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Preface

Modeling climatological dynamics and weather patterns have been studied exten-
sively in remote sensing (RS) and geographic information system (GIS). These
analyses are crucial for various geospatial applications, such as climatological trend
analysis, prediction and forecasting, urban growth modeling. The meteorological
parameters, closely related to earth surface, play important roles for any climato-
logical study. Prediction of these parameters is one of the crucial preprocessing
steps involved in most of the analyses. The geostatistical spatial interpolation
methods are reported to be the most efficient choice for predicting those parameters
which are derived from the satellite (raster) imagery. These methods facilitate
improved modeling of spatial autocorrelation/proximity, hence producing minimal
error. It is also observed that the interdependencies between the meteorological and
terrestrial dynamics play a critical role in the proximity estimation. The semantic
modeling of these land–atmosphere interactions and analyzing the associations
between different factors are obvious for the betterment in the prediction process.

This book focuses on the semantic land–atmosphere interaction modeling for the
meteorological parameters that are correlated and influenced by the terrestrial
dynamics. A new spatial interpolation method is presented, namely semantic
kriging (SemK), which is capable not only to model the terrestrial
land-use/land-cover (LULC) distribution, but also to incorporate this property into
the existing interpolation method to make the prediction process more pragmatic
and accurate. It is a novel approach to extend any spatial interpolation method (for
meteorological parameters) with contextual/semantic LULC knowledge of the ter-
rain. A hierarchical ontology-based approach has been adopted to quantify the
same. To blend this semantic knowledge into the interpolation process, the most
popular interpolation method reported in the literature, i.e., ordinary kriging (OK),
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has been extended further in the semantic domain. The SemK is categorized as a
geostatistical univariate spatial interpolation method, which aims to minimize the
variance of estimation error.

Munich, Germany Shrutilipi Bhattacharjee
Kharagpur, India Soumya Kanti Ghosh
Munich, Germany Jia Chen
December 2018
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Chapter 1
Introduction

Abstract Advancement of data capturing technology in the field of remote sensing
(RS) and geographic information system (GIS) has introduced a significant amount
of research challenges. It facilitates enormous availability of spatial data (both in the
form of raster and vector) from different sources. This monograph primarily focuses
to deal with the incomplete raster satellite imagery of the meteorological parameters
and the geostatistical spatial interpolation methods to be applied for the prediction
of these parameters.

Advancement of data capturing technology in the field of remote sensing (RS) and
geographic information system (GIS) has introduced a significant amount of research
challenges. It facilitates enormous availability of spatial data (both in the form of
raster and vector) from different sources. However, proper staging of this data is
necessary as most of the geospatial repositories contain missing and erroneous infor-
mation. This monograph primarily focuses to deal with the raster satellite imagery,
more specifically on the meteorological parameters related to the terrain that can be
derived from these satellite (raster) imageries. Examples of these parameters include
land surface temperature (LST ), other meteorological indices such as normalized
difference vegetation index (NDVI), moisture stress index (MSI), normalized differ-
ence water index (NDWI), normalized difference build up index (NDBI), etc. In case
of climatological applications and weather analysis, the meteorological parameters
are considered to be the important factors for land–atmospheric interaction analysis,
as well as for modeling climate dynamics.

Though data capturing technology of these satellite data have been improved a lot
in the past few decades, still these imageries may consist of somemissing pixels, line
gaps due to faulty sensors, fallacious/negligent post-processing, etc. [7]. This work
is mainly using the Landsat-7 ETM+ satellite imagery and Fig. 1.1 shows one raw
(band) image of the same (path:138, row:44).1 It is showing a raw image with some
line gaps (line of missing pixels). A zoomed view of a portion is shown to the left

1URL: http://landsat.usgs.gov/; Accessed on: July 22, 2016.
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2 1 Introduction

Fig. 1.1 Satellite imagery with line gap and cloud cover

where these line gaps are more clearly visible, along with some cloud covers (small
white patches). The cloud covers are another concern associated with the satellite
imagery. It creates an obstacle to calculate the parameter value at those pixels that
are beneath the cloud cover.

In this scenario, prediction of spatial parameters with highest degree of accuracy
has attracted a significant amount of research interest in this field of study. Further,
huge availability of time-series data has invoked some obvious research aspects such
as spatio-temporal prediction, forecasting of these parameters and other correlated
events such as forecasting of urban landscape, urban planning for future, etc. In this
context, there have been reported many approaches for the prediction of missing
and erroneous spatial parameters and their forecasting. These are broadly classified
into two types: (a) data mining (DM) and machine learning (ML) based approaches
and (b) spatial interpolation based approaches [15]. Some ensemble techniques have
also been reported for the same, combining the advantages of individual categories.
Some of the important and well-known prediction techniques that are reported in
the literature of spatial analyses include artificial neural network, Bayesian network,
spatial interpolation based approaches (kriging, IDW, etc.), support vectormachines,
decision trees, hidden Markov model, regression, etc. In the context of this study on
spatial analysis, mainly prediction, these prediction techniques are broadly divided
with respect to the type of explanatory (input) and the predicted (output) parameters
involved for that technique. Two types of parameters have been considered here:
categorical and numerical. Based on parameter type, Fig. 1.2 introduces the types of
different techniques for spatial prediction.

According to the state of the art, the spatial interpolation is reported to be the
most efficient choice for the prediction of meteorological parameters [13] that are
derived from the satellite raster imagery and highly correlated with the terrestrial
dynamics. The geostatistical spatial interpolators are often considered to be the most
appropriate methods, which yield minimal error in estimation [14]. One of the major
reasons behind this can be stated as the meteorological parameters are distinctive
in nature and most of them can be treated as random field parameters showing
high spatial autocorrelation [16]. In this context, the geostatistical interpolators are
capable to deal with this spatial property efficiently [7], than othermachine learning
based approaches. This monograph mainly concentrates on the geostatistical spatial
interpolation methods for the prediction of meteorological parameters.
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1.1 Overview of Spatial Interpolation 3

Fig. 1.2 Types of prediction methods for spatial analysis

1.1 Overview of Spatial Interpolation

The basic objective behind the interpolation process of meteorological parameters is
to accurately predict a missing pixel or a group of pixels of a surface in the region
of interest (RoI). In spatial interpolation, the values of the prediction parameter at
some pixels in a gridded surface are considered to be missing. Consider the scenario
depicted in Fig. 1.3, where the big outer square box represents the RoI boundary and

each small square represents a pixel. Each hollow pixel is a missing pixel, and

small box with a inside represents a sampled location , i.e., the location where

the parameter value is present. These points can be considered as the interpo-
lating points or the known sampled locations that are utilized to measure each of the

missing pixels or prediction point/location or unsampled location . In general,
each of the sampled locations is assigned an influence value (weight) with respect
to the prediction location, in terms of its Euclidean distance. This weight evaluation
process is such that higher distant interpolating point will have less impact on the
prediction point and vice-versa. Hence, assigned weight to the sampled location is
inversely proportional to its distance from the prediction point. The spatial interpola-
tion process evaluates the weight vector for N number of sampled location. For most
of the interpolation processes, mainly for the kriging, these N dimensional vectors
are considered as N × 1 dimensional weight matrices.

Differences exist among the spatial interpolationmethods basedonhow the depen-
dencies among the sampled and unsampled locations are measured. This spatial
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Fig. 1.3 Example interpolated surface

dependency is generally to as spatial autocorrelation. The geostatistical interpola-
tion methods, based on regression analysis, exhibit better performance than other
coexisting methods as these methods can model spatial autocorrelation/proximity
within the RoI and can incorporate that into the regression process. The concept
of spatial proximity can be stated by the Tobler’s law: “everything is related to
everything else, but near things are more related than distant things” [16]. It is
also referred to as “first law of geography”. The geostatistical interpolators capture
this relatedness/proximity between the locations under considerationmost efficiently
[7]. However, the non-geostatistical methods do not model complete autocorrelation
model for the RoI. Hence, for these type of methods, the spatial proximity among the
sampled locations are not evaluated, making the interpolation process unpragmatic
for real-life applications.

The popular approaches for regression-based spatial interpolation include kriging
[9], which represents the full family of geostatistical interpolation methods. Some
popular members of this kriging family for the univariate and multivariate analysis
are: ordinary kriging (OK), simple kriging (SK), universal kriging (UK), kriging
with external drift (KED), etc. The popular examples of non-geostatistical inter-
polation methods, which are most frequently used and compared in the literature,
include inverse distance weighting (IDW ), nearest neighbors (NN), thin plate spline
(TPS), etc. [18]. Though these non-geostatistical interpolation methods are not very
pragmatic process to handle spatial autocorrelation, still they are widely used mainly
because of modeling simplicity. Among all these spatial interpolation methods, the
ordinary kriging, followed by inverse distance weighting are the twomost frequently
used, compared, and mostly recommended interpolation techniques [14].
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1.2 Research Issues and Challenges in Remote Sensing
based Prediction

Although regression-based interpolation methods show better performance for the
prediction of meteorological parameters, some important dynamics of the terrain are
found to be neglected in the regression process. For the spatial interpolation of the
parameters that are nearby to the earth surface and highly influenced by the terrestrial
dynamics, the land–atmospheric interaction modeling is crucial for their analysis.
One of the obvious examples of these parameters is land surface temperature (LST ),
which is highly influenced by the land-use/land-cover (LULC) distribution of the
terrain. For example, a building may absorb and emit more heat than a waterbody.
Hence, the former will have more impact on the land surface temperature of its
nearby locations, than a waterbody. Many literature, technical reports from several
organizations have acknowledged this fact. For the existing interpolation methods,
the spatial autocorrelation is modeled depending on the location-based distribution
of the sample points, which is the function of Euclidean distance. However, the local
knowledge of the RoI such as representative LULC of the sampled and unsampled
locations, play an important role for modeling land–atmospheric interaction and to
achieve better precision in prediction. Consider the same gridded surface (as depicted
in Fig. 1.3), with the LULC information of the terrain that is depicted in Fig. 1.4.

Fig. 1.4 Spatial RoI with LULC information
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Here, each of the sampled locations is not just a point xi that is represented as (Xi,
Yi) in 2D space. It is also represented by the LULC type it corresponds to (fi) such
as river, vegetation cover, road, industry, etc. as (Xi, Yi, fi). Hence, this surface is
more informative than the normal gridded surface. Thus, if the pixel/location that is
represented by a red star is the point to be predicted by other sampled locations, the
influence of the sampled locations on the prediction point is not only the function
of Euclidean distance but also the semantic distance between their representative
LULC classes [7]. Hence, quantification of this semantic contextual knowledge of
the terrain, and finding contextual correlation between every pair of the sampled
locations is the primary research motivation of this monograph. Hence, the broad
scope of research for this monograph can be stated as follows: assuming the fact
that the LULC distribution of the terrain influences the land–atmospheric interaction
for the meteorological parameters (mainly LST ), the prediction of these parameters
should include this contextual knowledge for the estimation process to produce more
pragmatic and accurate prediction model.

1.3 Contributions

The existing spatial interpolation methods suffer from the shortcoming of the lack
of terrain knowledge, which influences the meteorological parameters significantly.
With this scope of further improvement, the broad outline of this monograph can
be defined further. This work focuses on the semantic land-atmospheric interaction
modeling for the meteorological parameters, where the terrestrial dynamics or the
LULC distribution is considered as the semantic property of a terrain. It is attempted
to incorporate this knowledge into an existing interpolation method, to propose a
more pragmatic and accurate interpolation model for the meteorological parameters.
In this regard, the most popular univariate geostatistical interpolation method, ordi-
nary kriging (OK) [14] has been extended further with LULC modeling. The newly
proposed spatial interpolation method is named as: semantic kriging (SemK) [2].
This monograph is an excerpt from a PhD thesis in the same approach [2]. This basic
SemK is further extended to an a-posterior probabilistic approach, a spatio-temporal
approach, and for forecasting.

The main purpose of this monograph can be stated as: the proposed SemK-based
framework presents a novel approach to extend any spatial interpolation method
(for meteorological parameters) with contextual/semantic LULC knowledge of the
terrain. According to Fig. 1.2, the existing spatial interpolation methods belong to
the category [Numerical, Numerical] only, i.e., both the input and output parameters
are numerical. However, the newly proposed SemK belong to the category of [Both,
Numerical], i.e., it can process contextual knowledge for input as well. Though OK
has been considered as the base method for this extension, any geostatistical method
could have been chosen for this purpose. Therefore, the major contributions of this
monograph are as follows:
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• proposing a spatial interpolation method (SemK) for the prediction of meteoro-
logical parameters by incorporating the LULC knowledge of the terrain.

• improving the basic SemK approach by extending its a-priori correlation analysis
with a-posterior probabilistic correlation analysis between LULC classes (FB-
SemK).

• extending the notion of spatio-temporal SemK process for a forecasting applica-
tion, which involves the analysis of LULC distribution. A newmultivariate variant
of basic spatio-temporal SemK approach is proposed for forecasting urban land-
scape or future LULC distribution pattern (ST-RevSemK).

1.4 Specifications of Empirical Study

An empirical study has been conducted with land surface temperature [17] data
that is derived from satellite imagery. This experimentation is carried out for all the
variants of SemK process, with some modifications of the basic experimental speci-
fications. The basic common specifications of the experimental study are maintained
throughout this monograph. The following subsections present different aspects of
the experimental setup.

1.4.1 Regions of Interest

Two spatial regions have been considered as the RoIs for this study. One is Kolkata,
West Bengal (WB), India, with central coordinate: 22◦34′N 88◦22′E. Thismetropoli-
tan area is depicted through Fig. 1.5a. Kolkata, WB, India is subject to a tropical
wet-and-dry climate. The annual mean temperature is 26.8 ◦C and monthly mean
temperatures are 19–30 ◦C. Another RoI is Dallas, Texas (TX), USA (central coordi-
nate: 32◦46′33′′N 96◦47′48′′W ), which is a major city in the state of Texas and is the
largest urban center of the fourth most popular metropolitan area in the USA. This
metropolitan area is depicted through Fig. 1.5b. Dallas, TX, USA has a humid and
hot subtropical climate with mean of temperatures about 39 ◦C at summer and heat-
humidity indexes soaring to as high as 47 ◦C. Both of the RoIs have diverse types of
LULC distribution for the whole region. Some example common LULC classes for
both the RoIs are given as follows: residential, commercial, agriculture, lakes, etc.
Five zones from each of these two RoIs have been considered for each of the chapters
to carry out the estimation of LST with different interpolation methods. These zones
are considered to reduce the effect of force generalization of spatial autocorrelation
for the whole region. It will facilitate accurate modeling of spatial proximity for each
of the local zones individually. All these RoIs are typically presented in 1:50,000
scale throughout the monograph with Landsat ETM+ datasets.
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(a) Region: Kolkata, WB, India

(b) Region: Dallas, TX, USA

Fig. 1.5 RoI for empirical study
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1.4.2 Source of Experimental Dataset

The spatial and spatio-temporal prediction of land surface temperature (LST ) has
been considered as the main focus of this experimental study. For this analysis, the
LST and LULC data have been considered as the input to the prediction algorithms.
Several othermeteorological indexes are also needed to be derived in the intermediate
steps of processing LST data. The LULC forecasting application that is considered
for the ST-RevSemK framework, requireNDVI andMSI data aswell, as the secondary
parameters in themultivariate model. All these data can be derived by processing raw
satellite imagery. For this purpose, the Landsat-7 ETM+ satellite data is considered
that is provided by US Geological Survey2 (USGS). For the spatial and time-series
interpolation, 11 years’ dataset (2005–2015) have been considered for both the RoIs.
To desists the seasonal effect, each of the dataset is consideredwithin the same period
(mid-October to mid-November) for each year.

1.4.3 Specifications of Dataset

The Landsat-7 ETM+ satellite imagery for both the RoIs are considered fromUSGS.
The metropolitan area of both Kolkata, WB, India and Dallas, TX, USA are depicted
in Fig. 1.5a and b, respectively. The pictures are depicted through the standard FCC
(false color composite) representation of satellite imagery. Each of the imagery con-
sists of seven spectral bands with spatial resolutions 30m (for band 1–5, 7) and 60m
(for band 6). Each band is considered to be the raw image information by processing
of which the derived parameter value of each of the pixels can be measured. The
derivation processes of different meteorological parameters are presented in the fol-
lowing subsections. Once the LST value of each of the pixels is derived from the
satellite imagery, the values for some pixels are assumed to be missing, where the
interpolation is supposed to be carried out with different methods. The actual data for
each pixel is needed for comparing the performance of the estimation processwith the
actual pixel value. In this regard, for each of the zones that are considered from both
the RoIs, square grids of sampled locations are considered. Here, the number of sam-
pled locations (26 × 27) are approximately 1

70 fraction of the total number of pixels
(205 × 241) of each zone. Figure 1.6b depicts one example zone from Kolkata, WB,
India on which the square gridded sampled locations (refer Fig. 1.6a) are overlaid,
and rest of the locations are assumed to be missing. For this empirical evaluation,
all the actual and predicted surfaces for LST and LULC are represented through two
randomly chosen standard symbologies of ArcGIS 10.1 [11], [high low]
and [ ], respectively.

2URL: https://www.usgs.gov; Accessed on: July 22, 2016.
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10 1 Introduction

(a) Square gridded sampled loca-
tions

(b) Sampled locations overlaid on
selected zone

Fig. 1.6 Square gridded sampled locations for empirical study

1.4.4 Data Processing Tools

Two standard raster image analysis tools have been considered for this study: ERDAS
Imagine [12] and ArcGIS 10.1 [11]. For the extraction of different meteorological
parameters such as LST, NDVI, MSI, and LULC data from the raw band informa-
tion of the satellite imagery, the mathematical models for the respective parameters
are implemented in ERDAS Imagine. The interpolation processes of the existing
methods (such as NN, IDW, UK, OK, TPS) that are considered for comparison study
in this monograph, are carried out with predefined tools in ArcGIS 10.1. The pro-
posed semantic kriging and its variants are implemented in MATLAB R2013a. The
same experimental specifications (search radius, maximum number of interpolat-
ing points, etc.) are considered for each of the interpolation methods for individual
experimentation.

For the extraction of meteorological indexes, first, all the seven bands of the satel-
lite imagery of a region are stacked one above other using Layer Stack operation in
ERDAS Imagine. Consider Fig. 1.7, where image represents seven bands overlaid
on each other and represents the layer stacked imagery, represented though FCC
scheme (red: band 4, green: band 3, blue: band 2). This stacked image is useful for
extracting different parameters. Images , , and are the instances of the math-
ematical model for the extraction of NDVI, LST and MSI, respectively. The raster
imagery for these parameters are shown through images , , and , respectively.
The details of these mathematical models are presented in the following section.
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12 1 Introduction

1.4.5 Extraction of Spatial Parameters

The details of the mathematical models, for the derivation of meteorological param-
eters and LULC distribution of the terrain from the layer stacked FCC image, are
described in this section.

1.4.5.1 Extraction of NDVI

The normalized difference vegetation index (NDVI) identifies the photosynthetic
affinity or “greenness” of the vegetation through the reflective proprieties of the
chlorophyll and mesophyll layers within plants. The NDVI value of a given pixel
always ranges from minus one (−1) to plus one (+1). A zero means no vegetation,
hence, soil, barren surfaces (rock and soil) is observed to have NDVI values close
to zero. The values close to +1 (0.8–0.9) indicates the highest possible density of
green leaves. The water, snow, ice, and clouds are normally associated with negative
values. The mathematical formulation of this parameter with respect to Landsat-7
ETM+ satellite imagery is given as follows [10]:

NDVI = Band4 − Band3

Band4 + Band3
(1.1)

1.4.5.2 Extraction of MSI

The moisture stress index (MSI) is a reflectance measurement that is sensitive for
increasing leaf water content. It has direct impact on several applications such as
canopy stress analysis, productivity prediction and modeling, fire hazard condition
analysis, and studies of ecosystem physiology. TheMSI is an inverted measure, rel-
ative to other water VIs. The higher values indicate more water stress and less water
content. The value of this index ranges from 0 to 3. The common range for green veg-
etation is 0.4–2. Considering Landsat-7 ETM+ satellite imagery, the mathematical
formulation of this parameter is given as follows [10]:

MSI = Band5

Band4
(1.2)

1.4.5.3 Extraction of LST

All substances in earth surface emit electromagnetic radiation at a temperature above
absolute zero (0◦K). The temperature of the earth materials and high- temperature
phenomena can be estimated based on the thermal emission from these materials.
Landsat-7 ETM+ data have the best spatial resolution in thermal band among other
commercial satellites. The thermal imaging in this data is determined by two bands,
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one band is 6.1, where the acquisition the low gain and the second band is 6.2,
for which the acquisition will be high gain. The Planck’s radiation equation can be
applied to convert measured spectral radiance to kinetic temperature (TK ) or the land
surface temperature (LST ). For Landsat-7 ETM+ satellite data, it is calculated using
NDVI derived emissivity models [17]. For this method, the NDVI is categorized in
three classes of emissivity: NDVI < 0.2 is bare soil, NDVI > 0.5 is vegetation and
NDVI between 0.2 and 0.5 represents the category of mixed pixel, which contains
combination of vegetation, soil, rock, etc. The kinetic temperature of a given pixel
can be given as follows:

E = a + b ∗ ln(NDV I) (1.3)

TK = TR

E
1
4

(1.4)

where E and NDVI are the average thermal emissivity and average normalized dif-
ference vegetation index for individual surface covers, respectively. The a and b are
the two constants (a = 1.0094 and b = 0.047 for a correlation coefficient of 0.941
at 0.01 level of significance), TR is the radiant temperature [17].

1.4.5.4 Extraction of LULC

The image processing tool ERDAS Imagine [12] is used in order to carry out the
classification of the Landsat-7 ETM+ satellite imagery. The supervised classification
scheme has been chosen for both the RoIs that is carried out using domain experts’
knowledge. For the empirical study in this monograph, the considered LULC classes
are waterbodies, wetlands, built-up, grassland, wastelands, agriculture, forest, etc.
(refer first level of ontology in Fig. 3.2).

1.4.6 Error Metrics and PSNR

Performance of each of the interpolation methods is specified by two standard error
measurement metrics: mean absolute error (MAE) and root mean square error
(RMSE). The evaluation criteria and physical significance of eachmetric is discussed
in [13]. IfMAE is closer to zero andRMSE is smaller than others, the predictionmodel
can be considered as better than others. If RMSE>1, the method underestimates the
primary parameter, else overestimates the primary parameter for prediction.

Themathematical formulations of bothMAE andRMSE are presented inTable1.1.
For these two metrics, N is the number of interpolating points, Ẑ(xi) is the predicted
value, and Z(xi) is the actual or observed value at ith prediction point [13]. For
the pixel-by-pixel comparison of the predicted imagery with respect to the actual

shrutilipi.2007@gmail.com



14 1 Introduction

Table 1.1 Error metrics and their specifications

Error metric Definition

Mean absolute error (MAE)

∑N
i=1 |Z(xi)−Ẑ(xi)|

N

Root mean square error (RMSE)

√∑N
i=1[Z(xi)−Ẑ(xi)]2

N

surface, the peak signal-to-noise ratio (PSNR)3 is measured against each prediction
method. The PSNR is a standard metric for predicted image analysis, which is a ratio
between the maximum possible power of a signal and the power of corrupting noise.
Generally, higher PSNR indicates that the prediction is of higher quality. The PSNR
(in decibel (dB)) is defined as follows:

PSNR = 20log10

(
MAXI

RMSE

)

(1.5)

where MAXI is the maximum possible pixel value of the image.

