equation
maps to existence and uniqueness of the resulting system. An impressive ex-
ample for multi-physics modeling in the PH framework is the thermo-magneto-
hydrodynamics model presented in [204] for the plasma in Tokamak fusion
reactors. The PH formulation of the reactive Navier-Stokes flow [3] is based
on a non-canonical and state-dependent skew-adjoint operator and the cor-
responding boundary port variables. A PH model of the compressible Euler
equations in terms of density, weighted vorticity and dilatation is presented
in [155]. Modeling of distributed parameter irreversible processes in the PH
framework is the topic of [214]. In [141], “boundary multi-scale couplings” are
introduced in the dPH model of a ionic-polymer-metal composite actuator in
order to represent unidirectional energy flows at subsystem boundaries. [35]
presents, as an example for fluid-structure interaction, the PH model of the
sloshing liquid in a container coupled to a flexible beam.

Besides the PH formulation of conservation laws using Stokes-Dirac struc-
tures, this approach has also been applied to flexible mechanical systems, first
for the Timoshenko beam model, which represents a hyperbolic system [126]. In
[142], [129] and [189], nonlinear beam models, which are valid for large deflec-
tions, are presented based on Stokes-Dirac structures. An alternative approach
for the PH representation of structure mechanical systems is the jet bundle

3In particular, not more than half of the boundary port variables can be imposed as
inputs.
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formulation [177], [172], which uses different state variables and is closer to
the variational principles, from which the mechanical PDEs are derived [169].
In the Timoshenko beam example, the configuration variables deflection and
rotation directly appear as states, as opposed to the energy variables shear
and bending in the Stokes-Dirac approach [126]. For the PH modeling of the
Mindlin plate (as the 2D correspondence of the Timoshenko beam) with both
approaches, see [128] and [170].

Boundary control of dPH systems. The PH representation of beam mod-
els was accompanied by the design of boundary control in the sense of Control
by Interconnection [126], [177], [171]. The infinite-dimensional system model is
interconnected in a power-preserving way with a finite-dimensional controller
in PH form, and the total energy functional is shaped using Casimir function-
als, i. e. invariants of the mixed finite-infinite-dimensional closed-loop system.
The opposite situation, namely the coupling of finite-dimensional PH systems
over an infinite-dimensional interconnection structure is discussed in [127].

Damping injection can be realized via direct collocated boundary feedback
of a passive output or suitable damping in the controller. The asymptotic con-
vergence to a limit set is harder to prove in the infinite-dimensional setting
than in finite dimensions. It requires to show precompactness of the orbit of
the contraction semigroup generated by the system operator4. In [202], this
argumentation is followed to prove asymptotic stability of a boundary control
system connected to a static or strictly positive real dynamic controller. In
[160], the approach is extended to exponential stability via the interconnec-
tion with a strictly input passive finite-dimensional controller. [136] shows the
proof of asymptotic stability for a lossless Euler-Bernoulli beam under non-
linear dynamic boundary conditions. Another recent example with a rigorous
proof of asymptotic stability is passivity-based damping control of a large scale
multi-beam flexible manipulator is [80].

For finite-dimensional systems, the dissipation obstacle [150] states that
a very simple class of passivity-based controllers (so-called energy-balancing
controllers) can only be computed if the controller does not extract energy
from the plant at the desired equilibrium. The dissipation obstacle is overcome
by the use of state-modulated interconnections between plant and controller or
the assignment of different interconnection and dissipation structures and the
solution of a generalized matching equation (IDA-PBC). Recent approaches to
translate these ideas to the boundary control of 1D dPH systems are described
in [123], [125].

4See [119], Theorem 3.61, which leads to the infinite-dimensional formulation of LaSalle’s
invariance principle, Theorem 3.64.
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1.2 Structure-Preserving Discretization

Along with the progress in theory and applications of PH systems, several
directions have been explored to obtain finite-dimensional approximations of
dPH systems under preservation of their structure. The same holds for the
definition of discrete-time PH models, which are relevant for the high-fidelity
simulation of PH systems and the implementation of passivity-based control in
sampled control systems. We present an overview of the state of the art and
comment on the relations to other geometric approaches.

Spatial discretization of dPH systems. The simulation and control by
numerical methods, of complex (complex geometries, nonlinearities, interdo-
main couplings) distributed parameter PH systems requires a spatial discretiza-
tion, which retains the underlying geometric properties related to power con-
tinuity. According to the separation of the interconnection structure from the
dynamics and the constitutive equations, a geometric or structure-preserving
discretization consists of three steps:

1. Finite-dimensional approximation of the underlying Stokes-Dirac structure.
The duality between the bond or power variables (flows and efforts) must be
mapped onto the finite-dimensional approximation. This requires a mixed
approach with different approximation spaces for flows and efforts. The sub-
space of the approximated, discrete bond variables, on which the preserved
structural continuity equation (for power in hyperbolic systems or entropy
in irreversible systems) holds, defines a finite-dimensional Dirac structure.

2. Expression of the dynamics in terms of the discrete state variables.

3. Consistent discretization of the constitutive equations in the previously cho-
sen approximation spaces. For hyperbolic systems, this gives rise to the def-
inition of a discrete Hamiltonian, from which the discrete efforts (co-states)
can be derived.

The first approach for a structure-preserving discretization of dPH systems
in the spirit of mixed finite elements has been proposed in [71] for canonical
hyperbolic systems. In [10], the approach was applied to a diffusive adsoption
process. The mixed approximation bases lead to degeneracy of the discrete
duality product (a bilinear form between flow and effort degrees of freedom),
which is rectified by the definition of reduced effort variables. The Stokes-Dirac
structure is discretized in strong form, which produces restrictive compatibility
conditions. With the only admissible value of the discretization parameter5, the
resulting state space models feature dense matrices and a direct feedthrough,
which is unnatural for hyperbolic (yet appropriate for parabolic) systems. In

5Using piecewise linear Whitney node forms for the efforts and piecewise constant edge
forms for the flows, the only value for the parameter to define the reduced efforts according
to [71], Eq. (18) such that the conditions of Proposition 1 are satisfied, is αab = 1

2 .
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the 1D pseudo-spectral method [138], Lagrange interpolation polynomials are
used as basis functions. The approach is applied in [205] to generate a finite-
dimensional approximate model of the radial resistive diffusion of the magnetic
flux in Tokamak plasma. In this parabolic example, Bessel functions, which are
eigenfunctions of a simplified problem, build the effort approximation basis.

In [56], [55], an alternative infinite-dimensional Dirac structure is defined to
describe Maxwell’s equations. In contrast to the canonical Stokes-Dirac struc-
ture, it contains the material parameters, i. e. it violates the strict separation
of interconnection structure and constitutive equations. Compared to the dPH
representation in [197], the role of state and co-state variable is permuted in
one conservation law. The advantage is non-degeneracy of the discrete duality
pairing, which retains its interpretation in terms of power if compatible approx-
imation spaces (sequences of subspaces of the de Rham complex) are chosen.
Explicit PH state space models are immediately obtained by invertibility of the
corresponding finite element matrices.

The weak formulation as the basis for Galerkin numerical approximations,
including the different variations of the finite element method (see [158], to cite
only one textbook), has been only rarely used for modeling and discretization
of PH systems: In [56], [55], one of the two conservation laws is written in weak
form, including integration by parts. [3] presents the PH model of the reac-
tive 1D Navier-Stokes equations in weak form. In [35], the inclusion of a piezo
patch on a flexible beam in the PH model, and the structure-preserving dis-
cretization are performed via the weak form. The recent paper [34] presents a
partitioned method, which is in the spirit of [56]. The application of integration
by parts to only one of the two PDEs, which describe the 2D wave equation (in
standard vector notation), and subsequent finite element discretization yields
explicit state space models in PH form6. The recent articles [29], [30] deal with
the PH modeling of plate models and the application of the partitioned finite
element approach. An important aspect of using the weak form as basis for
structure-preserving discretization is to make the link with well-known numer-
ical methods and to pave the way for a simulation of PH systems with existing
numerical tools like FreeFEM++ [79], GetDP [67] or FEniCS [2].

Other than the methods described above, the approach [175], [174] employs
the language of discrete exterior geometry to formulate an integral representa-
tion of two conservation laws on a simplicial triangulation and its dual. Instead
of using mixed or dual approximation spaces as in the finite element approach,
the conservation laws are evaluated on topologically dual objects. The discrete
linear constitutive relations are obtained by use of a diagonal discrete Hodge
operator, which relates objects on both the primal and the dual mesh. The dis-
crete topological objects (k-simplices and k-chains) on both meshes, as well as

6In [34], no compatibility conditions are considered for the approximation bases. Note
however, that a compatible choice of finite element spaces, in accordance with the com-
patitibility condition in [56], and based on the geometric nature of the variables, seems,
among other advantages, to avoid spurious modes (ongoing work).
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linear functionals on them (e. g. the integrals of conserved quantities) are con-
nected via boundary and coboundary mappings. The sequences of the discrete
topological spaces, connected by the (co-)boundary maps represent discrete ver-
sions of the de Rham complex, so called n-complexes. [199] and [198] deal with
the PH formulation of conservation laws on graphs and n-complexes. Related
to this direct discrete geometric method are the recent structure-preserving ap-
proaches with finite volumes [95], [173] and finite differences [188] on staggered
grids7.

Spatial discretization of PDE systems yields finite-dimensional models of
high order. Structure-preserving model order reduction generates low-order PH
models for efficient simulation and control. Several approaches for linear PH
systems have been presented in the last decade, e. g. [212], [156], [74], [69].

The use of finite-dimensional models from structure-preserving discretiza-
tion for passivity-based feedback control is described for example in [122], [78]
and [206]. In [99] and [207], the structure of the finite-dimensional approxima-
tions is used for inversion-based feedforward control design.

Relations with other geometric approaches. A geometric or structure-
preserving discretization – as described for dPH systems above – is a compatible
discretization as defined in [18]: “Compatible discretizations transform partial
differential equations to discrete algebraic problems that mimic fundamental
properties of the continuum equations”. For dPH systems, such a fundamental
property is the power balance, which holds on the Stokes-Dirac structure. An-
other fundamental property is the exact validity of the balance laws on discrete
geometric objects. The open character of dPH systems requires special atten-
tion to the treatment of the boundary port variables. In particular, the imposed
boundary conditions should appear as inputs in the resulting control-oriented
models. This feature distinguishes structure-preserving approaches in the PH
framework from other geometric discretization methods, some of which shall
be mentioned here.

Bossavit’s work in computational electromagnetism [20], [21] and Tonti’s
cell method [185] keep track of the geometric nature of the system variables
which allows for a direct interpretation of the discrete variables in terms of in-
tegral system quantities. This integral point of view is also adopted in discrete
exterior calculus [48]. Finite element exterior calculus [6] gives a theoretical
frame to describe functional spaces of differential forms and their compatible
approximations, which includes the construction of higher order approximation
bases that generalize the famous Whitney forms [209], see also [163]. In the
detailed survey on the finite element discretization of Maxwell’s equations in
frequency domain [83], the author points out that “[t]o gain insight, a compre-
hensive view is mandatory, encompassing the structural aspects of the physical

7See e. g. [153], Section 6.2 and 6.3 for the motivation to use staggered grids for the
numerical solution of heat transfer and fluid flow problems.
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model, a thorough knowledge of function spaces as well as familiarity with clas-
sical finite element techniques” (p. 238). Moreover, “[f]inite elements that lack
an interpretation as discrete differential forms8 have to be used with great care”
(p. 240).

We refer also to the recent article [82] which proposes conforming polyno-
mial approximation bases, in which the conservation laws are exactly satisfied,
and which gives an excellent introduction to geometric discretization meth-
ods. In particular, an approximation of the field variables, which commutes
with (exterior) differentiation “guarantees that conservation and balance laws
remain exactly satisfied in the discrete setting” (p. 1456). Impressive exam-
ples for the use of geometric discretization methods can be found in weather
prediction [41] or in the simulation of large-scale fluid flows [42], where the
conservation of potential vorticity plays an important role.

Structure-preserving time integration. The geometric integration of or-
dinary differential equations, see e. g. [113], [76], is an important approach to
perform long-time simulations of Hamiltonian systems. Symplectic integration
conserves not only the symplectic form in the (mechanical) phase space, but also
invariants of motion (Casimirs, first integrals). In [40], energy-preserving inte-
grators for Hamiltonian systems with a non-canonical structure matrix (which
can depend on the state) are introduced based on the collocation method. Sym-
plectic integrators that are derived based on discrete versions of Hamilton’s
principle are called variational integrators. As indicated in the survey arti-
cle [118], they “work very well for both conservative and dissipative or forced
mechanical systems”. Multi-symplectic integrators are designed for the nu-
merical solution of infinite-dimensional Hamiltonian systems, described by a
multi-symplectic formulation of the underlying PDEs [28]. The conservation
law of symplecticity of a hyperbolic system (like the shallow water equations)
is preserved under appropriate numerical integration, e. g. the Preissmann box
scheme [164].

For the structure-preserving numerical integration of PH systems, their open
character has to be explicitly taken into account. This means that a discrete-
time equivalent of the structural power balance must be found, which allows
to approximate the energy transmitted over the input/output pair. The error
of both this transmitted and the stored energy, is of fundamental interest in
interconnected discrete-time PH systems, e. g. for multi-physics simulation.

Most existing works on the structure-preserving time integration or discrete-
time formulation of PH systems make use of a discrete gradient, defined from
a finite differences point of view [72], [4], [54]. A generic definition of PH dy-
namics on discrete manifolds (spaces that locally look like discretization grids
or the set of floating-point numbers) is given in [182]. Objects and operations

8The discretization using Whitney elements features such an interpretation. The degrees
of freedom can be considered to approximate the integrals of the conserved quantities over
the finite integration domains.
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from differential geometry are adapted to the discrete setting and discrete-time
Dirac structures are defined. In the discrete setting, the chain rule is not valid,
which means that the change of energy over a sampling interval is only approx-
imated by a product of the discrete gradient and the increment of the state.
The recent preprint [36] introduces higher order discrete gradient methods for
explicit PH systems and introduces the notion of a discrete energy balance,
which equates the approximations of energy supply and storage. However, no
Runge-Kutta method satisfies such an exact discrete energy balance for arbi-
trary Hamiltonians.

Discrete-time passivity-based control. Some steps have been done to-
wards the direct discrete-time design and implementation of passivity-based
controllers in the PH framework. In [179], the passive interconnection be-
tween continuous-time and discrete-time PH systems is described in the con-
text of robotics and telemanipulation, based on sampling and zero-order hold.
The definition is based on the exact matching of exchanged energy per sam-
pling interval. The implementation, however, relies on an approximation of the
discrete-time effort variable in form of a delay. [108] presents a discrete-time
IDA-PBC controller, which is implemented based on a forward Euler plant ap-
proximation and a discretization of the shaped potential energy gradient. [73]
presents a comparable approach, based on the discrete gradient of the Hamil-
tonian. The paper [184] deals with the implementation of a continuous-time
IDA-PBC controller in a sampled-data control system. The piecewise constant
control input is computed based on the Taylor series expansion of the solution
between two sampling instants.

1.3 Objectives of the Book

The following questions, which arise from the state of the art on structure-
preserving discretization of PH systems, will be addressed in this book.

1. How can different boundary causality be invoked in a structured and versatile
manner in the structure-preserving discretization of dPH systems? More
precisely, how can finite-dimensional PH models in explicit state space form
be obtained, which approximate systems of conservation laws under a non-
uniform distribution of Dirichlet and Neumann boundary conditions? Until
now, the direct discrete modeling approach on dual chain complexes [174],
but also the finite-element method [56], [55] are formulated for a uniform
type of imposed boundary conditions.

2. How can the mixed finite-element approach [71] be extended to higher spa-
tial dimensions9? Moreover, the finite-dimensional approximation of a hy-
perbolic system of conservation laws (like the 1D telegraphers equations as

9Section 4 of [71] describes the ansatz to attack the 2D case on a triangular surface
element. Working out the idea on a 2D simplicial mesh, however, yields a number of effort
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a frequent example) with this approach, but also with the pseudo-spectral
method [138], feature a direct feedthrough of the port variables at oppo-
site boundaries. This effect is at odds with the finite propagation speed of
information in a hyperbolic system and a questions is how to avoid it.

3. The finite element approach [71] is based on an approximation of the Stokes-
Dirac structure in strong form, which leads to restrictive compatibility condi-
tions, which leave no freedom to parametrize the approach. A weak formu-
lation of the Stokes-Dirac structure relaxes these conditions. Being the basis
for all Galerkin approximation methods, the weak form also allows to use
more general approximation spaces, like the finite element spaces presented
in [7]. Starting from a weak formulation therefore highlights and clarifies
the relations of PH structure-preserving discretization with other geometric
methods for the numerical approximation of PDEs.

4. The mixed finite element approach for nD dPH systems with non-uniform
boundary causality, which is a key contribution of this monograph, uses
power-preserving mappings of the discrete bond variables, which are equipped
with parameters10. We analyze the effects of the parameter choice on the
approximation quality of the finite-dimensional PH models in order to ob-
tain suitable parametrizations for the structure-preserving discretization of
both hyperbolic and parabolic systems.

5. For the simulation and computer-based control of finite-dimensional conti-
nuous-time models, time discretization is necessary. We explore how to use
the ideas from spatial discretization – in particular the appropriate choice
of bases for the bond variables – to structure-preserving time integration of
PH systems. The objective is a clear definition of discrete-time PH systems,
which (i) generalizes existing approaches in the PH framework, (ii) takes
explicitly into account the numerical errors in the transmission and storage of
energy and (iii) represents an extension of multi-stage symplectic integration
schemes for Hamiltonian systems to the class of open PH systems.

6. The final objective of this monograph is to illustrate how to exploit the
structure of the discretized PH models for numerical flatness-based feedfor-
ward control. We analyze conditions on the discretization parameters under
which the flatness property of given outputs for the 1D heat and the 1D wave
equation is preserved, and show the quality and convergence of the resulting
feedforward controls in numerical experiments. For (nonlinear) hyperbolic
systems, as opposed to the parabolic case, the combination of spatial and
temporal discretization is necessary to obtain trajectories, which respect the
unsmoothened transport of boundary and initial conditions.

degrees of freedom, which is inferior to the number of flow degrees of freedom. The original
idea to map the efforts onto a space with identical dimension as the flow space does not
work.

10In contrast to [71], our approach features tuning parameters in the flow mappings, which
is the key ingredient for the extension to nD.
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A natural question, which arises from the results presented in this mono-
graph, is how to make use of the obtained models and the analysis of numerical
errors for state observation and feedback control. This current field of research
is, however, not treated in this book.

1.4 Outline

The book is structured as follows. Chapter 2 is devoted to the basics of the PH
formulation. We recall the Dirac structure and the Stokes-Dirac structure as
backbones of the PH state representations of lumped and distributed parameter
systems. For systems of two conservation laws – a canonical class of infinite-
dimensional PH systems – we introduce a parametrization of the boundary
in terms of the imposed (Dirichlet or Neumann) boundary conditions. The
chapter closes with three characteristic examples, which can be represented in
terms of the same Stokes-Dirac structure. We introduce the structured PH
state representations of the nD linear wave equation, the 2D shallow water
equations and the nD linear heat equation in both vector calculus notation
and using differential forms.

In Chapter 3, we focus on the direct discrete representation of systems of
conservation laws on dual, staggered meshes. After a section on the necessary
preliminaries from discrete exterior calculus, we demonstrate how to construct
the dual complexes (more precisely, the underlying staggered meshes) in order
to incorporate a non-uniform distribution of input boundary conditions. The
approach is presented in 2D, and the consistent numerical approximation of the
constitutive equations is illustrated on the example of the irrotational shallow
water equations. Remarks on the numerical approximation are given, which
highlight the relations to existing works in the PH framework and to facts from
numerics. The presented approach is currently being applied to heat transfer
modeling in 3D catalytic foams.

The mixed Galerkin approximation of infinite-dimensional systems with a
canonical differential operator is the topic of Chapter 4. Using the weak
form of the Stokes-Dirac structure, the approximation problem is formulated
in mixed bases. The degeneracy of the finite-dimensional power balance, which
is expressed in terms of the flow and effort degrees of freedom, must be recti-
fied with the definition of power-preserving mappings on the finite-dimensional
bond space. The resulting Dirac structure and a consistent approximation of
the constitutive equations are the ingredients for the finite-dimensional PH
approximation in explicit state space form. The approach is illustrated with
Whitney finite elements as approximation bases. For the 1D wave equation,
the approximation quality of the obtained models is verified by a numerical
convergence analysis of the eigenvalues and the comparison with the results of
[71], both under variation of the design parameter. Accordingly, an optimal,
centered parameter value is determined for the 1D heat equation, based on the
analytic expressions for the eigenvalues of the finite-dimensional model. For
the 2D wave equation, the construction of the power-preserving mappings and
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the discretization of the constitutive equations are shown on a regular simpli-
cial triangulation over a rectangular mesh. A simulation study gives evidence
of the beneficial effect of upwinding numerical approximations for hyperbolic
systems. Moreover, the interpretation of the discrete state variables, which is
straightforward when using Whitney forms, constrains the 2D design parame-
ters to reasonable values with regards to the approximation of vorticity. The
simulation of the double slit experiment proves the applicability of the approach
to non-trivial spatial domains.

Chapter 5 is dedicated to a new definition of discrete-time PH systems,
which arises from the structure-preserving integration of explicit continuous-
time PH systems. The definition follows the paradigm of separating the sys-
tem’s linear power structure from the possibly nonlinear constitutive equations
and dynamics. The power balance of a lossless PH system, a structural property
of its underlying Dirac structure, is mapped to a discrete-time energy balance
per time step. Both the energy supplied via the control port and the energy
routed to the storage elements, are approximated in the discretized setting. We
give conditions on (i) the system and (ii) the discretization scheme, under which
the continuous-time Dirac structure maps to a discrete-time Dirac structure.
We define a discrete-time PH system as the completion of the discrete-time
Dirac structure with constitutive equations and a numerical integration scheme.
The analysis of the energy errors (supplied vs. stored energy) and the proof
of their consistency under two classes of symplectic integration schemes is an
important part of the chapter, and is illustrated by the numerical experiments,
which support the order proofs.

Finally, Chapter 6 shows the application of both structure-preserving dis-
cretization in space and time to the trajectory planning for parabolic and hy-
perbolic 1D boundary control systems. We show that under appropriate choices
of the discretization parameter in the mixed Galerkin scheme, the flatness of
given outputs of the 1D heat and the 1D wave equation is conserved. For the
parabolic heat equation, a differential parametrization of the boundary input
via the (opposite) flat boundary output and a finite number of time derivatives
fits to the nature of the system and mimics the fact that trajectory plan-
ning using the infinite-dimensional model requires an infinitely smooth output
trajectory. In contrast to that, smoothness of the trajectory is an unnatu-
ral constraint for the flat output of a hyperbolic system. Combination of the
continuous-time PH approximate model with the symplectic Euler integration
scheme yields a discrete-time model for the linear wave equation, which allows
for a parametrization of states and input in terms of the flat output and its past
and future values. This notion of flatness, which is natural for discrete-time
and hyperbolic systems, holds also in the considered case of nonlinear conser-
vation laws. A suitable discretization of the nonlinear constitutive equations
allows for a stable, explicit numerical scheme for trajectory planning, which is
illustrated on the example of the 1D shallow water equations.

Each chapter closes with a summary of the presented results, conclusions
and an outlook to ongoing work and further research directions.





Chapter 2

Structured Representation of
Conservation Laws

2.1 Finite-Dimensional Port-Hamiltonian Systems

Before introducing infinite-dimensional PH systems, we present the basic no-
tions for the PH representation of finite-dimensional systems.

2.1.1 Dirac Structures

A Dirac structure, whose definition and characterization are summarized be-
low, can be considered as “the geometrical notion formalizing general power-
conserving interconnections” [197]. The following definition corresponds to [43],
Definition 1.1.1.

Definition 2.1 (Dirac structure). Given the finite-dimensional linear space F
over R or another field and its dual E = F ∗ with respect to the duality pairing1

〈·|·〉 : F × E → R. Define the symmetric bilinear form

〈〈(f1, e1), (f2, e2)〉〉 := 1
2 (〈e1|f2〉+ 〈e2|f1〉) , (fi, ei) ∈ F × E, i = 1, 2. (2.1)

A Dirac structure is a linear subspace D ⊂ F ×E which is maximally isotropic
under 〈〈·, ·〉〉.

Equivalently, a Dirac structure can be characterized as the subspace D ⊂
F×E which equals its orthogonal complement with respect to 〈〈·, ·〉〉: D = D⊥,
see [197], Definition 2.1. D is isotropic under 〈〈·, ·〉〉, if 〈〈(f1, e1), (f2, e2)〉〉 = 0
for all (f1, e1), (f2, e2) ∈ D, from which D ⊂ D⊥ follows. If, in addition, for

1The dual space E = F ∗ contains all linear maps from F to R; they can be written as
duality pairings. If F – like in the finite-dimensional case – is endowed with an inner product
structure, see [191], Remark 6.6.1, F and E are isomorphic and the duality pairing can be
identified with an inner product.
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every (f1, e1) ∈ D there exists no (f3, e3) /∈ D such that 〈〈(f1, e1), (f3, e3)〉〉 = 0,
thenD ismaximally isotropic, and alsoD⊥ ⊂ D is true, which impliesD = D⊥.
The isotropy condition implies that

〈〈(f , e), (f , e)〉〉 = 〈e|f〉 = 0 ∀ (f , e) ∈ F × E. (2.2)

For the space of conjugated power variables F ×E ∼= Rn×Rn, this is indeed a
power balance equation. For more details and the different representations of
finite-dimensional Dirac structures (in the PH context), we refer to [191], [197].
For Dirac structures defined on Hilbert spaces, and their composition, see e. g.
Chapter 5 of [70] and [107].

The usefulness of the symmetric bilinear form in the definition of a Dirac
structure can be illustrated with the following examples from electrical circuits
(see [192], Subsection 2.2.2 and Section 2.1) and simple mechanical systems.

Example 2.1 (Electrical circuits). Consider two electrical circuits with identi-
cal topology, but different network elements. I1, I2 ∈ Rm denote the vectors of
currents through the m branches, and V1,V2 ∈ Rm contain the voltages across
the branches. With φ1,φ2 ∈ Rk the vectors of node potentials and B ∈ Rk×m
the incidence matrix of the circuit graph, the vectors of currents and voltages,
which satisfy Kirchhoff’s current and voltage laws, can be written

BIi = 0, Vi = BTφi, i = 1, 2. (2.3)

It is straightforward to verify that

IT1 V2 + IT2 V1 = 0 (2.4)

holds, i. e. the space of voltages and currents that satisfy Kirchhoff’s laws
defines a finite-dimensional Dirac structure. For I1 = I2 = I, V1 = V2 = V,
we obtain ITV = 0, i. e. Tellegen’s theorem [183]. Note, however, that by (2.3)
also

IT1 V2 = 0, IT2 V1 = 0 (2.5)
hold. The space of voltages and currents on the electrical circuit is a separable
Dirac structure (see [192], Definition 2.2).

Example 2.2 (Mechanical oscillators). Now consider the interconnection of a
mass with a spring as depicted in Fig. 2.1 to produce an elementary mechanical
oscillator. For two different pairs of masses m1, m2 and springs of stiffness k1,
k2, the interconnection conditions (balance of forces, equality of velocities) read[

−vs1
−Fm1

]
︸ ︷︷ ︸
−f1

=
[

0 1
−1 0

]
︸ ︷︷ ︸

J

[
Fs1
vm1

]
︸ ︷︷ ︸

e1

,

[
−vs2
−Fm2

]
︸ ︷︷ ︸
−f2

=
[

0 1
−1 0

]
︸ ︷︷ ︸

J

[
Fs2
vm2

]
︸ ︷︷ ︸

e2

. (2.6)

The power variables at mass and spring are assigned the roles of effort or flow,
according to the model of a unified energy storing element, see also [192], Table
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Figure 2.1: Spring and mass as lumped energy storage elements with flows (red)
and efforts (blue).

B.1, and Fig. 2.2 in the following subsection. Other than for the electrical
circuits, the mixed products of power variables are not zero in general,

eT1 f2 6= 0, eT2 f1 6= 0. (2.7)
(To verify, consider forces and velocities in both oscillators as harmonic func-
tions with different frequencies.) However, the symmetrized power product
according to (2.1) (omitting the factor 1/2) equals zero:

eT1 f2 + eT2 f1 = eT1 JeT2 + eT2 Je1

= eT1 (J + JT )e2

= 0.
(2.8)

For finite-dimensional Dirac structures, the proof that a subspaceD ⊂ F×E
is a Dirac structure is simplified, see [191], Proposition 6.6.4.

Theorem 2.1 (Finite-dimensional Dirac structure). A subspace D ⊂ F × E
on which 〈e|f〉 = 0 holds for all (f , e) ∈ D is a Dirac structure if and only if
dimD = dimF <∞.

In order to prove that a concrete subspace of power variables defines a fi-
nite-dimensional Dirac structure, the kernel and image representation are very
useful, see [191], Proposition 6.6.6:

Theorem 2.2 (Kernel and image representation). Given a Dirac structure
D ⊂ F × E with dimF = n. D admits

1. the kernel representation

D = {(f , e) ∈ F × E | Ff + Ee = 0} (2.9)

2. and the image representation

D = {(f , e) ∈ F × E | ∃λ ∈ Rn such that f = ETλ, e = FTλ} (2.10)

with matrices E,F ∈ Rn×n that satisfy the following conditions:
(i) EFT + FET = 0,

(ii) rank
[
F E

]
= n.

Vice versa, the subspaces of F × E described by (2.9) and (2.10) are Dirac
structures.
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−fs,i xi ∂Hi
∂xi
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Figure 2.2: Variables in a canonical, independent energy storage element.

2.1.2 State Space Representation

If we include external port variables, i. e. inputs and power-conjugated out-
puts u,y ∈ Rm, and associate internal flows and efforts to n separable energy
storage elements according to the simple model depicted in Fig. 2.2, a kernel
representation of the subspace (subscript “s” for “storage”)

D = {fs, es ∈ Rn,u,y ∈ Rm | eTs fs + uTy = 0} (2.11)

is [
I 0
0 I

] [
fs
y

]
+
[

J G
−GT −D

] [
es
u

]
=
[
0
0

]
, (2.12)

with the skew-symmetric interconnection and feedthrough matrices J = −JT ,
D = −DT . Rearranging this system of equations, we obtain the input-state-
output representation of the Dirac structure D

−fs = Jes + Gu
y = GTes + Du.

(Structure) (2.13)

Adding both dynamics and constitutive equations

ẋ = −fs (Dynamics) (2.14a)
es = ∇H(x) (Constit. Eq.) (2.14b)

withH(x) aHamiltonian function2 with strict minimum in x∗ = arg minx H(x),
we obtain the explicit state representation of a port-Hamiltonian system with
constant interconnection, input and feedthrough matrices:

ẋ = J∇H(x) + Gu (2.15a)
y = GT∇H(x) + Du. (2.15b)

The differential energy balance

Ḣ = ∂H

∂x ẋ

= yTu
(2.16)

is a structural property, which can be directly obtained from eTs fs + uTy = 0
according to (2.11) and the substitution of dynamics and constitutive equations
(2.14).

2In the case of n separable energy storage elements H(x) =
∑n

i=1Hi(xi).
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Allowing for state-dependent matrices and introducing losses by a positive
semi-definite dissipation matrix leads to the following definition3 of input-state-
output PH systems.

Definition 2.2 (PH system with dissipation). A dynamical system of the form

ẋ = (J(x)−R(x))∇H(x) + G(x)u (2.17a)
y = GT (x)∇H(x) + D(x)u (2.17b)

with state vector x ∈ Rn, in- and outputs u,y ∈ Rm, interconnection, damping
and feedthrough matrices J = −JT , R = RT ≥ 0 and D = −DT and an energy
(Hamiltonian) function H : Rn → R, which is bounded from below, is called
an input-state-output port-Hamiltonian system.

From the structure of the equations and the definiteness properties, the
power balance

Ḣ = −∂H
∂x R(x)

(
∂H

∂x

)T
+ yTu

≤ yTu,
(2.18)

and hence passivity4 of the PH state representation, immediately follows. If
x∗ is an isolated minimum of H, the Hamiltonian serves (at least locally) as a
Lyapunov function for the stable equilibrium x∗ of the unforced system. If the
PH structure is imposed by control (e. g. using Interconnection and Damping
Assignment Passivity-Based Control), the shaped Hamiltonian serves as closed-
loop Lyapunov function.

Remark 2.1. A relevant class of PH systems are implicit systems, whose dy-
namics and constraints are given in terms of differential-algebraic equations
(DAEs), see for example the articles [190] and [13]. PH DAE systems arise
for example from automated network modeling of multi-physics systems. In
this work, however, we focus on numerical methods that generate explicit state
space approximate models for systems of conservation laws.

2.2 Systems of Conservation Laws

The dynamics of important classes of distributed parameter systems is governed
by conservation laws. The describing equations are obtained by balancing the
rate of change of extensive quantities (more precisely, their integrals), over finite

3See [191], Definition 6.6.1. Here, we add a simple feedthrough matrix D(x) = −DT (x).
For a more general definition of a PH system with feedthrough, see [191], Definition 6.6.2.

4See e. g. [191], Chapter 4.
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spatial domains. The time derivative of these conserved quantities, which we
consider as state variables, is induced by fluxes (again, we mean their integrals)
over the boundary of the domain or in-domain generation terms. An example
for the latter are reaction terms when balancing concentrations of chemical
species. The partial differential equations (PDEs), which are a local description
of the dynamics, result from the integrands that are left after the application
of an integral theorem (the fundamental theorem of calculus, Stokes’ theorem
or Gauss’ divergence theorem) to the boundary term5. This book is about
control-oriented numerical methods for open systems of conservation laws, i. e.
systems with a boundary energy flow that is imposed by boundary control. The
port-Hamiltonian (PH) framework is particularly well-suited for open systems,
and the presented methods for spatial and temporal discretization are derived in
order to preserve the favorable PH structure of their mathematical description.

2.2.1 The Stokes-Dirac Structure

The PH formulation of a class of open distributed parameter systems was first in-
troduced in [197], based on the definition of an infinite-dimensional Dirac struc-
ture. The Stokes-Dirac structure is a subspace of distributed power variables,
which is maximally isotropic with respect to a symmetrized duality pairing of
differential forms. Before we give a generalized definition of the Stokes-Dirac
structure, which takes into account non-uniform boundary causality, we recall
some definitions and the main theorem of [197].

We will use the notation in terms of differential forms, which is very natural
for conservation laws6. A short summary of exterior calculus with differential
forms, including references for further reading, is given in Section A.1 of the
Appendix.

Consider an n-dimensional smooth manifold Ω with a smooth (n − 1)-
dimensional boundary ∂Ω. The natural or duality pairing between two smooth
differential forms7 α ∈ Λk(Ω) and β ∈ Λn−k(Ω) is given according to (A.3) by

〈β|α〉Ω :=
∫

Ω
β ∧ α. (2.19)

The pairing is non-degenerate as β = 0 (α = 0) follows if 〈β|α〉∂Ω = 0 for
all α (for all β). The duality pairing is defined accordingly on the boundary:
〈β|α〉∂Ω :=

∫
∂Ω β ∧ α for differential forms α ∈ Λk(∂Ω), β ∈ Λn−1−k(∂Ω).

5This approach is in contrast to structural mechanics, where the PDEs are derived from
variational principles.

6The reason is that conservation laws are defined via integrals over a balance region Ω
and its boundary ∂Ω. Differential k-forms can be clearly associated with integration over
a k-dimensional domain. Moreover, the different integration theorems can be expressed in
a unified manner with differential forms: the “Newton-Leibniz-Gauss-Green-Ostrogradskii-
Stokes-Poincaré formula” ([8], §36.D) or simply the generalized Stokes’ theorem.

7We will further specify the differentiability assumptions on the differential forms in the
next subsection.
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Define the spaces of distributed flows and efforts

F := Λp(Ω)× Λq(Ω)× Λn−p(∂Ω), (2.20a)
E := Λn−p(Ω)× Λn−q(Ω)× Λn−q(∂Ω), (2.20b)

where the scalars p and q satisfy

p+ q = n+ 1, (2.21)

and the symmetrized duality pairing on F × E

〈〈(fp1 , fq1 , f∂1 , ep1, eq1, e∂1 ), (fp2 , f
q
2 , f

∂
2 , e

p
2, e

q
2, e

∂
2 )〉〉 :=

〈ep1|fp2 〉Ω + 〈eq1|fq2 〉Ω + 〈e∂1 |f∂2 〉∂Ω + 〈ep2|fp1 〉Ω + 〈eq2|fq1 〉Ω + 〈e∂2 |f∂1 〉∂Ω, (2.22)

with (i = 1, 2)

fpi ∈ Λp(Ω), fqi ∈ Λq(Ω), f∂i ∈ Λn−p(∂Ω), (2.23a)
epi ∈ Λn−p(Ω), eqi ∈ Λn−q(Ω), e∂i ∈ Λn−q(∂Ω). (2.23b)

The following can be proven8.

Theorem 2.3 (Stokes-Dirac structure). Given the infinite-dimensional linear
spaces F and E as defined in (2.20) with p and q satisfying (2.21). Let flows
and efforts be related by [

fp

fq

]
=
[

0 (−1)rd
d 0

] [
ep

eq

]
(2.24a)[

f∂

e∂

]
=
[
1 0
0 (−1)p

] [
ep|∂Ω
eq|∂Ω

]
(2.24b)

with r = pq + 1, and where |∂Ω denotes the restriction of the given smooth
differential forms to the boundary. Then the subspace

D = {(fp, fq, f∂ , ep, eq, e∂) ∈ F × E | (2.24) holds} (2.25)

is a Dirac structure, i. e. D = D⊥ with respect to the symmetrized duality
pairing (2.22).

As the generalized Stokes’ theorem (in terms of differential forms, see Ap-
pendix A.1) is used to prove that D ⊂ D⊥ and D⊥ ⊂ D, from which D = D⊥
follows, the so-defined Dirac structure is called Stokes-Dirac structure. Instru-
mental in the proof is the formal skew-adjointness of the matrix differential

8[197], Theorem 2.1.
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operator9 in (2.24a), which generalizes J = −JT in the representation (2.13)
of the finite-dimensional Dirac structure.

An immediate implication is that flows and efforts, which belong to the
Stokes-Dirac structure, satisfy the structural power balance

〈ep|fp〉Ω + 〈eq|fq〉Ω + 〈e∂ |f∂〉∂Ω = 0. (2.26)

Hyperbolic systems of two conservation laws can be represented by means of
the above-defined Stokes-Dirac structure, for example Maxwell’s equations, the
vibrating string or – with a modification of the differential operator – an ideal
isentropic fluid (all examples from [197]). Also diffusive phenomena, like ad-
sorption processes [10], can be modeled with the help of the canonical differ-
ential operator in (2.24a). The Stokes-Dirac structure serves also to couple
different physical phenomena (described by hyperbolic or parabolic PDEs) as
presented in [204] on the complex example of thermo-magneto-hydrodynamics
of plasmas in Tokamak fusion reactors.

The boundary term 〈e∂ |f∂〉∂Ω in (2.26) pairs two power variables, one of
which is considered as control input imposed on ∂Ω. The other, dual variable
plays the role of the collocated and power-conjugated output. The assignment
of these roles to the boundary power variables is referred to as causality of the
boundary port. For boundary control in the sense of [57], either e∂ or f∂ can be
assigned the role of the (distributed) boundary input. In the rest of the work,
we will use the following convention.

Definition 2.3 (Boundary inputs and collocated outputs). Boundary efforts,
denoted e∂ play the role of boundary inputs, i. e. imposed boundary conditions.
Boundary flows f∂ are considered the power-conjugated, collocated outputs.

2.2.2 Non-Uniform Boundary Causality

To allow for a different causality along the boundary of the spatial domain,
in other words to define different effort variables on the boundary as inputs,
a generalized definition of the Stokes-Dirac structure has been given in [104].
We recall this definition, which departs from the specification of the functional
spaces10 of flows and efforts on the n-dimensional spatial domain Ω and its Lip-
schitz boundary ∂Ω. With square integrability of the flow and effort differential

9A formal differential operator J is defined without boundary conditions (see e. g. [92],
Sect. III.3). Formal skew-adjointness is verified by 〈e|J e〉Ω = −〈J e|e〉Ω under zero bound-
ary conditions. The matrix operator in (2.24a) is formally skew-adjoint as for ep|∂Ω = 0 and
eq |∂Ω = 0, we obtain (using integration by parts) 〈ep|(−1)rdeq〉Ω + 〈eq |dep〉Ω = 0.

