
Fakultät für Informatik
Technische Universität München

Dissertation in Informatik

Scalable Greybox Fuzzing for
Effective Vulnerability

Management

Saahil Ognawala

Fakultät für Informatik
Technische Universität München

Lehrstuhl IV - Software and Systems Engineering

Scalable Greybox Fuzzing for
Effective Vulnerability

Management
Saahil Ognawala

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität
München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Prof. Tobias Nipkow, Ph.D.

Prüfer der Dissertation:

1. Prof. Alexander Pretschner, Ph.D.

2. Prof. Cristian Cadar, Ph.D.,

Imperial College London, United Kingdom

Die Dissertation wurde am 03.07.2019 bei der Technischen Universität München
eingereicht und durch die Fakultät für Informatik am 11.12.2019 angenommen.

Acknowledgements

The struggle itself towards the heights
is enough to fill a man’s heart. One
must imagine Sisyphus happy.

Albert Camus, The Myth of Sisyphus

It would not have been possible for me to undertake the tasks entailing this thesis to
completion, alone. The following people came, and stayed, like a blessing.
I would like to express my sincere gratitude to Alex for, basically, leading by example.

My assurance in my own capabilities was sustained through the knowledge that my advisor
believed that our goals were achievable, measurable and significant enough to justify the
efforts of a Ph.D. thesis. His reviews and insights were directly responsible for taking this
work to an admirable level. My thanks go to my mentor, Martìn, for allowing my naïvité
to not annoy him and helping me bring my dissertation ideas to a stage where I could
effectively build upon them. All of my past and present colleagues at TU Munich, Traudl,
Florian, Dominik, Benni, Enrico, Tobias, Prachi, Alexander, Kristian, Sebastian, Mojdeh,
Alei, Severin, Marcus, Patrick, Florian, Ehsan, Mohsen, Amjad, Ana, Thomas and Daniel,
deserve special mention for providing an exceptional environment for me to work and play
everyday. Thanks to Hafiz, Thomas and Sebastian for reviewing parts of this thesis. I’m
indebted, additionally, to the many brilliant master’s and bachelor’s students, and hiwis
who chose to work with me and taught me so much.

I would also like to thank my second supervisor, Cristian, for hosting me at Imperial
College London and providing useful and actionable feedback ever since we started our
collaboration. My short stay with his research group and interactions with colleagues there
provided me with an opportunity to consider my own research and work-ethics from a new
and interesting perspective.

Along the way on my Ph.D. journey, I was lucky to have some excellent people as friends
who listened to me, and encouraged me to do my best and look at the bigger picture more
often. As good fortune would have it, I got to share many days and evenings chatting with
Pranjal, and that time was indispensable.
I consider myself entirely a product of my upbringing and, for that, I have my parents

to thank. For me, they are the most inspirational couple and parents in the world, and
I hope to some day emulate them. My brother, Haaroon, who carries my mother’s light
in him deserves my thanks for his patience and understanding. I’m proud to be his older
brother. Special thanks to my step-mother and sister who agreed to join in the joy with
open hearts.
My best friend, Barbara, and I started our Ph.D. journeys together and along the way

shared much more than just ideas, frustrations, sympathies, love, invaluable time and
wedding rings. No amount of my palak paneer is enough to match her warmth, but I’ll
keep trying.

Zusammenfassung

Der Stand der Technik bezüglich der Erkennung von Schwachstellen besteht imWesentlichen
aus zwei Arten von Analysen - statischen und dynamischen. Wie die Namen schon andeuten,
führen statische Analysemethoden nicht die getestete Programme mit realen Inputs aus,
sondern verlassen sich auf Techniken wie beispielsweise abstrakte Interpretation, Daten-
oder Informationsflussanalyse und unsichere Codierungsmuster im Programm. Dynamische
Analysetechniken dagegen führen das zu testende Programm mit Hilfe von Testfällen aus, die
automatisch oder manuell generiert wurden, um eben diese Schwachstellen auszufüren und
dabei Fehler wie z.B. Programmabstürze zu beobachten. Während allerdings die statische
Analyse dafür berüchtigt ist zu viele “false-positives” zu produzieren (d.h. Schwachstellen,
die bei realistischen Eingaben nie ausgelöst werden), ist die dynamische Analyse oft unzure-
ichend in Bezug auf strukturelle Abdeckung und produziert daher viele “false-negatives”
(d.h. Schwachstellen, die nicht als solche erkannt wurden). Viele Untersuchungen haben in
der Vergangenheit gezeigt, dass dies zumindest für dynamische symbolische Ausführung
und auch für Fuzzing zutrifft.
In dieser Dissertation stellen wir eine skalierbare dynamische Analyse zum Auffinden

und Berichten von Schwachstellen in mittleren bis großen Softwaresysteme vor. Bei diesem
Ansatz haben wir zunächst automatisch Komponenten eines Programms isoliert, das in einer
beliebigen Programmiersprache geschrieben wurde, und entfernen damit deren Zugangsbe-
dingungen. Diese isolierten Komponenten werden dann mit drei Modi der dynamischen
Analyse untersucht - symbolische Ausführung, Fuzzing und eine neuartiges Greybox-Fuzzing
Methode auf Basis einer aktiven Sättigungsüberwachung. Um die Erreichbarkeit der ent-
deckten Schwachstellen aus den übergeordneten Komponenten zu zeigen, schlagen wir
schließlich eine neuartige kompositionelle Analysetechnik vor, die die Zusammenstellung
von Analyseergebnisse und gezielte symbolische Ausführung kombiniert.

Der letzte Teil dieser Dissertation behandelt ein Framework zur Bewertung von Schwach-
stellen, welche auf Heuristiken basiert, die aus dem Bug-Repository- und Code-Mining
abgeleitet wurden. Dies beinhaltet einen anpassungsfähigen Mechanismus, der verschiedene
semantische und entwicklungsspezifische Einflussfaktoren berücksichtigt um die Priorität
von Schwachstellen vorherzusagen und Entwicklern bei der Priorisierung von Bugs zu
unterstützen. Mit einer systematischen Auswertung hinsichtlich Effizienz und Effektivität
belegen wir, dass unser integriertes Framework für Entwickler effektiver ist in Bezug auf
die Verwaltung von Schwachstellen als andere aktuelle Techniken.

v

Abstract

The state-of-the-art in vulnerability detection consists mainly of two styles of analyses
– static and dynamic. As the names suggest, static analysis methods do not execute
the program-under-test with real inputs, but instead rely on techniques such as abstract
interpretation, data or information flow analysis, and unsafe coding-patterns to predict
vulnerabilities in the program. On the other hand, dynamic analysis techniques execute
the program-under-test with test-cases, generated automatically or manually, to trigger
vulnerabilities and observe failures such as program crash. However, while static analysis
is infamous for producing too many “false-positives” (i.e. vulnerabilities that will never
trigger with any realistic input to the program), dynamic analysis often falls short in terms
of structural coverage and, hence, produces many “false-negatives” (i.e. vulnerabilities
which are not flagged as such). Many investigations have shown in the past that this is
true for, at least, dynamic symbolic execution and fuzzing.

In this doctoral thesis, we will introduce a scalable dynamic analysis for discovering and
reporting low-level vulnerabilities in medium to large-scale software. In this approach, we,
first, automatically isolate components of a program, written in an arbitrary programming
language, thereby removing their entry conditions. These isolated components are, then,
analysed for vulnerabilities using three modes of dynamic analysis – symbolic execution,
fuzzing and a novel greybox fuzzing method based on active saturation monitoring. Then,
to determine the reachability of the discovered vulnerabilities from higher-level components,
we propose a novel compositional analysis technique involving collation of analysis results
and targeted symbolic execution.
The final part of this thesis discusses a vulnerability assessment framework, based

on heuristics derived from bug-repository- and code-mining. It contains an adaptable
mechanism that considers various semantic and development-specific impact factors to
predict priority for vulnerabilities to aid developers in the bug triage process. With a
systematic evaluation for efficiency and effectiveness, we show that our integrated framework
is more effective in managing vulnerabilities for developers than state-of-the-art techniques.

vii

Outline of the Thesis

Chapter 1: Introduction
This chapter presents an introduction to the topic and the fundamental issues addressed

in this thesis. It discusses the underlying techniques in the state-of-the-art, problems
associated with them, our approach to solving the problems and research questions to
evaluate them.

Chapter 2: Symbolic Execution
This chapter presents the essential background on symbolic execution, one of the com-

peting, as well as contributing, techniques of dynamic analysis to be discussed in this
thesis.

Chapter 3: Guided Fuzzing
This chapter presents the essential background on guided fuzzing, one of the competing,

as well as contributing, techniques of dynamic analysis to be discussed in this thesis.

Chapter 4: Hybrid Symbolic Execution and Fuzzing
This chapter presents a systematic mapping study to survey other hybrid symbolic

execution and fuzzing techniques, possibly similar to our own, that have been proposed in
the past. Parts of this chapter have previously appeared in [103], where the author of this
thesis was the first author.

Chapter 5: Isolating Program Components
This chapter describes the first step of vulnerability discovery – automatically isolating

components of the program-under-test to analyse them with dynamic analysis. Parts of
this chapter have previously appeared in [102] and [101], where the author of this thesis
was the first author.

Chapter 6: Analysing Isolated Components
This chapter describes the second step in the discovery process – parallel analysis

of isolated components using symbolic execution, fuzzing and a novel greybox fuzzing
approach. Parts of this chapter have previously appeared in [102], [99] and [101], where
the author of this thesis was the first author.

Chapter 7: Compositional Analysis
This chapter describes the final step in the discovery process – compositional analysis of

the vulnerable components discovered in the previous steps, to determine if it is feasible
to exploit them. Parts of this chapter have previously appeared in [102], [104] and [101],
where the author of this thesis was the first author.

Chapter 8: Evaluating Vulnerability Discovery
This chapter evaluates the vulnerability discovery part of our thesis by comparing their

effectiveness and efficiency to those of various comparable dynamic analysis techniques.

ix

Parts of this chapter have previously appeared in [101], where the author of this thesis was
the first author.

Chapter 9: Assessing Discovered Vulnerabilities for Effective Triage
This chapter introduces some ideas combining output generated by the vulnerability

discovery steps with various impact factors and heuristics to assess the discovered vulnera-
bilities. Parts of this chapter have previously appeared in [97], where the author of this
thesis was the first author.

Chapter 10: Case Study – Machine Learning Based Score Predictor
This chapter instantiates some of the ideas presented in Chapter 9 in a case study

involving vulnerability discovery, a vulnerability scoring scale and a prediction model
generated by machine learning. Parts of this chapter have previously appeared in [97],
where the author of this thesis was the first author.

Chapter 11: Conclusion
This chapter concludes this thesis by discussion resolutions to our original research

questions, contributions of this thesis to the state-of-the-art, limitations of our work and
future work.

N.B.: Multiple chapters of this dissertation are based on different publications authored or
co-authored by the author of this dissertation. Such publications are mentioned in the short
descriptions above. Due to the obvious content overlapping, quotes from such publications
within the respective chapters are not marked explicitly.

x

Contents
Zusammenfassung v

Abstract vii

Outline of the Thesis ix

I Introduction and Background 1

1 Introduction 3
1.1 Software Vulnerabilities . 3

1.1.1 Vulnerabilities vs. Bugs . 4
1.1.2 Practical Implications of Software Vulnerabilities 5

1.2 Hardening Software . 5
1.3 Software Testing . 6

1.3.1 State-of-the-art in Automated Testing 7
1.3.2 Problems With the State-of-the-art 8

1.4 Thesis Overview . 10
1.4.1 Research Questions . 10
1.4.2 Overview of Solution . 10
1.4.3 Contribution . 11

1.5 Structure . 13

2 Symbolic Execution 15
2.1 Symbolic Program Input . 15
2.2 Path Conditions . 17
2.3 Constraint Solving . 18
2.4 Symbolic Execution in Practice . 19

2.4.1 Concolic Execution . 20
2.4.2 Path-search Strategies . 21
2.4.3 Bit-vector Constraints . 22
2.4.4 Loop Unrolling and Bounded Models 22
2.4.5 Test-cases Exploiting Vulnerabilities 23

2.5 Current Challenges . 23
2.5.1 Path explosion . 23
2.5.2 Bottleneck of Constraint Solving . 24

2.6 State-of-the-art Solutions . 24
2.6.1 Smart Heuristics for Path-search . 24
2.6.2 Compositional Symbolic Execution 25
2.6.3 Constraint Solving Optimisation . 25

2.7 Concluding Notes . 26

xi

Contents

3 Guided Fuzzing 27
3.1 Random Testing vs. Fuzzing . 27
3.2 Seed Input Selection . 28
3.3 Input Mutation Strategies . 28
3.4 Process Monitoring . 30
3.5 Fuzzing in Practice . 30

3.5.1 Types of Fuzzers . 30
3.5.2 Instrumentation . 31
3.5.3 Test Minimisation . 32

3.6 Current Challenges and Solutions . 32
3.6.1 Reliance on Seed Inputs . 32
3.6.2 Redundant Path Coverage . 33
3.6.3 State-of-the-art Solutions . 33

3.7 Concluding Notes . 34

4 Hybrid Symbolic Execution and Fuzzing 37
4.1 Collecting Data about Past Work . 38

4.1.1 Study Selection . 38
4.2 Classification of Solution Proposals . 39
4.3 Results of Classification . 41

4.3.1 Summarising Solution Proposals . 41
4.3.2 Solutions In-depth . 41
4.3.3 Summarising the State-of-the-art 44

4.4 Identifying Gaps and Our Contributions . 45
4.5 Concluding Notes . 46

II Vulnerability Discovery 49

5 Isolating Program Components 51
5.1 Program Entry Points . 51
5.2 Granularity of Analysis (or Definition of Components) 52
5.3 Making Components Executable . 53

5.3.1 Notes on Path Explosion . 54
5.4 Generating Test Drivers: Description of Practice 55

5.4.1 Implementation Details . 56
5.5 Concluding Notes . 57

6 Analysing Isolated Components 59
6.1 Formalising Paths and Failures . 60
6.2 Analysing Components with Symbolic Execution 61

6.2.1 Adaptation of Test Drivers . 62
6.2.2 Notes on Saturation . 64

6.3 Analysing Components with Fuzzing . 65
6.3.1 Adaptation of Test Drivers . 65

xii

Contents

6.3.2 Notes on Saturation . 69
6.4 Analysing Components with Greybox Fuzzing 70

6.4.1 Adaptation of Test Drivers . 71
6.4.2 Monitoring Saturation . 72

6.5 Output of the Analysis . 74
6.6 Concluding Notes . 75

7 Compositional Analysis 77
7.1 Un-isolating Components – Motivation . 77
7.2 Two-step Feasibility Determination . 80
7.3 Phase One – Collating Analysis Results . 81

7.3.1 Stack-trace Matching . 81
7.4 Phase Two – Targeting Vulnerable Components 84

7.4.1 Summarising Vulnerable Components 85
7.4.2 Determining Feasibility Through Targeted Symbolic Execution . . . 87

7.5 Output of Compositional Analysis . 89
7.6 Concluding Notes . 89

8 Evaluating Vulnerability Discovery 91
8.1 Operationalisation of Framework in Macke 91
8.2 Comparison Baseline . 92
8.3 Research Questions . 93
8.4 Experimental Setup . 93
8.5 Coverage . 94
8.6 Vulnerabilities . 97
8.7 Real Vulnerabilities in the Wild . 102
8.8 Synthesis of the Results . 102

8.8.1 RQ1 and RQ2– Coverage . 102
8.8.2 RQ3 and RQ4– Vulnerabilities . 103
8.8.3 RQ5– Testing Libraries . 105

8.9 Concluding Notes . 105

III Vulnerability Analysis 107

9 Assessing Discovered Vulnerabilities for Effective Triage 109
9.1 Consolidating Reports of Discovered Vulnerabilities 110

9.1.1 What is a False-positive? . 111
9.1.2 Vulnerability Prioritisation as the Antidote 112

9.2 Scale for Scoring Vulnerabilities . 112
9.3 Factors Impacting Priority of Vulnerabilities 113

9.3.1 Drawing on Past Knowledge . 115
9.4 Concluding Notes . 116

10 Case Study – Machine Learning Based Score Predictor 117

xiii

Contents

10.1 Collecting Data . 118
10.1.1 Data Collection Results . 118

10.2 Discovering Vulnerabilities . 120
10.2.1 Vulnerability Discovery Results . 120

10.3 Extracting Features . 120
10.4 Predicting Base-scores . 121

10.4.1 Preparing Data for Prediction Models 121
10.4.2 Machine Learning Models . 122
10.4.3 Machine Learning Results . 122

10.5 Reporting and Gathering Feedback from Experts 123
10.5.1 Interactive Reporting of Vulnerabilities 123
10.5.2 Gathering Feedback . 125
10.5.3 Feedback Results . 125

10.6 Adding More Features . 127
10.7 Re-learning Predictor . 128

10.7.1 Machine Re-learning Results . 128
10.8 Intuitively Analysing Case Study Results 129
10.9 Concluding Notes . 129

IV Conclusion 131

11 Conclusion 133
11.1 Revisiting Research Questions . 134
11.2 Contributions . 136
11.3 Limitations . 136
11.4 Future Work . 138

Bibliography 139

Index 149

List of Figures 150

List of Tables 152

List of Algorithms 153

xiv

Part I

Introduction and Background

1

1 Introduction

This chapter presents an introduction to the topic and the fundamental
issues addressed in this thesis. It discusses the underlying techniques
in the state-of-the-art, problems associated with them, our approach to
solving the problems and research questions to evaluate them.

Beware of bugs in the above code; I
have only proved it correct, not tried it.

Donald E. Knuth

The growth in complexity of software today [12] has neatly coincided with the growth
in advanced techniques available to malicious hackers willing to cause severe economic
[136], social [86] and democratic [111] damage. Tim Berners-Lee, the inventor of the
world-wide-web (WWW), reportedly said in 2018 [17] that he was “devastated” by the
effects of malpractices based on his proposed open design of the internet, in the form of
illegal surveillance, data theft and democratic hijacking. Berners-Lee proposed [18] that
the large-scale problems facing, in particular, the web be seen as bugs in existing software
systems and be treated as such.

Security threats in the web sphere only form the tip of the iceberg when it comes to the
present day challenges faced by general-purpose software. Experts have recognised myriad
forms of problems associated with embedded-systems, information-systems, business and
scientific software that continuously call for improved processes and methods in the software
development lifecycle. In this thesis, we tackle the particularly damaging issue of software
vulnerabilities, especially ones introduced inadvertently during the development process.
By describing the technical shortcomings of existing methods to reduce vulnerabilities and
increase trustworthy-ness of general-purpose software, we motivate the need for a more
pragmatic mix of a sound, but fast and feasible, program analysis framework to catch
implementation flaws early in the development cycle. We present a series of methodologies
that are scalable by design to reach deep regions of software which, if not checked, may
contain vulnerabilities that can be realistically exploited by malicious actors. We also aim
to prove the superiority of these scalable methods in terms of effectiveness and efficiency,
as compared to state-of-the-art techniques in the field.

1.1 Software Vulnerabilities

To set the stage for the rest of the thesis, we start this section with a brief introduction
and history of software vulnerabilities and how they have been studied over the course of
software engineering research.

3

1 Introduction

1 class CustomArray {
2 private int [] ar;
3

4 public int get(int i) {
5 return (ar[i]);
6 }
7 }

Listing 1.1: Illustration of bug vs. vulnerability

1.1.1 Vulnerabilities vs. Bugs

Two important and related concepts that reflect common problems in software are bugs
and vulnerabilities. Radatz et al. in the IEEE Standard Glossary of Software Engineering
Terminology [117] defines a bug as the same as error and fault, as follows

Definition 1.1.1. (Bug) An incorrect step, process, or data definition. For example, an
incorrect instruction in a computer program.

In the context of modern-day software, vulnerabilities can be defined as a specialization
of the above definition of bugs. Krsul [77] defines vulnerability as a

Definition 1.1.2. (Vulnerability) A bug that violates an (implicit or explicit) security
policy is called a vulnerability.

This definition has been built upon by many recent studies [31] to show that bugs and
vulnerabilities are, both, often introduced into a software due to human factors, such as
under-specification. To illustrate bugs, vulnerabilities and failures, consider the C++ class
CustomArray in Listing 1.1 and function get that returns the element at index i of a
private array ar.

The function get does not check if the index i lies within the bounds of the array ar. This
is a software bug, in the sense that the actual result of calling get(i), where i ≥ len(ar) is
not the same as the expected result, viz. a graceful error message saying something like
“Array does not currently contain at least i elements”. An error message is also
expected for i < 0. However, this is also a C++ specific vulnerability, viz. buffer overflow.
This vulnerability, in the case of C++ programming language, is called as such because it
violates an implicit security policy that no instruction in the program shall write outside
the bounds of its allocated memory. In this thesis, we will use the terms “vulnerability” and
“vulnerable instruction” interchangeably because all discussions of vulnerabilities in this
thesis will be direct references to the precise instruction/line-of-code where the vulnerability
exists. If this vulnerability were to be exploited, the program would crash as a result. A
program crash is a failure. We adapt the following definition of failure from [117]

Definition 1.1.3. (Failure) The inability of a program or its component to perform its
required functions within specified performance requirements, due to the presence of a bug,
is called a failure.

Program crash is an instance of a failure that may manifest due to the presence of a
buffer overflow vulnerability.

4

1.2 Hardening Software

1.1.2 Practical Implications of Software Vulnerabilities

If vulnerabilities exist in software they might affect the confidentiality, integrity or availabil-
ity of the underlying assets of an organization. The annual OWASP (Open Web Application
Security Project) Top 10 document [55] lists the vulnerabilities that have had the worst
effect on web applications in any given year. Of these, SQL injection [64] was the top
application security risk in 2017. SQL injection vulnerability allows an attacker to gain
unauthorised access to the underlying database and insert, update, delete or view entries in
its tables. Most often, this vulnerability occurs because the input accepted by a web-page
is not sanitised for SQL keywords before being executed on the database. Similarly, almost
all of the top 10 vulnerabilities listed in this document [55] can, in some way, be traced
back to improper handling of legal, but malicious, input being accepted by programs or
Application Programming Interfaces (APIs). We generalise this observation by stating that,
regardless of whether the program is a web application or a command-line application,
vulnerabilities manifest as a result of wrongly or incompletely enforcing security principles
relevant to the programming context.
Finally, we need to consider the following practical aspect of vulnerabilities – In what

ways can vulnerabilities be exploited during the use of the software? In addition to failures
caused by unintentional usage by benign users, the more severe case to consider here is
that of a malicious Attacker . Attackers are persons or entities carrying out an attack by
following a fixed workflow to exploit vulnerable software. An attack or exploit [Noun] [128]
is an automated script, malware or a series of reproducible manual steps that can lead to
a failure due to a vulnerability. The act of successfully carrying out an attack is called
exploiting [Verb] the software.

The amount of vulnerability disclosures in user-facing applications has dramatically
increased in recent years [128], even though explicit sanity-checks on user-inputs have
become more common. This indicates that attackers have also adopted more sophisticated
workflows to exploit vulnerabilities, almost like precise lock-picking. In particular, reverse
engineering, decompilation and debugging tools allow attackers [68] to craft precise in-
put payloads to navigate complicated sanity-checks in software and, if possible, exploit
vulnerabilities.

1.2 Hardening Software

Having discussed the prevalence of vulnerabilities in general-purpose software, let us now
discuss some existing ways to proactively ensure that shipped programs do not contain
vulnerabilities. Common hardening practices against vulnerabilities include access control,
security policy enforcement, cryptography, code obfuscation and others. Access control
[120] is a limited protection framework that uses access control matrices to describe the
rights of users over system resources. Any attempt to access resources that are not
explicitly allowed by an access control matrix is deemed an access control violation, and
corresponding prescriptive remedial measure may be taken. Security policies [19] are
a set of statements partitioning the states of a program based on whether those states
are authorised and secure. The definitions of these terms may depend on the context of

5

1 Introduction

development, usage, deployment, and other such factors. Cryptography [47] is a rigorous
way to secure information systems’ resources that intends to make it mathematically
intractable for potential attackers to get access to them. The goal here is to keep the
encrypted information (information on which cryptography has been applied) unknowable
to external parties that do not have access to the correct cryptographic keys used to encrypt
the information. Integrity protection [4] is also a popular method that puts checks on a
program’s control-flow (control-flow integrity) or data-flow (data-flow integrity) at software
or hardware (e.g. using trusted platform modules (TPM) [132]) level to ensure that the
protected entities are not tampered with by a malicious actor. Finally, software obfuscation
[11] is an automated technique to transform the program-under-test to make it harder
to understand than the original program. The goal of obfuscation [52] is to mitigate
reverse-engineering exploits by concealing the underlying logic or data of the program
(including vulnerabilities).

Some other software hardening methodologies that we have not discussed here are employ-
ment of secure-coding good practices in organizations, secure third-party implementations
of insecure libraries and adoption of security standards in software practices. However, the
question of proactively preventing vulnerabilities in software is not the central goal of this
thesis. We have only briefly discussed here some existing preventive measures that have
been proposed to reduce bugs and vulnerabilities.

1.3 Software Testing

Measures to proactively harden software may effectively prevent vulnerabilities from
manifesting. However, in real-world development scenarios, it is often impossible to know
apriori the many ways in which an actual program (as opposed to a, designed but not-
implemented program) may lead itself into a vulnerable state during a real usage. The
most commonly employed methodology to ensure that implemented software conforms to
specifications is software testing. According to Pan [107], software testing is ...

any activity aimed at evaluating an attribute or capability of a program or
system and determining that it meets its required results.

One of the main goals of software testing is to show the correct behaviour of the software
w.r.t. the specification. Typically, this involves writing test cases describing a particular, or
a class of, inputs to the software and the expected output for that input. The expectation
of running the test on the software with a listed input is that the software will produce
the corresponding expected output. If the expected result is observed, the test is said to
have passed for that input, and if the expected result is not observed, then it is said to
have failed. The responsible mechanism for indicating whether a test has passed or failed
is called a test-oracle.

We note from the above brief description that the correctness of software depends solely
on the knowledge of what it is supposed to do for particular sets of inputs. This knowledge
is usually fed to the testing process by an agent that is familiar with the specifications

6

1.3 Software Testing

of the software, as listed before development. Most recent advancements in the field of
software testing are related to creating or improving automation of such agents, so that

1. reliance on manual intervention in testing processes is reduced, and
2. testing processes can be replicated and automatically rerun when, either the specifi-

cation or the software changes.

Other goals of software testing may be [107] demonstrating reliability, performance or
compliance to security principles.

Software testing can be categorised in several ways, but, for this thesis, we have adapted
the security testing classification criteria, as defined by Bishop [19]. According to this
criterion, testing methods may be classified as follows

1. Blackbox testing or, in terms of Bishop [19], functional testing is defined as a form of
testing where the software or its components are probed to determine whether they
produce the desired output for given sets of input, without receiving any feedback
from the internal elements or background of the program itself.

2. Whitebox testing or, in terms defined by Bishop, structural testing usually probes
the software-under-test to determine which structural elements, such as branching-
conditions, source-code, algorithmic basic-blocks, respond to the input and produce
the corresponding output.

Whitebox and blackbox testing, therefore, are two opposing viewpoints adopted by
software testers to examine a software under test. Most existing testing methodologies in
practice lie in between the black and white spectrum of this viewpoint classification, as we
describe in the next section.

1.3.1 State-of-the-art in Automated Testing

The central idea behind testing is to determine whether the software complies with a
specification. With manual testing, i.e. reliance on manual specification to generate test
cases, even though software testers nowadays are trained to approach the software with
an “attacker mindset” [114], they often miss input values that may exercise interesting,
and often unaccounted-for, behaviour in the software, such as edge cases [151]. These rare
behaviours are often a result of the application logic combined with peculiarities of the
programming environment, which may be ignored in favour of more function requirements
by the specification writers. As a result, these peculiarities may also be missed by software
testers, who may only be following the explicit functional level specification. We call the
scenario described above, where the testing process is not able to cover realistic, but rarely
executed, program behaviour as incomplete testing.
Automated testing provides an antidote to the problem of incomplete testing by com-

bining deductions based on the implemented software with invariants of the development
environment, which ensure there are no vulnerabilities in the program. There exist various
automated testing frameworks that let testers write security policies and other invariants in
the form of formal specifications [23], state-machines [39] or other fault-modelling method-
ologies [76]. These techniques, in addition to policy encoding, are also usually tailored to a

7

1 Introduction

programming language and the program’s specifications. In the following paragraphs, as
in the rest of this thesis, we will delve deeper into two most popular automated testing
techniques in the state-of-the-art, one blackbox and one whitebox - fuzzing and symbolic
execution, respectively.

Fuzzing

Fuzzing (or blackbox fuzzing), as defined by Sutton et al. [134] is an automated method
of providing unexpected input to a program and monitoring for exceptional behaviour,
such as program crash. Fuzzing does not rely on any information about the internal
constraints or branches of the program but, instead, makes use of mutations of seed inputs
to execute the program under test and observe the return values and the external state of
the system. By making such observations, a fuzzer may correlate input values to different
functional behaviour of the program. In practice, fuzzers employ advanced strategies for
input mutation, based on heuristics and inspirations from other fields such as genetic
algorithms. The key idea is to select high-value inputs that promise a better reward in
terms of new functional behaviour execution or exceptional behaviour. AFL [2], Peach
[109] and Honggfuzz [135] are some of the most popular off-the-shelf fuzzers in industry and
academia, but there exist many others in the state-of-the-art for various target programs.
We will discuss fuzzing in more detail in Chapter 3.

Symbolic Execution

Symbolic execution [71] is a whitebox dynamic analysis technique for software testing and
test case generation. It collects constraints based on symbolic program inputs, representative
of paths in the program. Some of these paths may lead to unhandled exceptional behaviour
in the program (such as buffer overflows) leading to a program crash. Solutions to the
collected constraints provide concrete values for symbolic inputs that may exercise that path
in the program. Symbolic execution has been shown [28, 62] to be capable of extracting
complex path conditions to edge-cases and exceptions where other methods, like random
testing, have failed to find potential vulnerabilities. KLEE [26], Sage [63] and JPF-SE [7]
are some examples of practical symbolic execution engines for programs written in various
languages. We will discuss symbolic execution in more detail in Chapter 2.

1.3.2 Problems With the State-of-the-art

The software testing techniques, blackbox and whitebox, that we have discussed so far
belong to the so-called, dynamic analysis [5, 54] category of program analysis methods,
meaning that the program-under-test, or some representation of it, needs to be executed in
the process of its analysis. We differentiate this from static analysis techniques, such as
abstract interpretation [44], where some structural or syntactic elements of the programs
are analysed instead of executing the program actually [51].

In this thesis, we will focus on dynamic analysis and, particularly, issues faced by symbolic
execution and fuzzing, with a minor focus on the drawbacks of static analysis techniques.

8

1.3 Software Testing

Concretely, the existing problems with symbolic execution and fuzzing may be summarised
as follows [103]1.

P1 Path explosion in symbolic execution
While symbolic execution is good at covering new branches, it suffers from the well-
known path-explosion [29] problem. The number of paths that symbolic execution
has to explore increases exponentially with the number of branching-conditions that
depend on a symbolic input. As evident by the Halting problem, determining whether
an arbitrary program may terminate for a symbolic input is undecidable because
there may be input-dependant loops. Due to the path explosion problem, symbolic
execution engines can often only analyse programs incompletely, thereby generating
an insufficient number of test cases.

P2 Constraint solving bottleneck in symbolic execution
Symbolic execution engines suffer from the execution bottlenecks introduced by the
constraint solvers. Symbolic execution engines typically use satisfiability modulo
theory (SMT) [75] solvers as the underlying decision procedure [24] to determine
satisfiability of the path conditions (conjunction of branching conditions). However,
the time taken for SMT solvers to return depends heavily on the size and complexity
of the path conditions. Due to this reason, symbolic execution is severely affected by
the scalability problem of the constraint solvers.

P3 Low path-coverage in fuzzing
Fuzzing also suffers from insufficient coverage due to its reliance on manual seed
inputs and lack of insight into the internals of the program. As a result, fuzzing is
repetitive (executes the same paths repeatedly) and incapable of covering branches
whose conditions are hard to pass by randomly mutated inputs. As a result, fuzzing
tools are unable to generate diverse test cases for many paths in the program. In
terms of vulnerability discovery, fuzzing is also unable to find many vulnerabilities in
deep parts of the program that are hard to reach for randomly mutated inputs.

P4 Lack of prioritization
Vulnerabilities discovered by state-of-the-art dynamic or static analysis techniques
are, often, reported without any assessment to aid in bug-triage by development and
testing professionals. Without such an assessment framework, it may be challenging to
prioritise fixing activities in the presence of a large number of reported vulnerabilities.
The main reason for this is because, in the absence of compositional analysis, possible
usage of a program’s components cannot be replicated.

These problems may exacerbate even more if the components may be reused in an
unforeseeable way in the future where the vulnerabilities may have a more considerable
impact.

1We will discuss these problems in more detail in Chapter 3, and Chapter 2

9

1 Introduction

1.4 Thesis Overview

Having described in brief the existing software testing methods, their classification based
on the tester’s point-of-view, practical approaches and problems associated with them,
we finally turn our focus towards organizing this landscape to enable us to design some
solutions to the problems with the state-of-the-art listed above.

1.4.1 Research Questions

We start by listing the main research questions that motivate this thesis. These questions
are all related to the state-of-the-art vulnerability detection through dynamic software
analysis methods, as described in Section 1.3.1.

RQ1: What are the concrete shortcomings and gaps in the state-of-the-art
in solutions related to symbolic execution and fuzzing?

In this thesis, we aim to answer this question in Part I and, more specifically, in Chapter 2,
Chapter 3 and Chapter 4.

RQ2: How is structural coverage of components related to vulnerability
discovery in them and how may dynamic analysis exploit it?

In this thesis, we aim to answer this question in Part II and, more specifically, in Chapter 5,
Chapter 6 and Chapter 8

RQ3: How may the exploitability of discovered vulnerabilities be deter-
mined using the compositional nature of a program?

In this thesis, we aim to answer this question also in Part II and, more specifically, in
Chapter 7 and Chapter 8.

RQ4: For all discovered vulnerabilities, how may we prioritise the process
of fixing them?

In this thesis, we aim to answer this question in Part III.

1.4.2 Overview of Solution

Figure 1.1 depicts a high-level overview of the greybox fuzzing framework being proposed in
the later chapters of this thesis. To tackle the problems listed in Section 1.3.2, we propose
a compositional solution based on symbolic execution and fuzzing in the following steps.

1. Create an automated procedure to isolate components of a program. The goal of
this first step is to allow symbolic execution and fuzzing to analyse the isolated
components directly, without first solving the branching conditions in program entry
points. This step will be described in detail in Chapter 5.

10

1.4 Thesis Overview

Vulnerability discovery

Isolation of
components

Analysing isolated
components

Symbolic
execution

Fuzzing

Greybox fuzzing

Compositional
analysis

Vulnerability
analysis

Assessing severity of
vulnerabilities

Figure 1.1: Overview of the scalable greybox fuzzing solution

2. Dynamically analyse isolated components generated in the first step to finding
vulnerabilities in them. The analysis technique can be symbolic execution, fuzzing or
a novel hybrid technique that combines them both. The goal of this first step is to
increase the structural coverage of a program. This step will be described in detail in
Chapter 6.

3. Perform compositional analysis of discovered vulnerabilities to determine whether it
is feasible to exploit them from other components interacting with it. The goal of
this step is to determine the extent of infection of a discovered vulnerability. This
step will be described in detail in Chapter 7.

4. Prioritise the discovered vulnerabilities for effective bug triage. The motivation
behind this step is to minimise adverse effects of a discovered vulnerability on the
underlying assets of a software. This step will be described in detail in Part III,
including a general framework for vulnerability assessment (Chapter 9) and a case
study where we instantiated this framework for some real-world open-source programs
and libraries (Chapter 10).

Symbolic execution and fuzzing will be combined by monitoring saturation indicators
(Chapter 6) and cross-feeding inputs between the two. Compositional analysis will be
performed by using static code interpretation to isolate individual components and, later,
join them. We propose to prioritise the vulnerabilities using various heuristics learned from
the development environment and results of the compositional analysis phase.

1.4.3 Contribution

With the completion of the tasks entailing the goals of this thesis, we claim to have made
the following contributions w.r.t. to the gaps in research in state-of-the-art in vulnerability
discovery and analysis methods

1. We propose the design and implement a compositional analysis framework that
applies dynamic analysis methods to isolated components of a program to find
vulnerabilities in them and, then, determines the feasibility of the vulnerabilities
using targeted path search methods. This contribution closes a gap in the state-of-

11

1 Introduction

the-art, where existing methods can dynamically analyse programs only from their
entry points.

2. For analysing isolated components, we describe and implement a novel dynamic
analysis method that improves the coverage of existing fuzzers by combining
it with symbolic execution as follows – performing symbolic execution to generate
seed inputs for fuzzing. This contribution closes a gap in the state-of-the-art, where
existing fuzzing techniques often do not employ symbolic execution, which can
guarantee non-redundant path coverage, to guide their input mutation strategies.

3. For analysing isolated components, we describe and implement a novel dynamic
analysis method that improves the coverage of existing concolic execution
engine by combining it with fuzzing as follows – performing fuzzing to cover
most of the easy-to-reach branches in a program and, then, using the generated inputs
for concolic execution so as to not call the constraint solver for branches covered
already. By combining this contribution with the previous point and repeating
concolic execution and fuzzing till they saturate, we close a gap in the state-of-the-art,
where existing symbolic execution and fuzzing techniques do not utilize each other’s
technical aspects to increase effectiveness and performance of their dynamic analyses.

4. For the discovered vulnerabilities, we describe a generic assessment framework
and instantiate it in a case study with several open-source programs. This contribution
closes a gap in the state-of-the-art, where existing techniques do not provide a way
to prioritise vulnerabilities to make it easier for the developers and testers to triage
them effectively.

In Chapter 4, we will discuss in detail how the above gaps in research were identified
with a systematic mapping study. Parts of the contributions of this thesis have previously
appeared in the following peer-reviewed publications, co-authored by the author of this
thesis:

1. S. Ognawala, M. Ochoa, A. Pretschner, and T. Limmer. “MACKE: compositional
analysis of low-level vulnerabilities with symbolic execution”. In: International
Conference on Automated Software Engineering. 2016

2. S. Ognawala, T. Hutzelmann, E. Psallida, and A. Pretschner. “Improving Func-
tion Coverage with Munch: A Hybrid Fuzzing and Directed Symbolic Execution
Approach”. In: Proceedings of the Symposium on Applied Computing. ACM. 2018

3. S. Ognawala, R. N. Amato, A. Pretschner, and P. Kulkarni. “Automatically
assessing vulnerabilities discovered by compositional analysis”. In: Proceedings of
the 1st International Workshop on Machine Learning and Software Engineering in
Symbiosis. ACM. 2018

4. S. Ognawala, A. Pretschner, T. Hutzelmann, E. Psallida, and R. N. Amato. “Re-
viewing KLEE’s Sonar-Search Strategy in Context of Greybox Fuzzing”. In: 1st
International KLEE Workshop (2018)

5. S. Ognawala, F. Kilger, and A. Pretschner. “Compositional Analysis Aided by
Targeted Symbolic Execution”. In: arXiv preprint arXiv:1903.02981 (2019)

12

1.5 Structure

1.5 Structure

This dissertation is organised in four parts, as follows –
Part I is meant to introduce the readers to the underlying concepts of this thesis, viz.

symbolic execution (Chapter 2), fuzzing (Chapter 3) and hybrid techniques that include
both (Chapter 4). Then we describe the core contributions of this thesis in Part II and
Part III. In Chapter 5, we describe an automated procedure to isolate components of a
program, for us to be able to analyse them with dynamic analysis. In Chapter 6, we describe
three dynamic analysis techniques for discovering vulnerabilities in isolated components,
viz. symbolic execution, fuzzing and a novel hybrid technique based on active monitoring of
coverage saturation. In Chapter 7, we describe an automated procedure to compositionally
analyse discovered vulnerabilities and determine the extent of their infection. In Chapter 8,
we describe the results of applying the above techniques on real-world programs, and
answer relevant research questions about the efficiency and effectiveness of the approach.
In Chapter 9, we bring together the results from vulnerability discovery and describe

some ideas on how we may automatically prioritise them based on various structural,
organisational and asset factors. We instantiate these ideas for a detailed case study in
Chapter 10, where we describe a vulnerability assessment technique based on machine
learning from some impact factors. We, finally, conclude the thesis in Chapter 11 and list
some limitations and future work.

