
©2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

GPU Accelerated Planning and Placement of Edge
Clouds

Patrick Kalmbach, Andreas Blenk, Wolfgang Kellerer
Technical University of Munich

Munich, Germany

Rastin Pries, Michael Jarschel, Marco Hoffmann
Nokia Bell Labs

Munich, Germany

Abstract—Future 5G communication will rely on edge com-
puting to meet diverse Quality of Service Requirements, in par-
ticular, end-to-end latency in the order of milliseconds. Placing
edge clouds requires solving a large-scale set cover problem.
We show how the challenge posed by the size of the problem
can be overcome through GPU accelerated Natural Evolutional
Strategies (NES). We present a system that allows the evaluation
of technology choices, latency requirements and locations that
should be covered at the example of the United States.

Index Terms—GPU Computing, Edge Cloud Computing

I. INTRODUCTION

The Context: Edge Computing. Future 5G communication
networks must support applications with stringent Quality of
Service (QoS) requirements, in particular, end-to-end latency
requirements in the order of milliseconds. Examples are:
Augmented reality, virtual reality and autonomous driving [4],
[5]. The latency constraints require operators to place compu-
tational resources as close to the end user as possible. This is
achieved through Multi-access Edge Computing (MEC).

A MEC solution is hosted in an edge cloud, which is a
resource-rich computer or cluster of computers deployed at
the access network to support low latency applications [3].
Edge clouds can be equipped with acceleration hardware,
e.g., Graphical Processing Units (GPUs) for computer vision
or Field Programmable Gate Arrays (FPGAs) for network
acceleration and deep learning tasks.
The Problem: Edge Cloud Placement. This demo showcases
a planning and placement tool for edge clouds. The first step
is determining to what extend a specific service should be
supported, e.g., by specifying a percentage of a country’s
population for which the service should be available. Based
on the provided information, edge clouds are placed at given
locations, such that a cost function is minimized.

Edge clouds with the MEC solution hosting the above men-
tioned applications are located right behind a local User Plane
Function (UPF), which connects multiple base stations [6].
The connections between the edge clouds and base stations
serving the end users can be established through different

This work has been performed in the framework of the CELTIC EUREKA
project SENDATE-PLANETS (Project ID C2015/3-1), and it is partly funded
by the German BMBF. The authors alone are responsible for the content of
the paper.

Fig. 1: A possible edge cloud placement for cities with more
than 10 000 inhabitants. The orange dots represent locations
at which edge clouds are placed and overlap the green dots,
representing locations that should be covered.

technologies, e.g., optical fiber or micro-wave links, which
has to be considered when determining a placement.

The problem of determining an optimal placement can be
reduced to a set-cover problem, which is one of Karp’s original
NP-complete problems [11].
The Challenge: Problem Size. The set-cover problem is a
well studied problem. Still, obtaining good solutions in this
context is challenging due to the problem dimension. Fig. 1
shows a map from the US with cities that have more than
10 000 inhabitants. In this case more than 3 000 locations must
be covered. To obtain good solutions at this scale, significant
effort is required to design scenario specific heuristics or
approximate algorithms.
The Opportunity: GPU accelerated Natural Evolutional
Strategies (NES). In this demo we show how the challenge
posed by the size of the problem can be overcome through
NES and GPU computing.

NES are a family of state-of-the-art Black-Box Optimization
(BBO) algorithms, and as such applicable to any optimization
problem, as long as its objective function can be evaluated for
arbitrary points in parameter space [12].

GPU computing provides massive speed-ups for data-
parallel workloads, in which the same instructions can in-
dependently be applied to many data-elements, e.g., when
multiplying matrices [2]. Data-parallel workloads arise in978-1-7281-0568-0/19/$31.00 ©2019 IEEE

many disciplines, including networking [7], [10]
By considering the matrix notation of the underlying op-

timization problem, we can exploit the computing power
of a GPU to rapidly evaluate candidate solutions, and thus
significantly speed up NES.
Contribution. We illustrate how large-scale optimization
problems arising in the context of edge-computing can be
solved through GPU computing and black-box optimization.
Our demo allows the evaluation of different technology
choices, latency requirements and population coverages within
minutes, placing less edge clouds than a greedy baseline.

II. PLACEMENT PROBLEM

Problem input is a set U of locations u demanding to be
covered with an acceptable latency. One edge cloud location
can cover a subset S ⊆ U of locations. The set cover problem
identifies a number of subsets whose union is U , and that
minimize a cost function f : S → R. The set S ⊂ 2U

contains subsets of U for all potential edge cloud locations.
The problem can be formulated as:

argminx
∑
S∈S

xSf(S), (1)

subject to: ∑
S∈S

xSyu,S ≥ 1 ∀u ∈ U (2)

xS ∈ {0, 1} ∀S ∈ S (3)

The binary variable xS indicates whether subset S ∈ S is
selected for the covering. Variable yu,S is one if u ∈ S , i.e.,
u is covered, and zero else.