10The functional spaces are particularly important for the compatible numerical approxi-
mation in Chapter 4.
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Figure 2.3: Sketch of a domain Ω ⊂ R3 with subdomains Ω1,Ω2, Ω3 and Ω̂1 and a
partition of the boundary into Γ1,Γ2,Γ3 and Γ̂1.

forms and weak differentiability of the latter11

fp ∈ L2Λp(Ω), ep ∈ H1Λn−p(Ω),
fq ∈ L2Λq(Ω), eq ∈ H1Λn−q(Ω),

(2.27)

the boundedness of 〈ep|fp〉Ω and 〈eq|fq〉Ω is guaranteed, as well as the square
integrability (in the Lebesgue sense) of dep and deq. The trace theorem from
classical functional analysis applies also to differential forms, see Appendix A.1
and references therein, which guarantees that the extensions to the boundary
of the effort differential forms (denoted by the trace operator tr)

tr ep ∈ L2Λn−p(∂Ω), tr eq ∈ L2Λn−p(∂Ω) (2.28)

are again square integrable. This ensures boundedness of 〈tr eq|tr ep〉∂Ω.
Now consider an n-dimensional open and connected domain Ω with Lip-

schitz boundary ∂Ω. Consider a partition of ∂Ω with subsets Γi ⊂ ∂Ω,
i = 1, . . . , nΓ, and Γ̂j ⊂ ∂Ω, j = 1, . . . , n̂Γ, with orientation according to
∂Ω. Let

⋃nΓ
i=1 Γi ∪

⋃n̂Γ
j=1 Γ̂j = ∂Ω and the intersections Γi ∩ Γ̂j be sets of mea-

sure zero. An illustration of such a domain Ω with the different portions of the
boundary is given in Fig. 2.3. Define the boundary efforts (inputs) and flows

eΓ
i = (−1)p tr eq|Γi ,
fΓ
i = tr ep|Γi ,

êΓ
j = tr ep|Γ̂j ,
f̂Γ
j = (−1)p tr eq|Γ̂j ,

(2.29)

as extensions of the effort forms to the corresponding subsets of ∂Ω. The spaces
of flows and efforts on Ω and its boundary (2.27) and (2.29) define the bond
space12, which is composed of

F = L2Λp(Ω)× L2Λq(Ω)× L2Λn−p(Γ1)× · · · × L2Λn−p(ΓnΓ)
× L2Λn−q(Γ̂1)× · · · × L2Λn−q(Γ̂n̂Γ) (2.30)

11To be more precise, these properties refer to the coefficient functions of the differential
forms, see [7], Section 1.

12As a reference to bond graph modeling of dynamical systems [154], see e. g. [50], Chapter
8.
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and

E = H1Λn−p(Ω)×H1Λn−q(Ω)× L2Λn−q(Γ1)× · · · × L2Λn−q(ΓnΓ)
× L2Λn−p(Γ̂1)× · · · × L2Λn−p(Γ̂n̂Γ). (2.31)

The following theorem corresponds to Propostion 2.1 in [104].

Theorem 2.4 (Stokes-Dirac structure with non-uniform causality). Consider
the bond space F × E defined by (2.30) and (2.31) with in-domain flows and
efforts (2.27) and boundary port variables (2.29). The subspace D ⊂ F × E ,
where [

fp

fq

]
=
[

0 (−1)rd
d 0

] [
ep

eq

]
(2.32)

holds, is a Dirac structure. Flows and efforts satisfy the structural power
balance

〈ep|fp〉Ω + 〈eq|fq〉Ω +
nΓ∑
i=1
〈eΓ
i |fΓ

i 〉Γi +
n̂Γ∑
j=1
〈f̂Γ
j |êΓ

j 〉Γ̂j = 0. (2.33)

Proof. The proof follows the same lines as for [197], Theorem 2.1. It is shown
both that D ⊂ D⊥ and D⊥ ⊂ D, now with the modified symmetrized duality
pairing 〈〈(·, ·), (·, ·)〉〉, which is adapted to the different definition of F × E ,
and taking into account that the power exchange over the boundary can be
decomposed into the contributions of each subset Γ1, . . . ,ΓnΓ and Γ̂1, . . . , Γ̂n̂Γ :

nΓ∑
i=1
〈eΓ
i |fΓ

i 〉Γi +
n̂Γ∑
j=1
〈f̂Γ
j |êΓ

j 〉Γ̂j = (−1)p〈tr eq|tr ep〉∂Ω. (2.34)

An alternative, as shown in the proof of [104], is to exploit the compositionality
property of Stokes-Dirac structures, see also Remark 2.2 of [197].

Remark 2.2. In the above theorem, boundary efforts (i. e. the boundary inputs)

eΓ
i =: uqi , êΓ

j =: upj (2.35)
and boundary flows (i. e. power-conjugated outputs)

fΓ
i =: ypi , f̂Γ

j =: yqj (2.36)

are defined as pure restrictions of either of the distributed efforts to the corre-
sponding subsets Γi, i = 1, . . . nΓ and Γ̂j , j = 1, . . . , n̂Γ of the boundary. It is,
however, also possible to define images of the previous ones under a transfor-
mation that preserves the inner product (isometry), e. g. scattering variables
[112].
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2.2.3 Port-Hamiltonian Representation

We consider systems of two conservation laws in a canonical form13 as in-
troduced in [197]. These systems share a common Stokes-Dirac structure.
From skew-adjointness of the canonical matrix differential operator as given in
(2.24a), the structural power balance (2.26) or – with the definition of boundary
port variables – (2.33) follows.

To define a port-Hamiltonian distributed parameter system, the Stokes-
Dirac structure is completed by dynamic equations that introduce evolution
with respect to time, and constitutive relations, which define the nature of the
resulting dynamic system of PDEs. For hyperbolic system of conservation laws
in PH form, the constitutive equations for the effort variables are derived from
a single energy (Hamiltonian) functional.

The flows induce the time evolution of the distributed state variables14

p(z, t) ∈ L2Λp(Ω), q(z, t) ∈ L2Λq(Ω) with corresponding initial conditions:[
−∂tp(z, t)
−∂tq(z, t)

]
=
[
fp(z, t)
fq(z, t)

]
,

[
p(z, 0)
q(z, 0)

]
=
[
p0(z)
q0(z)

]
. (2.37)

The closure or constitutive equations relate the state and co-state (or co-energy
or effort) variables according to[

ep(z, t)
eq(z, t)

]
=
[
δpH(p(z, t), q(z, t))
δqH(p(z, t), q(z, t))

]
, (2.38)

where the right hand side contains the variational derivatives of the Hamilto-
nian or energy functional

H(p(z, t), q(z, t)) =
∫

Ω
H(p(z, t), q(z, t), z) (2.39)

with the Hamiltonian density n-form H. The variational derivatives are the
unique differential (n− p)-form δpH and (n− q)-form δqH that satisfy15

H(p+ δp, q + δq) = H(p, q) +
∫

Ω
δpH ∧ δp+ δqH ∧ δq + o(δp, δq). (2.40)

The following definition generalizes [197], Definition 2.2, by including different
causality of the boundary ports on subsets of ∂Ω.

13Or systems of two conservation laws with canonical interdomain coupling.
14We use the same symbols for the state variables (as differential forms) and their degrees,

which should not provoke any confusion. We start with explicitly indicating the arguments
(z, t), for the Hamiltonian can depend on the spatial variables, as in the case of the shal-
low water equations with variable bed profile, see Subsection 2.3.2. In the sequel, we will
frequently omit the arguments.

15See e. g. [50], p. 232.
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Definition 2.4 (Canonical dPH system). We call[
−∂tp
−∂tq

]
=
[

0 (−1)rd
d 0

] [
δpH
δqH

]
, (2.41)

with the Hamiltonian functional H defined in (2.39) and the boundary port
variables

eΓ
i = (−1)p tr (δqH)Γi ,

fΓ
i = tr (δpH)Γi ,

êΓ
j = tr (δpH)Γ̂j ,

f̂Γ
j = (−1)p tr (δqH)Γ̂j ,

(2.42)

a (canonical) distributed parameter port-Hamiltonian system on the n-dimen-
sional spatial manifold Ω.

Imposing the boundary efforts – in accordance with Definition 2.3 – as
control inputs on subsets of ∂Ω (and understanding the boundary flows as ob-
servation or output), makes the system representation (2.41), (2.42) a boundary
control system in the sense of [57]. For 1D linear PH systems with a gener-
alized skew-adjoint system operator, [112] gives conditions on the assignment
of boundary in- and outputs for the system operator to generate a contraction
semigroup. The latter is instrumental to show well-posedness of a linear PH
system, see [89]. Essentially, at most half the number of boundary port variables
can be imposed as control inputs for a well-posed PH system in 1D.

Taking δp = ∂tp, δq = ∂tq as variations in (2.40), and omitting the higher
order terms, the time derivative of the energy functional (2.39) reads

Ḣ =
∫

Ω
δpH ∧ ∂tp+ δqH ∧ ∂tq

= 〈δpH|∂tp〉Ω + 〈δqH|∂tq〉Ω.
(2.43)

Replacing ∂tp, ∂tq according to (2.41) and using the integration-by-parts for-
mula (A.7) yields

Ḣ = (−1)p〈δqH|δpH〉∂Ω. (2.44)

Equating the right hand sides of the last two equations gives, together with the
definition of boundary port variables (2.42), the power balance

〈δpH| − δtp〉Ω + 〈δqH| − δtq〉Ω︸ ︷︷ ︸
power extracted from

distributed storage

+
nΓ∑
i=1
〈e∂i |f∂i 〉Γi +

n̂Γ∑
j=1
〈f̂∂j |ê∂j 〉Γ̂j︸ ︷︷ ︸

power supplied
over the boundary

= 0. (2.45)

It follows immediately from substitution of dynamics (2.37) and constitutive
equations (2.38) in the structural balance equation (2.33). The balance equa-
tion for the Hamiltonian functional H shows – in the case of H being a positive



2.3 Examples 27

definite (or at least non-negative) storage functional – passivity of the infinite-
dimensional PH state representation16.

Remark 2.3. Defining the flux functions βp = (−1)rdeq and βq = dep as in
Section 3.4, it is evident that (2.41), (2.42) represents a hyperbolic system of
two conservation laws (see e. g. the books [114], [11]). Note that we explicitly
defined boundary port variables whose pairing describes a power flow over the
system boundary. We therefore deal with open systems of conservation laws.

Remark 2.4. For the same Stokes-Dirac structure, PDE systems of different
nature are obtained when flows and efforts are defined based on different dy-
namics and closure equations. For a quadratic Hamiltonian density H in p and
q, the resulting hyperbolic PH system is linear, otherwise nonlinear. The linear
case is treated e. g. in [89], where H is bounded and non-negative, and H serves
as the energy norm on the corresponding Hilbert space. For different definitions
of flows and efforts, in particular if both efforts are not derived from the same
functional, the resulting PDE system becomes parabolic, see e. g. [215], which
allows to represent diffusive phenomena with the same Stokes-Dirac structure.
Note also the heat conduction example in [50], Section 4.2.2, or [9], and Sub-
section 2.3.3 of this work.

Remark 2.5. The division of the system variables into flows (i. e. time deriva-
tives of states) and efforts (or co-states) stems from the duality arizing from the
variational formula (2.40), see also (2.43). It takes into account their different
geometric definition, such as the degree of the differential forms. Tonti, for
example, distinguishes between configuration and source variables [185], which
are states and efforts in our language. His energy variables are products of
these dual quantities, whereas in our context, we build the duality products
between flows and efforts in order to compute powers. The space of dual power
variables contains pairs of in- and output variables (denoted boundary efforts
and flows), which describe the energy flow over the system boundary and make
the PH representation inherently control oriented. Recall the central feature
of PH modeling and control, which is the separation of the linear relations be-
tween the power variables – described by a (Stokes-)Dirac structure – from the
constitutive and dynamics equations.

All numerical methods presented in this book aim at the preservation of this
structural property under spatial and temporal discretization.

2.3 Examples

Having introduced the formal definitions of the Stokes-Dirac structure and
canonical systems of two conservation laws in PH form, we present the three

16Passivity is defined in complete analogy to the finite-dimensional case, see e. g. [31],
Definition 2.4.
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example systems that serve throughout the book to illustrate the application of
the developed structure-preserving numerical methods. Each example system
is first expressed in classical vector calculus notation. Subsequently, its repre-
sentation in terms of differential forms is given. In this section, whose focus
is the representation of the governing PDEs in a structured form, we do not
specify initial and boundary conditions. Boundary conditions will be explicitly
treated in the subsequent chapters in the discretized setting for the considered
numerical schemes.

2.3.1 Wave Equation

We consider the linear wave equation with constant speed of propagation c > 0
on an open, bounded domain Ω ⊂ Rn, n = 1, 2, 3, with Lipschitz continuous
boundary ∂Ω (∆(·) = div grad(·) denotes the Laplace operator):

∂2
t x(z, t) = c2∆x(z, t), z ∈ Ω. (2.46)

2.3.1.1 Vector Calculus Notation

By definition of the scalar and vector valued state variables

u(z, t) = −∂tx(z, t) ∈ R, v(z, t) = ∇x(z, t) ∈ Rn, (2.47)

Eq. (2.46) can be written as a set of two partial differential equations of order
one in time. Throughout this book, we will consider a representation of these
two equations that is split into three components:[

fu(z, t)
fv(z, t)

]
=
[

0 div
grad 0

] [
eu(z, t)
ev(z, t)

]
, (Structure) (2.48a)[

∂tu(z, t)
∂tv(z, t)

]
=
[
−fu(z, t)
−fv(z, t)

]
, (Dynamics) (2.48b)[

eu(z, t)
ev(z, t)

]
=
[
δuH(u(z, t),v(z, t))
δTv H(u(z, t),v(z, t))

]
. (Constit. Eq.) (2.48c)

The structure equations represent a linear relation between the dual power
variables17 fu ∈ R, fv ∈ Rn called flows and eu ∈ R, ev ∈ Rn called efforts.
The dynamics equations describe the evolution of the state variables (or energy
variables) u ∈ R, v ∈ Rn, which in the linear case is induced exclusively by
the flows. Finally, the constitutive equations close the system of equations:
The efforts (or co-energy or co-state variables) are derived from an energy or
Hamiltonian functional on Ω over the states

H(u,v) =
∫

Ω
H(u,v, z) dz (2.49)

17This meaning of the variables will become clear right below.
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with Hamiltonian density H : R × Rn × Ω → R. The variational derivatives
δuH ∈ R and δTv H = (δvH)T ∈ Rn are defined by the first variation18

H(u+ δu,v + δv) = H(u,v) +
∫

Ω
δuH δu+ δvH · δv dz + o(δu, δv) (2.50)

of H. For the linear wave equation (2.46),

H(u,v) = 1
2u

2 + 1
2c

2v · v (2.51)

is the quadratic Hamiltonian density. It is straightforward to verify that the
variational derivatives of H coincide with the partial derivatives of H, if the
Hamiltonian density depends only on the states (and possibly z) and not on
their spatial derivatives:

δuH(u,v) = ∂uH(u,v, z), δvH(u,v) = ∂vH(u,v, z). (2.52)

An immediate consequence is the differential energy balance

Ḣ(u,v) =
∫

Ω
∂uH ∂tu+ ∂vH · ∂tv dz

= −
∫

Ω
eufu + ev · fv dz,

(2.53)

which confirms the meaning of flows and efforts as power variables. Substitution
of the structure equation (2.48a) in the right hand side term, yields, under
application of Gauss’ divergence theorem,

−
∫

Ω
eufu + ev · fv dz = −

∫
Ω
eu div ev + ev · grad eu dz

= −
∫

Ω
div (euev) dz

= −
∫
∂Ω
euev · n dS,

(2.54)

with n the unit normal vector on the boundary ∂Ω with surface element dS.
The power balance equation

(eu, fu)Ω + (ev, fv)Ω + (eu,−ev · n)∂Ω = 0 (2.55)

with (·, ·)Ω and (·, ·)∂Ω standard L2 inner products on Ω and its boundary is
a fundamental structural property of the considered (lossless) PH systems. It
stems only from the formal skew-adjointness of the matrix differential operator
in the structure equation (2.59a) and is independent of the actual definition of
the effort variables by the constitutive equations (2.59c).

18The dot “·” denotes the usual scalar product and o(δu, δv) contains terms of order
greater than one in δu, δvi, i = 1, . . . , n.
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2.3.1.2 Exterior Calculus Notation

In particular for systems of conservation laws, the representation in terms of
differential forms is physically insightful. Applying the rules of exterior cal-
culus, as summarized in Appendix A.1, define the flow and state differential
forms

fp := ∗fu ∈ Λn(Ω),
p := ∗u ∈ Λn(Ω),

fq := (fv)[ ∈ Λ1(Ω),
q := v[ ∈ Λ1(Ω), (2.56)

as well as the effort differential forms
ep := eu ∈ Λ0(Ω), eq := (−1)n−1∗(ev)[ ∈ Λn−1(Ω). (2.57)

The factor (−1)n−1 ensures that eq can be derived from the energy functional,
which is expressed in terms of duality products of differential forms:

H(p, q) = 1
2(p, p)Ω + 1

2c
2(q, q)Ω

= 1
2 〈p|∗p〉Ω + 1

2c
2〈q|∗q〉Ω.

(2.58)

Its variational derivatives δpH and δqH are defined by Eq. (2.40). Equations
(2.48a)–(2.48c) become[

fp

fq

]
=
[

0 (−1)n−1d
d 0

] [
ep

eq

]
, (Structure) (2.59a)[

∂tp
∂tq

]
=
[
−fp
−fq

]
, (Dynamics) (2.59b)[

ep

eq

]
=
[
δpH
δqH

]
, (Constit. Eq.) (2.59c)

with the exterior derivative d instead of the vector calculus differential opera-
tors div and grad.

Remark 2.6. Although throughout the book we consider differential forms on
subspaces of the Euclidean space (the identity of L2 inner product and the du-
ality product in (2.58) gives evidence for this), note that the representation via
differential forms is a priori coordinate-free. Coordinates come only into play
when integrals are explicitly computed or with metric-dependent operations
like the Hodge star.

From the structure equation (2.59a) we obtain, by application of the inte-
gration-by-parts formula (A.7), the balance equation

〈ep|fp〉Ω + 〈eq|fq〉Ω + (−1)n〈tr eq|tr ep〉∂Ω = 0. (2.60)
Substituting (2.59b) and (2.59c) in the first two terms of (2.60), we note that
these amount for the (negative) time derivative of the energy functional H:

〈δpH| − ∂tp〉Ω + 〈δqH| − ∂tq〉Ω = −
∫

Ω
∂pH ∧ ∂tp+ ∂qH ∧ ∂tq

= −∂tH.
(2.61)
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With
∂tH = (−1)n〈tr eq|tr ep〉∂Ω, (2.62)

we observe that the change of stored energy is induced by the duality product
on the boundary of the effort variables, which amounts to the power supplied
over the boundary. The extension of the efforts to the boundary, which in
particular clarifies their functional spaces, is denoted by the trace operator tr.

Example 2.3 (Telegrapher’s equations). The simplest 1D example of a sys-
tem of two conservation laws is an electric transmission line with the spatial
coordinate z ∈ Ω = (0, L), see e. g. [71]. With p(z) = ψ(z) ∈ Λ1(Ω), the
magnetic flux density one-form, q(z) ∈ Λ1(Ω), the electric charge density one-
form, l(z)dz, c(z)dz ∈ Λ1(Ω) the distributed inductance and capacitance per
length (l(z) and c(z) are smooth functions and dz the basis one-form), the
Hamiltonian density one-form isH(p, q) = 1

2

(
p(z) ∧ ∗p(z)l(z) + q(z) ∧ ∗ q(z)c(z)

)
. The

Hodge star operator ∗ : Λk(Ω) → Λn−k(Ω) renders in the 1D case a one-form
a zero-form and vice versa. The variational derivatives of the Hamiltonian
H =

∫ L
0 H are the current and the voltage along the line, ep(z) = δpH =

∗p(z)
l(z) = i(z) ∈ Λ0(Ω) and eq(z) = δqH = ∗q(z)

c(z) = v(z) ∈ Λ0(Ω). Note that
in the 1D case, the boundary ∂Ω consists of two disconnected points. With
〈tr eq|tr ep〉∂Ω = eq(L)eq(L)−eq(0)ep(0), the structural balance equation (2.60)
reads

〈ep|fp〉Ω + 〈eq|fq〉Ω + eq(0)ep(0)− eq(L)ep(L) = 0. (2.63)
Substitution of dynamics ṗ(z) = −fp(z), q̇(z) = −fq(z) and constitutive equa-
tions yields the differential energy balance

∂tH = i(0)v(0)− i(L)v(L). (2.64)

2.3.2 2D Shallow Water Equations

The shallow water equations describe the two-dimensional flow of an inviscid
fluid with relatively low depth (“shallow”), which permits the averaging of the
horizontal components of the velocity field and the omission of the vertical
velocity component.

2.3.2.1 Vector Calculus Notation

The two equations that describe the conservation of mass and momentum over
an infinitesimal, fixed surface element19 (we consider the fluid in a non-rotating
system) can be written in vector calculus notation, with spatial coordinates
z =

[
x y

]T , see e. g. [42], [104],[
−∂th

−(∂tu + ζu⊥)

]
=
[

0 div
grad 0

] [ 1
2u · u + g(h+ b)

hu

]
, (2.65)

19Which corresponds to the Eulerian representation of the fluid flow.
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where h denotes the water level over the bed, b is the elevation of the bed
profile, u = [u v]T the 2-dimensional velocity field, hu the specific discharge
vector and g the gravitational acceleration.

ζ = ∇⊥ · u :=

0
0
1

 ·
∇×

uv
w

 = ∂xv − ∂yu (2.66)

is the vorticity of the flow (w is the neglected vertical component of the velocity
vector field), and

u⊥ =
[
−v
u

]
(2.67)

is defined via the x and y component of
[
0 0 1

]T × [u v w
]T .

Remark 2.7. The term ζu⊥, which represents the acceleration due to the ro-
tation of the flow20, can equivalently be expressed as PV (hu)⊥ with PV = ζ

h .
The potential vorticity satisfies the balance equation ∂tPV + u ·∇PV = 0, i. e.
it is advected with the fluid flow, see e. g. [5]. It plays an important role in the
long-time numerical simulation of large scale flow problems, see e. g. [165].

With the total energy (per unit mass)

H =
∫

Ω
H dz with H = 1

2hu · u + 1
2gh

2 + ghb, (2.68)

the shallow water equations can be rewritten in the structured form[
fh

fu
]

=
[

0 div
grad 0

] [
eh

eu
]
, (Structure) (2.69a)[

∂th
∂tu

]
=
[
−fh

−fu − ζu⊥
]
, (Dynamics) (2.69b)[

eh

eu
]

=
[
δhH
δTuH

]
, (Constit. Eq.) (2.69c)

where eh = 1
2u ·u+g(h+ b) expresses the hydrodynamic pressure function and

eu = hu is the specific discharge vector field. Note that while the structure
equation (2.69a) and the definition of co-state variables (2.69c) coincide with
(2.48a) and (2.48c), the difference to the linear wave equation lies in (i) the
non-quadratic energy functional (2.68) and (ii) the additional term ζu⊥ in the
differential equation (2.69b) for u.

Remark 2.8. As an alternative, the vorticity term can be added to the structure
equations, which leads to a non-canonical differential operator, see e. g. [151]
or [33], Section 6.2.

20It stems from the rotational part of the transport term in the momentum equation.
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2.3.2.2 Exterior Calculus Notation

In order to write the equations in terms of differential forms, we first define

p := ∗h ∈ Λ2(Ω), q := u[ = u dx+ v dy ∈ Λ1(Ω) (2.70)

as state differential forms, accordingly fp := ∗fh ∈ Λ2(Ω) and fq := (fu)[ ∈
Λ1(Ω). With21

(u⊥)[ = −v dx+ u dy = ∗q ∈ Λ1(Ω), (2.71)
the effort differential forms

ep = eh ∈ Λ0(Ω), eq = (−1)2−1∗(eu)[ ∈ Λ1(Ω), (2.72)

exploiting the relations grad eh = (deh)], div eu = ∗d(∗(eu)[), and with ∗∗λ =
(−1)k(n−k)λ for some λ ∈ Λk(Ω), (2.69a)–(2.69c) can be expressed as[

fp

fq

]
=
[

0 −d
d 0

] [
ep

eq

]
, (Structure) (2.73a)[

∂tp
∂tq

]
=
[
−fp

−fq − ζ∗q

]
, (Dynamics) (2.73b)[

ep

eq

]
=
[
δpH
δqH

]
. (Constit. Eq.) (2.73c)

It is a straightforward exercise to verify that the effort differential forms defined
in (2.72) (including the minus sign in eq), i. e.

ep = 1
2p∗p+ g(∗p+ b), eq = −∗(hu)[ = hv dx− hu dy = −∗p ∗q, (2.74)

are indeed variational derivatives according to (2.40) of the non-quadratic func-
tional

H =
∫

Ω
H, H = 1

2∗p q ∧ ∗q + 1
2gp∗p+ gpb. (2.75)

The energy balance, see (2.61), is

Ḣ = 〈δpH|∂tp〉Ω + 〈δqH|∂tq〉Ω
= 〈ep| − fp〉Ω + 〈eq| − fq − ζ∗q〉Ω.

(2.76)

The only difference to the linear wave equation is the term

〈eq| − ζ∗q〉Ω =
∫

Ω
ζ∗p (∗q ∧ ∗q) = 0, (2.77)

which does not contribute22 to the energy balance. The result after integration
by parts is again, cf. (2.62),

∂tH = (−1)2〈tr eq|tr ep〉∂Ω. (2.78)
21The Hodge star applied to the basis 1-forms in 2D gives ∗dx = dy, ∗dy = −dx.
22λ ∧ λ = 0 for every differential form λ of odd degree.
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2.3.3 Heat Equation

While the first examples are hyperbolic systems, i. e. equations that describe
the linear/nonlinear propagation of waves, the heat equation

∂tx(z, t) = k∆x(z, t), k > 0, z ∈ Ω (2.79)

belongs to the class of parabolic systems23.

2.3.3.1 Vector Calculus Notation

We start with its derivation from the conservation of internal energy on a
constant volume Ω ⊂ R3 of an incompressible, homogeneous medium. The
first law of thermodynamics states that

U̇(t) = Q̇(t), (2.80)

where U denotes the total internal energy on Ω and Q̇ the heat flow into Ω.
With u the internal energy density and JQ ∈ R3 the heat flux vector field, the
balance equation becomes∫

Ω
∂tu(z, t) dz =

∫
∂Ω
−JQ(z, t) · n dS, (2.81)

where n is the outer normal unit vector on ∂Ω and dS the infinitesimal surface
element. Assuming constant density ρ (constant specific volume v = 1/ρ), the
left hand term can be written∫

Ω
∂tu(z, t) dz =

∫
Ω
∂Tu|v ∂tT (z, t) dz. (2.82)

∂Tu|v =: cv(T ) is the specific heat capacity at constant volume. Applying
Gauss’ divergence theorem, the right hand side of (2.81) becomes∫

∂Ω
−JQ(z, t) · n dS = −

∫
Ω

div JQ(z, t) dz. (2.83)

Identifying the right hand side integrands of the last two equations, we obtain

cv(T )∂tT (z, t) = −div JQ(z, t). (2.84)

With the temperature gradient as the thermodynamic driving force, the heat
flux can be described by Fourier’s law

JQ(z, t) = −λ(T ) gradT (z, t), (2.85)

23For the classification of PDEs into hyperbolic, parabolic and elliptic equations, see e. g.
[144], Section 4.4.
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where λ(T ) denotes the heat conductivity. Putting the pieces together, we
obtain

∂tT (z, t) = 1
cV (T ) div (λ(T ) gradT (z, t)), (2.86)

which for the case of constant heat capacity and conductivity can be written
in the form (2.79).

The conservation of internal energy, the definition of the driving force F, as
well as the calorimetric equation and Fourier’s law can be represented by[

fu

F

]
=
[

0 div
grad 0

] [
T
JQ

]
, (Structure) (2.87a)

∂tu = −fu, (Dynamics) (2.87b)[
T
JQ

]
=
[ 1
cv(T )u

−λ(T )F

]
. (Constit. Eq.) (2.87c)

2.3.3.2 Exterior Calculus Notation

Now assume an n-dimensional spatial domain Ω, n ∈ {1, 2, 3}. By defining
the differential forms of the internal energy density p = ∗u ∈ Λn(Ω), the
temperature ep = T ∈ Λ0(Ω) (function), the driving force fq = ( gradT )[ ∈
Λ1(Ω) and the heat flux24 eq = (−1)n−1 ∗ J[Q ∈ Λn−1(Ω), Eqs. (2.87a)–(2.87c)
can be rewritten in the form[

fp

fq

]
=
[

0 (−1)n−1d
d 0

] [
ep

eq

]
, (Structure) (2.88a)

∂tp = −fp, (Dynamics) (2.88b)[
ep

eq

]
=
[ 1

cv(ep)∗p
(−1)nλ(ep)∗fq

]
. (Constit. Eq.) (2.88c)

As in the case of the wave equation, the formal skew-adjointness of the matrix
operator in (2.88a) imposes the structural balance equation (2.60), i. e.

〈ep|fp〉Ω + 〈eq|fq〉Ω + (−1)n〈tr eq|tr ep〉∂Ω = 0. (2.89)

For the given choice of ep = T , this equation is not an energy nor an entropy
balance. It becomes an entropy balance if the reciprocal temperature is chosen
as intensive variable, ep = 1

T . In this case, ep can be expressed as variational
derivative of the entropy functional S with respect to the internal energy den-
sity: 1

T = δuS, see [50], Section 4.2.2. While with fp = −∂tu, the expression
〈ep|fp〉Ω = −∂tS represents the change of entropy, 〈eq|fq〉Ω is non-negative
and stands for entropy generation.

Comparing (2.79) with (2.46), the only difference is the order of the time
derivative, which causes the completely different nature of the solutions of the

24Equivalently, ∗eq = (JQ)[ ∈ Λ1(Ω).
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hyperbolic wave and the parabolic heat equation. While the former is a su-
perposition of travelling waves (transporting initial and boundary conditions),
initial and boundary data is instantaneously smoothened in the solution of the
heat equation. In Chapters 4 and 6, we will take into account this funda-
mental difference in the parametrization of the proposed structure-preserving
discretization scheme. Moreover, for the wave equation, simulation and control
design in discrete time using an appropriate geometric numerical integration
scheme, see Chapter 5, allows to properly reproduce the unsmoothened prop-
agation of initial and boundary data.



Chapter 3

Discrete Port-Hamiltonian Formulation
of Conservation Laws

The chapter1 deals with the direct discrete formulation of systems of two con-
servation laws on dual chain complexes in port-Hamiltonian form. Based on
integral balance equations and topological information, this representation of
the infinite-dimensional system is exact and qualifies as a control model. For
simulation, feedforward control and observer design, a consistent numerical
approximation is required, which yields a discretized energy, from which the
lumped constitutive equations are derived. We refer to the previous works
[175], [174] and extend their results to cases of an arbitrary, non-uniform dis-
tribution of different types of boundary inputs (in the sense of the causality of
the boundary ports).

After the integral representation of a canonical hyperbolic system of two
conservation laws in Section 3.1, we provide an overview of some concepts from
discrete exterior calculus in Section 3.2. They are necessary to describe the
oriented topological objects and their relations, on which the conservation laws
are evaluated. Section 3.3 describes the systematic construction of the primal
and the dual grid/complex in order to incorporate different types of boundary
inputs (corresponding to Dirichlet or Neumann conditions). The result is an
explicit finite-dimensional system representation in terms of integral states and
integral efforts, which features both types of boundary inputs. The structure
of the discrete models reveals the slight inexactitude of power-conjugation and
collocation of the lumped boundary power variables, which is a typical feature
of approximation methods on dual meshes. In Section 3.4, we consider the
numerical approximation of the constitutive equations, which is the bridge to
classical finite volume (control volume) schemes. By means of the 2D example
of the nonlinear, irrotational shallow water equations on rectangular grids, we
show that the numerical approximation of the flux functions (integral efforts)
by a centered scheme is consistent of order 2 in the interior, which extends the

1Up to some minor corrections, this chapter corresponds to the main part of the journal
article [103].
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1D result in [95]. The shifted grids require to assume values for different state
variables along the boundary. We discuss the errors due to an (in-)consistent
assignment of these ghost values and give a series of remarks. We conclude the
chapter with references to related recent works and some notes on the current
application of the presented approach to complex heterogeneous systems in
Section 3.5.

3.1 Discrete Representation of Conservation Laws

We consider (lossless) systems of two conservation laws on an n-dimensional
open domain Ω with Lipschitz boundary ∂Ω. An integral representation, see
[50], Section 4.2.1, is given by

d

dt

∫
cp

p+
∫
∂cp

βp = 0, d

dt

∫
ĉq

q +
∫
∂ĉq

βq = 0, (3.1)

where cp and ĉq are p- and q-dimensional subsets of Ω. p ∈ Λp(Ω), q ∈ Λq(Ω) are
differential forms2 that represent the conserved quantities, and βp ∈ Λp−1(Ω),
βp ∈ Λq−1(Ω) denote fluxes. In a canonical PH system of two conservation
laws, as introduced in Definition 2.4, the relation p + q = n + 1 between the
degrees of the differential forms and the dimension of Ω holds. Moreover, the
fluxes are determined from effort or co-state differential forms according to[

βp

βq

]
=
[
0 (−1)pq+1

1 0

] [
ep

eq

]
, (3.2)

where
ep = δpH ∈ Λn−p(Ω) and eq = δqH ∈ Λn−q(Ω) (3.3)

are derived from a Hamiltonian functional H(p, q) =
∫

ΩH(p, q, z) with the
Hamiltonian density n-form H, see (2.38), (2.39). Merging (3.1) with (3.2)
yields

d

dt

∫
cp,i

p = (−1)pq
∫
∂cp,i

eq,

d

dt

∫
ĉq,j

q = −
∫
∂ĉq,j

ep,

(3.4)

which is the basis for the discrete modeling approach presented in this chapter.
The indices indicate that we will evaluate both conservation laws on discrete
geometric objects cp,i and ĉq,j of the corresponding discretization mesh. We will

2Unlike the mixed Galerkin approach in Chapter 4, we do not approximate the spatial
distribution of the differential forms. We therefore do not need to choose the compatible
functional spaces for the approximation. Instead, we assume all finite integrals to be bounded,
and all restrictions of differential forms to boundaries to be well-defined, which is the case
for smooth differential forms.
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use topologically dual or staggered meshes (a “hat” denotes an object on the
dual mesh) in order to account for the different physical nature of the conserved
quantities p and q, and also to be able to discretize the constitutive equations
in a direct, consistent manner. The sequences of discrete topological objects
(oriented volumes, faces, edges and nodes), together with the boundary maps,
define so-called chain complexes on both meshes. Therefore, we refer to both
meshes over an n-dimensional domain Ω with Lipschitz boundary ∂Ω as primal
and dual n-complex.

Remark 3.1. In this chapter, we directly consider the conservation laws (in-
cluding the dynamics) on dual n-complexes. For the notion of canonical Dirac
structures on n-complexes, we refer to [198]. We frequently refer to [175],
[174], where modeling of conservation laws using the “discrete exterior geome-
try approach” has been presented for control inputs of uniform physical type,
and without treating the numerical approximation, in particular for nonlinear
systems.

3.2 Preliminaries from Discrete Exterior Calculus

We summarize and explain the basic ideas from discrete exterior calculus, see
e. g. [84], [47], and on topological duality, as they are used in the direct discrete
modeling of canonical PH systems of conservation laws in [175], [174].

3.2.1 Oriented Discretization Mesh

To introduce the necessary notions for the integration of differential forms on
discrete objects, we consider Fig. 3.1 which we will identify as the graphical
representation of a 2-complex. The non-rectangular, oriented mesh could result
from a polyhedral tessellation3 K on a subset of R2. The mesh is based on five
nodes n1, . . . , n5 ∈ N , connected by six oriented edges e1, . . . , e6 ∈ E which
divide the convex hull of the nodes into two oriented faces f1, f2 ∈ F . The sets
of nodes, edges and faces have cardinalities |N | = 5, |E| = 6 and |F| = 2.

Remark 3.2. We have arbitrarily defined the object in Fig. 3.1 to represent
a mesh on R2. It could also display some “folded” two-dimensional manifold
in R3. To know about the shape of the underlying object, the topological
information must be completed by geometric data.

3.2.2 Cells, Chains and Cochains

We start with the definition of the most important discrete objects of a chain
complex.

3To distinguish from a simplicial triangulation as in [174].
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e1
e2

e3

e4

e6

e5

n1

n2

n3

n4n5

f1

f2

Figure 3.1: A non-simplicial mesh in 2D, composed of oriented cells.

Definition 3.1 ([8], p. 184). A j-dimensional cell or j-cell of an n-dimensional
smooth manifoldM is characterized by an oriented convex polyhedron D ⊂ Rj ,
and a differentiable map4 f : D →M .

Nodes, edges and faces in Fig. 3.1 represent 0-cells, 1-cells and 2-cells, with
orientations indicated by the arrows. The sets N , E and F (or subsets thereof)
are the bases of j-chains (j = 0, 1, 2) according to the following definition.

Definition 3.2 ([8], p. 185). A j-dimensional chain or j-chain is a finite-
dimensional collection (or a formal sum) of j-cells σi, weighted by scalars (mul-
tiplicities) mi: cj = m1σ1 + . . .+mrσr. The linear vector space of j-chains on
a tessellation K is denoted5 Cj(K;R).

According to the definition, the simplest j-chain is a j-cell. If the multiplici-
ties are restricted to {−1, 0, 1}, a j-chain can be considered as the concatenation
of several j-cells, e. g. the 1-chain e3 + e4 + e5 − e6 =: ∂2f2, which forms the
(oriented) boundary of the 2-cell f2.

Definition 3.3 ([65], p. 638). A j-cochain is a linear functional on the j-
chains.

The linear functional on the j-chains can be understood via the duality
pairing 〈·, ·〉 : Cj(K;R) × Cj(K;R) → R, where Cj(K;R) denotes the linear
vector space of cochains. Hence, j-cochains cj ∈ Cj(K;R) are algebraically6

dual objects with respect to this pairing. In our context, j-cochains will contain
the integral values of j-forms on j-cells. Later on, we will define discrete state
and effort vectors which can be understood as vector-valued representations of
such j-cochains.

4This map is the identity function f = id if M = Rn.
5R indicates that the multiplicities are real-valued.
6In contrast to topological duality based on which the dual grid/complex is constructed.



3.2 Preliminaries from Discrete Exterior Calculus 41

3.2.3 Boundary Maps and Primal Chain Complex

Each j-cell has a boundary which is composed of (j−1)-cells whose orientation
is induced by the orientation of the j-cell, see e. g. ∂2f2 as defined above.
The symbol ∂j will at the same time denote the boundary map ∂j : Cj →
Cj−1 and its matrix representation7. Let uFk (uEl ) be an |F|-dimensional (|E|-
dimensional) unit vector with 1 at the k-th (l-th) position. Then ∂2uFk (∂1uEl )
returns the |E|-dimensional (|N |-dimensional) vector with elements from the
set {−1, 0, 1} indicating the edges (nodes) that form the boundary of the 2-cell
fk (the 1-cell el). The boundary or incidence8 matrices for the example in Fig.
3.1 are

∂1 =


−1 0 0 0 1 1
1 −1 0 0 0 0
0 1 −1 0 0 −1
0 0 1 −1 0 0
0 0 0 1 −1 0

 , ∂2 =


1 0
1 0
0 1
0 1
0 1
1 −1

 . (3.5)

It is easy to verify at the example that ∂1 ◦ ∂2 = 0, i. e. the range of ∂2 spans
the kernel of ∂1. This property holds for any concatenation of two subsequent
boundary maps: “[T]he boundary of each chain itself has zero boundary” ([59],
p. 59) and is known in general as the complex property. We can illustrate the
relations between the spaces of j-chains and the boundary maps with ∂j−1◦∂j =
0, j = 2, . . . , n, by the sequence diagram

Cn(K;R) ∂n−→ Cn−1(K;R) ∂n−1−→ · · · ∂1−→ C0(K;R). (3.6)

Figure 3.1 represents such a chain complex for n = 2. By identifying the
graphical representation with the object behind, we will for brevity refer to it
as a 2-complex.
Remark 3.3. A (chain) complex is in a general manner defined as a sequence of
abelian groups (e. g. vector spaces), connected by homomorphisms, i. e. map-
pings that preserve the group operation9. Famous examples are (i) the sequence
of smooth scalar- and vector-valued function spaces, connected via the differ-
ential operations grad/rot/div and (ii) the so-called de Rham complex with
spaces of (smooth) differential forms, connected via the exterior derivative d.

3.2.4 Coboundary Maps and Cochain Complex

Using the duality pairing between chains and cochains, the coboundary operator
dj can be defined via

〈cj−1, ∂jcj〉 = 〈djcj−1, cj〉, (3.7)

7It will be typeset in boldface, if the matrix representation is emphasized.
8As in [198], we will use rather the terms (co-)incidence maps instead of (co-)boundary

maps to distinguish from the boundary port variables.
9See e. g. [90], p. 127.
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Figure 3.2: The dual 2-complex and the dual boundary.

which gives rise to the sequence diagram

C0(K;R) d1
−→ C1(K;R) d2

−→ · · · dn−→ Cn(K;R) (3.8)
of the cochain complex with dj ◦ dj−1 = 0, j = 2, . . . , n. Assuming the chain
cj represented by a column vector and the cochain cj−1 by a row vector, the
relation between the matrix representations of boundary and coboundary map
(or incidence and co-incidence matrix, respectively) becomes evident from (3.7):

dj = (∂j)T . (3.9)
Remark 3.4. The co-incidence operator dj is the discrete counterpart of the ex-
terior derivative, and therefore can be understood as discrete exterior derivative
[174]. Accordingly, j-cochains in the discrete setting correspond naturally to
j-forms and Eq. (3.7) can be considered the discrete version of Stokes’ theo-
rem10.