13

2 Symbolic Execution

This chapter presents the essential background on symbolic execution,
one of the competing, as well as contributing, techniques of dynamic
analysis to be discussed in this thesis.

Symbolic execution was first introduced by King [71] as a testing method to deterministically
execute diverse paths in a program by automatically generating corresponding test-cases.
In this chapter, we will describe symbolic execution by formalising symbolic inputs (as
opposed to concrete inputs), program paths as constraints systems over symbolic inputs,
some practical approaches for symbolic execution that have been developed over the years,
problems associated with them and, finally, concluding notes on the state-of-the-art in
symbolic execution.
For illustrating various concepts discussed in this chapter, we will refer to the running

example of the C-program, as listed in Listing 2.1.

2.1 Symbolic Program Input

The difference between dynamic and static program analysis techniques is that during
dynamic analysis, the program under test is executed, within or without, a controlled envi-
ronment with test-cases. This description of dynamic analysis is important to understand
the idea of inputs in symbolic execution.
For symbolically executing a program, we assume that it may be executed with any

possible value of input, constrained only by the external constraints of the execution
environment, such as the operating system or the syntax rules of the programming language.
Concretely, an external constraint may be defined as follows.

Definition 2.1.1. (External Constraint) Any constraint enforced on a program’s input by
an agent other than the program itself during or before the invocation of the program is
called an external constraint.

To enforce this weakest possible constraint (“any possible input”), symbolic execution
executes the program with symbolic input, instead of concrete values. We may define
symbolic input as follows.

Definition 2.1.2. (Symbolic Input) An abstraction or a symbol representing the data
expected by a program, that has no concrete value assignment and can take any value
depending only on their types and external constraints of the program is called symbolic
input.

Let us denote a program’s input by I(X), where X is an abstract representation of an
interface of the given program1.

1We will describe the concept of interfaces and, in general, program entry points, in Chapter 5.

15

2 Symbolic Execution

1 int bar1(int c) {
2 if (c <3)
3 return (3/c); /* Maybe divide -by -zero */
4 else
5 return 0;
6 }
7

8 int bar2(int d) {
9 if (d <50)

10 return 0;
11 else
12 return d;
13 }
14

15 int foo(int b, int c, int d) {
16 if (b ==100)
17 return bar1(c);
18 else
19 return bar2(d);
20 }
21

22 int main(int argc , char ** argv) {
23 int a, b, c, d;
24 a=atoi(argv [1]); b=atoi(argv [2]);
25 c=atoi(argv [3]); d=atoi(argv [4]);
26

27 if (a <1)
28 return 0;
29 else
30 return foo(b, c, d);
31 }

Listing 2.1: Example C program.

16

2.2 Path Conditions

In the code in Listing 2.1, the data expected by the program is as follows – an integer,
argc, denoting the number of command-line arguments and the array of command-line
arguments, argv. Additionally, the variables a, b, c, d are directly assigned from argv,
which implicitly means that these variables can also be made symbolic. Therefore, for the
program in Listing 2.1,

I(X) = 〈argc, argv, a, b, c, d〉 (2.1)

For symbolically executing this program, we need symbolic inputs, instead of concrete
inputs, for assigning to each of argc, argv, a, b, c, d in I(X).

2.2 Path Conditions

Based on logical predicates over symbolic inputs, we will now describe what path conditions
are and how they are incrementally composed of branching conditions.

a<1
?

b==100
?

c < 3
?

d<50
?

ret
succ

ret 3/c ret
succ

ret
succ ret d

T

T

T T

F

F

FF

1

2 3

4 5

6 7 8 9

Figure 2.1: Control-flow graph for C-program in Listing 2.1

To define path conditions, we require, in addition to the definition of symbolic input,
the definition of branching conditions over symbolic inputs.

Definition 2.2.1. (Branching Condition) Branching condition is a first-order logic formula
over symbolic input whose evaluation determines the next instruction set to be executed in
the program execution.

Local variables whose values depend, implicitly or explicitly, on symbolic program input
may also be represented in terms of I(X) if they form a part of the branching condition.
For an intuition, please refer to Figure 7.3, depicting the control-flow graph (CFG) lifted
from the C-program listed in Listing 2.1. Given that the symbolic input table includes
variables a, b, c and d, branching conditions here are (a < 1), (b == 100) and so on.

Let us denote a branching condition by the letter q. Then, formally speaking, q is a
Boolean expression over αi’s, where, as discussed in Section 2.1, αi ∈ I(X).

17

2 Symbolic Execution

Using the definitions of symbolic input and branching condition, we may now define
path condition as follows

Definition 2.2.2. (Path Condition) Path condition is a logical conjunction of branching
conditions that are true for an execution path spanning from a program’s entry point to an
exit point.

Typically, a program entry point may be the main function or a library’s application
programming interface (API), and exit point may be a return statement, a failure or
assertion violations during execution.
Let us denote a path condition by the notation pc. Then, for every symbolic execution

of a program,

pcinitial = True (2.2)

Here, the subscript initial signifies the initial or starting state of the path condition.
As discussed earlier, this path condition will be modified by a symbolic execution engine
as the execution progresses and encounters branching conditions. Whenever a branching
condition, such as If-else or While, with branching condition, q, is seen by the execution,
pc is updated as follows

pc = pc∧ r (2.3)

where r can be q or ¬q.
Let us consider the CFG again in Figure 7.3. In Figure 2.2, we illustrate the step-by-step

progression of the pc of one of the paths of the program, specifically the one starting from
node 1 in Figure 7.3 and ending at node 7. The final path condition (due to execution
ending because of return statement) for this path will be (a ≥ 1) ∧ (b == 100) ∧ (c ≥ 3).
Similarly, the path condition for another path in the program from node 1 to node 8 is
(a ≥ 1) ∧ (b 6= 100) ∧ (d < 50), and so on for the other paths.

2.3 Constraint Solving

As explained in the previous section, path conditions are modified by continuously adding
branching conditions (or negations thereof) till a program exit point is encountered. At
this point, the path condition is sent to a constraint solver to generate test-cases that will
execute the corresponding path in the program. Constraint solvers are, more specifically,
decision procedures for determining satisfiability of logic formulae [28].

Definition 2.3.1. (Decision Procedure for Propositional Logic (PL)) An algorithm that,
after some finite iterations of computations, determines whether a propositional logic (PL)
formula is satisfiable is called a decision procedure for satisfiability of the PL formula.

18

2.4 Symbolic Execution in Practice

a<1
?

b==100
?

c<3
?

F

T

F

ret succ

True

(a>=1)

(a>=1)^(b==100)

(a>=1)^(b==100)^(c>=3)

Figure 2.2: How the path condition is updated during symbolic execution of the program in
Listing 2.1

We have adapted the above definition of decision procedures from [24]. The simplest
example of a decision procedure is creating a truth-table2 consisting of all the variables in
the PL formula and checking if there is at least one row where the final column is True.
Different decision procedures, such as SAT [49] or SMT solvers [14], have been devel-

oped in the past to generate satisfiable models for theories at different expressiveness
levels. However, considering the particular challenges and opportunities presented by the
constraints generated by symbolic execution, combinations of decision procedures were
required to solve for union of theories (limited to PL). Examples of individual constraints
are – x < 100 and f(x) ≤ f(x− 1). A combined decision procedure will take into account
both these constraints and solve for their union (i.e. (x < 100) ∧ f(x) ≤ f(x− 1))3.

The underlying constraint solver of a symbolic execution engine, then, generates concrete
test-cases that are guaranteed to execute the corresponding paths in the program, thereby
providing a concrete model of the symbolic execution, i.e. assignments for symbolic input.

2.4 Symbolic Execution in Practice

So far, in this chapter, we have described the theory of symbolic execution. We will now
provide some details on how these steps are implemented in various practical symbolic
execution engines.

2A table, for a formula with n variables, with 2n rows, each row assigning a unique combination of T rue
or F alse assignments to the variables and determining the final result – T rue or F alse.

3The particular example here of combination of the two theories is the simpler, albeit most commonly
occuring in symbolic execution, form of constraint that is known as conjunctive normal form (CNF).

19

2 Symbolic Execution

2.4.1 Concolic Execution

Symbolic execution, in theory, entails executing the program-under-test with symbolic
inputs to collect constraints depending on branching conditions in the program. However,
in practice, to perform dynamic analysis of a program, most symbolic execution engines
[108] initiate the analysis process using concrete inputs to the program. A common strategy
in this regard is a combination of concrete and symbolic execution, also known as concolic
execution. Symbolic execution may be combined with concrete executions in the following
ways

1. Concrete seed inputs: The analysis process proceeds with an initial set of inputs (seed
inputs). Based on seed inputs, the concolic execution engine follows the execution by
recording the branching decisions taken and, for every branch that is taken by the
execution, remembers the negation of the branch to be used for symbolic execution
in the subsequent iterations.
Let us use the example of Listing 2.1 to illustrate this type of concolic execution.
Suppose that the seed input for the program is “1 2 3 4”. Recall from Equation (2.1)
that the concrete form of the symbolic input IS will be4

I = 〈1, 2, 3, 4〉 (2.4)

For the above concrete input, the path that will be followed in Figure 7.3 can be
denoted by the path condition, pc will be ¬(a < 1) ∧¬(b == 100) ∧ (d < 50). The
concolic execution engine, then, will add the following path conditions to the list of
paths yet to be explored while at nodes 1, 3 and 5 in Figure 7.3 respectively

(a < 1) (2.5)
¬(a < 1) ∧ (b == 100) (2.6)

¬(a < 1) ∧¬(b == 100) ∧¬(d < 50) (2.7)

These yet-to-be-explored path conditions are, then, queued to be explored next by
the concolic execution engine.

2. Concrete function calls: In the next variant, the concolic execution engine determines
(e.g. using dynamic taint analysis [122]) those particular paths in the program that
do not depend on symbolic input and, therefore, are executed concretely at all times.
Another scenario where this is applicable is when calls to external functions and
libraries need to be concretised if they are not modelled symbolically [26].
Some symbolic execution engines, such as KLEE [26], ship with symbolic models of
common libraries, such as glibc [137], and these can be directly utilised for symbolic
execution. Other hybrid symbolic and concolic engines, such as Mayhem [33], angr
[130] and S2E [37], solve the partial path conditions (up to the point of an external

4We have, indeed, simplified the input by converting the actual input to a C-program, argv and argc, to
more meaningful program input, the four integer values.

20

2.4 Symbolic Execution in Practice

function call) and use an exemplary input (obtained from constraint solver) to perform
a concrete system call.

2.4.2 Path-search Strategies

Progression of symbolic execution in terms of generating unique test-cases cases depends
on, in addition to constraint solvers, the path-search strategy employed by the symbolic
execution engine. The need for path-search strategy is to pick from a list of candidate
instructions one instruction to execute with symbolic inputs. Consider, for instance, line 14
in the program in Listing 2.1. When symbolic execution arrives at this line, a choice needs
to be made whether to pick line 15 or line 16 (depicted in nodes 4 and 5 in Figure 7.3,
respectively) to symbolically execute next.

We will now briefly look at some typical strategies [115] to pick, during a run of symbolic
execution (not yet reached a program exit-point), the next instruction to be symbolically
executed.

1. Breadth-first Search: As the name suggests, in breadth-first search the list of candidate
instructions to be symbolically executed next, is treated in first-in-first-out order.
The outcome, intuitively, is that the nodes closest to the explored nodes are explored
before the ones that are farther away.

2. Depth-first Search: In depth-first search, the intuition is that the node seen most
recently by the symbolic execution engine is the one to be explored first. In effect,
this entails treating the seen list as a last-in-first-out fashion, to explore nodes seen
most recently.

3. Cost-Minimisation Heuristic Search: Also known as a greedy approach, this strategy
tries to minimise the effort in terms of exploration of nodes seen, but not visited.
The key here is the metric of cost itself. While some symbolic execution engines
may use the constraint solver to provide a cost metric (time to return satisfiability
of the query), others might consider other metrics such as expected distance to an
unseen node (predictive heuristics) (new-paths-first strategy), distance to a target node
(targeted-search strategy), or likelihood of finding a vulnerability (vulnerable-paths-first
strategy).

4. Random Search: The final search strategy that may be employed by symbolic
execution engines is a random search strategy. As the name suggests again, in this
search strategy, the next instruction to be executed from the list of candidates is
picked at random. In addition to being inexpensive, various past works have shown
[84] that random search is also able to sometimes cover deeper parts of a program
than depth-first, breadth-first or more expensive heuristics. Moreover, random search
strategy can also be made non-uniform [26] by assigning higher weights to low-
cost paths (as discussed in cost-minimising heuristic search), thereby combining
deterministic heuristics with random path exploration.

Finally, as with other technical aspects of symbolic execution, search strategies can also
be hugely improved by combining two or more of the above strategies [122] in a weighted
manner to reach a pre-defined goal efficiently.

21

2 Symbolic Execution

1 while (e) inst

Listing 2.2: Sample while loop

1 if (e) inst
2 if (e) inst

3
...

4 if (e) inst

Listing 2.3: Unrolled version of the loop in Listing 2.2

2.4.3 Bit-vector Constraints

We will now briefly describe a specific optimisation in modern symbolic execution engines
that have led to an increase in, both, their popularity as automated test-case systems and
their efficiency – constraint solvers. In the past [13] the decision procedures used to solve
path conditions to generate satisfiable solutions were based on underlying theories that
included arithmetic and logical operations on various data primitives, such as integers,
alphanumeric characters, floating point numbers and arrays of the above. As expected,
these decision procedures were inefficient in terms of time to decidability.

One significant optimisation in SMT and SAT [49] solvers has been the introduction of
bit-vector types and arrays. Bit-vectors [15] are fixed-length strings of binary digits (bits),
and operations on these bit-vectors can be directly described by their effect on each bit in
them. If every primitive datatype and arrays of primitive datatypes can be represented
as bit-vectors (by bit-blasting them to bit-wise representation), then the programming
language constraints, such as in-bounds memory access, can be modelled precisely using
only a Boolean system. This is often useful to catch potential bugs such as buffer overflows.
Constraint solvers such as STP [56] and CVC [13] have implemented effective bit-vector
decision procedures for the specific use-case of symbolic execution engines.

2.4.4 Loop Unrolling and Bounded Models

As described earlier, if there are input-dependant loops in a program then the Halting
problem (deciding whether the program will terminate) is undecidable in general. To
overcome the path-explosion caused by input-dependent loops, many practical symbolic
execution techniques employ loop unrolling [43]. Consider the while loop in Listing 2.2,
and how such a loop may be unrolled in Listing 2.3.

There are several specific ways in which loops may be replaced (called unrolling) into a
sequence of if blocks5. The first way [43] is to apply an upper limit to the number of times
a loop may be run by, instead, asserting after executing inst that the looping condition e
is not true for a fixed number (user-defined or pre-coded) of times. The second way [8,
148] is to perform a concrete execution of the loop to find out the number of times a loop

5In fact, unrolling may also be done without if blocks at all, i.e. simply repeating the instruction inst
many times.

22

2.5 Current Challenges

must be unrolled for some concrete and valid inputs for the entry condition, e of the loop
and apply this limit just like in the previous option. The last option employed by some
symbolic execution engines [78] is to develop special search-strategies that detect a loop in
the program’s control flow graph and bias the execution towards a path condition that will
force the looping condition e to be infeasible.

2.4.5 Test-cases Exploiting Vulnerabilities

We will now examine the capability of symbolic execution to discover vulnerabilities in
programs. Most symbolic and concolic execution engines [7, 26, 140] include the capacity
to catch, so-called, low-level vulnerabilities in general-purpose programs, as well as, the
ability to encode more complex vulnerabilities as programmatic assertions. Concretely, we
define low-level and complex vulnerabilities as follows.

Definition 2.4.1. (Low-level Vulnerability) A vulnerability that violates the inherent
integrity, availability or confidentiality properties of programs written in a particular
programming language and that manifests as a result of incorrect usage of that language’s
semantic rules, is called low-level vulnerability.

Definition 2.4.2. (Complex Vulnerability) A vulnerability that violates a security or safety
property of a specified program, non-inherent to the semantics of the programming language
and, therefore, unlikely to affect another program written in the same language, and that
manifests as a result of incorrect design or implementation of a specification, is called a
complex vulnerability.

For handling and reporting low-level vulnerabilities, symbolic execution engines in-
strument the program-under-test with assertions before every instance of a potentially
vulnerable instruction and generate a report when that assertion fails, e.g. instrumenting
all instances of array indexing (ar[i]) to check for IndexOutOfBounds vulnerability. For
handling and reporting complex vulnerabilities, symbolic execution engines allow users
(testers) to manually insert assertion statements in the program-under-test to have symbolic
execution report all inputs that lead to any violations of the respective assertions. In this
way, symbolic execution engines can generate test cases to demonstrate exploitation of
vulnerabilities in programs.

2.5 Current Challenges

Having discussed dynamic analysis with symbolic execution, we will now discuss some
shortcomings of symbolic execution, more specifically, in terms of insufficient structural
coverage and its ability to find vulnerabilities in general-purpose programs.

2.5.1 Path explosion

The first limitation in the state-of-the-art symbolic execution techniques is that the
performed analysis suffers from the so-called path explosion problem [29]. As discussed in
the description of the technique, if there are any input-dependent loops in the program,

23

2 Symbolic Execution

then it cannot be determined whether the program will terminate. Additionally, reasoning
about programs may also become intractable when inter-procedural calls paths need to
be resolved during runtime, e.g. with function callbacks, function pointers or reflection.
Over-approximation (assuming that callbacks may be resolved to any matching function)
might lead to further deterioration of by introducing unnecessarily many paths for symbolic
execution to explore. The outcome of path explosion in symbolic execution is that, if
those paths are not explored first that increase the likelihood of achieving a coverage or
vulnerability goal, then symbolic execution may progress very slowly.

2.5.2 Bottleneck of Constraint Solving

In Section 2.3 we explained the step of constraint solving, where the path conditions,
represented as boolean predicates over symbolic inputs, are issued to decision procedures,
such as SMT solvers, to obtain a concrete solution that will lead the execution through
the corresponding path in the program. A practical challenge to symbolic execution is
the bottleneck of these constraint solvers. This bottleneck affects symbolic execution
engines because the decision procedures may be inefficient at returning satisfiability or
counter-examples in a reasonable amount of time. While the form of constraints itself may
not be directly correlated with the amount of time to return satisfiability, it can, at least,
be expected that every additional independent constraint6 in a path condition (in CNF)
adds additional time-to-return for constraint solvers, not accounting for any parallelisation.
However, for non-independent constraints too the time-to-return may increase for every
additional branching-condition. E.g. , a SAT solver may return satisfiability for (a < 100)
faster than for (a < 100) ∧ (a ≥ 50). The outcome of inefficient constraint solving is that
symbolic execution cannot generate sufficiently many test cases in a reasonable amount for
time for a program of arbitrary size.

2.6 State-of-the-art Solutions

Having listed and briefly described the challenges faced by symbolic execution, we now
look at some existing solutions, in theory and practice, that have been proposed to deal
with the above problems.

2.6.1 Smart Heuristics for Path-search

We already discussed some path-search strategies in Section 2.4.2 that aim to preempt
certain paths, such as loop-iterations, to run into path-explosion. There have also been
other solution proposals that go beyond the simple strategies of depth-, breadth- or
best-first search [29]. For instance, some papers [25, 26] have proposed search strategies
guided by inferences drawn by the structure of the program-under-test, such as the static
control-flow-graph (CFG). In these CFG guided strategies, the search algorithm may
select a state that minimises the distance to a branch that is not yet covered by symbolic
execution. Alternatively, those states could be prioritised that contain instructions that

6(a > 10) and (b < 100) are independent, while (a < 10) and (a > 5) are dependent constraints.

24

2.6 State-of-the-art Solutions

have been executed less number of times of other instructions. Some proposals for path-
search strategies employ heuristics from other fields, such as genetic algorithms [69] or
fitness-based metrics [148] to guide the exploration of symbolic execution engines. Finally,
a combination of structurally-guided, such as breadth-first or CFG-based, and random
strategies [84] have also been proposed and shown to improve performance of the symbolic
execution engine in terms of path-search efficiency.

2.6.2 Compositional Symbolic Execution

The observation that real-world programs are constructed as combinations of various
interacting components responsible for distinct tasks has been exploited in the past to
perform independent symbolic execution of them. Compositional symbolic execution [6,
38, 61] is such a class of dynamic analysis technique where, instead of performing symbolic
execution from a single, usually user-facing, interface of a program, symbolic execution
can be applied at arbitrary points in the program, such as functions, and the results
summarised and “propagated” upwards to eliminate non-interesting paths. Here, symbolic
execution is transformed into a problem of demand-driven analysis where targets of analysis
are presented to the symbolic execution engine by, first removing input preconditions and
then re-introducing them to filter the results in the context of usage of the component
[78, 115, 142]. Many papers have also proposed to generate summaries from the symbolic
analysis of a component of a program [81, 124, 131]. After the analysed components
are reduced to their summaries, typically targeted symbolic execution is used to reason
about the feasibility of these summaries given the preconditions of the entry-points chosen
for the analysis [65, 83]. It has been shown in various studies [41, 102] in the past that
compositional symbolic execution can find many more vulnerabilities in medium-to-large
real-world programs than plain symbolic execution that may suffer from path-explosion in
shallow regions of the execution tree.

2.6.3 Constraint Solving Optimisation

Constraint solvers have also received much attention in research over the past few decades.
The main reason behind symbolic execution becoming one of the most popular test case
generation technique only so much later than the technique was first introduced by King
[71] was that constraint solvers were getting more efficient by focussing on specific domains
of application and the rise in feasible parallel computing architectures.
Many symbolic execution techniques try to eliminate individual constraints [26, 123]

in path conditions that do not affect the outcome of the constraint solver. For example
[29], if the branching condition ¬(y < 10) is to be added to an existing path condition
(z < 5) ∧ (x+ y == 100) during symbolic execution, then to determine the satisfiability
of (z < 5) ∧ (x+ y == 100) ∧¬(y < 10), we know that the term (z < 5) does not affect
the outcome and, hence, can be removed before sending to the constraint solver.
Next, symbolic execution engines may also reuse [28, 123] satisfiability from other

constraints that were solved in the past. To achieve this, for a path condition whose
satisfiability needs to be checked, the symbolic execution engine may use the test case

25

2 Symbolic Execution

generated from a previous path condition to check if it still satisfies the new constraint.
Only if this concrete assignment does not satisfy the new path condition, the constraint
solver may be called to check satisfiability.
Lastly, as discussed in Section 2.5.2, time-to-return for path conditions may be less

if there are more independent constraints in the path conditions than dependent ones.
Therefore, an optimisation to be performed [123] before constraint solving is to determine
if any of the independent constraints have appeared in any constraint previously solved
during symbolic execution

2.7 Concluding Notes

In this chapter, we described symbolic execution, its underlying theory, and how the
implementations work in practice. We described the technique in terms of symbolic inputs
(in place of concrete inputs), path conditions which represent a symbolic execution path in
terms of first-order logical formula over symbolic inputs, constraint solving to generate
concrete test cases to execute the particular program path. Then, we discussed real-world
symbolic execution engines and the higher-level design decisions that are generally made
for effective and efficient symbolic execution. The first here is concolic execution, which is
a combination of executing the program-under-test with concrete inputs to, either, collect
and individually negate branching-conditions, or to interact with the system’s environment
concretely. In terms of path-search strategies, we discussed some structural strategies, such
as breadth-first and depth-first, and other specialised strategies that rely on heuristics and
static-analysis, such as cost minimisation and a combination of different strategies. We,
then, discussed how path conditions can be represented as bit-vectors to allow for different
datatypes, sequences and programmatic structures. Loop unrolling and bounded models
were discussed as possible optimisations to go around path-explosion problem efficiently.
Finally, we discussed how vulnerabilities in programs are discovered and reported by
symbolic execution engines.

After discussing the theory and practice of symbolic execution, we were able to succinctly
describe the two main problems that symbolic execution suffers from – path-explosion and
the bottleneck of the constraint solver. The solutions proposed in the past to deal with
one or both of these issues were listed and categorised as smarter path-search strategies,
compositional symbolic execution techniques or optimisation of path conditions before
submitting them to constraint solvers for checking satisfiability or generating test cases.
Using the results and insights from these existing works, we will, in later chapters, describe
our methodology to overcome the issues of path-explosion and constraint solving in symbolic
execution.

26

3 Guided Fuzzing

This chapter presents the essential background on guided fuzzing, one of
the competing, as well as contributing, techniques of dynamic analysis to
be discussed in this thesis.

Guided fuzzing, fuzz testing, or fuzzing [134] for this thesis, is an automated technique for
test-case generation where the basic idea is to send random or intentionally malformed
input to the program to trigger edge-case behaviours in a program. In this chapter, we will
describe the state-of-the-art in fuzzing, the concepts of input mutation, exception handling
and other factors considered in implementations of fuzzing for different kinds of programs.

This chapter is structured as follows – In Section 3.1, we introduce the concept of guided
fuzzing (only referred to as fuzzing in the rest of this thesis) and contrast it with random
testing, a well-known automated testing technique in research and practice. We, then, start
the step-by-step description of a typical fuzzer with defining and explaining in detail the
concept of seed inputs in Section 3.2. Based on the definition of fuzzing inputs, we, then,
describe input mutation strategies in Section 3.3. In Section 3.4, we look at how fuzzing
can monitor programs-under-test during runtime and use the information for guiding input
mutation. Then, we provide some details of the implementation of popular real-life fuzzers
developed in academia and industry, in Section 3.5, and list some of the challenges faced
by fuzzers in Section 3.6. We, finally, conclude the chapter in Section 3.7.

3.1 Random Testing vs. Fuzzing

We will, in this thesis, define fuzzing in terms of being a counterpart or being inspired by
random testing.

Definition 3.1.1. (Random Testing) Random testing is a form of automated software
testing where inputs are sampled (usually uniformly) at random and independently from a
pre-determined domain of inputs for a program and the program is executed to check if the
desired output is obtained.

We have adopted the above definition from Hamlet [66]. The critical difference between
random testing and fuzzing is the independent aspect of input selection in random testing.
The intuition behind random testing with independently sampled input is that this process
is not informed by the output or side-effect of executing the program-under-test with those
inputs. As a result, random testing is usually able to trigger those edge-cases at a much
lower cost [3, 48] than manual testing with input-selection guided by observing the output
of the program.

However, fuzzing aims to take random testing a step further by (automatically) monitoring
the behaviour and output of the program-under-test for all sampled inputs and guiding
the input-selection therefore. Below we define fuzzing, adapting the definition from Sutton
et al. [134].

27

3 Guided Fuzzing

Definition 3.1.2. (Fuzzing) Fuzzing is a form of automated testing for discovering vul-
nerabilities in programs by providing unexpected or malformed input and monitoring the
process for new coverage, interactions with the environment or exceptions thrown.

Therefore, standard fuzzing techniques include, in addition to input selection step of
random testing, strategies to generate unexpected input based on observation of a program’s
behaviour (or process monitoring, as we will discuss later). We will now describe these
steps in more detail in the next sections.

3.2 Seed Input Selection

The first step in fuzzing is to select a set of inputs for the program, usually manually.

Definition 3.2.1. (Seed Inputs) The initial inputs, chosen from a domain of possible
inputs, to automatically test a program with fuzzing, are called seed inputs.

Let us consider the program in Listing 2.1 (Chapter 2) again. For this program, the
inputs may be considered to be of composite type I(X) (defined the same way as in
Equation (2.1)).
Then, let the set of fuzzing inputs be IF , and

IF = (I(X))∗ (3.1)

Fuzzing inputs, IF , include, both, seed inputs, IF
init, as well as, the inputs generated by the

automated process input mutation, to be described in the next section. As with symbolic
inputs (Chapter 2), variables a, b, c, d are assigned from argv and, therefore, may be
considered to be implicit fuzzing inputs.
Some examples of seed inputs in this scenario may be the following

〈4, ”0 1 2 100”, 0, 1, 2, 100〉 ∈ IF
init

〈4, ”1 50 200 10”, 1, 50, 200, 10〉 ∈ IF
init

The process of seed selection may be guided by various objectives of testing, such as
coverage maximisation or vulnerability discovery. Fuzzing, then, will utilise the set of
seed inputs and perform useful mutations on them to generate new inputs to satisfy the
objective mentioned above.

3.3 Input Mutation Strategies

After initialising the set of fuzzing inputs, IF , the main fuzzing process is ready to mutate
the set of inputs to generate, and add to the set, new inputs using the input mutation
strategy. Recall that fuzzing is typically a blackbox process, which means that “uniqueness”
of paths is deduced by the unique behaviour exhibited by the program when running with

28

3.3 Input Mutation Strategies

a previously unseen input. Therefore, the aim of this stage of fuzzing, viz. input mutation,
is to generate new inputs from the existing set of inputs that may exercise a previously
unseen path.

Let us start by defining what is meant by input mutation.

Definition 3.3.1. (Input mutation) The process of modifying an existing input in the set
of inputs for fuzzing, by replacing, adding or deleting some bits, to generate a new input is
called input mutation.

The choice operation (addition, deletion, or replacement) on existing input may be
guided by a so-called, input mutation strategy. This strategy may differ from fuzzer to
fuzzer in practice, but typically it includes, first, choosing which existing input(s) to mutate
and, then, which operation(s) to apply on it (them). We can extend the formalisation to
include input mutation as follows. For every iteration of input mutation,

IF ⇐ IF ∪mutate(select(IF)) (3.2)

In the above equation, IF is as defined in Equation (3.1) and mutate and select functions
have the following signatures.

select : Seq i→ Seq i

mutate : Seq i→ i

, where i is of type I(X). The select function returns one or more inputs from the set of
all inputs in IF that should be mutated. The mutate function uses the input list returned
by select, performs a mutation based on the mutation strategy and returns an input to be
added to IF . The mutate function can take many forms, e.g. bitflip_i (to flip the ith bit
from 0 to 1, or vice-versa), mask (to mask a portion of the input bit-sequence with another
sequence), add_bytes (to add random bytes in between or at the ends of an existing input),
mix_and_match (to combine certain bit-sequences from two or more inputs returned
by select) or a combination of these mutation strategies. Many modern-day fuzzers such
as AFL [2] and AFLFast [21] advanced heuristics and genetic algorithms for the mutate
function too.
The operations in Equation (3.2) are repeated until a fuzzing goal is reached, e.g. a

target instruction is reached, or a failure is triggered (such as program crash). In some
fuzzers, there may even be an additional step to Equation (3.2), where certain inputs from
IF may be removed based on a heuristic to decide whether they are valuable enough to be
mutated further.

29

3 Guided Fuzzing

3.4 Process Monitoring

The iterations of fuzzing must be monitored to determine what progress, if any, is being
made by the fuzzer. The goal of this step in fuzzing is to, ideally, provide feedback to the
input mutation step to perform the mutations effectively. This goal is achieved by profiling
[16] the program-under-test. We have adopted the definition of profiling from [134].

Definition 3.4.1. (Runtime Profiling) The process of, for an (symbolic or concrete)
execution of a program, recording the program or structural elements that were covered is
known as runtime profiling or, simply, “profiling”.

Various structural elements may be profiled during runtime of fuzzing, such as instructions
in source-code, intermediate code (e.g. LLVM [79]), basic-blocks in CFG or branches in CFG.
Profiling for instructions at various levels can be achieved by inserting instrumentation in
the code before starting the process of fuzzing. At other abstraction levels, profiling can
be achieved by, first, lifting the program-under-test to an abstract representation and then
mapping executed statements to basic-blocks or branches.
In addition to profiling the program-under-test, the monitoring process in fuzzing also

includes externally monitoring the interaction of the program with the environment.

Definition 3.4.2. (Interaction with Environment) The transition in state that a program-
under-test triggers on the parent process, such as the spawning shell, is called its interaction
with the environment.

The interaction with the environment is useful to determine if an iteration of input
mutation led to a previously unknown state-transition in the environment, such as a new
return value, an exception thrown or a segmentation fault resulting in a program crash. In
UNIX-based systems, interaction with the environment can be monitored for a running
process by processing the return value or catching special signals such as SIGSEGV, SIGSYS
or similar. Depending on the signal value caught or return value received by the monitoring
process, the fuzzer can inform the select and mutate functions to prioritise inputs in IF .

The tuple, runtime-profile and interaction with the environment, can be used to determine
the uniqueness of test-cases in IF , which may be used as a proxy for unique functional
behaviour of the program-under-test.

3.5 Fuzzing in Practice

We will now move our discussion to some practical aspects of fuzzing that most fuzzers
have to tackle in their implementations.

3.5.1 Types of Fuzzers

Sutton et al. [134] categorise fuzzers into types depending on the way inputs are generated –
mutation-based fuzzers and generation-based fuzzers. Mutation-based fuzzers are ones where
existing inputs are selected and mutated, as described in Section 3.3, to generate new inputs
that might demonstrate functional behaviour previously unseen in the program. Unlike

30

3.5 Fuzzing in Practice

mutation-based fuzzers, generation-based fuzzers, in this terminology, implies techniques
that generate inputs by methods depending only on the program behaviour or structure and
rarely on the already-existing set of inputs. The most compelling example of a generational
fuzzer is symbolic execution, which we described and discussed at length in Chapter 2.
Many authors [60] describe specific adaptations or implementations of symbolic and concolic
execution as whitebox fuzzing. Examples of such adaptations are described in Section 2.4,
where we discussed topics such as concolic execution where we begin the analysis with
an initial set of inputs, seed inputs, to gather path conditions on symbolic execution and
iteratively negate the branching conditions in them to generate new inputs. Such practical
adaptations of symbolic execution also fall under the category of whitebox fuzzing, where
the inputs are generated using the path conditions gathered by the analysis.

For this thesis, we will only consider mutation-based fuzzers when talking about fuzzers,
in general. If the generation-based fuzzers are of symbolic execution variety as described
above, we will classify them as such.

3.5.2 Instrumentation

Instrumentation of the tested object is an important practical aspect to consider for fuzzers.
In theory, as described above, the progress of the fuzzer in terms of input generation
through mutation strategies is guided by process monitoring. Process monitoring, as
described in Section 3.4, includes runtime monitoring of the program and interaction
with the environment. Of these two monitoring steps, only runtime monitoring should
require any code instrumentation (to record the program elements executed by the inputs).
However, in practice, there is also a need for, so-called, sanitisation of various source-code
locations to signal whenever an interaction with the environment leads to a failure, such as
a program crash. We will briefly describe now how instrumentation, including sanitisation,
is achieved by various fuzzers in practice.
For measuring coverage during the input mutation iterations, AFL [2] and Libfuzzer

[125] insert special instrumentation in the source-code before compilation to monitor
branch-coverage. Before starting fuzzing, these fuzzers allocate a large shared-memory
space that is utilised across all iterations of input mutation. In this shared memory [2], the
fuzzer represents unique branches in the program using random indices generated during
runtime, and the value at these indices are incremented every time the corresponding
branch is taken by an input. Path coverage can also be determined implicitly from branch
coverage by representing paths as the concatenation of branches taken in sequence.

For inputs resulting in failures in the program-under-test, most fuzzers employ sanitisers
to detect and report the failures gracefully. The most common form of sanitisation is
called address sanitisation, of which ASAN [127] is an implementation. The goal of
address sanitisation is to detect if the program can, for valid inputs, access (read or write)
memory locations that are outside the bounds of the allocated application memory space
thereby resulting into a program crash (due to a segmentation fault). This is achieved
by, first, replacing memory allocation (e.g. malloc), access (e.g. pointer-dereference or
array-indexing) and deletion (e.g. free) instructions by custom instructions and, then,
actively monitoring and reporting when any of these instructions spill over the allocatted

31

3 Guided Fuzzing

memory space1.
Other sanitisers include UBSAN [143], that detects undefined behaviour such as integer

underflows and overflows, and TSAN [139], which detects race conditions and other issues
in multithreaded programs. By using such sanitisers, a fuzzer can detect when a mutation
of input causes a program to crash and report the vulnerable instruction.

3.5.3 Test Minimisation

Mutation-based fuzzers, as described above, apply random mutations to generate new
inputs for the fuzzer expecting to uncover new functional behaviour in the program. While
many of the mutated inputs may lead to a failure, they might not always be realistic
inputs to the program (e.g. containing NULL characters in the middle of streams). A key
requirement of many fuzzers, then, is to collect these special inputs (triggering failures)
and minimise them to generate inputs that exercise the same behaviour as the original
mutated input.
The goal in this step is to discover realistic test inputs that may allow a user to crash

the program. A typical test minimisation algorithm [2] takes an input generated by the
fuzzer and trims it by – 1. replacing long sequences containing the same bytes, with a
single occurrence, or 2. removing long sequences of NULL characters in between or the
end of the byte-stream, or 3. performing normalisation on sub-strings containing repeating
characters, based on the lengths of the substrings. Of course, there is no guarantee in any
of the above possible test minimisation technique that the resultant input will lead to the
same functional behaviour as the original input. To ensure that the “failure-triggering”
property is preserved, the minimised inputs are used to execute the instrumented program
(Section 3.5.2) to determine if the vulnerability can still be exploited.

3.6 Current Challenges and Solutions

Having seen an instance of program analysis with fuzzing, we will now critically analyse
the reasons behind fuzzing not achieving sufficient structural coverage. One of the research
questions stated in this thesis asks how structural coverage is related to vulnerabilities.
Therefore, here, we will also analyse vulnerability discovery with fuzzing. The main
drawbacks associated with fuzzing are the reliance of the mutation-based fuzzers on seed
inputs and redundant path coverage, which we will now elaborate.

3.6.1 Reliance on Seed Inputs

According to our definitions and methodology descriptions, fuzzers can only generate
new inputs based on two feedback items during fuzzing – input used to execute and the
functional behaviour exercised by the input. As such, a mutation-based fuzzer is not able
to infer the semantics or intended behaviour of program-under-test in the same way as
symbolic execution techniques can (by instrumenting the program and collecting branching

1The details of the implemented algorithm can be found at https://github.com/google/sanitisers/
wiki/AddressSanitizerAlgorithm.