1.5 Organization of the Monograph

This monograph is organized in seven chapters as follows:

• Chapter1 discusses the motivation, the scope of the work and summarizes the
contributions of this monograph. The need of prediction for the meteorological
parameters, overview of the existing spatial interpolation methods, the need for
semantic modeling of the LULC distribution of the terrain for spatial interpolation
are discussed in details. One of themajor aspects of thismonograph is the empirical
analysiswith derived land surface temperature data for evaluating the performance
of the proposed methods and all its variants. The detailed common specifications
of the empirical study are presented in this chapter, which are preserved in each
of the chapters of this monograph.

• Chapter2 reviews the existing spatial and spatio-temporal interpolation approaches.
This chapter presents an extensive literature survey of different categories of the
spatial interpolation methods. Based on their popularity or frequency of being
compared in different environmental applications, a popularity graph is proposed.
Based on this graph, several groups of these interpolation methods are suggested.
The most frequently compared group has been chosen for the comparison with
the proposed methodology, whereas, the most frequent method (ordinary kriging)
in the literature is considered to be extended further to address the scope of this
monograph (i.e., incorporating LULC knowledge in spatial interpolation process).

3URL: https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio; Accessed on: July 22, 2016.

shrutilipi.2007@gmail.com

https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio
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It also reviews the importance of LULC analysis and Bayesian network learning
for spatial prediction.

• Chapter3 presents the proposed spatial interpolation method semantic kriging
(SemK). Two proposed metrics are formulated, semantic similarity and spatial
importance, which quantify the contextual domain knowledge (LULC distribution
of the terrain). The theoretical error analysis, empirical and information content
based performance evaluations are presented further, in comparison with its base
method ordinary kriging (OK) and others, to prove its efficacy in prediction. The
theoretical performance evaluation of SemK provides some basic characteristics,
evaluates the impact of the granularity of semantic knowledge hierarchy (ontol-
ogy), its relationship with OK, etc.

• Chapter4 identifies further scope of improvement of spatial SemK. From Chap.3,
it is observed that SemK presumes the correlation analysis between every pair
of LULC classes to be a-priori. That is, the effect of other nearby LULC classes
is ignored while measuring the spatial importance between any pair of LULC
classes. This analysis can be improved further by introducing the a- posterior
correlation analysis, by evaluating conditional probability based correlation scores.
This new variant of SemK, i.e., FB-SemK is further compared empirically with
other methods and SemK as well, to check whether this variant is at all providing
further improvement over SemK.

• Chapter5 presents a multivariate variant of spatio-temporal SemK for urban land-
scape modeling. For this application, the spatio-temporal forecasting of LULC
distribution pattern has been chosen as the case study. The notion of separable
spatio-temporal SemK is considered for multivariate extension, which learns and
models the past behaviors of multiple meteorological parameters and their cor-
relation with LULC, for its forecasting. One causality testing framework is also
proposed as an approach for the preprocessing of meteorological data. It checks
and selects those meteorological parameters that are actually causal to the LULC
pattern, by pruning the rest. This framework is empirically tested with different
combinations of parameters’ drift and further identifying the best drift.

• Chapter6 concludes the monograph by summarizing the major contributions and
the significance of the proposed work. It presents the interrelationships among
SemK and its other variants. This chapter also identifies some future research
directions that can deploy SemK framework (or its variants) for forecasting envi-
ronmental events.

1.6 Further Discussions

This chapter first identifies the requirement of predicting meteorological parameters
in the field of remote sensing andGIS. It then indicates the limitations of the existing
prediction methods. Though land–atmospheric interaction modeling is important to
analyze the parameters that are influenced by the earth surface, the population predic-
tion or spatial interpolation methods do not model this interaction yet. For example,
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land surface temperature is highly influenced by the LULC distribution of the ter-
rain. Therefore, prediction model for this parameter must incorporate this contextual
knowledge. With these limitations of the existing methods, this chapter defines the
scope of this monograph and highlights the contributions of the monograph. This
chapter also describes the specifications of the empirical experimentation, which
have been followed for each of the chapters in this monograph. For example, the
region of interest to carry out the empirical experimentation, the metrics consid-
ered to evaluate the performance of the interpolation methods, data processing tools,
the meteorological parameters’ extraction process, etc., are presented in this chapter.
Finally, a brief outline of the organization of the monograph has been listed. The next
chapter presents a detailed literature survey on different categories of spatial inter-
polation methods, LULC modeling for meteorological data, probabilistic analysis of
prediction methods, etc.
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Chapter 2
Spatial Interpolation

Abstract This chapter presents a background study on spatial interpolation meth-
ods, its extended variants for spatio-temporal interpolation and some probabilistic
approaches for different spatial analyses. It also focuses on the issues of modeling
terrestrial dynamics for meteorological applications. Modeling LULC knowledge
of the terrain, evaluating semantic associations between them and enabling interop-
erability among the spatial data sources, have been studied extensively for spatial
applications. For spatial interpolation methods and its variants, one frequency of
comparison graph or a popularity graph is proposed, depicting their frequency of
being chosen for comparative analysis in 85 selected articles. This facilitates us to
identify the most popular, moderately popular, least popular groups of spatial inter-
polation methods. The most popular group members can further be chosen for the
empirical comparison with the proposed approach. A brief description of each of
those methods (of the most popular group) is also presented here.

2.1 Introduction

Continuous remote sensing data or raster surfaces play a significant role in sev-
eral geospatial applications such as prediction and forecasting, urban planning, risk
assessment, environmental decision- making, etc. However, in case of satellite raster
imagery, it is not always readily available. In most of the cases, these imageries
contain a large amount of missing pixels, line gaps due to faulty sensors, erroneous
post processing, security reasons, etc. Beside satellite imagery, the other sources
capture the environmental, meteorological, terrestrial data in some point locations.
However, for different real-life applications, it is indispensable to obtain continuous
data over the surface of the study region to make effective, accurate decisions to
obtain justified end results [37, 64]. Spatial interpolation is one of the most effective
choices to generate continuous field data from some observed locations. The state of
the art identifies the interpolation as the most popular and widely used technique for
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20 2 Spatial Interpolation

predicting missing pixels. Spatial interpolation is also necessary for the following
situations [15, 59]:

• the discretized surfaces have different types of resolution, cell size/shape, and
orientation.

• the continuous surfaces are represented by different data models other than that is
suitable for the given application.

• the discretized surface do not extend to the complete region of interest.

These are the situations when spatial interpolation methods provide mathemati-
cal models to predict the missing environmental parameters at unsampled locations.
Literature report many interpolation methods that are applied in various disciplines
[107], e.g., agricultural science, meteorology water resources, ecology, marine sci-
ence, and many other fields. A detailed review in spatial interpolation in reported
by Li et al. [59], which is further extended in [60]. According to [59], the spatial
interpolation methods are broadly classified into three categories: non-geostatistical,
geostatistical, and ensemble/combined methods. The geostatistical methods formal-
ize the complete spatial autocorrelation model and utilize it for the interpolation
process. The non-geostatistical ones do not model the autocorrelation property of
the terrain, or may sometime model a partial autocorrelation model. The geostatisti-
cal methods are considered to be the most pragmatic and popular over others. These
methods are further divided into two categories: univariate and multivariate. In geo-
statistics, the methods that can utilize multiple secondary parameters’ information in
the prediction process are “multivariate" methods, whereas the methods that do not
consider auxiliary parameter are referred to as “univariate”methods. Some combined
methods are also reported in the literature, in which different data mining (DM) and
machine learning (ML) techniques are combined together with spatial interpolation
methods in order to achieve better estimation accuracy. However, there exist other
classification criteria as well, with respect to which the interpolation approaches are
categorized as follows:

• Point interpolation versus areal interpolation: Spatial data is generally available
the form of points (or pixels) or a region (a combination of pixels). The point inter-
polation predicts the parameter value at a certain point, which can be determined
from the nearby point estimations. For areal interpolation, the estimation is carried
out for a whole region on an average.

• Global interpolation versus local interpolation: The global methods considers
all the available data in the region of interest and prediction is carried out with
a general trend model for the whole region. On the other hand, local methods
operate a small range of the search window from the whole region of interest
and estimation is carried out considering local trend models around the prediction
point.

• Exact interpolation versus inexact interpolation: Interpolation techniques that
yield the predicted parameter value of a point exactly the same as the observed
value is called an exact method. Otherwise, it is called the inexact interpolation.
All the interpolation methods try to converge from inexact to exact solution.
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Fig. 2.1 Categorical hierarchy of spatial interpolation methods

• Deterministic interpolation versus stochastic interpolation: Stochastic methods
deals with the randomness of the interpolating points and associated errors. For
these methods, uncertainties are represented as the estimated variances. Determin-
istic methods do not assess errors of the predicted values.

• Gradual interpolation versus abrupt interpolation: Depending on some criteria
such as simple distance relations, minimization of variance, curvature and impo-
sition of smoothness, the spatial interpolation methods are categorized into the
following two categories. If the interpolation approach produces a discrete and
abrupt surface, it is called abrupt interpolation. The methods which produce a
gradual and smooth surface are referred to as gradual interpolation.

• Linear interpolation versus nonlinear interpolation: Linear interpolation methods
assume that the samples are normally distributed. On the other hand, the nonlinear
methods are carried over the transformed values of the observed data.

• Irregular interpolation versus regular interpolation: An unsampled location can
be interpolated based on either the regular gridded samples or irregular samples.
The regular grid system has several advantages over irregular one.

The spatial interpolation methods can be extended further with time-series data to
model spatio-temporal interpolationmethods [23]. For spatio-temporal interpolation,
“time” is another dimension, which is considered to model autocorrelation among
the sampled locations. For spatio-temporal analysis, each of the sampled locations is
characterized by their coordinate locations and measurement time instance, whereas,
in case of purely spatial methods, all the sample points are measured in the same time
instance. Figure 2.1 presents a hierarchy of popular spatial interpolation methods as
per their category.

Software packages: The software packages that are currently available for envi-
ronmental data interpolation are given as follows: ArcGIS, R-Analysis of Spatial
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Data, uDIG, gvSIG, VolPack, GRASS GIS, SAGA GIS, IDRISI Taiga, TNTMips,
QuantumGIS, HidroSIG,MapWindowGIS, Surfpack, GrADS, GSLIB, JUMPGIS,
etc. [3].

2.2 Objectives to Review Spatial Interpolation Methods

This chapter aims to describe some of the popular spatial interpolation methods
and their state of the art. This work attempts to choose some interpolation methods
that are widely used in the literature and use them for comparative study. For this
purpose, a popularity graph of spatial interpolation methods is presented, which is
an extension of the study provided by Li et al. [59, 60]. This may also help us choose
the best method, which can be extended with terrestrial LULC information modeling
[7]. Therefore, the granular objectives are stated as follows:

• to categorize the spatial interpolation methods and understanding each of these
categories.

• to present a popularity graph of the interpolation methods to choose the most
popular one to be extended further for the proposed method.

• to choose the most popular group, which can be considered for comparison study.
• to describe the selected methods in details and present their state of the art.
• summarization of their drawback and define the scope of the proposed work.

2.3 Spatial Interpolation Methods and Their Popularity

In 2008, Li et al. [59] have reported a graph representing the frequencies with which
few popular spatial interpolation methods are considered in 51 reviewed literature.
Further, this frequency analysis is extended in [60] by the same authors considering
more recent studies. Similarly, in this chapter, we have extended this study with
a few more recent works and compared 85 articles that are applied for different
environmental applications. The new popularity graph is shown in Fig. 2.2.

Therefore, the spatial interpolationmethods are broadly classified into four groups
with respect to their frequency in various literature. The first group consists of the
most frequently reviewed and compared methods, ordinary kriging (OK), followed
by inverse distance weighting (IDW ), nearest neighbors (NN), universal kriging
(UK), and thin plate splines (TPS). The next group consist of linear regression
model (LM), kriging with external drift (KED), simple kriging (SK), trend surface
analysis (TSA), splines, etc.,which are themethodswithmedium frequency. The third
group includes classification (Cl), akima’s interpolator (AK), block kriging (BK),
indicator kriging (IK), etc., which were less frequently compared methods. The last
group consists of the remaining methods that are very less frequently considered (not
included in this work).
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Fig. 2.2 Spatial interpolation methods and their popularity [6]

As shown in the frequency graph of Fig. 2.2, the ordinary kriging method is
the most frequently considered method in the literature of spatial interpolation. For
the proposed work, the ordinary kriging has been extended further (in proposed
SemK) with semantic knowledge for the prediction of meteorological parameters.
The methods belonging to the first group, i.e., OK, IDW, NN, UK, and TPS are
considered in this monograph for comparison study.

2.4 Popular Techniques of Spatial Interpolation

The basic idea of spatial interpolation (discussed in Chap.1) is depicted in Fig. 2.3. A
gridded surface is depicted in the figure, where some points are sampled (represented

as 3D pipes). The missing pixel is represented by a red star ( ). The influence of the
sampled locations to the prediction point is shown in Fig. 2.3b using red arrow ( ),
where higher the length of the arrow, lesser the influence. For spatial interpolation,
this influence is based on Euclidean distance. By evaluating the optimal influence
(weight), the interpolation method predicts each of the missing pixel in the grid and
produces a complete surface (as shown in Fig. 2.3c). Therefore, pragmatic evaluation
of this optimal weight for each interpolating point is the fundamental objective of
spatial interpolation.

Several interpolation methods have been developed to be applied in various dis-
ciplines [55]. The estimation approaches of the spatial interpolation methods can
be stated as the weighted average of the sampled values. The general estimation
equation of spatial interpolation approach is given as follows:

Ẑ(x0) =
N∑

i=1

wi Z(xi ) (2.1)
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(a) Surface with sampled location

(b) Spatial influence of the sampled locations

(c) Interpolated surface

Fig. 2.3 Spatial interpolation process
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Here, Ẑ(x0) represents the estimated value of the prediction parameter Z at the
unsampled location x0, Z(xi ) is the actual value at the interpolating point xi ,wi is the
weight of the interpolating point xi and N is the number of sample points [7]. Hence,
for N interpolating points, a N dimensional vector is referred to as weight vector
W. In this work, each of the N dimensional vectors is considered as the matrix of
dimension [N × 1]. Some of the well-known interpolation methods (the first group
in Fig. 2.2) are described in the following subsections, which have been used for the
comparison study with the proposed methods in subsequent chapters. All of them
use the variants of the above equation, modified as per their model.

2.4.1 Nearest Neighbors (NN)

The nearest neighbors (NN) method [58] is a type of non-geostatistical interpolation
method [71]. This method predicts the parameter value of a missing pixel based
on the nearest sampled location, by drawing perpendicular bisectors between the
interpolating points. Therefore, it generates one Voronoi polygon with respect to
each interpolating point. The point is assumed to be in the center of the polygon such
that within each polygon, all the points are nearer than any other points of the rest of
the polygons [59, 100]. The parameter value at prediction points within the polygon
Vi is the actual value at the nearest interpolating point xi , i.e., Ẑ(x0) = Z(xi ). Hence,
the weights can be formulated as follows:

wi =
{
1 : xi ∈ Vi

0 : otherwise

ForNN, all interpolating points within a particular polygon are assigned sameweight
[15, 100].

2.4.2 Inverse Distance Weighting (IDW)

Same as NN, this method (IDW ) is also a non-geostatistical interpolation method. It
is the second most applied interpolation method in environmental science [45, 69].
In IDW, the estimates are made based on sampled locations that are weighted with
respect to Euclidean distance based proximity to the interpolation point. The weight
assigned to each of the interpolating points is the inverse of its Euclidean distance
from the prediction point. Therefore, the nearby points are assigned more weights
compared to the distant points and vice versa. The sample points are assumed to be
not related to each other. The basic method of IDW approach is known as Shepard
method [84]. The estimated value Ẑ(x0) at the prediction point (x0) is expressed as
follows:
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Ẑ(x0) =
N∑

i=1

wi xi
N∑
j=1

w j

(2.2)

Here, N is the number of sampled locations, xi is the parameter value at the i th
location, and wi is the weight of the i th interpolating point. The assigned weight by
IDW is expressed as follows:

wi = 1

d(x0, xi )p
(2.3)

where d(x0, xi ) is the distance between the prediction point x0 and the i th inter-
polating point xi , N is the number of interpolating points, p is the power factor,
defined as the rate of weight reduction with respect to increasing distance [74]. The
p value depends on the dimension of the interpolation space. For example, for two-
dimensional space, p ≤ 2.

The inverse distance squared (IDS) [99] is a specialized form of the IDW interpo-
lation method. For IDS, the specialized weight function is given as follows, where r
is the search radius. For the experimental case studies, a specialized version of IDW
is considered, for which p ≤ 2.

wi =
(r − d(x0, xi )

d(x0, xi )

)2
(2.4)

2.4.3 Ordinary Kriging (OK)

This method is type of univariate geostatistical interpolation method, named after
Krige [83]. Among deterministic interpolation methods, kriging [79, 88] is the most
popular approach based on linear regression. This method has been studied exten-
sively for the past few decades [33, 88]. It represents the family of generalized least-
square regression based interpolation methods. It aims to minimize mean squared
error in prediction. It is considered to be better than the existing interpolation tech-
niques due to its modeling of underlying spatial relationships among sampled loca-
tions. Unlike IDW, the sampled locations are not considered to be independent, but
the underlying spatial autocorrelation impacts their behavior and relation. The vari-
ants of kriging [92] conforms to the following Eq.2.5, with customizedmodifications
of it:

Ẑ(x0) − μ =
N∑

i=1

wi [Z(xi ) − μ(x0)] (2.5)

Here, Ẑ(x0) is the predicted parameter value at point x0, μ is the constant mean
value over the region of interest (RoI) [96].
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TheOK assumes the stationarity of firstmoment of the predictionparameter, that is
E{Z(xi )} = E{Z(x0)} = μ = μ(x0) andμ is unknown.Thewi is the assignedweight
to the i th sample point, N is the number of interpolating points that depends on the
search window size. The wi is measured from the experimental semivariogram. The
semivariance (γ(h)) approximates the underlying relationships and the Euclidean
distance based spatial autocorrelation. It is half of the variance of the difference
between the parameter values of sample points that are h lag distance apart. The
semivariance (γ(h)) of Z between two sample points that are h distance apart is
given as follows:

γ(h) =

N∑
i=1

[Z(xi ) − Z(xi + h)]2

2M
(2.6)

Here, γ(h) represents the semivariance at lag interval h, Z(xi ) is measured param-
eter value at a point xi , Z(xi + h) is the measured parameter value at a sampled
location which is h lag distance apart from xi , M is the total number of pairs of
the interpolating points that are h distance lag apart. In two-dimensional space, the
covariance is a function ofEuclidean distance between any pair of sampled locations,
which is modeled through a semivariogrammodel. The experimental semivariogram
represents a trend analysis plot of semivariance (γ(h)) with respect to lag distance
(h) between known sampled locations. It reveals several important characteristics of
the terrain [15]. One example experimental semivariogram of spatial region Kolkata,
WB, India (year: 2015) is shown in Fig. 2.4. The fitted curve is exponential distribu-
tion. The important specifications of the semivariogram model are: nugget, range,
partial sill, sill, etc. From this fitted model, the semivariance between every pairs of
interpolating and interpolation points are estimated with respect to their respective
spatial lag distance [7].

Let us consider ε(x0) to be the error in estimation process of the prediction param-
eter value Z at the interpolation point x0. Further, if Ẑ(x0) and Z(x0) are the predicted
and the actual parameter values at x0, then ε(x0) is expressed as follows:

ε(x0) = Ẑ(x0) − Z(x0) (2.7)

=
N∑

i=1

wi Z(xi ) − Z(x0) (2.8)

where wi is the assigned weight to the i th sample point and Z(xi ) is the parameter
value at xi . For OK method, the stationarity of the random function implies that the
expected value of error is zero. Thus the following holds:
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Fig. 2.4 An example experimental semivariogram [8]

E (ε(x0)) = 0 (2.9)
N∑

i=1

wi E(Z(xi )) − E(Z(x0)) = 0 (2.10)

μ

N∑

i=1

wi − μ = 0 (2.11)

N∑

i=1

wi = 1 (2.12)

1TW = 1 (2.13)

Thus, the following equation can be considered as the general estimation approach
by ordinary kriging, constrained by 1TW = 1, where the weight vector of size N ,
W is expressed as [w1w2 · · ·wN ]T .

Ẑ(x0) =
N∑

i=1

wi Z(xi ) (2.14)

2.4.4 Universal Kriging (UK)

The universal kriging (UK) [88] belong to the group of multivariate geostatistical
interpolation methods. In contradiction with ordinary kriging in terms of stationarity
of the first-order moment, for UK, the mean is the function (β) of the coordinate
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location (X, Y) of the interpolating points, i.e., of each xi [4]. This trend function can
be in linear, quadratic, or higher form. For example, the Z value at the interpolating
point xi can be given (in linear and quadratic forms respectively) as follows:

Ẑ(xi ) = β0 + β1xi (X) + β2xi (Y ) + δ(xi ) (2.15)

Ẑ(xi ) = β0 + β1xi (X) + β2xi (Y ) + β3xi (X)
2 + β4xi (X, Y ) + β5xi (Y )

2 + δ(xi ) (2.16)

where βi s are the unknown trend coefficients, δ(xi ) is the stochastic component at
the location xi . Hence, assuming the trend of linear form and considering the number
of interpolating points to be N , the estimated value at x0, i.e., Ẑ(x0), with constraint
1TW = 1, is given as follows:

Ẑ(x0) =
N∑

i=1

wi Z(xi ) (2.17)

= β0 + β1

N∑

i=1

wi Z(xi )(X) + β2

N∑

i=1

wi Z(xi )(Y ) +
N∑

i=1

wiδ(xi ) (2.18)

2.4.5 Thin Plate Splines (TPS)

The thin plate splines (TPS) [11, 35] is a non-geostatistical interpolation method,
which is formally known as Laplacian smoothing splines. This method was initially
proposed in [98] for climatic data. A thin plate spline is mainly applied for the
tabulated data that are arbitrarily spaced. The TPS can be regarded as a generalized
natural cubic splines in one-dimensional space [26]. However, it can be applied for
any dimensions with customized modifications.

In n-dimensional space, the aim of TPS is to select a function f (x) that executes
exact interpolation of the given sample points (xi , yi ) and minimizes bending energy
as given in the following equation:

E
{
f (x)

} =
∫

Rn

|D2 f |2dX (2.19)

Here, |D2 f |2 represents the sum of squares of the elements of matrix D2 f . It is
a matrix of second-order partial derivatives of f . The minor element of the hyper-
volume is dX, given as [dx1dx2 · · · dxn] and xi s represents the components of x .
A smoothing factor is introduced here for regularization of the interpolated surface
[97]. A function f can be chosen such that it may approximate the interpolation
process and does minimize the following Eq.2.20 as follows:
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E
{
f (x)

} =
N∑

i=1

| f (xi ) + yi |2 + ρ

∫

Rn

|D2 f |2dX (2.20)

Here, N is the total number of data points and ρ is the smoothing factor, always
greater than 0 [26]. The spatio-temporal modeling of TPS that has been considered
for the empirical comparison in this study has been specified in [35].