3.2.5 Trace Operators

The trace operators trj : Cj(K;R) → Cj(∂K,R), j = 0, . . . , n − 1, isolate
the j-chains on the boundary of the n-complex. For the example of the 2-
complex depicted in Fig. 3.1, and again identifying the operator with its matrix
representation, we have

tr0 = I5, tr1 =
[
I5 05×1

]
. (3.10)

3.2.6 The Dual n-Complex

To each j-cell on an n-complex, we can associate a topologically dual (n−j)-cell,
which can have different geometric realizations (e. g. barycentric, circumcen-
tric). In our 2D example, a node has a dual surrounding face, an edge has a

10Consider the generalized Stokes’ theorem A.1,
∫
∂Ω ω =

∫
Ω dω, and rewrite it as a pairing

of the differential form with the integration domain: 〈ω, ∂Ω〉 = 〈dω,Ω〉.
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dual edge across it, see Fig. 3.2, left. When we refer to “topological duality”,
which manifests itself in the relation of primal and dual (co-)incidence matrices,
see below, we tacitly associate it with its geometric realization.

3.2.7 Duality Relations of the Co-Incidence Matrices

Between the co-incidence matrices of an n-complex and its dual, the following
relation holds11 (first formula in Section 3.3 of [174], in our notation):

d̂n−j+1 = (−1)j(dj)T . (3.11)

In our example, we have d̂1 = (d2)T and d̂2 = −(d1)T . The construction of
dual (n−j)-cells leaves out the boundary ∂K of the original complex, which is
represented by a boundary (n−1)-chain. The dual n-complex is provided with
a boundary (n−1)-chain (whose j-cells are indexed B) by topological duality
on ∂K. With the second formula in Section 3.3 of [174] in our notation,

d̂n−jB = (−1)j(trj)T , (3.12)

we obtain in our example d̂1
B = −(tr1)T and d̂2

B = (tr0)T .

3.3 Discrete Conservation Laws on n-Complexes

We study systems of two conservation laws in integral PH form (3.4) on an
n-dimensional domain Ω ⊂ Rn. Before we state our general result for

p = n ∈ {1, 2, 3}, q = 1, (3.13)

we illustrate the approach, in particular the construction of the dual complexes,
for n = 2 and rectangular grids.

3.3.1 Non-Uniform Boundary Inputs

Constructing the dual n-complexes as sketched in the previous section, we can
observe the following concerning the inputs for the integral PH formulation of
the conservation laws. If all the n-cells on the primal complex are integration
domains for the conserved quantity p ∈ Λn(Ω), then the boundary inputs
will be exclusively related to the (n−1)-cochain representing the integrals of
tr eq ∈ Λn−1(∂Ω) on the boundary. Correspondingly for q ∈ Λ1(Ω) on the dual
1-cells and the 0-cochain of boundary values of tr ep ∈ Λ0(∂Ω). This situation
of a uniform causality of the boundary ports is treated in the previous works
[198] and [174].

However, in most practical cases for modeling and control, a given physical
variable will play the role of an input on parts of the boundary, while its power-
conjugate will be the input on the rest. The causality along the boundary

11We denote all quantities on the dual complex (in particular the dual n-cells and the
(co-)incidence maps) with a “hat”.
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Figure 3.3: Definition of nodes on the primal and dual 2-complex.

depends on the boundary conditions which shall be imposed. This situation is
designated non-uniform (distribution of) inputs and must be accounted for in
the formulation of the dual complexes relative to the system boundary.

3.3.2 Construction of the Dual Complexes

Based on two given staggered meshes and the system boundary, we will con-
struct two n-complexes, the first one representing the integration domains (n-
cells) for p ∈ Λn(Ω) and their boundary12 (n−1)-cells, associated to eq ∈
Λn−1(Ω). The second (or dual) n-complex contains the integration domains
(1-cells) for q ∈ Λ1(Ω) and their boundaries (0-cells) at which the function
values of ep ∈ Λ0(Ω) are evaluated. To define the different subsets of j-cells,
related to state and co-state variables, boundary in- and outputs along ∂Ω, we
exploit topological duality on both complexes and the boundary. The classifi-
cation of cells on the primal and dual complex, as illustrated below for n = 2,
can be adapted in a straightforward manner for the other cases n = 1 and
n = 3.

3.3.2.1 Example: Two-Dimensional Rectangular Grids

We adopt the notation from the previous section with a “hat” for quantities
on the dual complex and refer to 0-/1-/2-cells as nodes/edges/faces. Figure
3.3 shows two staggered rectangular grids (primal: black, dual: red) with their
nodes. The system boundary (dashed blue) coincides everywhere with either
a line of the primal or the dual mesh. The classification of primal and dual
j-cells, as introduced below, is illustrated in Figs. 3.4 and 3.5.

Classification of j-cells. We classify the different sets of j-cells as follows.
The indices i and b denote interior and boundary objects that are constructed
based on nodes of the primal and the dual grid that lie within or on the system

12Here, we mean the boundary of the n-cells, not the boundary of Ω.
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Figure 3.4: Interior and boundary edges.

boundary. The capital letter B refers to additional (complementary) boundary
nodes and edges.

1. Nodes.
ni,· ∈ Ni and nb,· ∈ Nb: Nodes of the primal mesh, within and on the
system boundary.
n̂i,· ∈ N̂i and n̂b,· ∈ N̂b: Nodes of the dual mesh, within and on the system
boundary.

2. Additional boundary nodes.
nB,· ∈ NB and n̂B,· ∈ N̂B : Additional nodes on the intersection of interior
edges and the system boundary.

3. Primal edges.
ei,· ∈ Ei and eb,· ∈ Eb, interior and boundary edges: Connect the above-
defined primal nodes and lie within and on the system boundary, respec-
tively.

4. Dual edges.
êi,· ∈ Êi and êb,· ∈ Êb: Connect the above-defined dual nodes. Their indices
follow from topological duality to the primal edges ei,· ∈ Ei and eb,· ∈ Eb.

5. Faces.
f̂i,· ∈ F̂i and f̂b,· ∈ F̂b: Dual faces, topologically dual to primal nodes
ni,· ∈ Ni and nb,· ∈ Nb.
fi,· ∈ Fi and fb,· ∈ Fb: Primal faces, topologically dual to dual nodes
n̂i,· ∈ N̂i and n̂b,· ∈ N̂b.

6. Additional boundary edges.
eB,· ∈ EB and êB,· ∈ ÊB : Edges (more precisely 1-chains, as they run over
the corners of the rectangle) on the system boundary that complete the
boundaries of the faces fb,· ∈ Fb and f̂b,· ∈ F̂b.
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Figure 3.5: Additional or complementary boundary edges.

Table 3.1 shows the cardinalities of the defined sets of j-cells and j-chains
on both complexes, and thereby illustrates their duality. By the proposed
construction, the following objects are topologically dual on the boundary: n̂b,·
and eB,·; n̂B,· and eb,·; nb,· and êB,·; nB,· and the edges êi,· on the system
boundary.

Incidence matrices. The primal and dual 2-complex in the example have
the following incidence matrices (faces to edges and edges to nodes), for which
the complex property ∂1 ◦ ∂2 = 0 and ∂̂1 ◦ ∂̂2 = 0 can be immediately verified:

∂2 =



0 1 −1 0
1 0 0 −1
−1 1 0 0
0 0 1 −1
1 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


, (3.14a)

∂1 =


1 −1 −1 1 0 0 0 0 0
0 0 1 0 1 0 −1 0 0
0 0 0 0 −1 1 0 0 0
0 1 0 0 0 −1 0 0 1
−1 0 0 0 0 0 1 −1 0
0 0 0 −1 0 0 0 1 −1

, (3.14b)

Table 3.1: Cardinalities of the sets of primal and dual topological objects in the
example.

Primal Ni Nb NB Fi Fb, EB Ei Eb
Dual F̂i F̂b, ÊB N̂i N̂b N̂B Êi Êb
# 1 3 2 1 3 2 4 2
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∂̂2 =



−1 0 0 0
1 0 0 −1
1 −1 0 0
−1 0 0 0
0 −1 1 0
0 0 −1 1
0 1 0 0
0 0 1 0
0 0 0 1


, (3.15a)

∂̂1 =


0 1 −1 0 1 1 0 0 0
1 0 1 0 0 0 1 0 0
−1 0 0 1 0 0 0 0 0
0 −1 0 −1 0 0 0 0 −1
0 0 0 0 −1 0 −1 1 0
0 0 0 0 0 −1 0 −1 1

. (3.15b)

Incidence submatrices. The incidence matrices ∂j , j = 1, 2, on the primal
complex are partitioned according to the categories of involved j- and (j−1)-
chains,

∂2 =

 ∂ii2 ∂ib2
∂bi2 0
0 I

 , ∂1 =

 ∂ii1 0 0
∂bi1 ∂bb1 ∂bB1
∂Bi1 0 ∂BB1

 . (3.16)

The columns of ∂bi2 , for instance, represent the boundary edges of the inner
faces that lie on the system boundary. The columns of ∂bB1 and ∂BB1 represent
the terminal nodes of additional boundary edges, which are boundary nodes in
the former and additional boundary nodes in the latter case. The zero matrices
and the identity matrix result from the construction of the subsets13 indexed
i, b and B.

On the dual complex, the structure of the incidence matrices is

∂̂2 =

 ∂̂
ii

2 ∂̂
ib

2

0 ∂̂
bb

2
0 I

 , ∂̂1 =

 ∂̂
ii

1 ∂̂
ib

1 0
∂̂
bi

1 0 ∂̂
bB

1

0 −I ∂̂
BB

1

 . (3.17)

The different locations of the zero matrices result from the definition of dual
objects. For example b-indexed edges on the dual complex do not lie on its

13∂bb2 = 0 as the b-edges lie on the boundary of i-faces. ∂Bi2 = 0 as the B-edges lie on
the boundary of the b-faces. ∂Bb2 = I by definition of the B-edges to complete the boundary
of the positively oriented b-faces. ∂ib1 = 0 and ∂iB1 = 0 as i-nodes are at the terminals of
i-edges only. ∂Bb1 = 0 as the b-edges are terminated only by b-nodes.
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boundary. ∂̂Bb1 = −I comes from the one-to-one relation of B-nodes and b-
edges on the dual complex, and the orientation of the edges êb,·, which is
induced by the positive orientation of the primal boundary.

3.3.2.2 Duality Relations of Incidence Submatrices

Using the duality relations (3.11), (3.12), and based on an analogous construc-
tion of the dual complexes for n ∈ {1, 2, 3}, the following duality relations
between the (co-)incidence submatrices can be given. Given the incidence ma-
trices (on either the primal or the dual complex), the co-incidence matrices
result from transposition:

djαβ = (∂βαj )T , α, β ∈ {i, b, B}. (3.18)

The submatrices of ∂j and dj (upper or upper left 2× 2 block matrices in the
above example) that relate i and b indexed cells will be designated (i, b). As
the relations between the i and b indexed cells are well-defined by topological
duality, Eq. (3.11) applies accordingly:

d̂j(i,b) = (−1)n−j+1(dn−j+1
(b,i) )T . (3.19)

For the dual co-incidence matrices that relate b-indexed (j−1)-cells (in the
interior) and B-indexed j-chains (on the boundary), the following holds:

d̂jbB = (−1)n−jI. (3.20)

This relation corresponds to Eq. (3.12), where the trace matrix boils down to
the identity matrix due to the fact that all B-indexed cells live on the boundary.

3.3.3 Discrete PH Representation

The integral conservation laws are now written in a compact form, exploiting
the topological description of the primal and the dual mesh in terms of dual
n-complexes. We introduce the following notation. Pi ∈ R|Fi|, Pb ∈ R|Fb| and
Q̂i ∈ R|Êi|, Q̂b ∈ R|Êb| are vector representations of the primal 2-cochains and
the dual 1-cochains that correspond to the integral conserved quantities on the
primal 2-cells and the dual 1-cells. The elements of the vectors are

[Pi]j =
∫
fi,j

p, j = 1, . . . , |Fi|,

[Pb]k =
∫
fb,k

p, k = 1, . . . , |Fb|,
(3.21)

and

[Q̂i]j =
∫
êi,j

q, j = 1, . . . , |Êi|,

[Q̂b]k =
∫
êb,k

q, k = 1, . . . , |Êb|.
(3.22)
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The vector representations eqi ∈ R|Ei|, eqb ∈ R|Eb|, eqB ∈ R|EB | and êpi ∈ R|N̂i|,
êpb ∈ R|N̂b|, êpB ∈ R|N̂B | of the primal 1-cochains and the dual 0-cochains are
defined accordingly. Their elements contain the integrals of the effort variables
(which play the role of fluxes in the conservation laws) on the primal edges and
their evaluations on the dual nodes.

For the “interior” integration domains we obtain, combining the integral
representation (3.4) on all primal 2-chains and dual 1-chains,

Ṗi = dpii(−1)pqeqi + dpib(−1)pqeqb
˙̂Qi = −d̂qiiê

p
i − d̂qibê

p
b .

(3.23)

The relations between the discrete integration domains are expressed in terms of
the primal and the dual co-incidence matrices. Accordingly for the “boundary”
integration domains:

Ṗb = dpbi(−1)pqeqi + dpbB(−1)pqeqB
˙̂Qb = −d̂qbiê

p
i − d̂qbB êpB .

(3.24)

Applying the duality relations

d̂qii = (−1)p(dpii)T , d̂qib = (−1)p(dpbi)
T , d̂qbi = (−1)p(dpib)

T , (3.25)

as well as
dpbB = I, d̂qbB = (−1)p−qI, (3.26)

we can write

d

dt

[
Pi

Q̂i

]
=
[

0 dpii
−(dpii)T 0

] [
(−1)pêpi
(−1)pqeqi

]
+
[

0 dpib
−(dpbi)T 0

] [
(−1)pêpb
(−1)pqeqb

]
(3.27a)

and [
(−1)pqeqB − d

dtPb

−(−1)p−qêpB − d
dtQ̂b

]
=
[

0 −dpbi
(dpib)T 0

] [
(−1)pêpi
(−1)pqeqi

]
. (3.27b)

We can now state the following main result of this chapter:

Theorem 3.1. The discrete formulation of a system of two conservation laws
with p = n ∈ {1, 2, 3}, q = 1 on two staggered grids with a system boundary
that gives rise to the definition of a primal and a dual n-complex as sketched
above, reads

d

dt

[
Pi

Q̂i

]
︸ ︷︷ ︸

ẋ

= (−1)n
[

0 dnii
−(dnii)T 0

]
︸ ︷︷ ︸

J

[
êpi
eqi

]
︸︷︷︸

e

+ (−1)n
[

0 dnib
−(dnbi)T 0

]
︸ ︷︷ ︸

G

[
êpb
eqb

]
︸︷︷︸

u

(3.28a)
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(−1)n
[
eqB
êpB

]
− d

dt

[
Pb

Q̂b

]
︸ ︷︷ ︸

y

= (−1)n
[

0 −dnbi
(dnib)T 0

]
︸ ︷︷ ︸

GT

[
êpi
eqi

]
︸︷︷︸

e

. (3.28b)

dnii, dnib, dnbi are co-incidence matrices relating (n−1)-cells and n-cells on the
primal complex. Pi/b, Q̂i/b, eqi/b/B , êpi/b/B , are vector representations of the
j-cochains with the integral values of the n-forms, 1-forms, (n−1)-forms and
0-forms on the corresponding discrete objects (j-chains) of the primal and the
dual complex.

Proof. Primal and dual n-complex can be constructed in analogy to above for
n = 1 and n = 3 with complete duality between i and b indexed cells and the
definition of B indexed cells. This allows to apply the duality formulas (3.19),
(3.20) to (3.27a), (3.27b), which yields (3.28a), (3.28b).

The discrete formulation of the system of two conservation laws is exact. It is
written in form of the input-output representation (2.13) of a finite-dimensional
Dirac structure, for which the power balance −eT ẋ+yTu = 0 holds. However,
it can not be understood as a finite-dimensional PH system, as the vector of
co-energy variables e is not derived from a finite-dimensional energy function.
A finite-dimensional PH system is obtained if the energy functional is replaced
by a finite-dimensional approximation and discrete constitutive relations are
established. In other words, or more general, the true boundary fluxes at the
integration domains have to be replaced by numerical flux functions, which is
the key ingredient of classical finite volume discretization.

Remark 3.5. The collocated pairs of boundary variables (êpb , e
q
B) and (eqb , ê

p
B)

are not exactly power-conjugated. This is due to the presence of d
dtPb and d

dtQ̂b

in the output equation (3.28b)14. Vice versa, y does not exactly represent fluxes
at the system boundary. This effect, which is due to the use of staggered dual
grids, decreases with grid refinement.

Remark 3.6. The results of [174] with uniform boundary inputs can be recov-
ered if the system boundary is drawn exclusively along (n−1)-cells of the primal
or the dual mesh.

3.4 Numerical Approximation

The topological information, coded in the primal and dual n-complex yields the
exact discrete formulation of the two conservation laws in input-/output form
(3.28a), (3.28b). The elements of the state vector x and the co-state/effort
vector e are the integral quantities on the integration domains of the primal

14In [174], this fact is less obvious.
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and the dual mesh. However, the constitutive relations (3.3) are formulated
locally between the corresponding differential forms.

For a numerical approximation model in PH form, a discrete energy must be
defined in terms of the discrete states, and the discrete efforts must be derived
from this approximate energy. We present this structure-preserving discretiza-
tion of the constitutive equations on the example of the 2D irrotational shallow
water equations. We use a finite volumes approximation to compute the numer-
ical fluxes and to define a lumped Hamiltonian, before we discuss the properties
of our approach, in particular the relation of some aspects to “classical” finite
volume schemes.

Remark 3.7. In [174], a quadratic discrete energy is directly expressed in terms
of the cochains on both complexes. The linear constitutive relations are ex-
pressed involving the discrete Hodge operator15. Such a direct formulation of
the approximate energy is less obvious for non-quadratic energies and spatial
dependencies.

3.4.1 Example: Irrotational 2D Shallow Water Equations

Recall the 2D shallow water equations (SWE) in vector calculus notation16, as
presented in Subsection 2.3.2:[

∂th
∂tu + ζu⊥

]
=
[

0 −div
−grad 0

] [ 1
2u · u + gh+ gb

hu

]
. (3.29)

h(x, y) denotes the elevation of the free water surface over the bottom profile
b(x, y), u(x, y) = [u(x, y) v(x, y)]T is the 2-dimensional velocity vector field and
g the gravitational acceleration. The term ζu⊥ with u⊥ = [v −u]T represents
the acceleration due to rotation of the flow and stems from the transport term
in the momentum equation. ζ = ∂xv − ∂yu denotes the vorticity. The vector
of effort variables on the right of (3.29) contains the hydrodynamic pressure
pdyn = 1

2u ·u+gh+gb and the vector of discharge per unit width hu in x- and
y-direction. pdyn and the components hu and hv of the discharge vector field
can be expressed as variational derivatives of the Hamiltonian H (equivalently
partial derivatives of the Hamiltonian density H) with respect to h, u and v
with the energy per unit mass

H =
∫

Ω
H dxdy, H = 1

2hu · u + 1
2gh

2 + ghb. (3.30)

We consider a rectangular domain Ω ⊂ R2. For flow problems with negligible
rotational acceleration ζu⊥ (e. g. a unidirectional flow in a flat bed), the irro-
tational SWE have the canonical form of a PH system according to Definition
2.4 with n = p = 2, q = 1. The states and co-states in terms of differential
forms are then p = ∗h, q = u[, ep = pdyn and eq = −∗(hu)[. For brevity, we
assume b(x, y) ≡ 0.

15See [47], Definition 6.1.
16See e. g. [5].
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Figure 3.6: 2D (sub-)domains related to the discrete states.

3.4.2 Finite-Dimensional Port-Hamiltonian Model

We consider uniform rectangular grids that are shifted by half the grid size
∆x/2 and ∆y/2 in each direction. The discrete state vector (or integral state
vector)

xd =
[
hTd uTd vTd

]T (3.31)

with components17 hd,j , j = 1, . . . , |Fi|, ud,k, k = 1, . . . , |Êxi |, and vd,l, l =
1, . . . , |Êyi |, represents the approximate area integrals of h(x, y) on the interior
primal faces and the approximate line integrals of u(x, y) and v(x, y) on the
horizontal/vertical interior edges of the dual grid. Denote

x̄ =
[
h̄T ūT v̄T

]T (3.32)

the vector of average states on the corresponding primal 2-cells and dual 1-cells,
which are given by

h̄j = hd,j
∆x∆y , ūk = ud,k

∆x , v̄l = vd,l
∆y , (3.33)

where ∆x∆y = |fj | is the area of a primal face and ∆x = |êxk|, ∆y = |êyl |
are the lengths of the dual edges. We understand the average state values as
approximations of h(x, y), u(x, y) and v(x, y) on the interior primal faces and
the surrounding areas of the dual interior edges, respectively. These domains
(see the shaded regions in Fig. 3.6) may lie partially outside Ω, which is the
case if an interior dual edge lies on the system boundary. The superposition
of the dual grids divides the whole spatial domain into control volumes with
identical values of average states, indexed I = (j, k, l) ∈ I, see Fig. 3.7. Their
sizes for regular, uniformly shifted grids is ∆x∆y/4. I denotes the set of all
multi-indices on the superposition of the primal and the dual mesh.

We define the discrete Hamiltonian as

Hd(xd) = ∆x∆y
4

∑
I∈I
H
(
hd,j(I)

∆x∆y ,
ud,k(I)

∆x ,
vd,l(I)

∆y

)
, (3.34)

17In the sequel, we use the indices j, k and l to refer to these components.
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0

Figure 3.7: 2D control volumes with multi-index I = (j, k, l) on a sample grid over
Ω ∈ (0, 2∆x) × (0, 3∆y

2 ) ⊂ R2. A dot “·” denotes that the corresponding state is
not needed to compute an effort. Black and red: Discrete efforts computed from
∇H(xd). As it does not affect a state differential equation, eud,1 is set in parentheses.
Blue: Boundary efforts = input variables.

where j(I), k(I), l(I) are the components of the multi-index I. In the boundary
regions, where no discrete states are defined, we need to impose additional ghost
values for the states, denoted in brackets in Fig. 3.6. We assign constant ghost
values, based on reasonable assumptions, e. g. given boundary conditions or
the steady state. The consistency of the effort approximation depends on the
validity of these assumptions, see further below.

Remark 3.8. Usually, the ghost values are computed by extrapolation from the
interior discrete states18. We could do accordingly, and assign the adjacent dis-
crete states to the ghost cells (zero order extrapolation). For a consistent energy
approximation, this could (as a possible interpretation) impose an enlargement
of the j-cells to which the discrete states are associated. This re-interpretation
of the discrete states and their spatial domains is, however, not consistent with
the exact PH representation of the conservation laws (3.28a), (3.28b).

The vector of discrete efforts

ed =
[
(ehd)T (eud)T (evd)T

]T (3.35)

is derived from the discrete Hamiltonian:

ed := ∇Hd(xd). (3.36)

18See e. g. [115], Chapter 7.
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In particular, we express the single discrete efforts as

ehd,j := ∂Hd

∂hd,j
=
∑
I∈Is

j

∆x∆y
4

1
∆x∆y

∂H
∂h

∣∣∣∣
x̄I
,

eud,k := ∂Hd

∂ud,k
=
∑
I∈Iu

k

∆x∆y
4

1
∆x

∂H
∂u

∣∣∣∣
x̄I
,

evd,l := ∂Hd

∂vd,l
=
∑
I∈Iv

l

∆x∆y
4

1
∆y

∂H
∂v

∣∣∣∣
x̄I
.

(3.37)

The notation (·)|x̄I denotes the evaluation of the partial derivatives of H at
(h̄j , ūk, v̄l) = (hd,j(I)∆x∆y ,

ud,k(I)
∆x ,

vd,l(I)
∆y ). Ihj , Iuk and Ivl are the sets of multi-indices

that refer to the 2×2 control volumes associated with hd,j , ud,k or vd,l, respec-
tively. For the corresponding average efforts

ē =
[
(ehd)T (eud )T

∆y
(evd)T

∆x

]T
, (3.38)

we obtain

ēhj =
∑
I∈Ih

j

1
4
∂H
∂h

∣∣∣∣
x̄I
, ēuk =

∑
I∈Iu

k

1
4
∂H
∂u

∣∣∣∣
x̄I
, ēvl =

∑
I∈Iv

l

1
4
∂H
∂v

∣∣∣∣
x̄I
. (3.39)

Theorem 3.2. The finite-dimensional PH model

ẋd = Jed + Geb (3.40a)
yd = GTed, (3.40b)

with xd the discrete state vector (3.31), the effort vector ed = ∇Hd(xd) de-
rived from the discrete Hamiltonian (3.34), the boundary input vector eb =[
(êpb)T (eqb)T

]T and the matrices J and G as defined in (3.28), is a consis-
tent approximation of the irrotational 2D shallow water equations, if the ghost
values on the boundary control volumes are consistent with the boundary con-
ditions.
Proof. We consider the differential equation of the finite-dimensional PH model
in terms of the average states, efforts and boundary inputs (see Appendix
B.1.1):

˙̄x = 1
∆x J̄ē + 1

∆xḠēb, (3.41)

where the elements of J̄, Ḡ are from the set {0,±1,±∆y
∆x}. The (local) approx-

imation error, which determines the consistency order19, is

εloc,∆x =
∥∥∥∥ ˙̄x∗ − 1

∆x J̄ ē|∗ −
1

∆xḠ ēb
∥∥∥∥

∆x
(3.42)

19See [88], Eq. (16.19).
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for ∆x → 0. ˙̄x∗ contains the time derivatives of the exact solution at the
centers of the 2 × 2 control volumes, and is given by the right hand side of
the PDE (3.29). The average boundary inputs ēb are exactly known. The
average efforts ē are computed according to the finite volumes approximation,
but assuming that the underlying distribution of the states solves the PDE.
The ∗ is a shortcut for the substitution

∗ =
(
h̄j =

∫ yhj,up

yh
j,lo

∫ xhj,ri

xh
j,le

h(x, y)
∆x∆y dxdy,

ūk =
∫ xuk,ri

xu
k,le

u(x, yuk )
∆x dx, v̄l =

∫ yvl,up

yv
l,lo

v(xvl , y)
∆y dy

)
. (3.43)

The limits of integration with the subscripts le, ri, lo, up refer to the left, right,
lower and upper boundaries of the considered 2 × 2 control volume in x- and
y-direction. yuk and xvl denote the corresponding center coordinates. The norm

‖f‖∆x :=

∆x
N∑
j=1
|fj |2

 1
2

(3.44)

is the discrete counterpart of the L2-norm for functions. The boundary inputs
being exactly known, they cancel from (3.42). The order of the error εloc,∆x is
certainly O(∆xp), (with an integer p) if for all indices j, k, and l, the errors

εh,xj =
∣∣∣∣ ∂∂xehj − 1

∆x ēhj
∣∣
∗

∣∣∣∣ , εh,yj =
∣∣∣∣ ∂∂y ehj − 1

∆y ē
h
j

∣∣
∗

∣∣∣∣
εuk =

∣∣∣∣ ∂∂xeuk − 1
∆x ēuk |∗

∣∣∣∣ , εlv =
∣∣∣∣ ∂∂y evl − 1

∆y ē
v
l |∗
∣∣∣∣ (3.45)

are of order O(∆xp) for ∆x,∆y → 0. We denote ehj , euk , evl the true efforts at
the centers of the 2× 2 control volumes. By Taylor series expansion, it can be
verified that on superposed, rectangular grids with constant grid size ∆x

2 ×
∆y
2 ,

the errors (3.45) are of order O(∆x2), if their computation does not involve
ghost values for the average states. If the shifts between primal and dual grid
are different from ∆x

2 , ∆y
2 , the order decreases to O(∆x). If the discrete efforts

are computed based on ghost values, the consistency error is of order ≥ 1 only
if the ghost values are consistent with the boundary conditions. In Appendix
B.1.2, the computations of the consistency errors for the efforts depicted in Fig.
3.7 are sketched: based on (i) no, (ii) consistent, and (iii) inconsistent ghost
values.
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3.4.3 Remarks

The numerical approximation of the Hamiltonian and the efforts, and the sub-
sequent consistency analysis, give rise to the following complementary remarks.

1. The output equation of the discretized average model is simply written ȳ =
GT ē, without scaling. Assigning constant ghost values for the states on
the boundary integration domains corresponds to d

dtPb = 0, d
dtQ̂b = 0 in

(3.28b). Consequently, yd and ȳ can be understood as integral/average
numerical approximations of the output boundary efforts for ∆x,∆y → 0.

2. The resulting finite-dimensional model is in PH form, i. e. the discretization
scheme is structure-preserving. The PH structure implies, for Hd positive
definite, Lyapunov stability of the unforced equilibrium.

3. For the average discretized model in PH form, numerical stability (more
precisely, numerical stability of the semi-discretization method, see [88],
Section 16.2) can be shown: For bounded ēb(t), there exists on every time
interval [0, t∗] a bound c(t∗) <∞ such that ‖x̄(t)‖∆x < c(t∗).

4. As discussed above, the consistency order of the effort approximation for the
nonlinear SWE is 2 inside the spatial domain. This is due to the uniform
shift of the primal and the dual grid, which implies a centered approxima-
tion of the constitutive equations. The order can be increased by computing
the numerical fluxes based on a wider stencil, using a semi-discrete general-
ized Leapfrog scheme, see [87], or [64] from the finite-difference perspective.
This approach was applied in [95] for the finite-volume approximation of 1D
hyperbolic PH systems and extended in [173] to the 2D case.

5. The grid shifts in x- and y-direction can be understood as design degrees
of freedom to parametrize numerical schemes which take into account the
direction of propagation (of the solution), in the sense of upwinding20. For
such non-centered schemes, the consistency order inside the spatial domain
reduces to 1. For the upwinding interpretation of structure-preserving dis-
cretization schemes based on mixed finite elements, see Chapter 4.

6. The bottleneck for the consistency order of the overall numerical scheme
is the assignment of constant ghost values, which can be inconsistent with
the boundary conditions, e. g. at an outflow boundary. The usual approach
to extrapolate the ghost values from the interior discrete states, ensures
consistency. This measure, however, disturbs the PH structure of the ap-
proximate model, as not all numerical fluxes are derived exclusively from
the discrete, time-invariant Hamiltonian. The corresponding numerical er-
ror acts as a disturbance to the PH model. Its effect can be dissipated if the
model contains physical damping.

20We write in the sense of, as the grid shift is fixed and based on a priori assumptions
on the flow direction. For upwinding methods, see e. g. [115], Chapter 4.
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7. If the Hamiltonian is separable, as in the example of an acoustic duct [186],
the computation of the discrete efforts does not rely on the ghost values,
which guarantees consistency of the scheme. Note also the recently pro-
posed structure-preserving finite-difference scheme for hyperbolic PH sys-
tems, which has been applied to the above mentioned example [187], [188].

8. For linear PDEs, consistency and numerical stability of the approximation
directly imply convergence of the numerical scheme according to the Lax-
Richtmyer equivalence theorem21. For a further discussion on convergence,
we refer to the corresponding literature, e. g. [158], [52], [115], or more
specifically, [53]22.

3.5 Conclusions

We proposed the exact integral/discrete PH formulation of hyperbolic systems
of two conservation laws on staggered grids on n-dimensional spatial domains,
by using the topological information in terms of (co-)incidence matrices of the
related n-complexes. We extended known results by allowing for boundary
input variables of mixed type as a basis to tackle a wider class of control
problems with a non-uniform causality of the boundary port. We performed
the approximation of the energy to obtain a numerical (simulation) model
with the classical finite volume approach. On the nonlinear example of the 2D
irrotational shallow water equations, we showed and discussed the consistency
of the approximation in the domain and on the boundary.

The exact integral representation of the conservation laws by a finite set of
differential equations can serve as a basis for observer design [100] and feedback
control. In terms of trajectory planning/feedforward control, the presented
discretization in space can be combined with symplectic time integration. To
obtain a discrete-time flat parametrization of states and inputs, as presented
in Section 6.4 for the 1D case, special care must be taken about the consistent
approximation of the constitutive equations in two spatial dimensions. Another
interesting question is to understand the shifts between primal and dual grid
as design parameters for a control-oriented model in order to account for the
natures of different systems of conservation laws, e. g. their “ratio” between
convection and diffusion. This question is related to the discussions in Chapter
4, where a mixed FEM approach is applied both to hyperbolic and parabolic
systems.

Currently, the presented approach is applied to model the heat and mass
transfer through catalytic foams with an irregular structure [168] (see also the
INFIDHEM23 project website [75]). For the heat transfer on the solid and the

21See [88], Section 13.2 for semi-discretization.
22As a related steady-state problem, the convergence of a centered scheme on two staggered

finite volume grids for the incompressible Navier-Stokes equations in 2D is discussed.
23Interconnected Infinite-Dimensional Systems for Heterogeneous Media, cofunded by

Deutsche Forschungsgemeinschaft and Agence Nationale de la Recherche.
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Figure 3.8: Pictures of a metallic foam with an irregular structure. Samples pro-
vided by Marie-Line Zanota, LGPC Lyon. Photos taken by Tobias Scheuermann,
TUM Garching.

fluid phase, and the heat exchange between both of them, the material struc-
ture imposes a cell complex, on which temperature differences (discrete driving
forces) are evaluated. The internal energy is balanced on a dual complex, which
is constructed as the barycentric dual. Instead of a straightforward finite vol-
ume approximation on cartesian grids, the irregularity of the dual complexes
imposes the use of interpolation functions as proposed in Tonti’s cell method
[185]. Note that the approach presented in this chapter allows to easily incor-
porate boundary conditions both on the temperature (Dirichlet) and the heat
flux (Neumann) in the explicit simulation and control model.



Chapter 4

Mixed Galerkin Discretization

In this chapter1, we present an alternative method for the structure-preserving
discretization of port-Hamiltonian systems of conservation laws. Unlike the
approach described in the preceding section, the procedure starts on a single
mesh, over which the mixed approximation spaces for the power variables are
defined. More general, the dual character of physical variables is not accounted
for in a first step, in the sense that differential forms of the same degree, but
different (inner or outer) orientation are treated identically. A mixed Galerkin
approximation yields a linear system of equations that relates the vectors of dis-
crete power variables. To obtain a non-degenerate discrete power balance (as a
property of the finite-dimensional Dirac structure), based on which an approx-
imate PH model can be defined, appropriate power-preserving mappings of the
discrete power variables are necessary. The mappings of the original degrees of
freedom will allow for an interpretation of the minimal discrete flows (or states)
and efforts in terms of topological duality. This interpretation is exploited in
the consistent approximation of the constitutive equations2. The parameters
in the power-preserving mappings can be used to adapt the approximation to
the nature of the underlying system (hyperbolic vs. parabolic).

We present the geometric discretization of distributed parameter port-Ha-
miltonian (dPH) systems based on the weak formulation of the underlying
Stokes-Dirac structure. Doing so, some limitations and restrictions of current
approaches can be overcome.

• The strict separation of metric-independent structure and constitutive equa-
tions is maintained in our approach.

• Our formulation is valid for systems on spatial domains with arbitrary di-
mension.

1The chapter is mainly based on the article [104]. In addition, it contains results on the
approximation of the 1D wave and the 1D heat equation as presented in [97] and [96].

2Recall that the Hodge star in the local representation of the constitutive equation ex-
presses this duality.
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• Boundary inputs3 are imposed weakly, i. e. they appear directly in the weak
formulation of the Stokes-Dirac structure and the finite-dimensional approx-
imation.

• The power-preserving maps for the discrete bond variables offer design de-
grees of freedom to parametrize the resulting finite-dimensional PH state
space models. They allow for trade-offs between a centered approximation
and upwinding, according to the nature of the considered system.

• Mapping the flow variables instead of the efforts avoids a structural artifi-
cial feedthrough, which is not desirable for the approximation of hyperbolic
systems.

We consider as the prototypical example of dPH systems, an open system of
two hyperbolic conservation laws in canonical form, as introduced in Section 2.2.
The language of differential forms, see Appendix A.1, emphasizes the geometric
nature of each variable and allows for a unifying representation independent of
the dimension of the spatial domain.

The chapter is structured as follows. Based on the representation of a
Stokes-Dirac structure with non-uniform boundary causality according to The-
orem 2.4, we propose the weak form of the Stokes-Dirac structure in Section 4.1.
Section 4.2 deals with the mixed Galerkin approximation of this Stokes-Dirac
structure. Due to the different geometric nature of the power variables and
their approximation spaces, the discrete power balance involves degenerate du-
ality pairings. In Section 4.3, we define minimal discrete power variables (pairs
of bond variables) with non-degenerate duality products by power-preserving
mappings. The so-defined subspace of the bond space is a Dirac structure which
admits different representations. The explicit input-output representation, to-
gether with the finite-dimensional approximation of the Hamiltonian, leads to
the desired PH approximate models in state space form, which are given in
Section 4.4. In Section 4.5, we recall Whitney forms, which shall be used as
geometric finite elements in the sequel. We apply our discretization method to
the 1D wave and the 1D heat equation in Section 4.6 and illustrate the effects
of the discretization parameter on the approximation of the constitutive equa-
tions. For both examples, we analyze the model structures and assess optimal
parameter choices based on the solution of initial value problems. We compare
the eigenvalue approximation of the 1D wave equation with the method of [71].
Certain parameter choices can be interpreted in terms of upwinding, which is
particularly favorable for hyperbolic systems. For the parabolic heat equation,
the analysis of zeros and eigenvalues shows the superiority of a centered ap-
proximation. Section 4.7 is devoted to the illustration of our method on the
example of the 2D wave equation on a rectangular simplicial mesh. We derive
the power-preserving mappings based on elementary examples and we empha-
size the interpretation of the finite-dimensional state and power variables in

3In-domain inputs can be treated identically.
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terms of integral quantities on the grid. The dependence of the approximation
quality on the mapping parameters is illustrated with a 2D simulation study,
which again reveals the favorable effect of an upwinding parameter choice. The
simulation of the double slit experiment shows the applicability of our method
to a problem on a non-trivial geometry. Section 4.8 closes the chapter with a
summary and comments on ongoing work.

4.1 Weak Form of the Stokes-Dirac Structure

The first motivation to study the approximation of dPH systems based on
their weak form is the fact that most of the common numerical methods in
engineering, including commercial tools, are based on a Galerkin-type finite-
dimensional approximation of the PDEs in weak form4. Also in the context of
existing works on linear dPH systems in one spatial dimension, this perspective
is natural. The statements on well-posedness and stability based on the theory
of C0 semigroups rely on themild solution of the abstract (operator) differential
equation. These solutions, however, corresponds to the weak solutions, as
known from the theory of PDEs, see [89], page 127: “In fact, the concept of a
mild solution is the same as the concept of a weak solution used in the study of
partial differential equations.” A third point, which motivates to discretize dPH
systems based on their weak form, is the close relation with discrete exterior
calculus (i. e. the mathematical formalism for integral modeling of conservation
laws), which has been used in [174] for PH systems: “Note that the process of
integration to suppress discontinuity is, in spirit, equivalent to the idea of weak
form used in the Finite Element method” [48]. Finally, also in Bossavit’s work
on the mixed geometric discretization for computational electromagnetism [20],
[21], the quality of a weak formulation is addressed “How weak is the weak
solution in finite element methods?” [22].

The weak form of the Stokes-Dirac structure of Theorem 2.4 is obtained by a
duality pairing (which involves the exterior product and integration) on Ω with
test forms of appropriate degrees which do not vanish on the boundary5. The
latter allows for a weak imposition of the input boundary conditions uqi = eΓ

i ,
i = 1, . . . , nΓ, and upj = êΓ

j , j = 1, . . . , n̂Γ.

4We use the weak form and not the variational form. The reason is that we focus on the
geometric structure of the equations and do not mention the associated variational problem.
We refer to [213] and [200] for the link of the variational problem in Lagrangian mechanics in
finite and infinite dimension with a Dirac structure. Note that this link is less obvious e. g.
for non-Hamiltonian fluids, which are described by a non-canonical structure, see e. g. [137],
[32].

5In the weak formulation of boundary value problems, mostly test functions with compact
support inside Ω are chosen such that boundary conditions have to be imposed directly on
the solution. This is however not mandatory. By test functions which are non-zero on ∂Ω,
boundary conditions can be imposed in a weak fashion, cf. [158], Section 14.3.1, p. 483.
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Definition 4.1. The weak form of the Stokes-Dirac structure of Theorem 2.4
is given by the subspace D ⊂ F × E with F and E as in (2.30), (2.31), where

〈vp|fp〉Ω = 〈vp|(−1)rdeq〉Ω ∀vp ∈ H1Λn−p(Ω), (4.1a)
〈vq|fq〉Ω = 〈vq|dep〉Ω ∀vq ∈ H1Λn−q(Ω) (4.1b)

holds and the boundary port variables are defined by (2.29).

Applying integration by parts according to (A.7), we obtain the weak form
of the Stokes-Dirac structure with weak treatment of the boundary port vari-
ables.

Proposition 4.1. The weak form of the Stokes-Dirac structure in Theorem
2.4 with weak treatment of the boundary port variables is given by the subset
D ⊂ F × E , F and E as in (2.30), where

〈vp|fp〉Ω =(−1)r+q〈dvp|eq〉Ω (4.2a)

− (−1)r+q
nΓ∑
i=1
〈tr vp|eΓ

i 〉Γi − (−1)r+q
n̂Γ∑
j=1
〈tr vp|f̂Γ

j 〉Γ̂j

〈vq|fq〉Ω =(−1)p〈dvq|ep〉Ω (4.2b)

− (−1)p
nΓ∑
i=1
〈tr vq|fΓ

i 〉Γi − (−1)p
n̂Γ∑
j=1
〈tr vq|êΓ

j 〉Γ̂j

holds for all test forms vp ∈ H1Λn−p(Ω) and vq ∈ H1Λn−q(Ω).