32

https://github.com/google/sanitisers/wiki/AddressSanitizerAlgorithm
https://github.com/google/sanitisers/wiki/AddressSanitizerAlgorithm

3.6 Current Challenges and Solutions

conditions, as PL formulae over program inputs). Therefore the ability of the mutation
strategies to generate inputs to uncover previously-unseen functional behaviour depends
on the so-called, quality of seed inputs [32, 88, 119].
In [119], Rebert et al. asked questions to empirically correlate seed input selection

and the ability of mutation-based fuzzers to find vulnerabilities and cover interesting
(rarely executed) parts of the program. The conclusion of this study on various open-
source programs and different sizes of randomly sampled sets of seed inputs was that, in
general, a focussed set of a minimally reduced set of seed inputs helps the fuzzer find more
vulnerabilities and cover more program elements than a larger, but possibly redundant,
set of seed inputs. A minimally reduced set is a reduced set of seed inputs that contain
the most important inputs that are likely to execute diverse functional behaviour in the
program-under-test. The problem is that of reducing the initial seed inputs to a minimal
set. This topic has received much attention in research, as we will discuss in Section 3.6.3,
and continues to be a key focal point of improving mutation-based fuzzers.

3.6.2 Redundant Path Coverage

Another outcome of the relative “blindness” of the process of fuzzing is that many inputs
and their mutations end up covering the same subset of paths in the program repeatedly.
Unlike symbolic execution, fuzzing does not consume and iteratively negate branching
conditions in programs to guide its progress. As a result, it is often very hard for random
mutations of inputs to generate valid inputs that can satisfy branching conditions that are
satisfiable for a very small subset of the input domain [103].

Redundant, and low, overall path coverage is not only a problem in itself with fuzzing. The
capability of fuzzers to find vulnerabilities is also reduced because of low-coverage, because
[80] if certain portions of a program are not executed by a dynamic analysis technique such
as fuzzing then potential vulnerabilities in these portions cannot be discovered. Therefore,
as we will discuss in Section 3.6.3, many recent research outputs have focussed on increasing
the coverage of fuzzing tools to find more vulnerabilities.

3.6.3 State-of-the-art Solutions

Having listed and briefly described the challenges currently being faced by fuzzing, we
now turn our attention to existing solutions in fuzzing theory and practice that have been
proposed to deal with the above problems.

Input Selection and Prioritisation

The first class of solutions to improve the state-of-the-art in fuzzing suggest improvement
and modifications to the way seed inputs are selected for fuzzers and, especially, ways to
mutate them to increase structural coverage in the program. Rebert et al. [119] and Cha
et al. [32] have proposed to adapt the seed-input selection to suit the program-under-test,
by including variants of popular structured text-file and image formats, such as PDF,
PNG or JPEG. By using expert intervention to infer the minimum requirements to bypass
sanity-checks on input, the above authors have shown that guided seed input selection can

33

3 Guided Fuzzing

increase the effectiveness of blackbox fuzzing significantly. The same consequence can be
extended to automatically inferring the grammar and structure of valid input for a program.
Such solutions were proposed by Ganesh et al. [57], Wang et al. [146] and others in the
past. In these automated solutions, input bytes may be tainted and those bytes determined
that are, either, the most often accessed by branching conditions in the program, or the
most interesting in terms of triggering a component of interest. Other solutions, such as
by Rawat et al. [118], have focussed on input prioritisation which dictates to the mutation
strategies which inputs (seed or generated by the fuzzer) to pick next for mutating. They
include fuzzers that makes use of the control-flow and data-flow characteristics of the
binary target to inform the input mutation strategy.

Targeted Fuzzing

The second class of optimisations in fuzzing are those that do not strictly treat the program-
under-test as blackbox but have some control or view of what structures are present and
triggered inside them. Due to partial visibility into the internals of the system, these
fuzzers can more effectively dictate the mutation strategies to increase structural coverage
or find more vulnerabilities in the program. Böhme et al. [20] introduced targeted fuzzing
by modelling the fuzzing process as a Markov-chain and using power schedules to control
which seeds should be mutated next to increase the likelihood that a target location in the
program-under-test may be executed. The resultant fuzzing tool was called AFLGo. The
same team of researchers, then, improved this technique [21] in AFLFast, by extending
the power schedules also to predict how many unique inputs (executing unique program
paths) might be generated by mutating a given input. In other related work, Lemieux
et al. [80] proposed a technique to effectively mask those parts of the input bytes that do
not lead to coverage of new branches to focus on those bytes that are likely to trigger edge
cases in rare branches (only taken for a few inputs). Many of these optimised fuzzers have
demonstrated their superiority over naive fuzzers by reported several previously unreported
vulnerabilities in widely-used programs.

3.7 Concluding Notes

In this chapter, we described the theory and practice of guided fuzzing or, more succinctly,
simply fuzzing. We discussed how fuzzing differs from random testing by actively monitoring
the program-under-test and the external environment to guide the dynamic analysis
procedure. Fuzzing starts by executing the program on seed inputs that are, usually,
provided manually. The fuzzer, then, generates new inputs by selecting and mutating
existing inputs to, hopefully, trigger new functional behaviour in the program such as
a unique interaction with the environment or a program crash. These environment
interactions can be tracked by monitoring the process in a controlled manner and feeding
the information back to the fuzzer to instruct the input mutation stage. The fuzzer repeats
these steps until the desired testing goal is reached, such as instruction coverage, branch
coverage, path coverage, or finding vulnerabilities.

34

3.7 Concluding Notes

In practice, as we saw in Section 3.5, mutation-based fuzzers, like the ones we discussed
in this chapter, depend on and employ various implementation and design optimisations for
effective dynamic analysis. To monitor the progress of the fuzzer and to spot a vulnerable
instruction whenever a program’s execution leads to failure, most fuzzers employ light-
weight instrumentation and address sanitisation. When an input exploits a vulnerability,
the next step for the fuzzer is to determine whether this is a realistic input that can be
supplied to the program and whether it can be modified and shortened while still exposing
the same vulnerability in the program. This is accomplished by test minimisation where
various aggregation methods can help to reduce the size of a crashing test input.

Lastly, we described the two most detrimental facts that affect the performance of fuzzer
in practice – its reliance on the quality of seed inputs and redundant path coverage. In
Section 3.6.3 we described various existing solutions in research that try to deal with
these two problems by, either focussing on the process of input selection and mutation
or targeting the process of fuzzing towards rare-branches or vulnerabilities by optimising
the mutation process. Using these insights into current state-of-the-art in fuzzing, we will,
in the coming chapters, describe novel compositional techniques to mitigate the issues
associated with it.

35

4 Hybrid Symbolic Execution and
Fuzzing

This chapter presents a systematic mapping study to survey other hybrid
symbolic execution and fuzzing techniques, possibly similar to our own,
that have been proposed in the past. Parts of this chapter have previously
appeared in [103], where the author of this thesis was the first author.

Due to the similarity in their goals, symbolic execution and fuzzing have the potential to
be used as mutually beneficial methods for discovering vulnerabilities. Fuzzing is a useful
technique for exploring some paths in a program in full depth. Symbolic execution, on the
other hand, is a useful technique for exploring most branches in a program at low-depths
(closer to an entry point). There are technical aspects of fuzzing and symbolic execution,
such as path search and input mutation, that may be used or modified to increase the
effectiveness of either of these two techniques.
In this chapter, we will survey the field of hybrid techniques of fuzzing and symbolic

execution (henceforth referred to as, only, hybrid techniques) as viewed from the perspective
of these, and other, technical aspects. For this study, we will roughly follow the established
methodology of systematic mapping study described by Kitchenham et al. [72], combined
with standard systematic literature review prescribed by Keele [70]. An overview of our
complete methodology in this chapter is depicted in Figure 4.1. This chapter includes

Data collection Study selection Classification

Initial paper
collection

Keyword
extraction

Database search

Duplicate
removal

Applying
inclusion criteria

Removing
excluded papers

Individual voting

Collating votes

Agreement
reached?

Finish
classification

Y

N

Discussion
331

papers
96

papers

Figure 4.1: Overview of the methodology

a structured data collection step, classification based on relevant categories, voting for
classification of the collected papers, and drawing results from the classification to answer
relevant research questions. In relevant sections of this chapter, we will expand upon and
clarify the items in Figure 4.1.
This chapter is organised as follows – In Section 4.1, we describe our data-collection

procedure on various databases of publications, and how we selected publications from them.
In Section 4.2, we list the classification criteria to categorise the included papers for further

37

4 Hybrid Symbolic Execution and Fuzzing

analysis. Then, in Section 4.3, we discuss the results of our manual classification task
and our observations and synthesis about the field of hybrid solutions involving symbolic
execution and fuzzing. We expand concretely upon the gaps in research in this field and
our contributions in Section 4.4 and, finally, conclude the chapter in Section 4.5.

4.1 Collecting Data about Past Work

We, first, describe the systematic procedure for data collection and study selection. Please
note that we have put a limit of 2018 for all our searches. We did not set a limit on the
starting year, but the earliest papers that our searches obtained were from 2005.
We started the data collection1 procedure with a search on popular bibliographic

databases. Search keywords were primarily based on an initial set (size 20) of papers.
We included some of these papers based on our domain knowledge, knowing them as key
contributions in the field of fuzzing and symbolic execution. The rest of the initial papers
were obtained by snowballing through the related work of the initial set, as described by
Wohlin [147]. Primary search keywords were derived from the initial set by forming a
word-cloud on the combined texts of their abstracts and choosing the most commonly
occurring (stemmed) words. The main keywords derived, therefore, were {“test”, “symbol”,
“execute”, “fuzz”}. These search keywords were modified, as shown in [105], to fit the
advanced search syntax for all chosen databases.

The databases chosen to perform the search were

1. ACM Digital Library (15 papers),
2. IEEE Xplore (31 papers),
3. Scopus (49 papers),
4. SpringerLink (227 papers), and
5. CiteSeerX (9 papers).

The next step in the collection process was to remove the duplicate results. These could
be 1. same paper appearing in more than one databases, or 2. different versions of the
same paper, e.g. extended journal version of a conference proceedings paper.

After removing duplicates from results from all five search engines, we were left with 331
unique publications matching the search keywords.

4.1.1 Study Selection

To ensure that the results used for classification were from software engineering field and,
at least, contributed to symbolic execution or fuzzing, we needed to apply the following
inclusion criteria [70] to each of them –

1. Is the result a research paper (as opposed to a poster, keynote or presentation)?
2. Is the paper related to software testing or engineering?
3. Does the paper contribute to symbolic execution or fuzzing?

1We have made all the data available online at [105]

38

4.2 Classification of Solution Proposals

We manually applied these inclusion criteria, and only those papers were selected for
classification for which the answers to both of the above questions were “yes”.

After applying the inclusion criteria, there remained 96 selected papers that we used for
the classification stage and for answering all relevant research questions.

4.2 Classification of Solution Proposals

We classified all included papers according to six criteria. The final classification was
decided by a full majority in a three-way voting by three experts (including the author
of this thesis) [103] in the field. This classification will be useful to us later in answering
relevant questions regarding state of the art in hybrid techniques. Particularly, regarding
greybox fuzzing, a combination involving fuzzing and symbolic execution, criteria 4 and
5 will lead us to categorising these solutions and decide the degree of “novelty” in the
proposed solutions. The categories for all classification criteria were obtained by analysing
the key terms and concepts addressed (not only explicit keywords) in our initial set.

Criterion 1: General Field of Contribution:

The choices for this classification criterion were

a. Symbolic execution,
b. Fuzzing, and
c. Both

The first classification criterion, if applied correctly, also served as a validation for the
inclusion criteria because if a paper can not, effectively, be classified as one of the above
three choices, then it should have been excluded from the study space in the first place.

Criterion 2: Introduction of a Novel Technique:

This criterion was to identify the field where a new solution has been proposed. The choices
for this criterion were

a. Symbolic execution,
b. Fuzzing,
c. Hybrid technique, and
d. None

The hybrid category was chosen only if, 1. there are modifications proposed for, both
fuzzing and symbolic execution, or 2. solution involves modification of both fuzzing and
symbolic execution, but it is not apparent which one of these two techniques have been
primarily subjected to the modification. We selected “None” when the paper in question
does not propose a new solution, but, as we describe in the following criteria, contributed
differently.

39

4 Hybrid Symbolic Execution and Fuzzing

Criterion 3: Description of State-of-the-art

This criterion was to find if the paper presents a systematic state-of-the-art study or any
meta-study, like our own. The choices for answering this question were, also,

a. Symbolic execution,
b. Fuzzing,
c. Hybrid technique, and
d. None.

Criterion 4: Novelty in the Solution for Fuzzing:

This criterion enumerates the technical aspects of fuzzing. The choices for this criterion
were

a. Input mutation – includes modification in mutation strategy of random fuzzing,
b. Static analysis – uses a code analysis technique such as static analysis, information

flow analysis or symbolic execution to optimise fuzzing,
c. Expert guidance – uses any technique, other than code analysis, to optimise fuzzing,

and
d. No modification – does not propose optimising any technical aspects of fuzzing.

This list of fuzzing aspects was determined by the authors using state-of-the-art descriptions
in [134, 141].

Criterion 5: Novelty in the Solution for Symbolic Execution:

This criterion enumerates the technical aspects of symbolic execution. The choices for this
criterion were

a. Path search – proposes a new path search strategy, such as directed search, or
modification of an old path search strategy,

b. Compositional analysis – proposes to treat the system under test compositionally.
This means disintegrating the modular system and analysing interactions of individual
components,

c. Constraint solving – proposes an optimisation in the constraint solver of the symbolic
execution engine, and

d. No modification – does not propose optimising any technical aspects of symbolic
execution.

The list of symbolic execution aspects was determined by the authors using state-of-the-art
description in [29] and recent solution proposals such as [40, 83].

Criterion 6: Description of New Implementation in the Paper:

In this criterion, we tried to find if the paper provides a new implementation or evaluation
of an existing symbolic execution or fuzzing solution. The choices for answering this
question were –

40

4.3 Results of Classification

a. Yes, and
b. No.

4.3 Results of Classification

Based on the classification criteria, let us now list the results of the classification.

4.3.1 Summarising Solution Proposals

2006 2007 2008 2009 2010 2011 2012 2013 2014 20152005

2

4

6

8

10

12

Hybrid techniques
Fuzzing
Symbolic execution

Year
2016

N
um

be
r o

f s
ol

ut
io

n
pa

pe
rs

2017 2018

Figure 4.2: Number of solution proposals by year – Vertically stacked values

The first result we obtained from our survey methodology is the set of solution proposals
(not state-of-the-art studies or implementations of existing solutions) in research of symbolic
execution and fuzzing. Figure 4.2 depicts the trend in solution proposals over several years.
We can see from this trend that the earliest papers retrieved by our search methodology
were from 2005. We can see from Figure 4.2 that most of the solutions proposals deal with
symbolic execution, with only a few solutions proposed based on fuzzing. Possibly, due to
an increase in the efficiency of constraint solvers during this period, symbolic execution
became more viable as a testing technique.

Of all the solution proposals, our analysis found only 9, listed in Table 4.1, that proposed
modifications in, both symbolic execution and fuzzing. We analysed all hybrid studies in
detail by looking at their texts because we recognise that our search keywords may also
return publications that compare evaluation studies of symbolic execution compared with
fuzzing or vice-versa, with one or both of them not contributing anything to the proposed
solution design.

4.3.2 Solutions In-depth

For all the obtained solutions listed in Section 4.3.1, we wanted to further classify them
based on the technical aspects of symbolic execution and fuzzing addressed in them.
The pair-wise distribution of the technical aspects of fuzzing and symbolic execution

in all solution papers is shown in Figure 4.3. The largest group of solutions (28) propose
modifications to neither symbolic execution or fuzzing. Most of these contributions, such
as [27, 116], showed up in our search results because all terms in our search string occur in

41

4 Hybrid Symbolic Execution and Fuzzing

them, but the proposed solutions therein use symbolic execution or fuzzing to solve domain-
specific problems (such as malware detection) without adding any modifications to basic
symbolic execution technique. In many cases, they may also include new implementations,
such as [34], of existing techniques. Other than these groups of papers, we can see that
most solution proposals directly improve either symbolic execution or fuzzing technique,
but not both. E.g. in [53], the authors propose symbolic execution in binary programs
when fuzzing cannot increase the coverage anymore, by focusing on uncovered paths during
symbolic execution – which means that effectively only symbolic execution technique is
modified, while fuzzing is used in its original form. Similar combinations exist in techniques
such as [32, 74].
We note twelve works over the years that propose hybrid dynamic analysis involving

symbolic execution and fuzzing. While some of them do modify both symbolic execution and
fuzzing others modify only one of the two. Fuzzbuster, by [91] Musliner et al., generalises
the constraints to reach a vulnerable instruction using a modification in symbolic execution.
These vulnerabilities are discovered, however, only using an off-the-shelf fuzzer. This
means that the tool suffers from the same drawbacks as a naïve fuzzer, i.e. not enough
path diversity. In [36], Chen et al. propose a directed fuzzing strategy that uses symbolic
execution to formulate the program behaviour in the form of a complex control-flow-graph.

Table 4.1: List of all hybrid solution proposals
Year Title Authors
2012 Using concolic testing to refine vulnerability profiles in Fuzz-

buster [91]
Musliner et al.

2012 A directed fuzzing based on the dynamic symbolic execution
and extended program behaviour model [36]

Chen et al.

2012 Hybrid fuzz testing: Discovering software bugs via fuzzing and
symbolic execution [106]

Pak

2014 Automatic software vulnerability detection based on guided deep
fuzzing [30]

Cai et al.

2015 Binary-oriented hybrid fuzz testing [53] Fangquan et al.
2015 Program-adaptive mutational fuzzing [32] Cha et al.
2016 Deepfuzz: Triggering vulnerabilities deeply hidden in binaries

[22]
Böttinger et al.

2016 Driller: Augmenting Fuzzing Through Selective Symbolic Exe-
cution [133]

Stephens et al.

2018 Improving Function Coverage with Munch: A Hybrid Fuzzing
and Directed Symbolic Execution Approach [99]

Ognawala et al.

2018 Badger: Complexity Analysis with Fuzzing and Symbolic Exe-
cution [96]

Noller et al.

2018 SAFL: Increasing and Accelerating Testing Coverage with Sym-
bolic Execution and Guided Fuzzing [145]

Wang et al.

2018 Discover deeper bugs with dynamic symbolic execution and
coverage-based fuzz testing [150]

Zhang et al.

42

4.3 Results of Classification

Mutation of inputs Static analysis Expert guidance

No
modification

Path search

Constraint
solving

Compositional
analysis

18

8 5

4

0

0

1

6

4

0

1

3

0

0

28Sy
m

bo
lic

 e
xe

cu
tio

n
as

pe
ct

s

Fuzzing aspects
No

modification

4

Figure 4.3: Technical aspects of symbolic execution and fuzzing in solution proposals

In this way, they claim that the fuzzer has an inside view of the program. Another
hybrid technique, proposed by Pak [106], uses symbolic execution to gather as many
unique constraints within the user-defined resource limit as possible and uses solutions to
these constraints as the “random” input seeds for the fuzzer. Even though this technique
introduces enough diversity in the seed inputs than manual entry, it relies much too heavily
on the fuzzer to completely analyse all paths beyond the user-set limits. Cai et al. [30]
introduce a tool, called Sword, that checks the software for vulnerabilities with symbolic
execution and only fuzzes those paths that are, therefore, deemed dangerous. The authors
do not aim to improve the efficiency of either symbolic execution or fuzzing. Fangquan
et al. propose a hybrid approach for testing binaries [53] that starts with fuzzing and
switches to symbolic execution when fuzzing does not make progress any more. However,
this paper does not propose an instrumentation or input-sharing mechanism to ensure
that the same paths are not covered by both fuzzing and symbolic execution. Cha et al.
propose a novel algorithm [32] that uses symbolic execution for extracting path conditions
for the paths executed by fuzzing and uses these path conditions to determine dependence
between individual bits of the input, to guide fuzzing’s input mutation strategy. In [22],
Böttinger et al. present a probabilistic approach to treating the path-explosion problem
in symbolic execution by targeting those branches in a program that are least likely to
be triggered by fuzzing. Driller [133] is a hybrid solution proposal that combines fuzzing
with selective concolic execution. In this paper, Stephens et al. propose to use “usual”

43

4 Hybrid Symbolic Execution and Fuzzing

fuzzing to cover parts of the program that are easy to reach and, then, use targeted concolic
execution to unlock parts that are guarded by a branching condition that could not be
solved by fuzzing. Ognawala et al. presented Munch [99], which is an open-source hybrid
tool with two modes of operation - fuzzing followed by targeted symbolic execution for
parts uncovered by fuzzing, and symbolic execution followed by fuzzing with the inputs
generated by symbolic execution as seeds. A similar approach to the latter variant of
Munch was also proposed by Wang et al. in SAFL [145] with symbolic execution used to
generate seeds for fuzzing. Badger [96] is a hybrid tool that sequentially employs fuzzing
and symbolic execution to maximise a resource-related cost instead of merely increasing
structural coverage or targeting vulnerabilities. In [150] Zhang et al. have proposed a
two-step improvement over state of the art fuzzing and symbolic execution – first, symbolic
pointers are only concretised when switching over to fuzzing (in case of saturation) and,
then, the inputs to the fuzzers are mutated in a priority queue prioritised by their distance
to new structural coverage in the program.
There are five intersections of symbolic execution and fuzzing’s technical aspects that

have not yet been addressed in the available literature. We will discuss this gap later in
this chapter.

4.3.3 Summarising the State-of-the-art

The first inference we may draw from the results is that most of the hybrid solution proposals
we obtained with our systematic database search were ideas that involve improving either
symbolic execution or fuzzing using fuzzing or symbolic execution, respectively, in their
original form (i.e. without modification in their technical aspects). Many of the obtained
papers from our search and selection strategy did not propose any improvement in symbolic
execution or fuzzing, at all. However, these papers were not merely included as a side-effect.
For example, the paper by Cha et al. [32] proposes a novel solution for optimising seed input
generation in fuzzing by tainting bits in input vectors that correspond to certain branching
conditions in the program. This is an exciting use of whitebox program information to
empower an input mutation strategy. However, since this technique, and others such as [45,
113], do not propose improvements in both symbolic execution and fuzzing, they cannot
be considered as genuinely hybrid solutions.
To properly categorise the hybrid solutions, it was essential to classify the technical

aspects of their contribution to symbolic execution and fuzzing (if any), thereby creating
9 slots where those techniques could fit that propose improvements to both symbolic
execution and fuzzing. As we showed in Section 4.3.2, only 4 of these 9 open avenues for
improving both symbolic execution and fuzzing, were seen amongst the solution proposals.
The most popular [22, 30, 91] avenue among these has been static analysis+path search.
As described in Section 4.2, these hybrid solutions, generally, propose to alleviate path-
explosion problem in symbolic execution by bypassing easy branching-condition checks
with fuzzing. At the same time, the whitebox view obtained from symbolic execution
could be used to guide the fuzzer towards more unseen paths than before. The second
most popular avenue [36, 106] for hybrid techniques is to use fuzzing to take some load off
the inefficient constraint solving issues associated with symbolic execution. In the same

44

4.4 Identifying Gaps and Our Contributions

papers, static analysis and mutation strategies of fuzzing are also optimised using symbolic
execution aspects. The least popular intersection of symbolic execution and fuzzing aspects
is expert guidance+path search, in which Pham et al. [112] have proposed to use symbolic
execution for representing the input structure of programs as models, and using these
models to generate seed inputs to increase path diversity with fuzzing.

However, some hybrid papers obtained by us have reported more vulnerabilities in open-
source benchmarks than state of the art symbolic execution, fuzzing and hybrid solutions,
without proposing a modification in both, symbolic execution and fuzzing. Driller [133] is
such a hybrid study that proposes to improve state of the art by using fuzzing, as usual, to
generate inputs for paths executed most often, while modifying symbolic execution using
compositional analysis to generate inputs that satisfy branches that are rarely executed
(with inputs generated by fuzzing). Another example of a hybrid study that employs, but
does not modify, both symbolic execution and fuzzing, is QSym [149]. QSym improves the
speed of concolic execution by selectively executing only those instructions symbolically
that affect the constraints involved in branching conditions. This improves the performance
of many off-the-shelf hybrid fuzzers by decreasing the overhead of concolic execution.

Therefore, we have seen from the existence of hybrid techniques at various intersections
of symbolic execution and fuzzing suggests that there are many opportunities to explore
w.r.t. more efficient techniques of automatically generating test cases and, hence, finding
vulnerabilities in systems. Additionally, none of the solutions included in this chapter
include any strategy to prioritise the discovered bugs to make it easier for the developers
to triage them.

4.4 Identifying Gaps and Our Contributions

Based on the classification of papers in the field of hybrid symbolic execution and fuzzing
research, we can now point to the lack of research in certain unexplored intersections of
technical aspects of symbolic execution and fuzzing. The following avenues have not been
addressed in existing literature and, hence, constitute the gap in the research in hybrid
symbolic execution and fuzzing.

1. A hybrid solution to find vulnerabilities by exploiting a program’s compositional
nature. We have seen from our results that none of the hybrid technique proposals
has exploited the compositional structure of the programs-under-test, even though
there have been plenty of advances in targeted vulnerability detection with symbolic
execution [83, 102] and fuzzing [129], both. With such targeted approaches, composi-
tional analysis can alleviate the path-explosion problem in symbolic execution and
low path coverage in fuzzing, at the same time.

Contribution 1: In the dynamic analysis technique described in Part II, we propose
to analyse isolated components with symbolic execution, fuzzing and the greybox
fuzzing approach mentioned above, instead of only analysing from a program entry
point. Using compositional analysis we, then, determine the feasibility of discovered
vulnerabilities in isolated components. This compositional approach allows dynamic

45

4 Hybrid Symbolic Execution and Fuzzing

analysis to cover more paths and find more vulnerabilities than state-of-the-art
techniques.

2. A more targeted symbolic execution approach that spends more analysis time on
hard-to-reach branches. In the frame of the listed technical aspects, this can be
achieved by exploiting the intersections that, especially, improve constraint solving,
viz. constraint solving+(input mutation, static analysis or expert guidance).

Contribution 2: In the greybox fuzzing strategy described in Chapter 6, we
propose to use inputs generated by fuzzing as seed inputs for concolic execution,
thereby taking load off the constraint solver for easy-to-reach branches.

3. A fuzzer with a more efficient input mutation strategy, using targeted search capabili-
ties provided by symbolic execution. In the frame of the listed technical aspects, this
can be achieved by exploiting the intersections that improve upon input mutation or
expert guidance, viz. (input mutation, expert guidance)+(path search, compositional
analysis or constraint solving).

Contribution 3: In the dynamic analysis technique described in Part II, we
propose to a) use the inputs generated by symbolic execution as seed inputs for
fuzzing, thereby providing mutation strategy of our fuzzer with diverse inputs, and
b) fuzz isolated components of a program, thus allowing the input mutation strategy
to generate byte streams for smaller compartments of the program.

4. None of the analysed solution proposals in the field of symbolic execution and fuzzing
has discussed a bug triage process that lets testers and developers prioritise the fixing
for the vulnerabilities discovered by the proposed solutions. This is an important
challenge to be addressed by research because many of the discovered vulnerabilities,
especially by fuzzing, can often not be exploited without, first, minimising the
generated inputs to generate a valid input that can be realistically used to execute
the program-under-test. Also, not all discovered vulnerabilities may be fixed within
a feasible amount of time and resources, nor would they all cause similar amount of
damage to the underlying asset.

Contribution 4: We describe a generic framework in Part III to prioritise the
vulnerabilities discovered by dynamic analysis, using several features of the program-
under-test, vulnerable components, context of their development and usage, and the
sensitivity of the assets underlying the vulnerable system.

4.5 Concluding Notes

In this chapter, we have presented an exploration of hybrid techniques of symbolic execution
and fuzzing, in terms of their technical aspects. Using a systematic approach to a mapping
study, we have shown that only some possible intersections of the technical aspects of
symbolic execution and fuzzing have been addressed in designs of hybrid techniques. Most

46

4.5 Concluding Notes

of the hybrid technique proposals in academia have not utilised the flexibility of individual
technical aspects enough, as discussed in Section 4.3.2.
With this map of the state-of-the-art in hybrid techniques, we have provided ample

evidence of the gaps that exist therein. We have, with examples of hybrid techniques,
argued that an ideal hybrid method will alleviate the drawbacks of both, symbolic execution
(path explosion and constraint solving) and fuzzing (low coverage). In the following parts
of this thesis, we will discuss such a technique, with implementation, that aims to close
many of these gaps in research of symbolic execution and fuzzing.

47

Part II

Vulnerability Discovery

49

5 Isolating Program Components

This chapter describes the first step of vulnerability discovery – automat-
ically isolating components of the program-under-test to analyse them
with dynamic analysis. Parts of this chapter have previously appeared in
[102] and [101], where the author of this thesis was the first author.

In the previous chapters, we discussed at length the problems associated with the state
of the art in whitebox and blackbox testing. The methods that rely on dynamic analysis
(actually running the program-under-test) were found to be insufficient in terms of, both,
coverage and vulnerabilities because many paths in the program were not executed by
these methods. As a result, the particular vulnerabilities that lie on these paths were, also,
not found by these methods.

Vulnerability discovery

Isolation of
components

Analysing isolated
components

Symbolic
execution

Fuzzing

Greybox fuzzing

Compositional
analysis

Vulnerability
analysis

Assessing severity of
vulnerabilities

Figure 5.1: Isolation of components in the solution framework

The approach described in this thesis can find those vulnerabilities that were missed by
symbolic execution and fuzzing by removing branching conditions that need to be true
before a failure (due to the vulnearbility) can be triggered. In this chapter, we will describe
the process of isolating components and making them executable by dynamic analysis
methods. In Figure 5.1, we have depicted the sequence of steps involved in our framework.
The first step of isolating components in the program is highlighted in this figure. We
will start in Section 5.1 by describing and formalizing how conventional dynamic analysis
methods analyse program entry points. Then, we will introduce in Section 5.2 the concept
of components and formalise them. Using these two concepts, in Section 5.3, we will
describe how our framework can analyse the isolated components as if they were program
entry points. We will instantiate this description for C-language programs in Section 5.4
and lay the foundations of test drivers to be adapted by the dynamic analysis techniques
of symbolic execution or fuzzing. Finally, we will conclude the chapter in Section 5.5.

5.1 Program Entry Points

We start this chapter by looking at the current state-of-the-practice in dynamic analysis
in terms of how the analysis of a program is initiated. We begin this discussion by, first,

51

5 Isolating Program Components

defining a program entry point.
Definition 5.1.1. (Program Entry Point) A component of a program that is first to be
invoked when a program-under-test is run by an external entity (user or another program),
and whose inputs are known to this entity is called a program entry point.

We will define component in Section 5.2. For programs on a command-line interface
(CLI), such as for a UNIX-like system, the program entry point (or entry point) is the
main function. This is because the inputs supplied on the CLI are used to call the main
function directly and this input is known to the end-user of the program. Techniques such
as symbolic execution and fuzzing typically perform testing by invoking the program with
inputs, I (described as IS in Chapter 2 and IF in Chapter 3), that are expected by the
main function. There may also be programs that are not intended to be invoked from
CLI but whose interfaces are, nonetheless, known and utilised in other contexts such as
implementing third-party programs. A common example of an interface other than CLI
may be a graphical user interface (GUI). Another example is an application programming
interface (API) where the programmer of the third-party programs is aware of the interface
functions, classes or packages through an API documentation. Symbolic execution and
fuzzing, then, perform testing of these APIs by writing test drivers [125, 126] that invoke
the API by supplying inputs, as described in the documentation.
Formally, we will use the function exe (short for “executable”) to denote whether a

component is a program entry point or not.

exe : M → Bool

Function exe returns True is a component is a program entry point (is first to be invoked
when the program is run by an external entity), and False otherwise.

It is clear from the definition of program entry point that only a component, m, that
accepts at least one input (Chapter 2) can be a program entry point.

I(m) 6= ∅

Here, we have used the definition of I from Chapter 2, i.e. the list of inputs to a component.
Intuitively, the above is true because if a program entry point does not accept any input
from the user, then any dynamic analysis technique will be able to cover only a single
path in the program for any test case. In this thesis, we will ignore such cases where the
program-under-test only has one realistic path that can be executed.

5.2 Granularity of Analysis (or Definition of Components)

In the previous section, we described how state-of-the-art whitebox and blackbox testing
techniques supply inputs to a program. The goal of this thesis is to design a scalable
methodology of testing based on these dynamic analysis techniques. Therefore our solution
will exploit the compositionality of a program-under-test to allow taking lateral views of the
program and perform dynamic analysis at multiple entry points. We define compositionality
as follows

52

5.3 Making Components Executable

Definition 5.2.1. (Composition of Program) The composition of a program described the
construction of a program in the form of the following two items: 1. list of components
in the program, and 2. for every component in the program, the list of components it may
interact with directly.

Components may be defined specifically for programming languages. Formally, CL returns
the set of all components, m, as defined for a programming language, L. Specifically, let us
first consider the case of C programming language. Components in C language programs
(as returned by CC) can be functions or basic-blocks. Similarly, in Java, which is a purely
object-oriented programming language, components (as returned by CJava) can be Java
classes.

However, as defined above, we must also explicitly describe composition of the program
in terms of direct interaction between components. To do this, we define a generic relation
parentL.

parentL : ML →M∗L (5.1)

where ML is a component, as defined for the programming language, L.
The parentL relationship has the semantics of a so-called, “container” that lists all the

components of a program P that contain the given component in them. For example,
in case of C language programs, parentC(m1) relationship can be a caller relationship
that returns all the functions, m2, that call m1, according to the static call-graph of the
program. Then, we have

parentC ≡ caller (5.2)

Similarly, for a Java program, parentJava may be a class-based relationship (either
through container classes, inherited classes, or packages containing classes).
A careful extension of the definition of components will show that this definition is

recursive, i.e. a component itself can be comprised of other components. As a corollary,
a program itself can also be treated as a component. Intuitively, this is true because a
program can be part of a larger system (of which the program is a component) where it
may be called on request, using its program entry points.

5.3 Making Components Executable

After deciding upon the granularity of analysis based on the programming language, the
next and final step in isolating components is to make some or all of the components
executable. The goal in this step is to add more program entry points, so that a dynamic
analysis technique (such as symbolic execution or fuzzing) may be able to analyse these
components independently of each other, thereby increasing the likelihood of a vulnerability
to be discovered.

53

5 Isolating Program Components

Throughout this section and, in fact, this thesis, we assume that isolation of components
and their analysis will not result in other side-effects that are outside the scope of the
component. For example, if execution of a component may write to a file on the file-system,
that is not read again by the same component, our analysis may not be able to capture
effects resulting from a change on the file-system. Similarly, our analysis will also not be
able to determine implicit input to the isolated components. For example, if a component
may be reading the current timestamp from the system clock, our analysis will not be
able to determine that the system clock is an implicit input for the component. This also
applies to global variables in the program-under-test.

As described in Section 5.1, the requirements for a component, m, to be a program entry
point are that 1. m is a component of P , 2. m accepts non-empty input, and 3. m is part
of a program’s API or executable through a CLI. The first two requirements are trivial and
can be checked by, first, checking if m ∈ CL(P) and, then, list of formal parameters of m.

To convert any arbitrary component of a program into a potential program entry points,
we need a procedure to make all components that satisfy the following condition executable.

m ∈ CL(P) ∧ I(m) 6= ∅

Let us call such a procedure “isolate”.

isolate : ML →ML,

whereML is a component, as defined for a programming language, L. The function, isolate,
returns a component (“functionally” equivalent to the input component) that is executable.
We can illustrate the working of isolate function as follows – let m be a component that
is not a program entry point, i.e. exe(m) = False. Then, isolate(m) returns m′, where
exe(m′) = True. The returned component, m′, will have the same inputs, outputs and
interactions with the environment as the component, m, but with the additional property
that it can be executed through a CLI or an API.

5.3.1 Notes on Path Explosion

The motivation behind isolating components is to deal with the path explosion problem
described in Chapter 1. Both, symbolic execution and fuzzing achieve insufficient path
coverage in real-world programs. The reason for low coverage for symbolic execution is
the path explosion problem while the random mutations in blackbox fuzzing may fail to
generate inputs that execute branches with branching conditions that are hard to satisfy.
When a program P ’s components are isolated, as described earlier, the number of paths to
be executed by any dynamic analysis technique get reduced, purely due to the “artificial”
removal of the preconditions that need to be true for a component to be executed when
starting analysis from the program entry points.
By forcing dynamic analysis of isolated components (with fewer paths than the entire

program, P), we now have test cases (for components) that may execute instructions, and
find possible vulnerabilities, that could not have been found otherwise.

54

5.4 Generating Test Drivers: Description of Practice

1 int bar1 (int c) {
2 i f (c <3)
3 return (3/ c) ; /∗Maybe d iv ide−by−zero ∗/
4 else
5 return 0 ;
6 }
7 int bar2 (int d) {
8 i f (d<50)
9 return 0 ;

10 else
11 return d ;
12 }
13 int f oo (int b , int c , int d) {
14 i f (b==100)
15 return bar1 (c) ;
16 else
17 return bar2 (d) ;
18 }
19 int main (int argc , char∗∗ argv) {
20 int a , b , c , d ;
21 a=a t o i (argv [1]) ; b=a t o i (argv [2]) ;
22 c=a t o i (argv [3]) ; d=a t o i (argv [4]) ;
23
24 i f (a<1)
25 return 0 ;
26 else
27 return f oo (b , c , d) ;
28 }

Listing 5.1: Example C program.

5.4 Generating Test Drivers: Description of Practice

We will now demonstrate how we apply the theoretical formulation of isolation of a
program’s components to practice. For this description, let us consider again the example
C-program in Listing 5.1. Because this program is in C-language, we consider functions as
components. We know from the descriptions in Section 5.2 that CC(P) returns the set of
functions in a given C-program. For the program in Listing 5.1, this means

CC(P) = {bar1, bar2, foo, main}

We know that for C-programs, the main function is executable from, e.g. CLI. Therefore,

exe(bar1) = False

exe(bar2) = False

exe(foo) = False

The above equation states that the set of components (functions) that need to be made
executable is {bar1, bar2, foo}. For these components, we need an automated procedure
to make them executable. Let us call such a procedure a test driver . The goal of test
drivers, as we will describe in Chapter 6, is to allow our framework to directly analyse
isolated functions with any dynamic analysis method of our choice. In this section, we will

55

5 Isolating Program Components

describe a high-level design of the isolate function used to generate the test drivers.
Let us consider the function foo from Listing 5.1. As such for C programs, the only

function executable function from the Unix CLI is the main function. Hence, our proposal
is to reformulate the main function such that it directly calls function m unconditionally.
This is, clearly, not possible by simply passing the same arguments to m that were passed
by the CLI to main because the list of formal parameters is different. Therefore, before
calling m from main, we need to at least generate the arguments I(m) from argv.
Putting together the above ideas, we can now summarise the function isolation of an

arbitrary function, m, as in Algorithm 1.

Algorithm 1 Making function m executable
1: function main’(&m, argv)
2: I ← getParameterList(m)
3: extracted_I ← extractArguments(argv, &I)
4: return m(extracted_I)
5: end function

On line 2 of Algorithm 1, it runs an automated procedure to obtain the list of formal
parameters of m in their respective datatypes. On line 3, the algorithm runs an automated
procedure to convert argv, which is passed from Unix CLI, to the form of I. The function
getParameterList obtains the list of formal parameters (and their types) given the
function’s definition, and the function extractArguments extracts the concrete or symbolic
values for actual arguments to be passed to the function m from command line arguments
argv. We will discuss the algorithms and implementations of getParameterList and
extractArguments in Chapter 6, since these functions depend on the type of dynamic
analysis technique used. Finally, on line 4, the algorithm calls the isolated component m
with the extracted arguments extracted_I.