2.5 Background

This section presents the existing literature of relevant spatial and corresponding
spatio-temporal interpolation methods. Mainly, the background study on five mostly
recommended spatial interpolation methods are presented. The kriging, mainly the
ordinary kriging and other methods, considered for the empirical comparison study
with the proposed approach, are studied here. Further, the literature which identify
the importance of LULC for different meteorological parameters are reported. Few
studies focusing on the probabilistic analysis in several domains by Bayesian and
fuzzy Bayesian network learning, are presented further.

2.5.1 Spatial Interpolation

Spatial interpolation methods are applied in various disciplines. The performance of
the interpolation methods is data specific and also dependent on the application type.
Many factors that affect the efficiency of the interpolation methods can be stated as
follows:

• sample size, density, and spatial distribution
• distance from the prediction point
• type of surface/terrain
• data variance and normality
• stratification
• quality of auxiliary information
• grid size/resolution
• spatial proximity (autocorrelation) modeling approach, etc.

Li et al. [59] have reported a detailed review on spatial interpolation methods
demonstrating each of their performance in environmental science. This study reports
ordinary kriging to be the mostly applied and compared interpolation method, fol-
lowed by IDW, IDS, and others. This analysis is taken forward in [60] resulting ordi-
nary kriging, followed by inverse distance squared being the two mostly compared
interpolation methods in the same field. They have also reported in their comparative
study that the nearest neighbors is themost accuratemethodwith errormetric relative
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root mean square error RRMSE. Nalder et al. [69] have compared four interpolation
methods, nearest neighbors, inverse distance weighting, universal kriging, and ordi-
nary kriging, along with other methods. They have applied this method for monthly
precipitation and temperature prediction inWesternCanada. Theperformance is eval-
uated by mean absolute error metric and they have found that the nearest neighbors
has performed better than inverse distance squared, followed by universal kriging
and then ordinary kriging. Boer et al. [10] have compared four types of kriging (OK,
cokriging, regression kriging, and trivariate regression-kriging) and three types of
TPS (bivariate TPS, trivariate TPS, partial TPS) to estimate monthly mean precip-
itation and maximum temperature in Jalisco, Mexico. They have reported that the
trivariate TPS and partial TPS produce comparable results and perform better than
other approaches with respect tomean square error. Franzen et al. [31] and Weisz et
al. [101] have reported that the kriging along with inverse distance squared to be the
most widely considered methods inGIS. Several other works have also compared the
twomost frequently usedmethods (OK and IDW ) for their own applications [73, 78].
In some cases, kriging outperforms inverse distance weighting [50, 78]. Kravchenko
[50] has studied spatial autocorrelation to analyze the grid soil sampling with various
sampling density considering these two processes. The krigingwith known semivari-
ogram has performed significantly better than IDW mostly studied applications [51].
Further, IDW shows better performance than kriging in some other studies as well
[69]. Mueller et al. [68] have reported IDW based interpolation to perform generally
equally or sometimes better than kriging considering optimal factors [52, 68]. How-
ever, some mixed results are also reported in the literature by [54, 67, 81]. Schloeder
et al. [81] have reported the OK and IDW to perform similarly. Kuilenburg et al.
[93] have analyzed and compared three methods, OK, IDW and NN for agricultural
and soil science application. They have found that OK is the most preferred one
over others. Laslett et al. [55] and Brus et al. [14] have also compared their perfor-
mances to predict different soil properties and OK has reported minimal error. Odeh
et al. [72] have considered OK and UK for predicting soil properties along with
some other interpolation methods such as isotopic cokriging, heterotopic cokriging,
multi-linear regression, and other regression kriging methods. Though other meth-
ods with covariates information performed better than OK and UK, however, UK’s
performance was better than OK in terms of RMSE. Zimmerman et al. [108] have
comparedOK,UK, and two variants of IDW for generating interpolated surface with
different data and sampling properties such as sampling pattern, surface type, noise
level, and small-scale spatial correlation strength. They have found both the kriging
methods are superior to the IDW variants. Teegavarapu et al. [91] have proposed some
modifications to the weighting factors and surrogate measures of distances for IDW
and compared these modified methods with kriging, revised NN, and other methods
such as artificial neural network for missing rainfall events. They have observed that
in terms of RMSE, the modified IDW performs better than other methods. Different
variants of nearest neighbor method have been extensively studied by LeMay et al.
in [58] for predicting a number of ground and Ariel variables. Hutchinson [43] has
applied partial TPS and its variants for measuring annual mean rainfall and compared
their performances. They have declared that the trivariate spline is the most efficient
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choice for their application. Harder et al. [36] have compared spline interpolation
process with the interpolations by 21-term least-squares polynomials and indicated
us with the superiority of the spline method.

Many recent works have also applied spatial interpolation techniques for pre-
diction. Among those contemporary works, Yasrebi et al. [105] have compared OK
and IDW to determine degree of spatial variability of soil chemical properties. The
OK performed much better compared to the IDW method in this study. According
to Karydas et al. [45], IDW variants are the most often considered techniques for
several applications. Foster et al. [30] have reported that the kriging produces accu-
rate results in many applications, however, other interpolation approaches such as
NN also produce better results for reconstructing total electron content (TEC) of
the ionosphere images. Rayitsfeld et al. [77] have examined a pair of methods for
measuring rainfall from microwave links. One of them is inverse distance weight-
ing and another is proposed in [66]. They found a comparable result for both the
methodologies. Chen et al. [18] have examined the relation between interpolation
accuracy of IDW and two significant factors of it, power and the search radius of
influence for the prediction of the rainfall. Bhowmik et al. [9] have compared three
interpolation methods, spline, IDW, and kriging, to generate continuous surfaces of
temperature trends in Bangladesh (years from 1948 to 2007). They have found OK
to be useful for maximum temperature trend analysis. Keblouti et al. [46] have tried
to determine the most adequate rainfall interpolation technique and reported inverse
distance weighting to be the best technique to characterize rainfall distribution. Sim-
ilarly, four spatial interpolation methods, namely, ordinary least squares, IDW, OK,
and cokriging are compared in article [19], along with their proposed geographically
weighted regressionmethod for forest canopy height prediction. Though geographi-
cally weighted regression dominates others, inverse distance weighting and ordinary
least squares found to be better among the four techniques, with different sampling
density. Xie et al. [103] and Phachomphon et al. [76] have studied the impact of
some important interpolation techniques including OK and IDW, in the application
of agriculture and soil science. The OK achieves the best ability to estimate the soil
pollution trend in [103], however, inverse distance weighting outperforms ordinary
kriging in the latter. Ruddick [80] has compared IDW, NN, and OK for Australian
seascape prediction and found comparable results. Lu et al. [63] have developed an
adaptive IDW method to find the best optimal and adaptive distance-decay factor
and compared the method with OK. The adaptive IDW is found to perform better
for predicting precipitation surface. Chaplot et al. [17] have conducted one interpo-
lation experimentation of point height data with several methods such as IDW, UK,
OK, spline, and others. They have found IDW to perform better than others. Brus
et al. [13] have presented an optimization method of the sample pattern when the
environmental parameter is interpolated using linearly related covariates. They have
extended universal kriging, which has performed better than OK and others. Tait et
al. [89] have presented a daily rainfall estimation method for the study region New
Zealand (period 1960–2004) using TPS and verified several environmental factors.
Gundogdu et al. [34] have examined kriging method for choosing an optimal exper-
imental semivariogram model for the analyses of groundwater levels and reported
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that for their studied irrigation area, the rational quadratic empirical semivariogram
model performed best. Hancock et al. [35] have proposed an automatic procedure for
optimizing smoothness of TPS to minimize generalized cross-validation. They have
tested their proposed method on temperature estimation in African and Australian
continents and found optimal results. The nearest neighbor is compared against some
ensemble methods including kriging, IDW and others, that are proposed by Stahl et
al. in [87], for daily air temperature estimation over British Columbia, Canada. The
variants of IDW performed better than other two. Nikolopoulos et al. [71] have com-
pared three interpolation methods: NN, OK, and IDW and estimated the debris flow
that triggers rainfall. They have reported NN to estimate with bias lesser than OK
and IDW but with large estimation variances.

2.5.2 Spatio-Temporal Interpolation

Several studies have also been reported in the field of spatio-temporal interpolation
of meteorological parameters from time-series data. Yang et al. [104] have reported
a time-forward kriging for forecasting hourly spatio-temporal solar irradiance data
for the study region Singapore. They have clearly presented the notion of three statis-
tical properties, stationarity, full symmetry, and separability in the context of spatio-
temporal analysis with Venn diagram. Liang et al. [62] presents a new interpolation
method, Markov cube kriging (MCK), to address the scalability issue for handling
huge spatio-temporal data. Agarwal [1] has presented a new spatio-temporal kriging
model in his Master’s thesis to predict the daily atmospheric temperature data in the
USA. The model is compared with ARIMA (Autoregressive integrated moving aver-
age) model [106] and has been reported to perform better. Arslan [5] has considered
spatio-temporal ordinary kriging and indicator kriging for predicting groundwater
salinity at unobserved locations in Bafra Plain, Turkey. They have considered OK
to analyze spatial variability of the salinity factor and the indicator kriging to ana-
lyze the salinity in terms of pollution threshold. Wentz et al. [102] have proposed a
space–time interpolation approach, termed as space–time interpolation environment
(STIE), based on two interpolation methods, one for the temporal and another for the
spatial dimension to maximize the quality of the result. It reports 85.2% accuracy for
estimating urban LULC growth in the region Phoenix, Arizona, which is better than
using a single interpolation technique. Heuvelink et al. [40] have proposed a spatio-
temporal prediction model in which the space–time variable is treated as a sum of
trend model, considering independent stationarity in spatial, temporal, and space–
time component (anisotropic). They have found stable spatial patterns during the
studied time period. Spadavecchia et al. [85] have compared three kriging-based geo-
statistical models with a baseline IDW method. The methods are SK, OK, and KED.
They have reported KED to perform better for the estimation of maximum and min-
imum temperature and precipitation, in terms of MAE and RMSE. Hengl et al. [38]
have presented an interesting idea of predicting land surface temperature in Croatia
from MODIS LST images. They have identified that the land surface temperature
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is a function of location (latitude/longitude), LULC, orography, precipitation, indus-
trial activities, etc. Though they have addressed the fact that theLST to be the function
of the representative LULC, this information is not incorporated into the prediction
method. Dozier et al. [25] have used the daily time-series data to predict the daily
albedo and snow cover in SierraNevada ofCalifornia. They have appliedTPSmethod
for the same. Similarly, Hijmans et al. [41] have applied TPS for estimating monthly
mean, maximum and minimum temperature, and precipitation in USA for datasets
with different resolution and compared their performances. Srinivasan et al. [86]
have established a new kriging approach for speeding up the interpolation process,
and applied this method on ocean color data from the Chesapeake Bay region. They
have reported significant performance improvement for the proposed approach over
other standard kriging approaches. Kilibarda et al. [48] have applied spatio-temporal
regression kriging approach to estimate the mean, minimum, and maximum tem-
peratures in Europe. They have found the average accuracy in terms of RMSE to be
very high in lower altitude. Carrera-Hernández et al. [16] have studied the spatio-
temporal variation in rainfall and temperature in the Mexico Basin and also studied
their relation with elevation. They have considered different interpolation methods
such asOK,KED,OK in a local neighborhood, block kriging with external drift, and
KED in a local neighborhood. They have observed that in each case, the prediction
accuracy has improved while considering elevation as a secondary parameter.

2.5.3 Spatial Interpolation with Probabilistic Analysis

For a-posterior probabilistic analysis of meteorological and terrestrial data, several
research works [24, 70] applying Bayesian network (BN) on spatial and spatio-
temporal data have been reported till date. Le et al. [56] have developed an alternative
spatial interpolation approach to kriging and presented its theoretical fundamentals
in details. The research work developed by Coffino et al. [20] is a combination of BN
and numeric atmospheric model to estimate weather patterns. The BN is used here
to model the spatial and temporal dependencies among different weather stations for
dealing with multivariate spatially distributed time series. Nandar [70] has developed
a Bayesian network based probabilistic model for estimating rainfall in Myanmar.
The BN is considered to investigate the spatial relation among meteorological vari-
ables. A Bayesian belief network (BBN) has been established by Dlamini in [24],
considering abiotic, biotic, and human variables to determine the influencing factors
of wild-fire in Swaziland. Hussain et al. [42] have proposed an extension ofmultivari-
ate hierarchical Bayesian spatio-temporal interpolation for the accurate prediction
of spatio-temporal precipitation for water resource management during monsoon.
They have compared the proposed approach with the base or non-transformed one
and observed that the proposed one provides more accuracy. Fuentes et al. [32] have
proposed an improved model of spatial prediction by incorporating the posterior
distribution of the ground truth data of SO2 concentrations, by following a Bayesian
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analysis. They have obtained high-resolution SO2 distribution. Kibria et al. [47] have
presented amultivariate spatio-temporal prediction using Bayesian analysis for map-
ping PM2.5 in Philadelphia and the proposed method found to perform well. Brown
et al. [12] have adopted a multivariate spatial interpolation approach and model the
uncertainty of the underlying technique using Bayesian analysis for monitoring dif-
ferent environmental factors. Le et al. [57] have developed an empirical Bayesian
approach for spatial interpolation to estimate airborne pollutant concentrations over
time.

In many cases, the BN learning method has been extended with fuzzy analysis
to model the causal relationship among environmental variables better. It also deals
with the uncertainties associated with the datasets in a better manner. Peng-Cheng
et al. [61] have developed a fuzzy BN approach, which measures the causal rela-
tionships among human reliability and organizational factors qualitatively, as well
as quantitatively. Ferreira et al. [29] have developed a unique method by integrating
fuzzy logic andBN approach together which is able to evaluate and rank the suppliers
more accurately compared to the existing alternatives. A hybrid inference approach
by combining BN and fuzzy sets has been established by Tang and Liu in [90] and is
named as fuzzy Bayesian network (FBN). The effectiveness of FBN has been proved
already in the field of machine fault diagnosis.

2.5.4 Importance of LULC Analysis and Ontology

The importance ofmodelingLULC formeteorological parameters have been reported
by a few studies in the literature. Hengl et al. [38] have described the LST to be highly
influenced by the LULC distribution in the terrain. Many other works [53, 65, 82]
have also stated that the terrestrial LULC distribution is impactful weather dynamics
and climatic patterns analysis. A detrended kriging method is proposed by Janssen
et al. [44] for air pollution measurement and is named as RIO. The authors have
considered CORINE LULC data for the analysis. Petrişor et al. [75] have investigated
whether a particular study region is influenced at macro-scale by change in LULC
pattern. They have considered OK method to model the environmental changes and
their impact on LULC pattern. As already discussed earlier, the STIE method [102],
proposed by Wentz et al. is developed to predict LULC for estimating urban growth
in the region Phoenix, Arizona. Hence, prediction of LULC and its analysis is one of
the most challenging aspect in meteorological analysis. However, this knowledge is
yet to be incorporated into the spatial interpolation process pragmatically. As far as
our knowledge, the multivariate spatial interpolation of meteorological parameters
such asNDVI, LST, etc., for the forecasting of the future LULC pattern is also a very
novel approach in literature.

Many studies have reported ontology-based analysis of LULC in the field of GIS.
Feng et al. [28] have applied a feature-based method for quantifying the seman-
tic similarities among different classes of LULC. Based on this analysis, users can
decidewhether the givenLULC information is acceptable for a particular application.
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Comber et al. [22] have addressed the issue of properly understanding the seman-
tic or meaning of the LULC classes coming from different datasets. Herold et al.
[39] have focused on semantic interoperability among different LULC datasets in
order to resolve terminological and conceptual incompatibilities. Another study by
Ahlqvist [2] has addressed the semantic interoperability issues in LULC classifica-
tions model. Further, it has introduced an approach to conceptual spaces and rough
fuzzy sets for evaluating semantic similarity between LULC classes. Comber et al.
[21] have presented an approach to integrate time-series LULC information from
diverse sources using domain experts’ knowledge, when LULC classes may get fun-
damentally changed over time. They have relied on an ontology-based approach to
integrate data from different sources. Varanka [95] has proposed semantics for com-
plex LULC) ontology design patterns (ODP) for the topographic features as a data
models. They have assessed the performance of the model with the USGS (United
States Geological Survey) national map by assembling it into the proposed ODP.
Similarly, to integrate the capabilities of the USGS national map and the semantic
web, another research work on the semantic analysis of the topographic data for
ontology and triples is presented in [94]. Kovacs et al. [49] have also investigated the
need to consider topographic objects (complex LULC) from spatial, as well as from
semantic perspective. This research work aims to model and represent the nonspatial
and spatial entities that are semantically related in ontology.

2.6 Future of Spatial Interpolation

From the state of the art, it may be observed that many spatial interpolation methods
have estimated different meteorological parameters for diverse applications. Many
approaches are developed for the temperature estimation for different regions, all over
the world. Further, though analysis of LULC classes have been studied for spatial
applications, none of the studies have actually implemented this analysis to interpo-
late LST and other meteorological parameters more efficiently and accurately. It may
be observed from the state of the art that LULC analysis is important for meteoro-
logical parameters as different classes influence the parameters in a varying manner
[38, 44]. However, the combination of both the approaches (spatial interpolation and
LULC analysis) is still lacking. According to to the article by Environmental Protec-
tion Agency (EPA), USA [27], the LULC classes such as building, forest, industrial
area, agricultural area, etc., significantly influence the meteorological parameters.
For example, a water body absorbs and emits less heat than a building. Thus a build-
ing in a certain location will increase the LST compared to a water body. However,
in case of moisture stress index parameter, contrasting behavior is reported by these
two LULC classes. Further, for the spatio-temporal prediction and forecasting, the
LULC distribution of the same terrain may evolve over time. Hence, each of the
time instance under consideration is having different semantics in terms of LULC
distribution and influences the meteorological parameter distinctly. Therefore, spa-
tial interpolation methods, for the applications such as meteorological parameter
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prediction, forecasting, etc., should incorporate the behavioral change in semantics
or the knowledge of LULC distribution of the terrain. It may result in more pragmatic
and accurate forecasting model.

Each of the existing spatial interpolation methods that has been discussed in
this chapter, including the most popular ordinary kriging, models the experimental
semivariogram model by analyzing the underlying spatial relationships among the
sampled locations in terms of their Euclidean distances in 2D space. Therefore, it
is independent of the influencing spatial LULC classes. With these specified limi-
tations of the existing interpolation methods, this work attempts to propose a new
univariate geostatistical interpolation model, which can blend the underlying spatial
relationships of the terrain for the prediction of meteorological parameters. The most
popular interpolation method, i.e., ordinary kriging (refer Fig. 2.2) has been chosen
as the base method to be extended further to in spatio-semantic domain. It can be
further extended for univariate and multivariate spatio-temporal prediction and fore-
casting as well. The proposed model can be directly applied for different spatial
applications, which involves analysis of LULC distribution, for example, forecasting
of urban landscape for change pattern analysis.
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Chapter 3
Spatial Semantic Kriging

Abstract The spatial semantic kriging (SemK) based spatial interpolation method
is applied for the interpolation of meteorological parameters, aiming to enhance the
accuracy in results. The SemK considers the semantic properties of the terrain, which
is influential to the meteorological parameters and incorporates into the prediction
process. One such property is the terrestrial land-use/land-cover (LULC) distribution.
An ontology hierarchy is built with the availableLULC classes to find the influence of
each of the classes to the land surface temperature (LST ). This interpolation process
belongs to the family of kriging and extends the the ordinary kriging (OK) based
spatial interpolation with LULC knowledge. The empirical experiments show that
this auxiliary knowledge is highly significant to achieve more accuracy in prediction.
The theoretical performance analysis is also carried out in this chapter to prove the
efficiency of SemK over other existing methods.

3.1 Introduction

Prediction of spatial parameters with enhanced accuracy has attracted significant
research interest in remote sensing and GIS research community. Further, the raw
raster imagery, which is processed to generate different derived meteorological
parameters, generally contain missing values in terms of line gaps (a line of miss-
ing pixels), cloud covers, etc. Prediction of the parameter values at those pixels is
needed to generate continuous surfaces for further analysis. For estimating the param-
eter value with higher accuracy, modeling spatial autocorrelation plays an important
role. It is defined as the dependency among the sampled locations with respect to
a spatial parameter. There exist several variations in existing spatial interpolation
methods based on how accurately or pragmatically the autocorrelation is modeled
to achieve high prediction accuracy. As discussed in the literature survey (such as
[10, 11]), the kriging is the most commonly used and well accepted geostatistical
spatial interpolation method, which can model this dependency most efficiently. All
the variants of kriging interpolators model the spatial autocorrelation as a function
of Euclidean distances among the sampled locations.
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Formost of themeteorological parameters such asLST,NDBI,NDVI,MSI,NDWI,
etc., the LULC of the sampled location is highly influential. Especially for the land
surface temperature, the LULC of the terrain is of utmost importance. For example,
say two sampled locations are at same Euclidean distance apart from the prediction
point. When the former location is represented by a industrial area, the later is by a
waterbody. In this scenario, the first sampled location may increase the LST value
of the prediction point, while the later decreases it. Hence, there is a need for land–
atmospheric interaction modeling for prediction by analyzing the terrestrial LULC
distribution.

The spatial SemK approach incorporates the LULC knowledge into the prediction
process. The “semantics” or the categorical LULC information of a sample point is
assumed to be the terrestrial qualitative property [5], not a secondary covariate.
Hence, in this work, no the multivariate kriging (such as co-kriging) methods are
not suitable. This method extends the univariate ordinary kriging (OK) method with
semantic information of the RoI. This research considers the LULC information
of the terrain to be a contextual knowledge of the terrain. Hence, one of the major
challenges is the proper and accurate quantification of this semantic knowledge.Once
it is quantified, the ordinary kriging (OK) needs to be extended properly, without
violating its statistical properties. The next section specifies the objectives of the
newly proposed method semantic kriging.

3.2 Objectives of Semantic Kriging

This chapter establishes a new scheme of interpolation, namely, semantic kriging.
Like all other univariate kriging interpolation methods, SemK aims to minimize the
mean square error in prediction. It extends the existing OK interpolation process by
integrating the semantics of the LULC classes with the same. The semantic knowl-
edge is captured through an ontology-based concept hierarchy [5]. The proposed
two metrics, spatial importance and semantic similarity are considered to model the
spatio-semantic relations among the LULC classes for the interpolation process. The
objectives of the chapter can be briefed as follows:

• to propose a unique and accurate approach to quantify the qualitative semantic
LULC information for modeling the meteorological and terrestrial interaction.

• to propose new semantic metrics, which can be used to modify the Euclidean
distance based variance between two sampled locations.

• to extend the covariances and the weights assigned by OK with the proposed
semantic metrics.

• mathematical formulation of the new weight matrices and other related variables
of SemK.

• performance analysis and comparison of SemK with few existing methods using
LST data.
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3.2 Objectives of Semantic Kriging 45

• performance analysis of SemK for the establishment of its relationwith the existing
techniques and optimal interpolator and evaluate the effect of the granularity of
the ontology on SemK.

