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ADAPTIVE FAULT–TOLERANT POSITION CONTROL OF A HEXACOPTER
SUBJECT TO AN UNKNOWN MOTOR FAILURE

GUILLERMO P. FALCONÍ a,∗, JORG ANGELOV a , FLORIAN HOLZAPFEL a

aInstitute of Flight System Dynamics (FSD)
Technical University of Munich (TUM), Boltzmannstrasse 15, 85748 Garching, Germany

e-mail: {guillermo.falconi,jorg.angelov,florian.holzapfel}@tum.de

This paper presents a fault tolerant position tracking controller for a hexarotor system. The proposed controller has a
cascaded structure composed of a position and an attitude control loop. The nominal controller is augmented by an adaptive
control allocation which compensates for faults and failures within the propulsion system without reconfiguration of the
controller. Simultaneously, it is able to implement a degraded control strategy which prioritizes specific control directions
in the case of extreme degradation. The main contribution is a controller that is a step closer to application scenarios by
including outdoor GPS-based flight tests, onboard computation and the handling of unknown degradation and failure of any
rotor.
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1. Introduction

The variety and complexity of missions for which
multirotor systems are being envisioned is constantly
increasing. According to this application-driven
development, the requirements on performance and safety
are becoming more demanding. In this context, fault
tolerant control (FTC) has gained the interest of various
researchers. In order to achieve fault tolerance, actuator
redundancy is desired and therefore hexacopters and
octocopters have been studied.

In this paper, the problem of controlled flight of
a hexacopter in the event of unknown faults or failures
within the actuation system is addressed. Although there
are several approaches to fault tolerant position control
of multirotors which are tested in simulation (Merheb
et al., 2015; Cen et al., 2015), there are rather few
experimental results which come close to the different
application scenarios. Most of them are partial results
showing only failure detection and identification (Freddi
et al., 2014), or only controller reconfiguration assuming
that the fault has been already identified (Achtelik et al.,
2012; Du et al., 2015; Schneider et al., 2012; Santos et al.,
2015), or using external sensors for having an accurate
position measurement (Amoozgar et al., 2012; Dydek
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et al., 2010; Mueller and D’Andrea, 2014; Saied et al.,
2015; Vey and Lunze, 2016), or making computations
off-board (Dydek et al., 2013). Furthermore, in the
special case of the hexarotor, the controllers are applied to
different levels of actuator faults: only degradation (Heise
et al., 2014; Mühlegg et al., 2015), the total failure of one
rotor excluding a group of rotors (Vey and Lunze, 2016;
Yang et al., 2016), the total failure of any rotor (Falconı́
et al., 2016) and the total failure of more than one rotor
(Mueller and D’Andrea, 2014). The complexity increases
with each of these cases because after a rotor failure the
set of attainable forces and moments is noticeably reduced
and saturations become an issue.

The main contribution of the paper is the fault
tolerant position controller that is a step closer to
application scenarios. This includes handling unknown
degradation and failure of any rotor, outdoor GPS-based
flights and onboard computation of the algorithms. In
our previous work (Falconı́ et al., 2016), we presented a
fault tolerant attitude controller based on adaptive control
allocation which consists of the estimation of the actuator
control effectiveness and an optimal control allocation.
The main advantages of this strategy are the following: (a)
a unified controller handles the nominal, the degradation
and the failure cases; (b) it exploits the full attainable
moment set avoiding saturations whenever possible; (c)
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finally, it is possible to implement a degraded control
strategy in order to prioritize specific virtual controls in
the case of extreme degradation. This paper extends
our previous results (Falconı́ et al., 2016) with mainly
three contributions: (a) extension of the attitude controller
to a position controller maintaining the fault tolerant
properties; (b) improvement of the control effectiveness
estimates by introducing the null space shaping approach;
(c) outdoor GPS-based flight tests including failure
scenarios. To the best of our knowledge, this paper
presents the first outdoor flight tests of a position tracking
controller of a hexarotor subject to an unknown failure
of any of the six propellers. This is a main contribution
towards the usability of multirotor systems for real-life
applications.

The remainder of the paper is organized as follows.
Section 2 describes the dynamics of the hexarotor.
Section 3 presents the baseline controller, and includes the
extension to a position tracking controller in Section 3.1.
The adaptive control allocation is introduced in Section 4
and the null space shaping approach in Section 4.2. The
flight tests are found in Section 5 and the results are
summarized in Section 6.