Proof. Equations (4.2) follow from (4.1) via integration by parts and the iden-
tities

(−1)p〈tr vp|tr eq〉∂Ω =
nΓ∑
i=1
〈tr vp|eΓ

i 〉Γi +
n̂Γ∑
j=1
〈tr vp|f̂Γ

j 〉Γ̂j ,

〈tr vq|tr ep〉∂Ω =
nΓ∑
i=1
〈tr vq|fΓ

i 〉Γi +
n̂Γ∑
j=1
〈tr vq|êΓ

j 〉Γ̂j .
(4.3)

The latter are due to the definition (2.29) of boundary port variables and the
definition of the subsets Γi, Γ̂j , which cover ∂Ω and whose intersections have
zero measure.

Remark 4.1. The latter representation of the Stokes-Dirac structure – if consid-
ered on a single control volume – is suitable for discontinuous Galerkin schemes,
see e. g. [81], where the boundary terms are replaced by suitable numerical
fluxes.
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Remark 4.2. Note that the two conservation laws are described by the canon-
ical matrix differential operator in (2.32), which contains only exterior deriva-
tives. The weak form of the Stokes-Dirac structure is defined based on the
metric-independent duality product arising from the integration-by-parts for-
mula (A.7), applied to both conservation laws in Eq. (2.32). This is a difference
to other approaches like the mixed mimetic discretization of the Stokes flow in
[105] or the structure-preserving PH discretization in [56], where integration
by parts is only applied to the equations that contain the metric-dependent
codifferential.

Using the effort forms as test forms, vp = ep, vq = eq, and adding both
equations of (4.2), we obtain after some reformulations the structural power
balance (2.33), i. e.

〈ep|fp〉Ω + 〈eq|fq〉Ω +
nΓ∑
i=1
〈eΓ
i |fΓ

i 〉Γi +
n̂Γ∑
j=1
〈f̂Γ
j |êΓ

j 〉Γ̂j = 0. (4.4)

We have arrived at a weak representation of the Stokes-Dirac structure of
Theorem 2.4, which suits to establish discretized mixed Galerkin models of PH
systems of two conservation laws.

4.2 Approximation of the Stokes-Dirac Structure

We introduce themixed Galerkin approximation of the weak form of the Stokes-
Dirac structure for a system of two conservation laws. Mixed or duality methods
have been introduced to include constraints like the divergence-freedom of flows
or to take account for the precise approximation of additional physical variables
in the numerical approximation, see [27] as a classical reference for mixed finite
elements. The duality of the power variables in the Stokes-Dirac structure –
illustrated by the degrees of the differential forms – imposes the use of a mixed
approximation. Expressing (4.2) in appropriate subspaces, and defining in- and
output port variables whose pairings represent the transmitted power over the
boundary, we obtain a finite number of equations for the Galerkin coefficients.
On the so-defined subset of the discrete bond space, a discrete power continuity
equation holds. Due to the different dimensions of the geometrically chosen
approximation spaces, the bilinear forms that define the discrete power pairings
are, however, degenerate.

4.2.1 Weak Imposition of Boundary Conditions

The boundary inputs are weakly imposed as boundary conditions, and appear
immediately in the finite-dimensional system of equations for the Galerkin de-
grees of freedom. Boundary outputs are constructed via the discrete power
balance. This point of view, which leads to state space models in input-output
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form, distinguishes the structure-preserving discretization of PH systems from
classical approaches to the numerical approximation of PDEs.

For the compactness of notation, we omit to explicitly write out the trace
operator on the subsets of the boundary, i. e. 〈vp|eq〉Γi := 〈tr vp|tr eq〉Γi etc. in
the sequel. We start with the representation6

〈vp|fp〉Ω =(−1)r+q〈dvp|eq〉Ω

− (−1)r+q
nΓ∑
µ=1
〈vp|eq〉Γµ − (−1)r+q

n̂Γ∑
ν=1
〈vp|eq〉Γ̂ν (4.5a)

〈vq|fq〉Ω =(−1)p〈dvq|ep〉Ω

− (−1)p
nΓ∑
µ=1
〈vq|ep〉Γµ − (−1)p

n̂Γ∑
ν=1
〈vq|ep〉Γ̂ν , (4.5b)

i. e. (4.2) without the explicit denomination of the boundary port variables.
For a mixed Galerkin approximation of the Stokes-Dirac structure, we
• use different (dual or mixed) bases to approximate the spaces of flow and
effort forms and

• from these bases, we choose the appropriate ones to approximate the test
forms (Galerkin method).

Taking the test forms from the effort bases is the most obvious choice for the
approximation of the Stokes-Dirac structure, as the resulting (discrete) duality
pairings have an immediate interpretation in terms of power, see Eq. (4.4).

4.2.2 Approximation Problem and Compatibility Condition

The flow differential forms will be approximated by linear combinations of the
basis forms of the subspaces

Ψp
h = span{ψp1 , . . . , ψpNp} ⊂ L2Λp(Ω),

Ψq
h = span{ψp1 , . . . , ψqNq} ⊂ L2Λq(Ω). (4.6)

The subspaces for the effort and test forms are, accordingly,

Φph = span{ϕp1, . . . , ϕpMp
} ⊂ H1Λn−p(Ω),

Φqh = span{ϕq1, . . . , ϕqMq
} ⊂ H1Λn−q(Ω). (4.7)

From the trace theorem for H1 spaces (as discussed in Subsection A.1.3), we
know that the extension of the latter spaces to the boundary is in L2. The sub-
script h > 0 denotes the discretization parameter7 and we assume an appropri-
ate choice of approximation spaces, i. e. for a given functional space V and its

6In the sequel, we denote portions of the boundary with greek indices and elements of
the approximation subspaces with latin indices.

7Which corresponds to the spatial extent of finite elements or the inverse of the polyno-
mial approximation order.
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approximation Vh (see [158], Section 5.2) it is true that infvh∈Vh ‖v − vh‖ → 0
for all v ∈ V if h→ 0. The mixed Galerkin approximation problem is as follows:
Find approximate flow and effort forms

fph(z) =
Np∑
k=1

fpkψ
p
k(z) = 〈fp|ψp(z)〉 ∈ Ψp

h,

fqh(z) =
Nq∑
l=1

fql ψ
q
l (z) = 〈f q|ψq(z)〉 ∈ Ψq

h,

(4.8)

and

eph(z) =
Mp∑
i=1

epiϕ
p
i (z) = 〈ep|ϕp(z)〉 ∈ Φph,

eqh(z) =
Mq∑
j=1

eqjϕ
q
j(z) = 〈eq|ϕq(z)〉 ∈ Φqh,

(4.9)

where 〈·|·〉 denotes the standard inner product on Rn as in Definition 2.1, such
that

〈vph|f
p
h〉Ω =(−1)r+q〈dvph|e

q
h〉Ω

− (−1)r+q
nΓ∑
µ=1
〈vph|e

q
h〉Γµ − (−1)r+q

n̂Γ∑
ν=1
〈vph|e

q
h〉Γ̂ν , (4.10a)

〈vqh|f
q
h〉Ω =(−1)p〈dvqh|e

p
h〉Ω

− (−1)p
nΓ∑
µ=1
〈vqh|e

p
h〉Γµ − (−1)p

n̂Γ∑
ν=1
〈vqh|e

p
h〉Γ̂ν (4.10b)

hold for all vph ∈ Φph, v
q
h ∈ Φqh. The discrete flow and effort vectors

fp = [fp1 , . . . , f
p
Np

]T ,
f q = [fq1 , . . . , f

q
Nq

]T ,
ep = [ep1, . . . , e

p
Mp

]T ,
eq = [eq1, . . . , e

q
Mq

]T
(4.11)

contain the approximation coefficients, and the vectors (we omit the argument
z in the sequel)

ψp(z) = [ψp1(z), . . . , ψpNp(z)]T ,
ψq(z) = [ψq1(z), . . . , ψqNq (z)]T ,

ϕp(z) = [ϕp1(z), . . . , ϕpMp
(z)]T ,

ϕq(z) = [ϕq1(z), . . . , ϕqMq
(z)]T

(4.12)
contain the approximation basis forms. The flow variables are understood as
time derivatives of the distributed conserved quantities with negative sign, see
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(2.37). Thus, they are approximated in the same spatial bases,

ph(z) =
Np∑
k=1

pkψ
p
k(z) = 〈p|ψp(z)〉 ∈ Ψp

h,

qh(z) =
Nq∑
l=1

qlψ
q
l (z) = 〈q|ψq(z)〉 ∈ Ψq

h,

(4.13)

and
p = [p1, . . . , pNp ]T , q = [q1, . . . , qNq ]T (4.14)

denote the vectors of discrete or integral conserved quantities.
The mixed Galerkin approximation (4.10) of (4.5) is exact for flow and

effort forms in the approximation spaces (4.6), (4.7) (in these subspaces, the
residual error vanishes), if the following compatibility conditions hold:

span{ψp1 , . . . , ψpNp} = span{dϕq1, . . . ,dϕqMq
},

span{ψq1, . . . , ψqNq} = span{dϕp1, . . . ,dϕpMp
}.

(4.15)

In contrast to [71] (Assumptions 3 and 7), this compatibility of forms8 is un-
derstood in the weak sense. This means, more precisely – consider the original
weak formulation (4.1) and the definition of the weak exterior derivative –
that for all test forms with compact support inside Ω, i. e. vp ∈ H1

0 Λn−p(Ω),
vq ∈ H1

0 Λn−q(Ω), there exist constants apk, a
q
l , b

p
i , b

q
j such that

Np∑
k=1

apk〈vp|ψ
p
k〉Ω +

Mq∑
j=1

bqj〈vp|dϕqj〉Ω = 0,

Nq∑
l=1

aql 〈vq|ψ
q
l 〉Ω +

Mp∑
i=1

bpi 〈vq|dϕpi 〉Ω = 0.

(4.16)

4.2.3 Discretized Structure Equations

We approximate the weak formulation (4.5) of the Stokes-Dirac structure by
replacing the flow and effort forms with their finite-dimensional approximations
(4.8), (4.9). By choosing the test forms from the effort bases,

vph = 〈vp|ϕp〉, vqh = 〈vq|ϕq〉, vp ∈ RMp , vq ∈ RMq , (4.17)

the finite-dimensional inner products in the approximation will retain the inter-
pretation in terms of power. We obtain (the exterior derivative applies element-

8In other words, this is the de Rham property of the sequence of approximation subspaces.
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wise to a vector of differential forms)〈
〈vp|ϕp〉

∣∣∣ 〈fp|ψp〉〉
Ω
− (−1)r+q

〈
〈vp|dϕp〉

∣∣∣ 〈eq|ϕq〉〉
Ω

+ (−1)r+q
nΓ∑
µ=1

〈
〈vp|ϕp〉

∣∣∣ 〈eq|ϕq〉〉
Γµ

(4.18a)

+ (−1)r+q
n̂Γ∑
ν=1

〈
〈vp|ϕp〉

∣∣∣ 〈eq|ϕq〉〉
Γ̂ν

= 0,〈
〈vq|ϕq〉

∣∣∣ 〈f q|ψq〉〉
Ω
− (−1)p

〈
〈vq|dϕq〉

∣∣∣ 〈ep|ϕp〉〉
Ω

+ (−1)p
nΓ∑
µ=1

〈
〈vq|ϕq〉

∣∣∣ 〈ep|ϕp〉〉
Γµ

(4.18b)

+ (−1)p
n̂Γ∑
ν=1

〈
〈vq|ϕq〉

∣∣∣ 〈ep|ϕp〉〉
Γ̂ν

= 0.

Evaluating the integrals over the exterior products of basis forms, the system
of equations can be written〈

vp
∣∣∣Mpfp

〉
+
〈
vp
∣∣∣(Kp +

nΓ∑
µ=1

Lµp +
n̂Γ∑
ν=1

L̂νp
)
eq
〉

= 0,

〈
vq
∣∣∣Mqf q

〉
+
〈
vq
∣∣∣(Kq +

nΓ∑
µ=1

Lµq +
n̂Γ∑
ν=1

L̂νq
)
ep
〉

= 0,

(4.19)

with the coefficient matrices Mp ∈ RMp×Np , Mq ∈ RMq×Nq , Kp,Lµp , L̂νp ∈
RMp×Mq , Kq,Lµq , L̂νq ∈ RMq×Mp , µ = 1, . . . , nΓ, ν = 1, . . . , n̂Γ, composed of
the elements

[Mp]ik = 〈ϕpi |ψpk〉Ω, [Mq]jl = 〈ϕqj |ψql 〉Ω,
[Kp]ij = −(−1)r+q〈dϕpi |ϕqj〉Ω, [Kq]ji = −(−1)p〈dϕqj |ϕpi 〉Ω,
[Lµp ]ij = (−1)r+q〈ϕpi |ϕqj〉Γµ , [Lµq ]ji = (−1)p〈ϕqj |ϕpi 〉Γµ ,

[L̂νp ]ij = (−1)r+q〈ϕpi |ϕqj〉Γ̂ν , [L̂νq ]ji = (−1)p〈ϕqj |ϕpi 〉Γ̂ν .

(4.20)

The equations of (4.19) have to hold for arbitrary vp ∈ RMp , vq ∈ RMq , which
yields the system of equations for the discrete flow and effort vectors

Mpfp + (Kp + Lp)eq = 0,

Mqf q + (Kq + Lq)ep = 0.
(4.21)

By skew-symmetry of the wedge product, see Eq. (A.1), it is straightforward
to show that

[Lµp ]ij = [Lµq ]ji, [L̂νp ]ij = [L̂µq ]ji, (4.22)
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i. e. Lµp = (Lµq )T and L̂νp = (L̂νq )T . By defining

Lp =
nΓ∑
µ=1

Lµp +
n̂Γ∑
ν=1

L̂νp , Lq =
nΓ∑
µ=1

Lµq +
n̂Γ∑
ν=1

L̂νq , (4.23)

we can show the following.

Lemma 4.1. The matrices Kp,Kq and Lp,Lq are related via [Kp+Lp]ij +
[Kq+Lq]ji = [Lp]ij = [Lq]ji, i. e.

Lp = (Kp + Lp) + (Kq + Lq)T = LTq . (4.24)

Proof. By the definition (4.23) and the corresponding parts of (4.20), the ele-
ments of Lp,Lq are duality products over the effort basis forms on the complete
boundary ∂Ω. Thus, we have that

[Kp + Lp]ij + [Kq + Lq]ji = −(−1)r+q〈dϕpi |ϕqj〉Ω + (−1)r+q〈ϕpi |ϕqj〉∂Ω

− (−1)p〈dϕqj |ϕpi 〉Ω + (−1)p〈ϕqj |ϕpi 〉∂Ω.
(4.25)

Using skew-symmetry of the wedge product (A.1) and the integration-by-parts
formula for differential forms (A.7), the right hand side can be rewritten as

(−1)p〈ϕqj |ϕpi 〉∂Ω = [Lq]ji = [Lp]ij , (4.26)

which proves the claim.

Definition 4.2. The quadratic forms over the discrete effort vectors with the
corresponding matrices Lp,Lµp , L̂νp and Lq,Lµq , L̂νq describe the approximate
power transmitted over the boundary ∂Ω or its parts. We refer to these matrices
as boundary power matrices.

The boundary power matrices Lp = LTq , will have reduced rank. The reason
is that basis forms for interior effort degrees of freedom will be, in general, zero
on the boundary. This is true e. g. for finite elements, see Section 4.5, and also
for the 1D geometric pseudo-spectral collocation method [138].

4.2.4 Discrete Boundary Port Variables

To define the pairs of discrete boundary port variables that will be assigned
either the role of boundary controls or the role of outputs on the boundary
subsets, we characterize mappings on the spaces of discrete efforts variables.



4.2 Approximation of the Stokes-Dirac Structure 69

Definition 4.3. The vectors of discrete boundary port variables9 eb,µ, f b,µ0 ∈
RM

µ
b and êb,ν , f̂ b,ν0 ∈ RM̂ν

b , associated with the boundary subdomains Γµ ⊂ ∂Ω,
µ = 1, . . . , nΓ, Γ̂ν ⊂ ∂Ω, ν = 1, . . . , n̂Γ, satisfy

〈eq|Lµq ep〉 =: 〈eb,µ|f b,µ0 〉, 〈ep|L̂νpeq〉 =: 〈êb,ν |f̂ b,ν0 〉, (4.27)

i. e. their duality products (which are standard Euclidean scalar products on
the finite-dimensional bond space) match the discrete expression of the power
flow over Γµ and Γ̂ν , respectively.

We decompose the boundary power matrices for each boundary subdomain
in matrix products

Lµq = (Tµ
q )TSµp,0, L̂νp = (T̂ν

p)T Ŝνq,0. (4.28)

The boundary trace matrices10 Tµ
q ∈ RM

µ
b
×Mq , T̂ν

p ∈ RM̂ν
b ×Mp define the effort

degrees of freedom
eb,µ = Tµ

q eq, êb,ν = T̂ν
pep (4.29)

that lie on the boundary and are assigned the roles of input variables. The
elements of Tµ

q and T̂ν
p are typically only zero and ±1, depending on the

orientation of the boundary. We call Sµp,0 ∈ RM
µ
b
×Mp , Ŝνq,0 ∈ RM̂ν

b ×Mq the
collocated boundary output matrices. They define the boundary flow variables

f b,µ0 = Sµp,0ep, f̂ b,ν0 = Ŝνq,0eq, (4.30)

which, together with the discrete efforts (4.29), satisfy exactly the discrete
power balance (4.27) on the different portions of the boundary11. Because of

〈eΓ
µ|fΓ

µ 〉Γµ = (−1)p〈eq|ep〉Γµ
≈ (−1)p

〈
〈eq|ϕq〉

∣∣∣〈ep|ϕp〉〉
Γµ

= 〈eq|Lµq ep〉 = 〈eb,µ|f b,µ0 〉,

〈êΓ
ν |f̂Γ

ν 〉Γ̂ν = (−1)p〈ep|eq〉Γ̂ν
≈ (−1)p

〈
〈ep|ϕp〉

∣∣∣〈eq|ϕq〉〉
Γ̂ν

= 〈ep|L̂νpeq〉 = 〈êb,ν |f̂ b,ν0 〉,

(4.31)

the definition of discrete boundary port variables is consistent with the dis-
tributed definition (4.4). Summation over the individual boundary power ma-
trices according to (4.23) yields a matrix equation that expresses the boundary
power balance,

Lp = STp,0Tq + T̂T
p Ŝq,0 = LTq , (4.32)

9Discrete boundary variables have index b, in contrast to index ∂ for the original dis-
tributed quantities on ∂Ω.

10This denomination refers to the trace theorem for the extension of a Hm function to
the boundary.

11The subscript 0 indicates that these discrete output variables will be re-defined when
we derive a PH state space model based on a (non-degenerate) Dirac structure.
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where

Tq =

 T1
q
...

TnΓ
q

 , Sp,0 =

S1
p,0
...

SnΓ
p,0

 , T̂p =

 T̂1
p
...

T̂n̂Γ
p

 , Ŝq,0 =

Ŝ1
q,0
...

Ŝn̂Γ
q,0

 . (4.33)

The overall vectors of discrete boundary port variables comprise the contribu-
tions of each boundary subset with corresponding causality12,

eb = Tqeq, f b0 = Sp,0ep, êb = T̂pep, f̂ b0 = Ŝq,0eq, (4.34)

with

eb =

 eb,1
...

eb,nΓ

 , f b0 =

 f b,10
...

f b,nΓ
0

 , êb =

 eb,1
...

eb,n̂Γ

 , f̂ b0 =

 f b,10
...

f b,n̂Γ
0

 . (4.35)

4.2.5 Power Balance on the Discrete Bond Space

The vectors of discrete flows and efforts fp/q, ep/q that satisfy (4.21), together
with the discrete boundary ports of different causality, define a subset of the
bond space

F × E = (RNp × RNq × RMb × RM̂b) × (RMp × RMq × RMb × RM̂b), (4.36)

with Mb =
∑nΓ
µ=1M

µ
b , M̂b =

∑n̂Γ
ν=1 M̂

ν
b . On this subspace, a discrete power

balance holds that approximates the continuous one (4.4).

Proposition 4.2. The subspace

D = {(fp, f q, f b0 , f̂ b0 , ep, eq, eb, êb) ∈ F × E | (4.21) holds}, (4.37)

with the boundary port variables defined by (4.29) and (4.30), satisfies the
isotropy condition D ⊂ D⊥ with respect to the bilinear form 〈〈·, ·〉〉M that
results from symmetrization of the duality product

〈·|·〉M := 〈ep|Mpfp〉+ 〈eq|Mqf q〉+ 〈eb|f b0〉+ 〈êb|f̂ b0〉. (4.38)

Proof. The proposition generalizes Proposition 18 in [138] and follows the same
lines. We write out the symmetrized bilinear form, replacing (4.21) (short
notation: (K+L)p/q := Kp/q+Lp/q):

〈ep1|Mpfp2 〉+ 〈eq1|Mqf q2 〉+ 〈eb1|(f b0)2〉+ 〈êb1|(f̂ b0)2〉 (4.39)
+ 〈ep2|Mpfp1 〉+ 〈eq2|Mqf q1 〉+ 〈eb2|(f b0)1〉+ 〈êb2|(f̂ b0)1〉

= −〈ep1|(K+L)peq2〉 − 〈eq2|(K+L)pep1〉 − 〈eq1|(K+L)pep2〉 − 〈ep2|(K+L)peq1〉
+ 〈Tqeq1|Sp,0ep2〉+ 〈T̂pep1|Ŝq,0eq2〉+ 〈Tqeq2|Sp,0ep1〉+ 〈T̂pep2|Ŝq,0eq1〉.

12The causality of a pair of port variables changes if the role of in- and output is permuted.
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Exploiting the matrix equalities (4.24) and (4.32), we obtain

−〈ep1|Lpeq2〉 − 〈eq1|Lqep2〉+ 〈eq1|Lqep2〉+ 〈ep1|Lpeq2〉 = 0, (4.40)

which proves isotropy of D with respect to 〈〈·, ·〉〉M .

The discrete power continuity equation, which represents the counterpart
of (4.4) in the approximation subspaces, finally reads

〈ep|Mpfp〉+ 〈eq|Mqf q〉+ 〈eb|f b0〉+ 〈êb|f̂ b0〉 = 0. (4.41)

The subspace (4.37) is, however, not a Dirac structure, as the duality prod-
uct 〈·|·〉M defined in (4.38) is degenerate in general. Its value can be zero for
nonzero discrete flows and/or efforts that lie in the kernel of Mp, Mq, or their
transposes. This motivates the introduction of power-preserving mappings on
the discrete bond space in Section 4.3.

Remark 4.3. The problem of a degenerate duality product does not appear in
the approach according to [56], which is based on a metric-dependent Dirac
structure. The parameters in the power-preserving maps introduced below
represent, however, degrees of freedom to tune the resulting numerical methods.

4.2.6 Discrete Conservation Laws

Assume the matrices in the second terms of (4.21) can be factorized as
Kp + Lp = −(−1)rMpdp
Kq + Lq = −Mqdq.

(4.42)

Then the set of linear equations that relates discrete flow and effort degrees of
freedom has the form [

fp
f q
]

=
[

0 (−1)rdp
dq 0

] [
ep
eq
]
. (4.43)

This is a direct discrete representation of the two conservation laws with dp ∈
RNp×Mq and dq ∈ RNq×Mp discrete derivative matrices that replace the exterior
derivative in the distributed parameter setting. For a mixed FE approximation
based on Whitney forms of lowest polynomial degree, see e. g. [21], the rep-
resentation (4.43) is obtained by integrating only over the respective discrete,
oriented geometric objects (volumes, faces or edges) on the discretization mesh
instead of the whole domain Ω. The matrices dp and dq are then the transposed
incidence matrices13, which relate the geometric objects on the mesh.

Remark 4.4. The direct discrete representation (4.43) is immediately obtained
if, instead of (4.17), the test forms in the finite-dimensional approximation are
chosen as

vph = 〈vp|∗ψp〉, vqh = 〈vq|∗ψq〉, vp ∈ RNp , vq ∈ RNq . (4.44)
13In order to avoid confusion with the actuated system boundary, we use, as in [174] or

[198], the term incidence matrix instead of boundary matrix.
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4.3 Power-Preserving Mappings and Dirac Structure

The discrete power balance (4.41) contains the duality pairings 〈ep|Mpfp〉 and
〈eq|Mqf q〉, which are degenerate in general, i. e. the matrices Mp and Mq may
be non-quadratic and have reduced rank, see Table 4.4 for the 2D example
considered in Section 4.7. To obtain a finite-dimensional Dirac structure with
non-degenerate power pairings, as a basis for the PH approximation model
in state space form, we introduce power-preserving mappings of the discrete
flow and effort vectors onto finite-dimensional spaces of appropriate, identical
dimension. We motivate these mappings by the following example.

Example 4.1. Consider the discrete power balance, a simplified representation
of (4.41), 〈e|Mf〉+ 〈eb|f b0〉 = 0 with the degenerate bilinear form 〈e|Mf〉. Let
e ∈ Rne , f ∈ Rnf , nf 6= ne and the matrix M be of reduced rank rM <
min(ne, nf ). Now choose rM vectors ei and fi, i = 1, . . . , rM , such that the
image spaces of M and MT are spanned by

span{Mf1, . . . ,MfrM } =: span{w1, . . . ,wrM } = im(M),
span{MTe1, . . . ,MTerM } =: span{v1, . . . ,vrM } = im(MT ).

(4.45)

Suppose that the matrix M can be decomposed as

M = PT
e Pf with Pe =

 wT
1
...

wT
rM

 , Pf =

 vT1
...

vTrM

 , (4.46)

then the degenerate bilinear form can be replaced by the non-degenerate duality
product 〈ẽ|f̃〉 with ẽ = Pee, f̃ = Pf f , and the discrete power balance becomes
〈ẽ|f̃〉+〈eb|f b0〉 = 0. By the definition of the rows of Pe and Pf , i. e. wT

i = fTi MT

and vTi = eTi M, it is easy to see that Pee = 0 for e ∈ ker(MT ) and Pf f = 0 for
f ∈ ker(M). This means that Pe and Pf describe mappings from the quotient
spaces Rne/ ker(MT ) and Rnf / ker(M) to RrM , which map the equivalence
classes14

[e] = {e′ ∈ Rne | ∃e′′ ∈ ker(MT ), e′ = e + e′′} and
[f ] = {f ′ ∈ Rnf | ∃f ′′ ∈ ker(M), f ′ = f + f ′′}

(4.47)

onto an embedding of Rne × Rnf , endowed with coordinates (ẽ, f̃). We call
ẽ, f̃ ∈ RÑ minimal discrete power variables with Ñ = rM in the considered
case.

If no factorization (4.46) exists – this is the case if the dimension of the
minimal bond variables is lower than the rank of M, Ñ < rM – the “internal”
power term 〈e|Mf〉 can not be matched with 〈ẽ|f̃〉. Preservation of the total

14The maps from Rne and Rnf to the quotient spaces are projections.
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discrete power balance will in such a case be achieved by an appropriate re-
definition of the output f b0 → f b such that 〈ẽ|f̃〉 + 〈eb|f b〉 = 0 holds, see the
following subsection. For an illustration, consider Example 4.5: The original
output vector f̂ b0 does not contain the rotational components contained in f̂ b
as depicted in Fig. 4.13.

4.3.1 Minimal Discrete Bond Variables

We use the argumentation sketched above to construct a Dirac structure on a
minimal discrete bond space. To replace 〈ep|Mpfp〉 and 〈eq|Mqf q〉 in (4.41)
by non-degenerate duality pairings, we determine power-preserving mappings

ẽp = Pepep, ẽq = Peqeq and f̃p = Pfpfp, f̃ q = Pfqf q, (4.48)

such that
Ñp := dim ẽp = dim f̃p ≤ rank(Mp) and

Ñq := dim ẽq = dim f̃ q ≤ rank(Mq).
(4.49)

We refer to the vectors f̃p, ẽp ∈ RÑp , f̃ q, ẽq ∈ RÑq as minimal discrete flows
and efforts, as they can be interpreted as coordinates of an embedding in the
original discrete bond space.

Example 4.2. In the 1D case, p = q = 1, using Whitney finite elements or
the pseudo-spectral method [138], we have, N = Np = Nq and M = Mp = Mq

with M = N + 1. Fixing f̃p = fp, f̃ q = f q, minimal discrete efforts can be
defined as ẽp = MT

p ep and ẽq = MT
q eq.

The following definition summarizes the core property of power-preserving
mappings.

Definition 4.4. The discrete flow and effort mappings (4.48) are called power-
preserving if they satisfy a discrete power balance

〈ẽp|f̃p〉+ 〈ẽq|f̃ q〉+ 〈eb|f b〉+ 〈êb|f̂ b〉 = 0 (4.50)

with the given boundary inputs eb, êb according to (4.29) and possibly modified
boundary outputs

f b = Sµpep, f̂ b = Ŝνqeq. (4.51)

Remark 4.5. If the mappings satisfy PT
epPfp = Mp and PT

eqPfq = Mq, the
“interior” part of the power balance (4.41) is exactly represented by the minimal
flows f̃ and efforts ẽ, and (4.50) holds with the original, collocated outputs
f b = f b0 , f̂ b = f̂ b0 . If, however, Ñq < rank(Mq) and/or Ñp < rank(Mp), a
part of the power, originally described by 〈ep|Mpfp〉 + 〈eq|Mqf q〉, must be
“swapped” to the boundary terms of (4.50) via the re-definition of the outputs.
This way, the power-balance is maintained globally, and conservativeness of
the finite-dimensional approximation is guaranteed.
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To characterize the power-preserving mappings and modified output maps
that guarantee power continuity (4.50), we substitute in this equation the def-
initions of the effort and flow maps, the in- and outputs, and substitute fp, f q
according to the discrete representation (4.43) of the conservation laws. The
new power variables are now expressed in terms of the original discrete efforts,


f̃p
f̂ b
f̃ q
f b


︸ ︷︷ ︸

f̄

=


0 (−1)rPfpdp
0 Ŝq

Pfqdq 0
Sp 0


︸ ︷︷ ︸

ET

[
ep
eq
]

︸︷︷︸
e

,


ẽp
êb
ẽq
eb


︸ ︷︷ ︸

ē

=


Pep 0
T̂p 0
0 Peq

0 Tq


︸ ︷︷ ︸

FT

[
ep
eq
]

︸︷︷︸
e

.
(4.52)

Equation (4.50) must hold for arbitrary ep, eq, and by substituting the com-
ponents of f̄ and ē in (4.50), we obtain the following matrix condition.

Proposition 4.3 (Power-preserving mappings). The effort, flow and output
maps are power-preserving, if they satisfy the matrix equation

(−1)rdTp PT
fpPep + PT

eqPfqdq + TT
q Sp + ŜTq T̂p = 0. (4.53)

The power-preserving maps are not unique. Different parametrizations of
the matrices yield different finite-dimensional Dirac structures that approxi-
mate the original Stokes-Dirac structure as defined in Theorem 2.4. Together
with a consistent approximation of the constitutive equations, we obtain PH ap-
proximate models with different numerical properties. A favorable parametriza-
tion will depend on the nature of the system (e. g. if dynamics and closure
equations make the system hyperbolic or parabolic), the distribution and type
of boundary inputs, and the application case. In any case, the power-preserving
maps generate a minimal space of power variables on which an approximate
Dirac structure is defined.

In Sections 4.6 and 4.7, we will illustrate the construction of the power-
preserving maps on the example of Whitney approximation forms in 1D and
on a rectangular simplicial mesh in 2D. The degrees of freedom in the map-
pings will allow for a trade-off between centered schemes and upwinding in the
discretized PH models.

Remark 4.6. Equation (4.53) relates the “discrete differentiation matrices” dp,
dq and the “discrete trace matrices” Tq, T̂p, paired with Sp, Ŝq. This is an
apparent reference to Stokes’ theorem A.1, which is instrumental in deriving
this discrete representation of power continuity (see also Eq. (43) in [138]).

4.3.2 Dirac Structure

The power-preserving maps that satisfy (4.53) define a Dirac structure. We
verify that (4.52) is an image representation of this Dirac structure on the
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minimal discrete bond space. If the effort maps are invertible, an unconstrained
input-output representation exists.

Proposition 4.4 (Image representation). Consider the discrete flow and effort
vectors f̄ and ē as indicated in (4.52). (f̄ , ē) is an element of the bond space

F̄ × Ē = RÑp+M̂b+Ñq+Mb × RÑp+M̂b+Ñq+Mb . (4.54)

Let Ñp + Ñq + M̂b + Mb = Mp + Mq and assume that the matrix condition
(4.53) is satisfied. If

rank(
[
Pep

T̂p

]
) = Mp and rank(

[
Peq

Tq

]
) = Mq, (4.55)

then the subspace defined by (4.52), i. e.

D̄ = {(f̄ , ē) ∈ F̄ × Ē | f̄ = ETe, ē = FTe, e ∈ RM
p+Mq}, (4.56)

is a Dirac structure.
Proof. According to the image representation of a Dirac structure, see Theorem
2.2, the dimensions of f̄ and ē must be less15 or equal dim(e), which is ensured
by Ñp + Ñq + M̂b + Mb = Mp + Mq. The condition rank([F E]) = Mp + Mq

is satisfied by (4.55), from which rank(F) = Mp + Mq follows. Moreover, the
skew-symmetry condition EFT + FET = 0 must hold. EFT + FET according
to (4.52) gives[

0 XT

X 0

]
, X = (−1)rdTp PT

fpPep + PT
eqPfqdq + TT

q Sp + ŜTq T̂p. (4.57)

Because of (4.53), this is the zero matrix, which completes the proof.

4.4 Finite-Dimensional Port-Hamiltonian Model

The fact that both matrices in (4.55) are assumed square and invertible guaran-
tees the existence of an explicit input-output representation of the above-defined
Dirac structure.

Corollary 4.1 (Input-output representation). Under the conditions of Propo-
sition 4.4, the Dirac structure admits an unconstrained input-output represen-
tation [

−f̃p
−f̃ q

]
=
[

0 Jp
Jq 0

] [
ẽp
ẽq
]

+
[

0 Bp

Bq 0

] [
êb
eb
]
, (4.58a)[

f̂ b
f b
]

=
[

0 Cq

Cp 0

] [
ẽp
ẽq
]

+
[

0 Dq

Dp 0

] [
êb
eb
]

(4.58b)

with
Jp = −JTq , Cq = BT

q , Cp = BT
p , Dq = −DT

p . (4.59)
15This is the case of a relaxed image representation.
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Proof. The latter (skew-)symmetry conditions can be summarized as[
−Jp −Bp

Cq Dq

]
+
[
−Jq −Bq

Cp Dp

]T
=
[
0 0
0 0

]
. (4.60)

The submatrices in Eq. (4.58) are obtained from evaluation of f̄ in (4.52) and
exploiting invertibility of the matrices in (4.55). We can write[

−Jp −Bp

Cq Dq

]
=
[
(−1)rPfpdp

Ŝq

] [
Peq

Tq

]−1
,[

−Jq −Bq

Cp Dp

]
=
[
Pfqdq

Sp

] [
Pep

T̂p

]−1

.

(4.61)

Substituting these relations in (4.60) and multiplying with the non-singular

matrices
[
PT
ep T̂T

p

]
from the left and

[
Peq

Tq

]
from the right yields the left hand

side of (4.53). The right hand side being zero, this proves (skew-)symmetry of
the matrices (4.59) of the input-output representation.

Remark 4.7. The proposition is a generalization of Proposition 20 in [138]
for the 1D case and the pseudo-spectral method. Note that the rank condition
(4.55) on the effort and boundary maps, which is expressed in addition to (4.53),
is sufficient (not necessary) for the subspace (4.56) to be a Dirac structure.

To build from the input-output representation of the Dirac structure a finite-
dimensional PH model for the canonical system of two conservation laws, we
replace the minimal discrete flow variables by time derivatives of discrete states

−f̃p =: ˙̃p ∈ RÑp , −f̃ q =: ˙̃q ∈ RÑq . (4.62)

To complete the geometric discretization, a consistent approximation of the
constitutive equations is necessary. For the considered hyperbolic case, the
minimal efforts need to be expressed as the partial derivatives of a suitable
discrete Hamiltonian H̃d(p̃, q̃),

ẽp =
(
∂H̃d

∂p̃

)T
∈ RÑp , ẽq =

(
∂H̃d

∂q̃

)T
∈ RÑq . (4.63)

We present the discretization of the constitutive equations in more detail in
the FE examples of the following sections.

With the combined state, input and output vectors

x =
[
p̃
q̃

]
∈ RÑp+Ñq , u =

[
êb
eb
]
∈ RMb+M̂b , y =

[
f̂ b
f b
]
∈ RMb+M̂b , (4.64)
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the resulting state space model has explicit PH form (J = −JT , D = −DT )

ẋ = J∇Hd(x) + Bu
y = BT∇Hd(x) + Du

(4.65)

and the discrete energy satisfies the balance equation

Ḣd = −yTu, (4.66)

which is the finite-dimensional counterpart of (2.44). The PH form allows to
easily interconnect the finite-dimensional model of the system of two conserva-
tion laws with other subsystems in a power-preserving way, which is the basis
for energy-based control design by interconnection see e. g. [122].

4.5 Whitney Finite Elements

We will show the application of the introduced structure-preserving discretiza-
tion approach using Whitney forms [209] of lowest polynomial degree to set
up the finite element approximation bases for flows and efforts (4.6) and (4.7).
Whitney forms can be constructed based on the barycentric node weights [23].
The degrees of freedom (in 3D) are directly associated to the nodes, oriented
edges, faces and volumes of the simplicial discretization mesh. The geometric
discretization of Maxwell’s equations as described in [21] is based on Whitney
forms, and the resulting finite-dimensional models feature the (co-)incidence
matrices of the underlying discretization meshes [24]. They can be considered
a direct representation of the physical laws on the discrete balance regions of
the triangulation.

Whitney forms in 1D. Consider a one-dimensional domain Ω = (0, L) ⊂
R, which is divided by equidistant nodes (step size h = L

N ) zi = (i − 1)h,
i = 1, . . . , N + 1, into N intervals Ik = ((k − 1)h, kh), k = 1, . . . , N . The
Whitney 0-forms (node forms) over the discretization grid are the well known
“hat functions”

wni =


1
h (z − zi−1), z ∈ Ii−1, i > 1,
1− 1

h (z − zi), z ∈ Ii, i < N + 1,
0, otherwise.

(4.67)

The Whitney 1-forms (edge forms)

wek =
{

1
hdz, z ∈ Ik,
0, otherwise,

(4.68)

are piecewise constant and satisfy
∫

Ω w
ek = 1, k = 1, . . . , N .
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Figure 4.1: Illustrations of the Whitney forms over a 2-simplex. Top: Node form
wn1 . Middle: Negative x- and positive y-component of the edge form we2 . Bottom:
Face form wf1 .

Whitney forms over a 2D simplex. Consider the triangle f1 = {(x, y) |
x, y ≥ 0, 0 ≤ x + y ≤ h}, with vertices n1 = (0, 0), n2 = (h, 0), n3 = (0, h),
which are connected by the oriented edges e1, e2 and e3 as shown in Fig. 4.1.
The node, edge and face forms are constructed according to [23]:

wn1 = 1− x

h
− y

h
, wn2 = x

h
, wn3 = y

h
, (4.69)

we1 = h− y
h2 dx+ x

h2 dy, we2 = − y

h2 dx+ x

h2 dy, we3 = − y

h2 dx+ x− h
h2 dy,

(4.70)

wf1 = 2
h2 dx ∧ dy. (4.71)

The 0-, 1- and 2-forms verify wni(nj) = δij ,
∫
ei
wej = δij (δij the Kronecker-

Delta) and
∫
f1
wf1 = 1.

4.6 One-Dimensional Examples

In this section, we apply the structure-preserving discretization method intro-
duced above to the benchmark 1D examples of the linear wave and the linear
heat equation on the interval Ω = (0, 1) ⊂ R. We use the Whitney node
and edge forms to approximate efforts and flows. We discuss the quality of
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the resulting numerical schemes in terms of the eigenvalue approximation and
illustrate it by the numerical solutions of initial value problems. The power-
preserving mappings in the 1D case feature a single tuning parameter, which
allows to adapt the approximation method to the nature of the considered sys-
tem. While upwinding will be convenient in the hyperbolic case, a centered
scheme is favorable for a parabolic system.

4.6.1 Discretization of the Structure Equations

Both the wave and the heat equation share the same structure equation, see
(2.59a) and (2.88a). For n = 1, we have[

fp

fq

]
=
[

0 d
d 0

] [
ep

eq

]
(4.72)

with fp, fq ∈ L2Λ1(Ω) and ep, eq ∈ H1Λ0(Ω). We consider the (input) bound-
ary efforts

ê∂ = tr ep|z=1 , e∂ = tr eq|z=0 . (4.73)

The collocated and power-conjugated boundary flows are

f̂∂ = − tr eq|z=1 , f∂ = tr ep|z=0 . (4.74)

It is straightforward to verify that with this choice, the structural power balance

〈ep|fp〉Ω + 〈eq|fq〉Ω + 〈e∂ |f∂〉∂Ω + 〈ê∂ |f̂∂〉∂Ω = 0 (4.75)

holds. Using the weak form of the structure equations (4.72) and the finite-
dimensional effort and flow spaces Φp = Φq and Ψp = Ψq, which are spanned
by Whitney node and edge forms according to (4.67) and (4.68), we obtain a
linear system of equations in the form

Mpfp = (Kp + Lp)eq,
Mqf q = (Kq + Lq)ep.