3.3 SemK: Semantic Kriging

The SemK extends the OK method by combining the correlation and the semantics
similarity between the LULC classes with the interpolation process, aiming to yield
better predicted value. It extends the traditional covariancemeasure to higher dimen-
sion by blending the LULC distribution information. Similarity analysis among the
LULC classes is accomplished in a way so that the semantically similar and the cor-
related LULC pairs (the representatives of the sampled or unsampled locations) will
be assigned higher score compared to the distant ones. The flow diagram of SemK
is depicted in Fig. 3.1, which can be described as follows:

• the satellite image of the derived meteorological parameter is considered as the
input and the missing pixels are identified to carry out interpolation.

• an ontology of spatial LULC classes of the RoI is also considered as this input to
the framework.

• in SemK process, the Euclidean distance based proximity is blended with seman-
tic proximity of the terrain with two metrics: spatial importance and semantic
similarity.

– the semantic similarity is measured with respect to the ontological hop distances
between the leaf LULC classes.

– the spatial importance is evaluated by correlation analysis with sample data
representing those LULC classes.

• these semantic metrics then modify the traditional Euclidean distance based prox-
imity of the ordinary kriging (OK) method, resulting spatio-semantic proximity
model.

• the weight vector of the SemK is evaluated, which is further utilized to evaluate
the parameter value of a missing pixel.

Given the RoI, a LULC ontology is generated by considering all possible LULCs
in that RoI. In the ontology, the LULCs are represented as concepts. These concepts
are further organized as an ontology hierarchy with respect to a standard semantic
relation. Examples of such relations include meronym, hyponym, hypernym, etc.
[14]. According to the properties of hierarchical ontology, the semantically similar
concepts are closer in the ontology hierarchy compared to the dissimilar ones. For
example, Kolkata, WB, India is considered here as one of the RoIs for the case
study to predict LST. Kolkata is a metropolitan city in eastern India with central
coordinate: (22.567◦N 88.367◦E). It consists of different LULC classes such as built-
up, wastelands, cropland, waterbodies, forest, wetlands, etc. The ontology hierarchy
of Kolkata, consisting of these LULC concepts is depicted in Fig. 3.2. The hierarchy
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Fig. 3.1 SemK framework [1, 6]

Fig. 3.2 Land-use/land-cover (LULC) ontology [2, 4–6, 8]

is created in accordance with the LULC classification, proposed by the Department
of Science and Technology (DST), Government of India [13]. The hyponym relation
is considered to construct the hierarchy.

Being region- and domain-specific, i.e., construction of an ontology hierarchy is
dependent on the domain of interest and studied spatial region. Depending on the
application domain and the RoI, the ontology varies in terms of the number and the
type of concepts, semantic relation, permitted levels, etc. In this study, the ontology
of LULC is adaptive, such that, new relevant concepts can be appended and old
concepts can be discarded depending on the requirement of the application. From
the given ontology in Fig. 3.2, it must be observed that the sampled and unsampled
locations are always represented by one leaf concept. Hence, the prediction and
every interpolating points are further mapped to the representative leaf concept of
the hierarchy. For SemK, the mapping is mandatory to relate the appropriate LULC
class of every prediction or interpolating points. Following this LULC mapping, the
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semantic/ ontological association among every pair of leaf LULC classes is estimated
further. For this purpose, twometrics have been proposed: spatial importance, which
is the correlation analysis among every pair of leaf LULC classes, and the semantic
similarity, which is the analysis of their semantic distance in the ontology hierarchy.
The processes of evaluating themetrics are presented in the Sects. 3.3.1 and 3.3.2. The
hierarchical hop distance in the ontology is considered as the heuristic to evaluate the
semantic similarity. And, for the spatial importance evaluation, the actual sample
points are considered in the RoI representing different LULC classes to get their
correlation score, related to the prediction parameter. These two semantic metrics
extends the traditional (Euclidean distance based) covariance measurement process
into spatio-semantic dimension. Therefore, though the weights of the interpolating
points, assigned by OK, are based on Euclidean distance only, in the newly proposed
SemK, it is the function of both Euclidean distance and the cumulative semantic
score (both semantic similarity and spatial importance) of their representative LULC
classes. Further, this spatio-semantic scores of the sampled locations are normalized
to estimate the parameter value bySemK.Havingmore decision parameters compared
to OK, makes the SemK process more informative than OK.

3.3.1 Semantic Similarity

The semantic similarity (SS) between two representative leaf LULC classes in the
ontology is evaluated using modified context resemblance approach [12]. For this
metric, the pair of points having higher semantic distance in the hierarchy will be
assigned less score and vice-versa. It is proportional to the assigned weight. The
score of the i th interpolating point xi (where i ∈ 1 · · · N) with the prediction point
x0 is referred to as SS0i . It is formulated as follows:

SS0i =
m0
| f0| + mi

| fi |
2

(3.1)

where fi and f0 are the corresponding representative LULC of xi and x0 respectively.
| fi | and | f0| are the total number of concepts in the path of fi and f0 in the ontology,
staring from the most general concept in the hierarchy, i.e., owl:Thing. The mi and
m0 represent the number of concepts matching in the paths of fi and f0. This metric
forms a [N × 1] vector, as it is evaluated for all the interpolating points with respect
to the prediction point. It is given as [SS]T

0i = [SS01SS02 · · · SS0N ].
Being spatially related, the semantic dependency exists among the representative

LULC classes, and thus between every pair of interpolating points. Therefore, the
relative similarity score should also be measured between every pair of interpolating
points. The similarity between i th and j th sampled locations, xi and x j (where i, j ∈
1 · · · N) is referred to as SSi j and can be represented as follows:
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SSi j =
mi
| fi | + m j

| f j |
2

(3.2)

where fi and f j are the representative LULC of xi and x j respectively. The | fi |, | f j |
represent the total number of hops in the path of fi and f j respectively, staring from
the root (owl:Thing) in the ontology. The mi and m j are the number of matching
concepts in the paths of fi , f j . For all the interpolating points, this metric is measured
between each pair of locations, which forms a symmetric matrix of dimension [N ×
N], denoted as [SS]i j .

For example, the semantic similarity between the concepts industrial and commer-

cial is given as
3
4 + 3

4
2 = 0.75. Similarly, the semantic similarity between commercial

and plantations is given as
1
4+ 1

3
2 = 0.29. Finally these scores are scaled as difference

scores by subtracting each of the SSi j from its maximum possible value.

3.3.2 Spatial Importance

The spatial importance (SI) score between every pair of leaf LULC classes is mea-
sured by correlating their sample points with respect to the prediction parameter. In
this regard, the RoI is splitted into some nonoverlapping subregions. Let k be a con-
stant to define the number of paired sampled locations (other than N interpolating
points) for this correlation analysis. Then, the spatial region is splitted into k zones
(Rk) such that

⋃k
i=1 Rk = RoI. Now, k pairs of sampled locations are selected from

each of the k subregions, where the first location in every pair represents the first
LULC considered for the correlation analysis and vice-versa. Each pair is selected in
a way so that physically they represents the locations within a predefined Euclidean
distance. The correlation is evaluated in terms of these k pairs of points. For example,
to measure the correlation score between “Industrial” and “River” (refer Fig. 3.2)
with respect to land surface temperature in Kolkata,WB, India, the k is defined as 50.
Thus, 50 nonoverlapping subregions are first selected in the RoI. Then, 50 random
(uniformly random) sampled locations are selected for the LULC class Industrial
from each of the subregions. Next, a new set of k sample points are identified against
each k Industrial points, which represents the LULC class River. Then a correlation
score between “Industrial” and “River” is measured in terms of these fifty pairs of
locations over the RoI. In this study, the correlation score between Industrial and
River is measured as 0.81. For the given ontology hierarchy in Fig. 3.2 of the RoI
Kolkata,WB, India, the correlation between some pairs of leaf concepts are evaluated
and presented in Table 3.1. The correlation scores range between [−1, 1]. To fur-
ther restrict the SemK method to deal with the negative mapping of the covariances,
these scores are normalized to any positive range. The spatial importance evaluation
process exhibits the following characteristics:

• this process is dependent on the prediction parameter. For example, correlation
score between industrial and river is 0.81 for the prediction of land surface tem-
perature. However, formoisture stress index, it is 0.22 [RoI is Kolkata,WB, India].
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Table 3.1 Correlation scores between pair of LULC classes in Kolkata, WB, India [2]

• this process is a a-priori correlation analysis, such that, the correlation score
between a pair of LULC classes is evaluated without estimating the impacts of
nearby LULCs.

• correlation scores among every pair of LULC classes are considered to be the
global scores for the whole RoI.

Once representative LULC classes of all the sampled and unsampled locations are
identified in the ontology, the correlation between the representative LULC classes
of each sampled location and the prediction location is to be evaluated further. These
scores are referred to as spatial importance, as it represents the significance of one
LULC class over other. Let the representative LULC classes of prediction point x0
be f0 and for the i th interpolating point xi be fi . Let the spatial importance for fi

with respect to f0 (and vice-versa) be SI0i . It is given as follows:

SI0i = Corrprediction_parameter (x0, xi ) (3.3)

= Corrprediction_parameter ( f0, fi ) (3.4)

=

k∑

m=1
(Z( f0m ) − Z( f0))(Z( fim ) − Z( fi ))

√
k∑

m=1
(Z( f0m ) − Z( f0))2

k∑

m=1
(Z( fim ) − Z( fi ))2

(3.5)

where Z( f pq ) is the parameter value of qth sampled location, represented by the f p

LULC class, Z( f̄ p) is the mean of the parameter values over k sampled locations that
are represented by the LULC f p. Thus, being evaluated for every sampled locations
with respect to the prediction point, it constructs a [N × 1] vector/ matrix, given as
[SI]T

0i = [SI01SI02 · · · SI0N ].
Following the spatial autocorrelation of the terrain, correlation exists among every

pair of sampled locations as well. In a similar manner, the spatial importance SIi j

between any i th and j th sampled locations can be evaluated by measuring their
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representative LULC classes’ correlation. Therefore, SIi j is given as follows:

SIi j = Corrprediction_parameter (xi , x j ) (3.6)

= Corrprediction_parameter ( fi , f j ) (3.7)

=

k∑

m=1
(Z( fim ) − Z( fi ))(Z( f jm ) − Z( f j ))

√
k∑

m=1
(Z( fim ) − Z( fi ))2

k∑

m=1
(Z( f jm ) − Z( f j ))2

(3.8)

The spatial importance score is measured for each pair of the N sampled locations
the scores are scaled as difference scores by subtracting each of the SI i j from its
maximum possible value. It constructs a [N × N] symmetric matrix, given as [SI]i j .

These pair of semantic similarity and spatial importance matrices ([SS]i j [N×N ],[SI]i j [N×N ], [SS]0i [N×1] and [SI]0i [N×1]) are further considered to modify the semi-
variance matrix and the distance matrix ([C]i j [N×N ] and [D]0i [N×1]) of OK. The
theoretical error estimation of SemK and its evaluation procedure are described in
Sect. 3.4.

3.4 Theoretical Error Analysis

To analyze the theoretical error of spatial SemK, the variables and constrains of this
method are formalized in this section. Here, the relationship of OK and SemK is also
established in terms of their variables. As SemK extends the exiting OK method with
semantic metrics, the statistical properties of this base method remains unchanged
in SemK. Let the random field (meteorological parameter, say LST ) measure at the
unsampled point x0 be Z(x0). The prediction is carried out considering the known
sampled locations, given as ZT = [Z(x1) · · · Z(xN )], where N represents the number
of sampled locations, Z(xi ) represents the parameter value at the sampled location
xi . In this monograph, the Z(xi )s are symbolized as Zi for simplicity. The weight
vector of OK, i.e., [WOK]T is given as [WOK]T = [wOK

1 wOK
2 · · · wOK

N ], where wOK
i

represents the assigned weight to the i th sampled location by OK. Let’s consider that
Ẑ0 is the estimated/predicted parameter value at the prediction location x0.

For ordinary kriging, the following holds:

Ẑ0 =
N∑

i=1

wOK
i Zi = [W]TZ; [W]T 1 = 1, or

N∑

i=1

wOK
i = 1.

As ordinary kriging follows the concept of mean square error minimization in
prediction.Therefore, it aims tooptimize theweight vectorWOK so that the estimation
varianceσ2

OK = E([Z0 − Ẑ0]2) isminimum.Let’s assume the two traditionalmatrices,
the semivariance matrix ([C]i j [N×N ]) and the distance matrix of OK ([D]0i [N×1]) is
expressed as follows:
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C =

⎡

⎢
⎢
⎢
⎣

V ar(Z1) Cov(Z1, Z2) · · · Cov(Z1, Z N )

Cov(Z2, Z1) V ar(Z2) · · · Cov(Z2, Z N )
...

...
. . .

...

Cov(Z N , Z1) Cov(Z N , Z2) · · · V ar(Z N )

⎤

⎥
⎥
⎥
⎦

(3.9)

D =

⎡

⎢
⎢
⎢
⎣

Cov(Z0, Z1)

Cov(Z0, Z2)
...

Cov(Z0, Z N )

⎤

⎥
⎥
⎥
⎦

(3.10)

where Cov(Zi , Z j ) represents the covariance score between Z(xi ) and Z(x j ) and the
variance of Z(xi ) (or, self-covariance) is expressed as V ar(Zi ). The weight vector
of ordinary kriging, WOK is evaluated by the semivariance between interpolating
and interpolation points. Here, these semivariance relations are represented by the
semivariance matrix and the distance matrix ([C]i j [N×N ] and [D]0i [N×1]).

In semantic kriging, the covariance between any pair of locations in the terrain is
considered to be influenced by the local uncertainties, which includes the effect of
the underlying spatial LULC classes. Therefore, in SemK, the covariance between
locations are extended to semantic dimension by modeling this terrestrial property.
In spatial SemK, the semantic and the spatial correlation among the spatial LULC
classes are captured by fourmatrix components [SS]i j [N×N ], [SS]0i [N×1], [SI]i j [N×N ],
and [SI]0i [N×1]. The covariance models the variance of the random field values, both
the proposed metrics, the SS and the SI are inversely proportional to the covariance
measures among the sampled locations.However, inOK, the traditional semivariance
is proportional to the covariance measure. Therefore, in SemK, the newly proposed
covariancebetween any i th and j th sampled location is given as follows: Ci j

S Ii j ∗SSi j
. The

physical significance of the semantic covariance of SemK is given as follows: being
at the same distance with respect to the prediction location, the covariance between
two sampled location might be different, depending on the semantic properties (SS
and SI) of their representative LULC classes. At the same distance d, the covariance
between two locations increases if SS and SI are less and vice-versa. Hence, the
new semivariance matrix and the distance matrix (CSemK and DSemK) of SemK are
expressed as follows:

[C]SemK
i j [N×N ] =

[C]i j [N×N ]− · − · − · − · −(
[SI]i j [N×N ]◦[SS]i j [N×N ]

) (3.11)

[D]SemK
0i [N×1] = [D]0i [N×1]− · − · − · − · −(

[SI]0i [N×1]◦[SS]0i [N×1]

) (3.12)
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where “− · − · −” and “◦” denote the Hadamard division and the Hadamard prod-
uct between matrices, respectively. The WSemK denotes the SemK weight matrix of
dimension [N × 1]. The mean square error of SemK at x0 is given as σ2

SemK. Being a
variant of ordinary kriging, the SemK assumes that the mean of the random field is
constant over the study region. It implies the following equality: E(σ2

SemK ) = 0 ⇒
1TWSemK = 1.

Hence, the mean square error for SemK (σ2
SemK) is defined as follows:

σ2SemK = V ar([[WSemK]T − 1] × [Z(x1) · · · Z(xN )Z(x0)]T )

= [[WSemK]T − 1] × [V ar([Z(x1) · · · Z(xN )Z(x0)]T )] × [[WSemK]T − 1]T

= CSemK
00 + [WSemK]T CSemKWSemK − 2[WSemK]T DSemK (3.13)

where CSemK
00 = C00

(SI00∗SS00)
, C00 is Cov{Z0, Z0}, SI00 and SS00 are the spatial impor-

tance and semantic similarity between ( f0, f0) respectively. Following the notion
of least-square regression approach, SemK aims to minimize the mean square error
σ2

SemK by minimizing the equation as follows:

CSemK
00 + [WSemK]TCSemKWSemK − 2[WSemK]TDSemK; � [WSemK]T 1 = 1 (3.14)

To optimize the Eq. 3.14 without constraints, a Lagrange multiplier is consid-
ered in the error expression, by converting a constrained optimization problem into
a corresponding unconstrained problem. Let’s assume the Lagrange multiplier be
−2λSemK which makes the Eq. 3.14 unconstrained. If K is the unconstrained error
for SemK, it is expressed as follows:

K = CSemK
00 + [WSemK]T CSemKWSemK − 2[WSemK]T DSemK + 2λSemK([WSemK]T 1 − 1)

(3.15)

Like any other methods in kriging family, the SemK can also be mapped to a
minimization problem. For minimizing the variance of error, the partial first-order
derivative ofEq. 3.15with respect to the unknowns, i.e.,WSemK andλSemK is expressed
as follows:

δK

δWSemK
= (CSemK + [CSemK]T )WSemK − 2DSemK + 2λSemK1 (3.16)

δK

δWSemK
= 2CSemKWSemK − 2DSemK + 2λSemK1(∵ [CSemK]T = CSemK) (3.17)

δK

δλSemK
= 2[WSemK]T 1 − 2 (3.18)

According to the properties of the minimization problem, the partial first-order
derivative can be set to zero to get the value at minima (with respect to the WSemK

and λSemK). Thus, setting δK
δWSemK = 0 and δK

δλSemK = 0, the following can be obtained:
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2CSemKWSemK − 2DSemK + 2λSemK1 = 0 (3.19)

2[WSemK]T 1 − 2 = 0 (3.20)

From Eqs. 3.19 and 3.20, the following can be obtained:

CSemKWSemK + λSemK1 = DSemK (3.21)

[WSemK]T 1 = 1 (3.22)

From Eq. 3.21, the following can be derived:

CSemKWSemK + λSemK1 = DSemK (3.23)

⇒ WSemK = [CSemK]−1[DSemK − λSemK1] (3.24)

Substituting [CSemK]i j =
[C]i j− · − · −(

[SI]i j ◦[SS]i j

) and [DSemK]0i =
[D]0i− · − · −(

[SI]0i ◦[SS]0i

) in Eq. 3.24, the

following can be derived:

WSemK =
[ [C]i j− · − · −(

[SI]i j ◦[SS]i j

)

]−1[[ [D]0i− · − · −(
[SI]0i ◦[SS]0i

)

]

− λSemK1
]

(3.25)

In Eq. 3.23, multiplying both the sides of the equality by [CSemK]−1 and [1]T respec-
tively, the following can be obtained:

CSemKWSemK + λSemK1 = DSemK

WSemK + λSemK[CSemK]−11 = [CSemK]−1DSemK

[1]TWSemK + λSemK[1]T [CSemK]−11 = [1]T [CSemK]−1DSemK

1 + λSemK[1]T [CSemK]−11 = [1]T [CSemK]−1DSemK

[As, 1TWSemK = 1]

⇒ λSemK = 1T [CSemK]−1DSemK − 1

1T [CSemK]−11
(3.26)

Again substituting [C]SemK
i j =

[C]i j− · − · −(
[SI]i j ◦[SS]i j

) and [D]SemK
0i = [D]0i− · − · −(

[SI]0i ◦[SS]0i

) in Eq. 3.26, the

following can be deduced:
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λSemK =

[

1T

[ [C]i j− · − · −(
[SI]i j ◦[SS]i j

)

]−1[ [D]0i− · − · −(
[SI]0i ◦[SS]0i

)

]]

− 1

1T

[ [C]i j− · − · −(
[SI]i j ◦[SS]i j

)

]−1

1

(3.27)

The WSemK and λSemK can be calculated from Eqs. 3.25 and 3.27, where WSemK

is the [N × 1] dimensional weight matrix (or N dimensional vector) of semantic
kriging, given as: [WSemK]T = [wSemK

1 wSemK
2 · · ·wSemK

N ]. Once it is derived from the
real sample points, it can be further normalized in [0,1] to satisfy the constraint
[WSemK]T 1 = 1 of Eq. 3.22. In the derivation process of different parameters, the
λSemK should be evaluated first, because it is not dependent on the term WSemK.
The predicted parameter value is obtained through the following equation: Ẑ(x0) =

N∑

i=1

wSemK
i Z(xi ). Here,wSemK

i represents the assigned weight to the sampled location

xi by SemK. The minimum variance of SemK’s mean square is the following:

σ2
SemK = CSemK

00 + [WSemK]TDSemK − λSemK (3.28)

= C00

(SI00 ∗ SS00)
+ [WSemK]T

[ [D]0i− · − · −(
[SI]0i ◦[SS]0i

)

]

− λSemK (3.29)

As σ2
SemK is the error variance, its value should be preferably closer to zero (as

small as possible). Therefore, to prove the betterment in SemK prediction process, the
following relation should be satisfied for any given surface:σ2

OK >σ2
SemK. Further, due

to incorporating secondary terrestrial information, the SemK has higher information
content than OK and other interpolation approaches. Sections 3.5 and 3.6 present
the comparison of semantic kriging with other methods considering two factors:
information content and prediction accuracy, respectively.

3.5 Information Content

To assess the performance of semantic kriging in terms of its information content
is described in this section [7]. For comparison, the information content of ordi-
nary kriging is also analyzed, where OK is the representative of other geostatistical
univariate methods. Let’s consider an example in Table 3.2, where each row/tuple
represents the specification of a sampled location with respect to three supporting
attributes. Also, there is one derived class label attribute. There are six interpolating
points (N = 6) with supporting attributes as: Euclidean distance (Ad), semantic sim-
ilarity (ASS) and spatial importance (ASI). The class labell attribute id is the derived
weight by the interpolation method denoted as Assigned Weight. All the supporting
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Table 3.2 Example scenario for information content assessment of SemK [7]

Sample point Ad ASS ASI Assigned weight

x1 d01 SS01 SI01 wSemK
1

x2 d01 SS01 SI02 wSemK
2

x3 d02 SS02 SI03 wSemK
3

x4 d03 SS03 SI04 wSemK
4

x5 d03 SS03 SI04 wSemK
5

x6 d04 SS04 SI05 wSemK
6

attributes are measured with respect to the unsampled location or the interpolation
point.

In this scenario, the class label attribute has six unique values for six sampled loca-
tions. As OK assigns the weight to the sampled locations considering the Euclidean
distance only, thus for the given example in Table 3.2, wOK

1 = wOK
2 and wOK

4 =
wOK

5 . Because, for pairs of sampled locations 1, 2 and 4, 5, the supporting attribute
Euclidean distance (Ad) are the same values, d01 and d03, respectively.