From Algorithm 1, we can see that the functionm can be called unconditionally whenever
the program P is invoked from the CLI. As such, we can say for this program that main′
is the required executable function m′.

Technical perspective: In Algorithm 1, m is the function that needs to be made
executable and “&m” is the address of the code segment of the particular function that
needs to be isolated.
Concretely, replacing main with main’ is not technically possible because C programs

can only have a single main function. Therefore, our main′ must accommodate all isolated
functions, m ∈ CC(P), in a single function. In our framework, we solve this problem by
using a switching mechanism in main′ that selects the test driver m′ based on the choice
provided on the CLI.

5.4.1 Implementation Details

The sequence of steps in the implemented framework to isolate components of a C program
and generate test drivers is illustrated in Figure 5.2.

56

5.5 Concluding Notes

Source
code
(C)

LLVM
Bitcode

Function
List

Modified
LLVM

Bitcode
Clang LLVM

Opt
LLVM
Opt

LLVM Opt

Figure 5.2: Technical implmentation of test driver creation

We have used LLVM Opt [82] for implementing most of the steps in Figure 5.2. First of all,
using Clang [42], we compile the program-under-test to LLVM intermediate representation,
which is a cross-platform bitcode. Then, we rename the existing main function to main_old.
Then, using LLVM Opt, we list all functions that take at least one argument of a non-pointer
or single-pointer datatype1. For all such functions, we add them to the switch-case block
in a new main function, also using LLVM Opt. This main function is then inserted in the
bitcode.

LLVM [79] is a cross-platform intermediate representation of programs written in several
programming languages. The reason for using an LLVM-Opt pass for generating test
drivers is that, in practice, manipulating the original source-code of the program (after
adding test drivers) will require recompiling it for running dynamic analysis for every test
driver. With LLVM-Opt, the manipulated intermediate bitcode can be directly used by
our framework to run the analysis, as described in Chapter 6.

5.5 Concluding Notes

In this chapter, we first described the theory of isolated components by, first, considering
the program as a collection of interacting components and, then, formally describing
program entry points. We, then, proposed to make individual components (accepting
inputs from outside) executable by isolating them so that an end-user may be able to
invoke them directly, without going through all the inter-component interactions intended
by the original program. Isolation of components allows a dynamic analysis technique,
such as symbolic execution, to directly analyse paths inside a component without applying
the pre-conditions on the input that are imposed by its parent components. In this way,
our framework alleviates the path-explosion problem by forcing the execution of paths
in isolated components where potential vulnerabilities may lie. We also described the
automatic generation of test drivers, as implemented in the framework described in this
thesis, which is the practical implementation of the theory of isolation of components.
Once the components of a program-under-test are isolated, they are now ready to be

analysed by dynamic analysis techniques, which will be described in the next chapters.

1We will discuss in Chapter 6 why arguments of double pointers or more cannot be supported in our
framework

57

6 Analysing Isolated Components

This chapter describes the second step in the discovery process – parallel
analysis of isolated components using symbolic execution, fuzzing and
a novel greybox fuzzing approach. Parts of this chapter have previously
appeared in [102], [99] and [101], where the author of this thesis was the
first author.

In the previous chapter, we described in detail the idea of isolation of components of
programs and instantiated this idea for C programs where the components considered were
functions. Now we will move one step further and describe in detail analysis of isolated
components generated by the first step described in Chapter 5.

Vulnerability discovery

Isolation of
components

Analysing isolated
components

Symbolic
execution

Fuzzing

Greybox fuzzing

Compositional
analysis

Vulnerability
analysis

Assessing severity of
vulnerabilities

Figure 6.1: Analysing isolated components in the solution framework

Analysis of isolated components is illustrated in Figure 6.1 as the step following isolation
of components. When dynamic analysis techniques such as symbolic execution and fuzzing
are used to analyse isolated components instead of the full program at the program entry
points, the instructions in these isolated can be directly executed without first having to
pass the branching conditions guarding these components. This is because, as described in
Chapter 5, these isolated components can now be directly executed by the end-user, as can
they be by these dynamic analysis techniques.
In this chapter, we will, first, formalise some common concepts related to paths and

failures in isolated components, in Section 6.1. Then, using these concepts and the
ones developed in the previous chapters as our base, we will describe the design and
implementation of our analysis framework with three modes of analysis – 1. symbolic
execution (Section 6.2), 2. fuzzing (Section 6.3), and 3. greybox fuzzing (Section 6.4).
The first two of these will be the usual state-of-the-art symbolic execution and fuzzing
techniques applied to isolated components. For both these techniques, we will discuss their
limitations in terms of when they saturate for components that are complex in terms of
their path conditions. The third technique, greybox fuzzing, is a novel adaptive technique
developed by us based on our insights from the saturation of symbolic execution and
fuzzing. After describing the three techniques of analysing isolated components, we will

59

6 Analysing Isolated Components

list the output of the analysis (including vulnerabilities) in Section 6.5. Finally, we will
conclude this chapter in Section 6.6.

6.1 Formalising Paths and Failures

We will start this chapter by listing and defining some common terminologies to be used in
the rest of this chapter to describe the progress of dynamic analyses.
First of all, let us revisit the concept of paths, as applied to programs-under-test. In

Chapter 2, we described path conditions, which are the conjunction of branching conditions
from a program entry point to any program exit points. We can also apply the same idea
to an isolated component, m. To further this discussion, we first define in-component paths
as follows.

Definition 6.1.1. (In-component Path) For isolated components, paths are a conjunction
of the branches that must be taken for the program execution to start at the invocation of
the component (e.g. by another component) and end at one of the following – 1. an exit
statement or an equivalent instruction to end execution of the component and return to a
parent component, or 2. caught or uncaught exceptional behaviour (e.g. failure), or 3. an
instruction executed before exiting due to (externally imposed) timeout.

Extending the definition of paths, a path condition is a first-order logic formula over the
inputs, I(m)1 of the component m and any external interactions with the environment,
such as reading or writing to files.

For describing the techniques in this thesis, we will always consider unique inputs, which
are defined as follows.

Definition 6.1.2. (Unique Inputs) The set of unique inputs contain those inputs for a
component which execute the unique in-component paths.

For illustrating unique in-component paths let us consider two path conditions (for two
paths executed by dynamic analysis), pc1 and pc2. If,

pc1 =
∧
i

bi

pc2 =
∧
j

bj

where bi and bj are branching conditions that are true for the respective paths executed,
then pc1 and pc2 are identical if the number of branching conditions is the same for pc1
and pc2 and all bi are the identical to bj . If there exists no pcn, n 6= 1 that is identical to
pc1, then pc1 is a unique in-component path.

Now, let I be the set of unique inputs (provided manually or generated automatically) and
PC be the set of corresponding path conditions executed by those inputs for a component.
I.e.

1Please note that while I lists of actual/passed parameters (or inputs) generated by dynamic analysis,
I(m) denotes the list of formal parameters of component m.

60

6.2 Analysing Components with Symbolic Execution

PC(m) = {pc1, pc2 . . . } (6.1)
I(m) = {i1, i2 . . . } (6.2)

In Equation (6.1), an input ik ∈ I(m) is said to be unique because it executes a unique
path with path condition pck ∈ PC(m)

Failures can, then, be represented as in-component paths too. As shown in Equation (6.1),
all unique paths discovered by dynamic analysis and their corresponding inputs are included
in PC and I, respectively. If we denote failures as in-component paths, with set of path
conditions PCfail, then

PCfail(m) ⊆ PC(m) (6.3)
Ifail(m) ⊆ I(m) (6.4)

With the above definitions of in-component paths, inputs and failures, we can now
describe the design of our techniques for dynamically analysing isolated components.

6.2 Analysing Components with Symbolic Execution

The first technique that we will describe for analysing isolated components is symbolic
execution. We recall from Chapter 2 that symbolic execution utilises the concepts of
symbolic inputs, branching and path conditions to generate inputs that execute different
paths in the program-under-test. In this section, we will adapt these concepts to isolated
components that we created in the previous chapter.
We know that a component is made executable by the process of isolation. Let us

consider such a component, m, with exe(m) = False. Then, we have exe(m′) = True,
where m′ = isolate(m) (see Chapter 5).

For analysing components with symbolic execution the inputs to the components must
be, first of all, made symbolic, i.e. if I(m) is the list of formal parameters for m (and,
consequently, for m′), then let makeSymbolic be a function that returns the symbolic
arguments from formal parameters.

makeSymbolic : i→ iS ,

where i ∈ I and iS ∈ IS . Here IS is the symbolic representation of an input I to a
component. Adapting the definitions for in-components paths, symbolic inputs are the
abstraction of the actual data expected by the component that does not yet have a concrete
value assignment but can take any value depending on the external constraints of the
component (True in case of isolated components). The in-component path conditions
can be sent to a constraint solver, such as SMT solver, to solve for symbolic inputs and
generate a concrete value assignment. Finally, as described in Section 6.1, failures (such as
program crash) can be represented as a subset of paths discovered by symbolic execution

61

6 Analysing Isolated Components

of the isolated component and the corresponding subset of inputs can be saved as exploits
for the components.

6.2.1 Adaptation of Test Drivers

Let us now consider the formulation of symbolic component analysis and apply that to the
practical case of C programs with functions as components.
Our goal in the analysis step is to generate an automated process to allow symbolic

execution of isolated C functions, m ∈ CC(P). In Chapter 5, we described some algorithms
to make m executable but left the functions getParameterList and extractArguments
(Algorithm 1) abstract to be expanded upon by the technique of analysis, such as symbolic
execution. We recall the function isolation algorithm and adapt it for m and symbolic
execution in Algorithm 2.

Algorithm 2 Making a function m ∈ CC(P) executable for symbolic execution
1: function main’(&m, argv)
2: I ← getParameterList(m)
3: sym_I ← extractArgumentsSymbolic(argv, &I)
4: return m(sym_I)
5: end function

For analysing the isolated component, m, with symbolic execution, we will now expand
the algorithm for extractArgumentsSymbolic. This algorithm is shown in Algorithm 3.

Algorithm 3 Generating symbolic arguments from given list of arguments for an isolated
function
1: function extractArgumentsSymbolic(mainArgv, I)
2: for i ∈ I do
3: type← typeOf(i)
4: if type 6= pointer then
5: i← extractNonPointerTypeSymbolic(type, &i)
6: else
7: if type == pointer then
8: basicType← typeOf(∗i)
9: i← extractPointerTypeSymbolic(basicType, &i)

10: end if
11: end if
12: end for
13: return I
14: end function

In the algorithm listed in Algorithm 3, for every formal parameter i in list I, we generate
an equivalent symbolic argument to be passed to the invocation of the function. The
exact function to extract symbolic arguments depends on whether the argument is of a
basic non-pointer C-datatype, such as int, char or double, or a dynamically or statically
allocated single-pointer C-datatype, such as (int *) or (char *).

62

6.2 Analysing Components with Symbolic Execution

Extraction of a non-pointer datatype is shown in Algorithm 4. In this case, the algorithm
uses the (implementation-dependant) type size of the basic C-datatype of the parameter i
and passes it to makeSymbolic to get a symbolic equivalent of the parameter.

Algorithm 4 Generating symbolic arguments for non-pointer datatypes
1: function extractNonPointerTypeSymbolic(basicType, &i)
2: size = sizeof(basicType)
3: sym_i← makeSymbolic(size)
4: return sym_i
5: end function

Extraction of arguments of single pointer C-datatype is shown in Algorithm 5. For
pointer arguments, this algorithm “unravels” [102] the structure pointed to by the pointer
(such as a C-structure or a statically or dynamically allocated array) and assigns a symbolic
equivalent to each element of the structure.

Algorithm 5 Generating symbolic arguments for pointer datatypes
1: function extractPointerTypeSymbolic(basicType, &i)
2: for ind ∈ enumerate(i) do
3: elementSize← sizeof(i[ind])
4: sym_i[ind]← makeSymbolic(elementSize)
5: end for
6: return sym_i
7: end function

We see from the above algorithms that we have only considered two types of function
parameters for symbolic execution – non-pointer types and single-pointer types. We
exclude any parameters of double- or more pointers because of the difficulty of expanding
them element-by-element, e.g. for 2-dimensional arrays, and the exponential number of
possibilities of allowed sizes in them. Furthermore, for parameters of pointers to C-structure
type (struct), we handle them by unravelling the structure and applying the procedures
listed in Algorithm 4 or Algorithm 5 on individual fields of the structure, depending on
their datatype. This technique works too if the structure parameter contains a field that
itself is a pointer to another structure (the pointed structure is also unravelled, and the
same methodology applied recursively). If the structure itself contains double-pointers, we
exclude that function from the analysis.
The test driver can now be used by an off-the-shelf symbolic execution engine to

generate test cases (value assignments for the symbolic arguments) executing different
paths, including failures, in C functions.

Implementation

Algorithms for generating test drivers for analysis with symbolic execution and extracting
symbolic arguments are all implemented in our framework using LLVM Opt [82]. We refer
the reader to Figure 5.2. In this figure, the modified bitcode contains drivers for testing

63

6 Analysing Isolated Components

functions in the program-under-test with symbolic execution. The bitcode is modified by
applying a pass over the LLVM bitcode of the program-under-test generated using Clang
[42] to generate a driver for every isolated function (with at least one parameter and no
parameters with double- or more pointer type).
Finally, we utilise KLEE [26] for symbolically executing the function drivers, as they

can now be invoked directly from the CLI.

6.2.2 Notes on Saturation

We described above the methodology of analysing isolated components with symbolic
execution by extracting symbolic arguments using the formal parameter list and executing
the isolated function with an off-the-shelf symbolic execution engine. However, as described
in Chapter 2, symbolic execution faces many challenges due to which it may only be
able to achieve incomplete analysis in many real-world programs. These limitations of
practical symbolic execution are also true for analysis of isolated components. In this
section, we discuss some saturation indicators signalling that symbolic execution is found
to no longer be progressing by generating new test cases to achieve a given analysis goal,
i.e. vulnerability discovery.

1. Path-level saturation: One of the main saturating factors affecting symbolic
execution currently [29] is the well-known path-explosion problem, that we discussed
at length in Chapter 2. Due to path-explosion in isolated functions (e.g. due to
input-dependent loops), our symbolic execution engine KLEE [26] might not be able
to generate new test cases within an externally imposed timeout. Therefore, test case
generation is the first indicator of whether or not symbolic execution is saturated.

2. Constraint-level saturation: The second problem associated with symbolic execu-
tion is the bottleneck of constraint solver. As discussed in Chapter 2, the constraint
solver being used by our symbolic execution may also not return a satisfiability
solution or generate a test case within an externally imposed timeout. In this case,
the factor responsible for saturation of symbolic execution may be the size or the
complexity of the path condition [73]. The indicator of constraint-level saturation is
the amount of time spent by the symbolic execution engine in waiting for a solution
from the underlying decision procedure, such as SAT or SMT.

3. Instruction-level saturation: Saturation in terms of new instructions (source-code
level or LLVM bitcode level) covered by symbolic execution may often be a result
of the above two modes of saturation. Path-explosion may mean that, even though
new paths may be continuously uncovered, those paths may not necessarily include
previously unseen instructions. Similarly, with constraint-level saturation, symbolic
execution may not be able to cover instructions that can only be executed if a “hard”
branching condition is first solved by the constraint solver. The advantage of using
instruction-level monitoring as opposed to paths or constraints is that it is relatively
more straightforward to detect.

Depending on the goal of analysis, any of the above types of saturation can be monitored
by an external process to determine whether symbolic execution has made any progress in

64

6.3 Analysing Components with Fuzzing

a reasonably large amount of time, and decide whether the analysis should be stopped.
Please note that the above saturation indicators are not mutually exclusive, i.e. two or
more of them could be true at the same time.

6.3 Analysing Components with Fuzzing

We will now describe analysis of isolated components with fuzzing. We recall from Chapter 3
that fuzzing is a way to automatically generate test cases for a program-under-test by
continuously selecting from the set of existing inputs and mutating them, based on some
mutation strategies, to uncover previously unseen functional behaviour from the program.
With fuzzing, the generated test cases can be considered proxies for different paths executed
in the program. In this way, the reported paths include, just as with symbolic execution,
failures discovered by fuzzing. In this section, we will adapt the formalisations from
Section 6.1 to analyse isolated components with fuzzing.
We recall from Chapter 5 the function exe that describes executable component m′

equivalent to the isolated component m. For fuzzing, the key idea is to be able to invoke the
fuzzer with seed inputs, IF

init, which are some starting values assignments for the arguments
of a function. Generating seed inputs is an automated procedure in our framework that
generates default value assignments for formal parameters, I(m). Let us call this procedure
generateSeedInput.

generateSeedInput : M → IF ,

where IF is the fuzzing input for a component. Please note that the step of generating
and using seed inputs was not present in symbolic execution, but is an additional step
required for fuzzing.
After generating seed inputs, the next step is an automated procedure to supply seed

inputs to the execution of the component, m′. With these inputs, the fuzzer is able
to generate new inputs based on the monitoring results of the execution of the isolated
component (Section 3.4). These new inputs are added to the list of existing inputs and the
mutation process continues until a coverage goal or a time-limit is reaches.

6.3.1 Adaptation of Test Drivers

Let us now describe the adaptation of the test driver described in Section 5.4. Our goal
in this analysis step is to generate an automated process to allow fuzzing of an isolated
C function, m ∈ CC(P). As with symbolic execution, we first describe the high-level
algorithm for making m executable, in Algorithm 6.

The reader will note that the design of a fuzzing-based driver is almost the same as one
for symbolic execution. The reason for this is so that the same drivers can be re-used based
on whether the choice of analysis method is symbolic execution or fuzzing.

We will now expand the algorithm extractArgumentsFuzzing in Algorithm 7.

65

6 Analysing Isolated Components

Algorithm 6 Making a function m executable for fuzzing
1: function main’(&m, argv)
2: I ← getParameterList(m)
3: fuzzed_I ← extractArgumentsFuzzing(argv, &I)
4: return m(fuzzed_I)
5: end function

Algorithm 7 Generating fuzzed arguments from given list of arguments for an isolated
function
1: function extractArgumentsFuzzing(mainArgv, I)
2: remData← mainArgv
3: remSize← sizeof(remData)
4: for i ∈ I do
5: type← typeOf(i)
6: if type 6= pointer then
7: i← extractNonPointerTypeFuzzing(type, &i, &remData, &remSize)
8: else
9: if type == pointer then

10: basicType← typeOf(∗i)
11: i← extractPointerTypeFuzzing(basicType, &i, &remData, &remSize)
12: end if
13: end if
14: end for
15: return I
16: end function

66

6.3 Analysing Components with Fuzzing

The algorithm extractArgumentsFuzzing is significantly different than extractArgu-
mentsSymbolicExecution (Algorithm 3) and the difference lies in how the values for the
function arguments are extracted. In symbolic execution, our framework generates these
value assignments using the underlying constraint solvers of the symbolic execution engine.
However, in fuzzing-based analysis, the value assignment must be derived from the raw
input generated by the fuzzer. The reason for this difference is because of how the fuzzers
are designed. Fuzzers, in practice, operate on raw byte-streams that are saved, selected
and mutated to generate new byte-streams that, first of all, need to be type-cast to the
input expected by the program-under-test. For programs meant to be executed on CLI,
byte-stream inputs are easy to be cast directly to argv. However, for isolated functions, a
byte-stream needs to be first type-cast into the datatypes of the parameter list, I(m). To
automate the process of extracting the exact number of bytes from the input byte-stream
and casting to the expected datatype, we keep track of the number of bytes (remSize) in
the byte-stream (remData) and call the relevant extraction algorithm based on whether a
parameter is of a non-pointer or pointer type.

void foo (int a , int b)

x x x // x x x x
Byte-stream

(seed-input or
generated by

the fuzzer)

void bar (int *a , int b)

Discarded (do nothing)

Delimiter Discarded (do nothing)

Figure 6.2: Splitting a byte-stream (generated by the fuzzer) and extracting function arguments

The automated process of extracting arguments for functions is illustrated in Figure 6.2,
where we describe the intuition of extractArgumentsFuzzing procedure visually. The
algorithm for extracting non-pointer datatypes is shown in Algorithm 8. This algorithm
copies typeSize number of bytes from the byte-stream to the argument and casts it to
the required type. If there are not at least typeSize number of bytes left in the stream to
continue assigning, the stream is padded with null character bytes.

For parameters of pointer types, our framework utilises a special delimiter character in
the byte-stream that splits it for assigning to dynamically-sized parameter types. As shown
in Algorithm 9, extractPointerTypeFuzzing copies the generated byte-stream to i till
the first delimiter character is encountered, or the end of the byte-stream has been reached.
The helper function lookForDelimiter returns the location of the first delimiter character
in the byte-stream or the end of the stream, whichever appears first. The helper function
roundDown rounds givenSize down to a multiple of typeSize. We leave it up to the
mutation strategies of the underlying fuzzer to insert the delimiter character at appropriate
positions in the input byte-stream. Pointers, structures and structures with pointer fields
are all handled the same way as they are with symbolic execution (Section 6.2).

67

6 Analysing Isolated Components

Algorithm 8 Generating fuzzed arguments for non-pointer datatypes
1: function extractNonPointerTypeFuzzing(basicType, &i, remData, remSize)
2: i← basicType(i)
3: typeSize← sizeof(basicType)
4: if typeSize ≤ remSize then
5: i← basicType(remData[: typeSize])
6: remData← remData[typeSize :]
7: remSize← remSize− typeSize
8: else
9: i[0 : typeSize]← copy(′\0′, typeSize)

10: i[0 : remSize]← remData
11: remData← []
12: remSize← 0
13: end if
14: return i
15: end function

Algorithm 9 Generating fuzzed arguments for pointer datatypes
1: function extractPointerTypeFuzzing(basicType, &i, remData, remSize)
2: i← basicType(i)
3: typeSize← sizeof(basicType)
4: int bufSize, int givenSize
5: givenSize← lookForDelimiter(remData, remSize)
6: bufSize← roundDown(givenSize, typeSize)
7: i← remData[: bufSize]
8: if (bufSize ≤ remSize) then
9: remSize← remSize− givenSize

10: remData← remData[givenSize :]
11: else
12: remainingData← []
13: remainingSize← 0
14: end if
15: return i
16: end function

68

6.3 Analysing Components with Fuzzing

Seed argument generation

We will now briefly discuss the generation of seed inputs for isolated function in C
programs. The goal of this step is to generate some default and initial value assignments
(seed arguments) for function arguments that can be used by the fuzzer for starting its
process. Our methodology to generate seed arguments is a static methodology, i.e. without
executing the function first, e.g. with symbolic execution. We propose two different ways
of generating seed arguments for isolated functions.

1. The framework generates two byte-streams – an empty stream and a stream consisting
of a random ASCII character.

2. The framework generated a byte-stream with as many delimiter characters in the
seed argument as there are formal parameters of the isolated function. With this
method, it is easier (possible with fewer cycles of input mutation) for the fuzzer to
generate non-empty byte-streams for all function arguments.

With the design of test driver and seed argument generation, the test driver can now be
used by an off-the-shelf fuzzer to generate test cases executing different paths, including
failures, in C function.

Implementation

Just like with symbolic execution, the above algorithms for generating test drivers, extract-
ing arguments from the byte-streams generated by the fuzzer for pointer and non-pointer
type arguments of isolated functions are all implemented as LLVM Opt passes in our
automated framework. We used ASAN [1] for instrumenting the Clang-compiled binary
and replaying the test cases generated by the fuzzer with this instrumented version. The
goal of this step was to find memory-related vulnerabilities and stack-traces of failures
(crashing executions) to be used for further analysis. For fuzzing, we use AFL [2], which
is a popular off-the-shelf fuzzer for programs on CLI and has helped in finding various
vulnerabilities in many open-source and proprietary software in the past.

6.3.2 Notes on Saturation

As with symbolic execution, with fuzzing too, the analysis of programs-under-test may
be incomplete, even over a considerably large amount of time, mainly due to the current
practical challenges facing guided fuzzing that we detailed in Chapter 3. These challenges
also affect the analysis of isolated components, because of which the dynamic analysis
may get saturated after a certain amount of time. We will now list and briefly discuss two
indicators that analysis of isolated components with fuzzing may be saturated.

1. Mutation-level saturation: The first saturation indicator may be the number
of inputs that our off-the-shelf fuzzer, AFL [2], has generated so far and the rate
of increase thereof. In many scenarios when the input first needs to be parsed
according to a strict protocol, the fuzzer may get stuck in the “shallow” (in the
function’s CFG) parts of the function trying to generate valid inputs to satisfy certain

69

6 Analysing Isolated Components

branching conditions [99]. In such cases, the fuzzer might have run through all
possible mutations from the mutation strategies, but still, be unable to generate new
test cases to execute previously unseen paths in the function. One possible reason
for this type of saturation may be that the set of seed inputs is small or not diverse
enough to allow our fuzzer to exercise new behaviour in a function.

2. Instruction-level saturation: An instruction-level saturation, just like with sym-
bolic execution, may be an indication that the fuzzer has not covered any new
instructions, and, therefore, new paths, in the function. As always, unlike mutation-
level saturation where the mutation strategy may not be transparent to the tester,
instruction-level saturation is easier to monitor by keeping track of all instructions
(in the source-code or binary level) that have been executed by at least one test case
generated by the fuzzer.

The above reasons and indicators may be useful in signalling to an automated testing
strategy that the current strategy of fuzzing has reached a plateau in terms of its effectiveness
in achieving the desired coverage goal.

6.4 Analysing Components with Greybox Fuzzing

In the previous sections, we saw that, for analysing isolated components, symbolic execution
and fuzzing may only be effective up to a limit in terms of paths executed, branches and
instructions covered or test cases generated. We propose in this section that after any of
these saturation limits are reached for symbolic execution, we should adapt our framework
to switch to fuzzing, and vice-versa. The reason for making this design decision is based on
our claims and findings in Chapter 4, where we discussed at length how symbolic execution
and fuzzing may be able to complement each other when one of them saturates.

In this section, we will describe greybox fuzzing, which is a hybrid of symbolic execution
and fuzzing that can detect saturation of a technique during analysis and switch to a
different technique when saturation occurs. The key idea here is to start analysing an
isolated component with either symbolic execution or fuzzing. During the entire analysis,
we let a saturation monitor run in the background which will continuously watch whether
the analysis has reached any of the saturation points listed in Section 6.2.2 or Section 6.3.2.
If the saturation monitor detects saturation, our framework saves the results (test cases
and stack-traces) of the analysis and supply the test cases to the other technique (fuzzing
or symbolic execution) for continuing the analysis. By sharing inputs between them, our
framework can preserve the information about coverage achieved by either of the techniques,
to avoid redundant analysis in the isolated component as much as possible. The framework
will keep switching between fuzzing and symbolic execution in this way till, either, a
coverage goal is achieved (e.g. LLVM instruction coverage) or a reasonable time-limit is
reached.

Sharing inputs: For fuzzing, the procedure of using test cases supplied by symbolic
execution is trivial – a generated test case (as a solution to a path condition generated by
symbolic execution) can be converted to a byte-stream ready to be accepted by the fuzzer.

70

6.4 Analysing Components with Greybox Fuzzing

However, the equivalent procedure for symbolic execution to reuse test cases generated by a
fuzzer is less straightforward. As described in Chapter 2, concolic execution is a specialised
practical implementation that combines concrete execution with purely symbolic execution.
We employ concolic execution, to share inputs from fuzzing in the following way – the test
cases generated by the fuzzer are consumed by the concolic execution engine to run the
isolated component and collect the paths that are executed by them. For each branch, b,
taken by an input in an executed path’s condition, the concolic execution engine adds a
path condition with the negation of the branch ¬b as a possible path condition that was
not executed by any of the test cases generated by the fuzzer. In this way, by leveraging
concolic execution and fuzzing, we relieve the constraint solver of the symbolic execution
engine of the load of generating and solving those path conditions that were already found
by the fuzzer, thereby allowing it to focus on previously unseen paths.

6.4.1 Adaptation of Test Drivers

Let us now describe the adaptation of the test driver described in Section 5.4. For this,
we will bring together the designs of test drivers for analysing isolated components with
symbolic execution (Section 6.2.1) and fuzzing (Section 6.3.1). Our goal in this step, as
always, is to analyse an isolated function, m ∈ CC(P), with greybox fuzzing, i.e. monitoring
and switching between symbolic execution and fuzzing whenever one technique saturates.
The high-level algorithm of a test driver form with greybox fuzzing is listed in Algorithm 10.

Algorithm 10 Making a function m executable for greybox fuzzing
1: function main’(&m, argv)
2: I ← getParameterList(m)
3: sym_I ← extractArgumentsSymbolic(argv, &I)
4: fuzzed_I ← extractArgumentsFuzzing(argv, &I)
5: while True do
6: fuzzing_progress← ∅
7: symbolic_execution_progress← ∅
8: fuzzed_I ← extractArgumentsFuzzing(sym_I, &fuzzed_I)
9: while fuzzingNotSaturated(fuzzed_I) do

10: fuzzing_progress← m(fuzzed_I)
11: end while
12: sym_I ← extractArgumentsSymbolicExecution(fuzzed_I, &sym_I)
13: while symbolicExecutionNotSaturated(sym_I) do
14: symbolic_execution_progress← m(sym_I)
15: end while
16: if fuzzing_progress == ∅ ∧ symbolic_execution_progress == ∅ then
17: break
18: end if
19: end while
20: end function

In this algorithm, first of all, the symbolic and fuzzing inputs are extracted from the

71

6 Analysing Isolated Components

same, and unchanged, formal parameter list of the function m. Then, we enter a continuous
while-loop that, first of all, converts the symbolic input, sym_I to fuzzed_I by reusing
the extractArgumentsFuzzing procedure described in Section 6.3.1. Reusing extrac-
tArgumentsFuzzing is equivalent to populating seed inputs for fuzzing, by converting
symbolic input to byte-stream input format accepted by most fuzzers. Next, we run the
fuzzing process, by calling the isolated function m with fuzzed_I, till the fuzzer reaches
saturation. In Section 6.4.2, we will describe in some detail the fuzzingNotSaturated
algorithm based on the ideas listed in Section 6.3.2.

When fuzzing saturates based on some criteria, we convert the test cases/inputs generated
by the fuzzer to symbolic input, sym_I, by reusing the extractArgumentsSymbolic
procedure described in Section 6.2.1. Just as with fuzzing, the test cases generated by
fuzzing are converted to concrete inputs for concolic execution of isolated function, m.
With these inputs as seed inputs, we symbolically execute m till symbolic execution
reaches saturation. Based on the ideas listed in Section 6.2.2, we will describe the
symbolicExecutionNotSaturated algorithm in Section 6.4.2.
Finally, when both, fuzzing and symbolic execution, have been saturated, the outer

while-loop will end (line 16-17) and the analysis terminated.

6.4.2 Monitoring Saturation

Let us now discuss the details of how our framework actively monitors saturation of fuzzing
and symbolic execution, to determine when to switch over to the other technique. We
have described the indicators and factors leading to saturation of symbolic execution
(Section 6.2.2) and fuzzing (Section 6.3.2) earlier in this chapter and we will use these
concepts for designing the monitoring mechanism too.

Saturation of Fuzzing

Let us start with the algorithm for determining whether fuzzing is saturated during the
analysis of an isolated component. The function fuzzingNotSaturated, which was called
on line 7 in Algorithm 10 is listed in Algorithm 11.
In Algorithm 11, the basic idea is to use the following (externally set) thresholds

1. Test-case threshold is the maximum number of test cases generated by the fuzzer
for which the framework is willing to wait before signalling that no new instructions
have been covered for a sufficiently long time. If there is at least one test case in
the test_case_threshold most recently generated test cases that cover at-least one
new instruction, then the framework signals that fuzzing is not saturated yet.

2. Time threshold is the maximum amount of time that our framework will wait for
new instruction coverage, after which it will signal that fuzzing is saturated. We
need this threshold based on time in cases when even though no new test cases were
generated for a very long time, there was at least one new instruction covered by
the previous test_case_threshold test cases. In such a case, without a time-based
threshold, the framework might wait forever without realising that none of the input
mutations performed by the fuzzer have resulted in any progress of the analysis.

72

6.4 Analysing Components with Greybox Fuzzing

Algorithm 11 Monitoring saturation of fuzzing
1: function fuzzingNotSaturated(fuzzed_I)
2: not_mutated← []
3: for i ∈ fuzzed_I do
4: if mutated(i) then
5: not_mutated.append(i)
6: end if
7: end for
8: if len(not_mutated)> 0 then return True
9: else

10: for i ∈ fuzzed_I [−TEST_CASE_THRESHOLD :] do
11: if newCovered(i)> 0 then return True
12: end if
13: end for
14: end if
15: if (lastNewInstructionCoverage(fuzzed_I)< TIME_THRESHOLD)

then return True
16: else return False
17: end if
18: end function

Saturation of Symbolic Execution

Now, we describe the algorithm for determining whether symbolic execution is saturated
during the analysis of an isolated component. The function symbolicExecutionNotSatu-
rated, which was called on line 11 of Algorithm 10, is listed in Algorithm 12.

Algorithm 12 Monitoring saturation of symbolic execution
1: function symbolicExecutionNotSaturated(sym_I)
2: if timeConstraintSolverEngaged()< CONSTRAINT_SIZE_THRESHOLD

then
3: if (lastNewInstructionCoverage(sym_I)< TIME_THRESHOLD)

then return True
4: else return False
5: end if
6: elsereturn False
7: end if
8: end function

In Algorithm 12 the basic idea that if currently, the underlying constraint solver is
engaged by the symbolic execution engine (e.g. for generating a test case), then the
framework must check if the time since it has been engaged is less than the (externally set)
threshold on how long must the constraint solver take to return either a UNSAT solution or
a concrete test case for the current path condition. If the constraint solver returns within
the defined time limits, then we proceed to check, similar to Algorithm 11, how long it

73

6 Analysing Isolated Components

has been since symbolic execution covered a new instruction. If in the last time threshold,
there has been at least one newly covered instruction, then the framework signals that
symbolic execution is not yet saturated. Otherwise, it signals that symbolic execution is
saturated and Algorithm 10 must switch to fuzzing or end the analysis.

Implementation

Since, the algorithm for greybox fuzzing described in Algorithm 10 reuses the algorithms
from symbolic execution and fuzzing, our implementation is also able to reuse the compo-
nents developed for analysing isolated components with symbolic execution and fuzzing, i.e.
Clang and Opt for bitcode level manipulation, KLEE for symbolic and concolic execution
and AFL for fuzzing. However, we modified KLEE [100] to include the ability to consume
seed inputs directly from the AFL fuzzer [2].

6.5 Output of the Analysis

The output of the analysis of isolated components with symbolic execution is the following

1. Test-cases for functions: The first output of the analysis are the test cases, I,
generated by symbolic execution, (I = IS), fuzzing (I = IF), or greybox fuzzing,
(I = IS ⋃

IF). For our study, we assume that we only generate one test case per
path. This means, of course, that the number of test cases is also the number of
unique paths discovered by the dynamic analysis method.

I = {i1, i2, . . . in}

where n is the number of generated test cases. Each of ik contains values of arguments
expected by the function, m. I.e.

typeof (ik) = I(m)

k ∈ [1,n]

2. List of exploits: The next output is the list of exploits for the vulnerabilities
discovered by the analysis of isolated functions. As discussed earlier, we will be con-
sidering only buffer-overflows, array index-out-of-bounds and null-pointer dereference
vulnerabilities for our analyses. The discovered vulnerabilities are reported as the set
of test cases (exploits) that lead to a failure (program crash) resulting due to one of
the above vulnerabilities2. Let this set of test cases be Ifail. Then,

Ifail ⊆ IS .

3. Stack-traces of crashes: The final output of analysing isolated functions is a set of
stack-traces for failures resulting due to the vulnerabilities discovered by the analysis.

2Since test cases are proxies for paths in the isolated functions, executing them with a test case is the
same as executing the corresponding path.

74

6.6 Concluding Notes

A stack-trace, Sm0 , of a vulnerable function m0, when running with arguments
if ∈ Ifail, is an ordered set of instructions

Sm0(if) = 〈L(m0),L(m1), . . . L(mn)〉 (6.5)

where mi calls mi+1. Here, L returns the vulnerability (line number in source-code)
and the name of the function in which the vulnerable instruction lies.

6.6 Concluding Notes

In this chapter, we discussed our methodology to analyse isolated components (generated
automatically with the methodology discussed in Chapter 5) with the goal of covering
as many paths and, as a result, discovering as many potential vulnerabilities in them as
possible. We first laid the groundwork of analysing isolated components by formalising the
concepts of in-component paths and failures in terms of inputs to the isolated component.

Then, we described three different ways of analysing isolated components. With symbolic
execution, we adapted the above formalisation for inputs to components and described how
it could be instantiated for C-language programs by adapting the procedure for creating test-
drivers, symbolising function parameters and symbolically executing the isolated function.
The result of this analysis is a list of test cases, each executing a unique in-component
path, a list of potential vulnerabilities in the isolated function and a stack-trace for every
discovered vulnerability. Similar to symbolic execution, fuzzing can also be used to analyse
the isolated components by adapting the design of automatically generated test-drivers,
extracting a C-function’s arguments from a byte-stream generated by a fuzzer and fuzzing
the isolated function. The result of the analysis is the same as that for symbolic execution
Finally, we described a greybox fuzzing technique for analysing isolated components

by using a technique-switching based on actively monitoring saturation indicators from
symbolic execution and fuzzing. Practically speaking, we analyse an isolated C-function
with symbolic execution until the analysis saturates at which point we switch to fuzzing till
it saturates too. All through the process of greybox fuzzing, a common list of generated test
cases (and paths) is maintained and cross-fed between our symbolic execution engine and
fuzzer to facilitate reuse of past iterations of analysis. With a greybox fuzzing approach such
as our’s, we can effectively tackle the problems associated with state-of-the-art symbolic
execution and fuzzing techniques. We will instantiate our approaches and evaluate their
performance w.r.t. state-of-the-art in Chapter 8.
In the beginning, we called the discovered vulnerabilities in this step as potential

vulnerabilities because, due to their isolated nature, one cannot guarantee that in any
real usage of the program-under-test, with inter-component interactions as intended, the
discovered vulnerabilities may be exploited. In the next chapter, we will describe a
compositional analysis technique to determine whether the discovered vulnerabilities may
be exploited in real-world usage.

75

7 Compositional Analysis

This chapter describes the final step in the discovery process – composi-
tional analysis of the vulnerable components discovered in the previous
steps, to determine if it is feasible to exploit them. Parts of this chapter
have previously appeared in [102], [104] and [101], where the author of
this thesis was the first author.

In the previous chapter, we described our methodology to analyse isolated components
with three analysis techniques – symbolic execution, fuzzing and greybox fuzzing. The goal
of this analysis step was to find as many potential vulnerabilities in components that make
up a program by increasing the structural coverage as much as possible. By analysing
isolated components, we may be able to find many vulnerabilities with the assumption that
the components are isolated, i.e. be executable directly from a user-facing interface, such as
CLI. We will now, in this chapter, describe a compositional analysis step, as depicted in the
overview diagram Figure 7.1, which follows analysis of isolated components, to determine
which components may be affected negatively if a vulnerability in an isolated component is
not fixed.