III. NATURAL EVOLUTIONAL STRATEGIES

NES are a family of black-box optimization methods that
maintain and update a search distribution over the parameter
space of the problem, from which a sample of λ search points
is drawn and evaluated through a fitness function [12]. We use
the fitness function:∑

S∈S
xSf(S) + α

∑
u∈U

δ

(∑
S∈S

xSyu,S , 0

)
, (4)

where we added Constraint (2) as penalty scaled with a large
scalar α to the original objective. Here, δ is an indicator
function returning one if the first argument is zero. The penalty
is convex and guides the search into a feasible region of the
solution space [9].

We do not apply NES directly to the set cover problem,
since NES requires a continuous parameter space. We assume
that an edge cloud is located at location i with probability
1/(1+ exp(−θi)), where θi is a real number. We use NES to
obtain a distribution over real valued vectors θ that result in
feasible placements having low cost with high probability.

Alg. 1 illustrates the overall procedure. In each iteration,
λ parameter vectors θk ∈ R|U| are sampled. Each element
in each sample θk is then projected to the interval [0, 1]
through element-wise application of the sigmoid function.

Data: learning rate γ, sample size λ, search
distribution π, initial parameter ψ, fitness
function f(·)

Result: Optimized search distribution
while not converged do
5ψJ ← 0
for i = 1, . . . , λ do

draw sample: θk ∼ π(· | ψ)
project to [0, 1]: pk ← 1/(1 + exp(−θk))
sample placement: xk ∼ Bernoulli(· | pk)
evaluate fitness: ck ← f(xk)
accumulate gradient:
5ψJ ←5ψJ + ck

λ 5ψ log π(θk | ψ)
end
update paramter: ψ ← ψ + γ 5ψ J

end
Algorithm 1: NES algorithm for far-edge cloud place-
ment [12]. Note that θk, ψ, pk and xk are vector valued,
and Bernoulli(·) operates element-wise on vector pk.

The elements in the resulting vector pk ∈ [0, 1]|U| can be
interpreted as the probability of placing a far-edge cloud
at a specific location. A concrete placement is sampled by
performing for each element in pk a bernoulli experiment,
resulting in the binary vector xk ∈ {0, 1}|U|. The cost, i.e.,
fitness of placement xk can then be assessed, and the gradient
for the parameters of the search distribution be calculated.
Finally, the parameters of the search distribution are updated.

Because of the problem size, we use an isotropic multivari-
ate normal distribution as search distribution π. This allows
for fast sampling of new parameter vectors [12]. We keep
the variance σ of each dimension fixed. Consequently, ψ
corresponds to the mean vector µ. As suggested in [12], we use
fitness shaping to make the procedure more robust to outlier
individuals, and less prone to early convergence.

Since the fitness of a placement can be easily evaluated,
i.e., does not require simulations or executions on a physical
system, we can leverage a GPU to execute the for-loop in
Alg. 1 in parallel for all samples.

To this end, we vectorize the fitness function in Eq. (4):

XT c(U) + α
(
δ(XTY, 0) · 1

)
. (5)

The matrix X ∈ R|U|×λ stores the sampled placements as
columns. Function c(·) returns a vector of costs for placing
a far-edge cloud at each location. The matrix-vector product
XT c(U) thus represents the cost for each sampled placement.
Matrix Y ∈ {0, 1}|U|×|U| is a symmetric matrix, representing
which locations each city would cover, should a far-edge cloud
be placed there. The result of the matrix-matrix product XTY
is a Nλ×|U| matrix, containing for each sampled placement
how often every location is covered. The element-wise indi-
cator function δ(·) returns a binary matrix, in which entries
corresponding to uncovered locations are set to one. Multiplied
with the one-vector and a scalar constant, the resulting vector
represents the penalty for leaving cities uncovered.

TABLE I: Configurable parameters. The user can choose
between different algorithms, change the input or adapt hy-
perparameters.

Demo component Configurable Parameter

Algorithm Input Population that should be covered
Cost model (greenfield or existing
infrastructure)
Path scale
Required end-to-end latency

Available Algorithms Approximate Algorithm CPU
Evolutional Strategies CPU
Evolutional Strategies GPU

Algorithm Parameters (ES only) Number of samples per generation
Learning rate

The space complexity or runtime of one iteration of Alg. 1
is dominated by the matrix-matrix product in the penalty term
with O(λ | U |2). The computational and space complexity
can be reduced to O(λ | U |) using a sparse matrix representa-
tion for Y . Less than 1% of the entries in Y are non-zero, and
this number grows only linearly with the amount of locations
for the considered small latency regime. The main advantage
of the sparse matrix representation is the reduction in space
complexity, since the reduction in computational complexity
is dampened by the processing power of a GPU.

Using the vectorized formulation allows the rapid evaluation
of large samples, which is important to obtain good solutions,
and allows NES to converge in time similar to the approximate
algorithm presented in [11].

The optimization procedure described in this paper gener-
alizes to optimization problems that can readily be expressed
and evaluated through linear algebra. The presented approach
could be used with machine learning based optimization
procedures such as [1], [8], [13], e.g., to create good data-
sets for supervised learning in large optimization problems.