Let’s consider that the number of unique class labels for ordinary kriging is mOK,
which is referred to as Ci (i = 1 · · · mOK). Thus, every distinct class label Ci is
associated to a unique weight value, assigned to the sampled locations. According
to Table 3.2, mOK = 4, C1 = wSemK

1 = wSemK
2 , C2 = wSemK

3 , C3 = wSemK
4 = wSemK

5 ,
C4 = wSemK

6 . Let COK
i be the set of sampled locations that correspond to the class

(of assigned weight) Ci . Therefore,
∑mOK

i=1 COK
i is equal to the number of sample

points N . If pOK
i denotes the probability that the weight of an interpolating point

corresponds to class Ci , then pOK
i = COK

i
N . Then the information content [9] for OK,

represented as I OK is expressed as follows:

I OK = −
mOK
∑

i=1

pOK
i log2(pOK

i ) (3.30)

According to Eq. 3.30 then, for the example scenario in Table 3.2, the information
content for OK can be evaluated as follows:

I OK = −2

6
log2(

2

6
) − 1

6
log2(

1

6
) − 2

6
log2(

2

6
) − 1

6
log2(

1

6
)

= 1.92 (3.31)

On the other hand, for SemK, though wSemK
4 = wSemK

5 (as they match in all the
supporting attributes), wSemK

1 �= wSemK
2 . The reason is, though first and second tuple

or the sampled location have similar Euclidean distance as d01, their semantic sup-
porting attribute ASI vary, i.e., SI01 and SI02, respectively. This extra knowledge is
exclusively captured in the prediction process by SemK. Considering more number
of supporting attributes, the number of unique class labels reported by SemK (mSemK)
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for a given scenario is always greater than or equal to that of OK. Thus, the following
is true: mSemK ≥ mOK. For the given example in Table 3.2, the unique number of class
labels evaluated by SemK is 5, but for OK it is 4. Correspondingly, mSemK ≥ mOK ⇒
pOK

i ≥ pSemK
i . The general estimation equation of the expected information content

for SemK (I SemK) is presented as follows:

I SemK = −
mSemK
∑

i=1

pSemK
i log2(pSemK

i ) (3.32)

And for the example in Table 3.2, the information content in SemK is estimated
as follows:

I SemK = −1

6
log2(

1

6
) − 1

6
log2(

1

6
) − 1

6
log2(

1

6
) − 2

6
log2(

2

6
) − 1

6
log2(

1

6
)

= 2.25 (3.33)

Therefore, for the given example scenario in Table 3.2, I SemK ≥ I OK, i.e., infor-
mation content of SemK is always greater than or equal to ordinary kriging. Here,
as OK is considered as the representative of all the univariate spatial interpolation
methods. Thus, in general, the information content for most of the other existing
univariate interpolation methods are always less than or equal to SemK.

3.6 Empirical Proof for SemK

Empirical experimentation is performed with land surface temperature (LST ) data
captured by the Landsat-7 ETM+ satellite imagery, by United States Geological Sur-
vey (USGS). For the empirical evaluation of the spatial SemK and comparing it with
other existing interpolation methods, the LSTs of two cities have been considered:
Kolkata, WB, India and Dallas, TX, USA. Five spatial zones from each of these
cities have been considered as the region of interest (RoI) in this chapter. These
zones are depicted in Figs. 3.3 and 3.4. For this study, the satellite image of the year
2015 (within the range of mid-October–mid-November) has been considered. The
performance of SemK, in terms of prediction accuracy, is compared with other uni-
variate interpolation methods. In this work, four popular interpolation techniques,
considered for the empirical comparison, are as follows:

• nearest neighbors (NN)
• inverse distance weighting (IDW )
• universal kriging (UK)
• ordinary kriging (OK)

For this particular empirical evaluation, the generic experimental specifications
are given as follows:
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Fig. 3.3 Selected spatial zones of Kolkata, WB, India for SemK

• around 500 random sampled locations (uniformly random) are considered for
modeling the experimental semivariogram with lag distance h = 5 km.

• a fixed search radius of 1 km is considered against each unsampled prediction
point to select the interpolating points.

• around 20 interpolating points are selected randomly against each unsampled pre-
diction point, within a predefined radius.

• the exponential semivariogram model is considered for both OK and SemK.
• the linear semivariogram model (with linear drift) is considered for UK.

The performance of the considered approaches, including SemK, is evaluated by
two standard error metrics: mean absolute error (MAE) and root mean square error
(RMSE). The graphical representations of the error measures by different methods
are depicted in Figs. 3.5 and 3.6. It has been observed that the SemK outperforms the
considered approaches, mainly the ordinary kriging, in terms of prediction accuracy.

To validate the performance of SemK to generate the mapping surfaces, the pre-
dicted imagery of the selected zones of Kolkata, WB, India and Dallas, TX, USA
are depicted in Tables 3.7 and 3.8. The bounding box (BB) of a zone is specified in
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Fig. 3.4 Selected spatial zones of Dallas, TX, USA for SemK

the table itself as [lower-left upper-right] corner. The actual land surface tempera-
ture imagery and the predicted imagery by different methods (NN, IDW, UK, OK,
and SemK) are tabularized respectively. For each of the predicted image, the error
surfaces are also produced in gray scale where black pixel represents higher error
and white represents lower error. Corresponding peak signal-to-noise ratio is also
reported, which is evaluated against the actual surface of the respective zone.

3.6.1 Discussions on Empirical Proof

It is evident from Figs. 3.5 and 3.6 that the SemK outperforms the ordinary kriging
and other popular interpolation methods by incorporating the terrestrial semantic
LULC knowledge into the prediction process. It may also be observed from Tables
3.7 and 3.8 that the imagery (of the LST distribution of the terrain), that are predicted
by SemK are more accurate compared to that of produced by OK and other methods.
The SemK reports higher peak signal-to-noise ratio than NN, IDW, and OK (≈2–8
dB for Kolkata, WB, India and ≈3–10 dB for Dallas, TX, USA).
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(a) MAE

(b) RMSE

Fig. 3.5 Comparison study with error graph for SemK (Region: Kolkata)

3.7 Theoretical Performance Evaluation of SemK

This section presents a theoretical performance analysis of semantic kriging in order
to prove its efficacy for modeling the semantic LULC knowledge for spatial inter-
polation, verify its functionality, and establish its formal relationship with ordinary
kriging method. It basically relates different modified parameters of SemK with the
basic parameters of OK. This analysis theoretically investigates the capability of
SemK in incorporating the domain knowledge into the interpolation process. At the
same time, this study also validates the impact of theLULC ontology and its structure,
granularity, to establish the benefits of using SemK. As the notion of ordinary kriging
is considered as the building block for SemK, this theoretical performance evaluation
has been compared with OK. However, the similar analysis can be done considering
other univariate kriging approaches as well. The Euclidean vector analysis approach
is performed for the formal proofs, which are presented further as four lemas and a
proposition. Each of these proofs exhibit some significant characteristics of seman-
tic kriging. The SemK process assumes that the sampled locations represented by
the spatially correlated and semantically similar LULC classes should be having
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(a) MAE

(b) RMSE

Fig. 3.6 Comparison study with error graph for SemK (Region: Dallas)

more influence to the unsampled prediction point, and thus more weight should be
assigned, compared to the loosely correlated and less similar sample points. All the
proofs rely on this assumption. The idea and the outlines of the lemas and proposition
are stated as follows:

• Lemma 3.1: The semantically similar and spatially correlated sampled locations
are assigned more weight by the semantic kriging process, compared to other
points.

• Lemma 3.2: The angular difference between the OK’s and the SemK’s weight
vectors represents the extra amount of domain knowledge (in terms of LULC
distribution) captured by SemK overOK. That is, the LULC knowledge is correctly
captured and modeled by SemK.

• Lemma 3.3: The optimal weight vector is closer to the one that is produced by
SemK, compared to the weight vector of OK. Thus, SemK outperforms OK.

• Lemma 3.4: More generalized ontology will eventually converge SemK to OK.
• Proposition 3.1: The misclassified sample points in the ontology can be identified
by a preprocessing of SemK method.
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Table 3.3 An example scenario for the theoretical analysis of SemK [3]

Sample point Representative
LULC class

Ad ASI ASS Assigned weight

x0 f0 0 1 1 −
xi fi d0i S I0i SS0i wSemK

i

x j f j d0 j S I0 j SS0 j wSemK
j

xk fk d0k S I0k SS0k wSemK
k

To further proceed with the proofs, an example scenario of interpolation process
is considered in Table 3.3. The scenario consists of three sampled interpolating
points xi , x j , and xk against one prediction point x0. Similar to Table 3.2, three
supporting attributes are: Euclidean distance (Ad ), spatial importance (ASI ), and
semantic similarity (ASS), which are measured with reference to the interpolation
point x0. Theassigned weight (wSemK) is the class label attribute.Given the supporting
attributes, the class label attribute is evaluated by SemK for each of the interpolating
points.

Lemma 3.1 Between a pair of sampled locations at the same Euclidean distance
from the unsampled prediction location, SemK assigns more weight to the location
which is represented with more similar LULC class to the representative LULC of
the prediction point, compared to the other one.

Proof From the Table 3.3, let’s consider a pair of interpolating points xi and x j and
let their Euclidean distances from the unsampled location be same, i.e., d0i = d0 j .
Let the representative LULC class of xi , i.e., fi be more similar and correlated with
f0 than f j , the representative LULC class of x j . Now, according to the Tobler’s law
of spatial proximity [15] and the properties of hierarchical ontology property, the
following holds: (SI0i ∗ SS0i ) > (SI0 j ∗ SS0 j ) ⇒ SI S0i > SI S0 j , where (SImn ∗
SSmn) is referred to as SI Smn . Now, it is needed to be proved: wSemK

i > wSemK
j .

According to [7], the covariance matrix and the distance matrix of SemK (CSemK

and DSemK) are given as follows:

CSemK =
⎡

⎣

γ(dii )

1∗1
γ(di j )

SI Si j

γ(d ji )

SI S ji

γ(d j j )

1∗1

⎤

⎦ DSemK =
⎡

⎣

γ(d0i )

SI S0i

γ(d0 j )

SI S0 j

⎤

⎦ (3.34)

Now, the weight matrix of SemK,WSemK is given as follows: [CSemK]−1 [DSemK −
λSemK1]. Considering the normalization constraint of SemK (1TWSemK = 1), let the
expression [DSemK − λSemK1]be referred to asD,whereD0i = (

γ(d0i )

SI S0i
− λSemK).Hence,

WSemK is modified as [CSemK]−1
D and is given as follows:
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Table 3.4 Empirical study of Lemma 3.1 [3]

Point type Point no. Representative
LULC class

Similarity score Assigned weight

Prediction point — Commercial — —

Interpolating
points

1 Land with scrub 0.194 0.128

2 Industrial 0.525 0.357

3 Residential 0.623 0.515

WSemK =
⎡

⎣
wSemK

i

wSemK
j

⎤

⎦ = 1

K

[−γ(d j j )
γ(di j )

SI Si j
γ(d ji )

SI S ji
−γ(dii )

] ⎡

⎣
D0i

D0 j

⎤

⎦ (3.35)

= 1

K

⎡

⎣

γ(di j )∗D0 j

S I Si j

γ(di j )∗D0i

S I Si j

⎤

⎦ (3.36)

where K =−γ(dii )γ(d j j ) + γ(di j )
2

(SIi j ∗SSi j )2
and dmn representEuclidean distance between

point xm and xn . Now, from the notion of ordinary kriging, γ(dii ) = γ(d j j ) = 0 (as
self-covariance in the same location is 0) and di j = d ji (as Euclidean distance)
is omnidirectional). From the definition of SemK, SIi j = SI ji and SSi j = SSji ⇒
SI Si j = SI S ji . Therefore, K is modified as γ(di j )

2

(SI Si j )2
. Hence, from the definition of

D, the following inequality holds: wSemK
i > wSemK

j . This concludes the proof.
For the empirical proof of Lemma 3.1, a real scenario is considered with three

interpolating points, which are at the same distance, but in different directions from
the prediction point. The representative LULC classes are also specified in the table.
Asmentioned in the description ofSemK, themeasured semanticmetrics are specified
in (0, 1]. It may be observed from the Table 3.4 that the assigned weight by SemK
to the sampled locations increases with the increment of their semantic score. The
result proves the claim of Lemma 3.1.

Lemma 3.2 The additional semantic knowledge captured by SemK for the sampled
and unsampled locations with the semantic similarity and spatial importance metric
is correctly modeled as the semantic weight assigned by semantic kriging. This
auxiliary domain knowledge that is exclusively captured by SemK (not by OK), and
can be characterized as the angular difference between SemK’s and OK’s weight
vectors.

Proof This lema analyzes the amount of semantic change that is captured in the
weight vector of SemK overOK. Here, it is needed to prove that the angular difference

between theweight vectors ofOK and SemK,
−−→
WOK and

−−−→
WSemK, is equal to the amount

of extra semantic knowledge captured by SemK, compared to OK, i.e., the angular
difference between the domain knowledge captured in both the methods. Thus, the
formal statement of the lema is given as follows:
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θ
(
−−−−→
Change,(1−λOK)

−→
1 )

= θ
(
−−−→
WOK

sem ,
−−−→
WSemK

sem )

where λOK is the Lagrange multiplier of OK. For N interpolating points,
−−−−→
Change

is a Euclidean vector given as [Change1Change2 · · · ChangeN ]T , where Changei

represents the semantic knowledge of the i th interpolating point captured by SemK
over OK. Therefore, Changei is modeled with respect to the SI and the SS metric
with respect to the LULC classes. It is expressed as follows:

Changei = −−−→
SISiN � (

−−−→
SIS0N − −−−→

λSemK1)

Formally,
−−−→
SISiN and

−−−→
SIS0N represent the i th rows of two matrices, [([SIij]N×N ◦

[SSij]N×N)
−H ]−1 and ([SI0i]N×1 ◦ [SS0i]N×1)

−H , respectively. The � and the −H
represent the dot product and the Hadamard inverse between matrices. For sampled

locations in Table 3.3, xi and x j , the
−−−−→
Change matrix can be expressed as follows:

Change =
[

Changei

Change j

]

(3.37)

= [[[SIij] ◦ [SSij]]−H ]−1
2×2[[[SI0i] ◦ [SS0i]]−H

2×1 − [λSemK1]2×1] (3.38)

= 1

Kchange

[ 1
SI Si j ∗SIS0 j

1
SI Si j ∗SIS0i

]

(3.39)

The
−→
1 denotes OK’s semantic vector, the SIS−H can be expressed as (SIS−H −

λSemK1). While quantifying the semantic knowledge, d0i is exactly equal to d0 j . With
respect to these constraints and after normalizing the distance matrices of both OK
and SemK, the weight matrices of OK and SemK (WOK and WSemK) are expressed
as follows:

WOK = 1

K

[
γ(di j ) ∗ (1 − λOK)

γ(di j ) ∗ (1 − λOK)

]

(3.40)

WSemK = 1

K ′

⎡

⎣

γ(di j )

SI Si j
∗ ( 1

SI S0 j
− λSemK)

γ(di j )

SI Si j
∗ ( 1

SI S0i
− λSemK)

⎤

⎦ (3.41)

where K ′ is a constant for SemK. With respect to the semantic knowledge of the sur-
rounding spatial LULC classes, the angular difference between the LULC knowledge
captured by SemK over OK is expressed as follows:

θ
(
−−−−→
Change,1−λOK−→

1 )
= Cos−1

(
1√
2

SIS0i + SIS0 j
√
SIS

2
0i + SIS

2
0 j

)

(3.42)
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Table 3.5 Empirical study of Lemma3.2 [3]

Scenario Point no. Representative
LULC class

Similarity score Assigned weight

1 1 Land with scrub 0.194 0.128

2 Industrial 0.525 0.357

3 Residential 0.623 0.515

Semantic angular difference Weight vectors’ angular difference

25.48◦ 25.48◦

2 1 Cropland 0.570 0.629

2 Residential 0.180 0.073

3 Wetlands 0.344 0.297

Semantic angular difference Weight vectors’ angular difference

34.40◦ 34.40◦

3 1 River 0.218 0.120

2 Commercial 0.623 0.657

3 Forest 0.315 0.223

Semantic angular difference Weight vectors’ angular difference

34.88◦ 34.88◦

As, for the semantic knowledge, d0i = d0 j (refer Table 3.3), the angular difference

between
−−−→
WOK

sem and
−−−→
WSemK

sem is given as θ
(
−−−→
WOK

sem ,
−−−→
WSemK

sem )
. Now, Cos

(
−−−→
WOK

sem ,
−−−→
WSemK

sem )
θ is given as

follows:

=
(1 − λOK)( 1

SI S0 j
− λSemK) + (1 − λOK)( 1

SI S0i
− λSemK)

√
(1 − λOK)2 + (1 − λOK)2

√(
1

SI S0 j
− λSemK

)2 + (
1

SI S0i
− λSemK

)2
(3.43)

= 1√
2

(
SIS0i + SIS0 j

√
SIS

2
0i + SIS

2
0 j

)

(3.44)

which implies θ
(
−−−→
WOK

sem ,
−−−→
WSemK

sem )
= Cos−1 1√

2

(
SIS0i +SIS0 j√
SIS

2
0i +SIS

2
0 j

)
.

Hence, θ
(
−−−−→
Change,(1−λOK)

−→
1 )

= θ
(
−−−→
WOK

sem ,
−−−→
WSemK

sem )
. This concludes the proof.

For empirical validation of this lema, three real scenarios have been considered,
which satisfies the specifications given in Table 3.3. The weight vectors of both
OK and SemK and the semantic vectors are compared for each scenario in Table
3.5. From the table, it is observed that the angle between the weight vectors of OK
and SemK is equal to the angle between the semantic knowledge captured, i.e., the
semantic knowledge vectors.

Lemma 3.3 The optimal weight vector for an interpolation scenario is closer to
weight vector produced by SemK compared to that of OK.
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Proof To prove the lemma, an alternate proof can be conducted which validates that
the angle between the optimal weight vector of an interpolation scenario and the
weight vector produced by SemK is smaller compared to the angle between optimal
and OK’s weight vector. Formally, it can be expressed as θ

(
−−→
WOK,

−−−→
WOPT)

> θ
(
−−−→
WSemK,

−−−→
WOPT)

.
Let us assume for any two interpolating points xi and x j , the optimal weight vector

is [wOPT
i wOPT

j ]T . Let’s consider U be that extra domain knowledge by incorporation
of which we can get the optimal solution, i.e., the optimal weight vector. For Lemma
3.1, the following inequality holds: if (wSemK

i − wSemK
j ) ≥ 0, then (wOPT

i − wOPT
j ) ≥

(wSemK
i − wSemK

j )≥ 0 and vice-versa. The physical significance of this inequality can
be stated as, similar to the semantic knowledge (in terms of semantic similarity and
spatial importance), the knowledgeU is also inversely proportional to the traditional
covariancewhich is based onEuclidean distance. TheU also ranges between positive
real values of (0, 1]. Now, considering Lemma 3.2, Cos

(
−−→
WOK,

−−−→
WOPT)

θ is expressed as
follows:

( 1
SI S0 j U0 j

− λOPT) + ( 1
SI S0i U0i

− λOPT)

√
2
√(

1
SI S0 j U0 j

− λOPT
)2 + (

1
SI S0i U0i

− λOPT
)2

Similarly, Cos
(
−−−→
WSemK,

−−−→
WOPT)

θ is expressed as
( 1

U0 j
−λOPT)+( 1

U0i
−λOPT)

√
2
√
( 1

U0 j
−λOPT)2+( 1

U0i
−λOPT)2

. As, the

semantic score considering any two sampled locations, SI Si j is inversely propor-
tional to their Euclidean distance based traditional covariance measure and ranges
between (0, 1], thus the following is true:

Cos
(
−−→
WOK,

−−−→
WOPT)

θ < Cos
(
−−−→
WSemK,

−−−→
WOPT)

θ ⇒ θ
(
−−→
WOK,

−−−→
WOPT)

> θ
(
−−−→
WSemK,

−−−→
WOPT)

Hence, it is proved that the optimal weight vector for an interpolation scenario is
closer to weight vector produced by SemK compared to that of OK.

The interpolation scenario given in Table 3.3 is further considered for empirically
analyzing Lemma 3.3. An additional terrestrial knowledge, “elevation of the earth
surface”, which is also significant for the interpolation accuracy beside the semantic
knowledge has been chosen for the improvement of prediction. These three knowl-
edge, the LULC-based semantic property, the traditional Euclidean distance, and the
newly considered elevation are considered to be sufficient information to produce
the optimal weight vector for this interpolation scenario. The angles between optimal
weight vector with the weight vectors produced by OK and SemK, respectively, are
tabularized in Table 3.6. The result supports the claim of Lemma 3.3.

Lemma 3.4 More generalized ontology will eventually converge SemK to OK.

Proof Let us again consider three sampled locations as given example scenario in
Table 3.3. Further, let there be two ontologies, as given in Fig. 3.7, one of which is
more general (refer Fig. 3.7b) and the other one is more specific as one leaf LULC
class was previously split into two specialized classes (refer Fig. 3.7a). The positions
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Table 3.6 Empirical study of Lemma3.3 [3]

Scenario Angle with the optimal weight vector

OK SemK

1 49.95◦ 29.90◦

2 34.40◦ 5.45◦

3 29.09◦ 10.70◦

(a) Position before modification (b) Position after modification

Fig. 3.7 Position of three sampled locations in the ontologies before and after modification [3]

of the representative LULC classes of the sample points are identified in both the
ontologies.

In Fig. 3.7a, i.e., for the initial ontology, the sampled locations xi and x j are
represented by two different specialized LULC classes in the hierarchy. After modi-
fication, i.e., in the ontology of Fig. 3.7b, let those two specialized classes are con-
verged to the same parent class. Therefore, now both the sampled locations, xi and
x j are represented by the same parent LULC class in the hierarchy. According to the
SemK process and with the newly modified ontology (SemK_mod) in Fig. 3.7b, the
semantic metrics for both xi and x j (with reference to the prediction point x0) have
been changed to SI SemK_mod

0i , SSSemK_mod
0i and SI SemK_mod

0 j , SSSemK_mod
0 j respectively.