(4.76)

The degrees of freedom in fp, f q ∈ RN are approximations of the integrals of
fp, fq ∈ L2Λ1(Ω) over the intervals Ik, while the elements of ep, eq ∈ RN+1

approximate the node values of ep, eq ∈ H1Λ0(Ω). The matrices in (4.76) are,
according to (4.20),

Mp = Mq = 1
2


1
1 1

. . . . . .
1 1

1

 ∈ R(N+1)×N , (4.77)



80 4 Mixed Galerkin Discretization

Kp = Kq = 1
2


−1 −1
1 0 −1

. . . . . . . . .
1 0 −1

1 1

 ∈ R(N+1)×(N+1) (4.78)

and

Lp = Lq =


1

0
. . .

0
−1

 ∈ R(N+1)×(N+1). (4.79)

The sums (Kp + Lp) and (Kq + Lq) can be factorized according to (4.42), such
that (4.76) can be rewritten as the discrete conservation laws[

fp
f q
]

=
[

0 dp
dq 0

] [
ep
eq
]
. (4.80)

with

dp = dq =

−1 1
. . . . . .

−1 1

 ∈ RN×(N+1) (4.81)

the co-incidence matrices of the oriented discretization grid. Note that dp and
dq can be directly obtained using the test functions indicated in (4.44).

4.6.2 Power-Preserving Mappings

The definition of boundary efforts (4.73) translates into the 1× (N + 1) input
trace matrices

Tq =
[
1 0 . . . 0

]
, T̂p =

[
0 . . . 0 1

]
. (4.82)

By the N × (N + 1) matrices

Peq =
[
0N×1 IN

]
, Pep =

[
IN 0N×1

]
, (4.83)

those effort degrees of freedom are identified, which play the role of co-states
ẽpi , ẽ

q
j , i, j = 1, . . . , N , in the discretized model. The matrices in (4.55) become

permutation matrices and condition (4.53) can be written[
dTp PT

fp ŜTq
]

+
[

Sp
Pfqdq

]
= 0. (4.84)



4.6 One-Dimensional Examples 81

The N ×N flow mapping matrices

Pfp = PT
fq =


1−α
α 1−α

. . . . . .
α 1−α

 (4.85)

and the 1× (N + 1) power-conjugated output matrices

Sp =
[
1−α α 0 . . . 0

]
, Ŝq =

[
0 . . . 0 −α α−1

]
, (4.86)

which satisfy (4.84), contain a single parameter α ∈ R. It serves as a degree
of freedom in our discretization approach. Its effect on the resulting PH state
space models, in particular on the quality of the numerical approximations
for the wave and the heat equation, will be discussed and illustrated in the
following subsections.

4.6.3 Constitutive Equations

Both linear wave and heat equation feature constitutive equations that close
the corresponding system representation. In the sequel, we consider cases with
normalized (material) parameters. For the 1D wave equation, according to
(2.59c) and with the Hamiltonian

H = 1
2 〈p|∗p〉Ω + 1

2 〈q|∗q〉Ω, (4.87)

we have the linear relations

ep = δpH = ∗p, eq = δqH = ∗q. (4.88)

A similar situation occurs for the heat equation with constant heat conductivity
and heat capacity λ = cv = 1, see (2.88c),

ep = ∗p, eq = −∗fq, (4.89)

with the difference that the second equation relates effort and flow.
In both cases, we look for lumped approximations of the Hodge star op-

erator. We determine diagonal Hodge matrices (see e. g. [178]) such that the
above constitutive equations translate into

ẽp = Qpp̃, ẽq = Qqq̃ (4.90)

and
ẽp = Qpp̃, ẽq = −Qq f̃ q, (4.91)

respectively. Qp and Qq are constructed based on the requirement of consis-
tency in a steady state and using the above-defined power-preserving mappings.
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We derive the diagonal Hodge matrices based on the hyperbolic case of the wave
equation, and apply the results accordingly to the discretized heat equation.

To this end, we compute the variation of the approximate Hamiltonian
functional Hh, i. e. (4.87) under substitution of the finite-dimensional approx-
imations

ph =
N∑
k=1

pkψk, qh =
N∑
k=1

qkψk (4.92)

of both conserved quantities. Herein, ψk = we,k ∈ L2Λ1(Ω) denotes the Whit-
ney edge forms to approximate p and q, respectively. The following identities
hold due to 〈we,k|∗we,l〉Ω = 1

hδkl, with δkl the Kronecker delta:

〈ψk|∗ph〉Ω = pk〈ψk|∗ψk〉Ω = pk
h
, 〈ψk|∗qh〉Ω = qk〈ψk|∗ψk〉Ω = qk

h
. (4.93)

The variations δpk and δqk in the discrete degrees of freedom, k = 1, . . . , N ,
yield (neglecting higher order terms) the first variation of the approximate
energy functional

δHh =
N∑
k=1
〈ψk|∗ψk〉Ω pk︸ ︷︷ ︸

=:δpkHh

δpk +
N∑
k=1
〈ψk|∗ψk〉Ω qk︸ ︷︷ ︸

=:δqkHh

δqk. (4.94)

The expressions
δpkH

h = pk
h
, δqkH

h = qk
h
, (4.95)

k = 1, . . . , N , represent consistent approximations of the continuous constitu-
tive equations (4.88). This becomes clear when we assume uniform distributions
of the conserved quantities

ps = p̄ dz, qs = q̄ dz (4.96)

with constants p̄, q̄ ∈ R. Substitution of (4.96) in (4.88) gives δpH = p̄ and
δqH = q̄. Using Whitney edge forms, the discrete degrees of freedom to realize
such a constant distribution are p̄k = hp̄, q̄k = hq̄, k = 1, . . . , N . Replacing
these values in (4.95) gives finally δpkHh = p̄ and δqkH

h = q̄, which can be
used to define the co-state variables

ẽpk = δpkH
h = pk

h
, ẽqk = δqkH

h = qk
h
, (4.97)

k = 1, . . . , N , in the interior nodes of the discretization grid.
Note that pk and qk are elements of the original vectors p,q ∈ Rn of

edge degrees of freedom for the conserved quantities. The discrete constitutive
equations (4.90), however, are expressed in terms of the discrete state vectors

p̃ = Pfpp, q̃ = Pfqq. (4.98)
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In the 1D case considered here, the maps Pfp and Pfq according to (4.85) are
invertible for α 6= 1, however, the matrices P−1

fp and P−1
fq are lower triangular

and hence not sparse for α 6= 0. Moreover, in the 2D case presented in the next
section, the mapping matrices for flows/states will not even be square. For
this reason, we reverse the mappings (4.98) only for constant, identical discrete
states, which is exactly the case we consider for a consistent approximation of
the constitutive equations. We write (4.98) element-wise:

p̃i =
N∑
i=1

[Pfp]i,kpk, q̃i =
N∑
i=1

[Pfq]i,kqk. (4.99)

For identical and constant (indicated by the bar) degrees of freedom p̄1 = . . . =
p̄N and q̄1 = . . . = q̄N , we can set pk = p̄i and qk = q̄i, which allows to write

p̃i =
(

N∑
i=1

[Pfp]i,k

)
p̄i, q̃i =

(
N∑
i=1

[Pfq]i,k

)
q̄i. (4.100)

Inversion of the latter relations and substitution in (4.97) yields the consistently
computed diagonal elements, i = 1, . . . , N ,

[Qp]i,i = 1
h
∑N
k=1[Pfp]i,k

, [Qq]i,i = 1
h
∑N
k=1[Pfq]i,k

, (4.101)

of the Hodge matrices in (4.90). For the flow/state mappings as defined in
(4.85), we finally obtain

Qp = 1
h
diag{ 1

1−α, 1, . . . , 1}, (4.102a)

Qq = 1
h
diag{1, . . . , 1, 1

1−α}. (4.102b)

In the hyperbolic case, the so-defined lumped co-states can be derived from the
quadratic Hamiltonian

Hd(p̃, q̃) = 1
2 p̃TQpp̃ + 1

2 q̃TQqq̃. (4.103)

4.6.4 Interpretation of the Mapping Parameter

When using Whitney approximation forms, the meaning of the discretization
degrees of freedom p1, . . . , pN and q1, . . . , qN as accumulated conserved quanti-
ties, as well as ep1, . . . , e

p
N+1 and eq1 . . . e

p
N+1 as nodal effort variables, allows for

a clear interpretation of the mapping parameter α. To this end, we consider
the discretized constitutive equations for the wave equation16 (4.90), as well as

16A corresponding argumentation holds for the constitutive equations (4.91) for the heat
equation.
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Figure 4.2: The variation of α modifies the weights of the integral conserved quan-
tities in the definition of the state vectors p̃ and q̃. This can also be interpreted as
a shift of the balance intervals, which are used to compute the lumped co-states ẽp
und ẽq, which are located in the grid nodes.

the definition of lumped states p̃ = Pfpp and q̃ = Pfqq via the matrices in
(4.85). While the elements of the vectors ẽp = Pepep and ẽq = Peqeq represent
approximate values of the co-state variables in the interior grid nodes (i. e. the
nodes where no boundary condition is imposed), the elements of p and q stand
for approximate integral conserved quantities between the nodes. The elements
of the state vectors p̃ and q̃ are weighted sums (factors α and 1− α) of these
lumped conserved quantities. From this fact, we can conclude the following in-
terpretations of the discretized constitutive equations depending on the value
of α. Figure 4.2 illustrates the effects of the parameter choices α = 0 (Case 1)
and α = 1

2 (Case 3) on the definition of discrete co-states.

Case 1, α = 0

The co-state ẽpi (ẽqj), which is located in a grid node, is computed based on
the lumped state p̃i = pi (q̃j = qj) on the neighboring interval to the right (to
the left). This one-sided numerical approximation of the constitutive equations
gives preference to the direction from where the input information comes, i. e.
where the corresponding boundary effort êb (eb) is imposed as an input. The
same holds qualitatively if α < 1

2 . In this sense, we can understand such a
choice of α as an upwinding parametrization.

Case 2, α < 0

In this case, the constitutive equations can be rewritten as

ẽpi = 1
h

(pi + (−α)(pi − pi−1)) , ẽqj = 1
h

(qj + (−α)(qj − qj+1)) . (4.104)

Now, −α > 0 weights the difference between two adjacent conserved quantities.
As will be evident in the following subsection, a slightly negative value of α is
favorable for the numerical solution of the hyperbolic wave equation.
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Case 3, α = 1
2

In this case, the conserved quantities to both sides are equally weighted in order
to compute the node effort. Such a centered approximation fits to nature of the
parabolic heat equation, which is characterized by symmetric diffusion. Sub-
section 4.6.6 illustrates the superiority of the centered approximation compared
to a one-sided scheme for the linear heat equation.

4.6.5 Wave Equation

In this subsection, we set up the approximate finite-dimensional state space
representation for the wave equation. We analyze the quality of the discretized
models in terms of the eigenvalue approximation (taken from [104]), and illus-
trate the difference of our approach to [71]. The numerical solution of an initial
value problem (as described in [97]) supports the findings from the eigenvalue
analysis. The inverse boundary value problem for feedforward control will be
addressed in Chapter 6.

4.6.5.1 State Space Model

The matrices defined in Subsections 4.6.1 and 4.6.2 are substituted in (4.61)
in order to obtain the input-output representation of the finite-dimensional
approximation Dirac structure. The in- and outputs according to (4.73) and
(4.74) are

u1 = eq(0), u2 = ep(1), y1 = ep(0), y2 = −eq(1). (4.105)

The matrices in (4.61) are

Jp = −JTq =


α− 1
1− 2α α− 1
α 1− 2α α− 1

. . . . . . . . .
α 1− 2α α− 1

 , (4.106a)

BT
p = Cp = Sp =

[
1− α α 0 . . . 0

]
, (4.106b)

BT
q = Cq = Ŝq =

[
0 . . . 0 −α α− 1

]
, (4.106c)

Dp = −DT
q = 0. (4.106d)

Remark 4.8. Note that no structural feedthrough occurs in our scheme, in con-
trast to the structure-preserving discretization approach proposed in [71].

With the constitutive equations (4.90) and the lumped dynamics

˙̃p = −f̃p, ˙̃q = −f̃ q, (4.107)
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p1 p2

q1 q2

(Input)
eb = eq

1 ẽq
1 = eq

2 ẽq
2 = eq

3

ẽp
1 ẽp

2 êb = ep
3

(Input)

p̃1 = (1−α)p1 p̃2 = αp1 + (1−α)p2

q̃1 = (1−α)q1 + αq2 q̃2 = (1−α)q2

QqQp

p1 p2

q1 q2

(Input)
eb = eq

1 eq
2 eq

3

ep
1 ep

2 êb = ep
3

(Input)

ẽq
1 = α′eq

1
+(1 −α′)eq

2

ẽq
2 = α′eq

2
+(1 −α′)eq

3

ẽp
1 = (1−α′)ep

1
+α′ep

2

ẽp
2 = (1−α′)ep

2
+α′ep

3

QqQp

Figure 4.3: Illustration of the difference between our approach and the method
according to [71]. In our approach, the discrete efforts at the interior nodes are
computed – via appropriate discrete Hodge matrices – based on convex sums of the
original discrete states (left sketch). Following [71], the original discrete states remain
unchanged, but the co-states are computed as convex sums of the node efforts (right
sketch). For α = 0 and α′ = 0 both methods coincide. Then, for example, the
co-state ẽq1 = eq2 is determined based on the integral conserved quantity q1 in both
cases.

we obtain the approximate port-Hamiltonian state space model[ ˙̃p
˙̃q

]
=
[

0 Jp
−JTp 0

] [
Qp 0
0 Qq

] [
p̃
q̃

]
+
[
Bp 0
0 Bq

] [
u1
u2

]
, (4.108a)[

y1
y2

]
=
[
BT
p 0

0 BT
q

] [
Qp 0
0 Qq

] [
p̃
q̃

]
(4.108b)

of the wave equation. Note that the model is conservative, i. e. no numeri-
cal dissipation is introduced by the discretization scheme, independent of the
parameter α. This tuning parameter, however, can be used to influence the
approximation quality of the resulting numerical models.

4.6.5.2 Eigenvalues

In this subsection, we compare the results of our method with those obtained
with the approach in [71], where mapping the efforts at the boundary nodes
of each discretization interval using a parameter17 α′ yields non-degenerate
power pairings and a PH model in state space form. The strong compatibility
conditions, which restrict the parameter value to α′ = 1

2 for the case of lowest
order Whitney forms in the original work, can be relaxed by a weak formulation
of the problem. Unlike (4.102), the discrete Hodge matrices according to [71]
do not depend on α′: Qp = Qq = 1

hdiag{1, . . . , 1}. In contrast to our method,
the state space models according to [71] feature a direct feedthrough18.

17We use a prime to distinguish from the α in our method.
18The exception with zero feedthrough matrix is α′ = 0, which corresponds to α = 0 in

our approach. With these parameter values, both methods produce models that coincide
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The fundamental difference between both approaches is illustrated by the
sketches in Fig. 4.3 and the explanation below. For α < 1

2 and α′ < 1
2 , the

state information from the directions in which the associated effort variables are
imposed as boundary inputs, obtains a higher weight. This type of upwinding
leads to a very good approximation of the eigenvalues for values close to zero
of α and α′.

We consider the spectrum of the canonical differential operator of the Stokes-
Dirac structure, see (4.72) under homogeneous Dirichlet boundary conditions
on the efforts, i. e. (4.73) set to zero. Note that these boundary conditions cor-
respond to Dirichlet-Neumann conditions for the PDE in second order form.
The exact eigenvalues of the operator are

λk,∞ = ±2k − 1
2 πi, k = 1, 2, 3, . . . , (4.109)

see e. g. [77]. As the structure-preserving discretization is conservative, also
the approximate eigenvalues have zero real parts. We display in Table 4.1 the
imaginary parts for different values of the flow mapping parameter α. Table
4.2 shows the corresponding values for the structure-preserving discretization
according to [71] with different effort mapping parameters α′. The relative
errors for the first, 5th and 20th eigenvalue are plotted in the diagrams of Fig.
4.4.

For all displayed parametrizations around α = α′ = 0, the order of the
first eigenvalue approximation error is O(h) with h = 1

N , see the top dia-
grams in Figs. 4.4. This is in accordance with the consistency order 1 for
the non-centered approximation of the node efforts (see Subsection 3.4.3 for
the discussion from the finite volumes point of view). We observe that for
the parametrizations α = − 1

12 and α′ = 1
12 , the approximation quality of the

higher eigenvalues is improved. The result of this favorable upwinding will be
illustrated in the next subsection with the solution of an initial value prob-
lem19. Tables 4.1 and 4.2 as well as Figure 4.4 show a very similar evolution
of the eigenvalues under grid refinement. Note however, that our approach, in
contrast to [71], produces no structural feedthrough, which is appropriate for
hyperbolic systems20. Moreover, the extension to 2D (and prospectively 3D)
of our method is straightforward, in contrast to [71].

with those obtained from discrete modeling/finite volumes on regularly staggered grids [174],
[95].

19Note that the same effect can be achieved if in the finite volume approach on regularly
staggered grids [95] (which corresponds to α = 0/α′ = 0), the control volumes to compute
the numerical fluxes are slightly shifted.

20The feedthrough, together with the over-estimation of the highest eigenvalues for
α′ → 0.5, fits to the good results the method according to [71] achieves for the discretiza-
tion of parabolic systems [10], where the instantaneous propagation of information must be
approximated.
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Table 4.1: Eigenvalue imaginary parts for the discretized 1D wave equation with
different flow mapping parameters α and grid sizes N , compared to the exact values.

Table 4.2: A comparable approximation of the eigenvalues can be obtained using the
method presented in [71] in a weak formulation, which permits to choose parameters
other than α′ = 1

2 . Note, however, that the resulting state space models, in contrast
to our approach, feature a structural feedthrough.
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Figure 4.4: Magnitude of the approximation error over different grid sizes for the
first, 5th and 20th eigenvalue of the canonical system operator. Left column: Error
under the presented approach – upwinding improves the approximation of higher
eigenvalues. Right column: Numerical approximation with the method according to
[71].
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Figure 4.5: Approximations of the solution p(z, 2) = −p0(z), q(z, 2) = q0(z) = 0
after twofold reflection on the boundaries.

4.6.5.3 Initial Value Problem

The simulation results in this subsection support the finding that slightly neg-
ative values of α are suitable for the numerical approximation of the wave
equation. With α = − 1

6 , half the number of discretization intervals is nec-
essary to produce a comparable error as in the case of α = 0. We consider
homogeneous boundary conditions e∂ = ê∂ = 0 and an initial distribution of
the state differential forms p(t) = p(z, t) dz, q(t) = q(z, t) dz on Ω = (0, 1) with

p(z, 0) = p0(z) = e
− (z−0,5)2

0,0252 , q(z, 0) = q0(z) = 0. (4.110)
With the change of variables η = 1

2 (p − q) und ξ = 1
2 (p + q), the solution on

an unbounded domain consists of a left travelling and a right travelling wave

η(z, t) = η0(z + t), ξ(z, t) = ξ0(z − t), (4.111)

which each transport the initial conditions

η0(z) = ξ0(z) = 1
2p0(z). (4.112)

On the domain Ω = (0, 1), reflections take place at the boundaries (with a
change of sign at z = 1), such that

p(z, 2) = −p0(z), q(z, 2) = 0 (4.113)

is the exact solution at time t = 2, depicted by the dotted line in Fig. 4.5.
Besides, Fig. 4.5 contains the numerical solutions with the one-sided approxi-
mations by α = 0 with N = 160 (1, dashed) and N = 320 (2, dash-dotted), as
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Figure 4.6: Illustration of the travelling waves in p(z, t) for N = 160 (left), N = 320
(right) and α = 0 (first row), α = − 1

6 (second row).

well as the numerical solution for N = 160 and α = −1/6 (3, solid). The latter
parametrization generates on the same grid (N = 160) far less dispersion than
(1). It is comparable with solution (2), which is based on a finer mesh with
twice the number of discretization intervals. Figure 4.6 depicts the numerical
solution p(z, t) over z ∈ [0, 1] and t ∈ [1.5, 2] for the different values of α and
grid sizes.

4.6.6 Heat Equation

We consider the 1D heat equation, which can, see Subsection 2.3.3, be repre-
sented by the same structure equation (4.72) as the 1D wave equation. For
the following study, we consider the unit interval Ω ∈ (0, 1) and constant heat
conductivity and heat capacity λ = cv = 1. Figure 4.7 shows a sketch of the
considered heat conductor with boundary conditions

u = ê∂ = ep(1), 0 = e∂ = eq(0). (4.114)

A temperature is imposed at z = 1 as input u, while the homogeneous boundary
condition at z = 0 represents thermal insulation (zero heat flow). This time,
unlike the wave equation example, we consider the non-collocated output

y = ep(0), (4.115)

which is known to be a flat output for the heat equation [109]. The preservation
of flatness of this output and feedforward control design based on the discretized
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Figure 4.7: Heat conductor with Dirichlet and Neumann boundary conditions
T (1) = u, JQ(0) = 0 and flat output T (0) = y.

models are topics in Chapter 6. Similar to the previous subsection, we now
analyze the properties of the resulting finite-dimensional state space model,
which is obtained from structure-preserving discretization.

4.6.6.1 State Space Model

The state space model of the discretized heat equation with boundary condi-
tions (4.114) is based on the same matrices as derived in Subsections 4.6.1,
4.6.2 and 4.6.3. Under the given boundary conditions, (4.58a) becomes[

−f̃p
−f̃ q

]
=
[

0 Jp
Jq 0

] [
ẽp
ẽq
]

+
[

0
Bq

]
u. (4.116)

Substituting dynamics
˙̃p = −f̃p (4.117)

and the constitutive equations

ẽp = Qpp̃, ẽq = −Qq f̃ q (4.118)

according to (4.91), we obtain, now with theN -dimensional state vector x := p̃,

ẋ = Ax + bu, (4.119)

where

A = −JpQqJTp︸ ︷︷ ︸
=−R

Qp ∈ RN×N and b = JpQqBq ∈ RN . (4.120)

The positive definiteness of the symmetric dissipation matrix R = RT reflects
the diffusive character of the heat equation. The discrete version of the output
(4.115),

y = cTQpx, (4.121)

with
cT =

[
1 0 . . . 0

]
∈ R1×N (4.122)
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completes the finite-dimensional state space model.
The state matrix A is symmetric and pentadiagonal,

A = diag(a0) + diag1(a1) + diag−1(a1) + diag2(a2) + diag−2(a2), (4.123)

with the vectors of main diagonal elements a0 ∈ RN and the elements on the
first two upper and lower off-diagonals a1 ∈ RN−1 and a2 ∈ RN−2,

a0 = N2



−1+α
−2+6α−5α2

−2+6α−6α2

...
−2+6α−6α2

−2+5α−5α2

, a1 = N2


1−3α+2α2

1−4α+4α2

...
1−4α+4α2

, a2 = N2

α−α
2

...
α−α2

.
(4.124)

The input vector b ∈ RN reads

b = N


0
...
0

α−α2

1−2α+2α2

. (4.125)

a1 and a2 become zero vectors for the cases α = 1
2 and α = 0, respectively.

These two cases will be analyzed further below.

4.6.6.2 Eigenvalues and Zeros of the PDE Model

We compare the properties of the discretized model to those of the infinite-
dimensional one. In particular, we are interested in the eigenvalues and zeros.
The former give information about the approximation quality of the dynamics,
the (non-)existence of the latter allows to assess whether the input u = ep(1)
and the state x can be parametrized by the flat output y = ep(0) and its time
derivatives, as in the infinite-dimensional case.

To analyze the eigenvalues of the 1D heat equation on Ω = (0, 1) ⊂ R under
homogeneous Neumann-Dirichlet boundary conditions, we write it as a second
order PDE in the spatial variable z:

∂tx(z, t) = ∂2
zx(z, t), ∂zx(0, t) = 0, x(1, t) = u(t). (4.126)

It is easily verified, that an initial condition in the form

x(z, 0) =
∞∑
k=1

ck cos(
√
−λk,∞z) (4.127)

with the negative real eigenvalues

λk,∞ = −
(

2k − 1
2 π

)2
, k = 1, 2, . . . (4.128)
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decays according to

x(z, t) =
∞∑
k=1

cke
λkt cos(

√
−λk,∞z). (4.129)

The Laplace transformation of the heat equation (see Appendix B.2) allows to
establish the transfer function between the input û(s) = x̂(1, s) and the output
ŷ(s) = x̂(0, s) as

ŷ(s) = 1
cosh(

√
s) û(s). (4.130)

The poles of this transfer function are exactly the eigenvalues λk,∞ as indicated
above, no zeros occur.

4.6.6.3 Approximate Eigenvalues and Zeros

Based on the structure of the matrices A, b and cT , we first analyze the eigen-
values and possible zeros of the state space model (4.119), (4.121) for the two
cases α = 0 and α = 1

2 . In these two cases, the state matrix A becomes tridiag-
onal, which allows for an analytical computation of the eigenvalues. Moreover,
we will observe that (after pole-zero cancellation in the second case) the trans-
fer function does not feature (transmission) zeros, which corresponds to the
infinite-dimensional system representation, see Appendix B.2.

Case 1, α = 0

The matrices A and b have the structure

A = N2X = N2


−1 1

1 −2
. . .

. . . . . . 1
1 −2

, b = N


0
...
0
1

. (4.131)

The roots λk, k = 1, . . . , N , of the characteristic polynomial p(λ) = det(λI−A)
are the roots λ′k of p′(λ′) = det(λ′I−X), multiplied with N2. The tridiagonal
form of X allows to construct the characteristic polynomial by recursion of the
determinants of south-eastern submatrices. This recursion resembles the one
for the Chebyshev polynomials of the first kind. With the changes of variables
λ′ + 2 = 2µ and µ = cos(ξ), one finds the roots of p′,

ξk = 2k − 1
2N + 1π, k = 1, . . . , N, (4.132)

and finally the eigenvalues of A

λk = 2N2
(

cos( 2k − 1
2N + 1π)− 1

)
, k = 1, . . . , N. (4.133)
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The invariant zeros are the roots of det(P(η)) with

P(η) =
[
A− ηI b

cT 0

]
(4.134)

the Rosenbrock matrix. A short calculation shows that

det(P(η)) = (−1)NN4 det([X− ηI]1:N−1,2:N )
= (−1)NN4,

(4.135)

where [X− ηI]1:N−1,2:N denotes the (N − 1)× (N − 1) north-eastern submatrix
of X − ηI, which is lower triangular. The discretized models (A,b, cT ) with
parameter α = 0 have no invariant zeros. Thus, the output has full relative
degree N . It is a flat output, as the input and the states can be parametrized
in terms of y(t) and its time derivatives, which allows to compute a feedforward
control u(t) as in the infinite-dimensional case, see Chapter 6.

Case 2, α = 1
2

The A matrix has a chessboard pattern. We assume an even number N of
discretization intervals. The non-zero elements of A can be collected in the
matrix A1 := [A]1:2:N−1,1:2:N−1 of odd rows and columns and the matrix A2 :=
[A]2:2:N,2:2:N of even rows and columns:

A1 = N2

4


−2 1
2 −2 1

1 −2
. . .

. . . . . . 1
1 −2

, A2 = N2

4


−1 1

1 −2
. . .

. . . . . . 1
1 −2 1

1 −3

.
(4.136)

Both matrices are similar, they are related via the equality A1S = SA2 with
the upper triangular matrix

S =


1 −1 1 · · · −(−1)N

2 −2 · · · 2(−1)N
. . . . . .

2 −2
2

, (4.137)

whose elements have alternating sign. Consequently, A1 and A2 have identical
eigenvalues. The analysis of the characteristic polynomial of A2, with the help
of the recurrence relation for Chebyshev polynomials, results in the eigenvalues

λk = N2

2

(
cos(2k − 1

N
π)− 1

)
, k = 1, . . . , N2 . (4.138)
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These eigenvalues of A1 (and by similarity of A2) represent eigenvalues of the
complete state matrix A with algebraic multiplicity 2.

Defining the partial state vectors x1 := [x]1:2:N−1 and x2 := [x]2:2:N , the
system (4.119), (4.121) for α = 1

2 can be written[
ẋ1
ẋ2

]
=
[
A1 0
0 A2

] [
x1
x2

]
+
[
b1
b2

]
u,

y =
[
cT1 cT2

] [x1
x2

]
,

(4.139)

with

b1 = N


0
...
0
1
4

, b2 = N


0
...
0
1
2

, cT1 = N
[
2 0 . . . 0

]
, cT2 = 0T . (4.140)

The subsystem

ẋ1 = A1x1 + b1u

y = cT1 x1
(4.141)

has no invariant zero, i. e. y(t) has relative degree N
2 and represents a flat

output for this subsystem (the subsystem is controllable and observable). The
control u(t) excites the stable internal dynamics (the unobservable subsystem)

ẋ2 = A2x + b2u, (4.142)

whose eigenvalues (i. e. one half of the eigenvalues of A) coincide with the
invariant zeros.

A (flatness-based) feedforward control u(t) can be computed based on the
inversion of the transfer function G1(s) = cT1 (sI − A)−1b1 for the first sub-
system, taking into account y(t) and its time derivatives up to order N

2 , see
Chapter 6.

Convergence of the Eigenvalues

We replace the cosines in the discretized eigenvalue expressions (4.133) and
(4.138) with their series expansions and obtain for α = 0 (see also [111] for this
case)

λk = λk,∞

(
1− 1

N
+ o
( 1
N

))
(4.143)

and for α = 1
2

λk = λk,∞

(
1 + 2λk,∞

4!
(
N
2
)2 + o

( 1(
N
2
)2 )
)
. (4.144)
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Figure 4.8: Top: Exact and numerical solution of the initial value problem for
the heat equation with different parameters and grid sizes. Bottom: Error between
numerical and exact solution.

We conclude that the eigenvalues of the heat equation are approximated with
a first order error for α = 0 and an error of second order for α = 1

2 .

Remark 4.9. The result that α = 1
2 provides a superior approximation of the

eigenvalues supports the observation that a comparable parametrization of the
discretization according to [71] (also with a parameter value of 1

2 ) yields ex-
cellent results for diffusive systems, see [10]. Note however that in [71], the
mappings of the nodal efforts are parametrized, while this is the case for the
edge flows in our approach. This gives triangular instead of banded matrices
Jp = −JTq , which hampers a simple representation of the discretized eigenval-
ues and their subsequent convergence analysis for N →∞.

4.6.6.4 Initial Value Problem

In Fig. 4.8, we compare the numerical solution of the heat equation under
Neumann-Dirichlet boundary conditions (4.126) with initial condition (only
third mode)

x0(t) = x(z, 0) = cos(5
2πz), (4.145)

with the exact solution at time te = ln 4/
( 5

2π
)2,

x(z, te) = e−
25
4 π

2tex0(z) = 1
4x0(z). (4.146)
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For α = 0, the error over z is reduced by a factor 2 when doubling the number
of discretization intervals from N = 40 to N = 80, which corresponds to the
first order approximation of the eigenvalues, see Eq. (4.143). We note that the
approximation with α = 1

2 and N = 40 is superior in terms of error magnitude
and the shape of the error, which resembles the considered third mode. The
results are not surprising, as the centered approximation by the parameter
choice α = 1

2 reflects the symmetric character of a diffusive process like heat
conduction.

In Chapter 6, we reconsider the finite-dimensional approximate models of
the heat equation for the numerical computation of flatness-based feedforward
controllers.

4.7 Two-Dimensional Wave Equation

In this section, a special focus is set on the construction and graphical in-
terpretation of the power-preserving mappings. Using Whitney forms, this is
facilitated by the meanings of discrete effort and flow degrees of freedom as
approximate (integral) quantities on the nodes, edges and faces of the dis-
cretization mesh. We present the consistent discretization of the constitutive
equations, i. e. we show how to compute the co-state variables on given grid
nodes or edges based on the weighted sum of neighboring conserved quantities.
We discuss the effects of different parametrizations based on numerical experi-
ments, and close the section with a simulation example on a non-trivial spatial
domain.

To illustrate the steps towards an approximate PH state space model with
desired boundary inputs by geometric discretization, we consider the normal-
ized linear wave equation on a 2-dimensional rectangular domain Ω = (0, Lx)×
(0, Ly) ⊂ R2, with boundary ∂Ω. The spatial domain is covered by a regu-
lar, oriented simplicial triangulation Th, as sketched in Fig. 4.9. We recall
the structured representation of the wave equation from Subsection 2.3.1 for
n = p = 2:

[
fp

fq

]
=
[

0 −d
d 0

] [
ep

eq

]
, (Structure) (4.147a)[

∂tp
∂tq

]
=
[
−fp
−fq

]
, (Dynamics) (4.147b)[

ep

eq

]
=
[
δpH
δqH

]
. (Constit. Eq.) (4.147c)

The state, flow and effort differential forms are p, fp ∈ L2Λ2(Ω), q, fq ∈
L2Λ1(Ω), ep ∈ H1Λ0(Ω) and eq ∈ H1Λ1(Ω), and we consider the normalized
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Figure 4.9: Numbering of nodes, edges and faces on a N ×M rectangular simplicial
mesh. K = (M+1)N , L = K+M(N+1). Left: Unit square cell. Right: 3×2 mesh.

quadratic Hamiltonian functional21

H =
∫

Ω

1
2p ∧ ∗p+ 1

2q ∧ ∗q. (4.148)

The boundary input variables (the causality of the boundary ports) will be
specified in the discrete setting by the choice of the boundary trace matrices
Tq and T̂p.

4.7.1 Mesh, Matrices and Dimensions

Using Whitney basis forms, the degrees of freedom in the mixed Galerkin ap-
proach are associated to integrals of distributed quantities on the k-simplices
of the mesh. The dimensions of the (initial) discrete flow and effort vectors
equal the numbers of corresponding nodes, edges and faces on the grid. The
same holds for the discrete efforts on the boundary, which are designated in-
or outputs and are localized on the corresponding boundary nodes and edges,
see Table 4.3.

The mixed Galerkin approximation of the Stokes-Dirac structure yields a
set of matrices with different sizes and ranks, see Table 4.4. The construction

Table 4.3: Dimensions of discrete flow and efforts spaces on the rectangular N ×M
simplicial grid. epb and eqb contain the corresponding effort degrees of freedom on the
complete boundary.

Vector(s) Dimension Symbol(s)
fp 2NM Np

f q, eq 3NM +N +M Nq = Mq

ep (N + 1)(M + 1) Mp

epb , eqb 2(N +M) Mb
p = Mb

q

21Which corresponds to a speed of propagation c = 1.
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Table 4.4: Sizes and ranks of the matrices resulting from the mixed Galerkin ap-
proximation and the direct discrete model, respectively. N,M > 2.

Matrix Size Rank
Mp Mp ×Np Mp − 2

Kp + Lp Mp ×Nq Mp − 2
dp Np ×Nq Np
Mq Nq ×Nq 2(Mp − 2)

Kq + Lq Nq ×Mp Mp − 1
dq Nq ×Mp Mp − 1

Lp = LTq Mp ×Nq 2(M +N)− 1

of power-preserving mappings and conjugated output matrices that satisfy the
matrix equation (4.53), is based on rank considerations of the involved matrix
products.

4.7.2 Power-Preserving Mappings, Discrete In- and Outputs

We illustrate on three elementary examples the construction of the power-
preserving flow and effort maps and conjugated output matrices. The structure
of the resulting matrices can be extrapolated to the case of N ×M grids with
arbitrarily distributed boundary inputs of mixed causality.

Example 4.3 (Elementary 1× 1 grid). Consider the sample grid in Fig. 4.10.
The mixed Galerkin discretization of (4.147) with Whitney forms yields the
discrete representation (4.43) with (−1)r = −1. The face degrees of freedom
(flows) fp = −ṗ ∈ R2, the edge degrees of freedom (flows and efforts) q̇ =
−f q, eq ∈ R5 and the node degrees of freedom (efforts) ep ∈ R4 are collected
in the corresponding vectors. The discrete derivative matrices, which satisfy
the discrete complex property dpdq = 0, are the co-incidence matrices of the
oriented graph

dp =
[

1 0 0 1 1
0 1 1 0 −1

]
, dq =


−1 1 0 0
0 −1 1 0
0 0 −1 1
1 0 0 −1
0 −1 0 1

. (4.149)

Input trace matrices and effort maps. We assign all effort degrees of
freedom at the boundary edges the role of inputs22, summarized in eb ∈ R4.

22With this choice, we can easily derive the construction of the power-preserving mappings
and output matrices. The same power-preserving mappings are valid with arbitrary boundary
causality, while the output matrices can be easily adapted, as in the case of the simulation
examples.
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Figure 4.10: Sample grid of 4 nodes to illustrate the construction of power-
preserving mappings. The coefficients αj , βj , γj = 1 − αj − βj , j ∈ {I, II} weight
the contribution of the integral conserved quantities p1 and p2 in the definition of the
states p̃i, which are associated to the node efforts (co-states) ẽpi , i = 1, . . . , 4.

The interior edge is related to the minimal effort ẽq ∈ R:[
eb
ẽq

]
=
[

Tq

Peq

]
eq with Tq =

[
I4 04×1

]
, Peq =

[
01×4 1

]
. (4.150)

No node plays the role of an input node, hence,

ẽp = Pepep with Pep = I4. (4.151)

Mapping of the conserved quantities on the faces. For the mapping of
the vector of integral conserved quantities23 p ∈ R2 on the two faces (triangles),
we argue as follows. The vector of discrete states p̃ ∈ R4, which is dual to the
vector ẽp ∈ R4 of node efforts, shall

1. contain weighted sums of the discrete conserved quantities on the faces that
touch the corresponding node and

2. the sum of its elements must reflect the total conserved quantity. In the
example according to Fig. 4.10, this means

4∑
i=1

p̃i =
2∑
j=1

pj . (4.152)

With p̃ = Pfpp, the second condition translates to24 1T4 Pfp = 1T2 , i. e. the
column sums of the matrix Pfp ∈ R4×2 must equal one. A matrix that satisfies

23We refer to the “original” discrete vectors p, q as discrete conserved quantities, while
we call p̃, q̃ the state vectors of the resulting PH state space model.

241n ∈ Rn denotes a column vector whose n elements are all 1.
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this condition is

Pfp =

γI 0
βI αII
0 γII
αI βII

 with αj + βj + γj = 1, j ∈ {I, II}. (4.153)

The weights of the conserved quantities p1, p2 in the definition of the states
p̃i, which are associated to the nodal efforts ẽpi , i = 1, . . . , 4, are printed in Fig.
4.10 in red and green, respectively.

Output matrix for the nodal efforts. The matrix equation (4.53) without
a matrix T̂p can be written in the form

(−1)rdTp PT
fpPep +

[
TT
q PT

eq

] [ Sp
Pfqdq

]
= 0. (4.154)

Exploiting that
[
TT
q PT

eq

]
is a permutation matrix, the equation can be mul-

tiplied from the left with its transpose (which equals its inverse), and we obtain
as the first line the output matrix associated to node efforts

Sp = −(−1)rTqdTp PT
fpPep =

γI βI 0 αI
0 αII γII βII
0 αII γII βII
γI βI 0 αI

. (4.155)

The discrete output vector f b = Spep contains – on this very simple grid –
two pairs of identical elements, which each represent convex sums of the node
efforts. Regarding for example the outer boundary of face 1 in Fig. 4.10, this
identity is no surprise. If we delete node 1 (from the graph), and consider edges
1 and 4 as a single edge 14, the power eb1f b1 + eb4f

b
4 which is transmitted over

both edges must equal (eb1 + eb4)f b14, which is the case for f b1 = f b4 .

Mapping of the edge states. In analogy to (4.155), the matrix equation

Pfqdq = −(−1)rPeqdTp PT
fpPep (4.156)

determines the matrix Pfq. The solution consists of a particular part to which
a linear combination of the rows of dp (recall that dpdq = 0) can be added:

Pfq = Pp
fq +

[
c1 c2

]
dp

=
[
−γI −γII αI−βII 0 0

]
+
[
c1 c2

] [ 1 0 0 1 1
0 1 1 0 −1

]
.

(4.157)

With c1 = γI
2 and c2 = −αI + βII + γII

2 , we get a matrix of the form

Pfq = P⊥fq + P‖fq
=
[
− γI2 − γII2

γII
2

γI
2 0

]
+
[

0 0 0 0 αI−βI
2 + αII−βII

2

]
,

(4.158)
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Figure 4.11: Illustration of the 2 × 1 grid in Example 4.4. Each state p̃i, which
is associated to a “nodal” co-state ẽpi , i = 1, . . . , 6, is defined by a weighted sum of
the conserved quantities pj , j = 1, . . . , 4, on the adjacent triangles. The weights are
printed next to the nodes. Red color and index I refer to the lower triangles, green
color and index II to the upper triangles.

where P⊥fq contains the weights of the conserved quantities qj on the edges
“across” the edge on which the minimal effort ẽq is defined. Accordingly, P‖fq
contains the weight associated to exactly this edge. Note that only P⊥fq will
contribute to the definition of the discrete Hodge matrix Qq, which relates the
efforts across edges of the grid with the states along the dual edges, see Fig.
4.12 in Example 4.5.