Notation. R denotes the set of real numbers, Rn denotes
the set of n × 1 real column vectors, Rn×m denotes the
set of n ×m real matrices, (·)T denotes transpose, (·)−1

denotes the inverse and (·)+ denotes the pseudoinverse.
In addition, we write In ∈ R

n×n for the identity matrix,
0n ∈ R

n×n for the zero matrix, and tr(·) for the trace
operator.

2. Plant description

For describing the dynamics of the hexacopter, we use
an inertial frame I with the origin at the Earth’s surface.
The axes at the origin point towards the north, the east
and downwards. The body-fixed frame B is defined as
in Fig. 1, such that the origin is at the center of gravity.
The translational dynamics can be written in the inertial
frame I using Newton’s second law and by neglecting
drag forces and disturbances as follows

mv̇ = t+mg, (1)

where g ∈ R
3 is the constant gravitational acceleration

vector, m is the mass of the hexacopter, t ∈ R
3 is the

total propulsion force and v ∈ R
3 is the velocity of the

hexacopter with respect to the I-frame. Furthermore, the
position kinematics are

ẋ = v, (2)

where x ∈ R
3 is the position in the I-frame.

The rotational dynamics are given in the body-fixed
frame B by the Euler equation

Jω̇ = −ω × Jω +Mp, (3)

where ω ∈ R
3 is the angular rate of the body-fixed frame

relative to the inertial frame, J ∈ R
3×3 is the moment of

inertia of the hexacopter and Mp ∈ R
3 is the propulsion

moment.
In order to describe the attitude of the hexarotor, we

choose the thrust vector t = −TzB as in the work of
Falconı́ and Holzapfel (2013). Here, zB ∈ R

3 is the unit
vector pointing along the body-fixed z-axis and T ∈ R is
the total thrust. The equation of motion is then given by
(Falconı́ and Holzapfel, 2013)

ṫ = RIBTu (T )

⎛
⎝
ωx

ωy

Ṫ

⎞
⎠ ,

= −ṪzB +RIBTω (T )ω,

(4)

where RIB ∈ SO3 is the rotation matrix which maps a
vector from the B-frame to the I-frame. The matrices
Tω ∈ R

3×3 and Tu ∈ R
3×3 are given by

Tω (T ) =

⎡
⎣
0 −T 0
T 0 0
0 0 0

⎤
⎦ ,

Tu (T ) =

⎡
⎣
0 −T 0
T 0 0
0 0 −1

⎤
⎦ .

For a detailed derivation of the equations of motion, the
reader is referred to the work of Falconı́ and Holzapfel
(2013).

Note that T and Mp can be seen as virtual controls of
the system dynamics (1)–(4). The roll and pitch moments
depend on the geometrical arrangement of the rotors. The
yaw moment depends on the rotation direction of the
rotors. Considering the configuration as in Fig. 1, it is
possible to write their relationship to the angular velocities
of the rotors as (Falconı́ et al., 2015)

ν :=

(
T
Mp

)
=

[
BTω

BMω

]
u = Bνωu, (5)

where u = (ω2
1 , ω

2
2 , ω

2
3 , ω

2
4 , ω

2
5, ω

2
6)

T is the vector of
the squared rotor speeds and Bνω ∈ R

4×6 is defined as
(Falconı́ et al., 2015)

⎡
⎢⎢⎢⎢⎢⎣

kT kT kT

− 1
2 lkT −lkT − 1

2 lkT
√
3
2 lkT 0 −

√
3
2 lkT

−kM kM −kM

kT kT kT
1
2 lkT lkT

1
2 lkT

−
√
3
2 lkT 0

√
3
2 lkT

kM −kM kM

⎤
⎥⎥⎥⎥⎥⎦
.
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Fig. 1. Hexacopter.

The partitions of the matrix are BTω ∈ R
1×6 and

BMω ∈ R
3×6, respectively. The constants kT , kM > 0 ∈

R are specific rotor parameters and l > 0 ∈ R is the arm
length. For a detailed derivation of the actuator model (5),
refer to (Falconı́ et al., 2015). As the matrix Bνω has a full
row rank, for a given desired νd ∈ R

4 it is possible to find
a function which maps it into the input space u = u (νd)
so that ν = Bνωu (νd) = νd. Hence, we can design a
control law for ν and then allocate the commands to the
different propellers.

3. Baseline controller

The presented controller is a position tracking controller
where the pilot commands the position xc ∈ R

3 and the
yaw rate ωz,c ∈ R. It is composed of a baseline controller
and an adaptive control allocation (ACA); see Fig. 2.