However, the semantic properties for the third interpolating point xk do not change.
Now, according to the hierarchical ontology property, it must be noted that more

general classes are assigned higher semantic similarity score with respect to others,
compared to a specialized LULC class in the same path of an hierarchy [7]. And in
order to evaluate the spatial importance of the parent class, let’s assume m num-
ber of specialized classes are converged to their parent LULC class. Further, let k
be the predefined number of sampled location that have been chosen for each of
those m specialized/child classes. After modification in the ontology, now the parent
class consists of total (m ∗ k) sampled locations. Among these, the first k sampled
locations, which are closer to each other within a predefined radius, are considered
further correlation stud. According to the Tobler’s law of spatial proximity [15], this
modified correlation scores of the parent classes are always higher compared to their
specialized classes. Therefore, for any p = i, j and q = 1, k, the following is true:
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Table 3.7 Comparison study for SemK (Region: Kolkata, WB, India)
Zone Actual

image
Predicted image

NN IDW UK OK SemK

BB: [(88◦21′56.75′′E 22◦53′3.338′′N); (88◦26′11.684′′E 22◦56′20.576′′N)]

Zo
ne

1

Error surfaces
(In gray
scale)

PSNR 41.11dB 40.27dB 38.74dB 41.11dB 45.06dB

BB: [(88◦16′37.345′′E 22◦43′16.086′′N); (88◦20′51.518′′E 22◦46′33.581′′N)]

Zo
ne

2

Error surfaces
(In gray
scale)

PSNR 38.24dB 37.34dB 38.24dB 35.04dB 41.71dB

BB: [(88◦21′3.362′′E 22◦34′43.896′′N); (88◦25′17.437′′E 22◦38′1.121′′N)]

Zo
ne

3

Error surfaces
(In gray
scale)

PSNR 37.10dB 36.10dB 37.76dB 32.13dB 39.29dB

BB: [(88◦10′24.797′′E 22◦29′45.122′′N); (88◦14′38.046′′E 22◦33′3.055′′N)]

Zo
ne

4

Error surfaces
(In gray
scale)

PSNR 43.63dB 42.66dB 40.84dB 38.30dB 46.67dB

BB: [(88◦24′21.572′′E 22◦24′41.309′′N); (88◦28′35.399′′E 22◦27′58.463′′N)]

Zo
ne

5

Error surfaces
(In gray
scale)

PSNR 45.78dB 45.62dB 43.91dB 45.75dB 50.08dB
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Table 3.8 Comparison study for SemK (Region: Dallas, TX, USA)
Actual
image

Predicted image

NN IDW UK OK SemK

BB: [(96◦48′52.626′′W 32◦53′19.252′′N); (96◦46′4.031′′W 32◦55′15.003′′N)]

Zo
ne

1

Error surfaces
(In gray
scale)

PSNR 35.27dB 33.83dB 32.83dB 28.38dB 38.16dB

BB: [(96◦52′26.827′′W 32◦49′41.121′′N); (96◦49′38.61′′W 32◦51′36.489′′N)]

Zo
ne

2

Error surfaces
(In gray
scale)

PSNR 34.59dB 33.33dB 31.55dB 28.78dB 37.44dB

BB: [(96◦44′48.861′′W 32◦47′22.359′′N); (96◦42′0.958′′W 32◦49′17.557′′N)]

Zo
ne

3

Error surfaces
(In gray
scale)

PSNR 34.37dB 32.93dB 32.18dB 31.30dB 37.84dB

BB: [(96◦50′50.616′′W 32◦44′1.516′′N); (96◦48′2.552′′W 32◦45′56.856′′N)]

Zo
ne

4

Error surfaces
(In gray
scale)

PSNR 34.10dB 33.81dB 32.36dB 35.08dB 40.82dB

BB: [(96◦44′27.666′′W 32◦42′20.309′′N); (96◦41′39.631′′W 32◦44′15.74′′N)]

Zo
ne

5

Error surfaces
(In gray
scale)

PSNR 32.03dB 30.53dB 29.97dB 27.94dB 34.65dB

Zone
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Table 3.9 Empirical study of Lemma 3.4 [3]

Scenario Angle with the weight vector of OK

SemK with initial ontology SemK with modified ontology

1 25.48◦ 24.19◦

2 39.68◦ 30.22◦

3 34.88◦ 29.47◦

1 ≥ SI SSemK_mod
pq > SI Spq > 0

Therefore, for both xi and x j , wSemK
i < w

SemK_mod
i < wOK

i and wSemK
j <

w
SemK_mod
j < wOK

j . Also, with respect to Lemma 3.2, the following inequality can be
proved: θ

(
−−→
WOK,

−−−→
WSemK)

< θ
(
−−→
WOK,

−−−→
WSemK)

. This concludes the proof.
For the empirical validation of Lemma 3.4, the LULC ontology shown in Fig. 3.2

is revised by converging all the level-4 spatial LULC classes to their corresponding
level-3 parent classes. The change in the performance of SemK is captured with both
the initial and altered ontologies, as decribed in Lemma 3.4 and presented in Table
3.9. The results also satisfy the claim of Lemma 3.4 and prove that more generalized
ontology will eventually converge SemK to OK. SemK to OK.

Proposition 3.1 The misclassified sample points, that are represented by wrong
LULC classes in the ontology, can be identified by a preprocessing of SemKmethod.

Proof In case of any misclassification of the sampled locations in the hierarchical
ontology, the error eventually propagates to the SemK process as well and generates
erroneous semantic covariances, and thus erroneous prediction results. For example,
if any sampled location is erroneously represented by a less similar LULC class with
respect to the unsampled prediction location, The assigned weight by SemK is lesser
than the actual weight that should be assigned and vice-versa.

Through some preprocessing steps of the actual SemK process, this method is
capable to identify these misclassifications of the LULC classes in the hierarchy.
To carry out the same, few dummy sample points are introduced, each of which
represents one unique leaf LULC class of the ontology hierarchy. It is assumed
that all these points are equidistant from the prediction location. Hence, according
to Lemma 3.2, the assigned weight to these dummy points by SemK should be
based on the semantic scores only, i.e., in terms of semantic similarity and spatial
importance. Now, let us consider two interpolating points xi and x j from the given
scenario in Table 3.3. Then the the i th dummy point (dummyi ) will be assigned

the semantic weight given as follows: wSemK
fdummyi

=
(

1
SI S0 j

− λSemK
)
, where fdummyi

represents the LULC class of the i th dummy point. If the ith sampled location xi is
represented by the LULC class fdummyi in reality, the normalized wSemK

i is expressed

as follows:wSemK =
(

γ(d0 j )

SI S0 j
− λSemK

)
. However, erroneously if xi is misclassified in

the ontology and misrepresented by any LULC: fdummyk , then thew
SemK
i is expressed

as follows:
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wSemK
i =

(γ(d0 j )

SI S0k
− λSemK

)
(3.45)

Therefore, is can be observed that the assigned weight by SemK to the ith sampled
location xi is misinterpreted here. Thus, it is identified that the sampled location
xi is misclassified as LULC class fdummyk instead of fdummyi in the ontology. This
concludes the proof.

3.8 Further Discussions

The prediction of spatial parameters is a significant research problem in the field of
geographic information system. For the satellite imagery, the data values are often
missing in some locations due to faulty sensors. Prediction in the missing location
is an indispensable data staging process, which is highly required in remote sensing
problems. However, for the meteorological parameters which are influenced by the
terrain dynamics, the land–atmospheric interaction modeling is important, but still
unpragmatic. It should be modeled efficiently to incorporate the terrestrial proximity
into the interpolation process for better accuracy. The spatial SemK interpolation
method extends a popular univariate regression-based interpolation technique ordi-
nary kriging. The SemK considers the fact that there exist additional knowledge in the
terrain, which influence most of the meteorological parameters. This work identifies
one such knowledge for the parameter land surface temperature, i.e., LULC distribu-
tion in the study region. In SemK, the spatial autocorrelation is modeled considering
both Euclidean distances and the semantic LULC properties between the sampled
locations. Empirical experimentation shows that the SemK method yields better inter-
polation accuracy than the popular interpolationmethods, primarily ordinary kriging.
Analysis of information content in SemK and the theoretical performance evaluation
by Euclidean vector analysis approach show the efficacy of SemK over others. The
major contributions of the spatial SemK method can be stated as follows:

• modeling land–atmospheric interaction by semantically analyzing the LULC
classes of the RoI and representing the formally by building a spatial LULC
ontology.

• proposing two semantic parameters: the semantic similarity and the spatial impor-
tance to extend the traditional spatial autocorrelation measure.

• enrichment of the spatial interpolation process by amalgamating the terrestrial
LULC knowledge into the OK method.

• empirical study with land surface temperature data to evaluate the performance
of SemK with the existing interpolators.

• theoretical performance evaluation of SemK to establish its relations with existing
techniques, evaluate the effect of the granularity of the ontology in SemK, etc.

To the best of our knowledge, the SemK is a preliminary attempt to quantify
the terrestrial semantic LULC knowledge using ontology. This framework can be
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used for any semantic knowledge quantification, which is a qualitative knowledge of
the domain of discourse. The SemK evaluates the semantic similarity and correlation
among theLULC classes in the terrain.However, itmight be noted that this correlation
evaluation process can be regarded as an a-priori approach where the influence of
surrounding LULC classes are not taken into account. Hence, to formulate the SemK
process more pragmatically, this basic model can be improved further by extending
this process to an a-posterior correlation analysis. This extension may improve the
prediction accuracy further, resulting in a new pragmatic interpolation process. This
improvement process is presented in the next chapter.
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Chapter 4
Fuzzy Bayesian Semantic Kriging

Abstract The spatial semantic kriging (SemK) based interpolation approach is an
attempt to amalgamate semantic knowledge into the prediction process. It considers
land-use/land-cover (LULC) information for the land–atmospheric interaction mod-
eling to achieve better prediction outcome. However, the correlation study between
every pair of LULC classes in SemK is a-priori, which is not a pragmatic approach.
In this a-priori process, the influences of other nearby LULC classes is ignored in
the interpolation process. This chapter establishes a modification of spatial SemK
by extending this process with an a-posterior probability-based correlation analysis
among different LULC classes. The fuzzy Bayesian network principle is utilized
here to carry out the probabilistic analysis. The empirical evaluations with real land
surface temperature data shows the need for probability-based correlation analysis
in SemK by achieving more prediction accuracy.

4.1 Introduction

It is evident from the existing literature that the geostatistical analysis for meteoro-
logical parameters is highly recommended for their prediction as it models spatial
autocorrelation more accurately and pragmatically, thereby minimizing the error in
prediction. However, the theoretical (refer Sect. 3.4) and empirical analysis (refer
Sect. 3.6) of SemK show that other than geostatistical analysis, the interdependen-
cies between the meteorological and terrestrial (e.g., land-use/land-cover (LULC),
elevation, etc.) factors play a crucial role for spatial autocorrelation (proximity)
estimation. Thus, enhancement of the accuracy of meteorological parameter’s inter-
polation demands their semantic modeling and the assessment of the relation among
different factors. To address the drawback, an unique spatial interpolation method is
established, named as semantic kriging (SemK) [2, 3]. It models the semantic land-
use/land-cover (LULC) distribution information for the land–atmospheric interaction
assessment and integrates it into the existing techniques to make it more adequate
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(a) RoI (b) Classified RoI (c) Legends (d) A-priori correlation

Fig. 4.1 Shortcomings of SemK

and pragmatic for enhancing the prediction accuracy. However, from the assumption
of the spatial importance evaluation process in SemK, it might be noted that the
correlation analysis process is a-priori in nature. Thus, SemK doesn’t consider the
impact of the neighboring LULC classes on each other.

For example, refer Fig. 4.1a, which shows a terrain map, considered as the region
of interest (RoI). The same terrain that is processed by supervised classification
technique is shown in Fig. 4.1b, with the legend information in Fig. 4.1c. Now, if any
spatial analysis requires to evaluate the correlation between “built-up” and “water-
bodies”, the a-priori analysis considers the terrain as depicted in Fig. 4.1d. However,
it is evident that in the given terrain, the LULC class “agriculture” is dominating and
its effect on both “built-up” and “waterbodies” is very much profound. A portion
of the terrain is identified with green circle ( ) in Fig. 4.1d, where all other LULC
classes are present to influence both “built-up” and “waterbodies”. Thus, ignoring the
impact of the neighboring LULC classes will generate some erroneous correlation
value in a-priori analysis.

This chapter establishes a revised SemK, which is named as probabilistic semantic
kriging or fuzzy Bayesian semantic kriging (FB-SemK) [4]. It overcomes the short-
comings of spatial SemK technique by modeling the mutual impact of the terrestrial
LULC classes for the evaluation of spatial autocorrelation. The SemK’s a-priori cor-
relation evaluation process is extended by the proposed FB-SemK. For example,
for the given ontology in Fig. 3.2, the spatial importance of industrial and river is
supposed to be evaluated. For the a-priori correlation analysis, the effect of other
nearby LULC classes, such as, residential, lakes, grassland, etc., are not considered
while choosing the sampled locations for both industrial and river. However, in FB-
SemK, the a-posterior probability-based correlation analysis considers the effect of
other nearby LULC classes for more accurate estimation of spatial autocorrelation
and parameter value. As this monograph focuses on the analysis of meteorological
parameters, which are continuous in nature, discretization of these parameters are
obvious. The fuzzy analysis helps to take care of the imprecision and the uncertainties
introduced due to discretization of the continuous variables.
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Motivating Example

Let us assume a scenario to understand the flow of the proposed FB-SemK approach,
in contrast toOK and SemK. Here, anRoI with 9 pixels (refer Fig. 4.2a) is considered,
where parameter value at pixel no. 5 is missing. It is the unsampled locations and is
supposed to be predicted using FB-SemK method. This pixel is represented with a

. The eight other pixels (pixels: 1, 2, 3, 4, 6, 7, 8, 9) are the sampled locations or
the interpolating points within one hop distance from the prediction point (pixel: 5).
The parameter values (LST in ◦C) at the sampled locations are specified in Fig. 4.2b.
Let us also assume that there are five types of LULC classes in the terrain: f A: ,
fB : , fC : , fD: , fE : , for which the correlation between LULC classes are
supposed to be evaluated.

In SemK, for the a-priori correlation evaluation between a pair of LULC classes in
spatial importance analysis, say f A and fB ( and ), k number of pixels are chosen
for each of classes in the pair, without considering other classes ( , and ). It
is depicted in Fig. 4.2c. However, for the a-posterior correlation analysis, the effect
other other LULC classes are also considered. The effect of , and classes on

and are evaluated individually first. The principles of a fuzzy Bayesian network
is utilized here to carry out the probabilistic analysis. Through this study, each of
the pixels values of both the classes f A and fB ( and ) get updated as and .
The correlation between LULC classes f A and fB are carried out with the influenced
values of the pixels. This process is depicted in Fig. 4.2d.

Now, consider a toy example of correlation evaluated by SemK process that is
depicted in Fig. 4.2e. However, these values are likely to get updated for a-posterior
probability-based correlation analysis in FB-SemK (refer Fig. 4.2f). Now, for both
SemK and FB-SemK, the parameter value at pixel is a function of known pixels:

. Therefore, the normalized weight assigned to the sampled
locations by ordinary kriging (OK), considering the Euclidean distance based prox-
imity only, would be as follows:

WOK = 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125

However, as the spatial importance (correlation) between the LULC classes are
not equal, weight assigned by the SemK would be different for pixels with different
LULC classes. Hence, the normalized weight assigned to the sampled locations by
the semantic kriging and fuzzy Bayesian semantic kriging would be as follows:

WSemK = 0.15, 0.05, 0.1, 0.1, 0.15, 0.1, 0.25, 0.1

WFB-SemK = 0.11, 0.21, 0.14, 0.11, 0.11, 0.14, 0.08, 0.11

Therefore, the parameter value at the pixel 6 ( ) predicted by OK, SemK and
FB-SemK will be as follows:
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(a) RoI with pixels’ po-
sitions

(b) Pixel values

(c) A-priori correlation analysis process

(d) A-posterior correlation analysis process

(e) A-priori correlations (f) A-posterior correlations

Fig. 4.2 Example scenario for FB-SemK
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ẐOK ( ) = 0.125 ∗ 23 + 0.125 ∗ 25 + 0.125 ∗ 26 + 0.125 ∗ 21 + 0.125 ∗ 23

+0.125 ∗ 26 + 0.125 ∗ 24 + 0.125 ∗ 21 = 23.63

ẐSemK ( ) = 0.15 ∗ 23 + 0.05 ∗ 25 + 0.1 ∗ 26 + 0.1 ∗ 21 + 0.15 ∗ 23

+0.1 ∗ 26 + 0.25 ∗ 24 + 0.1 ∗ 21 = 23.55

ẐFB-SemK ( ) = 0.11 ∗ 23 + 0.21 ∗ 25 + 0.14 ∗ 26 + 0.11 ∗ 21 + 0.11 ∗ 23

+0.14 ∗ 26 + 0.08 ∗ 24 + 0.11 ∗ 21 = 23.93

4.2 Objectives of Fuzzy Bayesian Semantic Kriging

The spatial SemK approach [2, 3], discussed in Chap.3, is capable of incorpo-
rating semantic domain knowledge in the interpolation technique. However, the
land–atmospheric interaction modeling technique needs further improvement. One
crucial stage involved in the SemK process is the evaluation of the spatial importance
between every pair of spatial LULC classes. This aims to evaluate the correlation
among LULC classes in terms of the prediction parameter. Therefore, this spatial cor-
relation analysis can be referred to as a study to check how one LULC is semantically
influenced by the another class. In semantic kriging, the relative correlation between
two LULCs, say fi and f j , the impact of other neighboring LULCs f p (p ∈ 1 · · · |F |,
p �= i, j ; |F | represents the total number of leaf LULCs in the ontology) on both fi
and f j is not considered. Thus, this a-priori land–atmospheric interaction modeling
approach is irrational, which results in unpragmatic spatial importance measures,
indirectly affecting prediction accuracy.

This chapter proposes a revised SemK that establishes a fuzzy Bayesian network
based probabilistic correlation analysis among different pairs of LULC classes. This
probabilistic a-posterior estimation of inter-LULC correlation facilitates proper esti-
mation of spatial importance, consequently outperforming the SemK approach by
improving the prediction performance. Therefore, the major objectives of the pro-
posed approach is stated below:

• to propose a fuzzy Bayesian semantic kriging (FB-SemK) framework for interpo-
lating meteorological parameters.

• tomodel a probabilistic a-posterior correlation studymodel for the terrestrialLULC
classes in the RoI.

• extending SemK’s spatial importancemetric with the conditional probability anal-
ysis.

• to validate the performance of the FB-SemK approach and compare it with the
existing interpolation techniques, including SemK.
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4.3 FB-SemK: Fuzzy Bayesian Semantic Kriging

This probabilistic extension of semantic kriging approach, referred to as FB-SemK,
applies the principle of Bayesian network to model the probabilistic correlation anal-
ysis, which improves the prediction accuracy of SemK. The FB-SemK replaces the
a-priori spatial importance evaluation of SemK with a-posterior correlation estima-
tion by considering the mutual impact of the terrestrial LULC classes. The proba-
bilistic analysis in FB-SemK is done considering discrete fuzzy Bayesian network
based learning and inference generation approach. Here, the impact of one LULC
over others is instinctively captured by the Bayesian network’s causal dependency
graph and the incorporated fuzzy logic helps to handle the uncertainties and impre-
cision present in the data. This section describes the FB-SemK method, preceded
by a description of the Bayesian network principle and its fuzzy extension in the
following subsections.

Figure 4.3 presents the FB-SemK interpolation framework. The probabilistic spa-
tial importance calculation has a major component of probabilistic a-posterior cor-
relation evaluation among different pairs of leaf LULCs in the hierarchical ontology.
In this component, a Bayesian network is established with all the available terrestrial
LULCs classes. The parameter values of the sampled locations representing a LULC
class get updated by evaluating the impact of other classes with the probabilistic
fuzzy analysis of the Bayesian network. The actual correlation score is evaluated

Fig. 4.3 FB-SemK framework [4]
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using the parameter values resulted from the conditional probability analysis. From
Fig. 4.3, it is observed that most of the other components are same as the previously
proposed approach SemK (refer Fig. 3.1). However, a new module is introduced in
FB-SemK framework for the evaluation of spatial importance, indicated as fuzzy
Bayesian learning based correlation estimation module. The steps associated with
this component are shown at the bottom of the base process SemK.

4.3.1 Bayesian Network and Its Fuzzy Extension

The Bayesian network (BN), which is also referred to as Bayes network and belief
network, is a directed acyclic graph (DAG) with the characteristics specified below:

• BN represents a probabilistic graph (DAG) with a number of random variables,
where their conditional dependencies are represented as the edges between the
nodes.

• The random variables in the network are from the domain of interest, X =
{X1, X2, . . . , Xi }, which are observable quantities or latent variables, sometimes
unknown parameters or hypotheses as well.

• the directed edges between a pair of nodes (or links), say Xi → X j , represents
direct dependency between the variables. Here, the variable Xi is referred to as
the parent of the variable X j .

• there might be nodes which are isolated and not connected to other nodes. These
variables are conditionally independent of other variables in the network.

• each node X in the BN is associated with a conditional probability distribution as
P (Xi | Parents (Xi )). It is the measure of the impact of the parents on the child
node X.

Bayesian network assumes that a node Xi and its parents Parents(Xi ), Xi is
conditionally independent of all its non-descendant nodes ND(Xi ). It can be formally
represented as

P (Xi |Parents (Xi ) , ND (Xi )) = P (Xi |Parents (Xi )) (4.1)

Further, in the directed acyclic graph of a BN, the dependencies among the vari-
ables can be evaluated by a joint probability density function (PDF). The random
variable range can be factorized as a product of conditional/marginal probability
distributions. The notion can be expressed as follows:

P (x1, x2, . . . , xi , . . . , xn) =
n∏

i=1

P (xi | parents (Xi )) (4.2)
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where xi and parents (xi ) represent a specific value for both Xi and its parent
Parents(Xi ), respectively. This probabilistic analysis facilitates us to understand
the dependencies among the random variables of a domain of interest.

4.3.2 Fuzzy Bayesian Network (FBN)

Fuzzy probability can be referred to as an extension of the notion of simple probability
[1]. It utilizes the hypothesis of fuzzy set theory to check the probability of a variable
to be in a set. On the other hand, the simple probability theory is based on the
subjective belief to check the probability of a variable to be in a set. The simple
probability theory cannot manage the uncertainties and the imprecision present in
datasets. However, the fuzzy probability theory is able to handle probabilistic and
non-probabilistic uncertainties. In literature, several works have been proposed on
Bayesian network with fuzzy extension [5, 7–9]. Among all these works, the most
relevant and fundamental is the “Fuzzy Bayesian networks or FBNs”, proposed
by Tang and Lui [9]. The FBN can be referred to as a hybrid inference system to
incorporate fuzzy logic into the Bayesian network. It can be used effectively and
efficiently to solve many practical problems, which are difficult to be expressed by
accurate mathematics.

Let the two sets of events be X = {X1, X2, . . . , Xm} and Y = {Y1,Y2, . . . ,Yn}.
The corresponding fuzzy events of X and Y be X̃ and Ỹ . Thus, with reference to
FBN, the fuzzy conditional probability of Ỹ given X̃ is estimated as follows:

P
(
Ỹ |X̃

)
=

∑n
j=1

∑m
i=1 μỸ

(
Y j

) · μX̃ (Xi ) · P (
Xi |Y j

) · P (
Y j

)

P
(
X̃

) (4.3)

=
∑n

j=1

∑m
i=1 μỸ

(
Y j

) · μX̃ (Xi ) · P (
Y j |Xi

) · P (Xi )

P
(
X̃

) (4.4)

where μX̃ (Xi ) is the membership value of the fuzzy event X̃ in the event Xi , μỸ

(
Y j

)

is themembership value of the fuzzy event Ỹ in the eventY j , and the P
(
X̃

)
represents

event X̃ ’s fuzzy marginal probability. P
(
X̃

)
is defined as follows:

P
(
X̃

)
=

m∑

i=1

μX̃ (Xi ) · P (Xi ) (4.5)

The principles of FBN are used in the proposed FB-SemK to calculate the proba-
bilistic spatial importance between every pair of sampled and unsampled locations.
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4.3.3 FB-SemK and Its Working Principles

In this section, the proposed FB-SemK is presented in details, with the description
of its working principles. It follows the notion of basic semantic kriging approach,
however, the spatial importancemetric evaluation process of SemK is extended with
the probabilistic analysis usingFBN. The probabilistic spatial importance evaluation
process has two components: a-posterior correlation study between every pair of
leaf LULCs in the ontology and the second is the evaluation of the actual spatial
importance scores and the matrices. Among these two components, the first one
improves the basic SemK process with more pragmatic semantic analysis of LULC
classes. First, a Bayesian network or a DAG is established considering the available
terrestrial LULC classes to model their impact on each other.

Now, a probabilistic fuzzyBayesian analysis is carried out with this LULC DAG to
update the parameter value of each LULC class by considering the impact of others.
The actual correlation between every pair of LULC classes is evaluated with these
updated parameter values of the sampled locations. The overall process flow of the
FB-SemK approach is described in Algorithm 2 [4]. The evaluation process of the
spatial importance metric of FB-SemK is presented in Sect. 4.3.3.1.