Vulnerability discovery

Isolation of
components

Analysing isolated
components

Symbolic
execution

Fuzzing

Greybox fuzzing

Compositional
analysis

Vulnerability
analysis

Assessing severity of
vulnerabilities

Figure 7.1: Compositional analysis in the solution framework

This chapter is organised as follows – we start in Section 7.1 by describing the need for
compositional analysis of vulnerabilities discovered during analysis of isolated components.
Then, we describe in Section 7.2 our compositional analysis and list some common terminol-
ogy. In Section 7.3, we describe in detail the first step of statically combining error reports
generated by the analysis step. For the remaining reports, we describe in Section 7.4 a
targeted search-based strategy to determine their feasibility. For both phases of feasibility
determination, we list the output of the compositional analysis of vulnerabilities. Finally,
we conclude the chapter in Section 7.6.

7.1 Un-isolating Components – Motivation

In Chapter 6, the common thread between the three methods of analysing isolated compo-
nents was the output of the analysis. To recap for the readers, the output of the analysing

77

7 Compositional Analysis

1 int bar1 (int c) {
2 i f (c <3)
3 return (3/ c) ; /∗Maybe d iv ide−by−zero ∗/
4 else
5 return 0 ;
6 }
7 int bar2 (int d) {
8 i f (d<50)
9 return 0 ;

10 else
11 return d ;
12 }
13 int f oo (int b , int c , int d) {
14 i f (b==100)
15 return bar1 (c) ;
16 else
17 return bar2 (d) ;
18 }
19 int main (int argc , char∗∗ argv) {
20 int a , b , c , d ;
21 a=a t o i (argv [1]) ; b=a t o i (argv [2]) ;
22 c=a t o i (argv [3]) ; d=a t o i (argv [4]) ;
23
24 i f (a<1)
25 return 0 ;
26 else
27 return f oo (b , c , d) ;
28 }

Listing 7.1: Example C program (Copy of Listing 5.1).

an isolated component is as follows –

1. List of test cases,
2. List of exploits for discovered vulnerabilities, and
3. Stack-traces of crashing executions.

In this list, we have generalised the output list from analyses performed by the three
techniques on C-language programs, which is what we have instantiated our framework
with.

The goal of this thesis, as stated earlier, is to increase the effectiveness of vulnerability
discovery in programs, w.r.t. state-of-the-art dynamic analysis software testing techniques.
When we isolate the components of a program and analyse these components in isolation, as
shown in Chapter 6, we are more likely to find vulnerabilities in these isolated components
than state-of-the-art techniques that may get stuck in “shallow” parts of the program
and never even execute the components where these vulnerabilities lie. However, for
dynamically analysing isolated components we had first removed, by the process of making
components executable (Section 5.3), all the context under which this component may be
used by the end-users. We illustrate this scenario by using our running example of the C
code listed originally in Chapter 5 and repeated here in Listing 7.1. The call-graph of this
program (which functions call which other, and in what order) is shown in Figure 7.2 and
the corresponding control-flow graph of the entire program is shown in Figure 7.3.
In Figure 7.2, we can see that the function bar1 can only be reached in the original

program by, first, calling foo by main and then calling bar1 by foo. Concretely, an input

78

7.1 Un-isolating Components – Motivation

main

foo

bar1 bar2

Figure 7.2: Call graph of program listed in Listing 7.1

has to satisfy the following sequence of branching conditions to reach node 6 in Figure 7.3
– a ≥ 1, b == 100 and c < 3. Once all these conditions are True, only then is there a
possibility that the vulnerability on node 6 (division-by-zero) may be found.

a<1
?

b==100
?

c < 3
?

d<50
?

ret
succ

ret 3/c ret
succ

ret
succ ret d

T

T

T T

F

F

FF

1

2 3

4 5

6 7 8 9

Figure 7.3: Control-flow graph for the program listed in Listing 7.1

On the other hand, if the components, i.e. functions in case of C-language programs, are
isolated and analysed just like we described in the previous chapters, then the vulnerability
on node 6 can be reached by generating an input that satisfies just one branching condition
– c < 3. Symbolic execution and fuzzing are more likely, therefore, to find the potential
vulnerability on line 3 in Listing 7.1. The reason for this increased likelihood is, as
mentioned before that these dynamic analysis techniques will not run into one of the
saturation conditions described earlier, such as path-explosion or mutation-level saturation.
This demonstrates that our strategy of isolating components by making it possible for us
to dynamically analyse them may help us in finding more potential vulnerabilities than
state-of-the-art techniques that analyse a program only from a program entry point.

79

7 Compositional Analysis

However, the term “potential” itself is key in our framework. Suppose again that the
vulnerability on node 6 was discovered by our framework, as described in Chapter 6. The
results, then, of the analysis of the function bar1 will be test cases I, list of exploits Ifail

and a list of stack-traces for crashing executions of bar1. We are interested here in Ifail.
Then,

Ifail = {0}, (7.1)

which is a value assignment for the input to bar1, I(bar1) = {c}. To determine whether
this vulnerability can be exploited in the program through an intended program entry
point, it is not sufficient to generate an exploit in terms of I(bar1) only. An exploit needs
to also consider the branching conditions that need to be True before the branch at node
4 (Figure 7.3) can even be reached.

Due to the above reason, we need a final element in our framework’s pipeline that can
effectively determine which parent components (Equation (5.1)) are affected by vulner-
abilities discovered by analysis of an isolated component. We will, in the next sections,
describe the design and implementation of such an element.

7.2 Two-step Feasibility Determination

In this chapter, we will describe a two-step process to determine feasibility of a discovered
vulnerability in an isolated component, in other components of the program that interact
with it. We define vulnerability feasibility as below.

Definition 7.2.1. (Vulnerability Feasibility) If a vulnerability discovered in an isolated
component m1 can be exploited by at least one test case (function arguments) for component
m2 where m2 ∈ parentL(m1), then the vulnerability is said to be feasible in m2.

In the above definition, function parentL is the parent-child relationship for programming
language L, as defined in Chapter 5. By extending the above analysis recursively, feasibility
of a vulnerability may be determined till a top-level component (e.g. program entry point).
Therefore, we can extend the definition of feasibility to introduce the notion of chain of
vulnerable components, defined as follows

Definition 7.2.2. (Chain of Vulnerable Components) An ordered set of components,
< m0,m1 . . .mn > is a chain of vulnerable components if, for k ∈ [0,n]

1. PCfail
mk
6= φ,

2. mk+1 ∈ parentL(mk), and
3. the vulnerability reported in all mk’s is the same as the vulnerability reported in m0.

We note from the definition of vulnerability feasibility that, in order to determine whether
a vulnerabillity is feasible in a parent component of a vulnerable component, our framework
needs to prove that there exists a test case for m2 that exploits the discovered vulnerability
in m2 (m1 ∈ m2). Such proof may be in the form of an in-component path for component
m2 that leads to the vulnerability in m1. We may formalise this proof process as follows.

80

7.3 Phase One – Collating Analysis Results

Let pcf ∈ PCfail(m1), where PCfail returns the set of path conditions leading to failure
in m1 (Section 6.1) where m1 ∈ CL(P). Then, the failure represented by pcf is feasible in
m2 ∈ parentL(m1) if

∃pc ∈ PC(m2) : pc∧ pcf (7.2)

Intuitively, if a path discovered by dynamic analysis in m2 ends in a vulnerability
discovered in m1, then that vulnerability in m1 is feasible in m2.

Automatically generating the above proof may be done in two phases by our framework,
which are listed below 1. going through all existing test cases and corresponding path
conditions in m2 to check which ones satisfy Equation (7.2), or 2. when the set of all
generated test cases do not cover all possible path conditions for m2, trying to generate
more test cases for m2 such that Equation (7.2) is satisfied. In the following sections, we
will describe both these steps, sequentially.

7.3 Phase One – Collating Analysis Results

The first step for showing that a vulnerability discovered in a component is feasible in any
of its parent components is to iterate through the analysis results of the component and all
its parents to determine if there are any matching paths. We concretely define a matching
path as follows

Definition 7.3.1. (Matching path) A failure path, with path condition pc, in a parent
component, is said to be a matching path to a failure path in its child component if the last
instruction executed with an input satisfying pc is the vulnerable instruction discovered in
the child component.

Collating results this way by matching paths is the most straightforward way to determine
the feasibility of vulnerabilities in connected (through parentL function) components of a
program.

7.3.1 Stack-trace Matching

We will now describe the process of collating analysis results as applied to programs
written in C-language. As described in Chapter 6, the output of the first step of analysing
isolated component by any method includes the generated test cases, exploits, and stack-
traces of crashing executions of the isolated components. For the first step of feasibility
determination, we will make use of the stack-traces that are output from the previous
step, to determine whether we have a matching path in a parent component. We call two
stack-traces, Sm1 and Sm2 , of the crashing executions of functions m1 and m2, respectively,
matching stack-traces if Sm1 ⊂O Sm2 . Here “⊂O” denotes an ordered subset meaning that
the elements in the smaller ordered set appear in the same order in the larger ordered set.

Let us illustrate stack-trace matching by reconsidering the C-program in Listing 7.1. For
stack-trace matching, let us assume that a divide-by-zero vulnerability was discovered by
our framework during the analysis of the isolated components bar1, foo and main. We can

81

7 Compositional Analysis

1 Divide−by−zero e r r o r
2 . . . in bar1 on l i n e 3 (re turn (3/ c)) : c=0

Listing 7.2: Stack-trace of a crashing execution of bar1 (Listing 7.1)

1 Divide−by−zero e r r o r
2 . . . in bar1 on l i n e 3 (re turn (3/ c)) : c=0
3 . . . in foo on l i n e 15 (re turn bar1 (c)) : c=0

Listing 7.3: Stack-trace of a crashing execution of foo (Listing 7.1)

see by manually inspecting this program that the divide-by-zero vulnerability discovered
in all these three functions are, indeed, due to the same vulnerable instruction on line 3 in
the bar1 function. This information is also reflected in the stack-traces of the respective
crashing executions of bar1 (Listing 7.2), foo (Listing 7.3) and main (Listing 7.4).
The goal of stack-trace matching is to determine the chain of functions (adapted from

the chain of components, as defined in Section 7.2) in which a given vulnerability is feasible.
The detailed algorithm for achieving this goal in the first phase, by stack-trace matching,
is listed in Algorithm 13.

This function takes as input an isolated function, m, and the stack-trace of its crashing
execution, Sm, due to a vulnerability discovered in it by analysis with, e.g. symbolic
execution or greybox fuzzing. This algorithm checks for all its callers (functions that
potentially call m) whether they and their respective callers are also “affected” by the
same vulnerability that is represented by Sm. We define being affected as having reported
an identical vulnerability to Sm. The function getAffectedAncestors, which we will
describe in more detail in Algorithm 14, returns a list of chain of functions through which
the vulnerability represented by Sm is feasible. Each element (chain) in this list is, first,
concatenated with m before being added to the list, chains. This represents that the
vulnerability or vulnerable instruction, responsible for all the failures reported in the chain
of functions is inside the function, m. This list of chains is the final output of the function
getChainsOfVulnerableComponents.
Note that a vulnerability in a given function may be feasible in more than one chain

of functions. An example of such a case is illustrated in Figure 7.4. Suppose that the
vulnerabilities in a and b were both found to be feasible in c. This leads to the following
scenarios – Both, none or only one of the vulnerabilities in c are feasible in, both, d and c.
Now, let us look at the algorithm for the function getAffectedAncestors. This algo-

rithm is listed in Algorithm 14
For getting a list of all ancestor functions (callers, callers of callers, and so on) getAf-

fectedAncestors, first and foremost, checks if there is a matching stack-trace for m and
the parent function, p, i.e. ¬(Sm ⊂O Sp). If the stack-traces do not match, then the

1 Divide−by−zero e r r o r
2 . . . in bar1 on l i n e 3 (re turn (3/ c)) : c=0
3 . . . in foo on l i n e 15 (re turn bar1 (c)) : c=0
4 . . . in main on l i n e 27 (re turn foo (b , c , d)) : b=100 , c=0, d=1

Listing 7.4: Stack-trace of a crashing execution of main (Listing 7.1)

82

7.3 Phase One – Collating Analysis Results

Algorithm 13 Determining the chain of functions for which a vulnerability in function m
is feasible
1: function getChainsOfVulnerableComponents(m,Sm)
2: chains← {}
3: for p ∈ caller(m) do
4: affected_ancestors ← getAffectedAncestors(p,Sm)
5: for a ∈ affected_ancestors do
6: chains.add(m+ a)
7: end for
8: end for
9: return chains

10: end function

Algorithm 14 Recursively generating the list of affected functions for vulnerability
represented by Sm, as determined by stack-trace matching
1: function getAffectedAncestors(p,Sm)
2: affected← {}
3: if ¬ stackTraceMatch(p,Sm) then
4: return []
5: end if
6: callers← caller(p)
7: for c ∈ callers do
8: a← getAffectedAncestors(c,Sm)
9: if a 6= φ then

10: affected.add(p+ a)
11: end if
12: end for
13: return affected
14: end function

83

7 Compositional Analysis

a b

c

d e

f

Figure 7.4: Scenario illustrating a case where multiple chains for the same vulnerability exist

algorithm returns an empty list of chains, signalling that the vulnerability is not feasible
in this caller function. If the stack-traces do match, i.e. Sm ⊂O Sp, then the algorithm
recursively checks for matching stack-traces in the caller functions of p. The recursion
ends when either, as mentioned earlier, there is no stack-trace match or no more calling
functions can be found for p. This case may occur when p is already one of the program
entry points. The helper function stackTraceMatch follows a simple algorithm that checks
for all stack-traces from the analysis of isolated function p, whether any of them match Sm.

Output: Hence, the output of the first phase of determining the feasibility of vulnerabil-
ities is a list of chains of vulnerable components for vulnerabilities discovered by analysing
isolated components using symbolic execution, fuzzing or greybox fuzzing. We, naturally,
remove all redundant elements in this list of chains by removing those chains of vulnerable
components that were also reported for the same vulnerability in another component.

7.4 Phase Two – Targeting Vulnerable Components

In the first phase of determining the feasibility of vulnerabilities, our framework can only
report for those components where a vulnerability was already discovered by the initial
analysis step for isolated components. If a vulnerability in m1 is found to be not feasible
in m2, where m2 ∈ parentL(m1), by the first phase of feasibility determination, that does
not necessarily mean that the vulnerability may not be exploited through m2, but only
that there were no matching paths from the analysis of isolated components m1 and m2.

We know from our extensive discussion on the limitations of symbolic execution (Chap-
ter 2) and fuzzing (Chapter 3) that both these techniques are unable to achieve sufficient
coverage in the programs (or components) under test. Therefore, it is possible that the
in-component path leading to the vulnerability in m1 was not covered by the dynamic
analysis method employed for analysing the isolated component m2. In such a case, phase
one will, naturally, be unable to find a matching path and will, therefore, report that the
vulnerability is not feasible in m2.

Therefore, to extend our feasibility determination to include cases of incomplete analysis
in parent components, we propose the second phase of feasibility determination. In this

84

7.4 Phase Two – Targeting Vulnerable Components

phase, we, first of all, aim to reduce the in-component paths to be analysed in a parent
component by summarising the vulnerable component. Secondly, we employ a targeted
strategy to determine feasibility of the vulnerability in the parent component. We now
describe both these steps in more detail.

7.4.1 Summarising Vulnerable Components

As discussed earlier, the main reason why a dynamic analysis technique may not achieve
sufficient structural coverage is because of in-component path explosion or branching
conditions that are hard to pass for a random technique. Therefore, we present in this
section a summarisation strategy to decrease the number of paths for dynamic analysis
techniques to cover, instead of the entire component. These component summaries are
comprised of the failing paths only because our goal is to only find and report vulnerabilities
in the program.

The process of summarisation is as follows – for every isolated component that has been
analysed by symbolic execution, fuzzing or greybox fuzzing, we rewrite the component
as an exclusive disjunction of the failure paths. Recall from Equation (6.3) that the set
of failure paths in a component is a subset of the set of all paths discovered by dynamic
analysis, i.e. PCfail(m) ⊂ PC(m). Originally, a component can be represented as an
exclusive disjunction of the path conditions, i.e.

⊕
pck∈P C(m)

pck (7.3)

where “⊕” denotes mutual exclusion (XOR). However, if a dynamic analysis technique
finds it difficult to achieve sufficiently high path coverage in PC(m), then we reduce the
number of paths to only the failures, i.e.

⊕
pck∈P Cfail(m)

pck (7.4)

Note that removing all paths with (PC−PCfail) from the component (or a representation
thereof) means that we might be removing important side-effects of these paths. However,
as described before, we already analysed all isolated components (including possible
side-effects) and, in this step, only care about determining whether a vulnerability in a
component is feasible in a parent component.

Generating Function Summaries from Test Cases

Let us now adapt the concepts described above to C-language programs, where the
components are functions. After analysing isolated functions, our framework outputs a
list of test cases, including those that exploit vulnerabilities in an isolated function, m1.
In this step, our framework replaces the isolated function, m1 with a summary of the
failure path conditions, using test cases. Recall that I(m1) returns the inputs (formal
parameters) for an isolated function m1. Also, recall that if I is the set of all inputs (test

85

7 Compositional Analysis

cases) generated by a dynamic analysis technique for m1, then Ifail ⊂ I is the set of all
inputs that correspond to the failures triggered in m1. For the function m1, let ik ∈ Ifail

denote the kth input (test case) generated by a dynamic analysis technique that exploits a
vulnerability. Then, the summarised version of the isolated component m1 is as shown in
Algorithm 15.

Algorithm 15 Summarised version of the isolated function m1

1: function m1Summarised(iactual)
2: assert(iactual 6= i1)
3: assert(iactual 6= i2)
4:

...
5: assert(iactual 6= im)
6: return m1(iactual)
7: end function

In Algorithm 15, ik : k ∈ [1,m] are, as described above, the test cases generated by
dynamic analysis that exploit a vulnerability. The equality (iactual == ik) is defined as
follows

iactual == ik ⇐⇒ (
∧

f i∈I(m)

f i
actual == f i

k). (7.5)

The negation of the equality in Equation (7.5), then, when at least one of the arguments is
not equal in its value.
Intuitively, the summarised function compares each of the actual parameter value to

the concrete argument values that were found to exploit a vulnerability in m1. We assert
a negation of the equality because, then, our framework reports an assertion error (and
stops further processing) when there is a match found for iactual. If no match is found
in m1Summarised, then we proceed by calling the original function m1, as intended, to
ensure that we include its side effects.

Suitability of Test Cases for Summarization

Please note that, unlike some past works such as [85, 115], where formal parameters are
compared to the input preconditions (in the form of boolean constraints), our framework
only matches the concrete values of the arguments, because we are limited by our output
from the previous stage, which only includes a list of exploits for the vulnerabilities, and
not all path conditions. However, we argue that matching only test cases is sufficient for
feasibility determination because

1. If our symbolic execution engine can at least generate test cases that violate the
assertions in a summarised function, it means that there were no constraints in the
calling functions that stopped the vulnerability from being exploited – popularly
known as the sanitisation of the inputs.

2. By matching concrete test cases instead of path conditions (as input preconditions),
we may be saving constraint solving resources.

86

7.4 Phase Two – Targeting Vulnerable Components

7.4.2 Determining Feasibility Through Targeted Symbolic Execution

After replacing the vulnerable components with their summaries, as described in Sec-
tion 7.4.1, our framework is now ready to re-analyse the parent components but, hopefully,
without running into the problem of path-explosion. This hope is based on the fact that in
the summarised version of vulnerable components, the number of paths has been reduced to
only the ones that may possibly trigger the same failures. Next, in this section, we employ
a targeted strategy to determine, based on the component summaries, if the discovered
vulnerabilities are feasible in the parent components. The goal of this strategy is the same
as that of phase one of feasibility determination, but the techniques described here will
only be applied for vulnerabilities for which feasibility could not be determined by collating
results from analysis of isolated components. The basic idea is as follows.
Let m2 ∈ parentsL(m1) and m1Summarised be the summarised version of the com-

ponent m1, as described in Section 7.4.1. Then, our framework analyses the isolated
component m2 with targeted symbolic execution, with the target set as m1Summarised.
Targeted symbolic execution, instead of “normal” symbolic execution or fuzzing, ensures
that only those in-component paths that lead to m1Summarised are ever added to the
queue of paths to be explored by the symbolic execution engine. In addition to component
summarisation, targeted symbolic execution further helps in reducing path-explosion by
reducing the overall number of candidate paths to be explored in the isolated components.
In the following subsections, we will describe some technical and adaptation details of our
framework related to determining feasibility through targeted symbolic execution.

Targeted Symbolic Execution for Functions

We start the technical description [104] by describing the design of a targeted search-strategy
for symbolic execution for arbitrary functions in C-language programs. Whenever a new
instruction is executed by symbolic execution, it needs to make a decision about which
instruction to execute next. In the case of non-branching statements (such as assignment
or function call), there is only one choice for which instruction is to be executed next.
However, if the current instruction is a branching-condition, with two possibilities for the
next instruction, the symbolic execution engine calls the function selectState to select
which instruction to execute. The algorithm for selectState for a targeted search strategy
in symbolic execution, as implemented in KLEE22 [100], is shown in Algorithm 16.
The selectState algorithm takes as input the current position of the instruction

pointer in the program and the target set by our framework (the summarised func-
tion, m1Summarised). The list of all possible instructions that can be executed next
by symbolic execution are returned by getNextExecutable function. For all returned
candidate instructions that can be executed next, the algorithm first checks if 1. the
instruction has been explored already, and 2. the instruction is valid, based on whether the
associated branching condition is satisfiable by the current path condition on the symbolic
execution. Then, the getMinFutureDistance function returns the minimum number of
instructions that will need to be executed to reach target if the candidate instruction
was executed next. We will describe getMinimumFutureDistance later. The candidate

87

7 Compositional Analysis

Algorithm 16 Select the next instruction to be executed by targeted path-search strategy
in symbolic execution
1: function selectState(position, target)
2: candidate_states← getNextExecutable(position)
3: lowest_distance←∞, selected← φ
4: for c ∈ candidate_states do
5: if c /∈ explored ∧ isValid(c) then
6: min_future_distance← getMinFutureDistance(c, target)
7: if min_future_distance < lowest_distance then
8: lowest_distance← min_future_distance
9: selected← c

10: end if
11: end if
12: end for
13: return selected
14: end function

instruction with the lowest value for min_future_distance is, then, picked and executed
next to take the shortest feasible path to the target from any instruction.
We will now describe the algorithm for calculating the minimum number of steps to

be taken from any given instruction to the target instruction. This algorithm is listed in
Algorithm 17.

Algorithm 17 Calculating minimum possible distance to the target function
1: function getMinFutureDistance(s, target)
2: if isTarget(s, target) then
3: return 0
4: else if unreachable(s, target) then
5: return ∞
6: else
7: direct_dist← shortestDistance(s, target)
8: ancestor_dist← getMinFutureDistance(stack_pop, target)
9: indirect_dist← shortestDistance(s, return_statement) +ancestor_dist

10: return min(direct_dist, indirect_dist)
11: end if
12: end function

For an instruction s, there may be three possible values for the minimum distance to a
target -

1. If the target cannot be reached (according to the control-flow graph), then the
distance is ∞,

2. if the target can be reached, then the value is the minimum of
a) the number of direct steps (without tracking back in the program’s call-stack)

to the target entry point, and

88

7.5 Output of Compositional Analysis

b) the minimum distance (recursive calculated with getMinFutureDistance) of
its direct ancestor in the program’s call-stack plus the minimum steps till the
next return statement, at which point the call-stack will be popped once.

With the above algorithm, targeted search for symbolic execution can effectively remove
those instructions from further exploration from which the target function cannot be
reached.

7.5 Output of Compositional Analysis

In Section 7.3 and Section 7.4, we described our methodology for compositionally analysing
the results of the analysis of isolated components described in Chapter 6. Recall that
the phase two of compositional analysis, i.e. targeting vulnerable components, is only
applied to the components where the feasibility of certain vulnerabilities in their child
components could not be determined by phase one. However, the output of both phases of
analyses is the same. For every vulnerability found in isolated components, the output of
compositional analysis is as follows

1. The location (file and line number) of the vulnerable instruction,
2. name of the component (or function, in case of C-language programs) where the

vulnerable instruction lies, and
3. chain of vulnerable components.

The first two items in the list of output are self-explanatory. The last item is the chain
of components, which we have defined in Section 7.2, is, in the case of the C-language
programs, the sequence of function-calls in which a vulnerability was found to feasible.

7.6 Concluding Notes

In this chapter, we described the final step of the vulnerability discovery methodology
described in this thesis. This step takes as input the output of the analysis of isolated
components described in Chapter 6. Using the results of the analysis of isolated components,
we undertake a two-phase process (Section 7.2) to determine the feasibility of the discovered
vulnerabilities in components that interact with the vulnerable components in a relationship
described by the parentL function.
In the first phase (Section 7.3), compositional analysis compares the paths covered

by analysis of isolated components and generates a report whenever a path covered in
parentsL(m) ends in a path in PCfail(m), meaning simply that the same failure was also
triggered while analysing the parent component. However, due to insufficient path coverage
in parent components, it can be the case that such a path might not have been found while
analysing the said parent component in isolation.

To handle this case, we proposed the second phase (Section 7.4) of compositional analysis
where the aim is to deal with the problem of insufficient path coverage by removing
the paths in the parent and child components that do not trigger the failure resulting
due to the vulnerability whose feasibility needs to be determined. This is achieved by,

89

7 Compositional Analysis

first, summarising the vulnerable component in terms of the triggered failures and, then,
employing symbolic execution with a targeted search strategy to reach the summarised
component from its parent components. Please note that in our compositional analysis
technique, we detect recursion by detecting loops in a program’s call-graph and performing
the feasibility determination step (Section 7.4.1) only once in a loop.
The result of the above two-phase process is a list of chains of vulnerable components,

each listing a vulnerability and the components affected by it in the order of their hierarchy
defined by the parentL function.
In this thesis, we report all discovered vulnerabilities, regardless of whether they were

found to be feasible in a program entry point or not. In Part III, we will discuss some
strategies to assess and prioritise vulnerabilities when they might be false-positives. However,
before that, in the next chapter, we will evaluate the vulnerability discovery framework in
terms of its effectiveness and efficiency.

90

8 Evaluating Vulnerability Discovery

This chapter evaluates the vulnerability discovery part of our thesis by
comparing their effectiveness and efficiency to those of various compara-
ble dynamic analysis techniques. Parts of this chapter have previously
appeared in [101], where the author of this thesis was the first author.

In this part of the thesis, we have discussed a compositional analysis framework that
discovers vulnerabilities in programs using symbolic execution, fuzzing and a novel greybox
fuzzing technique. In this chapter, we will now try to evaluate the efficiency and effectiveness
of our framework by stating and answering relevant research questions related to the
promised effects of it.
This chapter is organised as follows – We start in Section 8.1 by giving an overview of

Macke, our compositional greybox fuzzing framework putting in practice the techniques
that we have described so far. Then, in Section 8.2, we list the baseline for comparing
Macke with, i.e. state-of-the-art symbolic execution and fuzzing tools with similar goals and
claims as ours. In Section 8.3, we list and elaborate on the research questions that our set
of experiments will aim to answer. We describe our experimental setup in Section 8.4. In
Section 8.5 and Section 8.6, we discuss the observations of our experiments w.r.t. coverage
and vulnerabilities discovered in the benchmarked programs. In Section 8.7, we will discuss
observations w.r.t. vulnerabilities discovered in open-source libraries. To analyse the
observations and get a consistent big picture, we synthesise our results w.r.t. the research
questions in Section 8.8. We finally conclude the chapter in Section 8.9.

8.1 Operationalisation of Framework in Macke

We have implemented the three-step technique of vulnerability discovery discussed in
Chapter 5, Chapter 6 and Chapter 7 in Macke1 (Modular and Compositional analysis
using Klee (and AFL) Engine), our open-source vulnerability discovery tool. Macke
requires, in practice, that the C-program to be analysed be compiled to LLVM intermediate
representation using Clang compiler [42]. An overview of the steps involved in dynamically
analysing C-programs, after compilation, using Macke, as illustrated in Figure 8.1, is as
follows.

1. Generate the list of functions that can be analysed in isolation, i.e. accepting at least
one parameter and no parameter of double-pointer type.

2. Generate test-drivers for each function to be analysed based on the mode of analysis
chosen, viz. symbolic execution, fuzzing or greybox fuzzing. For details on adaptation
of test-drivers for the mode of analysis, please refer to the discussion in Chapter 6.

3. Create a pool of threads (using Python’s multiprocessing module [89]) from all the
test-drivers generated in the previous step.

1Macke can be downloaded for free at https://github.com/tum-i22/macke

91

https://github.com/tum-i22/macke

8 Evaluating Vulnerability Discovery

LLVM
object

Test-driver
generation

.

.

.

.

TD1

TD2

TDn

.

.

.

TD = Test drivers
CC = Caller-callee pairs

STMatcher = Stack-trace Matcher
Targ. Symex = Targeted symbolic execution

Thread pool

Analysis of
Isolated

Functions

Analyser

Summariser

Report compiler

CC1

CC1

CC1

.

.

.

Thread pool

Compositional
Analysis

STMatcher

Targ. Symex

Report compiler

Figure 8.1: Step-by-step functioning of Macke

4. For each thread of analysis (test-drivers for isolated functions)
a) Run the analysis for the required amount of time (or till all paths are explored).
b) After the analysis is finished, compile analysis results. Analysis results include

the lines covered, the lines not covered, vulnerabilities found and the stack-trace
of the crashes resulting from the vulnerabilities.

5. Once all isolated functions are analysed, summarise the vulnerable functions, as
described in Chapter 7.

6. Create another pool of threads for every caller-callee pair that needs to be composi-
tionally analysed, as described in Chapter 7

7. For each thread of compositional analysis
a) First, check if the same vulnerability was reported in the caller function, by

stack-trace matching.
b) If the vulnerability was not reported, run targeted symbolic execution (using

Klee22 [100]) from the caller function to the summarised version of the callee.
c) After compositional analysis is finished, compile its results. Analysis results

include the new lines covered and chains-of-vulnerable components (if any).
d) In every case that a vulnerability was found to be feasible from the caller

function, add parents(caller) to the pool of threads for compositional analysis.

With the above practical design, Macke can discover vulnerabilities in C-programs, by
isolating functions, analysing them using symbolic execution, fuzzing or greybox fuzzing and
compositionally analysing vulnerable functions to determine the feasibility of vulnerabilities.
We will now, in the rest of this chapter, use Macke to demonstrate the benefits of a scalable
greybox fuzzing approach over state-of-the-art dynamic analysis techniques.

8.2 Comparison Baseline

We start the description of our experiments by listing the tools that we will compare with
our framework. We picked our baseline tools mainly based on whether a tool or technique

1. was available as an open-source tool,
2. had reasonably complex user-guide or documentation and could be used “out-of-the-

box” for our analysed programs,

92

8.3 Research Questions

3. provided actionable items for discovered vulnerabilities, i.e. source-code instruction
containing vulnerabilities, and

4. promised a higher coverage or higher rate of vulnerability discovery for general-purpose
UNIX-based programs, compared to other techniques.

With the above inclusion criteria in sight, we concretely divide the state-of-the-art, and
comparative, tools in the following two categories.

1. Basic tools: The first set of tools that we will compare with are basic symbolic
execution and fuzzing tools. For symbolic execution, we will pick KLEE [26], and for
fuzzing, we will pick AFL [2]. Both of these tools are considered state-of-the-art in
the fundamental techniques used in this paper.

2. Coverage-guided tools: Next, we include more sophisticated tools involving sym-
bolic execution and fuzzing, that improve upon these fundamental techniques by
actively monitoring structural coverage of the program-under-test. We will pick
AFLFast [21] and Munch [99] in this category. More details on these tools can be
found in Chapter 4.

There are other frameworks and tools, such as Driller [133], AFLGo [20], FairFuzz [80]
and Angora [35], that have proposed many improvements over state-of-the-art mutation-
based fuzzing. However, these tools did not meet the inclusion criteria specified above and,
therefore, are not included in our comparison.

8.3 Research Questions

To evaluate Macke, we will try to answer the following research questions

RQ1 How does the in-depth coverage of analysed programs compare amongst the three
techniques of analysing isolated components?

RQ2 How does the in-depth coverage of analysed programs by our framework compare to
those of the basic and coverage-guided tools?

RQ3 How does the vulnerability finding capability compare amongst the three techniques
of analysing isolated components and compositional analysis?

RQ4 How does the vulnerability finding capability of our framework compare to those of
the basic and coverage-guided tools?

RQ5 Can our framework be effectively used to test libraries without manual intervention,
such as writing drivers?

8.4 Experimental Setup

For answering the research questions, we selected eight open-source C programs and 12
GNU Binutils, listed in Table 8.1, for RQ1 to RQ4. In terms of LOC and functions, this
set contains a wide range from basic utilities to much larger programs. For answering RQ3,
we selected three case studies (Table 8.1) of open-source libraries.

93

8 Evaluating Vulnerability Discovery

Table 8.1: Open-source programs analysed
Prog.# Program LOC Functions Analysis time (minutes)

Macke Other tools
1 bc 1.06 3.5k 129 22.5 283.2
2 bzip2 1.0.6 3.3k 108 36.4 383.3
3 diff 3.4 7.8k 391 103.0 849.9
4 flex 2.6.0 6.5k 260 58.0 716.6
5 grep 2.25 8.0k 461 130.5 933.3
6 less 481 7.9k 459 66.7 800.1
7 lz4 r131 4.7k 205 68.6 999.9
8 sed 4.2.2 3.2k 213 57.9 349.9

Binutils
2.31.1

9 addr2line 49.0k 1485 607.0 1440.2
10 ar 50.2k 1547 605.0 1584.0
11 as 65.8k 2088 603.2 1584.1
12 cxxfilt 48.9k 1484 274.3 1584.0
13 gprof 51.2k 1540 404.4 1439.9
14 ld 64.3k 1953 510.2 1440.3
15 nm 49.5k 1509 383.4 1440.3
16 objcopy 56.2k 1656 187.1 1584.1
17 objdump 64.5k 1876 234.2 1584.0
18 ranlib 50.3k 1547 394.0 1440.3
19 readelf 17.5k 249 42.9 514.8
20 size 49.1k 1491 380.5 1439.9

Libraries
21 Libtiff 4.0.9 82.7k 639 368.0 –
22 Libpng 1.6.35 43.8k 516 360.0 –
23 Libcurl 7.59.0 209.2k 692 680.0 –

We repeated all experiments five times on an Intel Xeon CPU E5-1650 v2 with 12 cores,
3.50GHz per core, 126 GB of RAM, and running 64-bit Ubuntu 16.04.4 LTS.

In each repetition, we allowed Macke to fuzz each isolated function for 60 seconds each
(maximum) and we gave each run of targeted-search a total of 60 seconds to reach the
vulnerable function and trigger the crash. Generation of test-cases for functions could be
carried out in parallel (Chapter 6) for isolated functions in Macke, i.e. all 12 cores could be
utilised at the same time. Therefore, for a fair comparison, we allowed the other baseline
tools, KLEE [26], AFL [2], AFLFast [21] and Munch [99], to run for approximately 12
times the total time taken by Macke or 24 hours, whichever was smaller. Times taken in
each repetition for every benchmarked program are listed in Table 8.1.

8.5 Coverage

For evaluating coverage, we will first compare the three modes of analysis in Macke with
each other, viz. symbolic execution, fuzzing and greybox fuzzing. Then, we will compare
the best of these three methods of Macke to the basic and coverage-guided tools.
In Figure 8.2, we have depicted the percentage line-coverage in all analysed programs

for the three modes of analysis of isolated functions by Macke, symbolic execution, fuzzing
and greybox fuzzing. In Figure 8.3, we depict line coverage grouped by the respective

94

8.5 Coverage

bc bzip2 diff flex grep less lz4 sed Binutils0

20

40

60

80

Lin
e

co
ve

ra
ge

 (%
)

34

54
58

41

57
60

79

72

29

22

47
41

32

41

31

72

59

20

38

56 54

43

53

62

74

63

22

Symbolic execution
Fuzzing
Greybox fuzzing

Figure 8.2: Comparison of average line coverage with different modes of analysis for isolated
functions

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Call-graph depth

10

20

30

40

50

60

Lin
e

co
ve

ra
ge

 (%
)

Symbolic execution
Fuzzing
Greybox fuzzing

Figure 8.3: Comparison of average line coverage grouped by call-graph depth, with different modes
of analysis for isolated functions

lines’ depth in the call-graph of all analysed programs. Please note that at every call-graph
depth, we only averaged over those programs that contained at least one function at that
depth.

bc bzip2 diff flex grep less lz4 sed Binutils0

20

40

60

80

Lin
e

co
ve

ra
ge

 (%
)

15

30

13 15

37

2

22
17

23
10 8

27

10 9
13

20

65 4
8

27

9 9
13

20

1

14

34

25

44

32

0

62

39

3

34

54
58

41

57
60

79

72

29

KLEE
AFL
AFLFast
Munch
Macke

Figure 8.4: Comparison of average line coverage

95

8 Evaluating Vulnerability Discovery

bc bzip2 diff flex grep less lz4 sed Binutils0

20

40

60

80

100

Fu
nc

tio
n

co
ve

ra
ge

 (%
)

25 23

13
17

33

2

36

20

4
12

19
12

56

18
23

32

12 9
17

12 11

58

17

4

32

5 3

24

41

25

61

31

0

56

30

6

82

97

88
95

90 93 96 92
88

KLEE
AFL
AFLFast
Munch
Macke

Figure 8.5: Comparison of average function coverage

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Call-graph depth

0

20

40

60

Lin
e

co
ve

ra
ge

 (%
)

Macke
AFL
AFLFast
Munch
KLEE

Figure 8.6: Comparison of average line coverage grouped by call-graph depth

How Does Greybox Fuzzing Improve Coverage? In Figure 8.7, we illustrate time-
wise line coverage for three arbitrary functions in the bc program for which greybox fuzzing
achieved higher (or equal) coverage than fuzzing or symbolic execution. For all the three
functions, we see that greybox fuzzing was able to detect a “plateau” in coverage (which,
expectedly, overlaps with the point where fuzzing or symbolic execution saturates overall)
and progress by switching to either fuzzing or symbolic execution, resulting in higher line
coverage.

We will now pick the analysis method from Macke that achieves the higher coverage over
most of the analysed benchmarks, and use it to compare with the basic and coverage-guided
tools. As seen above, this analysis method in our evaluation was symbolic execution.
Figure 8.4 shows the average (over 5 repetitions) line-coverage(%) achieved by Macke,

KLEE, AFL, AFLFast and Munch in the given time-limits over all functions. Figure 8.5
shows the average (over 5 repetitions) function-coverage(%) achieved by the same techniques.
Figure 8.6 shows the average (over all functions and 5 repetitions) line-coverage at every
depth of the call-graph of all programs, e.g. the lines of code in the main function are
counted at x = 0 in Figure 8.6, and so on.
Figures 8.4 to 8.6 show that the in-depth line coverage and function coverage for all

programs is larger with Macke than plain symbolic execution and fuzzing, as implemented in

96

8.6 Vulnerabilities

0 20 40 60 80 100 120
Time (s)

0

100

200

300

400

500

Co
ve

ra
ge

 (L
OC

)

Greybox fuzzing
Symbolic execution
Fuzzing

(a) yyerror

0 20 40 60 80 100 120
Time (s)

0

20

40

60

80

100

Co
ve

ra
ge

 (L
OC

)

Greybox fuzzing
Symbolic execution
Fuzzing

(b) make_arg_str

0 20 40 60 80 100 120
Time (s)

0

2

4

6

8

10

12

14

16

Co
ve

ra
ge

 (L
OC

)

Greybox fuzzing
Symbolic execution
Fuzzing

(c) bc_new_num

Figure 8.7: Time-wise line coverage for some functions in bc by greybox fuzzing, symbolic
execution and fuzzing.