Position
Controller

Attitude
Controller

Control
Allocation

νd

Hexarotor

Effectiveness
Estimation

u

u

x,v,RIB ,ω

ωz,c

λ̂
tc

xc

Baseline Controller Adaptive CA

Fig. 2. Controller structure.

The baseline controller stabilizes the tracking error
dynamics for the nominal case, i.e., the fault free case.
The ACA is responsible for compensating modeling
errors, disturbances and especially faults within the
propulsion system. The baseline controller is similar

to that found in the works of Falconı́ and Holzapfel
(2013; 2014) but with a cascaded structure composed
of a position and an attitude control loop. The main
assumption of the cascade is that the attitude loop is
much faster than the position loop allowing a separated
analysis of the subsystems. The attitude state, given by
the thrust vector t, can then be seen as the input of the
position subsystem and the computed command tc ∈ R

3

is the tracking signal of the attitude subsystem as depicted
in Fig. 2. The extension of the attitude controller from
the work of Falconı́ et al. (2016) to a position controller
which maintains the fault tolerant properties is a main
contribution of this paper. In the following sections the
two controllers are derived.

3.1. Position control loop. In a first step, the desired
position xd ∈ R

3 is generated from the commanded
position xc using a second order reference model

(
ẋd

v̇d

)
=

[
03 I3

−Kp −Kd

](
xd

vd

)
+

[
03

Kp

]
xc. (6)

Here, I3 ∈ R
3×3 is the identity matrix, 03 ∈ R

3×3 is
the zero matrix and Kp,Kp ∈ R

3×3 are positive definite
matrices such that the system is exponentially stable. Note
that xd ∈ C2 for a continuous command xc and that (6)
has a zero steady-state error xc − xd.

In order to track the states of the reference model (6),
the zero equilibrium of the dynamics of the position
tracking error

ep :=

(
ex
ev

)
=

(
xd − x
vd − v

)

must be stabilized. The dynamics of ev can be written
using (1) as

mėv = mv̇d −mg − t.

In this first step, the thrust vector t is considered as an
input and it is given by the linear control law

tc := m (v̇d − g +Kxex +Kvev +Kiex,i) (7)

where Kx,Kv,Ki ∈ R
3×3 are positive definite matrices

and the integrated position error state is given by

ex,i :=

∫ t

τ=0

ex (τ) dτ.

Assuming that t = tc, the position error dynamics
including the integrator states are given by

⎛
⎝
ėx,i
ėx
ėv

⎞
⎠ =

⎡
⎣

03 I3 03

03 03 I3
−Ki −Kx −Kv

⎤
⎦
⎛
⎝
ex,i
ex
ev

⎞
⎠ . (8)

As it is a stable linear system, this guarantees position and
velocity tracking for t = tc.
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3.2. Attitude loop. The attitude loop is connected to
the position loop through the thrust vector command tc.
Analogously to the position reference model, tc is used to
generate the desired thrust vector td ∈ R

3. The difference
is that here a nonlinear reference model is used in order
to take the system dynamics in to account. First, the
command is separated into total thrust Tc and body-fixed
z-axis zc as

Tc = ||tc|| , zc = − tc
Tc

.

For the thrust, an exponentially stable first-order filter is
used as a reference model

Ṫd = −K (Td − Tc) , (9)

where Td ∈ R is the desired thrust and K > 0 ∈ R

is the eigenfrequency of the filter. The attitude reference
model is of the second order and corresponds to a reduced
attitude controller which tracks the commanded vector zc.
It is given by

(
ṘIR

ω̇r

)
=

(
RIRω

×
r

−Kdωr +KpRRI (zc × zd)

)
, (10)

where RIR ∈ SO3 is the rotation matrix which maps a
vector from the reference model R-frame to the I-frame,
zd = RIR(0, 0, 1)

T ∈ R
3 is the corresponding unit

z-vector given in the I-frame and ωr ∈ R
3 is the

angular rate of the R-frame relative to the I-frame. The
skew-symmetric matrix ω×

r ∈ R
3×3 is defined such that

for any vector a ∈ R
3 we have that ωr × a = ω×

r a.
The positive definite matrices Kd,Kp ∈ R

3×3 guarantee
that the equilibrium (zd,ωr) = (zc,0) is almost global
asymptotically stable (Chaturvedi et al., 2011). Finally,
the desired thrust vector td ∈ R

3 can be computed from

td = −Tdzd. (11)

We use the attitude baseline controller as presented
in (Falconı́ and Holzapfel, 2013). For the sake of
completeness, the main result is summarized in the
following. In order to track the desired attitude td ∈ R

3

and desired yaw rate ωz,d ∈ R, the zero equilibrium
of the dynamics of the attitude error et := td − t
and the angular velocity error eω := ωd − ω must be
stabilized. The controller is based on block backstepping
(Khalil, 2002). Hence, in the first step we consider the
vector (ωx,ωy, Ṫ )

T as the input of the attitude dynamics
(4) and design the control law u2 ∈ R

3. In the next
backstepping step, we consider the angular velocity error
eω := ωd−ω with ωd = (u2x, u2y, ωz,d)

T . Finally, the
control law for the moments Md is designed.