IV. SCENARIO AND DEMO PRESENTATION

Table I lists the parameters of our demonstration that can
be set through a web-based Graphical User Interface (GUI).
The parameters control three aspects: The algorithm input, the
used algorithm and hyperparameters applicable to NES.

Parameters relating to the algorithm input affect the sets U
and S and the cost and utility function. The size of U can be
controlled through the desired coverage of the population, e.g.,
by specifying that only cities with more than a specific number
of inhabitants should be covered. The cost model affects the
cost and utility function. A greenfield deployment assumes no
existing infrastructure. Optimization then corresponds to the
minimization of the number of placed edge clouds. Potential
edge cloud locations with existing infrastructure, e.g., data-
centers, can have a reduced cost, which influences the place-
ment. The parameter path scale controls the set S by scaling
the euclidean distance between two locations with a random
number between one and path scale.

We provide three different algorithms: The approximate al-
gorithm from [11] and two NES implementations, one running
on CPU and the other on GPU. The NES implementation on

CPU is primary intended to showcase the performance boost
obtained through GPU acceleration. The GUI exposes two
hyperparameters for the NES algorithms: learning rate and
number of samples per epoch. We will demonstrate how both
parameters impact the convergence speed and solution quality.

Obtaining a result for one parameter setting takes from
seconds to minutes. In the former case the optimization can be
performed live. A dynamic plot is then continuously updated
with the newest best solution to indicate the optimization
progress. For settings which take longer than a minute pre-
computed results can be loaded. Live optimization takes places
on a nVidia DGX station equipped with four Tesla V100 GPUs
and an Intel Xeon E5-2698 CPU.

The obtained placement is illustrated on a map of the US
once the optimization is finished, which is illustrated in Fig. 1.
Locations that should be covered are plotted in green, edge
cloud locations in orange.

REFERENCES

[1] Andreas Blenk, Patrick Kalmbach, Wolfgang Kellerer, and Stefan
Schmid. O’zapft is: Tap your network algorithm’s big data! In
Proceedings of the Workshop on Big Data Analytics and Machine
Learning for Data Communication Networks, Big-DAMA ’17, pages
19–24, New York, NY, USA, 2017. ACM.

[2] André R. Brodtkorb, Trond R. Hagen, and Martin L. Saetra. Graphics
processing unit (GPU) programming strategies and trends in GPU
computing. JPDC, 73(1):4 – 13, 2013.

[3] Chao Hu et al. Mobile Edge Computing A key technology towards
5g. White Paper 11, European Telecommunications Standards Institute,
2015.

[4] Dario Sabella et al. Toward fully connected vehicles: Edge computing
for advanced automotive communications. White Paper, 5GAA Auto-
motive Association, 2017.

[5] Gerhard Fettweis et al. The Tactile Internet. Technical report, ITUßT
Technology Watch, 2014.

[6] Sami Kekki et al. MEC in 5g networks. Technical report, European
Telecommunications Standards Institute, June 2018.

[7] Younghwan Go, Muhammad Asim Jamshed, YoungGyoun Moon,
Changho Hwang, and KyoungSoo Park. Apunet: Revitalizing GPU as
packet processing accelerator. In Proc. of USENIX NSDI, pages 83–96,
Boston, MA, March 2017. USENIX Association.

[8] Patrick Kalmbach, Johannes Zerwas, Péter Babarczi, Andreas Blenk,
Wolfgang Kellerer, and Stefan Schmid. Empowering self-driving net-
works. In Proc. of the Afternoon Workshop on Self-Driving Networks,
SelfDN 2018, pages 8–14, New York, NY, USA, 2018. ACM.

[9] Angel Fernando Kuri-Morales and Jesús Gutiérrez-Garcı́a. Penalty
Function Methods for Constrained Optimization with Genetic Algo-
rithms: A Statistical Analysis. In Carlos A. Coello Coello, Alvaro
de Albornoz, Luis Enrique Sucar, and Osvaldo Cairó Battistutti, editors,
MICAI 2002, Berlin, Heidelberg, 2002. Springer Berlin Heidelberg.

[10] Christian Schulz, Geir Hasle, André R. Brodtkorb, and Trond R. Hagen.
Gpu computing in discrete optimization. part ii: Survey focused on
routing problems. EURO Journal on Transportation and Logistics,
2(1):159–186, May 2013.

[11] Petr Slavı́k. A Tight Analysis of the Greedy Algorithm for Set Cover.
In STOC ’96, pages 435–441, New York, NY, USA, 1996. ACM.

[12] Daan Wierstra, Tom Schaul, Tobias Glasmachers, Yi Sun, Jan Peters, and
Jürgen Schmidhuber. Natural Evolution Strategies. Journal of Machine
Learning Research, 15:949–980, 2014.

[13] Johannes Zerwas, Patrick Kalmbach, Carlo Fuerst, Arne Ludwig, An-
dreas Blenk, Wolfgang Kellerer, and Stefan Schmid. Ahab: Data-driven
virtual cluster hunting. In 2018 IFIP Networking Conference (IFIP
Networking) and Workshops, pages 1–9, May 2018.