The construction, which we demonstrated for the simplest quadrilateral
grid, can be extended to a rectangular grid, which is shown in the next example.

Example 4.4 (2 × 1 grid, unique boundary causality). We now consider the
2×1 rectangular grid as depicted in Fig. 4.11, whose co-incidence matrices are
the discrete derivative matrices

dp =

−1 0 0 0 0 1 0 1 0
0 −1 0 0 0 0 1 0 1
0 0 1 0 −1 0 0 −1 0
0 0 0 1 0 −1 0 0 −1

,

dq =



1 −1 0 0 0 0
0 1 −1 0 0 0
0 0 0 1 −1 0
0 0 0 0 1 −1
−1 0 0 1 0 0
0 −1 0 0 1 0
0 0 −1 0 0 1
1 0 0 0 −1 0
0 1 0 0 0 −1


.

(4.159)
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Input trace matrices and effort mappings. As in the previous example,
we start with a single causality on the boundary and the only input trace matrix

Tq,1 =


1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0

. (4.160)

The remaining edges and all nodes are the discrete objects on which the ele-
ments of the co-state vectors ẽq and ẽp are defined. This fact is represented by
the effort mapping matrices

Peq,1 =
[0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

]
, Pep,1 = I6. (4.161)

We use the index 1 for this case with only edge inputs, and refer to the corre-
sponding matrices in the following example.

Mapping of the conserved quantities on the faces. With the same
arguments as for the simple example before, we can construct the matrix to
define the discrete states p̃ = Pfp,1p, see also the illustration of the weights in
Fig. 4.11:

Pfp,1 =


αI 0 βII 0
γI αI 0 βII
0 γI 0 0
0 0 γII 0
βI 0 αII γII
0 βI 0 αII

, αI/II + βI/II + γI/II = 1. (4.162)

Output matrices for the nodal efforts. According to (4.155) we obtain
for the nodal output matrix

Sp,1 =


−αI −γI 0 0 −βI 0

0 −αI −γI 0 0 −βI
βII 0 0 γII αII 0
0 βII 0 0 γII αII
−βII 0 0 −γII −αII 0

0 αI γI 0 0 βI

. (4.163)

Note that again there are two pairs of identical outputs (modulo the sign de-
pending on the orientation of the input edge), which is due to the fact that by
merging the adjacent edges, nodes 3 and 4 could be removed from the graph.
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Mapping of the edge states. The solution of the matrix equation (4.156)
for the matrices as defined above (again, the rows of dp can be used to adjust
the solution) results in a matrix

Pfq,1 = P⊥fq,1 + P‖fq,1 + Prot
fq,1 (4.164)

with

P⊥fq,1 =

 αI 0 0 αII 0 0 0 0 0
− γI2 0 − γII2 0 − γII2 − γI2 0 0 0

0 − γI2 0 − γII2 0 − γII2 − γI2 0 0

, (4.165a)

P‖fq,1 =

 0 0 0 0 0 βI + βII − 1 0 0 0
0 0 0 0 0 0 0 αI−βI

2 + αII−βII
2 0

0 0 0 0 0 0 0 0 αI−βI
2 + αII−βII

2

,
(4.165b)

Prot
fq,1 =

 −δI δII δI −δII −δI δI+δII −δII 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

, (4.165c)

and the abbreviation

δI/II = 1
8 + 1

4(αI/II − βI/II). (4.166)

Note that the definition of the state vector q̃ = Pfq,1q now contains a rotational
component, which is illustrated in Fig. 4.12 (for the following example).

Example 4.5 (2 × 1 grid, mixed boundary causality). Still considering the
grid in Fig. 4.11, we assign the efforts in nodes 1 and 2 the role of (boundary)
inputs êb1 and êb2 and remove the effort on edge 1 from the input vector eb. The
corresponding input trace matrices are

T̂p =
[

1 0 0 0 0 0
0 1 0 0 0 0

]
, Tq =


0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0

, (4.167)

and the effort mappings

Pep =
[
04×2 I4

]
, Peq =

1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 1 0
0 0 0 0 1 0 0 0 1

. (4.168)

The matrix equation (4.53) for power preservation can now be written as[
(−1)rdTp PT

fp ŜTq
] [Pep

T̂p

]
+
[
PT
eq TT

q

] [Pfqdq
Sp

]
= 0. (4.169)
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Figure 4.12: Illustration of the components of q̃ (q̃1 to q̃4 from upper left to lower
right) in Example 4.5 in terms of the original conserved quantities qj , j = 1, . . . , 9, on
the edges of the grid. The components across the considered effort edge/aligned with
the effort edge are drawn in blue/red. The round black arrows indicate the sense of
the rotational components in q̃1 and q̃2 for positive values of εI and δI/II , respectively.

For the moment, we assume that by appropriate choice of Ŝq, the first term
can be made (−1)rdTp PT

fp,1Pep,1. We obtain the flow map Pfq and the output
matrix Sp in the second term (with Pep,1 = I) by the solution of

Pfqdq = −(−1)rPeqdTp PT
fp,1, Sp = −(−1)rTqdTp PT

fp,1. (4.170)

The output matrix Sp contains the rows of Sp,1 that correspond to the input
edges represented by the rows of Tq. In the present case, we have to delete the
first row in (4.163) and obtain

Sp =


0 −αI −γI 0 0 −βI
βII 0 0 γII αII 0
0 βII 0 0 γII αII
−βII 0 0 −γII −αII 0

0 αI γI 0 0 βI

. (4.171)

The construction of Pfq follows the same lines as in the previous examples.
The horizontal edge, on which a discrete co-state is defined, gives rise to a new
element of the discrete state vector q̃ ∈ R4, which is illustrated in Fig. 4.12.
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The matrix Pfq becomes

Pfq = P⊥fq + P‖fq + Prot
fq (4.172)

with

P⊥fq =

 0 0 0 0 0 −βI 0 0 0
αI 0 0 αII 0 0 0 0 0
− γI2 0 − γII2 0 − γII2 − γI2 0 0 0

0 − γI2 0 − γII2 0 − γII2 − γI2 0 0

, (4.173a)

P‖fq =


1
2 − αI 0 0 0 0 0 0 0 0

0 0 0 0 0 βI + βII − 1 0 0 0
0 0 0 0 0 0 0 αI−βI

2 + αII−βII
2 0

0 0 0 0 0 0 0 0 αI−βI
2 + αII−βII

2

,
(4.173b)

Prot
fq =

 −εI 0 εI 0 −εI εI 0 0 0
−δI δII δI −δII −δI δI+δII −δII 0 0

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

, (4.173c)

and the new abbreviation

εI/II = 1
8 −

1
4(αI/II − βI/II). (4.174)

Figure 4.12 illustrates the different components whose (vector) sums constitute
the states q̃i, i = 1, . . . , 4, in the example. With

Pfp = PepPfp,1 =

 0 γI 0 0
0 0 γII 0
βI 0 αII γII
0 βI 0 αII

 (4.175)

and

Ŝq = (−1)rT̂p

[
dTq PT

fq STp
] [Peq

Tq

]
=
[
αI− 1

2 0 −βII 0 βII −αI 0 βII−αI 0
γI− 1

2 αI 0 −βII 0 βII−γI −αI −γI βII−αI

]
,

(4.176)

see Fig. 4.13, the parametrization of power-preserving effort and flow maps
and output matrices is completed25.

25It is straightforward to verify that the latter matrices indeed satisfy (−1)rdTp PTfpPep +
ŜTq T̂p = (−1)rdTp PTfp,1Pep,1, which has been assumed at the beginning of the example.
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Figure 4.13: Illustration of the geometric objects on which the elements f̂b1 and f̂b2
of the output vector f̂ b are defined in Example 4.5 (blue, with weights). The elements
of the (dual) input vector êb are defined on the red nodes.

4.7.3 Generalization to N ×M Meshes and Remarks

N×M meshes. The construction as presented on the three elementary exam-
ples above can be generalized in a straightforward manner to arbitrary N ×M
rectangular meshes. The direct interpretation of the discretized system equa-
tions as discrete conservation laws in the case of Whitney approximation forms
allows for a construction of the matrices based on the properties of the 2-
complex (generalized oriented graph) on the discretization mesh. In the above
examples, we used only two sets of convex weights (αj , βj , γj), j ∈ {I, II} for
the upper and lower triangles. It is, however, possible to assign different com-
binations of convex weights to each triangle, for example on non-rectangular
meshes over more complex geometries.

Input trace matrices and effort maps. Identifying the elements of the
input vector u =

[
(up)T (uq)T

]T =
[
(êb)T (eb)T

]T with effort degrees of
freedom on the boundary nodes and edges corresponds to a consistent impo-
sition of the effort boundary conditions in the finite-dimensional model. To
arrive at the input-output representation (4.58), the matrices

Πp :=
[
Pep

T̂p

]
and Πq :=

[
Peq

Tq

]
(4.177)

should be square and invertible. With the presented choice, Πp and Πq become
permutation matrices and the property Π−1

p/q = ΠT
p/q makes the matrices of the

state space model as indicated in (4.61) particularly simple.

Flow/state maps. By the presented construction, each element p̃i, i =
1, . . . , Ñp, of p̃ = Pfpp is related to a 2-chain (a weighted formal sum of
2-simplices), located around the node associated to ẽpi . The node and the
weighted 2-chain can be considered as topologically dual objects. The property
αν +βν +γν = 1, ν ∈ {I, II}, ensures that the balance of the discrete conserved



4.7 Two-Dimensional Wave Equation 109

quantities
Ñp∑
i=1

p̃i =
Np∑
j=1

pj − εp (4.178)

holds. If (boundary) input nodes are defined, the error εp 6= 0 occurs, be-
cause the weighted contribution of pj on 2-simplices next to the input nodes
is neglected in the definition of discrete states. It is easy to imagine that the
error εp, which tends to zero with grid refinement, can be related to well-known
effects from the discretization with staggered grids, like ghost values, see e. g.
Chapter 3.

A related interpretation of the (minimal) states in terms of topologically
dual objects holds for the different elements of the vector q̃ = Pfqq. As shown
in Fig. 4.12, each element q̃i of q̃ can be considered dual to a discrete effort ẽqi
on a horizontal, vertical or diagonal edge (drawn in red). q̃i is localized on a
formal sum of the adjacent 1-simplices (edges), which can be decomposed into
components across and along the effort edge and a rotational part. Only the
“across” part contributes to the discrete constitutive equations as discussed
in the next subsection. While the effort edges are considered outer oriented
(“across”), the formal sums of edges, on which the q̃i are defined, are inner
oriented (“along”), which describes the geometric nature of the different system
variables.

Remark 4.10. The reconstruction of the rotational components of q̃ from the
given quantities can be used to discretize the vorticity term in the shallow water
equations (2.73).

Power-conjugated discrete outputs. Like the minimal flows and efforts,
the discrete power-conjugated outputs f b = Spep and f̂ b = Ŝqeq are constructed
as weighted sums of the discrete efforts in the vicinity of the corresponding
boundary input. The components f bi are defined by a convex sum of node
efforts, see e. g. (4.171). The f̂ bi are composed of rotational parts and a compo-
nent associated to the neighboring, outer oriented boundary edge, as illustrated
in Fig. 4.13.

If the effort maps and input trace matrices form permutation matrices
(4.177), the feedthrough matrices in the PH state space model according to
(4.58) become Dq = ŜqTT

q and Dp = SpT̂T
p , see Eq. (4.61). By the collocated

construction of f b and f̂ b, these matrices have only non-zero elements at the
interfaces between two boundary regions Γi and Γ̂j with different causality.
This feedthrough is physical as it only stems from the definition of neighboring
in- and outputs, and can be completely avoided by setting the boundary inputs
zero at these interfaces. For 1D systems, where the two parts of the boundary
are not connected, no feedthrough term occurs at all. The absence of an un-
desired direct feedthrough (undesired at least for the numerical approximation
of hyperbolic systems) distinguishes our method from the structure-preserving
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discretization according to [71], where the feedthrough stems from the convex
sum of nodal efforts to define the discrete co-state variables.

4.7.4 Discrete Constitutive Equations

To obtain a consistent numerical approximation of the system of conservation
laws, the discrete states p̃, q̃ and the efforts or co-states ẽp, ẽq must be related
via discrete constitutive relations that are consistent with the continuous ones.
We consider the case of linear constitutive equations

ep = ∗p, eq = −∗q (4.179)

that are derived from the Hamiltonian functional over Ω ⊂ R2 with quadratic
Hamiltonian densityH = 1

2p∧∗p+ 1
2q∧∗q, see (4.148). The discrete constitutive

equations will be expressed by

ẽp = Qpp̃, ẽq = Qqq̃ (4.180)

with positive definite, diagonal matrices Qp, Qq that represent diagonal discrete
Hodge operators [178]. The discrete states p̃ and q̃ are constructed (as f̃p and
f̃ q) as linear combinations of integral conserved quantities on the 2- and 1-
simplices of the discretization grid. The faces, based on which p̃i is constructed,
surround the node to which ẽpi is associated. A similar geometric duality26 can
be observed for the ẽqi -edges and the neighboring edges that constitute q̃i. One
can even imagine p̃, q̃ localized on a (virtual) dual grid, whose localization and
shift with respect to the original (primal) grid are parametrized by the convex
set of mapping parameters (αj , βj , γj), which we assume all to be positive and
related via αj + βj + γj = 1. Moreover, we consider a mesh with equal step
size hx = hy = h in both coordinate directions (hx = Lx

N , hy = Ly
M ).

For the consistent discretization of the time-invariant constitutive equa-
tions, we consider a steady state. In this case, the elements of ẽp must repre-
sent “average” values of p on the weighted sum of balance areas27 on which the
states p̃i are defined. The diagonal matrix Qp with elements

[Qp]i,i = 2
h2∑Np

j=1[Pfp]i,j
, i = 1, . . . , Ñp, (4.181)

represents a consistent Hodge matrix.
Accordingly, the elements of ẽq must reflect the integral flux of the vector

field28 q] across the corresponding horizontal, vertical or diagonal edges. Only
the parts of q̃i, which are associated to the edges perpendicular to the ẽqi -edge,

26This geometric duality is immediately given if the two conservation laws are modeled
on two shifted grids, i. e. dual meshes [174].

27Precisely, the average value of the coefficient function of the 2-form p.
28Index raising of the 1-form q.
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contribute to this flux. This reasoning yields a diagonal matrix Qq that replaces
the Hodge star in (4.148) with diagonal elements29

[Qq]hor/veri,i = 1∑Nq
j=1

∣∣∣[P⊥fq]i,j∣∣∣ and [Qq]diai,i = 2∑Nq
j=1

∣∣∣[P⊥fq]i,j∣∣∣ (4.182)

for the efforts on horizontal/vertical and diagonal edges, respectively. The
absolute values stem from the fact that the orientation of a state q̃i is coded
by the sign of the corresponding row of Pfq.

4.7.5 Simulation: Wave Propagation on a Square

We consider the linear wave equation in port-Hamiltonian form (4.147), (4.148)
on a square domain Ω = (0, 20) × (0, 20) to illustrate the effects of different
mapping parameters. We impose the boundary conditions

ep(0, 0, t) = u(t) =
{

sin2(π8 t), 0 ≤ t < 8,
0, t ≥ 8,

eq(x, y, t) = 0 on ∂Ω
(4.183)

by the input trace matrices

T̂p =
[
1 0 . . . 0

]
, Tq = I1b , (4.184)

where I1b ∈ RM
b
q×Nq is the matrix composed of unit row vectors associated

to the boundary edges. The inputs to the simulation model according to Eq.
(4.64) are

êb(t) = u(t), eb(t) = 0. (4.185)

Table 4.5: Parameter sets used in the simulations.

#1 #2 #3 #4
αI 1/3 1/2 2/3 15/16
βI 1/3 1/4 1/12 1/32
γI 1/3 1/4 1/4 1/32
δI 1/8 3/16 13/48 45/128
εI 1/8 1/16 −1/48 −13/128
αII 1/3 1/4 1/12 1/32
βII 1/3 1/2 2/3 15/16
γII 1/3 1/4 1/4 1/32
δII 1/8 1/16 −1/48 −13/128
εII 1/8 3/16 13/48 45/128

29Note that our grids according to Fig. 4.9 have square cells and unique orientations of
horizontal, vertical and diagonal edges.
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Figure 4.14: Propagation of a wave due to point-wise boundary excitation under
different parametrizations of the method. Snapshots at tsim = 18.

Fig. 4.14 shows the simulated propagation of the wave in radial direction
under different parametrizations of the method. The red line displays a circle
with radius tsim−T/2 = 14, as a reference for the maximum of the wave front30

at time tsim, based on the exact solution. The parameter sets in Table 4.5 rep-
resent different weightings of the 2-simplices in the propagation direction to
compute f̃pi , see Fig. 4.15. For parameter set #1 (equal weights 1/3 in the def-
inition of f̃pi associated to a nodal effort ẽpi ), the propagation of the wave front
in the effort variable ep is reproduced in a completely unsatisfactory manner.
Parameter set #2 leads also to undesired dispersion. Moreover, the quarter
circle shape of the wave is perturbed, which is due to the non-isotropic mesh
and the inadequate parametrization. Parameter set #3 shows less dispersion
and parametrization #4 reproduces appropriately the circular wave front

A direct explanation of the unsatisfactory behavior of the numerical solu-
tions #1 and #2 can be found by studying the definition of the matrix P⊥fq,

30The plots in Fig. 4.14 represent the discrete, minimal efforts ẽpi in the nodes of the
mesh.
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Figure 4.15: Illustration of 2-simplices and weights that contribute to the definition
of the discrete state p̃i for the parametrizations # 3 (left) and #4 (right). Note that
information of the conserved quantity p, which is directly influenced by the boundary
input effort eq in the upper right corner, is preferred for the computation of the node
effort ẽpi (“upwinding”).

which is visualized in the upper drawings of Fig. 4.12 for the elementary ex-
ample. Consider first the parametrizations #3 and #4 in Table 4.5. With

sgn(δI) = −sgn(δII) and sgn(εI) = −sgn(εII), (4.186)

the rotational parts in the definition of the discrete states q̃ are composed of
discrete rotations of q in the same sense. This is not the case for parametriza-
tions #1 and #2, which is a hint that reasonable parameter sets for the nu-
merical approximation of hyperbolic systems should satisfy condition (4.186),
or, equivalently, αI −βI ≶ 1

2 and at the same time αII −βII ≷ 1
2 . Note that all

four simulation models are conservative by construction due to the preservation
of the port-Hamiltonian structure.

4.7.6 Simulation: Double Slit Experiment

To illustrate the applicability of our approach to more complex spatial do-
mains, we consider the double slit experiment, as exposed in [110], Section 5.8.
The linear wave equation with speed of propagation one is considered on a
square domain (0, 1) × (0, 1), which is complemented by two narrow strips on
( 1

3 ,
5
12 )× (− 1

4 , 0) and ( 7
12 ,

2
3 )× (− 1

4 , 0). The boundary of the spatial domain Ω
is composed of the “lower ends” of the strips

Γ̂ = {(x, y) ∈ ∂Ω | y = − 1
4} (4.187)

and the complement Γ = ∂Ω\Γ̂. The Dirichlet boundary condition

ep(x, y, t) = u(t) = 0.1 sin(8πt), (x, y) ∈ Γ̂, t ≥ 0, (4.188)
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Figure 4.16: Snapshots of the double slit experiment with parameter set #3.

serves as a time varying input on Γ̂, while the rest of the boundary is subject
to the homogeneous Neumann boundary condition

eq(x, y, t) = 0, (x, y) ∈ Γ, t ≥ 0. (4.189)

The matrices for the finite-dimensional PH model in explicit state space form
are constructed as described before on a regular simplicial triangulation of Ω.
The simulations results, which are shown below, are performed on a grid with
step size hx = hy = 1

48 .
The simulation snapshots both in Fig. 4.16 and Fig. 4.17 show the expected

wave propagation, which produces an interference pattern on the square part
(0, 1) × (0, 1) of Ω. Due to the rather coarse grid, the differences between
the two considered parametrizations become evident. For parameter set #3, a
remarkable distortion to the left of the wave front occurs. For parameter set
#4, the distribution of ep in x direction along the narrow strips is less uniform,
with a relatively large deviation on the right hand boundary.

A remedy for the two described phenomena can be “symmetrization” of
the mesh in the sense that the square cells of the grid are divided by diagonal
edges with alternating orientation (lower left to upper right vs. lower right
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Figure 4.17: Snapshots of the double slit experiment with parameter set #4.

to upper left). This modification of the grid topology requires also a modi-
fied construction of power-preserving mappings, which is an issue of ongoing
implementation work.

4.8 Conclusions

We introduced the weak form of the Stokes-Dirac structure with a segmented
boundary, on which the causality of the port variables (the assignment as sys-
tem in- or outputs) alternates. This Stokes-Dirac structure is the underlying
geometric structure to represent power continuity in a port-Hamiltonian dis-
tributed parameter system. On the example of a system of two conservation
laws with canonical interdomain coupling, we described the mixed Galerkin
discretization of the Stokes-Dirac structure in a general way. To obtain finite-
dimensional approximate models in PH form with the prescribed boundary
inputs – as a basis for the interconnection of multi-physics models, control de-
sign and simulation – we proposed power-preserving mappings on the space of
discrete effort and flow variables. These maps allow to define non-degenerate
duality pairings, leading to finite-dimensional approximate Dirac structures on
the minimal discrete bond space. The Dirac structures admit several repre-
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sentations, one of them being an explicit input-output-representation. Port-
Hamiltonian state space models are obtained, if dynamics is added and the
constitutive equations are approximated consistently. On the example of Whit-
ney finite elements we demonstrated the discretization procedure in 1D and 2D
and gave interpretations of the resulting discretization schemes.

The proposed method is, to the best of our knowledge, the first method
which allows for a structure-preserving discretization of PH distributed param-
eter systems in more than one spatial dimension with a systematic treatment
of different boundary inputs and the possibility to tune the discretized models
between centered schemes and upwinding. The proposed family of approxima-
tion Dirac structures avoids a direct feedthrough in the state space model of
the discretized wave equation and the over-estimation of higher frequencies in
the approximate spectrum, which is the case for the method presented in [71],
where the efforts instead of the flow degrees of freedom are mapped. The weak
form of the Stokes-Dirac structure is the key feature that allows to include
additional effects such as dissipation or diffusion or, more generally, to tackle
the discretization of PH systems with general and higher order interconnection
operators and distributed inputs.

An important difference of our work to related works like [174], [56], [82],
where either dual grids are used a priori or at least one conservation law con-
tains the Hodge star or the co-differential, is that our initial discretization is
based on a metric-independent formulation of the conservation laws. We ap-
proximate all differential forms in the same conforming subspaces depending
on their degree (i. e. on the same mesh in FE), which has the advantage that
boundary variables are defined directly on ∂Ω, without having to cope with
an eventual grid shift. To obtain an explicit state space model, however, we
need – no free lunch – the power-preserving mappings. These, in turn, give us
degrees of freedom to tune the resulting numerical method.

Current and future work concerns the application of the method to the
PH representations of systems including heat and mass diffusion phenomena,
which share similar Stokes-Dirac structures, as well as coupled heat and mass
transport phenomena in non-homogeneous media such as catalytic foams, see
Section 3.5. Moreover, we want to analyze the approach when applied to PH
systems with non-canonical system operators (containing e. g. higher order
derivatives). In this context, we are interested in the reasonable choice of design
parameters in order to adapt the discretization scheme to the physical nature
of the system (e. g. to account for the ratio between convection and diffusion).
This aspect is closely related to the analysis of system-theoretic properties of
the discretized models in view of control design. Further important issues are
the implementation of the approach in existing finite element tools like FEniCS
[2] and the use of approximation spaces with higher degree [163], [7]. We intend
to include the discretization of the nonlinear constitutive relations for the 2D
shallow water equations in our open models and clarify the links with recent
work on geometric mixed finite elements like [41], [42], where in- and outputs
are not explicitly taken into account, and upwinding in differential forms as
presented in [39].



Chapter 5

Structure-Preserving Time
Discretization

We introduce a new definition of discrete-time port-Hamiltonian (PH) systems,
which results from structure-preserving time discretization of explicit finite-
dimensional PH systems1. We discretize the underlying continuous-time Dirac
structure with the collocation method and add discrete-time dynamics by the
use of symplectic numerical integration schemes. The conservation of a discrete-
time energy balance – expressed in terms of the discrete-time Dirac structure –
extends the notion of symplecticity of geometric integration schemes to (open)
control systems. The quadrature formulas, which are associated with the poly-
nomial approximations of the power variables, allow for quantitative statements
on the approximation error of the solution, the supplied and the stored energy.
We show that among collocation methods only Gauss-Legendre collocation,
which leads to implicit multi-stage Runge-Kutta schemes with maximum or-
der, guarantees an exact discrete energy balance as defined in [36], Def. III.2,
if applied to linear PH systems. Our definition includes discretization schemes,
which yield a non-exact but consistent discrete energy balance. An example
are the Lobatto IIIA/IIIB pairs for partitioned systems. The energy errors
are then consistent with, i. e. they have the same order as the chosen integra-
tion scheme. The statements on the numerical energy errors are illustrated by
elementary numerical experiments.

The chapter is organized as follows. In Section 5.1, we recall the considered
class of finite-dimensional PH systems with their underlying Dirac structure.
Section 5.2 contains as main results the definitions of discrete-time Dirac struc-
tures and PH systems based on the collocation method. In Section 5.3, we
consider Gauss-Legendre methods and Lobatto IIIA/IIIB pairs and discuss the
orders of the energy approximations. Section 5.4 illustrates the statements on
the elementary example of a linear undamped/damped oscillator. In the con-
cluding Section 5.5, we summarize the chapter, and we point out perspectives

1This chapter corresponds to the slightly edited initial version of [102].
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for future work based on the presented results.
The chapter further develops earlier results on the symplectic time integra-

tion of PH systems using Gauss-Legendre collocation [101]. The main novelties
are the precise consideration of the different energy approximations, the appli-
cation of the ideas to s-stage Lobatto pairs for partitioned systems, the analysis
and order proofs for the energy errors, and the extended section on numerical
experiments.

5.1 Lossless Port-Hamiltonian Systems

We consider the class of lossless finite-dimensional PH systems in an explicit
input-state-output representation as introduced in Subsection 2.1.2,

ẋ(t) = J(x(t))∇H(x(t)) + G(x(t))u(t) (5.1a)
y(t) = GT (x(t))∇H(x(t)), (5.1b)

with state vector x ∈ Rn, collocated in- and output vectors u,y ∈ Rm. The
Hamiltonian H : Rn → R is bounded from below with a strict minimum
in x∗, which is the equilibrium state for u ≡ 0. By skew-symmetry of the
interconnection matrix J = −JT and the definition of the collocated output,
the differential energy balance

Ḣ(x(t)) = yT (t)u(t) (5.2)

holds for all t, or in integral form,

H(x(t2))−H(x(t1)) =
∫ t2

t1

yT (s)u(s) ds, ∀t1 ≤ t2, (5.3)

which shows passivity (see e. g. [191]) of the state representation (5.1). The
energy balance is a structural or geometric property, i. e. it holds independently
of H(x). Flow and effort vectors are defined as

f(t) := −ẋ(t), e(t) := ∇H(x(t)). (5.4)

Because of Ḣ = (∇H)T ẋ = −eT f , they represent power-conjugated, dual vari-
ables. The differential energy balance (5.2) can be written as the power bal-
ance equation on the bond space F × E , with F = Rn × Rm 3 (f ,y) and
E = Rn × Rm 3 (e,u):

eT (t)f(t) + yT (t)u(t) = 0. (5.5)

In integral form, we obtain a structural energy balance over every interval
[t1, t2]: ∫ t2

t1

eT (s)f(s) + yT (s)u(s) ds = 0. (5.6)
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By

−f(t) = J(x(t))e(t) + G(x(t))u(t) (5.7a)
y(t) = GT (x(t))e(t), (5.7b)

the bond variables are constrained to a subspace (i. e. the graph of the skew-
symmetric map defined in (5.7)), on which in particular (5.5) holds. This
subspace is called a Dirac structure. For more details on Dirac structures and
PH systems, see e. g. [191], Chapter 6.

5.2 Discrete-Time PH Systems Based on Collocation

We define the class of discrete-time PH systems, which arise from a discrete-
time Dirac structure. The latter is obtained by applying the collocation method
to the class of PH systems (5.1) and by defining in an appropriate manner
discrete flow and effort vectors for every sampling interval. Special attention
is paid on the discretization of the energy balance (5.3). For a consistent
discrete-time approximation of the PH system (5.1), both the supplied energy
(right hand side of (5.3)) and the stored energy (left hand side of (5.3)) must
be approximated with the same order.

5.2.1 Collocation Method

We consider equidistant sampling intervals Ik = [tk0 , tks+1] = [(k − 1)h, kh],
k ∈ N for the time t with tks+1 = tk0 + h, see Fig. 5.1. With t = ((k − 1) + τ)h,
the sampling intervals are parametrized by the normalized time τ ∈ [0, 1].
The polynomial approximations of the system variables will be denoted with a
tilde. As described in Section II.1.2 of [76], the numerical approximation of the
solution x(t) of (5.1) is given by the vector x̃(t) ∈ Rn of collocation polynomials
of degree s. Assume first the initial value xk0 := x̃(tk0) = x(tk0) to be known.
The continuous numerical solution x̃(t) is then the vector of polynomials whose
time derivative matches the right hand side of (5.1a) in the collocation points
tki := tk0 + cih, i = 1, . . . s, with 0 ≤ ci ≤ 1:

˙̃x(tki ) = −fki , (5.8)
−fki = (J(x)∇H(x))|x=x̃(tk

i
) + G(x̃(tki ))u(tki ).

Notation: Arguments in latin letters (t or s under the integral) refer to time
functions evaluated on Ik. Greek letters (τ or σ) refer to the same function,
mapped to the normalized interval [0, 1].

5.2.2 Approximation of Flow and State Variables

Based on fki ∈ Rn, i = 1, . . . , s, according to (5.8), the interpolation formula

˙̃x(tk0 + τh) =: −f̃(tk0 + τh) = −
s∑
i=1

fki `i(τ), (5.9)
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Figure 5.1: Sampling interval Ik with interior collocation points tki = tk0 + cih,
i = 1, . . . , s.

with `i the i-th Lagrange interpolation polynomial

`i(τ) =
s∏
j=1
j 6=i

τ − cj
ci − cj

, τ ∈ [0, 1], (5.10)

gives a polynomial approximation of ẋ(t) on Ik. The flow coordinates are
merged in the discrete-time flow vector

fk :=
[
(fk1 )T . . . (fks )T

]T ∈ Rsn, (5.11)

based on which the numerical solution x̃(tk + τh), τ ∈ [0, 1] is obtained by
integration of (5.9):

x̃(tk0 + τh) = x̃(tk0)− h
s∑
j=1

(
fkj
∫ τ

0
`j(σ) dσ

)
. (5.12)

The values xki := x̃(tki ) of the numerical solution inside and at the end of the
interval Ik are then computed as

xki = xk0 − h
s∑
j=1

aijfkj , i = 1, . . . , s, (5.13)

xks+1 = xk0 − h
s∑
j=1

bjfkj , (5.14)

with2 (i, j = 1, . . . , s)

aij =
∫ ci

0
`j(σ) dσ, bj =

∫ 1

0
`j(σ) dσ. (5.15)

In continuous collocation methods, the numerical solution at the start tk+1
0 =

tks+1 of the subsequent interval is initialized by xk+1
0 = xks+1.

2These values are, together with ci, the coefficients of the Butcher table for the Runge-
Kutta (RK) interpretation of the collocation method, see [76], Theorem II.1.4.
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5.2.3 Effort Approximation and Discrete-Time Structure Equation

The definition of the discrete flow coordinates fk1 , . . . , fks in (5.8) requires to
evaluate the effort vector ∇H(x(t)), the input u(t) and the interconnection
and input matrices J(x(t)), G(x(t)) in the flow collocation points ci,

eki := ∇H(x)|xk
i
, uki := u(tk0 + cih), (5.16)

and
Jki := J(xki ), Gk

i := G(xki ) (5.17)

for i = 1, . . . , s. The discrete-time counterpart of (5.7a) is then

−fki = Jki eki + Gk
i uki , (5.18)

with Jki = −(Jki )T . With eki ∈ Rn and uki ∈ Rm the discrete effort and discrete
input coordinates according to (5.16), the polynomial approximations of the
effort and the input vector are

ẽ(tk0 + τh) =
s∑
i=1

eki `i(τ), ũ(tk0 + τh) =
s∑
i=1

uki `i(τ). (5.19)

In accordance with the approximate flows, we define the discrete-time effort
vector and the discrete-time input vector

ek =
[
(ek1)T . . . (eks)T

]T ∈ Rsn, (5.20)

uk =
[
(uk1)T . . . (uks )T

]T ∈ Rsm. (5.21)

Defining the block-diagonal matrices

Jk = −(Jk)T = blockdiag(Jk1 , . . . ,Jks),
Gk = blockdiag(Gk

1 , . . . ,Gk
s),

(5.22)

the structure equation (5.18) on the sampling interval Ik can be rewritten as

−fk = Jkek + Gkuk. (5.23)

Remark 5.1. Defining the discrete effort and input coordinates based on dif-
ferent collocation points d1, . . . , dr is also conceivable. In this case, the terms
of the right hand side of (5.18) must be replaced by interpolations between
the effort collocation points according to (5.19). In this paper, we restrict our-
selves to identical collocation points for the flow and effort variables, and to
the explicit representation of the resulting Dirac structure and PH system.
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5.2.4 Discrete-Time Supplied Energy

Since the instantaneous (local) power balance results trivially from the equa-
tions of the Dirac structure, we seek to express a discrete-time counterpart
of the integral energy balance equation (5.3) on the time interval Ik. To
this end, we integrate the polynomial approximation of instantaneous power
−ẽT (tk0 + τh)f̃(tk0 + τh) over the normalized time interval [0, 1], and obtain an
approximation of supplied energy on the sampling interval Ik

∆H̃k := −h
∫ 1

0
ẽT (tk0 + σh)f̃(tk0 + σh) dσ. (5.24)

Substituting the definitions (5.9) and (5.19) of the polynomial flow and effort
approximations, we obtain the bilinear form

∆H̃k = −h(ek)TMfk (5.25)

with the symmetric matrix M = MT ∈ Rsn×sn,

M =

m11 . . . m1s
... . . . ...

ms1 . . . mss

⊗ In, mij =
∫ 1

0
`i(σ)`j(σ)dσ, (5.26)

where mij = mji and ⊗ denotes the Kronecker product.

Remark 5.2. We can understand the term Mek as a generalization of the dis-
crete gradient and −hfk as a vector generalizing the increment of the numerical
solution in the integration step.

5.2.5 Discrete-Time Dirac Structure

We provide conditions under which the polynomial approximation of the power
variables leads to the definition of a discrete-time Dirac structure. Substituting
the relation (5.23) in the right hand side of the discrete energy balance (5.25),
we obtain

−h(ek)TMfk = h(ek)TMJkek + h(ek)TMGkuk. (5.27)

At this stage, we want to recover a discrete-time equivalent of the structural
power balance (5.5). To this end, the first term on the right hand side must
vanish: h(ek)TMJkek != 0 for all ek ∈ Rsn, or written element-wise (recall
mij = mji),

h
[
(ek1)T . . . (eks)T

] m11In . . . m1sIn
... . . . ...

ms1In . . . mssIn


Jk1

. . .
Jks


ek1

...
eks


= h

s∑
i=1

s∑
j=1

(eki )TmijJkj ekj
!= 0. (5.28)
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By skew-symmetry of Jkj , we have (ekj )TmjjJkj ekj = 0 for all j = 1, . . . , s. The
remaining elements of the sum cancel to zero, if (eki )TmijJkj ekj = −(ekj )TmjiJki eki
holds for all i 6= j. With the equality (eki )TmijJkj ekj = −((eki )Tmij(Jkj )Tekj )T =
−(ekj )TmjiJkj eki , the requirement translates to

(ekj )TmjiJki eki = (ekj )TmjiJkj eki ∀i 6= j, (5.29)

which is true if either one of the following conditions holds.

(C1) mij = 0 for all i 6= j,

(C2) Jki = Jkj = const. for all i, j = 1, . . . , s.

While (C1) is an orthogonality condition on the choice of the approxima-
tion basis in the discretization method, the constant interconnection structure
according to (C2) is a system property. In both cases (C1) or (C2), the discrete
energy balance (5.27) boils down to

h(ek)TMfk + h(ek)TMGkuk = 0. (5.30)

The definition of a discrete-time output vector

yk := (Gk)TMek (5.31)

yields (using M = MT )

h(Mek)T fk + h(yk)Tuk = 0, (5.32)

which represents a structural balance equation for the supplied energy in terms
of the discrete-time conjugate port variables in the nodes of the sampling in-
terval Ik. We are ready to define the discrete-time Dirac structure, which is
based on the polynomial approximation of the power variables.

Theorem 5.1 (Discrete-time Dirac structure). Given the s collocation points
0 ≤ ci ≤ 1, i = 1, . . . , s. The system of equations (5.23), (5.31), i. e.

−fk = Jkek + Gkuk

yk = (Gk)TMek,
(5.33)

with discrete flow, effort and input vectors fk, ek, uk according to (5.11), (5.20),
(5.21), the block matrices Jk = −(Jk)T , Gk according to (5.22), and the sym-
metric block matrix M = MT according to (5.26), represents a discrete-time
Dirac structure on the time interval Ik = [(k − 1)h, kh], which approximates
the continuous-time Dirac structure according to (5.7), if either condition (C1)
or (C2) is satisfied.
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Proof. Define f̂k := Mfk. We can write (5.33) as[
f̂k
yk
]

+
[

MJk MGk

−(Gk)TM 0

] [
ek
uk
]

= 0, (5.34)

which is the kernel representation of a finite-dimensional Dirac structure ac-
cording to Theorem 2.2 if the matrix in the second term is skew-symmetric.
This is the case if MJk is skew-symmetric, for instance when conditions (C1)
or (C2) hold. On the Dirac structure, the balance equation

(ek)T f̂k + (yk)Tuk = 0 (5.35)

holds. Substituting the definitions of f̂k and yk, and multiplying with h, we
obtain (5.30), which is a quadrature formula for the structural energy balance
(5.6).

5.2.6 Discrete-Time Port-Hamiltonian System

The discrete-time Dirac structure is now complemented by discrete-time dy-
namics and constitutive equations.

Definition 5.1 (Discrete-time PH system). Equations (5.33), together with
the s-stage discrete dynamics

xk0 = xk−1
s+1 , (5.36a)

xki = xk0 − h
s∑
j=1

aijfkj , i = 1, . . . , s, (5.36b)

xks+1 = xk0 − h
s∑
j=1

bjfkj , (5.36c)

with Runge-Kutta coefficients aij and bj according to (5.15) and the discrete
constitutive equations

eki = ∇H(x)|x=xk
i
, i = 1, . . . , s, (5.37)

define a discrete-time dynamical system. Using (5.25) and (5.32), the approxi-
mation of supplied energy on the sampling interval Ik = [(k − 1)h, kh] is given
by

∆H̃k = h(yk)Tuk. (5.38)
The so-defined dynamical system is called a discrete-time PH system if the
error between ∆H̃k and the increment of stored energy

∆H̄k = H(xks+1)−H(xk0) (5.39)

has the order of the integration scheme (5.36).
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Remark 5.3. Equations (5.36b) and (5.36c) can be written in more compact
form using the Kronecker product

xki = xk0 − h(aTi ⊗ In)fk, i = 1, . . . , s, (5.40a)
xks+1 = xk0 − h(bT ⊗ In)fk, (5.40b)

with aTi =
[
ai1 . . . ais

]
, bT =

[
b1 . . . bs

]
.

Remark 5.4. The structure of the discrete-time PH models is independent of
the sampling time h, which, however, determines the approximation quality.

5.2.7 Discrete Energy Balance

Equation (5.38) represents an approximation of the supplied energy flow through
the port (u(t),y(t)) based on the polynomial approximations of flows and ef-
forts. On the other hand, (5.39) expresses the increment of stored energy based
on a numerical integration scheme (5.36), as opposed to the exact increment

∆Hk = H(x(tk0 + h))−H(x(tk0)). (5.41)

Definition 5.2 (Consistent energy balance). If under a given numerical inte-
gration scheme of order p, the increment of stored energy satisfies

∆H̄k = h(yk)Tuk + o(hp), (5.42)

we call (5.42) a discrete energy balance, which is consistent with the discretiza-
tion scheme. If

∆H̄k = h(yk)Tuk, (5.43)

we call the energy balance exact.

Remark 5.5. In Definition III.2 of [36], the latter case is simply called “discrete
energy balance”. As (5.43) only holds under additional conditions, like constant
structure matrix and quadratic energy, and for example under the implicit
midpoint rule (see [4], Section III.B and [36], Section III.E), we add “exact” to
distinguish this particular case of a discrete energy balance.

To show the consistency of a discrete energy balance, we will show that the
local approximation errors of both ∆H̄k and ∆H̃k, compared with the exact
increment ∆Hk with xk0 = x(tk0), have order o(hp). To perform this analysis,
we restrict ourselves to quadratic energies of the form

H(x) = 1
2xTQx, Q = QT > 0. (5.44)
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Theorem 5.2 (Local error of stored energy). For a linear PH system with
quadratic energy (5.44), the local energy error

∆H̄k −∆Hk, xk0 = x(tk0), (5.45)

is consistent with the numerical integration scheme, i. e. it has order o(hp).