Taking the error definitions into account and using
(3) and (4), the dynamics of the whole error e =

[eTt , e
T
ω ]

T ∈ R
6 are

ė :=

(
ėt
ėω

)

=

( −RIBTωω + zB Ṫ + ṫd
J−1 (ω × Jω −Mp) + ω̇d

)
,

=

(−RIBTuu2 +RIBTωeω + ṫd
J−1 (ω × Jω −Mp) + ω̇d

)
.

The control laws from the work of Falconı́ and
Holzapfel (2013) are given in terms of the virtual control
of the first backstepping step u2 and the desired moment
Md and thrust Td as follows:

u2 = T−1
u RBI

(
ṫd +Ktet

)
,

Md = ω × Jω + J
(
TT

ωRBIet + ω̇d +Kωeω
)
,

Td =

∫ t

τ=t0

u2,z dτ, (12)

Hence, the error dynamics become

ė =

[ −Kt RIBTω

−TT
ωR

T
IB −Kω

]

︸ ︷︷ ︸
:=A

e

for ν = νd. Here, the matrices Kt,Kω ∈ R
3×3

are positive definite and therefore A is negative definite.
Exponential stability of the equilibrium e = 0 can be
shown using, e.g., the Lyapunov function V = 1

2e
Te.

The only obstacle that prevent us from achieving global
exponential stability is the system’s inherent singularity
at T = 0 (see Falconı́ and Holzapfel, 2013). The results
presented in this section hold as long as ν = νd. In the
nominal case, this can be achieved with the mapping

u = B+
νωνd, (13)

where B+
νω is the Moore–Penrose pseudoinverse of Bνω

from (5). In the next sections we consider faults and
failures within the propulsion system.

4. Adaptive control allocation

Given the rigid-body control law νd from (12), the task of
the adaptive control allocation (ACA) is to allocate it to
the six actuators. In order to take faults and failures into
account, we propose to estimate the control effectiveness
of the rotors and use this information to solve the control
allocation problem using an online optimization. Hence,
the ACA is composed of two main elements as can be seen
in Fig. 2: the online optimization-based control allocation
and the adaptive effectiveness estimation. The following
results are based on the findings of Falconı́ et al. (2016)
and are applied here to the position tracking controller
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in order to exhibit fault tolerant properties. Furthermore,
the control effectiveness estimates are improved by
introducing the null space shaping approach, which is a
main contribution of the paper.

To model unknown actuator faults and failures, we
extend (5) using a typical representation of adaptive
control as done by Falconı́ et al. (2016):

ν = BνωΛu. (14)

Here,

Λ = diag(λ1, λ2, λ3, λ4, λ5, λ6)

denotes the control effectiveness matrix, which scales
every actuator command ui by λi ≥ 0. The nominal case
is λi = 1 and a complete failure corresponds to λi = 0.

Furthermore, let U ⊂ R
6 be the set of possible

inputs. In the case of multirotor systems, the possible
rotation speed of one rotor is limited from above and
below by ωi,max and ωi,min, respectively. Hence, the set
of possible inputs can be written as

U :=
{
u ∈ R

6 | ω2
i,min ≤ ui ≤ ω2

i,max, ∀i = 1, . . . , 6
}
.

The attainable virtual control set (AVCS) is then the
output image V of the linear mapping (14) on U

V := {ν ∈ R
4 | ν = BνωΛu,u ∈ U}.

It is important to note that the size of the set V heavily
depends on the current control effectiveness Λ. Figures 3
and 4 compare the AVCS of the hexarotor in Fig. 1 in the
nominal case with the AVCS in the case of a failure of the
rear right rotor (number 3).

Fig. 3. Comparison of the attainable virtual control set for T =
mg between nominal conditions and failure of the rear-
right propeller (the plot generated with MPT 3.0 (Herceg
et al., 2013)).