KLEE and AFL, respectively, as well as advanced tools that improve upon these techniques
based on coverage, viz. AFLFast and Munch. Macke even achieves higher coverage at
depth = 0 due to the following reason – more lines in the main function are covered when
targeted symbolic execution is used for determining the feasibility of vulnerabilities, than
when only fuzzing or symbolic execution is applied without a set target. The reason that
function coverage was not 100% for Macke was, as explained in Section 6.3 that Macke
does not analyse functions that contain any parameter of double- or more pointer type. In
this study, we take no measures to handle this case and, instead, rely on targeted symbolic
execution in the compositional analysis step (Chapter 7) to generate test-cases for those
functions that could not be analysed by Macke.

8.6 Vulnerabilities

An increased coverage can be easily explained because we directly fuzz isolated functions.
Let us now see how it affects vulnerability discovery. For evaluating vulnerabilities, we
compare Macke to basic and coverage-guided tools. Table 8.2 lists the results related
to vulnerability discovery for Macke’s three modes of analysing isolated components in
C programs. For the three methods, we have listed in this table the following three
measures – The column “Vulnerabilities” lists the total number of discovered vulnerabilities,
determined by a uniquely vulnerable instruction (Chapter 6). To determine whether
any calling function could exploit the vulnerabilities discovered by Macke, we list the
“|chain| > 1” criterion in the next column that counts only those vulnerabilities that can
be, according to compositional analysis, exploited by at least one calling function. Some
of these chains were reported by simple stack-trace matching, as described in phase one
of feasibility determination, while others were reported from targeted symbolic execution
towards summarised functions in phase two. The number of such chains whose ends (highest-
level vulnerable functions) were reported by phase two, and not by simple stack-trace
matching, are listed in the next column in Table 8.2 as “chain ≺ P2”2.
We can see from Table 8.2 that fuzzing was almost always (except diff and less) able

to find the most amount of vulnerabilities. Moreover, the number of chains discovered by
2“chain ≺ P 2” should be read as “chains ending with a function found by phase-2 of feasibility analysis.”

97

8 Evaluating Vulnerability Discovery

Table 8.2: Vulnerability-related metrics for Macke
Prog. Vulnerabilities |chain| > 1 chain ≺ P2

Fuzz Symex GBFuzz Fuzz Symex GBFuzz Fuzz Symex GBFuzz
bc 72 57 60 42 30 40 7 16 16
bzip2 96 71 72 33 22 31 0 0 0
diff 219 256 256 205 166 227 32 7 9
flex 124 106 110 46 40 53 3 12 11
grep 319 261 246 186 132 176 24 7 6
less 167 166 173 151 124 168 15 14 13
lz4 102 92 94 119 100 137 43 3 5
sed 124 93 95 109 86 111 37 8 3
addr2line 979 804 407 404 226 280 10 9 4
ar 983 794 459 386 234 323 10 8 2
as 1230 1051 532 586 355 480 24 10 5
cxxfilt 895 811 411 294 234 284 4 6 3
gprof 982 837 490 398 238 336 9 6 11
ld 1218 1005 515 522 326 437 15 13 9
nm 948 847 358 362 247 245 10 7 5
objcopy 862 0 0 221 0 0 0 0 0
objdump 1008 0 0 258 0 0 0 0 0
ranlib 944 850 440 360 242 304 9 7 2
readelf 159 106 100 62 50 91 11 0 0
size 948 791 477 375 216 313 9 9 2

Macke with |chain| > 1 was also more for this mode for most of the programs. However,
there were some programs where the number of such chains was found to be higher with
greybox fuzzing. Lastly, for most programs, Macke’s fuzzing mode discovered more chains
of vulnerabilities with chain ≺ P2. From Table 8.2, we can see that fuzzing performs
better than Macke’s other modes of analysis (symbolic execution and greybox fuzzing) for
most programs. The similarity between symbolic execution and greybox fuzzing can be
attributed to the fact that both these modes start with symbolic execution and greybox
fuzzing only switches to fuzzing if saturation is detected within the given timeout limit of
1 minute. Additionally, greybox fuzzing mode also spends a few CPU cycles calculating
incremental coverage, which may only pay off if the timeout was longer than 1 minute.
The overall distribution of the lengths of chains of vulnerable functions is shown in

Figure 8.8, Figure 8.10 and Figure 8.12. This distribution shows that all three modes of
analysis in Macke can generate chains of various lengths and, in fact, finds that about half
of all discovered vulnerabilities can be exploited by at least one other function. In some
cases, chains of 7 or more functions in the call-graph are also found.
On an average, for 68% (66% for symbolic execution, 76% for fuzzing and 62% for

greybox fuzzing) of all chains ending at the main function, targeted symbolic execution
was necessary to exploit the vulnerabilities. Additionally, we can see from Figure 8.9,
Figure 8.11 and Figure 8.13 that the average lengths of chains of vulnerable functions with

98

8.6 Vulnerabilities

bc bzip2 diff flex grep less lz4 sed Binutils0
2
4
6
8

10
12
14

Le
ng

th
 o

f v
ul

ne
ra

bi
lit

y
ch

ai
n

Figure 8.8: All chains found by Macke (symbolic execution mode)

bc bzip2 diff flex grep less lz4 sed Binutils0
2
4
6
8

10
12
14

Le
ng

th
 o

f v
ul

ne
ra

bi
lit

y
ch

ai
n

Figure 8.9: chain ≺ P2 (Symbolic execution mode)

bc bzip2 diff flex grep less lz4 sed Binutils0
2
4
6
8

10
12
14

Le
ng

th
 o

f v
ul

ne
ra

bi
lit

y
ch

ai
n

Figure 8.10: All chains found by Macke (fuzzing mode)

chain ≺ P2 is higher than all chains combined. The above demonstrates the usefulness
of combining targeted symbolic execution with isolated functions’ analysis for discovering
high-impact vulnerabilities.

However, some of the vulnerabilities discovered by Macke may never be exploited because
their calling functions might sanitise the inputs before calling the vulnerable functions.
Therefore, as a final comparison with state-of-the-art tools, we present in Table 8.3 the

99

8 Evaluating Vulnerability Discovery

bc bzip2 diff flex grep less lz4 sed Binutils0
2
4
6
8

10
12
14

Le
ng

th
 o

f v
ul

ne
ra

bi
lit

y
ch

ai
n

Figure 8.11: chain ≺ P2 (Fuzzing mode)

bc bzip2 diff flex grep less lz4 sed Binutils0
2
4
6
8

10
12
14

Le
ng

th
 o

f v
ul

ne
ra

bi
lit

y
ch

ai
n

Figure 8.12: All chains found by Macke (Greybox fuzzing mode)

bc bzip2 diff flex grep less lz4 sed Binutils0
2
4
6
8

10
12
14

Le
ng

th
 o

f v
ul

ne
ra

bi
lit

y
ch

ai
n

Figure 8.13: chain ≺ P2 (Greybox fuzzing mode)

count of vulnerabilities that could be exploited by the main function of a program. Since
this factor can be measured for any baseline tool of our study, we have included basic tools
(KLEE and AFL) and coverage-guided tools (AFLFast and Munch) for comparison.

We can see from Table 8.3 that for all but one (Flex will be explained later) programs,
the number of such vulnerabilities found by Macke was higher than or equal to other
baseline tools, in almost 90% less time (considering parallelism).

100

8.6 Vulnerabilities

Table 8.3: Vulnerability-related metrics for all tools
Prog. main vulnerabilities

Macke
Symex

Macke
Fuzz.

Macke
GBFuzz

KLEE
[26]

AFL [2] AFLFast
[21]

Munch
[99]

bc 5 3 5 0 1 1 0
bzip2 0 0 0 0 0 0 0
diff 2 2 2 0 0 0 0
flex 0 0 0 0 1 1 1
grep 0 0 1 0 0 0 0
less 1 1 1 1 0 0 0
lz4 2 1 3 1 0 0 1
sed 1 1 0 0 0 0 0
addr2line 1 1 0 0 0 0 0
ar 0 0 0 0 0 0 0
as 6 7 4 0 0 0 0
cxxfilt 0 0 0 0 0 0 0
gprof 0 0 0 0 0 0 0
ld 3 3 5 3 1 1 2
nm 2 2 2 1 0 0 1
objcopy 0 0 0 0 0 0 0
objdump 0 0 0 0 0 0 0
ranlib 0 0 0 0 0 0 0
readelf 0 0 0 0 0 0 0
size 1 1 1 0 0 0 0
Total 24 22 24 6 3 3 5

Please also note that all the numbers in Table 8.2 and Table 8.3 are the common results
from the five repetitions of Macke, KLEE, AFL, AFLFast and Munch, i.e. we only list those
vulnerabilities and chains that were reported by all five runs of the respective method.

The Flex exception We saw in Table 8.3 that AFL, AFLFast and Munch discovered
more main vulnerabilities in Flex than Macke. In the code of Flex, the majority of the
functionality is contained within a function that is called directly by the main function,
viz. flex_main function. Due to this fact, Macke should have given more time to this
large function than other smaller functions, because the baseline tools get much more
overall time to analyse this single function close to the entry point than Macke. We leave
time-scaling based on the size of isolated-functions as future work.
Thus, we have shown, using 20 benchmarks, that a scalable greybox fuzzing approach,

such as Macke, makes it more likely to discover vulnerabilities in a considerably shorter
time than basic and coverage-guided tools, by deliberately executing functions in isolation,
and performing a bottom-up feasibility analysis.

101

8 Evaluating Vulnerability Discovery

8.7 Real Vulnerabilities in the Wild

In Section 8.5 and Section 8.6, we have shown how Macke outperforms state-of-the-art
techniques on programs that have a single user-interface, i.e. main function. We will now
show that Macke can also find vulnerabilities in open-source libraries that have many
possible entry points, i.e. APIs, that increase their attack surface. Unlike the basic and
coverage-guided tools, Macke can analyse these libraries automatically, without the need
for manually writing API drivers.
To demonstrate that Macke can effectively be used to test libraries without writing

test-drivers, such as is the case with baseline tools, viz. AFL, KLEE, AFLFast and Munch,
we picked three popular open-source libraries, listed below.

1. Libtiff 4.0.9 3 – A library used by application developers to process images of TIFF,
and a few other, formats.

2. Libpng 1.6.35 4 – A library used by application developers to process PNG images.
3. Libcurl 7.59.0 5 – A library for transferring data using various secure and non-secure

transfer protocols.

Our goal with these case studies was to find out if we can reproduce the vulnerabilities
reported in the past for them and if we can find any new ones.

For finding vulnerabilities, we filtered the list of all reported vulnerabilities (by Macke)
to those where there was at least one API function in the chain of vulnerability. Table 8.4
lists all previously known vulnerable functions in the respective versions of Libtiff, Libpng
and Libcurl.

We obtained this list from NVD6 and then filtered them by the name of the library and
the corresponding latest version. The second column of Table 8.4 lists the known CVE
identifier for the respective vulnerabilities. The last three columns show, for the three
modes of analysing isolated components, whether Macke could find the same vulnerability
in the given time-out. As we can see from Table 8.4, all the known vulnerabilities in Libtiff
and Libpng, and all but one vulnerabilities in Libcurl, could be found by Macke under the
given time-limit.
We also found 23 new vulnerabilities in these three libraries that could be exploited

through at-least one function in the respective libraries’ API. Table 8.5 lists the previously
unknown vulnerabilities (of type “buffer errors”) in Libtiff, Libpng and Libcurl that can be
exploited by an improper (but valid) use of their APIs.

8.8 Synthesis of the Results

8.8.1 RQ1 and RQ2– Coverage

Several works in the past [60, 102, 133] have shown that the primary reason that state-of-
the-art test-case generation techniques are unable to find many vulnerabilities is a lack of

3http://www.simplesystems.org/libtiff/
4https://libpng.sourceforge.io/
5https://curl.haxx.se/
6https://nvd.nist.gov/

102

http://www.simplesystems.org/libtiff/
https://libpng.sourceforge.io/
https://curl.haxx.se/
https://nvd.nist.gov/

8.8 Synthesis of the Results

Table 8.4: Known Vulnerabilities in Libtiff 4.0.9, Libpng 1.6.35 and Libcurl 7.59.0
Found by Mode

Function CVE SymexFuzz GBFuzz
TIFFSetupStrips CVE-2017-17095 3 3 3

PackBitsEncode CVE-2017-17942 3 3 3

TIFFPrintDirectory CVE-2017-18013 3 3 3

TIFFSetDirectory CVE-2018-5784 3 3 3

TIFFPrintDirectory CVE-2018-7456 3 3 3

LZWDecodeCompat CVE-2018-8905 3 3 3

TIFFWriteDirectorySec CVE-2018-10963 3 3 3

png_set_text_2 CVE-2016-10087 3 3 3

png_set_PLTE CVE-2015-8126 3 3 3

png_get_PLTE CVE-2015-8126 3 3 3

png_do_expand_palette CVE-2013-6954 3 3 3

png_free_data CVE-2018-14048 3 3 3

Curl_http_readwrite _headers CVE-2018-1000301 3 3 3

Curl_smtp_escape_eob CVE-2018-0500 3 3 3

Curl_auth_create_ntlm _type3_message CVE-2019-3822 7 7 7

Curl_pp_readresp CVE-2018-1000300 3 3 3

coverage in deeper parts of the code, often guarded by sophisticated checks for malformed
inputs. We, therefore, hypothesised that forcing higher coverage in programs will also
lead to discovering previously unknown vulnerabilities. Compared to dynamic analysis
techniques of symbolic execution and fuzzing applied to only the program entry points,
we showed in Section 8.5 that Macke achieves higher line- and function-coverage. The
reason for higher in-depth coverage was merely the under-constrained nature of the analysis,
where isolated functions were analysed directly. The basic and coverage-guided tools could
not cover as much of the source-code or functions because they had to overcome complex
frontier nodes [106] to execute these functions.

RQ1 – Our results for overall line-coverage (including coverage at every call-graph
depth) could not be generalised to pick one strong winner. However, we found that
symbolic execution achieved higher coverage for most analysed programs.

RQ2 – Our results show that, for the selected benchmarks, Macke achieves higher
in-depth line coverage and function coverage than basic and coverage-guided baseline
tools.

8.8.2 RQ3 and RQ4– Vulnerabilities

Our hypothesis for discovering vulnerabilities was based on several previous works [40,
59, 102] that use symbolic execution at the level of isolated functions and found more
vulnerabilities and increased coverage. In Section 8.6, we found that the number of

103

8 Evaluating Vulnerability Discovery

Table 8.5: New Vulnerabilities Discovered in Libtiff 4.0.9, Libpng 1.6.35 and Libcurl 7.59.0
Vulnerable Function Affected API
TIFFFindField TIFFGetFieldDefaulted
unixErrorHandler TIFFFdOpen
TIFFRGBAImageOK TIFFReadRGBAImage
TIFFSwabArrayOfShort TIFFSwabArrayOfShort
TIFFSwabArrayOfLong TIFFSwabArrayOfShort
TIFFWriteBufferSetup TIFFWriteTile
png_set_filler png_set_add_alpha
png_warning png_set_compression_method
png_colorspace_set_chromaticities png_set_cHRM
png_error png_set_compression_buffer_size
png_set_keep_unknown_chunks png_image_skip_unused_chunks
png_icc_check_header png_set_iCCP
png_rtran_ok png_set_alpha_mode
png_get_y_pixels_per_meter png_get_y_pixels_per_inch
png_get_y_offset_microns png_get_y_offset_inches
curl_easy_cleanup curl_easy_cleanup
curl_easy_perform curl_easy_perform
curl_getdate curl_getdate
curl_mime_init curl_mime_init
curl_slist_append curl_slist_append
curl_slist_free_all curl_slist_free_all
curl_easy_escape curl_easy_escape
curl_easy_unescape curl_easy_unescape

vulnerabilities (including potential false-positives, as we will discuss soon) reported by Macke
is always higher than state-of-the-art symbolic execution and fuzzing tools and comparable
to the state-of-the-art compositional tool. Additionally, the number of vulnerabilities that
could be exploited from the main function is also the same or higher.
Importantly, a compositional analysis framework can also help mitigate the problems

induced by potential false-positives, as follows. In particular, not all reported vulnerabilities
that cannot be exploited from an interface, such as the main function, are false-positives.
We provide three reasons for this claim here. 1. If a vulnerability can be shown to be
exploitable through multiple caller-callee pairs (|chain| > 1), then it could potentially be
true-positive and, hence, should be fixed. Manually confirming all reported vulnerabilities
with |chain| > 1 was not feasible in our work, but sorting vulnerabilities by |chain| should
be the first step in bug-triage. Targeted symbolic execution allows Macke also to report
more chains (chain ≺ P2 in Table 8.2) than from merely analysing the isolated functions
and examining their stack-traces. Without targeted symbolic execution, as discussed in
Section 8.6, we can not find many critical vulnerabilities, some of which were exploitable
through the top-level interface. 2. There may be many other factors [50], such as the degree
of connectedness of a function [93] and the distance to an interface such as main function

104

8.9 Concluding Notes

[97], that affect if a vulnerability may be exploited, even if an exploit from main could not
be generated. 3. In practice, functions tend to be reused in unforeseen contexts and, hence,
it may be advisable to fix vulnerabilities directly inside functions that may be reused.

RQ3 – Our results related to vulnerabilities could not be generalised to pick a winner
amongst symbolic execution, fuzzing and greybox fuzzing. However, by a small margin,
fuzzing was able to find more or the same, vulnerabilities than symbolic execution
and greybox fuzzing in isolated functions.

RQ4 – Our results show that, for all but one selected benchmarks, Macke finds more
vulnerabilities than basic and coverage-guided baseline tools. It also finds more, or
the same number of, true-positives as the baseline tools.

8.8.3 RQ5– Testing Libraries

Our final research question was whether Macke could help in effectively testing libraries to
find vulnerabilities, without the time-consuming process of writing drivers. By applying
our framework to three popular open-source libraries, Libtiff, Libpng and Libcurl, we
showed in Section 8.7 that all, but one, of the known vulnerabilities, could have been
found by Macke. We were also able to find new vulnerabilities and report them to their
development teams. This is an essential contribution of our research because open-source
libraries with public APIs are often used as daemon or microservices on remote servers
accepting input through standard protocols, such as HTTP. If a malicious user was to send
malformed input to the API to trigger the discovered vulnerabilities, they could cause a
denial-of-service resulting in a substantial monetary and functional loss7. Macke, helps in
mitigating potential vulnerabilities by reporting the chains of feasible functions, thereby
indicating its potential exploitability. For the vulnerabilities that could not be confirmed
to be feasible from the API, i.e. potential false-positives, we argue for them in the same
manner as earlier, viz. with reports containing chains of vulnerable functions, it makes it
easier for developers and testers to triage the reported bugs.

RQ5 – Our results show that, for the selected open-source libraries, Macke can effec-
tively find vulnerabilities in them without writing specialised drivers for automatically
testing them.

8.9 Concluding Notes

In this part of our thesis, we described a scalable, and completely automated, vulnerability
discovery method consisting of a three-step dynamic analysis procedure. First, as described

7Please note that we did not include evaluation of any network related libraries, such as OpenSSL [138],
because most network libraries rely on function callbacks, which cannot be resolved by our compositional
analysis engine and, hence, the exploitability of discovered vulnerabilities cannot be confirmed from
API functions.

105

8 Evaluating Vulnerability Discovery

in Chapter 5, our framework automatically isolates components of a program by automat-
ically adding entry points to the program, so that they may be analysed by a dynamic
analysis technique. Next, as described in Chapter 6, we propose automated procedures to
adapt the testing drivers created in the first step and analyse isolated components of the
program-under-test using symbolic execution, fuzzing or a novel greybox fuzzing method.
Lastly, after obtaining the list of vulnerabilities in isolated components, as described in
Chapter 7, we propose to determine the feasibility of the discovered vulnerabilities by
compositional analysis from their parent components.

In this chapter, we proposed an evaluation scheme to find out how effective and efficient
our proposed vulnerability discovery technique is, compared to state-of-the-art dynamic
analysis methods. To investigate our research questions, we applied Macke on 20 open-
source UNIX-based programs, typically run from the command-line, and three open-source
libraries with APIs allowing third-party application developers to perform tasks such as
image-processing or web-resource handling. We also applied well-known symbolic execution
and fuzzing tools, and their coverage-guided variants that promise improvement in terms
of coverage and vulnerabilities. We found in our results that Macke (all three modes of
analysis) was effective in achieving higher line and function coverage, and finding more
vulnerabilities than state-of-the-art tools. Macke was also effective in finding vulnerabilities
in libraries without the manual effort of writing test drivers. In terms of time-efficiency, we
claim that Macke was able to achieve the above results in less than 10% of the time taken
by the state-of-the-art techniques, due to its capability of analysing in parallel isolated
components and performing compositional analysis for discovered vulnerability. The results,
therefore, demonstrate clearly that our scalable greybox fuzzing framework, Macke, is
superior to the state-of-the-art tools in terms of coverage, vulnerabilities and ease of use
for libraries.
At the end of the vulnerability discovery part, however, our framework may still have

many discovered vulnerabilities for which it could not be determined whether they are
ultimately feasible in a program entry point, such as the main function or an API. These
discovered vulnerabilities could, optionally, be discarded as being false-positive reports,
i.e. not feasible to be exploited in real-world usage of the program. However, this might
underestimate the effect they might have in the real-world usage, especially when dynamic
analysis of the isolated components has not achieved 100% path coverage. In the next part
of this thesis, we will discuss the above, and other, implications of the vulnerability reports
generated by Macke and how to prioritise them.

106

Part III

Vulnerability Analysis

107

9 Assessing Discovered Vulnerabilities
for Effective Triage

This chapter introduces some ideas combining output generated by the
vulnerability discovery steps with various impact factors and heuristics to
assess the discovered vulnerabilities. Parts of this chapter have previously
appeared in [97], where the author of this thesis was the first author.

In this thesis so far, we have discussed how our framework can find vulnerabilities in
programs that contain many interacting components. In Chapter 7, we described how
we could confirm whether a vulnerability in a component may be feasible in its parent
components. If our framework can confirm feasibility up to a program entry point, then
the corresponding input can be reported as a possible exploit. However, as mentioned
briefly in Section 7.6 when it cannot be confirmed that a discovered vulnerability is feasible
in the parent components, we require an assessment framework to prioritise them because
they might not always be false-positives.

Vulnerability discovery

Isolation of
components

Analysing isolated
components

Symbolic
execution

Fuzzing

Greybox fuzzing

Compositional
analysis

Vulnerability
analysis

Assessing severity of
vulnerabilities

Figure 9.1: Vulnerability assessment in the solution framework

In this chapter, we will list some ideas about assessing the vulnerabilities discovered
by our compositional (and scalable) analysis framework and prioritising them to assist
developers and testers in the triage process. This is the last step in managing vulnerabilities
in real-world programs, as shown in Figure 9.1. We will start this chapter by recalling the
results from the steps of vulnerability discovery, in Section 9.1. In it, we will expand on the
terminology of false-positive vulnerabilities and discuss in detail why assessing their impact,
instead of dismissing them from vulnerability reports, leads to a more effective triage
process. In Section 9.2, we discuss a common scale used in the research of vulnerability
assessment. Then, in Section 9.3, we will discuss some factors which may affect the severity
of discovered vulnerabilities in different usage context. Finally, in Section 9.4, we will
conclude the chapter.

109

9 Assessing Discovered Vulnerabilities for Effective Triage

9.1 Consolidating Reports of Discovered Vulnerabilities

We, first of all, recall the output from vulnerability discovery methodology described in
Part II. This output includes vulnerabilities in isolated components, chain of vulnerable
components (where the discovered vulnerabilities are feasible) and inputs (test cases) that
exploit vulnerabilities in vulnerable components. In addition to these, there are also other
test cases generated by our framework that execute in-component paths not leading to
vulnerable instructions. However, in this part of the thesis, we will only focus on the
discovered vulnerabilities.
For all vulnerabilities discovered by our framework, the corresponding test cases can

be seen as “proofs-of-exploitation” for vulnerable components. Additionally, chains of
vulnerable components list the components that are affected by a vulnerability. However,
let us consider the chain of vulnerable components depicted in Figure 9.2.

a b

c

d e

f

Figure 9.2: Chains of vulnerable components reported by the vulnerability discovery framework

We see from this figure that a vulnerability in a was found to be feasible in c and e (c ∈
parentL(a) ∧ e ∈ parentL(c)). However, let us suppose that, according to compositional
analysis step described in Chapter 7, the vulnerability in a was found neither to be feasible
in components d and, consequently, f , nor in f due to e. This can happen because there
exists no in-component path in d that may lead to the vulnerability path in c. An example
of such a scenario may be as follows – let us assume that we are dealing with a C-program
where the definitions of the functions a, c and d are as listed in Listing 9.1. We can see
from the definition of function d there is a check (so-called, “sanitisation”) on the value of
num which prevents the divide-by-zero vulnerability on line 2 to be exploited by an input
to the isolated function, d. In such a scenario, it is correct that compositional analysis
reports that the vulnerability in a is not feasible in d.
However, as we showed in the previous chapters, dynamic analysis techniques, such

as symbolic execution, fuzzing or greybox fuzzing, may saturate in terms of generating
test cases to execute paths in parent components, such as d, that lead to vulnerability
discovered in isolated vulnerable components, such as a. An example of such a case is listed
in Listing 9.2, where we have only changed the definition of function d from Listing 9.1.
By looking at the definition of d in Listing 9.2, we can see that the vulnerability in a is
feasible in d because there is no sanitisation of the variable num before calling the c. When

110

9.1 Consolidating Reports of Discovered Vulnerabilities

1 int a (int x , int num) {
2 return x/num; /∗ Divide−by−zero v u l n e r a b i l i t y ∗/
3 }
4 int c (int num) {
5 return b (100 , num)
6 }
7 int d(int num) {
8 i f (num != 0)
9 return c (num) ;

10 else
11 return 0 ;
12 }

Listing 9.1: Functions a, c and d. Input to c being sanitised in d

1 int d(int num) {
2 FILE ∗ f i l e ;
3 f i l e = fopen (" /tmp/dummy. txt " , " r ") ;
4 int num = a t o i ((char) f g e t c (f i l e)) ;
5
6 for (int i =0; i<num; i++)
7 p r i n t f ("%d" , num) ;
8
9 return c (num) ;

10 }

Listing 9.2: Function d where, input to c has not been sanitised in d

analysing the isolated function d a dynamic analysis technique such as symbolic execution
may not be able to generate test cases for the path to a from d that executes the vulnerable
instruction on line 2 of Listing 9.1 because it might get stuck in path-explosion due to
1. system-call (fgetc) on line 4, or 2. input-dependant loop on lines 6-7. Regardless of the
underlying reason for path-explosion, if compositional analysis is unable to report that the
vulnerability in a is feasible in function d, it is not necessarily because there does not exist
a path in d leading to the divide-by-zero vulnerability. Such a path might exist, as we saw
in the example of Listing 9.2, but may not be reported by symbolic execution, fuzzing or
greybox fuzzing, due to saturation.

9.1.1 What is a False-positive?

Description of the two scenarios above leads us to ask the following question w.r.t. reporting
of vulnerabilities by our framework – “For vulnerabilities whose feasibility could not be
determined in a program entry point, should our framework report them as false-positives?”
To answer this question, let us first state the definition of a false-positive vulnerability or,
simply, a false-positive.

Definition 9.1.1. (False-positive Vulnerability) A vulnerability that was discovered by
analysing an isolated component using a dynamic analysis technique, but that can never
be exploited in any real-world usage of the program-under-test, is called a false-positive
vulnerability.

Unlike static analysis [10], state-of-the-art dynamic analysis techniques, e.g. symbolic
execution and fuzzing, do not report vulnerabilities that cannot materialise in a real-world
usage of a program. This is because, unlike the techniques described in this thesis, existing

111

9 Assessing Discovered Vulnerabilities for Effective Triage

techniques usually perform the analysis only at one program entry point. As a result, all
vulnerabilities discovered by them can be exploited in a real-world usage also. However, due
to the reasons discussed above, we argue that not all vulnerabilities whose feasibility may
not be determined by compositional analysis of their parent components are false-positives
because we recognise explicitly the saturation problems associated with our analysis
methods. Therefore, in our framework, we do not exclude any discovered vulnerabilities,
regardless of whether they were found to be feasible from parent components or not. We
call these vulnerabilities as “unconfirmed vulnerabilities” instead of false-positives.

9.1.2 Vulnerability Prioritisation as the Antidote

At the same as claiming that not all unconfirmed vulnerabilities are false-positives, we also
realise that some of the unconfirmed vulnerabilities may affect the program less severely
than the others, were they to be exploited in a real-world usage. Assigning severities to
discovered vulnerabilities may be more effective than discarding them altogether because,
in many development contexts, it cannot be determined in advance how a developed
component may be used or reused. In case that a vulnerable component is reused in
an unexpected way, it might be possible to exploit the vulnerability more easily than
previously envisaged.

We will, therefore, extend our discovery framework with an automated assessment step
to prioritise the discovered vulnerabilities in the order in which they ought to be fixed by
the developers. In the following sections, we will discuss some ideas on how reported, but
unconfirmed, vulnerabilities may be assessed and ranked to make it easier for a developer
or tester to prioritise and triage them appropriately.

9.2 Scale for Scoring Vulnerabilities

To triage the reported vulnerabilities by our discovery framework, we must rank them
based on the context of their development, exploitability and potential damage to the
underlying assets. Several scales for scoring vulnerabilities in programs have been presented
in the past, of which Bugzilla’s severity scale [58] and Common Vulnerability Severity Scale
(CVSS) [121] are two examples. Bugzilla is an openly available platform to report and
track bugs and vulnerabilities in popular open-source projects. The bugs are reported with
nominal categories for prioritising the fixing process. However, from past works [9] and
our own experience, we note that the context-free ranking system of Bugzilla results in a
ranking that does not truly represent the severities of bugs. The first reason for this is
that, for most of the reported bugs, the development community ignored the “priority”
field of the reports, and used only the “severity” field as a proxy for both, priority and
severity [97]. Secondly, we also found many instances in the analysed programs where the
severity values in Bugzilla were changed by the developers when, either, the underlying
assets were not considered important enough, or the bug was not fixed because it was too
complex to exploit it.

In CVSS [87], Mell et al. proposed a standardised way to capture the principal character-
istics of a vulnerability and assign a numerical score reflecting its severity. CVSS consists

112

9.3 Factors Impacting Priority of Vulnerabilities

of a base-score that is a combined scale, including the metrics listed in Table 9.1.

Table 9.1: CVSS base-score values
Base-score value Description Allowed values
Attack Vector (AV) The context in which exploit-

ing the vulnerability is possi-
ble.

network, adjacent, local and
physical

Attack Complexity (AC) The complexity of the attack
process, if possible.

low and high

Privileges Required (PR) The level of privileges an at-
tacker must have to carry out
an exploit.

none, low and high

User Interaction (UI) The amount of direct user in-
teraction required for the at-
tacker to carry out an exploit.

none and required

Scope (S) Whether or not other compo-
nents (changed scope) than
the vulnerable one can be af-
fected if the vulnerability is
exploited.

unchanged and changed

Confidentiality (C) The amount of confidential
data that will be exposed if
the vulnerability is exploited.

none, low and high

Integrity (I) The amount of information
that the attacker can modify
in the exploited component.

none, low and high

Availability (A) The amount of information
to which the attacker can
deny access.

none, low and high

CVSS3 [121], a later improvement, also includes optional temporal and environmental
scores, in addition to the base-score. Unlike Bugzilla, for calculating CVSS and CVSS3
scores, scoring for all base-score values is mandatory. In this way, CVSS base-scores
explicitly take into account underlying assets and attack complexity, thereby eliminating
the need for further arbitrary adjustment.

9.3 Factors Impacting Priority of Vulnerabilities

In the severity scales discussed in Section 9.2, we listed some standard metrics based
on which we may be able to assign a score to a discovered vulnerability. Most of these
metrics, or base-score values for CVSS, depend on various factors related to the discovered
vulnerability, the vulnerable component, other interacting components, the context of
usage and, sometimes, properties of the entire program itself. Overall, we divide the impact
factors of the discovered vulnerabilities in three categories – structural, organisational and

113

9 Assessing Discovered Vulnerabilities for Effective Triage

asset factors. We will now briefly describe these categories below.

Structural Factors

Structural factors refer to the characteristics of the program and, particularly, the vulnerable
component itself, that may affect the manifestation, exploitation and severe effect of
vulnerability. In the previous chapters, we described in much detail the concept of
compositionality (Section 5.2) and how any program-under-test can be seen as being
composed of interacting components. Compositionality itself can also form the basis of
structural factors that affect the exploitability of a vulnerability by a malicious actor.
Concretely, below are some structural factors that may be related to the priority of
vulnerabilities

1. Function complexity, based on McCabe’s complexity metric [93],
2. Simple function size, based on instruction count,
3. Number of components possibly interacting with a vulnerable component according

to static code analysis,
4. The number of distinct vulnerabilities (based on vulnerable lines-of-code) in a vulner-

able component, and others.

Some past works have inspired this category of factors influencing the priority of
vulnerabilities. For example, El Emam et al. [50] utilised the object-oriented design of
programs and predicted faulty behaviour based on metrics related to object interactions.
Similarly, Nagappan et al. [92] and Nagappan et al. [93] used metrics such as the complexity
of functions and call-graph structures, derived from static analysis of the program-under-
test to predict the order in which discovered bugs in them might be fixed in the future.
We have drawn inspiration in our framework from all of these past works for structural
factors for vulnerability assessment. Intuitively, structural factors not only affect how a
vulnerability in one component may affect itself and other components interacting with it
but also affect the triage process by masking in complexity the latent effect of vulnerability.

Organisational Factors

For using structural factors to determine exploitability of vulnerabilities, we need internal
information about the program, such as the ones listed above. However, organisational
factors may only be extracted from outside the program and, often, capture the context
in which it is developed and may be used. It is important to note that organisational
factors do not only take into account the characteristics of the teams and organisations (e.g.
software-development companies) but how the development, use and reuse of a program
are organised.

To clarify the above point, we list below some examples of organisational factors affecting
priority of vulnerabilities in a program’s components

1. Component reuse is an important factor to be accounted for during the development
of the component itself. Reuse of a component, especially in case of APIs or libraries,

114

9.3 Factors Impacting Priority of Vulnerabilities

may result in a vulnerability being easier to exploit compared to the initial scenario
where the inputs were assumed to be sanitised in other parent components.

2. Release history refers to the previous iterations of a vulnerable component (or
other components interacting with it). It may be an important factor affecting
priority because, firstly, new vulnerabilities may have been introduced while adding
or removing new functionality and, secondly, many assumptions about handling input
to, and from, other components may no longer be true for a changed component.

3. Engineer metrics are related to the team of developers responsible for a vulnerable
component. It has been argued and shown in the past [94] that the number of engineers
and their professional experience contributes to the reliability of software developed
by them which, consequently, might affect the assessment of the vulnerabilities
discovered in components.

Past work by Nagappan et al. [94] and Murphy-Hill et al. [90] have also found that
factors related to the organisation of software development, combined with the metrics
related to the developmental history of the program-under-test can have a tangible effect
on the bugs in the program, whether they be newly-introduced ones or existing from older
components.

Asset Factors

Finally, we consider impact factors related to the underlying assets that are at stake from the
information system being considered for vulnerabilities. In particular, the confidentiality,
integrity and availability base-score values are related solely to access to the data that
can be breached if a vulnerability were to be exploited in the system. Below we list some
potential asset factors that impact the severity of a discovered vulnerability

1. Trustworthiness of storage, based on, e.g., whether the data is stored in private storage
(on-site) or third-party cloud storage. Another factor that affects the trustworthiness
is whether the data is encrypted before storage and, hence, it cannot be used for
unintended purposes by potentially malicious actors.

2. Organisation-wide access control is an important factor affecting who can access data
and assets (authentication) of an organisation and what an authentic user is allowed
to do with the access (authorisation).

3. Organisation-wide integrity protection is also an important factor for determining
how severely the integrity of an organisational asset may be affected if a vulnerability
were exploited.

We note for these factors that, most likely, their impact factor values will remain unchanged
w.r.t. the particular vulnerability discovered in a program.

9.3.1 Drawing on Past Knowledge

In this section, so far, we have listed many factors that may potentially affect the priority
of vulnerability discovered by analysing components of a program in isolation and, then,
compositionally. The challenge we face is to assign importance to these factors in relative

115

9 Assessing Discovered Vulnerabilities for Effective Triage

order, to be able to combine them to arrive at a ranking (or base-score values, in case of
CVSS).
Our approach in this thesis is to learn these functions to score vulnerabilities based on

past-knowledge available openly for many real-world programs. The goal is to correlate
the structural, organisational and asset factors to the assessment scales for discovered
vulnerabilities. In this way, we will be able to learn how important these factors are for
predicting the priority, and how to combine them for the best possible prediction power.
In the next chapter (Chapter 10), we will instantiate this idea in a case-study and evaluate
how a score predictor performs in the given scenario.
However, we recognise various caveats associated with such an approach based on the

correlation of factors and priority of vulnerabilities. For example, we may not be able to
measure all interesting factors precisely using nominal or categorical scales, especially the
more subjective ones. Secondly, if not all factors are equally important for all general-
purpose software, then we claim that it is a better idea to learn from prior knowledge related
to a single project or programs related to a particular domain. In all such scenarios, it may
be effective to consider our approach on a case-to-case basis instead of a gold-standard of
vulnerability assessment.

9.4 Concluding Notes

In this chapter, we recollected the output from vulnerability discovery step that includes a
list of vulnerabilities, vulnerable components and related components that are affected by
them, in the form of a chain of vulnerable components. Based on the reasons discussed in
Section 9.1, we showed that not all vulnerabilities that were not found to be feasible in
parent components are false-positives, meaning that it cannot be assumed that they will
not have any adverse effect if left untreated. In fact, a more useful approach in cases of
unconfirmed vulnerabilities is to assign the discovered vulnerabilities appropriate priority
values to be used as a proxy for prioritisation.

With these ideas as our base, we then discussed some existing scales for assessing
vulnerabilities in real-world software and saw that CVSS [87] provides a more inclusive
scale based, from the point-of-view of a potential attacker and the underlying assets. After
that, we discussed various structural and organisational factors which may impact how
severely a discovered vulnerability can affect a program and its attached components. We
proposed an idea that utilises existing knowledge in terms of these factors extracted from
old programs and predicts the base-scores of vulnerabilities based on how well combinations
of certain factors correlate with them.

In the next chapter, we will expand on the ideas of this chapter by presenting a case study
where we aim to predict the CVSS3 scores for discovered vulnerabilities using automatically
extracted impact factors from many open-source projects.

116

10 Case Study – Machine Learning
Based Score Predictor
This chapter instantiates some of the ideas presented in Chapter 9 in a
case study involving vulnerability discovery, a vulnerability scoring scale
and a prediction model generated by machine learning. Parts of this
chapter have previously appeared in [97], where the author of this thesis
was the first author.