4.3.3.1 Spatial Importance Evaluation by FB-SemK

Similar to the evaluation process in SemK, the spatial importance evaluation by FB-
SemK also measures the score for every pair of leaf LULC classes in the hierarchical
ontology, in terms of the prediction parameter. This correlation follows the below-
mentioned assumptions:

• this correlation analysis is highly dependent on the prediction parameter.
• a correlation measure between a pair of LULC classes is a global correlation score
representative for the whole study region.

• this analysis overcomes the shortcoming of basicSemK’s a-priori correlation study.

As evaluated in SemK process, first the entire RoI is split into k nonoverlapping
random zones (Rk) which satisfies the following criteria:

⋃
k
i=1Rk = RoI . Then,

k pairs of points are sampled for both the considered LULC classes from those k
zones. Up to this, the process conforms to the standard SemK process. However,
here in FB-SemK, the correlation scores are not directly calculated from the random
field values of the chosen k pair of points. The values of these sample points are
further revised by considering the other neighboring LULCs’ impact. To evaluate
these revised values, again k set of sample points are collected for each of the |F | − 2
number of the other LULC classes, where |F | represents the total number of available
leaf LULCs. Each of the samples in each set of k samples are considered from every
nonoverlapping random zones. Therefore, now a total number of |F | (2LULC classes
considered for the correlation analysis +(|F | − 2) number of neighboring LULC
classes) sample points are collected from k zones. This preprocessing generates a
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Fig. 4.4 BN with LULC
classes [4]

matrix of sample points of dimension k × |F |. These points satisfy the criteria of
being within a predefined distance d in the corresponding zone. Next, a pair of LULC
classes is considered and the random field value of all the sample points in that pair
is inferred separately with respect to the impact of other |F | − 2 LULC classes in the
RoI. For this analysis, the purpose, the principle of fuzzy Bayesian network (FBN),
proposed by Tang and Liu [9] is considered. A DAG of causal dependency among
the LULC classes is constructed using the principle of Bayesian network, which
captures the influence of one LULC class on others. One example Bayesian network
structure is presented in Fig. 4.4. It depicts the impact of the |F |th LULC class f|F |
on the others fi s, where fi ∈ { f1, f2, f3, . . . , f|F |−1}. Analyzing this fuzzyBayesian
network, once the conditional probabilities are evaluated for all the sample points
in the k × |F |-dimensional matrix by considering every LULC pair separately, a
Pearson correlation evaluation is performed by considering the revised random field
value of the sample points. This process is formalized in Probabilistic correlation
calculation algorithm (refer Algorithm 1 [4]).

The idea of FB-SemK’s correlation evaluation process is shown in Fig. 4.5. The
a-posterior correlation evaluation between two LULC classes, fi and f j , is shown,

Fig. 4.5 Correlation study
between fi and fj [4]
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however, the impact of other neighboringLULCs f p ∈ { f1, f2, . . . , f|F |}, (p �= i, j),
is also considered. First, using learning and inference generation principles of FBN,
the conditional probability of the considered LULC classes, fi and f j , are inferred
from the sample points representing rest of the LULC classes f|F |. The correlation
or spatial importance analysis takes place between the revised samples or the condi-
tional probability-based samples values of both fi and f j . In Fig. 4.5, the red dashed
arrows represent the impact of the rest of the neighboring LULCs f p (p �= i, j)
on the participating LULCs fi and f j . The actual correlation between fi and f j is
represented by the black solid arrow.

As described in SemK, once representative LULCs of the prediction and all the
sampled locations are linked in the hierarchical ontology, each of the sampled loca-
tions is associated with an importance score, which is the estimated correlation value
with respect to the prediction point. Therefore, the relative probabilistic importance
of the i th sampled location (SI prob0i ), taking the prediction point (x0) as the reference,
is given as follows:

SI prob0i = Corrprediction_parameter (x0, xi ) (4.6)

= Corrprediction_parameter ( f0, fi ) (4.7)

=

k∑
m=1

(Z( f0m ) − Z( f0))(Z( fim ) − Z( fi ))

√
k∑

m=1
(Z( f0m ) − Z( f0))2

k∑
m=1

(Z( fim ) − Z( fi ))2

(4.8)

where Z( f pq ) denotes the revised value of the qth sample point(i.e., selected from
the qth zone) with representative LULC as f p using conditional probability analysis.
The Z( f p) denotes the mean of these revised values of the f p LULC class with k
sample points. Now, similar to the basic SemK process, theFB-SemK also forms a [N
× 1] vector, given as [SIprob]T0i = [SI prob01 SI prob02 · · · SI prob0N ], which is the importance
matrix considering all of the sampled location with respect to the unsampled pre-
diction location. Similarly, as there exists spatial autocorrelation in the terrain, each
pair of the interpolating points are also correlated to each other. Their mutual spatial
importance can bemeasured which is their representative LULC classes’ correlation.
Therefore, the relative probabilistic importance score between i th and j th sampled
locations is given as SI probi j and is derived as follows:

SI probi j = Corrprediction_parameter (xi , x j ) (4.9)

= Corrprediction_parameter ( fi , f j ) (4.10)

=

k∑
m=1

(Z( fim ) − Z( fi ))(Z( f jm ) − Z( f j ))

√
k∑

m=1
(Z( fim ) − Z( fi ))2

k∑
m=1

(Z( f jm ) − Z( f j ))2

(4.11)
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Here, a symmetricmatrix of dimension [N×N] is formed for N sampled locations
and is referred as [SIprob]Ti j .
Example of A-Posterior Correlation Analysis

Let us consider an interpolation scenario to understand the evaluation process of
correlation between a pair of leaf LULC classes in the ontology. Let fi and f j the
considered pair of LULC classes and the interpolation is to be carried out in Kolkata,
WB, India (RoI), considering the prediction parameter LST. Though according to the
ontology in Fig. 3.2, there are 22-leaf LULC classes, however, for this example we
have chosen 15 out of them, i.e., |F | = 15. Further. let k = 30, thus the whole RoI is
divided into 30 nonoverlapping random zones. According to the description of FB-
SemK’s correlation analysis process, 30 pair of random sampled locations are chosen
from each of these zones where the former 30 points correspond to the LULC fi and
the later 30 corresponds to f j . Now, for the conditional probability evaluation of fi
and f j ’s sample points considering other (|F | − 2) = 13 LULC classes with respect
toLST, 30 points against each of the |F | − 2 classes are selected from the random
zones. Now, as these additional locations are the observed values of the neighboring
13 LULC classes, the revised LST values of the 30 pairs of fi and f j are inferred
from these locations using theFBN principles. Now, considering these revised values
of fi and f j , the correlation between these LULC classes is measured further using
Eq.4.11, following the same process as described in SemK. These correlation scores
are then normalized to a positive range from its original values, ranging between
[−1, 1].

As the ontology structure is unchanged with respect to time and other related
factors, the FB-SemK follows the same evaluation process for the metric semantic
similarity, as proposed in basic SemK [3]. Therefore, for this metric, FB-SemK gen-
erates the similar [SS]0i and [SS]i j matrices for any leaf LULC classes fi and f j in
the ontology (described in Sect. 3.3.1). Hence, with respect to these four matrices
([SIprob]0i , [SIprob]i j , [SS]0i and [SS]i j ), the weight vector of FB-SemK (W FB-SemK)
and its Lagrange multiplier (λFB-SemK) are given as follows, where C represents the
traditional semivariance matrix and D is the traditional distance matrix of ordinary
kriging.

WFB−SemK =
⎡

⎣
[C]i j− · − · −(

[SIprob]i j◦[SS]i j
)

⎤

⎦
−1 ⎡

⎣

⎡

⎣ [D]0i− · − · −(
[SIprob]0i◦[SS]0i

)

⎤

⎦ − λFB−SemK1

⎤

⎦ (4.12)

λFB−SemK =

⎡

⎣[1]T
⎡

⎣
[C]i j− · − · −(

[SIprob]i j◦[SS]i j
)

⎤

⎦
−1 ⎡

⎣ [D]0i− · − · −(
[SIprob]0i◦[SS]0i

)

⎤

⎦

⎤

⎦ − 1

[1]T
⎡

⎣
[C]i j− · − · −(

[SIprob]i j◦[SS]i j
)

⎤

⎦
−1

1

(4.13)
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Algorithm 1: Probabilistic correlation analysis (Rk , F)

Input: Rk = Set of random nonoverlapping zones in the RoI, where
⋃k

i=1 Rk = RoI; F = Set
of leaf LULC classes { f1, f2, . . . , f|F |} in the ontology; |F | = Total number of leaf
LULC classes in the ontology

Output: A-posterior probabilistic correlation scores between every pair of LULC
( fi , f j ) ∈ F

1 foreach Ri ∈ Rk (i = 1, 2, . . . , k) do
2 Apply FBN learning rules to capture the mutual impact among LULC classes

3 foreach pair of leaf LULC ( f p, fq ) ∈ F (p, q = 1, . . . , |F |) do
4 Infer the conditional probability for f p (Z( f pi )) considering ∀ fy ∈ F (y �= p) using

FBN

5 Infer the conditional probability for fq (Z( fqi )) considering ∀ fy ∈ F (y �= q) using
FBN

6 end
7 end
8 foreach pair of leaf LULC ( fi , f j ) ∈ F (i, j = 1, . . . , |F |) do
9 Probabilistic_correlation( fi , f j )

=
k∑

m=1
(Z( fim )−Z( fi ))(Z( f jm )−Z( f j ))

√
k∑

m=1
(Z( fim )−Z( fi ))2

k∑
m=1

(Z( f jm )−Z( f j ))2

10 end

4.4 Empirical Proof for FB-SemK

Empirical experiment is performedusing land surface temperaturedata.As presented
in semantic kriging, the similar study is executed in two spatial regions: Kolkata,
WB, India and Dallas, TX, USA. Here, five different zones (in contrast to the zones
considered in Chap.3) from each of the region. These zones are depicted in Fig. 4.6
and in Fig. 4.7 respectively. For the empirical analysis of FB-SemK, the same satellite
image of the year 2015 (within the range of mid-October– mid-November) has been
considered. The same experimental specifications have been considered for all the
methods as mentioned in Sect. 3.6.

While measuring the probabilistic spatial importance of FB-SemK, the mutual
impact of among the LULC classes have been estimated using FBN learning and
inference generation principles. Generally, the Bayesian network deals with the dis-
crete values of the considered parameter.However,most of themeteorological param-
eters (here, LST ) are originally continuous variables. Thus, the discretization of the
parameters is required to apply FBN principles. To discretize the range of LST val-
ues in the region Kolkata, it is further classified into seven groups (refer Table 4.1)
and further have been converted into fuzzy variables, which helps in dealing with the
imprecision induced in the data due to its discretization. The appropriate fuzzy mem-
bership functions need to be considered for respective meteorological parameters.
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Algorithm 2: FB-SemK procedure
Input: N number of sampled locations Interpolating points X = [x1, x2, . . . , xN ]
Unsampled prediction point x0
M pairs of samples to plot semivariogram
Random field/ parameter values at every samples
Rk = Set of random nonoverlapping zones in the RoI, where

⋃k
i=1 Rk = RoI

F = Set of leaf LULC classes { f1, f2, . . . , f|F |} in the ontology

Output: Estimated parameter value Ẑ(x0) at the unsampled prediction location x0

1 foreach (xi , xi + h) ∈ X do

2 γ(h) =

M∑
i=1

[Z(xi )−Z(xi+h)]2

2M

3 Plot (γ(h) vs. h)

4 Evaluate the semivariogram parameters: C0, C1, R
5 end

6 Call Probabilistic correlation analysis (Rk , F)

7 foreach (xi , xi + h) ∈ X do

8 Set γ(h) = C0 + C1(1 − e
3h
R )

9 SSi j =
mi| fi | +

m j
| f j |

2

10 SI probi j = Probabilistic_correlation( fi , f j )

11 Set CFB-SemK
i j =

Ci j

S I probi j ∗SSi j
= γ(h)

SI probi j ∗SSi j
[Considering (xi + h) as x j ]

12 end

13 Generate two [N × N] matrices: [SI]probi j , [SS]i j
14 Generate two [N × 1] matrices: [SI]prob0i , [SS]0i

15 Determine CFB-SemK =
[C]i j− · − · −

([SI]probi j ◦[SS]i j )

16 Determine DFB-SemK =
[D]0i− · − · −

([SI]prob0i ◦[SS]0i )

17 Determine λFB-SemK =

⎡

⎢⎣[1]T
⎡

⎢⎣
[C]i j−·−·−(

[SI]probi j ◦[SS]i j
)

⎤

⎥⎦

−1⎡

⎢⎣
[D]0i−·−·−(

[SI]prob0i ◦[SS]0i
)

⎤

⎥⎦

⎤

⎥⎦−1

[1]T
⎡

⎢⎣
[C]i j−·−·−(

[SI]probi j ◦[SS]i j
)

⎤

⎥⎦

−1

1

18 Determine WFB-SemK =
⎡

⎣
[C]i j− · − · −(

[SI]probi j ◦[SS]i j
)

⎤

⎦
−1 ⎡

⎣

⎡

⎣ [D]0i− · − · −(
[SI]prob0i ◦[SS]0i

)

⎤

⎦ − λFB-SemK1

⎤

⎦
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Fig. 4.6 Selected spatial zones of Kolkata, WB, India for FB-SemK

For this study, the trapezoidal membership function has been chosen to fuzzify the
parameter, which is depicted in Fig. 4.8. For the actual correlation analysis process
in FB-SemK, each of the RoIs is subdivided into sixteen zones (k = 16). This dis-
cretization process and finally applying the FBN principle is performed for every
zone in the RoI, which desists the generalization of the local variability.

The performance of FB-SemK is compared with the same univariate spatial inter-
polationmethods that are considered inChap.3, alongwithSemK itself. The semantic
kriging is also considered here to check whether the a-posterior correlation analysis
actually improves the performance of SemK. Hence, four existing popular interpola-
tion techniques, considered for the comparative study along with SemK, are specified
below.

• nearest neighbors (NN)
• inverse distance weighting (IDW )
• universal kriging (UK)
• ordinary kriging (OK)
• semantic kriging (SemK)
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Fig. 4.7 Selected spatial zones of Dallas, TX, USA for FB-SemK

Table 4.1 Discretized values
for LST [4]

Sub-range LST values

1 R1: <20 ◦C
2 R2: 20–25 ◦C
3 R3: 25–30 ◦C
4 R4: 30–35 ◦C
5 R5: 35–40 ◦C
6 R6: 40–45 ◦C
7 R7: >45 ◦C

Fig. 4.8 Fuzzy membership function for LST [4]
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(a) MAE

(b) RMSE

Fig. 4.9 Comparison study with error graph for FB-SemK (Region: Kolkata, WB, India)

Two standard error metrics: mean absolute error (MAE) and root mean square
error (RMSE) [6] are evaluated to check for discrepancies produced by different
methods between the actual and the measured LST at some point locations. The
graphical representations of error are depicted through Fig. 4.9 and Fig. 4.10 respec-
tively.

4.4.1 Discussions on Empirical Proof

The performance of FB-SemK is also evaluated in terms of generating the predicted
surfaces for the selected zones in both the cities: Kolkata, WB, India and Dallas, TX,
USA. The predicted surfaces along with the actual one are depicted in Tables 3.8
and 3.9. Beside FB-SemK, here the predicted surfaces are generated from five other
spatial interpolation methods: NN, IDW, UK, OK and SemK as well. As mentioned
in Chap.3, the error surface (in gray scale) and the peak signal-to-noise ratio are
also reported against each predicted surface with respect to the actual surface. As
can be observed from the figures and the table reported for this empirical analysis,
both the methods, the SemK and the FB-SemK, generates better mapping surfaces
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(a) MAE

(b) RMSE

Fig. 4.10 Comparison study with error graph for FB-SemK (Region: Dallas, TX, USA)

of LST compared to others by considering the terrestrial LULC information for the
prediction. Further, the FB-SemK generates the most accurate surface of LST by
performing a-posterior correlation analysis among the LULC classes. The FB-SemK
reports the highest PSNR compared to other methods (≈6–13 dB for Kolkata, WB,
India and ≈5–11 dB for Dallas, TX, USA) and approximately 3–6 dB (for Kolkata,
WB, India) and ≈3–4 dB (for Dallas, TX, USA) higher than SemK as well (Tables
4.2 and 4.3).

This chapter has also considered the zones from the basic SemK’s empirical study
(i.e., from Chap.3). Ten spatial zones depicted in Figs. 3.3 and 3.4 have also gone
through the empirical analysis of FB-SemK, to check whether the performance of
those zones’ are also improved by FB-SemK. The Table 4.4 presents the empirical
analysis for the same. In this table, the predicted imagery for SemK and FB-SemK
for both the regions have been reported for the comparison. The corresponding error
surfaces for each of the predicted imagery are also reported in the table along with
the PSNR. For these zones also, FB-SemK yields higher PSNR over SemK (≈2–5
dB for Kolkata, WB, India and ≈3–4 dB for Dallas, TX, USA).

It must be noted that the performance of an interpolation method depends on the
application and is highly influenced by the surrounding spatial variability. This notion
is applicable for SemK andFB-SemK as well. The performance of these twomethods
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Table 4.2 Comparison study for FB-SemK (Region: Kolkata, WB, India) [4]
Zone Actual

image
Predicted image

NN IDW UK OK SemK FB-SemK

BB: [(88◦21′23.431′′E 22◦51′48.356′′N); (88◦25′38.059′′E 22◦55′5.136′′N)]

Z
on

e
1

Error surfaces
(In gray
scale)

PSNR 39.73dB 39.24dB 37.58dB 36.30dB 43.50dB 48.72dB

BB: [(88◦15′15.139′′E 22◦42′45.687′′N); (88◦19′29.709′′E 22◦46′4.027′′N)]

Z
on

e
2

Error surfaces
(In gray
scale)

PSNR 37.59dB 36.78dB 34.64dB 31.94dB 39.23dB 43.65dB

BB: [(88◦22′32.01′′E 22◦38′4.089′′N); (88◦26′45.357′′E 22◦41′21.274′′N)]

Z
on

e
3

Error surfaces
(In gray
scale)

PSNR 39.49dB 38.50dB 36.71dB 35.08dB 43.22dB 49.47dB

BB: [(88◦16′16.967′′E 22◦30′27.727′′N); (88◦20′31.233′′E 22◦33′45.087′′N)]

Z
on

e
4

Error surfaces
(In gray
scale)

PSNR 34.42dB 33.49dB 31.74dB 34.43dB 39.53dB 44.52dB

BB: [(88◦23′44.459′′E 22◦25′46.988′′N); (88◦27′57.874′′E 22◦29′4.16′′N)]

Z
on

e
5

Error surfaces
(In gray
scale)

PSNR 43.55dB 43.52dB 42.03dB 42.92dB 47.43dB 50.05dB
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Table 4.3 Comparison study for FB-SemK (Region: Dallas, TX, USA)
Zone Actual

image
Predicted image

NN IDW UK OK SemK FB-SemK

BB: [(96◦52′6.416′′W 32◦52′14.903′′N); (96◦49′17.242′′W 32◦54′10.726′′N)]

Z
on

e
1

Error surfaces
(In gray
scale)

PSNR 37.73dB 36.99dB 35.04dB 36.08dB 42.12dB 45.69dB

BB: [(96◦44′10.49′′W 32◦50′4.8′′N); (96◦41′21.511′′W 32◦52′0.445′′N)]

Z
on

e
2

Error surfaces
(In gray
scale)

PSNR 33.82dB 32.38dB 31.54dB 31.29dB 35.15dB 38.32dB

BB: [(96◦52′1.329′′W 32◦46′32.721′′N); (96◦49′12.051′′W 32◦48′28.785′′N)]

Z
on

e
3

Error surfaces
(In gray
scale)

PSNR 34.86dB 33.62dB 32.39dB 34.50dB 39.85dB 42.41dB

BB: [(96◦44′17.283′′W 32◦43′31.219′′N); (96◦41′28.232′′W 32◦45′27.113′′N)]

Z
on

e
4

Error surfaces
(In gray
scale)

PSNR 35.83dB 34.21dB 32.86dB 34.37dB 40.33dB 43.92dB

BB: [(96◦52′16.36′′W 32◦40′51.843′′N); (96◦49′28.131′′W 32◦42′47.697′′N)]

Z
on

e
5

Error surfaces
(In gray
scale)

PSNR 32.71dB 30.75dB 30.05dB 31.42dB 34.81dB 37.39dB
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Table 4.4 Comparison study for FB-SemK with SemK
Region Method Type Zone 1 Zone 2 Zone 3 Zone 4 Zone 5

Se
m
K P
re
d
ic
te
d

K
ol
ka

ta

E
rr
or

PSNR 45.06dB 41.71dB 39.29dB 46.67dB 50.08dB

F
B
-S

em
K P
re
d
ic
te
d

E
rr
or

PSNR 47.92dB 45.36dB 43.79dB 51.01dB 54.02dB

Se
m
K P
re
d
ic
te
d

D
al
la
s

E
rr
or

PSNR 38.16dB 37.44dB 37.84dB 40.82dB 34.65dB

F
B
-S

em
K P
re
d
ic
te
d

E
rr
or

PSNR 41.33dB 41.76dB 40.65dB 44.50dB 38.13dB
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is dependent on the amount of semantic variability or the entropy in terms of LULC
distribution of the RoI. Therefore, the performance of both SemK and FB-SemK vary
in different study regions. The structure or the granularity of the ontology hierarchy
impacts the prediction accuracy reported by SemK and FB-SemK significantly. The
SemK and FB-SemK have more number of decision variables compared to ordinary
kriging and other univariate interpolation approaches. However, to reduce the chance
of over-fitting [10], the number of sampled locations considered in both SemK and
FB-SemK is always assured to be ten times more than their number of independent
factors.

4.5 Further Discussions

Spatial analysis for meteorological parameters, which are nearby to the earth surface
often require the land–atmospheric interaction analysis, by modeling the spatial vari-
ability in terms of terrestrial LULC distribution. The basic SemK approach models
these LULC information and incorporates this semantic knowledge into the inter-
polation for better accuracy. The FB-SemK improves SemK by revising its a-priori
correlation analysis by probabilistic a-posterior correlation analysis among the leaf
LULC classes in the ontology. It considers the mutual impact of LULCs on each
other. Here, a probabilistic analysis of correlation is based on fuzzy Bayesian net-
work (FBN) learning and inference generation principle. A DAG in the Bayesian
network is utilized to properly capture the inter-LULC influences and the incorpo-
rated fuzziness deals with the uncertainties and the imprecision of the datasets that
occurred due to the discretionary of the continuous meteorological parameters. The
empirical studies exhibit that the FB-SemK improves the interpolation of LST by
outperforming the existing popular techniques and also the SemK. Therefore, the
contributions of FB-SemK are stated below:

• revising semantic kriging’s a-priori correlation study to a probabilistic a-posterior
correlation study by modeling land–atmospheric interaction, i.e., the terrestrial
LULC information for the meteorological parameters.

• utilizing a fuzzy extension of Bayesian network (FBN) of LULC classes to deal
with the imprecision and uncertainty present in the data.

• improving the SemK process and thus enhancing the prediction accuracy by devel-
oping a probabilistic spatial importance evaluation algorithm.

• experimenting with land surface temperature data for validating the performance
of the proposed FB-SemK compared to others.