Fig. 4. Comparison of the attainable virtual control set for L =
M = 0 between nominal conditions and failure of the
rear-right propeller (the plot generated with MPT 3.0
(Herceg et al., 2013)).

4.1. Optimal control allocation. The task of the
control allocation is to find an input command u∗

cmd such
that

νd = BνωΛ̂u∗
cmd subject to u∗

cmd ∈ U .

Note that here we use the estimate Λ̂ instead of the
unknown Λ.

Since the desired input will be calculated using
an optimization process, the available search space
for the actuator commands highly depends on the
particular model of the actuation system. Therefore,
the performance of the optimization also depends on the
system at hand. In order to remove the model dependency
and improve the numerical conditioning, the following
linear transformation for the input is introduced:

ui = (ui,max − ui,min) ūi + ui,min, (15)

with ūi ∈ [0, 1] being the normalized actuator command.
Inserting (15) in (14) yields

ν − νoffset︸ ︷︷ ︸
ν̄

= BνωS︸ ︷︷ ︸
B̄νω

Λū, (16)

with νoffset = BνωΛ
(
u1,min, . . . , u6,min

)T
and S =

diag
(
(u1,max − u1,min) , . . . , (u6,max − u6,min)

)
. Using

the dimensionless input ū ∈ R
6, the available input space

becomes a six dimensional unit cube and the parameters of
the optimization can be tuned irrespective of the actuator
limits.

A fundamental question of the optimization based
control allocation is which cost function J is appropriate
to the problem at hand. Following Falconı́ et al. (2016),
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the proposed cost function in this paper is

J =
1

2

(
ν̄d − B̄νωΛ̂ūcmd

)T

W
(
ν̄d − B̄νωΛ̂ūcmd

)

+
6∑

i=1

(
μ/2

(1− ūi,cmd)
2 +

μ/2

ū2
i,cmd

)
, (17)

where the positive definite W ∈ R
4×4 and μ > 0 ∈ R

are weighting parameters and ν̄d = νd − νoffset is the
transformed desired virtual control vector.

The primary objective of the control allocation is
to obtain a feasible nondimensional actuator command
that satisfies ν̄d = B̄νωΛ̂ūcmd. Therefore, the first
term in (17) penalizes commands that do not lead to
the desired virtual control. The last two terms of (17)
are barrier functions, which take input saturations into
account. Hence, the constrained optimization problem is
reformulated as an unconstrained one using (17).

If the virtual control vector νd ∈ V is attainable,
there exists at least one actuator command ucmd that
makes the first expression tend to zero. For overactuated
systems such as hexarotors there are infinitely many
commands that lead to the same virtual control. In the
case of severe actuator degradation, the attainable virtual
control set V is noticeably reduced, possibly leading to
commands νd /∈ V that are not attainable. In this
situation the weighting matrix W ∈ R

4×4 allows for
prioritizing certain virtual controls. In the multirotor case
the usual strategy is prioritizing the desired thrust, pitch
and roll moments over the desired yaw moment (Mueller
and D’Andrea, 2014), since they are primarily responsible
for position control and hence controlled flight of the
hexacopter system.

By choosing |μ| much smaller than the smallest
eigenvalue of W, the last two terms of (17) become
negligible as long as the required actuator command is not
near the limits. Therefore, the resulting actuator command
u∗

cmd that minimizes the cost function will approximately
satisfy νd ≈ BνωΛ̂u∗

cmd.

If the required virtual control νd is near the borders
of V , the feasible actuator commands will tend to their
limits, making the second term in J increase. In the case
of redundant actuators, the optimization process allows
to aim for non-saturating actuator commands in the null
space of B̄νωΛ̂.

Since (17) describes a convex function, gradient
based optimization is used to minimize J . The gradient
of the cost function (17) is given by

∇J =− Λ̂
T
B̄T

νωW
T
(
ν̄d − B̄νωΛ̂ūcmd

)

+

⎛
⎜⎜⎜⎜⎝

μ

(1− ū1,cmd)
3 − μ

ū3
1,cmd

...
μ

(1− ū6,cmd)
3 − μ

ū3
6,cmd

⎞
⎟⎟⎟⎟⎠

. (18)

Furthermore, a backtracking line search algorithm
according to Armijo-Goldstein (Potra, F.A. and Shi, 1995)
is used to improve the results. The schematic structure of
the gradient based optimization algorithm with ε > 0 ,
0 < α < 1, and 0 < c < 1 can be seen in Fig. 5.
The maximum iteration numbers for the outer loop and
for the inner loop are set to 5 and 10, respectively, leading
to a worst-case computational effort of approximately
5000 multiplications and 4500 additions for the whole
optimization.