In the previous chapter, we discussed in detail the need for an assessment process to
determine how severely a discovered vulnerability may affect a program and its underlying
assets if it was exploited, intentionally or unintentionally. We motivated the need for such
a process by showing that some vulnerabilities may not be reported as feasible because
of path-explosion in the parent components. This is why it may be more effective to
accurately assess the discovered vulnerabilities even if they may seem like false-positives at
first glance.

In this chapter, we will present a case study based on the ideas presented in Chapter 9.
We designed and implemented an automated framework for assessing severity scores (based
on CVSS3) for vulnerabilities discovered in many open-source programs and evaluated, and
improved, our results based on experts’ feedback. An overview of all the steps described in
this chapter is depicted in Figure 10.1.
This chapter is organised as follows – In Section 10.1, we describe how we collected

data from open-source software and bugs repositories and structured them for this study.
Then, we describe the application and output of vulnerability discovery on these collected
open-source programs, in Section 10.2. In Section 10.3, we present the design and intuition
behind some structural factors that we chose as indicators for predicting the severities
of discovered vulnerabilities. Using these automatically extracted features, we describe
a machine learning-based predictor in Section 10.4. The presentation of the predicted

Dataset

Programs

Vulnerabilities

CVSS scores

Macke

∩

Vulnerabilities

Feature
extractor

Vulnerable
 functions

Machine
learning

Features

CVSS base-score values

CVSS
base-score
predictor

Figure 10.1: Overview of steps to generate a CVSS base-score predictor. Steps depicted by dashed
lines are repeated after receiving feedback from experts (Section 10.5).

117

10 Case Study – Machine Learning Based Score Predictor

results and gathering feedback from experts is described in Section 10.5. Based on their
feedback, we improve our machine learning models by adding more features in Section 10.6
and re-training our models in Section 10.7. Finally, we conclude with some high-level
interpretation of the results in Section 10.9.

10.1 Collecting Data

We start this chapter by describing our data collection procedure for carrying out the case
study. The proposed technique in this chapter, as we will describe in detail later, is based
on machine learning. For this technique, we firstly need a list of vulnerabilities reported in
the past. Such a list must include CVSS3 base-score values for all reported vulnerabilities.
We rule out Bugzilla repositories, such as [58], because of reasons listed in Section 9.2.
Instead, our choice of repositories of bugs is the National Vulnerabilities Database (NVD)
[95]. NVD’s lists of common vulnerabilities and exposures (CVEs) are always reported
with CVSS scores (sometimes in CVSS version 3) and relevant references to detailed bug
reports and proofs-of-concept.

For CVEs obtains from NVD, we further filter them to only include reports that satisfy
the following criteria

1. Report follows CVSS3 notation, and not just CVSS version 1.0 or 2.0,
2. Reports a memory-related bug in a C-language program, and
3. Report specifies the name of the vulnerable C function.

After applying the above filtering criteria, the next step is to download the source code
for all affected programs.
In Section 10.1.1, we will present the size of dataset and ground-truth for machine

learning.

10.1.1 Data Collection Results

We included 21 open-source programs in this study1. These programs are listed in Table 10.1,
along with the lines of code in them (second column). The third column in this table
shows the number of connected functions, i.e. functions that are reachable from the main
function or the programs’ APIs. The fourth column in this table shows the number of
vulnerable functions, i.e. functions where at least one vulnerability was found by Macke.
The number of vulnerable functions reported in this column is an augmented value that
includes vulnerabilities reported in NVD and some vulnerabilities discovered by Macke
and manually analysed and scored by us.

1The programs used in this case study are different from the programs used to analyse our vulnerability
discovery framework in Part II. The reason for this is that we could not find enough vulnerability reports
in NVD for the programs used for our previous evaluation. We could, therefore, not collect enough
ground-truth to train our machine learning predictors described in this chapter.

118

10.1 Collecting Data

Table 10.1: Programs analysed and vulnerabilities in them

Pr
og

ra
m

an
d
Ve

r-
sio

n
LO

C
C
on

ne
ct
ed

fu
nc

-
tio

ns
Vu

ln
er
ab

le
fu
nc

-
tio

ns
fr
om

N
V
D
,

(w
ith

C
V
SS

)||
N
||

Vu
ln
er
ab

le
fu
nc

-
tio

ns
CV

SS
sc
or
ed

m
an

ua
lly

,|
|M
||

Vu
ln
er
ab

le
fu
nc

-
tio

ns
fo
un

d
by

us
,

||X
||

Bl
ue

Z
5.
42

28
6,
20

6
49

3
2

6
A
ut
oT

ra
ce

0.
31

.1
18

,5
81

23
3

0
3

G
ra
ph

ic
sM

ag
ic
k

1.
3

32
4,
42

2
22

4
4

10

Ic
ou

til
s
0.
31

.1
40

,0
93

45
2

3
5

Im
ag

eM
ag

ic
k

6.
0.
4-
8

47
6,
74

7
51

1
3

8

Ja
sp
er

1.
90

0.
27

46
,5
78

33
3

4
19

Ja
sp
er

2.
0.
10

46
,6
22

33
2

3
6

Li
ba

rc
hi
ve

3.
2.
1

20
4,
99

3
62

1
4

15
Li
ba

ss
0.
13

.3
18

,7
45

46
1

3
29

Li
bm

ad
0.
15

.1
12

,8
66

22
1

1
4

Li
bp

lis
t
1.
12

6,
07

5
69

1
5

27
Li
bs
nd

fil
e
1.
0.
28

85
,1
89

15
3

1
3

40
Li
bx

m
l2

2.
9.
4

33
4,
79

6
36

2
3

22
Lr

zi
p
0.
63

1
18

,6
22

11
5

1
1

7
O
pe

ns
lp

2.
0.
0

55
,5
45

27
1

3
17

Po
tr
ac
e
1.
12

12
,9
28

28
1

3
13

R
zi
p
2.
1

2,
65

1
34

1
3

19
Tc

pd
um

p
4.
9.
0

10
3,
15

2
13

1
1

7
T
iff

4.
7.
0

82
,7
25

12
5

3
2

6
V
irg

lre
nd

er
er

0.
5.
0

57
,2
13

70
2

0
21

Y
tn
ef

1.
9.
2

4,
81

8
70

6
1

12
T
ot
al

41
52

29
6

119

10 Case Study – Machine Learning Based Score Predictor

main

input_tga_reader

at_bitmap_init

at_exception_new fopen

fprintf at_exception_fatal

fseek

fread

ReadImage fclose

rle_fread std_freadat_exception_warning fputs

malloc

ftell

fgetc

free

Figure 10.2: Call-graph of Autotrace 0.31.1 program to convert a TGA bitmap to vector graphics
format

10.2 Discovering Vulnerabilities

The next step after collecting lists of vulnerabilities is to analyse the associated programs
using our vulnerability discovery framework, Macke.
The output of vulnerability discovery includes a JSON file that lists

1. discovered vulnerabilities,
2. the vulnerable instruction, and
3. chains of feasibility for all discovered vulnerabilities.

The results of the vulnerability discovery step are presented now.

10.2.1 Vulnerability Discovery Results

In the last column of Table 10.1, we have listed all the vulnerable functions discovered by
Macke in 30 minutes. We found that the total number (296) uniquely vulnerable functions
included all the vulnerabilities reported in NVD as well (demonstrating the strength of our
techniques). The extra vulnerabilities (ones not rated on NVD) may not be true positives
and, hence, require extra assessment.

For all the analysed programs we, next, obtained the call-graphs. An example of this is
in Figure 10.2, where the call-graph of Autotrace 0.31.1 is shown. In this call-graph, those
functions are highlighted where at least one vulnerability was found by Macke.

10.3 Extracting Features

In this step, we process the results from the data-collection procedure and vulnerability
discovery by Macke, to extract some features related to the vulnerabilities and vulnerable
functions. In this section, we will describe these features and their corresponding intuitions.
We assume for all analysed programs in this study that the likelihood and ease of sanitising
input are equal for all functions in a path that uses the said input. The readers must
note that in the following description, we will use the terms “nodes” and “functions”
interchangeable, as we wish to employ some concepts related to graph-theory (where terms
such as “nodes” and “edges” are used heavily).

120

10.4 Predicting Base-scores

1. Node degree (d_in, d_out), defined as the number of callers or callees (called,
henceforth, also as neighbours) for a function in the call-graph. A higher node degree,
as also explained by El Emam et al. [50], and Nagappan et al. [93], may make it more
likely that a vulnerability in it may infect other functions. E.g. For the function
rle_fread (Figure 10.2) the values of incoming node degree, d_in, is 1 and outgoing
node degree, d_out, is 3.

2. Distance to interface (di), defined as the length of the shortest path from a program
entry point to the given function. The shorter this distance, the less likely it may be
that a pointer argument was sanitised before being accessed. E.g. The value of di
for std_fread, as seen from Figure 10.2, is 3.

3. Clustering coefficient (cc), for a node is defined as the ratio of neighbouring nodes
that are also mutually connected (as caller-callee pair, in our context). The intuition
for this feature is that the bigger the clustering coefficient for a vulnerable function,
the more likely it is that the vulnerability may be exploited by another function in
the cluster. E.g. The value of cc for the function rle_fread (Figure 10.2) is 0.5
(out of 6 pairs of neighbouring nodes of rle_fread, 3 are connected in a caller-callee
relationship).

4. Node path length (nl) is defined as the average distance from a node to all the nodes
that are reachable from it. The intuition behind this feature is that the lower the value
for nl, the higher the likelihood that input to it is not sanitised before being passed.
E.g. Three functions are reachable from the function rle_fread (Figure 10.2) with
respective distances as 1, 1 and 1. Therefore, nl = 1 for rle_fread. For calculating
node path length, we deal with recursion by detecting loops in the call-graph and
stopping to count distance when we find one.

5. Vulnerabilities discovered (nv) is a feature unrelated to the call-graph but is a simple
count of vulnerabilities discovered in a function by Macke. A high value for nv might
indicate [92] that an expected sanitisation for one or more function parameters was
not done by a caller to the function. E.g. Macke discovered 1 vulnerability in the
function, rle_fread and, therefore, nv is 1.

6. Maximum length of infection (li) is obtained from Macke’s results. As we discussed in
Chapter 7, one part of the output of compositional analysis is the chain of feasibility
for a vulnerability in a function. The feature li takes exactly these chains into
account and represents the length of the longest chain of vulnerability feasibility.
E.g. For the function rle_fread in Autotrace (Figure 10.2), the chain of feasibility
of vulnerabilities discovered in this function was found to be feasible in ReadImage
function. Therefore, the value of li for rle_fread is 2.

10.4 Predicting Base-scores

10.4.1 Preparing Data for Prediction Models

Having obtained the basis for machine learning (ground-truth) in the form of features
related to functions, vulnerabilities and a program’s call-graph, we will now describe the
training procedure for learning prediction models for CVSS3 of vulnerabilities discovered

121

10 Case Study – Machine Learning Based Score Predictor

by Macke. We first bring to the notice of the reader that we learn individual predictors
for each base-score value of CVSS3 by using them as targets for prediction based on the
features listed above. The final CVSS3 severity score, severity, can be calculated with the
general formula

severity = calc_cvss3(yAV , yAC , yP R, yUI , yS , yC , yI , yA) (10.1)

where the subscripts, base, are the CVSS3 base-scores described in Chapter 9, Concretely,

ybase = fL
base(V) (10.2)

where,

V = 〈d_in, d_out, di, cc,nl,nv, li〉 (10.3)

The superscript, L, in Equation (10.2) stands for “learned”, denoting the learned model,
fL

base.

10.4.2 Machine Learning Models

For learning the CVSS3 scores, we used the following two machine learning algorithms to
learn the functions, fL

1. Random-forest classifier,
2. Naive Bayes classifier,

We used scikit-learn [110], a popular machine learning toolkit for Python. For all learning
algorithms, we employ K-fold cross-validation for training. Then, we applied the model
with the best validation score on the test dataset to calculate the test scores.

10.4.3 Machine Learning Results

We will now discuss the test scores of the learned predictors for both our machine learning
models. The ground-truth to be used for machine learning is G = N ∪M , where N and M
are as shown in Table 10.1.

The complete dataset, G, is split into training (75%) and testing (25%) sets. The training
set is split for 4-fold cross-validation, i.e. 4 machine-learning models are trained by holding
out folds one-by-one, and validation score calculated on the held-out fold. To remove
the effect of random initial states, for all iterations, we trained 10 models generated with
different seeds and perform majority voting for predicted base-score values. We calculated
the accuracy measure for all base-scores values, which is the ratio of correct predictions
out of all the predictions. The results of learned models on testing dataset are shown in
Table 10.2, where the best accuracy scores are highlighted in bold.

From Table 10.2, we can see that, except attack complexity and privileges required, the
best accuracy scores were obtained by us for random-forest classifier. We note that accuracy
scores for attack vector, confidentiality impact and integrity impact (0.59, 0.64 and 0.55

122

10.5 Reporting and Gathering Feedback from Experts

Table 10.2: Prediction results on test dataset – with original features (Section 10.3) only
Random Forest Naive Bayes Random Guessing

AV 0.59 0.27 0.25
AC 0.55 0.59 0.50
PR 0.91 0.95 0.33
UI 0.73 0.45 0.50
S 0.91 0.91 0.50
C 0.64 0.45 0.33
I 0.55 0.27 0.33
A 0.82 0.55 0.33

respectively) are better than randomly guessing them (because these base-score values may
be in one of 4, 3 and 3 classes respectively).

10.5 Reporting and Gathering Feedback from Experts

The next step in this case study was to present the obtained results on the analysed programs
to experts in secure software development (listed in the evaluation in Section 10.5.3). To
do this, we applied the best of all learned models (based on their accuracy scores on testing
dataset) to predict scores for previously unreported vulnerabilities (those vulnerabilities
that were not part of the ground-truth) found by Macke.

10.5.1 Interactive Reporting of Vulnerabilities

The choice of medium to present the prediction results in our case study was a web
application. The requirements for such an application are

1. Displaying the results of vulnerability discovery as a (clickable) call-graph, with the
ability to focus (through zooming) on functions and viewing their source code.

2. Upon focussing on a vulnerable function, displaying the CVSS3 base- and aggregate
scores.

3. Allowing a user/developer to change CVSS3 base-score values, leading to an automatic
update of the aggregate value.

4. Allowing the user to send individual feedback in the form of textual information.
5. Logging all relevant interactions by a participating user (only for this case study, and

after having informed them), including base-score values changed, function nodes
clicked, and source code expanded.

To meet the above requirements, we decided to implement our web-application on a
NodeJS [46] server, with a React [144] frontend. The implemented application’s interface
for Autotrace program is shown in Figure 10.3.

123

10 Case Study – Machine Learning Based Score Predictor

Figure 10.3: Severity assessment interface for Autotrace 0.31.1 with interactive call-graph

124

10.5 Reporting and Gathering Feedback from Experts

10.5.2 Gathering Feedback

We will now describe the process of presenting the interactive vulnerability reports to our
target audience and obtaining feedback from them, to improve our framework’s overall
effectiveness in predicting CVSS3 base-scores. Please note that the distinction between
previously reported (on NVD) and unreported vulnerabilities is transparent to the users.
Our intuition for doing this is so that their feedback is not biased by past assessment for
certain vulnerabilities. For previously unreported vulnerabilities, if the experts disagree
with the predicted values, we request that they provide reasons for disagreement through a
textual input field. As explained in the requirements, we collect the following information
from all experts who participated in this study

1. Function nodes that were expanded (by clicking on them, as shown in Figure 10.3).
2. Function nodes for which any CVSS3 base-score values were changed (including old

and updated values),
3. Function nodes for which the source code was expanded,
4. (optional) Any extra feedback from the expert
5. (optional) The expert’s full name and email if they agreed to be contacted by us.

Above information is stored in a MySQL backend for manual processing at the end. For
evaluating the effectiveness of our framework, we, first of all, used the feedback provided
by the experts.

10.5.3 Feedback Results

We will now provide the actual results of applying the steps listed in Section 10.5.2. The
predictions were made on, as described earlier, the dataset (X −G) (previously unreported
vulnerabilities or, the so-called, test dataset for machine learning). For getting feedback,
we contacted

1. developer mailing-lists of the analysed programs,
2. students of a Master’s level course, titled “Security Engineering”, who had sufficient

background in secure software development principles and symbolic execution, and
3. two technical staff’s members at our organisation, one of whom has a doctoral degree

in a security-related field.

The call-graphs, respective CVSS3 base-scores, and final scores are, then, presented using
the framework described in Section 10.5.
The unique feedback items received from the participants of this study are listed in

Table 10.3. In this table, anonymised users 1, 2 and 7 (first column) were technical
staff’s members at the organisation of this thesis’s author. Users 3 and 6 were developers
of the analysed programs who left feedback regarding the assessment of vulnerabilities
discovered therein. Users 4 and 5 were students of Security Engineering course, offered
at the author’s university. The second column in lists the number of programs analysed
by the respective participant. The third column lists the number of unique functions in
the programs on which they either viewed the predicted CVSS3 scores or, additionally,

125

10 Case Study – Machine Learning Based Score Predictor

expanded the source code. The last column lists the number of optional comments left by
the respective participant. The last row of Table 10.3 lists the number of unique analysed
programs (hence, the values in the column do not add to 5), functions and feedback items
received by us.

Table 10.3: Summary of feedback received by experts
Expert ID Programs analysed Functions expanded Comments left

1 1 1 1
2 1 4 1
3 1 1 1
4 1 1 1
5 1 2 2
6 1 8 4
7 3 6 3

Unique 4 20 13

In listing 10.1, we have listed all the feedback received from the experts who participated
in our survey2. Some of the original comments have not been included in this list because
they were either irrelevant to the task at hand (e.g. “you must examine the latest version
of this program because some vulnerabilities were fixed later”), or were identical to the
comments left for other vulnerable functions or programs.

Program : Jasper 2 . 0 . 1 0
Functions se lec ted : jpc_dec_decodepkt
Comment :
Without p i n p o i n t i n g the v u l n e r a b l e i n s t r u c t i o n , the
f u n c t i o n i s very hard to ana lyse manually . Looking
at the s i z e o f t h i s f u n c t i o n (250 l i n e s) , i t might be a
good idea to keep the s c o r e high , because i t ’ s l i k e l y
to be reused somewhere . I a l s o th ink the s i g n a t u r e
o f the f u n c t i o n s u g g e s t s the incoming parameters are
very var i ed and , hence , might be prone to being u n s a n i t i s e d

Functions se lec ted : jpc_dec_decodepkt , main , jpc_dec_lookahead
Comment :
The t o o l l o o k s great , but i t would be r e a l l y u s e f u l i f
f o r each f u n c t i o n you would a l s o i n d i c a t e the number
o f the LOC where the b u f f e r over f l ow v u l n e r a b i l i t y
occurs . Otherwise , f o r l a r g e funct i ons , i t i s d i f f i c u l t
to p inpo int the v u l n e r a b i l i t y manually . Of course , i t i s
a l s o e a s i e r to ana lyse the code o f commented f u n c t i o n s
in comparison to f u n c t i o n s without any comments .

Program : Rzip 2 .1
Functions se lec ted : read_buf , write_u16 , BZ2_bzBuffToBuffCompress , write_buf
Comment :
A l l OK.

Functions se lec ted : read_u8
Comment :
A l l i s OK but f o r t h i s f i l e I ’m not sure the r e s u l t o f c o n f i d e n t i a l i t y

2We have only omitted repetitive feedback items, i.e. where the feedback was identical to a feedback in
listing 10.1 verbatim by the same author.

126

10.6 Adding More Features

Functions se lec ted : read_stream , write_stream , write_u32
Comment :
I th ink the f i l e i s used l o c a l l y .

Program : L ibass 0 . 1 3 . 3
Functions se lec ted : ass_pre_blur1_vert_c
Comment :
To me t h i s f u n c t i o n does not seem to be e x p l o i t a b l e v ia the network .

Program : ImageMagick 6.0.4−8
Functions se lec ted : ReadRLEImage
Comment :
Here i t l o o k s to me l i k e those code w i l l be e x p l o i t a b l e v ia the network as

imagemagic i s o f t e n used to parse network data

Listing 10.1: Feedback from experts

Synthesizing Feedback

We can now qualitatively analyse the comments listed in listing 10.1 to determine if,
generally, our framework was successful in helping the security experts assess the discovered
vulnerabilities. Overall, our observations from their feedback may be summarised as follows

• Most experts found the assessment framework to be useful.
• Bug-triage process is significantly affected by the size of the source code being

analysed.
• In the absence of relevant comments, the perceived score of functions is affected by

how “complex” it is.
• The perceived score of a vulnerable function, somehow, depends on what parameters

are passed to it.
• Experts prefer pinpointing of the vulnerable instructions, rather than only the affected

function.

10.6 Adding More Features

Drawing inspiration from the high-level feedback provided to us by the participants of this
case-study, we moved to add more features to our initial dataset, to improve the accuracy
of predictions. Below, we have listed the new features and some intuition behind each

1. Function size (s): As some participants noted, the size of a vulnerable function points
to a possibility that its functionality may have been wrongly implemented, whereas it
should have been implemented as smaller functions. Therefore, we included function
size, which is the number of LLVM instructions in the compiled version of a function.

2. Approximate function complexity (fx): Another high-level feedback from the partici-
pants was that the perceived score of a vulnerability is related to the complexity of
the function. To include this criterion, we added, in addition to function size, a count
of LLVM basic-blocks in the function. A basic-block [67] is defined as a straight-line
of instruction-sequence that contains no branches inside it, other than the entry or

127

10 Case Study – Machine Learning Based Score Predictor

exit points of the block. Past research [93] have also shown with case studies that
even though no single set of indicators work equally well over different programs,
the number of basic-blocks and arcs in a function’s control-flow graph (CFG) did
correlate with the possibility of a component’s failure.

3. Pointer parameters (pt): Based on the observation that many functions with pointer
parameters were included in the set of functions whose vulnerability scores were
changed by the participants of our study, we added another feature to our list of
features that provides the number of parameters that are of pointer type. The
intuition behind this feature is that, because we are dealing with memory-related
vulnerabilities such as buffer-overflows, a higher number of pointer parameters may
be correlated with a higher possibility of unsafe pointer manipulations or indexing,
leading to errors.

10.7 Re-learning Predictor

With the original features (Section 10.3) and newly added features (Section 10.6), we re-
train the same machine learning algorithms as listed in Section 10.4 to learn new predictive
functions, fL, for all CVSS3 base-score values. Consequently, the next effectiveness measure
of our assessment framework is the accuracy of these re-trained models.

10.7.1 Machine Re-learning Results

Using the additional features of function size, approximate function complexity and pointer
parameters, we trained our machine learning models, viz. random-forest classifier and
naive Bayes classifier, each with 4-fold cross-validation. In Table 10.4, we have listed the
accuracy scores on the test set with the newly learned machine learning models. From

Table 10.4: Prediction results on test dataset – with original and added features (Section 10.6)
Random Forest Naive Bayes Random Guessing

AV 0.64 0.50 0.25
AC 0.82 0.55 0.50
PR 1.00 0.95 0.33
UI 0.95 0.95 0.50
S 1.00 0.95 0.50
C 0.91 0.91 0.33
I 0.73 0.50 0.33
A 0.91 0.82 0.33

this table, we can see that the accuracy of predicting CVSS3 base-score values increase
for both random-forest and naive Bayes classifiers, in general. We can also see that the
best accuracy scores for all base-score values were obtained by random-forest classifier.
This increase in prediction accuracy was particularly noticeable for privileges-requires and
scope change after including features based on feedback received from security experts and

128

10.8 Intuitively Analysing Case Study Results

developers and could be predicted with a 100% accuracy in the test dataset. The accuracy
for predicting User-interface was also close to 100%.

10.8 Intuitively Analysing Case Study Results

In this case study, we have seen that even though the initial set of features, derived from
analysed programs and discovered vulnerabilities, led to a good prediction score for all
base-score values, the addition of more features after incorporating feedback from experts
improved the prediction power even more. However, it should be emphasised that not
all base-score values are correlated with the included features intuitively. While some
base-score values, such as attack vector, complexity and change in scope may be predicted
by considering structural features of the program, such as the degree of connectedness,
others such as confidentiality and integrity of the affected data may not. One of the
internal threats to validity of our case study is that we did not guarantee that an almost-
uniform distribution in base-score values of CVSS3, e.g. our dataset does not have an
approximately equal number of vulnerabilities with confidentiality impact of low, medium
and high. This means that any classified based on machine learning may have predicted
correctly for a majority of previously unseen examples, without necessarily finding a
correlation between features and base-score values. We note that this is especially true
for base-score values related to underlying data of a system, i.e. confidentiality, integrity
and availability. However, for open-source programs whose usage context is impossible to
know beforehand, it was also impossible for us to validate the ground-truth without also
knowing the organisation factors and asset factors for their future usage.

10.9 Concluding Notes

In this chapter, we instantiated our vulnerability analysis framework in a case-study, by
manually designing impact factors and automatically extracting them from some programs-
under-analysis. We utilised popular machine learning models to train predictors for
individual base-score values for CVSS3 scale to assess the vulnerabilities discovered by our
framework. Later, we improved the prediction by consulting and incorporating feedback
from several experts in secure software development.

From Tables 10.2 and 10.4, we can see that, while some CVSS3 base-score values could be
predicted by our framework with high accuracy, there are others for which the framework
does not perform reasonably well. We want to stress in this work that we don’t claim
that all features of extracted functions may correlate with all base-score values. Based
on these results, we claim that our chosen features can be used to assign most of the
base-score values with high accuracy for previously reported bugs. However, for other
base-score values, where the accuracy of prediction is not as high, we should use other
sources, such as function or requirements specifications, or even manual intervention for
increasing effectiveness assessment.
The comments, as listed in listing 10.1, indicate that most experts who used our tool

were satisfied by the format of the tool and agreed with the predicted values for base-scores

129

10 Case Study – Machine Learning Based Score Predictor

of previously unseen vulnerabilities. Some of the feedback, as seen in listing 10.1, was not
concerned with the features of the analysed programs and functions but instead with the
presentation of the results. Therefore, by qualitatively analysing feedback received from
the experts, we can claim that such a tool for predicting CVSS3 severities can effectively
aid vulnerability assessment.
An important feature of the interactive tool designed by us for this case study is that

it does not depend on the technique used to discover the vulnerable functions. All the
features used for machine learning, except li, can be just as easily extracted using any
static analyser or even a manual code review. A comparison of the effectiveness of severity
assessment based on different vulnerability scanners is left as future work.

Threats to validity: There is an external threat to validity of this case study whereby
it cannot be said in general that the predictor learned using the features engineered by us
can predict CVSS3 scores of vulnerabilities for any program. Our attempt to deal with
potentially learning a limited predictor based on a single program’s structural factors was
to include as many and diverse programs from NVD as we could gather. In addition to
the above, there is also an internal validity in our experiment design, that we mentioned
in Section 10.8. By extracting a limited set of features (both, before and after collecting
feedback from experts), we forced the machine learning models to learn correlations between
just those features and the CVSS3 base-score values. However, as mentioned above, many
base-score values may not even be intuitively related to any of the features picked by us,
even if our results suggest that the prediction power of the learned model is sufficiently
high. For this reason, we state that a predictive assessment framework that can effectively
assist in triaging bugs discovered by our framework must include other organisational
and asset factors (Chapter 9). The training and inference of the machine learning models
should also be done in a particular context of development and usage. This case study
could only demonstrate prediction accuracy based on the features that could be included
from the open-source programs analysed.

Therefore, we have shown in this chapter using a specialised case study that the vulnera-
bilities discovered by our framework can be effectively assessed using an automated process,
like the one described here. With an effective vulnerability assessment framework, software
developers and testers can better handle and prioritise discovered vulnerabilities than
devoting energy to classify whether certain reported vulnerabilities may be false-positives,
i.e. never materialise in real-world usage.

130

Part IV

Conclusion

131

11 Conclusion
This chapter concludes this thesis by discussion resolutions to our original
research questions, contributions of this thesis to the state-of-the-art,
limitations of our work and future work.

In this doctoral thesis, we propose to design a framework for vulnerability discovery and
analysis that aims to help developers catch potential bugs in programs, using a combination
of symbolic execution and fuzzing. We started this thesis by describing at length the
background of two dynamic analysis techniques, viz. symbolic execution and fuzzing. After
describing the concepts of symbolic inputs and path conditions, we listed in detail the
benefits and drawbacks of symbolic execution and explained how it suffers from the well-
known problems of path explosion and constraint solving issues. Similarly, by describing
the concepts of seed inputs and input mutation, we showed that fuzzing, while good at
generating a large number of test-cases at high speed, fails to achieve high structural
coverage in programs due to their reliance on diverse seed inputs. Additionally, we also
listed, through a systematic mapping study, a large set of academic works proposed in
the recent past that have tried to tackle the above issues related to symbolic execution
and fuzzing by combining their technical aspects in meaningful ways to increase structural
coverage and vulnerability discovery power for real-world programs.

We identified relevant gaps in research and built upon it by describing a scalable approach
of dynamically analysing programs using a novel compositional approach involving symbolic
execution and fuzzing. We proposed to, first, automatically isolate components of a program
by generating test-drivers allowing their direct dynamic analysis. Then, we proposed three
ways to analyse isolated components, viz. symbolic execution, fuzzing and greybox fuzzing.
Greybox fuzzing is a novel analysis method that actively monitors if symbolic execution
or fuzzing has saturated (unable to find further coverage) and switches over to fuzzing or
concolic execution, respectively, and sharing inputs between the methods all this while.
Finally, we proposed determining the feasibility of vulnerabilities discovered in isolated
components by performing a two-phase compositional analysis – collating and matching
the results of analysis and performing targeted symbolic execution towards automatically
generated summary of the vulnerable components.

After performing compositional analysis for vulnerable components, we still might have
many reported vulnerabilities whose feasibility could not be determined from a program’s
entry-point. However, instead of discarding those reports as “false-positive”, we proposed
a severity assessment approach in this thesis to prioritise the discovered vulnerabilities to
assist the bug-triage process. Our proposed approach takes into account various structural
and organisational factors for the program-under-test and uses prior domain knowledge
to correlate these factors to various base-score values of CVSS3, a popular vulnerability
scoring system.

We instantiated all the steps of our approach for C-language programs, where functions
were considered as components of programs, and the parent relationship was described as the
caller relationship (function calling). Our goal was to evaluate our scalable compositional

133

11 Conclusion

greybox fuzzing approach in terms of its effectiveness and efficiency in achieving high
coverage and finding vulnerabilities in programs. We compared these values with state-of-
the-art symbolic execution and fuzzing tools, many of which are advanced coverage-driven
techniques proposed in the recent past.
In this chapter, we will, first, recall the research questions from the earlier parts of

this thesis and answer them, having performed the evaluations. Then, we will list some
limitations of the proposed approaches in this thesis. Finally, we will end this thesis with
some ideas for future work in this field of research.

11.1 Revisiting Research Questions

We may summarise the findings of this thesis by recalling the research questions listed in
Chapter 1 and providing answers for them.

RQ1: What are the concrete shortcomings and gaps in the state-of-the-art in
solutions related to symbolic execution and fuzzing?
We, first, listed in Chapter 2 and Chapter 3 the existing problems affecting the
state-of-the-art in symbolic execution and fuzzing. Then, in Chapter 4, we listed
hybrid solution proposals that improve basic symbolic execution and fuzzing by
modifying the various technical aspects of these techniques to increase coverage and
find more vulnerabilities in programs-under-test. However, we also saw in this chapter
that various avenues had not been addressed and investigated as possible solutions.
Hence, we may now answer this research question as follows

State-of-the-art symbolic execution and fuzzing techniques are unable
to achieve high coverage, especially for structures lying deep inside a
program’s control-flow-graph. As a result, they are not able to find
vulnerabilities in uncovered parts.

RQ2: How is structural coverage of components related to vulnerability discov-
ery in them, and how may dynamic analysis exploit it?
In Chapter 5, we described an automated procedure to isolate components in a
program by artificially removing the branching conditions for their entry, allowing
them to be analysed independently of their parent components. Then, in Chapter 6,
we described three dynamic analysis techniques, viz. symbolic execution, fuzzing
and a novel greybox fuzzing approach, to find vulnerabilities in isolated components
that do so by covering those instructions that could not be covered in a reasonable
amount of time by state-of-the-art dynamic analysis techniques (without isolation of
components). In Chapter 8, we saw that our hypothesis was indeed correct and, using
our isolation approach, three dynamic analysis techniques were able to cover more
instructions and find more vulnerabilities than state-of-the-art techniques. Hence,
we may now answer this research question as follows

134

11.1 Revisiting Research Questions

The vulnerabilities that were not discovered by state-of-the-art sym-
bolic execution and fuzzing techniques can be discovered by adding
more program entry points and allowing a dynamic analysis technique
to analyse all components in isolation.

RQ3: How may the exploitability of discovered vulnerabilities be determined
using the compositional nature of a program?
We asked in Chapter 6 a pertinent question about the feasibility of the vulnerabilities
discovered in isolated components, i.e. how may we determine feasibility (exploitabil-
ity) of a discovered vulnerability in isolated components? To answer this question, we
described a two-phase automated compositional analysis procedure in Chapter 7 and
instantiated it for C-language programs. Our evaluation (Chapter 8) showed that
we were able to find chains of vulnerable components using the above procedure, by,
first, comparing reported errors (stack-trace matching) and, then, targeted symbolic
execution. Hence, we may now answer this research question as follows

Using compositional analysis the exploitability of the discovered vul-
nerability may be determined by summarising vulnerable components
and targeting them from higher-level (in terms of parent relationship)
components.

RQ4: For all discovered vulnerabilities, how may we prioritise the process of
fixing them?
The need for a severity assessment portion of our framework arose from the observation
that even though not all discovered vulnerabilities could be confirmed to affect a
program entry point, they might still materialise in a yet unknown usage scenario in
the future. By recognising various structural and organisational impact factors, as
described in Chapter 9, we may be able to draw on prior knowledge to determine
how severely the underlying assets may be affected if a vulnerability were to be
exploited. We instantiated this idea in Chapter 10, where we designed a machine
learning framework to predict the severity of vulnerabilities discovered in various
open-source programs. We concluded for this case-study that, based on the precision
of predicted severity values and feedback obtained from experts (developers of open-
source programs, security researchers and students of security engineering), that
such an assessment framework will, indeed, help in increasing the effectiveness of the
programmers in prioritising the bug-triage process. Hence, we may now answer this
research question as follows

The vulnerabilities discovered by our proposed approach may be as-
sessed by considering various impact factors and combining them with
knowledge of the domain and context of usage of the program-under-
test.

135

11 Conclusion

11.2 Contributions

In this thesis, we have made the following contributions w.r.t. the gaps in the state-of-the-art
as elaborated in Chapter 4.

1. In Part II, we described a dynamic analysis technique that can analyse isolated
components to look for vulnerabilities in them and, then, compositionally determine
the feasibility of the discovered vulnerabilities. We have shown in Chapter 4 that
this was a gap in the research of hybrid symbolic execution and fuzzing works, i.e.
programs’ compositional aspects were not targeted by the proposed solutions in the
past. Our compositional analysis approach is, therefore, a novel contribution of this
thesis. Additionally, our open-source tool Macke [98] is the first of its kind in hybrid
compositional analysis tool that can be used out-of-the-box for any general-purpose
C programs.

2. In Chapter 6, we described a novel greybox fuzzing technique based on active
saturation monitoring for symbolic execution and fuzzing. W.r.t. the state-of-the-art
in fuzzing tools, this solution addresses the gap in fuzzing techniques that employ
symbolic execution to increase line coverage in programs-under-test. Our results have
indicated that, for many programs, we see increased coverage in isolated components
when fuzzing is combined with symbolic execution in the particular way described in
this thesis.

3. In addition to the improvement in the state of the art in fuzzing, our proposed greybox
fuzzing approach also contributes to the field of symbolic execution by combining it
with fuzzing, thereby taking the load off constraint solvers by using existing solutions
from the fuzzer for easy-to-reach branches in a program.

4. Our final contribution is described in Part III, where we propose a generic methodology
for assessing the vulnerabilities discovered by dynamic analysis with compositional
analysis. The assessment framework relies on various organisational, structural and
asset related factors to prioritise bugs discovered by our framework. This vulnerability
analysis framework is a novel contribution as none of the existing research in the
state-of-the-art have proposed a method to assess the discovered vulnerabilities for
effective bug triage.

11.3 Limitations

Pointer Analysis Currently, support for a few kinds of pointers in Macke is insufficient.
Particularly, if a function parameter list contains at least one parameter of double- or
more pointers (such as array-of-arrays), then the function will not be isolated. The same
is true if there is at least one parameter of function-pointer type. In case of pointers to
structures which may, themselves, contain members of pointer data-types, Macke attempts
to allocate memory for them (using malloc) and extract values for them from the function
arguments, as described in Chapter 6. However, if there are no explicit checks on pointers
inside structures, then a crash resulting from their access will be, correctly, reported.

136

11.3 Limitations

Global Variables Another limitation of Macke is that it does not take into account the
values of global variables that might affect the internal states of isolated functions. However,
as is also true for past works in compositional analysis [40, 61, 102], when including all
possible global variables in the argument extraction procedure, the search space for possible
executions explodes intractably.

Selection of Comparison Baseline For evaluating the performance of vulnerability
discovery, we compared Macke with baseline symbolic execution (KLEE) and fuzzing (AFL)
tools, as well as more advanced coverage-guided tools (AFLFast and Munch). The rationale
behind picking these tools for comparison was, as described in Chapter 8 that these are
the most widely referred to tools in research and have been shown to have state-of-the-art
coverage and vulnerability performance for general-purpose C-language programs. Even
though we took utmost care to include the most representative set of state-of-the-art tools,
there may have been other tools or framework that we may have unintentionally ommitted
in our study and may achieve comparable, or better, coverage and vulnerability detection
for the selected programs.

Impact Factors for Severity Assessment In the case study described in Chapter 10,
we utilised only some structural features and features based on the discovered vulnerabilities,
to predict their CVSS3 scores. The reason for not picking additional features, possibly
even organisational ones, was that these programs were open-source projects, and their
development context, history and organisational structures were readily available for
everybody. Therefore, the prediction results described in this chapter might not apply to
an arbitrary program developed under different circumstances. In general, it should be
clear from the descriptions and discussions in Part III that any prediction method that
works for a program, or programs developed and maintained under similar circumstances,
may not be useful as-is for dissimilar programs in another context.

Choice of Analysed Programs In this study, we have evaluated all our proposed
techniques on open-source C-language software. Our goal, as mentioned in Chapter 8,
was to include real-world programs that accept input through CLI. However, we excluded
some network-related programs and libraries that relied solely on function callbacks for
the majority of their functionality, e.g. ngircd, which is a lightweight IRC client.

External Validity Due to the above reasons, and possibly more, our results may not
generalise to other kinds of C programs that may functionally or structurally differ from
our evaluation set. However, we have taken care to, firstly, not exclude any programs by
design in our study and, secondly, include programs varying from medium- to large-scale,
in terms of the number of high-level source-code lines and functions. We applied these
selection criteria to, both, open-source programs with a main entry point and open-source
libraries that are popularly used by many third-party applications.

137

11 Conclusion

11.4 Future Work

We will now list, from our perspective, some hints on how the ideas described in this thesis
may be expanded upon in the future to improve the state-of-the-art in static and dynamic
vulnerability detection for large and real-world software.