Proof. For an integration scheme of order p, the local or consistency error (set
xk0 = x̃(tk0) = x(tk0)) has order o(hp): ‖x̃(tk0 + h) − x(tk0 + h)‖ ≤ C1h

p+1,
C1 > 0. By the equivalence of norms, this holds accordingly for the energy
norm ‖x‖Q :=

√
1
2xTQx, with a different constant C2 > 0: ‖x̃(tk0 +h)−x(tk0 +

h)‖Q ≤ C2h
p+1. For the error in the stored energy, the following estimate can

be given, where the triangle inequality is used between third and fourth line
(tks+1 = tk0 + h, xks+1 = x̃(tks+1)):∣∣∆H̄k −∆Hk

∣∣ =
∣∣‖xks+1‖2Q − ‖x(tks+1)‖2Q

∣∣
=
∣∣(‖xks+1‖Q + ‖x(tks+1)‖Q

)
·
(
‖xks+1‖Q − ‖x(tks+1)‖Q

)∣∣
≤ 2 max

(
‖xks+1‖Q, ‖x(tks+1)‖Q

)
·
∣∣‖xks+1‖Q − ‖x(tks+1)‖Q

∣∣
≤ 2 max

(
‖xks+1‖Q, ‖x(tks+1)‖Q

)
·
∥∥xks+1 − x(tks+1)

∥∥
Q

≤ C3h
p+1

with C3 = 2 max
(
‖xks+1‖Q, ‖x(tks+1)‖Q

)
C2.

In the following section, we keep the assumption of quadratic energies and
discuss Gauss-Legendre collocation and the Lobatto IIIA/IIIB pairs for parti-
tioned systems as examples for symplectic integration schemes. In the former
case, we will prove that ∆H̄k = ∆H̃k holds, while in the latter case, we will
show that ∆H̃k approximates the energy increment ∆Hk with an error of iden-
tical order as ∆H̄k, and consequently the (consistent) discrete energy balance
(5.42) holds.

5.3 Examples and Analysis of Energy Errors

The degrees of freedom to define a discrete-time PH system according to Defi-
nition 5.1 are the set of collocation points {c1, . . . , cs} and the concrete coeffi-
cients aij and weights bj of the RK integration scheme (5.36). In this Section,
we analyze the error of ∆H̃k and its relation to ∆H̄k in the light of Definition
5.2 for both Gauss-Legendre collocation and the Lobatto IIIA/IIIB pairs.

5.3.1 Gauss-Legendre Collocation

To define a discrete-time Dirac structure for cases with non-constant intercon-
nection matrices, condition (C1) must be satisfied by the choice of collocation
points. To have mij = mji = 0 for i 6= j, with mij defined in (5.26), the
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interpolation polynomials {`1(τ), . . . , `s(τ)} must form a system of orthogonal
functions. This is the case, if we take the collocation points c1, . . . , cs, as the
zeros of the shifted Legendre polynomials3

ds

dτs
(τs(τ − 1)s) (5.46)

in normalized time τ ∈ [0, 1]. With the resulting interpolation polynomials,
the diagonal elements of M,

mii =
∫ 1

0
`2i (σ) dσ =

∫ 1

0
`i(σ) dσ = bi, (5.47)

equal the weights bi in the Gauss-Legendre quadrature formula∫ 1

0
f(σ) dσ ≈

s∑
i=1

bif(ci). (5.48)

This quadrature formula is exact for polynomials f(τ) on [0, 1] up to order
2s− 1. With 2s the order of the quadrature formula, the approximation error
of the integral∫ t0+h

t0

f(s) ds = h

∫ 1

0
f(t0 + hσ) dσ ≈ h

s∑
i=1

bif(t0 + hci) (5.49)

is of order O(h2s+1). The coefficients aij of the unique implicit Runge-Kutta
(RK) method4 of order p = 2s can be computed as given in (5.15).

We now determine the conditions on the parameters of the integration
scheme under which ∆H̄k = ∆H̃k. Substituting (5.36c) in (5.39) for a quadratic
energy, we have

∆H̄k = −h(xk0)TQ
s∑
j=1

bjfkj + 1
2h

2(
s∑
j=1

bjfkj )TQ
s∑
j=1

bjfkj . (5.50)

On the other hand, with bj = mjj , ekj = Qxkj and (5.36c), Equation (5.25)
becomes

∆H̃k = −h
s∑
j=1

(ekj )Tmjjfkj

= −h
s∑
j=1

(xk0 − h
s∑
l=1

ajlfkj )TQbjfkj

= −h(xk0)TQ
s∑
j=1

bjfkj + h2
s∑
j=1

(
(
s∑
l=1

ajlfkl )TQbjfkj
)
.

(5.51)

3See [76], Section II.1.3.
4See the Butcher tables in Appendix A.2.
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The first terms in (5.50) and (5.51) are identical. By matching the coefficients
in front of h2(fkl )TQfkj in the second term, one obtains the conditions

aii = 1
2bi, aijbi + ajibj = bibj (5.52)

for i, j = 1, . . . , s, under which ∆H̄k and ∆H̃k coincide.

Theorem 5.3 (Exact discrete energy balance). The s-stage Gauss-Legendre
methods, applied to linear PH systems with quadratic energy, are the only
collocation integration schemes, which yield an exact discrete energy balance
(5.43).

Proof. Equation (5.52) is, among collocation schemes, only satisfied for Gauss-
Legendre collocation, see [76], Section IV.2.1, Theorem 2.2 and the paragraph
below the proof5. If (5.52) is true, ∆H̄k = ∆H̃k holds, and (5.43) follows from
(5.38).

Remark 5.6. Gauss-Legendre collocation with s = 1 leads to the implicit mid-
point rule, which is shown in [4] to satisfy an exact discrete energy balance.
Theorem 5.3 shows that this is not the only choice for structure-preserving time
discretization of PH systems with exact energy balance.
Remark 5.7. Beyond collocation methods, other Runge-Kutta schemes can be
constructed, which satisfy the symplecticity condition (5.52), see [180].

5.3.2 Lobatto IIIA/IIIB Pairs

Partitioned collocation methods, such as Lobatto pairs, are used for separable
Hamiltonian systems. We consider in this study the linear PH system of simple
mechanical type6 with q,p ∈ Rn, u ∈ Rm,[

q̇(t)
ṗ(t)

]
=
[

0 I
−I 0

] [
Qq(t)
Pp(t)

]
+
[

0
G

]
u(t)

y(t) =
[
0 GT

] [Qq(t)
Pp(t)

]
.

(5.53)

The discrete-time structure equations can be expressed as[
−fkq
−fkp

]
=
[

0 Isn
−Isn 0

] [
ekq
ekp

]
+
[

0
Gk

]
uk. (5.54)

5The criterion (5.52) characterizes numerical integration methods that conserve quadratic
invariants. “[A]mong all collocation and discontinuous collocation methods [. . . ] only the
Gauss methods satisfy this criterion [. . . ].”

6Q = K denotes the stiffness matrix, P = M−1 the inverse mass matrix in the common
notation for linear mechanical systems.
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The elements of the effort and input vectors ekq , ekp ∈ Rsn, uk ∈ Rsm are

ekq,i = Qqki , ekp,i = Ppki , uki = u(tk0 + cih). (5.55)

The partitioned integration scheme, which consists of two RK methods (coef-
ficients aij , âij , bj = b̂j , ci = ĉi, i, j = 1, . . . , s), each applied to one set of
differential equations, can be written (i = 1, . . . , s)

qk0 = qk−1
s+1 , pk0 = pk−1

s+1 , (5.56a)

qki = qk0 − h
s∑
j=1

aijfkq,j , pki = pk0 − h
s∑
j=1

âijfkp,j , (5.56b)

qks+1 = qk0 − h
s∑
j=1

bjfkq,j , pks+1 = pk0 − h
s∑
j=1

b̂jfkp,j , (5.56c)

with fkq,j = −ekp,j , fkp,j = ekq,j −Gkukj , j = 1, . . . , s.
In contrast to Gauss-Legendre collocation, the expression for the increment

of a quadratic Hamiltonian per sampling interval

∆H̄k = 1
2
(
(qks+1)TQqks+1 − (qk0)TQqk0 + (pks+1)TPpks+1 − (pk0)TPpk0

)
(5.57)

does not coincide with the approximate supplied energy

∆H̃k = −
∫ tk0+h

tk0

ẽTq (s)f̃q(s) + ẽTp (s)f̃p(s) ds

= −h(ekq )TMfkq − h(ekp)TMfkp ,
(5.58)

where M is given by (5.26).
We restrict our attention to the 3-stage Lobatto pair7 with collocation

points c1 = 0, c2 = 1
2 , c3 = 1, in which case the matrix M is

M =

 2
15

1
15 − 1

301
15

8
15

1
15

− 1
30

1
15

2
15

⊗ In. (5.59)

Theorem 5.4. For the 3-stage Lobatto pair, applied to the partitioned linear
PH system (5.53), the error between ∆H̃k and ∆H̄k, and consequently the
error between ∆H̃k and ∆Hk has order o(h2s−2) = o(h4).

Proof. First notice that the local energy error ∆H̄k − ∆Hk is of order o(hp)
with p = 2s− 2 the order of the Lobatto pair, see Theorem 5.2. To prove that
the error ∆H̃k−∆H̄k has the same order, the expressions in (5.57) and (5.58)

7See the Butcher tables in Appendix A.2.



130 5 Structure-Preserving Time Discretization

are subtracted, under substitution of the efforts and states in the i-th stage
according to (5.55) and (5.56b). We replace the terms fkq,1, fkq,3 and fkp,1, fkp,3
by their Taylor expansions

fkq,1 = fkq,2 − ḟkq,2
h

2 + r1h
2, fkq,3 = fkq,2 + ḟkq,2

h

2 + r2h
2,

fkp,1 = fkp,2 − ḟkp,2
h

2 + r3h
2, fkp,3 = fkp,2 + ḟkp,2

h

2 + r4h
2,

(5.60)

where ḟkq,2 = d
dt f̃q(tk2) and ḟkp,2 = d

dt f̃p(tk2) are the time derivatives of the poly-
nomial flow approximations f̃q and f̃p in tk2 = tk0 + h

2 . r1, . . . , r4 are residual
terms. The result is

∆H̄k −∆H̃k = F1(r1, . . . , r4, ḟkq,2, ḟkp,2)h5 + F2(r1, . . . , r4)h6, (5.61)

where F1 and F2 are functions in the given arguments. This, together with the
order of the error ∆H̄k −∆Hk, proves the claim.

As a consequence of Theorem 5.4, the application of the 3-stage Lobatto
pair to the partitioned PH system (5.53) defines a discrete-time PH system,
whose discrete energy balance is consistent with the order p = 2s − 2 = 4 of
the numerical scheme.

Theorem 5.4 shows exemplarily at the case s = 3 how to prove the identical
consistency order of both local energy approximation errors. The numerical
experiments in the following section give evidence that the corresponding order
statement also holds for the 4-stage Lobatto pair.

5.4 Numerical Experiments

We illustrate the quantitative statements concerning the accuracy of the en-
ergy approximations by the numerical simulation of a linear oscillator, whose
solutions can be computed, and which therefore serves as a benchmark exam-
ple. First, the conservative case, which has been considered throughout the
chapter, is studied. The accumulated errors of energy supplied through the
port (u(t), y(t)) and stored energy are determined and illustrated for both con-
sidered families of integration schemes. In a second part, the control port is
closed by constant feedback, which injects damping to the system. We show
that the accuracy order of the energy approximation is maintained in the lossy
case.

The considered state space PH model of the lossless oscillator is given by
the explicit representation of the underlying Dirac structure

−f(t) = Je(t) + gu(t) (5.62a)
y(t) = gTe(t) (5.62b)
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with flow and effort vectors f , e ∈ R2, in- and output u, y ∈ R.

J =
[

0 1
−1 0

]
and g =

[
0
1

]
(5.63)

denote the interconnection matrix and the input vector. The dynamics equa-
tion is ẋ(t) = −f(t) with x ∈ R2 the state vector. The linear constitutive equa-
tions e(t) = Qx(t) are derived from the quadratic HamiltonianH(x) = 1

2xTQx
with Q = I. For the lossy case, the extended output feedback

u(t) = −ry(t) + v(t), r > 0, (5.64)

with new input v(t), generates the damped system’s state differential equation

ẋ(t) = (J−R)Qx(t) + gv(t), R =
[
0 0
0 r

]
. (5.65)

The structure equations (5.62) are discretized using collocation as described
in the previous sections. First, Gauss-Legendre collocation with s = 1, 2, 3
stages is used. Then, the partitioned representation of (5.62) is considered
for the discretization of the Dirac structure with 3- and 4-stage Lobatto pairs.
Discrete-time dynamics and constitutive equations are discretized according
to Definition 5.1, again considering the partitioned version of the state space
model for the Lobatto pairs.

5.4.1 Energy Supply and Storage in the Lossless Case

Starting from an initial state x(0) =
[
q(0) p(0)

]T =
[
0 −1

]T , the undamped
system is excited by a pulse-shaped input

u(t) =


0, t < 8
sin2( t−8

10−8π), 8 ≤ t ≤ 10
0, t > 10.

(5.66)

Figure 5.2 shows the exact evolutions of states, input and the quadratic
energy for this test case on the interval [0, Tend] = [0, 18]. Figure 5.3 depicts
the magnitudes of relative errors

ε̃H := ∆H̃tot −∆Htot
∆Htot

, ε̄H := ∆H̄tot −∆Htot
∆Htot

(5.67)

of total supplied and stored energy over the range of step sizes h ∈ [0.005, 0.5].
∆Htot =

∑N
k=1 ∆Hk, ∆H̃tot =

∑N
k=1 ∆H̃k and ∆H̄tot =

∑N
k=1 ∆H̄k denote

the total increment of energy and its approximations on [0, Tend] with N =
Tend/h the number of sampling intervals. With ∆H̄k = ∆Hk + ckhp+1, where
p is the order of the integration scheme, the absolute value of ε̄H can be bounded
as follows:

|ε̄H | =
|∑N

k=1 c
khp+1|

|∑N
k=1 ∆Hk|

≤ maxk |ck|
|Pav|

hp. (5.68)
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Figure 5.2: Evolution of states (left), input and energy (right) for the forced un-
damped oscillator.

Figure 5.3: Errors ε̃H and ε̄H of supplied and stored energy for Gauss-Legendre
methods, s = 1, 2, 3 (left) and Lobatto pairs, s = 3, 4 (right).

Pav = ∆Htot
Nh denotes the average transferred power, and the same estimation

of order can be performed for ε̃H .
The first diagram in Figure 5.3 nicely shows the orders 2, 4 and 6 of the

Gauss-Legendre methods as well as the fact that both approximations ∆H̃k

and ∆H̄k of supplied and stored energy coincide. (The effect of rounding
errors becomes visible at low step sizes in the curve for s = 3.) The slopes in
the second diagram confirm the orders 4 and 6 of the 3- and 4-stage Lobatto
pairs. Although hardly recognizable, the two curves for ε̃H and ε̄H do not
match, which is accordance with the computations for s = 3, see Eq. (5.61).

5.4.2 Approximation of Dissipated Energy

The damped oscillator represents the most basic power-conserving interconnec-
tion of a PH system (the undamped oscillator) with another system (a purely
resistive element). This is nicely seen if (5.62) is combined with the damping
injection feedback (5.64). The differential energy balance in this damped case
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Figure 5.4: Evolution of the states (left) and the energy (right) for the damped
oscillator.

reads
Ḣ(t) = −ry2(t) + y(t)v(t) ≤ y(t)v(t), (5.69)

which is the balance of power to the energy storage elements, supplied power
and dissipated power. In the sequel, we set v(t) ≡ 0. Figure 5.4 shows
the solution of (5.65) with damping parameter r = 0.1 and an initial value
x(0) =

[
p(0) q(0)

]T =
[
0 −1

]T on the time interval [0, 10], as well as the
monotonous decrease in energy.

Discretization of the damped PH model, evaluation of the total dissipated
energy ∆Htot and comparison with the numerical values ∆H̄tot and ∆H̃tot
results in the error plots in Fig. 5.5. As in the lossless case, the error plots
confirm that the dissipated power is discretized consistently with the order of
the underlying geometric numerical integration scheme. This time, the discrep-
ancy between the numerical energy increments ∆H̃k and ∆H̄k for the Lobatto
pairs, which is of order O(hp), is clearly visible in the right diagram.

Remark 5.8. The discrete-time correspondence of the damping injection feed-
back

u(t) = −ry(t) = −rx2(t), (5.70)

which produces the discrete-time PH system with dissipation is

uki = −rxk2,i, i = 1, . . . , s, (5.71)

and not uk = −ryk with the output yk as defined in (5.31). This point is
very clear, when we consider the different meanings of the ports (u(t), y(t))
and (uk,yk): The pairing of the former port variables gives the instantaneous
power, while the latter approximates the average transmitted power over the
sampling interval Ik.
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Figure 5.5: Errors ε̃H and ε̄H of energy flow over the dissipative port and energy
loss in the storage elements for Gauss-Legendre methods, s = 1, 2, 3 (left) and the
Lobatto pair, s = 3 (right).

5.5 Conclusions

We presented a new definition of discrete-time PH systems, which is based
on the approximation of the structure equations and the energy balance of
explicit PH systems using the collocation method. By defining a discrete-
time Dirac structure, discrete-time constitutive equations and using appropri-
ate geometric numerical integration schemes, the separation between structure,
constitutive laws and dynamics, which is a central feature of PH systems, is
maintained. The presented work extends in a very natural way the notion of
geometric/symplectic integration of autonomous Hamiltonian systems to the
open case (i. e. with power flow over the system boundary) of PH systems.

A focus has been set on proving consistency of the two different numerical
energy increments that appear in the context of this definition. The family
of implicit Gauss-Legendre schemes – applied to linear PH systems – is the
only one among collocation schemes for which the approximations of supplied
and stored energy match, which leads to an exact discrete energy balance of
the discrete-time PH approximation. For Lobatto IIIA/IIIB pairs, applied to
a linear PH system of partitioned mechanical structure, the discrete energy
balance is not exact, but the energy error is consistent with the numerical
integration scheme. The theoretical findings have been illustrated by numerical
experiments with the simplest test case of a linear oscillator: The evolution of
total energy, which is (i) supplied by an external input or (ii) dissipated based
on output damping injection, is approximated up to the order of the underlying
integration scheme.

The presented definition of discrete-time PH systems can be exploited in
the simulation and numerical analysis of large scale networks. The consistent
approximation of energy flows between subsystems and the quantification of
their errors give important insight that helps to keep track of the quality of
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simulation results. In the context of network simulation, the numerical ap-
proximation of PH DAE systems [190], [13] is of particular interest. Combined
with structure-preserving spatial discretization, see e. g. [104], the presented
approach contributes to the full discretization of distributed parameter PH
systems. Moreover, the presented work gives rise to reconsider the Control by
Interconnection approach, see e. g. [149], for the stabilization of PH systems
in discrete time. Finally, more general choices for the time discretization of ef-
fort and flow variables are conceivable, which would lead to interesting implicit
representations of Dirac structures with implicit discrete dynamics.





Chapter 6

Preservation of Flatness and
Feedforward Control

Differential flatness, see e. g. the article [60] and the books [176], [116], is a sys-
tem property, which is extremely useful for feedforward and feedback control.
In continuous-time finite-dimensional flat systems, state and input trajectories
can be computed algebraically from a flat output and a finite number of its
time derivatives. This means that the system dynamics can be inverted with-
out integration, or in other words, the occurrence of internal dynamics. In
the linear case, controllability guarantees the existence of a flat output, which
has full relative degree. For discrete-time finite-dimensional systems, flatness
can be defined in an analogous way, see [176], Chapter 5. The differential
parametrization of states and inputs is replaced by a difference parametriza-
tion, i. e. states and inputs can be expressed in terms of the output sequence
and a finite number of forward/backward shifts in discrete time. As for the
continuous-time case [117], the characterization of differentially flat nonlinear
systems in discrete time [91] is a non-trivial task.

To extend the flatness approach to infinite-dimensional systems, there ex-
ists a series of approaches with different properties depending on the class of
infinite-dimensional systems. For a tubular reactor [63] or the one-dimensional
heat equation [109], a flat parametrization can be obtained by the ansatz of
an infinite power series for the state. Convergence of the state and the input
power series (to be truncated for implementation) depends on the smoothness
of the desired output trajectory, which is given for Gevrey class [68] functions.
Alternatively, the Riesz spectral property of the linear system operator can
be exploited, also on higher-dimensional spatial domains, which also leads to
power series representations of the system variables [14], [133], [134]. Another
approach is to use Mikusiński’s operational calculus, see e. g. [62], [121] and
the books [166], [167] with references and examples from different physical do-
mains. The linear PDE is transformed to an ordinary differential equation in
space and solved under the boundary condition of the desired flat output. The
back-transformation to time domain results in infinite power series and/or finite
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distributed delays and predictions, depending on the parabolic/hyperbolic na-
ture of the problem. Flatness and flatness-based control of hyperbolic systems
[61], [93], [210], [211], where initial and boundary conditions are transported
along the characteristic curves, is closely related to flatness of delay systems
[139].

In order to avoid operational calculus and to enable the flatness-based feed-
forward control of nonlinear infinite-dimensional systems, the spatial discretiza-
tion of the underlying PDEs is considered in [143]. Based on finite difference
approximations of the heat equation and a nonlinear flexible beam, the conver-
gence of the computed solutions under grid refinement is shown. The article
[19] shows the application of [133] to temperature control of a deep-drawing
process on a complex-shaped geometry using finite element models and model
order reduction.

In this chapter1, which starts with a brief summary of flatness definitions
in finite dimension, we derive conditions on the parameters of the structure-
preserving discretization scheme presented in Chapter 4, under which flatness
of a given output is conserved. We restrict ourselves to the 1D case and perform
numerical experiments to assess the quality of the resulting feedforward con-
trollers. In continuous time, increasing the order of the numerical approxima-
tion model by grid refinement increases also the required smoothness degree of
the desired output trajectory. For the parabolic heat equation, which is treated
in Section 6.2, this is no restriction, as flatness-based feedforward control on
the PDE model also requires infinitely smooth desired output functions. For
hyperbolic systems whose solutions transport initial and boundary conditions
with finite speed, smoothness up to a certain degree represents an unphysical
constraint on the output trajectory. In Section 6.3, we show for the 1D wave
equation how flatness is preserved, if structure-preserving spatial discretization
is combined with symplectic time integration as discussed in Chapter 5. The
result is flatness of the output in discrete time, which allows for a discrete-time
flat parametrization of the states and the input. The computed control depends
on the output and its forward/backward shifts in discrete time. The results
from the linear case are extended to a class of nonlinear conservation laws in
Section 6.4. The consistent approximation of constitutive equations, together
with geometric time integration, allows again for flatness-based discrete-time
controller design.

In Sections 6.2 and 6.3, we compare the numerical flatness-based bound-
ary controls with the solutions that are obtained from the infinite-dimensional
models, i. e. based on late lumping or the exact solution. Our algorithm for
nonlinear conservation laws is applied to the flow routing problem of the 1D
shallow water equations in Section 6.4. We validate our results against those
obtained in [93], where the feedforward control is computed using the method
of characteristics.

1Section 6.2 is based on the results of the corresponding parts of [96] and [97]. The results
of Section 6.4 are published in [98].



6.1 Definitions 139

Remark 6.1. The finite-dimensional models, for which conservation of flatness
is examined in this chapter, result from a discretization scheme that preserves
the port-Hamiltonian structure, in particular passivity of the system represen-
tation. Passivity and flatness are a priori two very different system properties.
In the finite-dimensional case, the different relative degrees of a passive and a
flat output give evidence of this. However, it is also clear that the system differ-
ential equation of a PH system can be complemented by an output which has
the flatness property and whose conservation under numerical approximation
is of interest for numerical control design.

6.1 Definitions

We recall the definition of flatness for finite-dimensional continuous-time and
discrete-time systems as a prerequisite for the discussion in the following sec-
tions. We restrict ourselves to the SISO case of a single in- and output. For
flatness of different classes of infinite-dimensional systems, we refer to the ref-
erences listed in the previous paragraph.

6.1.1 Continuous-Time Systems

As introduced in [60], a nonlinear system

ẋ = f(x, u), x ∈ Rn, u ∈ R, (6.1)

which can be feedback linearized by an endogeneous dynamic feedback2 is called
(differentially) flat. In particular, there exists a so-called flat output, which de-
pends on only the system states, the input and the time derivatives of the input,
such that the states and the input can be parametrized by the flat output and
its time derivatives. The following definition summarizes the characterization
of flatness in the introduction of [60], see also [176], Definition 7.2.1, and [116],
Corollary 6.2.

Definition 6.1. The system (6.1) is called (differentially) flat, if there exists
a function – a flat output –

y = φ(x, u, u̇, ü, . . . ,
(α)
u ), (6.2)

which allows for a differential parametrization

x = ψx(y, ẏ, ÿ, . . . ,
(β)
y ), u = ψu(y, ẏ, ÿ, . . . ,

(β+1)
y ) (6.3)

of the state and the input in terms of the flat output and its time derivatives.

2Endogeneous means that “the dynamic extension does not contain exogeneous variables,
which are independent of the original system variables and their derivatives”, see [60], Section
1 or [116], Subsection 5.3.6.
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The implication for feedforward control design is evident: Given a desired
output trajectory yd(t), which is at least β+1 times continuously differentiable,
the corresponding state and input trajectories xd(t) and ud(t) follow directly
from substitution in (6.3).

For linear SISO systems in state space form

ẋ = Ax + bu, x ∈ Rn, u ∈ R, (6.4)

the existence of a flat output is equivalent to controllability. The following
theorem rephrases Proposition 2.4.1 in [176].

Theorem 6.1. The flat output of a SISO system (6.4) is given by

y = c
[
0 . . . 0 1

]
Q−1
c x, c ∈ R\{0}, (6.5)

where
Qc =

[
b Ab . . . An−1b

]
(6.6)

denotes Kalman’s controllability matrix.

As a consequence of this theorem, a given scalar output

y = cTx (6.7)

of the LTI system (6.4) is flat if and only if the output vector cT ∈ R1×n,
multiplied with the controllability matrix Qc, gives the n-th unit vector modulo
a constant factor:

cTQc = 1
c

[
0 . . . 0 1

]
. (6.8)

This requirement can be recast as

cTAkb = 0, k = 0, . . . , n− 2, (6.9a)
cTAn−1b 6= 0. (6.9b)

Moreover, to express x only in terms of y, ẏ, . . . ,
(n−1)
y (see [176], Section 2.4),

the output (6.7) must be observable.

Corollary 6.1. A flat output of a controllable LTI system (6.4) is observable
and has full relative degree n.

6.1.2 Discrete-Time Systems

Flatness of controllable discrete-time systems

xk+1 = Adxk + bduk (6.10)
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is discussed in Chapter 5 of [176] along the same lines as for the continuous-
time case. Controllability of the discrete-time state space model guarantees
the transformation z = Q−1

c,dx to controllability normal form3, where Qc,d is
the discrete-time controllability matrix. It can be easily verified that the last
transformed state zn represents a flat output for (6.10), see Proposition 5.4.1
in [176].

Theorem 6.2. The flat output of a discrete-time SISO system (6.10) is given
by

y = c
[
0 . . . 0 1

]
Q−1
c,dx, c ∈ R\{0}, (6.11)

where
Qc,d =

[
bd Adbd . . . An−1

d bd
]

(6.12)

denotes Kalman’s discrete-time controllability matrix.

The state vector xk and the input uk can be parametrized by the flat output
yk and a finite number of its predictions yk+l, l = 1, . . . , n.

In Sections 6.3 and 6.4, we will use a symplectic integration scheme in
order to obtain fully discretized (i. e. in space and time) state space models of
hyperbolic systems. As discussed in Chapter 5, symplectic integration allows to
conserve structural properties of a finite-dimensional port-Hamiltonian system
(a structural energy balance, energy conservation in the zero input case) in the
discrete-time model. In contrast to (6.10), the discrete-time state space models
will be implicit. Accordingly, the flat parametrization of states and outputs will
contain predictions and delays of the flat output.

6.2 One-Dimensional Heat Equation

Recall the structured representation of the heat equation from Subsection 2.3.3.
We consider, as in Subsection 4.6.6, the case of a one-dimensional spatial do-
main Ω = (0, 1) ⊂ R and constant material parameters λ = cv = 1:[

fp

fq

]
=
[

0 d
d 0

] [
ep

eq

]
(Structure) (6.13a)

ṗ = −fp (Dynamics) (6.13b)[
ep

eq

]
=
[
∗p
−∗fq

]
(Constit. Eq.) (6.13c)[

0
u

]
=
[
eq(0)
ep(1)

]
(Boundary cond.) (6.13d)

y = ep(0) (Flat output) (6.13e)

3Not to be confused with the controller canonical form.
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In the structure equation, fp, fq ∈ L2Λ1(Ω) represent the negative time deriva-
tive of internal energy density and the thermodynamic driving force, while
ep, eq ∈ H1Λ0(Ω) denote temperature and heat flux4. The constitutive equa-
tions represent the calorimetric equation and Fourier’s law. For z = 0, an
insulating boundary condition (zero heat flux) is imposed, while at z = 1, the
temperature plays the role of an input. The temperature at z = 1 is a flat
output.

6.2.1 Feedforward Control Based on the PDE Model

We summarize the flatness-based feedforward control design for the heat equa-
tion according to [109]. As an alternative to the formal power series ansatz of
the solution, we can start from the irrational transfer function for the system
(6.13), see Appendix B.2. Having no zero, we can invert the transfer function,

û(s) = cosh(
√
s)ŷ(s), (6.14)

which allows to compute the input signal without integration in time. The
hyperbolic cosine is expressed as an infinite series

cosh(
√
s) =

∞∑
j=0

sj

(2j)! . (6.15)

Substitution in (6.14) and backtransformation to time domain (the star indi-
cates the desired output function and the corresponding input),

u∗(t) =
∞∑
j=0

1
(2j)!

dj

dtj
y∗(t), (6.16)

yield the flat parametrization of the temperature at the left boundary (input)
by the temperature at the right boundary (flat output).

To realize a transient between two stationary outputs y∗(0) = 0 and y∗(T ) =
1, the desired trajectory must be infinitely often differentiable on [0, T ], while
all time derivatives must be zero in t = 0 and t = T . This means that at these
two points, y∗(t) must be non-analytic [135]. The smoothened step function
y∗(τ) = Θω(τ), τ = t

T ,

Θω(τ) =


0 τ ≤ 0,∫ τ

0
θω(s)ds∫ 1

0
θω(s)ds

τ ∈ (0, 1),

1 τ ≥ 1,

(6.17)

4Note that the functional spaces are defined based on only the structure equation, which
is discretized in a first step.
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satisfies the above-mentioned conditions. θω(τ) represents the “bump” function

θω(τ) =
{

0 τ /∈ (0, 1)
exp (−[(1− τ)τ ]−ω) τ ∈ (0, 1).

(6.18)

For a parameter choice ω > 1, the desired trajectory y∗(τ) is a Gevrey class
function of order5 1 < γ < 2 with γ = 1 + 1

ω . A value of γ < 2 guarantees
convergence of the power series (6.16) with infinite convergence radius [120].
To compute the input trajectory u∗(t), the infinite series (6.16) is truncated
after a finite number of elements.

6.2.2 Feedforward Control Based on the Discretization

The structure-preserving discretization of the PDE model (6.13) according to
Subsection 4.6.6 yields the SISO linear state space model (4.119), (4.121) of
order N . We consider the two cases α = 0 and α = 1

2 , which correspond
to a one-sided and a centered approximation of the constitutive equations,
respectively.

Case 1, α = 0

The state space model (A,b, cT ) has no invariant zeros, i. e. the numerator
polynomial of the transfer function

Y (s)
U(s) = cT (sI−A)−1b = b0

sN + aN−1sN−1 + . . .+ a1s+ a0
(6.19)

is a constant. Consequently, the input U∗(s) is obtained by multiplication of
the desired output Y ∗(s) with the N -th order characteristic polynomial:

U∗(s) = sN + aN−1s
N−1 + . . .+ a1s+ a0

b0
Y ∗(s). (6.20)

In the time domain, this corresponds to a weighted sum of y∗(t) and its time
derivatives up to order N :

u∗(t) = 1
b0

N∑
j=0

aj
dj

dtj
y∗(t), aN = 1. (6.21)

Case 2, α = 1
2

Assuming an even number of discretization intervals N , the discretized state
space model (A,b, cT ) can be split into two subsystems, see (4.139). The
second subsystem is unobservable due to the compensation of exactly one half of

5We use the symbol γ for the order of the Gevrey class function (instead of α in [68]) to
avoid confusion with our mapping parameter α.
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Figure 6.1: Simulation result with the feedforward controller for an s-shaped tran-
sient of y = T (0) = ep(0) with ω = 1.1. Controller design: N = 40, α = 1

2 , using y
and its time derivatives up to order 10. Simulation: Nsim = 160, α = 1

2 .

the eigenvalues (of multiplicity 2) with the invariant zeros. The first subsystem
is controllable and observable and has a transfer function of the form

Y (s)
U(s) = cT1 (sI−A1)−1b1

= b′0
s
N
2 + a′N

2−1s
N
2−1 + . . .+ a′1s+ a′0

,
(6.22)

from which, in analogy to above, the flat parametrizaion of the input can be
obtained:

u∗(t) = 1
b′0

N
2∑
j=0

a′j
dj

dtj
y∗(t), a′N

2
= 1. (6.23)

Remark 6.2. Note that for the discretization with α = 1
2 , the given output y(t)

can be considered a flat output of the controllable and observable subsystem
(A1,b1, cT1 ). The unobservable subsystem (A2,b2, cT2 ), which has the same
negative real eigenvalues as the first one, is excited by the input u(t). Its
solution x2(t) tends asymptotically to an equilibrium depending on the steady
state value of u(t) and does not affect the state x1(t) of the first subsystem.

6.2.3 Numerical Experiments

We use a simulation model with α = 1
2 , Nsim = 160, which is integrated using

Matlab’s lsim with a time step of 10−5. We consider a transient reference
output between y(0) = 0 and y(1) = 1, which is described by (6.17). With
the parameter ω = 1.1, the output trajectory is of Gevrey order 1 + 1

1.1 < 2.
The infinite series (6.16) to compute the flat input parametrization is truncated
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Figure 6.2: Output errors under flatness-based feedforward control. Simulation
model: Nsim = 160, α = 1

2 . u
10
c : Analytic computation of feedforward control using

10 time derivatives of y. u5/10
40/80: Computation of feedforward control based on the

discretized model with α = 1
2 , N ∈ {40, 80} using 5 or 10 time derivatives of y∗(t).

after the 10th time derivative of y∗(t). The corresponding controller is denoted
u10
∞(t).
For comparison, we compute the feedforward control based on (6.21) for

α = 0 and (6.23) for α = 1
2 . Both series are also truncated after the first 10

(or 5, respectively) time derivatives. The corresponding controllers are denoted
u

5/10
N (t), where the subscript denotes the order N of the control design model

and the superscript the number of time derivatives of the flat output that were
used.

Figure 6.1 illustrates the vector of lumped co-energy variables (nodal tem-
peratures) ep(t) = Qpp̃(t) = Qpx(t) over space and time for the temperature
transient with input u10

40(t), imposed at z = 1. In Fig. 6.2, we compare the sim-
ulated output with the reference trajectory for α = 0 (top) and α = 1

2 (bottom),
under variation of N ∈ {40, 80} and the number of used output derivatives (10
or 5). The different order (1 vs. 2) of the approximation error is evident from
the curves: The magnitude of the output error is reduced to a factor 1

2 and
1
4 , respectively, when doubling the number of discretization intervals, which
is consistent with the analysis of the simulation models in Subsection 4.6.6,
Fig. 4.8. Comparing the solid with the dotted curves, the decreasing influence
of higher order derivatives of the flat output can be observed. Despite the
fact that for α = 1

2 (centered approximation), y(t) is only the flat output of
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the controllable and observable subsystem (the unobservable subsystem being
asymptotically stable), the feedforward control based on this finite-dimensional
model is superior to the case α = 0 (one-sided approximation), in which y(t)
remains the flat output of the overall system.

6.3 One-Dimensional Wave Equation

In analogy to the previous section, we rewrite the structured representation of
the 1D wave equation on Ω = (0, 1) with constant propagation speed c = 1, as
introduced in Subsections 2.3.1 and 4.6.5:[

fp

fq

]
=
[

0 d
d 0

] [
ep

eq

]
(Structure) (6.24a)[

ṗ
q̇

]
=
[
−fp
−fq

]
(Dynamics) (6.24b)[

ep

eq

]
=
[
∗p
∗q

]
(Constit. Eq.) (6.24c)[

u1
u2

]
=
[
eq(0)
ep(1)

]
(Boundary cond.) (6.24d)[

y1
y2

]
=
[
−eq(1)
ep(0)

]
(Non-coll. outputs) (6.24e)

Flow and effort differential forms are fp, fq ∈ L2Λ1(Ω), ep, eq ∈ H1Λ0(Ω).
Note that the outputs are defined in a non-collocated way6, i. e. u1 and y1
represent the same physical quantity at opposite boundaries, accordingly for
u2 and y2.

We address the problem of finding the upstream input u∗1(t) for a given
downstream output trajectory y∗1(t) under an algebraic boundary condition

B(u2, y1) = B(ep(1),−eq(1)) = 0 (6.25)

for the effort variables at z = 1. For the linear wave equation, we make the
particular choice of

u2 = −y1, (6.26)

which corresponds for example to the perfectly absorbing resistive termination
of a transmission line, see the example7 in [71].

6(u1, y2) and (u2, y1) represent the (collocated) boundary ports.
7Therein, the transmission line of length e − 1 has identical distributed inductance and

capacitance functions that depend on z. The line is terminated with a lumped resistance
of value 1. The exact solution of the underlying PDE, as in our problem with constant
parameters, yields simply y1(t) = u1(t− 1).
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6.3.1 Solution of the PDE Model

In classical notation, with p(z, t) and q(z, t) functions in space and time instead
of differential forms, the above-described (inverse) boundary control problem
reads: Find

u∗1(t) = q(0, t) (and y∗2(t) = p(0, t)), (6.27)
which satisfy the partial differential equations on Ω = (0, 1)

∂
∂tp(z, t) = − ∂

∂z q(z, t)
∂
∂tq(z, t) = − ∂

∂zp(z, t)
(6.28)

under the boundary conditions

q(1, t) = −y∗1(t)
p(1, t) = u∗2(t) = −y∗1(t).

(6.29)

In new coordinates ξ(z, t) = 1
2 (p(z, t) + q(z, t)) and η(z, t) = 1

2 (p(z, t)− q(z, t)),
the PDEs are decoupled transport equations

∂
∂tξ(z, t) = − ∂

∂z ξ(z, t)
∂
∂tη(z, t) = ∂

∂z η(z, t)
(6.30)

and the boundary conditions transform to

ξ(1, t) = −y∗1(t)
η(1, t) = 0.

(6.31)

Functions ξ(z, t) = fξ(z− t), η(z, t) = fη(z+ t), which are given in the charac-
teristic variables z − t and z + t, solve the PDEs (6.30), and represent a right-
and a left-travelling wave, respectively. Taking into account the boundary con-
ditions (6.31), finally yields the solution

ξ(z, t) = −y∗1(t+ 1− z)
η(z, t) = 0

(6.32)

or
p(z, t) = −y∗1(t+ 1− z)
q(z, t) = −y∗1(t+ 1− z).

(6.33)

The corresponding boundary input

u∗1(t) = q(0, t) = −y∗1(t+ 1) (6.34)

is the desired output trajectory (up to the minus sign due to the power flow
convention), advanced by the transport delay 1. This solution serves as a
reference for the study of feedforward controllers based on finite-dimensional
numerical approximations of the wave equation.
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6.3.2 Semi-Discretization

Structure-preserving spatial discretization of the wave equation (6.24) as de-
scribed in Subsection 4.6.5 yields the linear continuous-time state space model8

[ ˙̃p
˙̃q

]
=
[

0 Jp
−JTp 0

] [
Qp 0
0 Qq

] [
p̃
q̃

]
+
[
Bp 0
0 Bq

] [
u1
u2

]
, (6.35a)[

y1
y2

]
=
[

0 BT
q

BT
p 0

] [
Qp 0
0 Qq

] [
p̃
q̃

]
. (6.35b)

The matrices on the right hand side are given by (4.102) and (4.106). Invoking
the boundary condition (6.26), and disregarding y2, we obtain the SISO linear
system [ ˙̃p

˙̃q

]
=
[

0 Jp
−JTp −BqBT

q

] [
Qp 0
0 Qq

] [
p̃
q̃

]
+
[
Bp

0

]
u1, (6.36a)

y1 =
[
0 BT

q

] [Qp 0
0 Qq

] [
p̃
q̃

]
. (6.36b)

Theorem 6.3. The output y1 of the linear SISO system (6.36), which results
from the structure-preserving spatial discretization of the wave equation (6.24),
is only a flat output for the choice of the discretization parameter α = 0.

Proof. For the considered state space model of order n = 2N , cTb = 0 and
the terms cTAkb, k = 1, . . . , n − 2 are polynomials and rational functions in
α, whose only common root is 0. Hence, condition (6.9a) is only satisfied for
α = 0. With cTAn−1b 6= 0, the output y1 has full relative degree n. The
system matrices with α = 0 are

A = 1
h



−1
1 −1

. . . . . .
1 −1

1 −1
. . . . . .