Fig. 5. Gradient based optimization.

In this section, an optimization-based control
allocation approach has been introduced, which is not
only capable of covering the whole attainable set of virtual
controls, but also aims to sustain stability in the case of
highly degraded configurations. In the next section, the
estimation of the actuator effectiveness is presented.

4.2. Control effectiveness estimation. In order to
estimate the effectiveness of each rotor, we propose
a concurrent learning approach (Chowdhary, 2010;
Chowdhary and Johnson, 2010). First, the actuator model
which includes the faults (14) is rewritten as

ν = BνωUλ.

Here, U = diag
(
ω2
1 , ω

2
2 , ω

2
3 , ω

2
4, ω

2
5 , ω

2
6

)
is a diagonal

matrix consisting of the squared rotor speeds and λ ∈
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R
6 is a vector, whose entries correspond to the diagonal

entries of the control effectiveness matrix Λ in (14).
Subsequently, let the output y ∈ R

4 for the
concurrent learning approach be as follows:

y =

(
ω̇ + J−1 (ω × Jω)

fz

)
=

[
J−1BMω

− 1
mBTω

]

︸ ︷︷ ︸
:=Byω

Uλ,

with ω and ω̇ being the measurement of the angular rate
and its numerical derivative respectively, m being the
mass of the multirotor and fz denoting the measurement
of the specific force along the body fixed vertical axis. The
matrices BTω and BMω are defined in (5). Furthermore,
U has to be either measured or estimated with an actuator
model. The actuator model used in the presented approach
is given by the first-order filter U̇ = T−1

act (Ucmd −U)
with the actuator time constant Tact > 0 ∈ R.

Since the numerical derivative of the angular rate
may lead to undesired noise in the output channel, a
low-pass filter is incorporated. Let yf and Uf be the
low-pass filtered version of y and U respectively, such
that

yf = ByωUfλ. (19)

They can be computed by the following update laws:

ẏf =
1

Tf
(y − yf ) , U̇f =

1

Tf
(U−Uf ) ,

with Tf > 0 ∈ R denoting the time constant of the
low-pass filter.

Equation (19) expresses the low-pass filtered
measurement in terms of the rotor effectiveness vector λ
and the low-pass filtered squared rotor speed matrix Uf .
Hence, an estimate of yf can be written as

ŷf = ByωUf λ̂.

Furthermore, let

ỹf = ŷf − yf = ByωUf λ̃

be the error between the estimated and the true outputs,
where λ̃ = λ̂−λ denotes the estimation error of the rotor
effectiveness vector. Then, we can define the concurrent
learning cost function JCL(λ̂) : R

6 → R as follows:

JCL =

p∑
i=1

1

2
ỹT
f,iỹf,i,

where ỹf,i denotes the error at some instant of time ti and
p is the number of stored data points. In order to make
the cost function decrease in time, the following gradient

based update law for the rotor effectiveness vector is used:

˙̂
λ =− γ

p∑
i=1

UT
f,iB

T
yω

(
ByωUf,iλ̂− yf,i

)

︸ ︷︷ ︸
:=ξ

+Qξw

=− γ

p∑
i=1

UT
f,iB

T
yωByωUf,i

︸ ︷︷ ︸
:=H

λ̃+Qξw. (20)

Here, γ > 0 ∈ R is the adaptive tuning parameter.
The second term in the equation corresponds to the null
space shaping term. The gradient of the cost function
with respect to the estimated control effectiveness vector
is given by ξ = ∂JCL/∂λ̂. The vector w ∈ R

6 is used
to shape the update law in the null space of the gradient ξ
using the projection matrix

Qξ :=

(
I− ξξT

ξT ξ

)
. (21)

By choosing appropriate instants of time for recording the
data points, the matrix H ∈ R

6×6 can be made positive
definite (Chowdhary, 2010; Chowdhary and Johnson,
2010). While the first representation of (20) is used for
implementation, the second one is used within the stability
assessment in the following. To this end, we adapt the
Lyapunov function candidate as follows:

V =
1

2
λ̃
T
Hλ̃,

with H denoting the positive definite history stack matrix.
The derivative of the Lyapunov function yields

V̇ = λ̃
T
H

˙̂
λ,

= λ̃
T
H
(
−γHλ̃+Qξw

)
,

= −λ̃
T
γH2λ̃+ ξTQξw,

= −λ̃
T
γH2λ̃.