Scaled Analysis Time We saw from the evaluation of the vulnerability discovery phase
that, for certain programs such as Flex, our compositional approach was unable to achieve
as high coverage, or find as many vulnerabilities, as the baseline tools used for comparison.
The reason for this ineffectiveness was that our approach gave an equal amount of time to
all functions in a C program. Due to this, the larger (in terms of LOC) functions close
to the program entry point were analysed for the same amount of time as functions lying
deeper in the call-graph but, possibly, being only called seldom for realistic program inputs.
A solution to this problem, which we leave as future work, is to scale the analysis time for
a function according to some notion of complexity and likelihood of reachability so that
easier, and deeper, components receive less attention than larger and more-often utilised
components.

Vulnerability Description Language The method of analysis used to analyse isolated
components of a program is, in theory, independent of the steps coming before and after it.
The compositional analysis step depends only on the output of the analysis, containing
details of discovered vulnerabilities such as the vulnerable instruction and stack-trace of
a crashing execution. Therefore, as future work, we can imagine developing a standard
description format for vulnerabilities discovered in an isolated component such that, as long
as any mode of analysis, dynamic or static, follows the description standard for reporting
vulnerabilities, it may be used to analyse an isolated component in a plug-n-play fashion
in Macke.

Automated Bug-fix Generation Some vulnerabilities discovered by Macke may be
able to use repeatable patterns for fixing them, e.g. a simple check on index-bound to
fix buffer-overflows. As future work, we may use such fix patterns to automatically fix
low-level vulnerabilities discovered by Macke in isolated components.

All the above ideas and the rest introduced in this thesis may be applied to any general-
purpose programming language, for discovering language and system-specific vulnerabilities,
in a highly effective and efficient manner, as demonstrated by this thesis.

138

Bibliography

[1] Address Sanitizer (ASAN). https://github.com/google/sanitizers/wiki/
AddressSanitizerAlgorithm.

[2] AFL Fuzzer. http://lcamtuf.coredump.cx/afl. Accessed: 2017-09-09.
[3] P. Agrawal and V. D. Agrawal. “Probabilistic analysis of random test generation

method for irredundant combinational logic networks”. In: IEEE Transactions on
Computers 100 (1975).

[4] Mohsen Ahmadvand, Alexander Pretschner, and Florian Kelbert. “A taxonomy
of software integrity protection techniques”. In: Advances in Computers. Vol. 112.
Elsevier, 2019.

[5] F. E. Allen and J. Cocke. “A program data flow analysis procedure”. In: Communi-
cations of the ACM 19 (1976).

[6] S. Anand, P. Godefroid, and N. Tillmann. “Demand-driven compositional symbolic
execution”. In: TACAS. 2008.

[7] S. Anand, C. Păsăreanu, and W. Visser. “JPF–SE: A symbolic execution extension
to java pathfinder”. In: TACAS. 2007.

[8] T. Avgerinos, A. Rebert, S. K. Cha, and D. Brumley. “Enhancing symbolic execution
with veritesting”. In: Proceedings of the 36th International Conference on Software
Engineering. 2014.

[9] P. Ayari K.and Meshkinfam et al. “Threats on building models from cvs and bugzilla
repositories: the mozilla case study”. In: Conference of the center for advanced studies
on Collaborative research. IBM Corp. 2007, pp. 215–228.

[10] N. Ayewah, D. Hovemeyer, J. D. Morgenthaler, J. Penix, and W. Pugh. “Using
static analysis to find bugs”. In: IEEE software 25 (2008).

[11] S. Banescu. “Characterizing the Strength of Software Obfuscation Against Auto-
mated Attacks”. PhD thesis. Technische Universität München, 2017.

[12] Rajiv D Banker, Srikant M Datar, Chris F Kemerer, and Dani Zweig. “Software
complexity and maintenance costs”. In: Communications of the ACM 36.11 (1993),
pp. 81–95.

[13] C. Barrett and S. Berezin. “CVC Lite: A new implementation of the cooperating
validity checker”. In: CAV. 2004.

[14] C. Barrett and C. Tinelli. “Satisfiability modulo theories”. In: Handbook of Model
Checking. Springer, 2018.

[15] C. W. Barrett, D. L. Dill, and J. R. Levitt. “A decision procedure for bit-vector
arithmetic”. In: Proceedings of the 35th annual Design Automation Conference.
1998.

139

https://github.com/google/sanitizers/wiki/AddressSanitizerAlgorithm
https://github.com/google/sanitizers/wiki/AddressSanitizerAlgorithm
http://lcamtuf.coredump.cx/afl

Bibliography

[16] S. Bekrar, C. Bekrar, R. Groz, and L. Mounier. “A taint based approach for
smart fuzzing”. In: 2012 IEEE Fifth International Conference on Software Testing,
Verification and Validation. 2012.

[17] T. Berners-Lee. “I was devastated”: The Man Who Created The World Wide Web
Has Some Regrets. https://www.vanityfair.com/news/2018/07/the-man-who-
created-the-world-wide-web-has-some-regrets.

[18] T. Berners-Lee. The web is under threat. Join us and fight for it. https : / /
webfoundation.org/2018/03/web-birthday-29/.

[19] M. Bishop. Computer security: art and science. Addison-Wesley Professional, 2003.
[20] M. Böhme, V-T. Pham, M-D. Nguyen, and A. Roychoudhury. “Directed greybox

fuzzing”. In: ACM SIGSAC Conference on Computer and Communications Security,
Proceedings of the. 2017.

[21] M. Böhme, V-T. Pham, and A. Roychoudhury. “Coverage-based Greybox Fuzzing
as Markov Chain”. In: IEEE Transactions on Software Engineering (2017).

[22] K. Böttinger and C. Eckert. “DeepFuzz: Triggering Vulnerabilities Deeply Hidden in
Binaries”. In: Detection of Intrusions and Malware, and Vulnerability Assessment.
2016.

[23] C. Boyapati, S. Khurshid, and D. Marinov. “Korat: Automated testing based on
Java predicates”. In: ACM SIGSOFT Software Engineering Notes. 2002.

[24] A. R. Bradley and Z. Manna. The calculus of computation: decision procedures with
applications to verification. Springer Science & Business Media, 2007.

[25] J. Burnim and K. Sen. Heuristics for Scalable Dynamic Test Generation. Tech. rep.
UC Berkeley, 2008.

[26] C. Cadar, D. Dunbar, D. Engler, et al. “KLEE: Unassisted and Automatic Generation
of High-Coverage Tests for Complex Systems Programs”. In: Operating Systems
Design and Implementation. 2008.

[27] C. Cadar and D. Engler. “Execution generated test cases: How to make systems
code crash itself”. In: SPIN Workshops: Model Checking of Software. 2005.

[28] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler. “EXE:
automatically generating inputs of death”. In: ACM Transactions on Information
and System Security (TISSEC) 12 (2008).

[29] C. Cadar and K. Sen. “Symbolic execution for software testing: three decades later”.
In: ACM Communications (2013).

[30] J. Cai, S. Yang, J. Men, and J. He. “Automatic software vulnerability detection
based on guided deep fuzzing”. In: International Conference on Software Engineering
and Service Science. 2014.

[31] F. Camilo, A. Meneely, and M. Nagappan. “Do bugs foreshadow vulnerabilities?: a
study of the Chromium project”. In: Proceedings of the 12th Working Conference
on Mining Software Repositories. 2015.

140

https://www.vanityfair.com/news/2018/07/the-man-who-created-the-world-wide-web-has-some-regrets
https://www.vanityfair.com/news/2018/07/the-man-who-created-the-world-wide-web-has-some-regrets
https://webfoundation.org/2018/03/web-birthday-29/
https://webfoundation.org/2018/03/web-birthday-29/

Bibliography

[32] S. Cha, M. Woo, and D. Brumley. “Program-adaptive mutational fuzzing”. In:
Security & Privacy. 2015.

[33] Sang Kil Cha, Thanassis Avgerinos, Alexandre Rebert, and David Brumley. “Un-
leashing Mayhem on binary code”. In: Proceedings - IEEE Symposium on Security
and Privacy (2012), pp. 380–394. issn: 10816011. doi: 10.1109/SP.2012.31.

[34] J. Chen, H. Shu, and X. Xiong. “Ewap: Using Symbolic Execution to Exploit Win-
dows Applications”. In: WRI World Congress on Computer Science and Information
Engineering. 2009.

[35] Peng Chen and Hao Chen. “Angora: Efficient Fuzzing by Principled Search”. In:
(2018). arXiv: 1803.01307. url: https://arxiv.org/pdf/1803.01307.pdf.

[36] Z. Chen, S. Guo, and D. Fu. “A directed fuzzing based on the dynamic symbolic
execution and extended program behavior model”. In: International Conference on
Instrumentation, Measurement, Computer, Communication and Control. 2012.

[37] Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. “S2E : A Platform
for In-Vivo Multi-Path Analysis of Software Systems”. In: Security 46 (2011), pp. 1–
14. issn: 0362-1340. doi: 10.1145/1950365.1950396. url: http://dl.acm.org/
citation.cfm?id=1950396.

[38] C. Y. Cho, V. D’Silva, and D. Song. “Blitz: Compositional bounded model checking
for real-world programs”. In: ASE. 2013.

[39] T. S. Chow. “Testing software design modeled by finite-state machines”. In: IEEE
transactions on software engineering (1978).

[40] M. Christakis and P. Godefroid. “IC-Cut: A compositional search strategy for
dynamic test generation”. In: Model Checking of Software. 2015.

[41] M. Christakis and P. Godefroid. “Proving memory safety of the ANI Windows
image parser using compositional exhaustive testing”. In: International Conference
on Verification, Model Checking, and Abstract Interpretation. 2015.

[42] Clang: C language family frontend for LLVM. https://clang.llvm.org/.
[43] E. Clarke, D. Kroening, and K. Yorav. “Behavioral consistency of C and Verilog

programs using bounded model checking”. In: Design Automation Conference. 2003.
[44] P. Cousot and R. Cousot. “Abstract interpretation: a unified lattice model for static

analysis of programs by construction or approximation of fixpoints”. In: Proceedings
of the 4th ACM SIGACT-SIGPLAN symposium on Principles of programming
languages. ACM. 1977.

[45] B. Cui, Y. Ji, and J. Wang. “An instruction-level symbolic checksum system for
windows x86 program”. In: Chinese Journal of Electronics (2012).

[46] R. Dahl. Node.js – A JavaScript runtime. https://nodejs.org/en/.
[47] D. E. Denning. Cryptography and data security. Addison-Wesley Longman Publishing

Co., Inc., 1982.

141

https://doi.org/10.1109/SP.2012.31
https://arxiv.org/abs/1803.01307
https://arxiv.org/pdf/1803.01307.pdf
https://doi.org/10.1145/1950365.1950396
http://dl.acm.org/citation.cfm?id=1950396
http://dl.acm.org/citation.cfm?id=1950396
https://clang.llvm.org/
https://nodejs.org/en/

Bibliography

[48] J. W. Duran and S. C. Ntafos. “An evaluation of random testing”. In: IEEE
transactions on Software Engineering (1984).

[49] N. Eén and N. Sörensson. “An extensible AT-solver”. In: International conference
on theory and applications of satisfiability testing. 2003.

[50] K. El Emam, W. Melo, and J. Machado. “The prediction of faulty classes using
object-oriented design metrics”. In: Journal of Systems and Software (2001).

[51] R. E. Fairley. “Tutorial: Static analysis and dynamic testing of computer software”.
In: Computer 11 (1978).

[52] P. Falcarin, C. Collberg, M. Atallah, and M. Jakubowski. “Guest editors’ introduc-
tion: Software protection”. In: IEEE Software 28 (2011).

[53] D. Fangquan, D. Chaoqun, Z. Yao, and L. Teng. “Binary-oriented hybrid fuzz
testing”. In: International Conference on Software Engineering and Service. 2015.

[54] L. D. Fosdick and L. J. Osterweil. “Data flow analysis in software reliability”. In:
ACM Computing Surveys (CSUR) 8 (1976).

[55] The OWASP Foundation. Application Security Risks. 2017.
[56] V. Ganesh and D. L. Dill. “A decision procedure for bit-vectors and arrays”. In:

CAV. 2007.
[57] V. Ganesh, T. Leek, and M. Rinard. “Taint-based directed whitebox fuzzing”. In:

International Conference on Software Engineering. 2009.
[58] GNOME Bugzilla. https://bugzilla.gnome.org/.
[59] P. Godefroid. “Compositional dynamic test generation”. In: ACM Sigplan Notices.

2007.
[60] P. Godefroid, A. Kiezun, and M. Levin. “Grammar-based whitebox fuzzing”. In:

Sigplan Notices. 2008.
[61] P. Godefroid, N. Klarlund, and K. Sen. “DART: directed automated random testing”.

In: ACM Sigplan Notices. 2005.
[62] P. Godefroid, M. Levin, and D. Molnar. “Automated Whitebox Fuzz Testing”. In:

Network and Distributed System Security Symposium. 2008.
[63] P. Godefroid, M. Levin, and D. Molnar. “SAGE: whitebox fuzzing for security

testing”. In: Queue (2012).
[64] William G Halfond, Jeremy Viegas, Alessandro Orso, et al. “A classification of SQL-

injection attacks and countermeasures”. In: Proceedings of the IEEE International
Symposium on Secure Software Engineering. 2006.

[65] I. Haller, A. Slowinska, M. Neugschwandtner, and H. Bos. “Dowsing for Overflows:
A Guided Fuzzer to Find Buffer Boundary Violations.” In: Usenix. 2013.

[66] R. Hamlet. “Random testing”. In: Encyclopedia of software Engineering (2002).
[67] J. Hennessy and D. Patterson. Computer architecture: a quantitative approach.

Elsevier, 2011.

142

https://bugzilla.gnome.org/

Bibliography

[68] G. Hoglund and G. McGraw. Exploiting software: How to break code. Pearson
Education India, 2004.

[69] K. Inkumsah and T. Xie. “Improving structural testing of object-oriented pro-
grams via integrating evolutionary testing and symbolic execution”. In: Proceedings
of the 2008 23rd IEEE/ACM International Conference on Automated Software
Engineering. 2008.

[70] S. Keele. “Guidelines for performing systematic literature reviews in software
engineering”. In: Technical report, Ver. 2.3 EBSE Technical Report. EBSE. sn, 2007.

[71] J. King. “Symbolic execution and program testing”. In: ACM Communications
(1976).

[72] B. Kitchenham, O. Brereton, D. Budgen, M. Turner, J. Bailey, et al. “System-
atic literature reviews in software engineering–a systematic literature review”. In:
Information and software technology (2009).

[73] C. Kolb. Constraint-size Thresholding in Symbolic Execution for Broader Path
Coverage. Technische Universität München. Bachelorarbeit. 2018.

[74] S. Krishnamoorthy, M. Hsiao, and L. Lingappan. “Strategies for scalable symbolic
execution-driven test generation for programs”. In: China Information Sciences
(2011).

[75] D. Kroening and O. Strichman. Decision procedures. Springer, 2016.
[76] N. P Kropp, P. J. Koopman, and D. P. Siewiorek. “Automated robustness testing

of off-the-shelf software components”. In: Fault-Tolerant Computing, 1998. Digest
of Papers. Twenty-Eighth Annual International Symposium on. 1998.

[77] I.V. Krsul. Software vulnerability analysis. Purdue University West Lafayette, IN,
1998.

[78] V. Kuznetsov, J. Kinder, S. Bucur, and G. Candea. “Efficient state merging in
symbolic execution”. In: Acm Sigplan Notices. 2012.

[79] C. Lattner and V. Adve. “LLVM: A Compilation Framework for Lifelong Program
Analysis & Transformation”. In: International Symposium on Code Generation and
Optimization (CGO). 2004.

[80] C. Lemieux and K. Sen. “FairFuzz: a targeted mutation strategy for increasing
greybox fuzz testing coverage”. In: Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering. 2018.

[81] Y. Lin, T. Miller, and H. Søndergaard. “Compositional Symbolic Execution using
Fine-Grained Summaries”. In: ASWEC. 2015.

[82] LLVM Opt. http://llvm.org/docs/CommandGuide/opt.html.
[83] K. Ma, K. Phang, J. Foster, and M. Hicks. “Directed symbolic execution”. In: Static

Analysis (2011).
[84] R. Majumdar and K. Sen. “Hybrid concolic testing”. In: ICSE. 2007.

143

http://llvm.org/docs/CommandGuide/opt.html

Bibliography

[85] R. Majumdar and R. Xu. “Reducing test inputs using information partitions”. In:
CAV. 2009.

[86] B. Marczak and J. Scott-Railton. “The million dollar dissident: NSO group’s iPhone
zero-days used against a UAE human rights defender”. In: Citizen Lab (2016).

[87] P. Mell, K. Scarfone, and S. Romanosky. “A complete guide to the common vul-
nerability scoring system version 2.0”. In: Published by FIRST-Forum of Incident
Response and Security Teams. 2007.

[88] C Miller. “Babysitting an army of monkeys”. In: CanSecWest (2010).
[89] Multiprocessing – The Python standard library. https://docs.python.org/3/

library/multiprocessing.html.
[90] E. Murphy-Hill, T. Zimmermann, C. Bird, and N. Nagappan. “The design space

of bug fixes and how developers navigate it”. In: IEEE Transactions on Software
Engineering 41 (2015).

[91] D. Musliner, J. Rye, and T. Marble. “Using concolic testing to refine vulnera-
bility profiles in FUZZBUSTER”. In: Self-Adaptive and Self-Organizing Systems
Workshops. 2012.

[92] N. Nagappan and T. Ball. “Static analysis tools as early indicators of pre-release
defect density”. In: International conference on Software engineering. 2005.

[93] N. Nagappan, T. Ball, and A. Zeller. “Mining metrics to predict component failures”.
In: International conference on Software engineering. 2006.

[94] N. Nagappan, B. Murphy, and V. Basili. “The influence of organizational structure
on software quality”. In: Software Engineering, 2008. ICSE’08. ACM/IEEE 30th
International Conference on. IEEE. 2008.

[95] National Vulnerability Database (NVD). https://nvd.nist.gov/.
[96] Y. Noller, R. Kersten, and C. S. Păsăreanu. “Badger: complexity analysis with fuzzing

and symbolic execution”. In: Proceedings of the 27th ACM SIGSOFT International
Symposium on Software Testing and Analysis. 2018.

[97] S. Ognawala, R. N. Amato, A. Pretschner, and P. Kulkarni. “Automatically as-
sessing vulnerabilities discovered by compositional analysis”. In: Proceedings of
the 1st International Workshop on Machine Learning and Software Engineering in
Symbiosis. ACM. 2018.

[98] S. Ognawala, T. Hutzelman, F. Kilger, and E. Vintilla. Macke – Modular and
Compositional Analysis with KLEE (and AFL) Engine. https://github.com/tum-
i22/macke.

[99] S. Ognawala, T. Hutzelmann, E. Psallida, and A. Pretschner. “Improving Func-
tion Coverage with Munch: A Hybrid Fuzzing and Directed Symbolic Execution
Approach”. In: Proceedings of the Symposium on Applied Computing. ACM. 2018.

[100] S. Ognawala, T. Hutzelmann, and E. Vintilla. KLEE22: A custom adaptation of
KLEE for targeted symbolic execution. https://github.com/tum-i22/klee22.

144

https://docs.python.org/3/library/multiprocessing.html
https://docs.python.org/3/library/multiprocessing.html
https://nvd.nist.gov/
https://github.com/tum-i22/macke
https://github.com/tum-i22/macke
https://github.com/tum-i22/klee22

Bibliography

[101] S. Ognawala, F. Kilger, and A. Pretschner. “Compositional Analysis Aided by
Targeted Symbolic Execution”. In: arXiv preprint arXiv:1903.02981 (2019).

[102] S. Ognawala, M. Ochoa, A. Pretschner, and T. Limmer. “MACKE: compositional
analysis of low-level vulnerabilities with symbolic execution”. In: International
Conference on Automated Software Engineering. 2016.

[103] S. Ognawala, A. Petrovska, and K. Beckers. “An Exploratory Survey of Hybrid
Testing Techniques Involving Symbolic Execution and Fuzzing”. In: arXiv preprint
arXiv:1712.06843 (2017).

[104] S. Ognawala, A. Pretschner, T. Hutzelmann, E. Psallida, and R. N. Amato. “Re-
viewing KLEE’s Sonar-Search Strategy in Context of Greybox Fuzzing”. In: 1st
International KLEE Workshop (2018).

[105] Open data repository. https://osf.io/df87r/?view_only=f195375c8fd24c1aa46334e6dc2b7781.
[106] B. Pak. “Hybrid fuzz testing: Discovering software bugs via fuzzing and symbolic

execution”. PhD thesis. CMU, 2012.
[107] J. Pan. “Software testing”. In: Dependable Embedded Systems 5 (1999).
[108] C. S. Păsăreanu and W. Visser. “A survey of new trends in symbolic execution

for software testing and analysis”. In: International Journal on Software Tools for
Technology Transfer (2009).

[109] Peach fuzzing platform. http://peachfuzzer.com. Accessed: 2017-09-09.
[110] F. Pedregosa, G. Varoquaux, et al. “Scikit-learn: Machine Learning in Python”. In:

Journal of Machine Learning Research (2011).
[111] J. Petley. “Panic stations: surveillance in the UK”. In: Index on Censorship 42

(2013).
[112] V. Pham, M. Böhme, and A. Roychoudhury. “Model-based whitebox fuzzing for

program binaries”. In: International Conference on Automated Software Engineering.
2016.

[113] V. Pham, W. Ng, K. Rubinov, and A. Roychoudhury. “Hercules: reproducing
crashes in real-world application binaries”. In: International Conference on Software
Engineering. 2015.

[114] B. Potter and G. McGraw. “Software security testing”. In: IEEE Security & Privacy
2 (2004).

[115] A. Pretschner. “Classical search strategies for test case generation with Constraint
Logic Programming”. In: FATES. 2001.

[116] Y. Qin, Q. Wang, Y. J. Zeng, and Q. Xi. “Malware Behavior Analysis Technique
Based on Approach to Sensitive Behavior Functions”. In: Applied Mechanics and
Materials. 2013.

[117] J. Radatz et al. “IEEE standard glossary of software engineering terminology”. In:
IEEE Std 610121990 (1990).

145

https://osf.io/df87r/?view_only=f195375c8fd24c1aa46334e6dc2b7781
http://peachfuzzer.com

Bibliography

[118] S. Rawat, V. Jain, A. Kumar, L. Cojocar, C. Giuffrida, and H. Bos. “Vuzzer:
Application-aware evolutionary fuzzing”. In: NDSS. 2017.

[119] A. Rebert, S. K. Cha, T. Avgerinos, J. Foote, D. Warren, G. Grieco, and D. Brumley.
“Optimizing Seed Selection for Fuzzing.” In: USENIX Security Symposium. 2014.

[120] R. S. Sandhu and P. Samarati. “Access control: principle and practice”. In: IEEE
communications magazine 32 (1994).

[121] K. Scarfone et al. Common Vulnerability Scoring System v3.0: Specification Docu-
ment. Tech. rep. FIRST.Org, Inc, 2016.

[122] E. J. Schwartz, T. Avgerinos, and D. Brumley. “All you ever wanted to know about
dynamic taint analysis and forward symbolic execution (but might have been afraid
to ask)”. In: Security and privacy (SP), 2010 IEEE symposium on. 2010.

[123] K. Sen, D. Marinov, and G. Agha. “CUTE: a concolic unit testing engine for C”.
In: SIGSOFT Software Engineering Notes. 2005.

[124] K. Sen, G. Necula, L. Gong, and W. Choi. “MultiSE: Multi-path symbolic execution
using value summaries”. In: FSE. 2015.

[125] K. Serebryany. “Continuous Fuzzing with libFuzzer and AddressSanitizer”. In:
Cybersecurity Development (SecDev), IEEE. 2016.

[126] K. Serebryany. “OSS-Fuzz-Google {\textquoteright} s continuous fuzzing service
for open source software”. In: (2017).

[127] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov. “AddressSanitizer: A
Fast Address Sanity Checker.” In: USENIX. 2012.

[128] M. Shahzad, M. Z. Shafiq, and A. X. Liu. “A large scale exploratory analysis of
software vulnerability life cycles”. In: Software Engineering (ICSE), International
Conference on. 2012.

[129] C. Shortt and J. Weber. “Hermes: A Targeted Fuzz Testing Framework”. In: Inter-
national Conference on Intelligent Software Methodologies, Tools, and Techniques.
2015.

[130] Y. Shoshitaishvili, R. Wang, C. Hauser, C. Kruegel, and G. Vigna. “Firmalice-
Automatic Detection of Authentication Bypass Vulnerabilities in Binary Firmware.”
In: NDSS. 2015.

[131] N. Sinha, N. Singhania, S. Chandra, and M. Sridharan. “Alternate and learn:
Finding witnesses without looking all over”. In: CAV. 2012.

[132] International Organization for Standardization/International Electrotechnical Com-
mission et al. “Information technology – Trusted Platform Module – Part 1:
Overview”. In: International Standard, ISO/IEC (2009).

[133] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, et al. “Driller: Augmenting
fuzzing through selective symbolic execution”. In: Network and Distributed System
Security Symposium. 2016.

146

Bibliography

[134] M. Sutton, A. Greene, and P. Amini. Fuzzing: brute force vulnerability discovery.
Pearson Education, 2007.

[135] R. Swiecki. Honggfuzz. http://code.google.com/p/honggfuzz. 2016.
[136] G. Tassey. The Economic Impacts of Inadequate Infrastructure for Software Testing.

Tech. rep. National Institute of Standards and Technology, 2002.
[137] The GNU C Library (glibc. https://www.gnu.org/software/libc/.
[138] The OpenSSL Project. OpenSSL: The Open Source toolkit for SSL/TLS. www.

openssl.org. 2003.
[139] ThreadSanitizer. https://clang.llvm.org/docs/ThreadSanitizer.html.
[140] N. Tillmann and J. De Halleux. “Pex–white box test generation for. net”. In:

International conference on tests and proofs. 2008.
[141] Tool. American fuzzy lop (AFL). http://lcamtuf.coredump.cx/afl/technical_

details.txt.
[142] D. Trabish, A. Mattavelli, N. Rinetzky, and C. Cadar. “Chopped Symbolic Execu-

tion”. In: ACM/IEEE International Conference on Software Engineering. 2018.
[143] UndefinedBehaviourSanitizer. https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.

html.
[144] J. Walke. React – A JavaScript library for building user interfaces. https://

reactjs.org/.
[145] M. Wang, J. Liang, Y. Chen, Y. Jiang, X. Jiao, H. Liu, X. Zhao, and J. Sun.

“SAFL: increasing and accelerating testing coverage with symbolic execution and
guided fuzzing”. In: Proceedings of the 40th International Conference on Software
Engineering: Companion Proceeedings. 2018.

[146] T. Wang, T. Wei, G. Gu, and W. Zou. “TaintScope: A checksum-aware directed
fuzzing tool for automatic software vulnerability detection”. In: Security & Privacy.
2010.

[147] C. Wohlin. “Guidelines for snowballing in systematic literature studies and a
replication in software engineering”. In: International Conference on Evaluation
and Assessment in Software Engineering. 2014.

[148] T. Xie, N. Tillmann, J. De Halleux, and W. Schulte. “Fitness-guided path exploration
in dynamic symbolic execution”. In: DSN. 2009.

[149] Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, and Taesoo Kim. “Q SYM : A
Practical Concolic Execution Engine Tailored for Hybrid Fuzzing”. In: (2018).

[150] B. Zhang, C. Feng, A. Herrera, V. Chipounov, G. Candea, and C. Tang. “Discover
deeper bugs with dynamic symbolic execution and coverage-based fuzz testing”. In:
Iet Software 12 (2018).

[151] J. Zimmerman. Principles of Imperative Computation, 15-122. 2013.

147

http://code.google.com/p/honggfuzz
https://www.gnu.org/software/libc/
www.openssl.org
www.openssl.org
https://clang.llvm.org/docs/ThreadSanitizer.html
http://lcamtuf.coredump.cx/afl/technical_details.txt
http://lcamtuf.coredump.cx/afl/technical_details.txt
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://reactjs.org/
https://reactjs.org/

Bibliography

148

Index

Application programming interface
(API), 52

Attacker, 5

Blackbox testing, 7
Branching condition, 17
Buffer overflow, 4
Bug, 4

Chain of vulnerable components, 80
Code sanisation, 31
Command-line interface (CLI), 52
Complex Vulnerability, 23
Component, 53
Composition of Program, 53

Decision procedure, 18
Decision procedure for propositional

logic(PL), 18

Error, 4
Exploit, 5
External constraint, 15

Failure, 4
False-positive vulnerability, 111
Fault, 4
Functional behaviour, 30
Fuzzing, 28

Graphical User Interface (GUI), 52
Greybox fuzzing, 70

Halting problem, 22

In-component path, 60
Input mutation, 29

Input mutation strategy, 29
Interaction with Environment, 30
Isolation, 54

Low-level Vulnerability, 23

Matching path, 81

Parent relationship, 53
Path condition, 18
Path explosion, 23
Program crash, 4
Program entry point, 52

Random testing, 27
Runtime profiling, 30

Seed arguments, 69
Seed inputs, 28
Stack-trace, 75
Symbolic input, 15

Test driver, 55
Test-cases, 6
Test-oracle, 6

Unconfirmed vulnerability, 112
Unique inputs, 60

Vulnerabililty feasibility, 80
Vulnerability, 4
Vulnerable instruction , see Vulnerability

4

Whitebox fuzzing, 31
Whitebox testing, 7

149

List of Figures
1.1 Overview of the scalable greybox fuzzing solution 11

2.1 Control-flow graph for C-program in Listing 2.1 17
2.2 How the path condition is updated during symbolic execution of the program

in Listing 2.1 . 19

4.1 Overview of the methodology . 37
4.2 Number of solution proposals by year – Vertically stacked values 41
4.3 Technical aspects of symbolic execution and fuzzing in solution proposals . 43

5.1 Isolation of components in the solution framework 51
5.2 Technical implmentation of test driver creation 57

6.1 Analysing isolated components in the solution framework 59
6.2 Splitting a byte-stream (generated by the fuzzer) and extracting function

arguments . 67

7.1 Compositional analysis in the solution framework 77
7.2 Call graph of program listed in Listing 7.1 79
7.3 Control-flow graph for the program listed in Listing 7.1 79
7.4 Scenario illustrating a case where multiple chains for the same vulnerability

exist . 84

8.1 Step-by-step functioning of Macke . 92
8.2 Comparison of average line coverage with different modes of analysis for

isolated functions . 95
8.3 Comparison of average line coverage grouped by call-graph depth, with

different modes of analysis for isolated functions 95
8.4 Comparison of average line coverage . 95
8.5 Comparison of average function coverage 96
8.6 Comparison of average line coverage grouped by call-graph depth 96
8.7 Time-wise line coverage for some functions in bc by greybox fuzzing, symbolic

execution and fuzzing. 97
8.8 All chains found by Macke (symbolic execution mode) 99
8.9 chain ≺ P2 (Symbolic execution mode) . 99
8.10 All chains found by Macke (fuzzing mode) 99
8.11 chain ≺ P2 (Fuzzing mode) . 100
8.12 All chains found by Macke (Greybox fuzzing mode) 100
8.13 chain ≺ P2 (Greybox fuzzing mode) . 100

9.1 Vulnerability assessment in the solution framework 109
9.2 Chains of vulnerable components reported by the vulnerability discovery

framework . 110

150

List of Figures

10.1 Overview of steps to generate a CVSS base-score predictor. Steps depicted by
dashed lines are repeated after receiving feedback from experts (Section 10.5).117

10.2 Call-graph of Autotrace 0.31.1 program to convert a TGA bitmap to vector
graphics format . 120

10.3 Severity assessment interface for Autotrace 0.31.1 with interactive call-graph124

151

List of Tables
4.1 List of all hybrid solution proposals . 42

8.1 Open-source programs analysed . 94
8.2 Vulnerability-related metrics for Macke . 98
8.3 Vulnerability-related metrics for all tools 101
8.4 Known Vulnerabilities in Libtiff 4.0.9, Libpng 1.6.35 and Libcurl 7.59.0 . . 103
8.5 New Vulnerabilities Discovered in Libtiff 4.0.9, Libpng 1.6.35 and Libcurl

7.59.0 . 104

9.1 CVSS base-score values . 113

10.1 Programs analysed and vulnerabilities in them 119
10.2 Prediction results on test dataset – with original features (Section 10.3) only123
10.3 Summary of feedback received by experts 126
10.4 Prediction results on test dataset – with original and added features (Sec-

tion 10.6) . 128

152

List of Algorithms

1 Making function m executable . 56

2 Making a function m ∈ CC(P) executable for symbolic execution 62
3 Generating symbolic arguments from given list of arguments for an isolated

function . 62
4 Generating symbolic arguments for non-pointer datatypes 63
5 Generating symbolic arguments for pointer datatypes 63
6 Making a function m executable for fuzzing 66
7 Generating fuzzed arguments from given list of arguments for an isolated

function . 66
8 Generating fuzzed arguments for non-pointer datatypes 68
9 Generating fuzzed arguments for pointer datatypes 68
10 Making a function m executable for greybox fuzzing 71
11 Monitoring saturation of fuzzing . 73
12 Monitoring saturation of symbolic execution 73

13 Determining the chain of functions for which a vulnerability in function m
is feasible . 83

14 Recursively generating the list of affected functions for vulnerability repre-
sented by Sm, as determined by stack-trace matching 83

15 Summarised version of the isolated function m1 86
16 Select the next instruction to be executed by targeted path-search strategy

in symbolic execution . 88
17 Calculating minimum possible distance to the target function 88

153

	Acknowledgments
	Zusammenfassung
	Zusammenfassung
	Abstract
	Abstract
	Outline of the Thesis
	Contents
	I Introduction and Background
	1 Introduction
	1.1 Software Vulnerabilities
	1.1.1 Vulnerabilities vs. Bugs
	1.1.2 Practical Implications of Software Vulnerabilities

	1.2 Hardening Software
	1.3 Software Testing
	1.3.1 State-of-the-art in Automated Testing
	1.3.2 Problems With the State-of-the-art

	1.4 Thesis Overview
	1.4.1 Research Questions
	1.4.2 Overview of Solution
	1.4.3 Contribution

	1.5 Structure

	2 Symbolic Execution
	2.1 Symbolic Program Input
	2.2 Path Conditions
	2.3 Constraint Solving
	2.4 Symbolic Execution in Practice
	2.4.1 Concolic Execution
	2.4.2 Path-search Strategies
	2.4.3 Bit-vector Constraints
	2.4.4 Loop Unrolling and Bounded Models
	2.4.5 Test-cases Exploiting Vulnerabilities

	2.5 Current Challenges
	2.5.1 Path explosion
	2.5.2 Bottleneck of Constraint Solving

	2.6 State-of-the-art Solutions
	2.6.1 Smart Heuristics for Path-search
	2.6.2 Compositional Symbolic Execution
	2.6.3 Constraint Solving Optimisation

	2.7 Concluding Notes

	3 Guided Fuzzing
	3.1 Random Testing vs. Fuzzing
	3.2 Seed Input Selection
	3.3 Input Mutation Strategies
	3.4 Process Monitoring
	3.5 Fuzzing in Practice
	3.5.1 Types of Fuzzers
	3.5.2 Instrumentation
	3.5.3 Test Minimisation

	3.6 Current Challenges and Solutions
	3.6.1 Reliance on Seed Inputs
	3.6.2 Redundant Path Coverage
	3.6.3 State-of-the-art Solutions

	3.7 Concluding Notes

	4 Hybrid Symbolic Execution and Fuzzing
	4.1 Collecting Data about Past Work
	4.1.1 Study Selection

	4.2 Classification of Solution Proposals
	4.3 Results of Classification
	4.3.1 Summarising Solution Proposals
	4.3.2 Solutions In-depth
	4.3.3 Summarising the State-of-the-art

	4.4 Identifying Gaps and Our Contributions
	4.5 Concluding Notes

	II Vulnerability Discovery
	5 Isolating Program Components
	5.1 Program Entry Points
	5.2 Granularity of Analysis (or Definition of Components)
	5.3 Making Components Executable
	5.3.1 Notes on Path Explosion

	5.4 Generating Test Drivers: Description of Practice
	5.4.1 Implementation Details

	5.5 Concluding Notes

	6 Analysing Isolated Components
	6.1 Formalising Paths and Failures
	6.2 Analysing Components with Symbolic Execution
	6.2.1 Adaptation of Test Drivers
	6.2.2 Notes on Saturation

	6.3 Analysing Components with Fuzzing
	6.3.1 Adaptation of Test Drivers
	6.3.2 Notes on Saturation

	6.4 Analysing Components with Greybox Fuzzing
	6.4.1 Adaptation of Test Drivers
	6.4.2 Monitoring Saturation

	6.5 Output of the Analysis
	6.6 Concluding Notes

	7 Compositional Analysis
	7.1 Un-isolating Components – Motivation
	7.2 Two-step Feasibility Determination
	7.3 Phase One – Collating Analysis Results
	7.3.1 Stack-trace Matching

	7.4 Phase Two – Targeting Vulnerable Components
	7.4.1 Summarising Vulnerable Components
	7.4.2 Determining Feasibility Through Targeted Symbolic Execution

	7.5 Output of Compositional Analysis
	7.6 Concluding Notes

	8 Evaluating Vulnerability Discovery
	8.1 Operationalisation of Framework in Macke
	8.2 Comparison Baseline
	8.3 Research Questions
	8.4 Experimental Setup
	8.5 Coverage
	8.6 Vulnerabilities
	8.7 Real Vulnerabilities in the Wild
	8.8 Synthesis of the Results
	8.8.1 RQ1 and RQ2– Coverage
	8.8.2 RQ3 and RQ4– Vulnerabilities
	8.8.3 RQ5– Testing Libraries

	8.9 Concluding Notes

	III Vulnerability Analysis
	9 Assessing Discovered Vulnerabilities for Effective Triage
	9.1 Consolidating Reports of Discovered Vulnerabilities
	9.1.1 What is a False-positive?
	9.1.2 Vulnerability Prioritisation as the Antidote

	9.2 Scale for Scoring Vulnerabilities
	9.3 Factors Impacting Priority of Vulnerabilities
	9.3.1 Drawing on Past Knowledge

	9.4 Concluding Notes

	10 Case Study – Machine Learning Based Score Predictor
	10.1 Collecting Data
	10.1.1 Data Collection Results

	10.2 Discovering Vulnerabilities
	10.2.1 Vulnerability Discovery Results

	10.3 Extracting Features
	10.4 Predicting Base-scores
	10.4.1 Preparing Data for Prediction Models
	10.4.2 Machine Learning Models
	10.4.3 Machine Learning Results

	10.5 Reporting and Gathering Feedback from Experts
	10.5.1 Interactive Reporting of Vulnerabilities
	10.5.2 Gathering Feedback
	10.5.3 Feedback Results

	10.6 Adding More Features
	10.7 Re-learning Predictor
	10.7.1 Machine Re-learning Results

	10.8 Intuitively Analysing Case Study Results
	10.9 Concluding Notes

	IV Conclusion
	11 Conclusion
	11.1 Revisiting Research Questions
	11.2 Contributions
	11.3 Limitations
	11.4 Future Work

	Bibliography
	Index
	List of Figures
	List of Figures
	List of Tables
	List of Tables
	List of Algorithms
	List of Algorithms