1 −1
1 −1


, b =


1
0
...
0

,

cT = 1
h

[
0 . . . 0 −1

]
.

(6.37)

Controllability can be verified based on the structure of Kalman’s controllability
matrix. Collecting first the odd columns, then the even ones, the controllability

8Note the permutation of the outputs compared to (4.108), which are now non-collocated
with respect to the inputs.
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matrix with permuted columns has the structure

Qc,perm =
[
X1 0
0 X2

]
, (6.38)

where X1 and X2 are upper triangular matrices with non-zero diagonal ele-
ments. Observability of y1 can be shown in a similar way, which completes the
proof.

Remark 6.3. The LTI system (A,b, cT ) as given in (6.37) is identically obtained
with a structure-preserving finite volume discretization of the underlying PH
model on staggered grids [95].

We have shown that for α = 0, the output y1 according to (6.36b) is flat,
just as the original output of the distributed-parameter model (6.24) with the
downstream boundary condition (6.26). A flat parametrization of the finite-
dimensional state vector9 x =

[
p̃T q̃

]T =
[
pT qT

]T and the input u1 based
on the state space model (6.37) will have the form (6.3). In particular, the
input u∗1(t) will depend on y∗1(t) and its first 2N time derivatives, which must
exist and be bounded. This smoothness requirement on the desired output
trajectory is at odds with the exact solution u∗1(t) = −y∗1(t+ 1) determined in
the previous subsection.

In order to get rid of the smoothness condition y∗1(t) ∈ C2N ([0,∞)), we
perform a time discretization of the continuous-time approximate model with
the goal to compute a discrete-time feedforward control sequence u∗,k based on
a desired output sequence y∗,k, k ∈ N0.

6.3.3 Full Discretization

We follow the lines of the previous chapter, in which discrete-time port-Ha-
miltonian systems based on symplectic time integration were introduced. We
choose the symplectic Euler integration scheme, see [76], Section I.1.2, as the
simplest structure-preserving integration method. In preparation for the non-
linear example in the next section, we do not substitute the boundary condi-
tion (6.26), but we keep the MIMO state representation (A,B,C) according

9Note that p̃ = p, q̃ = q because of Pfp = Pfq = I in the case α = 0.
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to (6.35) with matrices

A = 1
h



−1
1 −1

. . . . . .
1 −1

1 −1
. . . . . .

1 −1
1


, B =



1
0
...
0

0
...
0
−1


,

C = 1
h

[
0 . . . 0 −1

1 0 . . . 0

]
.

(6.39)

Discretizing the differential equations for p with the forward (explicit) Euler
scheme, and the ones for q with backward (implicit) Euler, we obtain the
system of difference equations (we now use ∆t and ∆z for the time and spatial
step, respectively)

pk+1
1 − pk1
pk+1

2 − pk2
...

pk+1
N − pkN
qk+1
1 − qk1

...
qk+1
N−1 − qkN−1
qk+1
N − qkN


= ∆t

∆z



−1
1 −1

. . . . . .
1 −1

1 −1
. . . . . .

1 −1
1





pk+1
1
pk+1

2
...

pk+1
N

qk1
...

qkN−1
qkN


+ ∆t



1
0
...
0

0
...
0
−1


[
uk1
uk+1

2

]
,

[
yk1
yk2

]
= 1

∆z

[
−qkN
pk1

]
. (6.40)

The boundary condition u2(t) = −y1(t) injects damping to the system. In the
continuous-time SISO model, this is represented by the negative semi-definite
matrix −BqBT

q in (6.36a). To be consistent with the continuous-time case, we
set

uk+1
2 = −yk1 , (6.41)

which has the same effect to the discrete-time state matrix in (6.40).

Remark 6.4. If, as an alternative, the feedforward control problem for a given
output y2 shall be solved with the boundary condition u1 = −y2, the backward
Euler scheme must be applied to the p differential equations and forward Euler
to the q equations. Then, the discrete-time analogue of (6.41) is uk+1

1 = −yk2 .
(Without permuting the integration schemes, the discrete-time interconnection
would be acausal.)
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Remark 6.5. The i-th line of (6.40) can be rewritten in terms of only the
p-variables as

pk+1
i − 2pki + pk−1

i =
(

∆t
∆z

)2
(pki−1 − 2pki + pki+1), (6.42)

which is the well-known conservative leapfrog scheme, see e. g. [88], Section
17.4.

The structure of the discrete-time finite-dimensional model (6.40) allows to
solve the flatness-based feedforward control problem in discrete time. Inspec-
tion of the single equations yields the following algorithm.

Given downstream data:

yk1 , uk+1
2 = −yk1 (6.43)

Initial step:

qkN = −∆zyk1

pk+1
N = ∆zuk+1

2 + ∆z
∆t (qk+1

N − qkN )
(6.44)

For i = N − 1 to 1 do:

qki = qki+1 + ∆z
∆t (pk+1

i+1 − pki+1)

pk+1
i = pk+1

i+1 + ∆z
∆t (qk+1

i − qki )
(6.45)

Resulting upstream input:

uk1 = 1
∆z q

k
1 + 1

∆t (p
k+1
1 − pk1) (6.46)

Theorem 6.4. The discrete-time finite-dimensional model (6.40), which to-
gether with (6.41) approximates the wave equation (6.24) under the algebraic
boundary condition (6.26), has the flat output yk1 . State and input trajectories
can be computed explicitly in terms of the output sequence {yk1}−K<k<K on
a sufficiently large discrete time window {−K∆t, . . . , 0, . . . ,K∆t}. Bounded
sequences {pki }−K<k<K and {qki }−K<k<K , i = 1, . . . , N , for the states and a
bounded feedforward control sequence {uk1}−K<k<K for arbitrary N are ob-
tained under the condition ∆z

∆t ≤ 1.
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Figure 6.3: Desired output −yk1 (sine half wave) and computed input uk1 for two
different sampling times. Grid size: ∆z = ∆t.

Proof. Flatness of the output yk1 follows directly from the algorithm (6.43)–
(6.46), in which each step only depends on data from the previous one. The
condition for boundedness of the computed state and input sequences follows
from inspection of the algorithm, which involves the multiplication with ∆z

∆t in
every step. To compute uk1 , for example, the delayed/advanced flat output yk1 is
scaled with

(∆z
∆t
)2N , which remains bounded for N →∞ only if ∆z ≤ ∆t.

Remark 6.6. The condition ∆z ≤ ∆t for the considered wave equation with
propagation speed c = 1 is an inverse CFL condition. This is plausible in view
of the considered feedforward control problem, which is an inverse boundary
value problem.

Algorithm in compact notation

We can collect the system quantities over discrete time intervals of length 2K+1
in the vectors for the states

Pi =



p−K+1
i
...
p1
i
...

pK+1
i

 , Qi =


q−Ki
...
q0
i
...
qKi

 , i = 1, . . . , N, (6.47)

the given downstream data and the unknown upstream input:

Y1 =


y−K1
...
y0

1
...
yK1

 , U2 =



u−K+1
2
...
u1

2
...

uK+1
2

 , U1 =


u−K1
...
u0

1
...
uk1

 . (6.48)
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With S1 = diag1{1, . . . , 1} and S−1 = diag−1{1, . . . , 1} the upper and lower
shift matrices, the algorithm (6.41)–(6.46) reads as follows.

Given downstream data:

Y1, U2 = −Y1 (6.49)

Initial step:

QN = −∆zY1

PN = ∆zU2 + ∆z
∆t (S1 − I)QN

(6.50)

For i = N − 1 to 1 do:

Qi = Qi+1 + ∆z
∆t (I− S−1)Pi+1

Pi = Pi+1 + ∆z
∆t (S1 − I)Qi

(6.51)

Resulting upstream input:

U1 = 1
∆zQ1 + 1

∆t (I− S−1)P1 (6.52)

Note that the parameter K must be chosen large enough such that no
information is lost when the vectors Qi and Pi+1 are pre-multiplied with the
shift matrices S1 and S−1, respectively.

Figure 6.3 show the result of applying this scheme with a sine half wave as
the desired output y∗(t) starting at t = 0. The exact solution of the feedforward
control problem according to (6.34) is a prediction of this sine half wave, u∗(t) =
−y∗(t+ 1). For the chosen step sizes – the length 1 of the spatial domain and
the delay 1 are integer multiples of them – the algorithm gives a perfectly
shifted desired output signal as the control input. Under grid refinement, the
signal shape converges to the continuous-time sine half wave.

6.4 Nonlinear Hyperbolic Systems

Inspired by the result of the previous section, we consider a one-dimensional
hyperbolic system of two conservation laws on Ω = (0, L) with nonlinear con-
stitutive equations of the form

ep = 1
2(∗q)2 + F (∗p, z), eq = ∗p∗q, (6.53)

where F is an arbitrary function, which is invertible with respect to ∗p in the
considered operating domain. Note that both the 1D version of the shallow
water equations treated below, and the Euler equations of isentropic gas flow,
see e. g. [137], feature constitutive equations in this form.
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Figure 6.4: Spatial dependencies in the discretized constitutive equations.

6.4.1 Consistently Discretized Constitutive Equations

Applying a spatial discretization of the structure equations (6.24a) with the
simplest Whitney forms and the parameter α = 0, the lumped states p̃i =
pi and q̃i = qi, i = 1, . . . , N , have the interpretation of integral conserved
quantities over the discretization intervals (edges). Consequently, pi

∆z and qi
∆z

with ∆z = L
N denote the average values on each interval. On the other hand,

the degrees of freedom epi and eqi , i = 1, . . . , N , approximate the values of
the co-states in the discretization nodes, where no boundary conditions are
imposed. A consistent approximation of the constitutive equations (6.53) in
the discretization nodes based on the states on adjacent edges is given by

epi = 1
2

( qi
∆z

)2
+ Fi

( pi
∆z

)
, eqi = pi+1qi

∆z2 . (6.54)

Fi(·) := F (·, zi) denotes the evaluation of the function F in the nodal co-
ordinates zpi = (i − 1)∆z. The particular choice (6.54) guarantees a flat
parametrization of the state and the input u1 in terms of a given desired out-
put y1, see further below. The dependencies of the discrete efforts on the
neighboring states are illustrated in Fig. 6.4.

Remark 6.7. The proof that (6.54) consistently approximates the local version
of the constitutive equations (6.53) can be performed along the same lines as
for the 2D case sketched in Appendix B.1. Note, that epi – in contrast to eqi –
is computed based on the downstream approximations of both states.



6.4 Nonlinear Hyperbolic Systems 155

6.4.2 Discrete-Time State Representation

The discrete-time state representation that results from application of the sym-
plectic Euler scheme is, in analogy to (6.40),



pk+1
1 − pk1
pk+1

2 − pk2
...

pk+1
N − pkN
qk+1
1 − qk1

...
qk+1
N−1 − qkN−1
qk+1
N − qkN


= ∆t



−1
1 −1

. . . . . .
1 −1

1 −1
. . . . . .

1 −1
1





ep,k+1
1
ep,k+1

2
...

ep,k+1
N

eq,k1
...

eq,kN−1
eq,kN


+ ∆t



1
0
...
0

0
...
0
−1


[
uk1
uk+1

2

]
,

[
yk1
yk2

]
=
[
−eq,kN
ep,k1

]
. (6.55)

Taking into account that the symplectic Euler scheme requires the evaluation
of right hand side quantities at discrete times k + 1 and k, respectively, we
write the discrete-time version of the constitutive equations (6.54) as

ep,k+1
i = 1

2

(
qk+1
i

∆z

)2

+ Fi

(
pk+1
i

∆z

)
, eq,ki =

pki+1q
k
i

∆z2 . (6.56)

6.4.3 Flatness-Based Feedforward Control

We adapt the algorithm (6.43)–(6.46) to the nonlinear case with a downstream
boundary condition

B(uk2 , yk1 ) = 0. (6.57)

From this discrete version of (6.25), the collocated input uk2 can be computed
for given yk1 . Taking into account (6.55) and (6.56), the following iteration
produces the state and effort variables on the spatio-temporal discretization
grid. Under the indicated assumptions, pkN+1 can be computed in an initial
step from the algebraic equation, which results from substitution of (6.61a) in
(6.61c). This auxiliary state allows to start the iteration loop with i = N .
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Given downstream data:

eq,kN = −yk1 , ep,kN+1 = uk2 (6.58)

Assumptions:
qkN+1 = qkN , FN+1(·) = FN (·) (6.59)

Initial step:

Compute pkN+1 from FN

(
pkN+1
∆z

)
= uk2 −

1
2

(
yk1 ∆z
pkN+1

)2

(6.60)

For i = N to 1 do:

qki = ∆z2 e
q,k
i

pki+1
(6.61a)

ep,k+1
i = ep,k+1

i+1 + 1
∆t (q

k+1
i − qki ) (6.61b)

pk+1
i = ∆zF−1

i

ep,k+1
i − 1

2

(
qk+1
i

∆z

)2
 (6.61c)

eq,ki−1 = eq,ki + 1
∆t (p

k+1
i − pki ) (6.61d)

Resulting upstream input:

uk1 = eq,k0 (6.62)

6.4.4 Example: 1D Shallow Water Equations

As an example for a nonlinear hyperbolic system of conservation laws with con-
stitutive equations of the form (6.53) we consider the one-dimensional shallow
water or Saint-Venant equations. The inverse or flow routing problem for this
system was solved in [181] using the implicit box scheme. The flatness-based
generation of input trajectories was addressed in [93] using the method of char-
acteristics. Flatness-based control based on a parabolic approximation, the
Hayami model, is presented in [159]. In [99], the feedforward control problem
was solved based on the port-Hamiltonian model and its structure-preserving
discretization according to [71]. The feedthrough of the finite-dimensional
model allowed for a direct model inversion and an iterative computation of
the input trajectory with the method presented in [49].
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Figure 6.5: Sketch of a channel with descending slope.

Model and algorithm

On a one-dimensional domain Ω = (0, L), the structured model (2.73) for the
two-dimensional shallow water equations with Hamiltonian functional (2.75)
boils down10 to

ṗ = −deq (6.63a)
q̇ = −dep − r(∗q)∗q. (6.63b)

p = h(z)dz and q = v(z)dz are the one-forms related to the water depth h(z)
and the flow velocity v(z), respectively. The additional dissipation term with
velocity-dependent coefficient

r(∗q) = gC|∗q|m−1

RP
(6.64)

takes into account friction losses. R denotes the hydraulic radius, which de-
pends on the channel cross section, P depends on the friction model and C is
a coefficient. The parameter m characterizes the flow type11. The 1D consti-
tutive equations (the invertible function F according to (6.54) is affine here)
read

ep = 1
2(∗q)2 + g(∗p+ b), eq = ∗p∗q, (6.65)

where ep represents the total head scaled with g (unit m2/s2), and eq the specific
discharge (unit m2/s). The function b : [0, L]→ R describes the bottom profile
of the channel. The downstream discharge relation (flow over a sharp-crested
weir of height w) is given by12

eq(L) = Cw
2
3
√

2g(∗p(L)− w) 3
2 (6.66)

with a constant discharge coefficient Cw.

10The vorticity term vanishes in 1D.
11See e. g. [38], Section 12-2: m = 1 represents laminar flow, m = 1.75 smooth, turbulent

flow, and m = 2 fully rough, turbulent flow.
12See [38], Section 7-5.
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The general algorithm for discrete-time flatness-based feedforward control
from the previous section can be adapted as follows to this particular case. Be-
sides the nonlinear boundary conditions, the distributed and velocity-dependent
friction has to be considered.

Given downstream data:

hk(L), pkN+1 = ∆zhk(L) (6.67)

Assumption:
qkN+1 = qkN (6.68)

Downstream variables:

−yk1 = eq,kN = Cw
2
3
√

2g
(
pkN+1
∆z − w

) 3
2

(6.69a)

qkN+1 = qkN = ∆z2 eq,kN
pkN+1

(6.69b)

uk+1
2 = ep,k+1

N+1 = 1
2

(
qk+1
N+1
∆z

)2

+ g
pk+1
N+1
∆z (6.69c)

For i = N to 1 do:

qki = ∆z2 e
q,k
i

pki+1
(skip for i = N) (6.70a)

ep,k+1
i = ep,k+1

i+1 + 1
∆t (q

k+1
i − qki ) + r

(
qki
∆z

)
qki (6.70b)

pk+1
i = ∆z

1
g

ep,k+1
i − 1

2

(
qk+1
i

∆z

)2
− b((i− 1)∆z)

 (6.70c)

eq,ki−1 = eq,ki + 1
∆t (p

k+1
i − pki ) (6.70d)

Resulting upstream input:

uk1 = eq,k0 (6.71)

In order to start the algorithm, we associate the water depth at the weir
with the auxiliary variable pkN+1. Moreover, we assume qkN+1 = qkN , which is
justified by the continuity of the flow velocity around the node representing the
sharp-crested weir.
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Figure 6.6: Computed profiles of flow depth and velocity over distance and time.

Numerical results

We validate our algorithm with the scenario and channel parameters from [93].
A transient of the downstream water depth in front of an overflow weir shall
be realized using the upstream (specific) discharge, which can be regulated by
the opening of an upstream sluice gate. The channel parameters, as well as the
computation of the steady state solutions (without friction) and the discussion
of the flow regime can be found in Appendix B.3.

Figure 6.6 shows the surface plots of depth and velocity over the spatial
variable and time. The level sets of both state variables in the (z, t) plane before
and after the transient nicely illustrate the characteristics of the hyperbolic
system.

Figure 6.7 depicts up- and downstream water depths and velocities for a
desired downstream depth hk(L) under different step sizes ∆z with ∆t = 2∆z.
The discrete states pki and qki correspond to integral values of depth and velocity
on the discretization intervals, therefore their mean values pki /∆z and qki /∆z
can be localized in the interval centers (i− 1

2 )∆z. To obtain numerical values
for depth and velocity at z = 0 and z = L, we compute

hk(0) = ∆z e
q,k
1
qk1

, vk(0) = ∆z e
q,k
1
pk1

, vk(L) = ∆z e
q,k
N

pkN
. (6.72)

With decreasing step size ∆z, the numerical solutions converge, and match the
results depicted in [93], Fig. 7, which have been obtained using the method of
characteristics.

Remark 6.8. Concerning temporal and spatial step size and their ratio, we
note the following. In the example, the minimum characteristic speed13 is
around clow = 7.5m/s, such that ∆t = k∆z with k > 1

clow
≈ 0.13 s/m must

be chosen to satisfy the inverse CFL condition. The depicted trajectory with

13The state-dependent characteristic velocities v ±
√
gh for the shallow water equations

emerge after transformation to Riemann coordinates (invariants), see e. g. [45], Section 7.3.
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Figure 6.7: Downstream (given) and upstream (computed) depth and velocity over
time. The plots illustrate the convergence of solutions with decreasing step size
∆z ∈ {5, 2, 1, 0.5, 0.25} and ∆t = 2∆z.

steep upstream transients requires high values of k, e. g. (skipping units) k = 2,
for satisfactory convergence. For slower transients, e. g. when the transition
time is extended by 100 s, k can be chosen smaller, with at the same time
a coarser spatial grid. In any case, choosing an extremely fine spatial grid
provokes numerical oscillations which motivates the choice of an optimal grid
size, adapted to the system and the desired trajectory.

6.5 Conclusions

The semi-discretization scheme from Chapter 4 does not only preserve the port-
Hamiltonian structure of the open system model. Using the simplest Whitney
forms in one spatial dimension, also the flatness of a given boundary output
is conserved under an appropriate choice of the discretization parameter α.
For the parabolic heat equation, the input trajectory generation using a finite
number of time derivatives of the flat output is consistent with the infinite-
dimensional solution of the inverse problem. In the hyperbolic case, addi-
tional geometric time integration leads to discrete-time finite-dimensional mod-
els, which correspond to the well-known leapfrog scheme, and based on which
feedforward controllers can be computed without unnecessary smoothness con-
straints on the output. With a consistent approximation of the constitutive
equations, also the solution to the flow routing problem for the Saint-Venant
equations can be computed fast, efficiently and without integration.

The presented study is the basis for considering flatness conservation in
discretized PH models and the numerical trajectory generation (i) in more
than one spatial dimension (see [133] for a spectral approach) and (ii) with
non-local approximation bases (like Lagrange interpolation polynomials, see
[138]) in the spatial discretization step.



Appendix A

Mathematical Background

A.1 Exterior Differential Calculus

We give a compact introduction to the calculus with differential forms and their
functional spaces. For further reading, we refer to [59], [8] and the paper [6]
with its numerous references. The calculus with differential forms or exterior
differential calculus is for example used for the representation and numerical
simulation of Maxwell’s equations [21], to give one example. Discrete exterior
calculus [48] extends the formalism to discrete geometric objects defined on
oriented meshes, and finite element exterior calculus [6] sets the framework for
numerical approximation using finite element spaces of differential forms [7].

An essential characterization of (exterior) differential forms (of degree k, or
k-forms) is given on page 1 of [59] as “things which occur under integral signs”.
However, they are not merely “densities”, but they have an orientation, i. e.
they contain the information about the sense of integration.

A.1.1 Smooth Differential Forms

We represent distributed parameter PH systems in the language of differ-
ential forms, see e. g. [59] for a comprehensive introduction to smooth dif-
ferential forms, i. e. differential forms with sufficiently differentiable (in the
classical sense) coefficient functions. Let Ω be an open, bounded and con-
nected n-dimensional spatial domain with Lipschitz boundary ∂Ω and denote
Λk(Ω) the space of smooth differential k-forms on Ω. For a smooth (n − 1)-
form ω ∈ Λn−1(Ω), the continuous extension to the boundary is denoted
trω ∈ Λn−1(∂Ω). The symbol tr stems from the trace map, which defines the
extension to the boundary for Lebesgue integrable functions (see further below).
The wedge product ∧ : Λk(Ω)×Λl(Ω)→ Λk+l(Ω) is a skew-symmetric exterior
product of differential forms. The exterior derivative d : Λk(Ω) → Λk+1(Ω)
with d ◦ d = 0, is a unique differential operator on differential forms of de-
gree k. The sequence of spaces of differential forms, connected via the exterior
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derivative, is the so-called de Rham complex1.
Typical examples from electromagnetism2 in R3 are the electric field one-

form Exdx+Eydy+Ezdz, the current density 2-form Jxdy ∧ dz+ Jydz ∧ dx+
Jzdx ∧ dy or the charge density 3-form ρ dx ∧ dy ∧ dz. In Rn, the differentials
{dx1, . . . , dxn} form the basis of differential one-forms. Higher order basis
forms are constructed using the wedge (or exterior) product, which due to its
skew-symmetry (see below) induces the orientation.

We will make frequent use of the following formulas3 for λ ∈ Λk(Ω) and
µ ∈ Λl(Ω), which express the skew-symmetry of the wedge product and the
product rule for the exterior derivative:

λ ∧ µ = (−1)klµ ∧ λ, (A.1)
d(λ ∧ µ) = dλ ∧ µ+ (−1)kλ ∧ dµ. (A.2)

A natural pairing or duality product between two differential forms λ ∈ Λk(Ω)
and µ ∈ Λn−k(Ω) on Ω is given by

〈λ|µ〉Ω :=
∫

Ω
λ ∧ µ. (A.3)

The duality product is defined accordingly on the (n−1)-dimensional boundary
∂Ω of Ω, see [197], Eq. (5).

The Hodge star induces an inner product on the space of differential forms
on a manifold Ω by

(α, β) := 〈α|∗β〉Ω = 〈β|∗α〉Ω = (β, α), α, β ∈ Λk(Ω), (A.4)

see Section 8.4 of [59] or Section 3.6 of [86]. The inner product is not necessarily
the standard L2 inner product (A.8), but may be equipped with another metric,
see e. g. the energy norm for linear PH systems [89]. The Hodge star is, hence,
metric dependent. A given inner product space induces a corresponding Hodge
star. The subsequent application of the Hodge star may change the sign of the
original differential form: ∗∗α = (−1)k(n−k)α.

Index raising (]) produces a vector field with the same components from a
one-form. Index lowering ([) produces a one-form with identical components
from a vector field. Raising and lowering in these musical isomorphisms refers
to the fact that upper (lower) indices are typically used for the components of
vector fields (one-forms).

With the Hodge star on R3 and the musical isomorphisms, the differen-
tial operators from vector calculus can be expressed in terms of the exterior
derivative:

grad f = (df)], rot g = (∗(dg[))], div g = ∗d(∗g[). (A.5)
1The complex property d◦d = 0 is well-known from vector calculus, where the subsequent

application of differential operators maps to zero: rot grad f = 0, div rot g = 0.
2See e. g. the recent article [208] for an illustrative introduction to Maxwell’s equations

in terms of differential forms, with an abundant list of references.
3See e. g. [59], Sections 2.3 and 3.2.
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A.1.2 Stokes’ Theorem

Using exterior differential calculus, the generalized Stokes’ theorem4 unifies the
different integration formulas from vector calculus:

Theorem A.1. Let ω be a differential (n− 1)-form on Ω. Then∫
Ω

dω =
∫
∂Ω

trω. (A.6)

The generalized Stokes’ theorem (A.1), together with the product rule (A.2)
and the short notation of the duality product (A.3), gives the integration-by-
parts formula for smooth differential forms λ ∈ Λk(Ω) and µ ∈ Λn−k−1(Ω),

〈dλ|µ〉Ω = 〈trλ|trµ〉∂Ω − (−1)k〈λ|dµ〉Ω. (A.7)

A.1.3 Lebesgue and Sobolev Spaces of Differential Forms

We recall some important definitions and facts, which ensure that the formulas
from the previous subsection make also sense on functional spaces of differen-
tial forms with weaker smoothness conditions. Section 4 of [6] gives a quick
and concise introduction into calculus with differential forms whose coefficient
functions belong to Lebesgue spaces Lp(Ω) and Sobolev spaces, in particu-
lar Hm(Ω) = Wm,2(Ω). The space L2Λk(Ω) of differential forms with square
integrable coefficient functions is equipped with the inner product5

(α, β)L2Λk(Ω) :=
∫

Ω

N∑
i=1

αi(z)βi(z) dvol, (A.8)

where αi, βi ∈ L2(Ω), i = 1, . . . , N , are the coefficient functions of α, β ∈
L2Λk(Ω). The weak exterior derivative dλ of λ ∈ Λk(Ω) can be defined via
the integration-by-parts formula (A.7), with smooth differential forms µ that
vanish on the boundary (due to their compact support in Ω):

〈dλ|µ〉Ω = −(−1)k〈λ|dµ〉Ω ∀µ ∈ C∞c Λn−k−1(Ω). (A.9)

We do not introduce a new symbol, as we will understand d in this weak sense
in the whole work. This allows to apply the exterior derivative to differential
forms whose coefficient functions are not differentiable in the classical sense.
The Sobolev spaces HmΛk(Ω) contain the differential forms on Ω with L2

4See e. g. [59], Section 5.8 or [8], Section 36.D, where it is expressed for Ω a n-chain, i. e.
a formal sum of n-simplices on a manifold M ⊃ Ω and nicely called Newton-Leibniz-Gauss-
Green-Ostrogradskii-Stokes-Poincaré formula.

5To define the inner product, we need a volume form. For Ω ⊂ Rn, we take dvol = dnz
as in [86], Definition 3.6.2.
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weak derivatives up to order m. The corresponding inner product for m = 1 is
defined as

(α, β)H1Λk(Ω) := (α, β)L2Λk(Ω) + (dα,dβ)L2Λk+1(Ω). (A.10)

As we deal with boundary control systems, we are particularly interested in
the extension of certain differential forms to the boundary. Fortunately, the
trace theorem from classical functional analysis6 extends to differential forms
as discussed in Section 4 of [6]. We will make heavy use of the implication

λ ∈ H1Λk(Ω) ⇒ trλ ∈ H1/2Λk(∂Ω) ⊂ L2Λk(∂Ω). (A.11)

Where convenient for compactness, we use the common abusive notation
∫
∂Ω ω =∫

∂Ω tr ω for the extension of ω ∈ HmΛn−1(Ω), m ≥ 1 to the boundary.

A.2 Geometric Numerical Integration

The following Butcher tables show the nodes c1, . . . , cs, the weights b1, . . . , bs,
and the Runge-Kutta coefficients aij , i, j = 1, . . . , s, of the integration schemes
used in Chapter 5. The tables can be found, for example, in [76], Sections II.1.3
and II.1.4.

Table A.1: Runge-Kutta coefficients for Gauss-Legendre methods, s = 1, 2, 3.

s = 1 :
1
2

1
2

1

s = 2 :

1
2 −

√
3

6
1
4

1
4 −

√
3

6
1
2 +

√
3

6
1
4 +

√
3

6
1
4

1
2

1
2

s = 3 :

1
2 −

√
15

10
5
36

2
9 −

√
15

15
5
36 −

√
15

30
1
2

5
36 +

√
15

24
2
9

5
36 −

√
15

24
1
2 +

√
15

10
5
36 +

√
15

30 +
√

3
6

2
9 +

√
15

15
5
36

5
18

4
9

5
18

6See e. g. [26], Section 9.8, pp. 315-316, or [158], Section 1.3, p. 10, on the introduction
of the trace operator in terms of functional analysis.
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Table A.2: Runge-Kutta coefficients of the 3- and 4-stage Lobatto IIIA methods.

s = 3 :

0 0 0 0
1
2

5
24

1
3 − 1

24
1 1

6
2
3

1
6

1
6

2
3

1
6

s = 4 :

0 0 0 0 0
5−
√

5
10

11+
√

5
120

25−
√

5
120

25−13
√

5
120

−1+
√

5
120

5+
√

5
10

11−
√

5
120

25+13
√

5
120

25+
√

5
120

−1−
√

5
120

1 1
12

5
12

5
12

1
12

1
12

5
12

5
12

1
12

Table A.3: Runge-Kutta coefficients of the 3- and 4-stage Lobatto IIIB methods.

s = 3 :

0 1
6 − 1

6 0
1
2

1
6

1
3 0

1 1
6

5
6 0

1
6

2
3

1
6

s = 4 :

0 1
12

−1−
√

5
24

−1+
√

5
24 0

5−
√

5
10

1
12

25+
√

5
120

25−13
√

5
120 0

5+
√

5
10

1
12

25+13
√

5
120

25−
√

5
120 0

1 1
12

11−
√

5
24

11+
√

5
24 0

1
12

5
12

5
12

1
12





Appendix B

Computations

B.1 Consistency of the Finite Volume Approximation

This section contains the computations to prove the statements on the con-
sistency order of the finite volume approximation of the 2D shallow water
equations (SWE) on a 2D rectangular grid in Chapter 3.

B.1.1 Model in Terms of Average States

We sketch the transition from the integral to the average model. The matrices
J and G in (3.28), (3.40) for the 2D SWE are partitioned as follows:

J =

 0 J1 J2
−JT1 0 0
−JT2 0 0

 , G =

 0 G1 G2
G3 0 0
G4 0 0

 . (B.1)

Integral and average states and efforts are related via

xd = ∆xx̄, ed = ∆eē, (B.2)

where

∆x =

∆x∆yI 0 0
0 ∆xI 0
0 0 ∆yI

 , ∆e =

I 0 0
0 ∆yI 0
0 0 ∆xI

 . (B.3)

Note that ∆x∆e = ∆x∆yI. With the discrete Hamiltonian density

H̄d(x̄) := 1
∆x∆yHd(∆xx̄) (B.4)

such that

∇H̄d(x̄) = 1
∆x∆y∆x∇Hd(xd)

= (∆e)−1∇Hd(xd),
(B.5)
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(3.40a) transforms to the average state differential equation (3.41) with ē =
∇H̄d(x̄) and

J̄ = ∆x(∆x)−1J∆e, Ḡ = ∆x(∆x)−1G∆e. (B.6)

For ∆x = ∆y, we obtain J̄ = J and Ḡ = G.

B.1.2 Computations of Local Errors

For the Hamiltonian density (3.30) with b ≡ 0, the average discrete efforts ē
according to (3.39), have the components

ēhj = 1
2

(
u2
d,le + u2

d,ri
2∆x2 +

v2
d,lo + v2

d,up
2∆y2

)
+ ghd,j

∆x∆y ,

ēuk = hd,le + hd,ri
2∆x∆y

ud,k
∆x ,

ēvl = hd,lo + hd,up
2∆x∆y

vd,l
∆y .

(B.7)

where le, ri, lo, up refer to the left, right, lower and upper parts of the considered
2× 2 control volume. We show the consistency errors for three representative
cases of the sample grid shown in Fig. 3.7 on Ω = (0, 2∆x) × (0, 3∆y

2 ) ⊂ R2.
The step sizes in both directions are related via a constant c > 0: ∆y = c∆x.
We omit the arguments of the functions where clear from the context.

No ghost value. The numerical approximation of the discharge eu2 = hu
between the faces f1 and f2 on the primal grid does not depend on ghost
values. In order to obtain ēu2

∣∣
∗, we substitute

hd,le + hd,ri =
∫ 3∆y

2

∆y
2

∫ 2∆x

0
h(x, y) dxdy (B.8)

and

ud,2 =
∫ 3∆x

2

∆x
2

u(x, 0) dx (B.9)

in the expression for ēu2 . To determine the order of the error εu2 as defined in
(3.45) for ∆x→ 0, we represent

lim
∆x→0

(
∂eu2
∂x

∣∣∣
(∆x,∆y)

− 1
∆xē

u
2
∣∣
∗

)
(B.10)

using Taylor series expansion of the contained terms around (∆x,∆y). This
local error turns out to have order O(∆x2).
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Consistent ghost values. We now consider the numerical approximation
ēh1 of the hydrodynamic pressure eh1 = 1

2 (u2 + v2) + gh in the center of primal
face f1. If we assume zero external inflows to f1, as indicated in Fig. 3.7, i. e.

eu(0, y) = 0 ⇔ u(0, y) = 0 for y ∈ (∆y
2 ,

3∆y
2 )

ev(x, 3∆y
2 ) = 0 ⇔ v(x, 3∆y

2 ) = 0 for x ∈ (0,∆x),
(B.11)

a consistent choice of ghost velocities is ūIII = 0 and v̄I = 0. Accordingly, we
set

ud,le =
∫ ∆x

2

−∆x
2

ūIII dx = 0 and vd,up =
∫ 2∆y

∆y
v̄I dy = 0. (B.12)

With

ud,ri =
∫ 3∆x

2

∆x
2

u(x, 0) dx, vd,lo =
∫ ∆y

0
v(0, y) dy (B.13)

and

hd,1 =
∫ 3∆y

2

∆y
2

∫ ∆x

0
h(x, y) dxdy, (B.14)

we determine ēh1
∣∣
∗. The Taylor series expansion of

lim
∆x→0

(
∂eh1
∂x

∣∣
( ∆x

2 ,∆y) −
1

∆xē
h
1
∣∣
∗

)
(B.15)

yields, besides terms of order O(∆x) and higher, constant terms, which contain
u(∆x

2 ,∆y) and v(∆x
2 ,∆y) as factors. These factors can be developed around

the points (0,∆y) and (∆x
2 , 3∆y

2 ), respectively:

u(∆x
2 ,∆y) = u(0,∆y) + ∂u

∂x

∣∣∣∣
(0,∆y)

· ∆x
2 +O(∆x2),

v(∆x
2 ,∆y) = v(∆x

2 ,
3∆y

2 )− ∂u

∂y

∣∣∣∣
( ∆x

2 , 3∆y
2 )
· ∆y

2 +O(∆y2).
(B.16)

According to the boundary conditions (B.11), the first terms are zero, i. e.
u(0,∆y) = 0 and v(∆x

2 , 3∆y
2 ) = 0. In this case, the error of (B.15) is of order

O(∆x). The same result as presented for the error εh,x1 is obtained for εh,y1 .

Inconsistent ghost values. If, other than in the previous paragraph, the
choice of the ghost values is not in accordance with the boundary conditions
(B.11), i. e. ūIII 6= 0 and/or v̄I 6= 0, the constant terms do not vanish from
the error (B.15). This means that the local error for ∆x → 0 is not bounded
by a function in ∆x of polynomial degree greater or equal than one. The
approximation of the constitutive equations on this part of the boundary is
then inconsistent.
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B.2 Transfer Function of the 1D Heat Equation

Consider the heat equation on Ω = (0, 1) ⊂ R

∂

∂t
x(z, t) = ∂2

∂z2x(z, t) (B.17)

under the Neumann-Dirichlet boundary conditions

∂

∂z
x(0, t) = 0, x(1, t) = u(t). (B.18)

Assuming x(z, 0) = 0, the Laplace transform of (B.17) yields

sx̂(z, s) = ∂2

∂2z
x̂(z, s), (B.19)

which has the particular solution

x̂(z, s) = c1e
√
sz + c2e

−√sz, (B.20)

with constants c1, c2 ∈ R. Differentiation and comparison with the Neumann
boundary condition yields c1 = c2. The particular solution satisfies the Dirich-
let boundary condition for c1 = 1

e
√
s+e−

√
s û(s), from which we obtain

x̂(z, s) = cosh(
√
sz)

cosh(
√
s) û(s). (B.21)

With the output y(t) = x(0, t), the transfer function is finally given by

ŷ(s) = 1
cosh(

√
s) û(s). (B.22)

B.3 1D Shallow Water Equations

This sections contains the necessary considerations to design a trajectory be-
tween two stationary regimes of an open channel flow. First, the steady state
solutions of the frictionless shallow water equations are determined in terms of
the desired downstream water levels before and after the transient. In a second
step, we verify that the desired transient corresponds to a transition between
subcritical flow regimes. We consider a rectangular channel with a rising con-
stant slope, i. e. S0 = b(0)−b(L)

L < 0. The parameters are taken from [93], up to
the sign of the bottom slope1.

1The value S0 = 0.001 in [93] corresponds to a falling bottom profile b(z). The study
of the steady state solution below, and the comparison with [93], Fig. 2, suggests that
S0 = −0.001, i. e. a rising channel bed is meant.
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Table B.1: Parameters of the rectangular channel used in the numerical experiments
according to [93], with corrected sign of S0.

Symbol Value Unit
L 1000 m
S0 −0.001 –
C 10−4 s

m
R 1 –
P 1 –
m 1 –
Cw 0.4 –
w 5 m
hL,1 8 m
hL,2 13 m

B.3.1 Steady State Solution

To compute steady state profiles of flow depth and velocity, friction is neglected.
The shallow water equations (h = p, v = q) in steady state with a bed elevation
b(z) = S0(L− z) are

0 = − ∂

∂z
(h(z)v(z)) (B.23a)

0 = − ∂

∂z
(1
2v

2(z) + g(h(z) + b(z))). (B.23b)

From the boundary condition (6.66) at the downstream overflow weir (height
w), we can determine the flow velocity based on a desired flow depth (notation
hL = h(L), vL = v(L)):

vL = Cw
2
3
√

2g (hL − w) 3
2

hL
. (B.24)

The conservation of mass (B.23a) and momentum (B.23b) imply

h(z)v(z) = hLvL (B.25a)
1
2g v

2(z) + h(z) + b(z) = 1
2g v

2
L + hL. (B.25b)

With
v(z) = hLvL

h(z) = QL
h(z) , (B.26)

where QL denotes the constant discharge, the second equation can be written
in terms of h(z) as the only unknown.

1
2g
h2
Lv

2
L

h2(z) + h(z) + b(z) = 1
2g v

2
L + hL. (B.27)

The numerically computed solution h(z) as well as the resulting velocity profile
v(z) for the parameters given in Table B.1 are depicted in Fig. B.1.
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Figure B.1: Steady state water level and velocity profile before (index 1) and after
(index 2) the transient, based on the frictionless case.

B.3.2 Flow Regime

To determine the flow regimes, which correspond to the steady states before
and after the transient, we rewrite (B.27) in terms of the steady state discharge,

1
2g

Q2
L

h2(z) + h(z)︸ ︷︷ ︸
E(h(z))

+ b(z) = 1
2g
Q2
L

h2
L

+ hL︸ ︷︷ ︸
E(hL)

. (B.28)

E(h(z)) and E(hL) denote specific energies, which represent the total head
above the channel bottom for a given discharge QL, see [38], p. 31. The
specific energy E(h) is a function which tends to ∞ for h → 0 and which
approaches h for h→∞. Its minimum, given by

∂E(h)
∂h

= 0 ⇔ −Q
2
L

gh3 + 1 = 0, (B.29)

defines the critical depth

hc = 3

√
Q2
L

g
. (B.30)

Combining (B.26) with (B.30) gives the critical velocity, which corresponds to
the critical depth

vc =
√
ghc. (B.31)

For water depth h(z) > hc, the flow is referred to as subcritical, for h(z) < hc
as supercritical2. The desired transition between the steady state dowstream
depths hL,1 = 8 m and hL,2 = 13 m takes place in a subcritical flow regime, as
illustrated in the right diagram of Fig. B.2.

With E(h(z)) ≥ Emin, the inequality

E(hL) ≥ Emin + b(z) (B.32)

2Hydraulic jumps occur at the transition between supercritical and subcritical flow, see
[38], Section 2-8.
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Figure B.2: Left: Specific energies and their minimum for both steady state dis-
charges QL1 < QL2. Right: Flow regimes and curves of constant discharge.

follows from (B.28), and is certainly true if the downstream specific energy
satisfies

E(hL) ≥ Emin + max
z

b(z). (B.33)

The validity of this inequality can be verified for the desired downstream dis-
charges and channel parameters.
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