(22)

The matrix γH2 is symmetric and positive definite since
γ > 0 and H is symmetric and positive definite, too.
Hence, the origin of the estimation error dynamics is
exponentially stable. As can be seen from (22), w does
not have any influence on the stability and can thus be used
to modify the update law by shaping the update direction
of the control effectiveness vector without violating the
negative definiteness of V̇ .

The null space shaping approach is a main
contribution in the paper and its main idea is to use w
to alter the update direction of λ̂ during the minimization
of the cost function in order to improve the convergence.
Assuming that most of the time the rotors are working
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Fig. 6. Flight tests: control effectiveness estimation without (a)
and with (b) null space shaping.

properly, the shaping direction w is chosen to point
towards one as

w = diag
(
σ1 . . . σ6

)
⎛
⎜⎝

⎡
⎢⎣
1
...
1

⎤
⎥⎦−

⎡
⎢⎣
λ̂1

...
λ̂6

⎤
⎥⎦

⎞
⎟⎠ , (23)

where σi ∈ {1, 0} is the fault detection function

σi =

{
0 if λ̂i < λTH,

1 otherwise.

As long as the estimated effectiveness λ̂i of the i-th rotor
is above the threshold λTH, the update direction of λ̂i is
deflected towards the value 1 by projecting w from (23)
onto the hyperplane perpendicular to the current gradient
of the cost function JCL. However, if the effectiveness
estimation of the i-th rotor drops below the threshold
value, the corresponding entry in w is removed by σi. In
the next section, the flight test results are shown including
a comparison of the estimation performance with and
without the null space shaping approach.

Table 1. Flight Test: controller parameters.
Sym. Value Sym. Value
Kx diag (0.5, 0.5, 0.5) Tact 0.08
Kv diag (1.5, 1.5, 1.5) ε 10
Kt diag (4, 4, 4) c 0.3
Kω diag (20, 20, 5) γ0 0.1
Ki diag (0.05, 0.05, 0.1) α 0.5
W diag (100, 100, 20, 1) μ 10−4

kmax 5 imax 10
Γ I6 · 10−4 p 10
λTH 0.6 Tf 0.05

5. Flight test results

The main contribution of this paper is the presentation
of a position tracking controller that deals with unknown
actuator failures and addresses application-driven
requirements. As already mentioned in the introduction,
this is in contrast to partial results found in the literature
which address only failure detection and identification, or
only controller reconfiguration, or need accurate external
position sensors, or use off-board computations. The
effectiveness of the presented system is validated in
outdoor flight experiments subject to an unknown failure
of any of the propellers. To the best of our knowledge this
type of result has not yet been published.

The testbed is the AscTec Firefly (Achtelik et al.,
2012), which can be seen in Fig. 1. For flight tests
the controller runs with a sampling rate of 3 [ms]
on a Gumstix Overo FireSTORM Computer-on-Module
(CoM), which communicates with the AscTec Autopilot.
The controller is designed in Simulink R© and ported to
C using the Simulink R© CoderTM. The AscTec Autopilot
delivers the sensor data including a GPS position estimate.
This sensor data is used to compute the state of the
hexacopter within a navigation filter which is out of focus
of this paper. For the flight test, the parameters in Table
1 have been used. The goal of the flight test is to show
the performance of the presented fault-tolerant controller
during an outdoor flight test. Therefore, the degradation
and failure of the rear-right propeller are emulated by
scaling down the resulting u3,cmd. It is important to note
that these induced faults are unknown to the controller.
Figure 6 shows the control effectiveness estimation with
and without null space shaping (NSS) for the performed
outdoor flight test. The dashed line represents the current
effectiveness. The first fault corresponds to a loss of
effectiveness of about 70% at approximately t = 5 [s] for
about 17 [s]. At t = 70 [s] for about 45 [s] the motor
is completely turned off simulating a real failure, i.e.,
λ3 = 0, which results in an idle command. Afterwards,
the effectiveness is stepwise increased up to λ3 = 1. As
can be seen, the estimates with NSS are more accurate
as without NSS. Nevertheless, note that both types of
estimates in Fig. 6 are coherent with the observations
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Fig. 7. Flight tests: position tracking.

made during the flight test and allow for a stable flight
(see also Falconı́ et al., 2016). However, if the hexarotor
performs a maneuver that introduces new dynamics, the
transient performance would be worse in the case without
the NSS until the estimates are corrected. In the following,
the tracking performance of the controller will be shown
using the estimates λ̂ computed with NSS.

In Figs. 7 and 8 the position and velocity tracking
performance can be seen. In order to easily identify
the degradation and the total failure cases, the control
effectiveness λ3 is overlayed into the following plots.
During the first fault, the clearest effect is a height loss of
about 2 [m]. The effect in the x and y axis is not profound.
During the total failure at about 70 [s], there is again a
loss in height of about 2 [m] and also a drift of about 2
[m] to the south. The reason is that the rear-right rotor
was pointing to the south when the failure occurred, i.e., a
heading angle of Ψ ≈ 30 [◦]; see Fig. 9. From Figs. 7 and
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Fig. 8. Flight tests: velocity tracking.

8 it can be seen that the faults are compensated after the
rotor effectiveness is correctly estimated and the system
performance is recovered. During the total failure case
different position commands were successfully tracked.

In Fig. 9 the attitude tracking performance is
depicted. Here the Euler angles are used only for
visualization purposes as the controller uses the thrust
vector t as explained in Section 3. The roll and pitch
angles show small transient deviations in the positive
direction right after the introduction of a fault. This is
because of the position of the faulty rotor: see Fig. 1. The
oscillatory characteristics of the attitude commands result
from the rapid yaw motion during the total failure case.
This is explained from the attainable virtual control set as
shown in Fig. 4. Because of the fault only positive yaw
moments can be produced while hovering and maintaining
zero roll and pitch moments. Therefore, the hexacopter
rotates at a yaw rate of 200 [deg/s] in order to successfully
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track the roll and pitch commands.
The prioritization of the roll and pitch moments over

the yaw moment can be better seen in Fig. 10. Here,
the comparison of the desired virtual controls, the virtual
controls achieved by the presented control allocation
approach for Λ = Λ̂ and the virtual controls achieved
by the pseudoinverse control allocation for Λ = Λ̂ is
shown. The pseudoinverse solution using the estimate
Λ̂ has been computed offline as a comparison as follows

ucmd = sat(Λ̂
−1

B+
νωνd). Here, sat (·) is a saturation

function that saturates the individual ui,cmd such that
ucmd ∈ U . After saturating the respective actuators, the
resulting virtual control vector does not necessarily match
the desired one, leading to an unexpected output (Ducard
and Hua, 2011). It is interesting to note that during the
nominal and the degradation case, both control allocations
perform similarly. The difference is only noticeable in the

total failure case. Here, the desired virtual controls νd

lie outside the AVCS. While the pseudoinverse solution
leads to a deviation of all four virtual controls, the optimal
control allocation is able to prioritize thrust, roll and
pitch moments over yaw moments. This is achieved by
selecting the weighting matrix W of the optimization as
in Table 1. The corresponding actuator commands can
be seen in Fig. 11. It can be seen that the commands
generated by the pseudoinverse control allocation are
saturated most of the time for four out of six rotors. This
explains the large deviations in Fig. 10. The adaptive
control allocation rather slows down the front-left rotor
and by ignoring the yaw moment it is able to stabilize the
system almost as a quadrotor.

6. Conclusion

This paper presented an adaptive fault-tolerant controller
for position tracking of a hexacopter system. The
presented algorithms were validated in outdoor
experiments using GPS as a position measurement
and computing all the algorithms onboard. The flight tests
include an unknown degradation test and an unknown
total failure case for the usual hexacopter configuration
leading to an extreme reduction in the attainable virtual
control set (AVCS). The considered controller was able
to maintain position tracking by allowing deviations
in the yaw tracking. In this specific test, the yaw rate
reached 200 [deg/s]. The flight test intends to imitate the
application scenarios of multirotors.

The considered controller has a baseline controller
and the adaptive augmentation. The baseline controller
is a cascade composed of position and attitude control
loops. The adaptive augmentation is composed of the
control effectiveness estimation and the gradient-based
optimal control allocation. The estimation of the control
effectiveness is based on concurrent learning and null
space shaping. The optimal control allocation allows
the prioritization of selected virtual controls. In this
application this feature is key in order to track the position
of the hexacopter in the case of a total failure. The
contributions of this paper are the extension from an
attitude to a position controller and the introduction of the
null space shaping approach.

In order to allow a full stabilization in the hexacopter
case, the future work will take into account that the
motors are able to rotate in both directions as in the work
of Achtelik et al. (2012). Furthermore, an analysis of
which maneuvers improve the observability of the control
effectiveness is of interest. Finally, the new information
of the control effectiveness estimates can also be used
in combination with trajectory generators or command
shapers for improving the overall system performance as
proposed by Mühlegg et al. (2014).
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