It might be noted that both SemK and FB-SemK are capable of incorporating the
terrestrial LULC knowledge into the prediction process. To achieve enhanced accu-
racy, both the methods, SemK and FB-SemK, can be considered based on the spatial
application. However, there is a trade-off between both the methods. Though FB-
SemK is more pragmatic interpolation process over SemK, however, the complexity
in terms of number of parameters and the amount of processing required is higher in
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4.5 Further Discussions 95

this process. Hence, with lower processing requirement, SemK is an efficient choice
with negotiable amount of compromised accuracy. The proposed framework may
facilitate the incorporation of other domain-specific knowledge and testing other
fuzzy membership functions for achieving better interpolation accuracy.

It is evident that FB-SemK is an extension of basic spatial SemK process to
make the spatial interpolation process more pragmatic one to achieve better accu-
racy. However, nowadays, most of the spatial data infrastructure contains time-series
data. Past time-series meteorological parameters’ information can be utilized for
spatio-temporal prediction or forecasting of the parameters in the future. Even the
spatio-temporal forecasting framework can be utilized for the forecasting of other
spatial events. This spatio-temporal framework may facilitate modeling the appli-
cations, such as, change modeling, urban planning, natural resource management,
etc. Therefore, a spatio-temporal interpolation framework, which can analyze past
time-series data for prediction and forecasting, can be developed further by extend-
ing the basic SemK or FB-SemK framework. The subsequent chapters present these
extensions for different spatio-temporal applications.
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Chapter 5
Spatio-Temporal Reverse Semantic
Kriging

Abstract Spatio-temporal prediction and forecastingof the terrestrial land-use/land-
cover (LULC) distribution of a RoI facilitates their management, city planning, miti-
gation of adverse climate change, etc. However, the spatio-temporal change in LULC
distribution is not a trivial phenomena to be modeled as it often shows nonlinear
behavior in the presence of different factors such as human impact to the ecosystem
(e.g., anthropogenic activities, urbanization), change in meteorological parameters,
etc. Therefore, for the prediction and forecasting of LULC distribution, incorpora-
tion of the meteorological knowledge into the prediction process may facilitate us
to develop an advanced model. This work aims to model the behavioral change of
interannual LULC pattern of a region by analyzing different related meteorological
parameters. This study also attempts to forecast the future LULC distribution using
the basic idea of semantic kriging. Here, SemK approach is extended for the spatio-
temporal analysis and a new variant is proposed, which is referred to as ST-RevSemK.
It captures the semantic relationships among different related meteorological param-
eters and use this relation to forecast the semantic terrestrial distribution pattern.
From the empirical performance evaluation of this framework, it is found that the
spatio-temporal modeling of meteorological parameters facilitates improved predic-
tion of LULC pattern.

5.1 Introduction

Prediction and forecasting of the meteorological and terrestrial patterns with high
accuracy is one of the major challenges in the field of environmental changes mod-
eling. In this regard, modeling the LULC change and forecasting their future pattern
helps to improve the urbanization, natural resource planning, different socioeconomic
activities, etc., This modeling is important because the abovementioned factors are
the significant driving force for different environmental threats such as drought,
flood, urban heat island, etc. From the existing literature and the previous empiri-
cal evidence, it is evident that the meteorological parameters such as land surface
temperature,moisture stress index, vegetation index, etc., are influenced by the earth
surface dynamics in terms of LULC and are highly correlated with its pattern of
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98 5 Spatio-Temporal Reverse Semantic Kriging

distribution [5, 13]. Thus, these two factors, the meteorological (the parameters) and
the terrestrial (the LULC), are interdependent, which influence the environmental
changes together. As a result, the proposed methods, the basic SemK, FB-SemK and
the spatio-temporal SemK incorporates this knowledge with their semantic analysis
for the prediction with higher accuracy. This chapter focuses on the spatio-temporal
forecasting of LULC pattern of a given RoI by modeling the behavioral pattern of
different meteorological parameters. Hence, this work can be regarded as an applica-
tion of the proposed SemK approach, where SemK and its variant have been applied
for the change pattern analysis of LULC and its forecasting through urban landscape
modeling.

Environmental scientists have already declared that the twenty-first century is
going to be an era of environmental pattern recognition, weather/climate prediction,
using some well-defined mathematical equations [20]. However, the prediction and
forecasting by handling all the surrounding and influential uncertainties with high
accuracy is difficult to achieve. One of the major reasons behind this unsatisfactory
level of accuracy is that, in most of the cases other critical covariates’ information are
not considered which are highly influential to each other. One best possible way to
handle the uncertainties is to incorporate different influential secondary knowledge
for the prediction of one parameter. In this regard, the primary parameter should
exhibit high correlation with the secondary parameters, such that they influence each
other significantly. Therefore, it is obvious to model any environmental change phe-
nomena considering amultivariate scenario formore pragmatic estimation compared
to a univariate one.

According to Tobler’s law, the spatial parameters are highly correlated among
themselves in 2D space [10]. Therefore, in a multivariate scenario, it is a challenging
task to select the best group of auxiliary parameters and prioritize them with respect
to their degree of influence to the primary parameter. These best possible secondary
parameters facilitate us to achieve better results for the actual analysis. Therefore,
one of the major preprocessing steps involved in any multivariate spatial analysis is
to check and extract the causal dependencies among the meteorological parameters
to evaluate their degree of influence to each other.

As the spatio-temporal alteration of LULC follows nonlinear behavior in the
presence of different dynamic factors such as human impact to the ecosystem (e.g.,
anthropogenic activities, urbanization), change in meteorological parameters, etc.,
thus a proper prediction and forecasting model of LULC should study historic data
and model the past trend of different parameters. Therefore, for these types of data-
driven approaches to analyze the past pattern of different environmental parameters,
the kriging [14] estimators are reported to be the most popularly used and suitable
approaches in the literature to handle spatial uncertainties. The example of multi-
variate geostatistical kriging estimators are co-kriging, kriging with external drift,
regression kriging, etc.

However, for meteorological and terrestrial applications in the literature, most of
these univariate and multivariate methods have not considered modeling terrestrial
LULC knowledge. In semantic kriging [5] (and its variants, FB-SemK and spatio-
temporal SemK), the LULC distribution of the terrain is amalgamated within the
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prediction equations of the meteorological parameters, mainly LST for better estima-
tion. In this chapter, a spatio-temporal forecasting framework is proposed by consid-
ering LULC distribution of the terrain as the primary parameter to be predicted. This
framework is named as spatio-temporal reverse semantic kriging (ST-RevSemK) [3].
Here, the relatedmeteorological parameters are used as the auxiliary or the secondary
parameters to support the prediction of LULC. Therefore, ST-RevSemK can be con-
sidered as amultivariate kriging approach. The variances between secondary parame-
ters with the primary parameter is modeled by semivariogram, cross-semivariogram
models [6]. For empirical evaluation, three correlated parameters are considered,
namely, LST, NDVI, and MSI as the secondary information to forecast the primary
(LULC). From the empirical analysis with spatio-temporal meteorological and ter-
restrial LULC data, it is observed that the incorporation of semantic knowledge into
the spatio-temporal modeling prediction of LULC facilitate more precise estimation.

5.2 Objectives of Spatio-Temporal Reverse Semantic
Kriging

Spatio-temporal changemodelingofLULC distributionof a region is required to fore-
cast their future pattern which facilitates different types of environmental planning.
Being influenced by terrestrial dynamics, the temporal changes in different meteo-
rological parameters rely on the properties of LULC. Therefore, a reverse mapping
of meteorological information for the spatio-temporal prediction of LULC helps to
develop better prediction model. The interannual variation of different meteorologi-
cal parameters and the LULC pattern have been analyzed in this work to forecast the
future LULC spread. A revised version of spatio-temporal semantic kriging is devel-
oped and is named as ST-RevSemK. It captures the semantic associations between
different parameters and the terrestrial LULC distribution. The general objectives of
ST-RevSemK is given as follows:

• executing causality test in different spatial locations to rank the selected parameters
or a group of secondary parameters with respect to the amount of impact on the
prediction parameter.

• extending the basic semantic kriging framework for the multivariate prediction
scenario to consider auxiliary information.

• developing a reverse spatio-temporal SemK approach, i.e., ST-RevSemK, for quan-
tifying the spatio-temporal change in LULC pattern in terms of related meteoro-
logical parameters.

• developing the spatio-temporal semivariograms and cross-semivariograms model
to analyze the correlation among different input variables.

• mathematical formalization of the proposed ST-RevSemK framework to forecast
LULC pattern in future.

• conducting empirical experiment with meteorological and terrestrial data to vali-
date the efficacy of the ST-RevSemK framework.
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5.3 ST-RevSemK: Spatio-Temporal Reverse Semantic
Kriging Framework

The proposed spatio-temporal reverse semantic kriging (ST-RevSemK) framework
can be considered as the reverse and multivariate approach of basic SemK in spatio-
temporal domain. A comprehensive process flow diagram of ST-RevSemK has been
shown in Fig. 5.1. This model considers the spatio-temporal data of meteorological
parameters and terrestrial LULC as the input. Besides the quantification of the terres-
trial knowledge, by following the basic SemK principle (refer Chap.3 and [5]), the
spatio-temporal interrelationships between different combinations of meteorological
parameters and the LULCs are analyzed further. Here, for spatio-temporal analysis, a
separable spatio-temporal SemK approach [4, 24] is chosen to be extended in multi-
variate scenario, taking LULC as the primary parameter for prediction. Considering
three- dimensional spatio-semantic and temporal-semantic semivariograms, the ST-
RevSemK framework forecasts the future LULC distribution of the chosen RoI.

A major preprocessing step in the ST-RevSemK approach is the CTF component.
It is basically a causality testing framework (CTF), which takes multiple meteoro-
logical parameters (primary or derived) as input. From the pool of the parameters,
this module checks whether the input secondary parameters actually influence the
primary parameter and further selects those parameters, which are causal to the
primary parameter to be predicted (here, it is LULC), by pruning the rest. Here, a
Granger causality (GC) testing approach [2] has been adopted, which is a data pre-
processing task for the dependency analysis between meteorological and terrestrial

Fig. 5.1 ST-RevSemK framework [3]
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parameters. The details of this causality testing framework and modeling the
ST-RevSemK prediction equations are discussed in the following subsections.

5.3.1 CTF: Causality Testing Framework

The CTF module investigates the causal linkages between different input meteoro-
logical parameters that has been considered to forecast the primary parameter, LULC.
In this regard, the causal dependencies among the primary parameter, i.e., the LULC
classes and the LST,NDVI andMSI (as secondary parameters) [7, 9] are investigated
further. For the causality analysis, the CTF considers a Granger causality (GC) [11,
22] testing approach for the causal relationship extraction among different param-
eters. As per existing the literature, the Granger causality can be referred to as a
data-driven framework, which was primarily developed for the econometrics appli-
cations by the British economistClive Granger. Further, many studies have extended
this approach in different fields to analyze the causal dependencies among different
stochastic variables. This approach aims to minimize the error in prediction and fore-
casting. For a bivariate scenario, the causality hypothesis, defined by Granger in [11]
is given as follows: “if some other series yt contains information in past terms that
helps in the prediction of xt and if this information is contained in no other series
used in the predictor, then yt is said to cause xt .” Further, this bivariate hypothesis
has been extended in multivariate approaches as well to find the most influential
and statistically significant combination of the secondary variables for the primary
variable, which can also be prioritized accordingly as per their influence quotient.

For the application of Granger causality testing approach in the area of meteoro-
logical analysis, a significant amount of scientific investigations have been reported
in the literature. Attanasio et al. [1] have outlined a review report on the Granger
causality testing for reasoning the global warming phenomena. Salvucci et al. [18]
have extracted the causal relationship between two meteorological parameters, the
soil moisture and the precipitation in the region Illinois, USA. Similarly, Lozano
et al. [16] have described a GC-based spatio-temporal data analysis approach for
the causal analysis of climate change. Considering own datasets, the authors have
reported that the presence of CO2 and other greenhouse gases significantly influence
the temperature change in the environment. Sfetsos and Vlachogiannis [19] have
considered applied GC testing approach to check the causal dependencies between
PM10 concentrations and its daily exceedances. Smirnov and Mokhov [21] have
developed a long-term GC testing principle. They have reported that the CO2 con-
centration is causal to the rise in temperature during the past decades. Kodra et al.
[15] have developed a reverse cumulative GC testing method to extract the causal
dependency between CO2 and globally averaged LST. On the other hand, Dutta et al.
[8] have developed an online feature extraction approach using GC testing principle
for predicting rainfall with using neural network and reported influential features
from the historic rainfall data to forecast it in future.
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For a multivariate scenario, a group of variables often exhibits more impact or the
influence toward another variable or the primary parameters compared to influencing
it individually. Formally, it can be described as the group of parameters are not
statistically significant individually, however, shows more significant dependency
when grouped with others. Therefore, for this multivariate analysis, a bottom-up
GC testing approach in CTF is considered, where the causality is first checked with
individual secondary parameters and gradually making groups of them in different
combinations of variables. The final group consists of all the secondary parameters as
one group and all the groups are annotated and prioritized in terms of their influence
measure for the primary parameter. For theGC testing, we have adopted the principle
of statistical F-test. Some additional spatio-temporal properties can also be verified
through this testing. For example, the due to the spatial autocorrelation property of
the terrain, the nearby study locations should report similar dependency compared to
the distant locations. Similarly, it can also be checked how the interannual change of
the considered parameters has affected their inter-causal dependencies in different
spatial locations.

5.3.1.1 Granger Causality Testing Principles

The basic principle of Granger causality follows the idea of one-way causality in
temporal domain. That is, the future value always gets influenced by the past values
but the opposite is not possible. Similarly, the GC testing principle states that, if the
change of one variable X causes the change is another variable Y , then X can be
included as an independent factor for the analysis of Y , which eventually increase
the accuracy of the analysis of Y . Therefore, the following hypotheses can be stated
based on the above notion:

• Y is caused by X indicates that the past values of both X and Y influences the
future value of Y .

• X is caused by Y indicates that the past values of both X and Y influences the
future value of X .

• X is caused by Y and Y is caused by X both indicate that past values of both X
and Y influences the future value of both X and Y .

• X is not caused by Y and Y is not caused by X both indicate that X and Y are
statistically independent from each other.

In univariate scenario, the autoregressive representation of Y (order N ) can be
given as follows:

yt = θ0 + a1yt−1 + a2yt−2 + · · · + aN yt−N + εt (5.1)

= θ0 +
N∑

i=1

ai yt−i + εt (5.2)
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where yi represents the value of Y at the i th time from its past time-series data, εt
represents the residual value at time t , θ0 and ai are the constants. In the bivariate
scenario, the similar autoregressive representation ofY , considering the laggedvalues
of X , can be given as follows:

yt = φ0 + a1yt−1 + a2yt−2 + · · · + aN yt−N + b1xt−1 +
b2xt−2 + · · · + bN xt−N + ξt (5.3)

= φ0 +
N∑

i=1

ai yt−i +
N∑

i=1

bi xt−i + ξt (5.4)

where xi represents the value of X at the i th time from its past time-series data, ξt
represents the residual value at time t , φ0 and bi are the constants. In this bivariate
scenario, if X Granger causes Y , the b can be considered as a N dimensional nonzero
vector. Here, the bivariate autoregressive representation of Y produces higher accu-
racy for the analysis of Y compared to its univariate autoregression. AsGC is verified
through some statistical hypothesis tests, this work has adopted the statistical F-test
for the testing of null hypothesis.

5.3.1.2 Statistical F-Test

In this work, the statistical F-test [17] is utilized to check whether a set of secondary
parameters, individually or as a group, influence the primary parameter or not. The
statistical F-test assumes the test statistic to have a F-distribution under null hypoth-
esis. So, for this work, the null hypothesis of GC test is given as follows: for the
univariate autoregressive representation of Y , y j ∈ Y is not caused by yi ∈ Y . It
must be noted that this hypothesis is a variant of actualGC hypothesis. It may also be
explained by the scenariowhen every coefficient ai is zero in vector a. The alternative
hypothesis can be stated as for at least one i in vector a, ai �= 0.

To extend this method for the bivariate regression analysis, the the F statistic is
evaluated between two models using the F-test. Let us assume that the number of
data points available for the parameter estimation of both the models be n. Again,
assuming the number of parameters for the first model be p1 and for the second
model be p2 (p2 > p1), the corresponding F statistic is expressed as follows:

F =
(
SSE1−SSE2

p2−p1

)

(
SSE2
n−p2

) (5.5)

where SSEi represents the sum of squares of the residual of the i th model which
can be expressed as follows: SSEi = ∑

(yi − ȳi )2, the ȳi represents the mean of
the series Y . In general, the group having more parameters always better fit the
data compared to the group with lesser parameters. However, the null hypothesis
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violates this statement as the former model does not generate any better under null
hypothesis. In F-distribution, if the F statistic is larger than the critical value for
a given significance level s (usually 0.05), then the null hypothesis is rejected. The
critical value can be formalized as Fcrit (m1,m2). Here, the between-group degrees of
freedom is represented asm1 and the within-group degrees of freedom is represented
as m2. Considering the acceptance of the null hypothesis, the p value represents the
probability to obtain the F statistic at least as extreme as the observed one. For
rejecting the null hypothesis, p must be less than s.

5.3.1.3 Causality Testing in ST-RevSemK

In the multivariate analysis of ST-RevSemK, the secondary parameters are needed
to be ranked to according to their impact of the primary parameter. It also gives an
insight to understand whether the secondary parameters are influencing the primary
one as a group or individually. In this work, the group of secondary meteorological
parameters areLST,NDVI andMSI, which are parameters that are ranked considering
a bottom-up approach to forecast the primary parameters, terrestrial LULC. It is
obvious from the rejection assumption of the null hypothesis in F-test is that at
least one coefficient from each of a and b vector should be nonzero. Thus, the
model is said to be statistically significant to forecast Y . To choose the best model
for the forecasting of Y considering every possible combination of the secondary
parameters, this work develops an exhaustive hierarchical approach to group them.
At the bottom level, each of the secondary parameters are gone through GC testing
with respect to the terrestrial LULC. The corresponding F statistic are measured
and the parameters are ranked accordingly in terms of their F statistic. The model
with higher F statistic are more statistically significant, and thus assigned lower rank
compred to the others. This work assumes that a secondary parameter may not seem
to be significant individually but shows higher impact for the secondary parameter
when grouped together with other parameters. Therefore, even if the null hypothesis
is accepted (with lower F statistic) for a individual parameter, it is further analyzed
by grouping it with other secondary parameters. At the second level, the parameters
are paired in every possible combination and the multivariate analysis is carried out
for every grouping. This grouping is continued uptil level n (n represents the number
of secondary parameters), in which all the secondary parameters are clustered in a
single group.

The abovementioned bottom-up approach to measure the F statistic for the group
of the secondary parameters is presented formally in Algorithm 3 [2]. Each of the
combinations are tagged with their corresponding F statistic value. With respect
to the physical significance of the F statistic metric, the combination of secondary
parameters with higher F statistic value influences the primary parameter more.
Therefore, for this multivariate scenario, the combination with the highest F statistic
value or a lowest rank is the best model to forecast the the terrestrial LULC, given
the null hypothesis is rejected for that model.
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For the causality testing in ST-RevSemK among the four parameters (LST, NDVI,
MSI, and LULC), the empirical analysis has been carried out for five spatial zones
as considered in Figs. 3.3 and 3.4 for Kolkata, WB, India and Dallas, TX, USA,
respectively (refer Chap.3). The statistical F-Test results for each of the five zones
for both Kolkata, WB, India and Dallas, TX, USA are specified in Table5.1 and
Table5.2, respectively. An analytic software by IBM, IBM SPSS1 Statistics 15.0 is
used here for the bivariate and multivariate analysis of this work. For the bivariate
scenario, theOne-wayAnova test of IBMSPSS is performed for individual secondary
parameter. For the combination with three and more parameters, the multivariate
linear regression of IBM SPSS is performed to evaluated their F statistics.

Let <G> be a group or the combination of secondary parameters. Thus the null
hypothesis canbe stated as “TheLULC is notGranger causedbyG”. InTables5.1 and
5.2, the F statistics and the corresponding critical values of the F-test are tabularized
for each of the combinations of the parameters, considering five zones from each of
the two RoIs, Kolkata and Dallas. A � in the “Reject?” column indicates to reject
the null hypothesis, whereas a × mark indicates to accept it. The results in the Table
indicate that the group that considers the combination of all secondary parameters
together, i.e., <land surface temperature, normalized difference vegetation index,
moisture stress index> is the most significant model for the prediction year 2015.
It has also been found that even if the primary parameter is not Granger caused
by the individual secondary parameter, but cased by them in a single group. This
supports the notion of not rejecting the insignificant secondary parameters when
tested individually.

5.3.2 Modeling ST-RevSemK

As ST-RevSemK deals with multivariate scenario, it assumes that for any i th sampled
location from N sample points at a past time instance can be represented as (xi , {Z1i ,

Z2i , . . . , Zsi }, fi , tai ). That is the sampled location xi is measured at a past year tai .
The number of meteorological parameters considered is s and are represented as
Z1i , Z2i , . . . , Zsi at a sample point xi and its corresponding LULC, fi is also known.
Here, for our analysis, three meteorological parameters are considered, LST, NDVI
and MSI, thus s = 3. For the forecasting of f0 at the prediction point x0, only past
LULC information is not a pragmatic approach to follow. Modeling the other related
meteorological information may enhance the accuracy in estimation. The proposed
approach utilizes the notion of spatio-temporal semantic kriging [4] and extends it
for multivariate approach, where three secondary parameters are chosen to predict
the terrestrial LULC. In any multivariate approach it is assumed that the auxiliary
parameters are highly correlated with the primary and the primary parmater can be
predicted jointly considering a BLUE (best linear unbiased estimator) [12]. From
our causality analysis, it is observed that all three secondary parameters together

1http://www-01.ibm.com/software/in/analytics/spss/; Accessed on August 2014.
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Algorithm 3: Bottom-up F statistic evaluation
Input: Primary parameter {v0};
Secondary parameters {{v1}, {v2}, · · · , {vn}}
Output: F statistic

1 Model1 = {v0};
2 Hierarchy A = φ;
3 G = {{v1}, {v2}, · · · , {vn}}
4 foreach i ∈ 1 to n do
5 A = A ∪ G
6 G = G × vi

7 end

8 foreach Modeli in A do

9 Fstatistic(Model1,Modeli ) =

( SSEgroup1−SSEgroup2
p2−p1

)

( SSEgroup2
n−p2

)

10 if Fstatistic(Model1,Modeli ) < Fcrit (m1,m2) then
11 accept null hypothesis with Modeli
12 discard Modeli
13 end

14 else
15 reject null hypothesis with Modeli
16 annotate Modeli with Fstatistic(Model1,Modeli )

17 end

18 end

influence LULC (refer Tables5.1 and5.2). In univariate approach, the estimation by
spatio-temporal reverse semantic kriging can be formalized as follows:

Ẑ(x0) =
N∑

i=1

wST−RevSemK
i Z(xi ) (5.6)

where Ẑ(x0) represents the predicted primary parameter value, (x0) is the unsampled
location to be predicted, N is the number of sampled locations, xi represent the
primary parameter value at the i th sampled location and wST−RevSemK

i represents
the assigned weight to the same location. For multivariate spatio-temporal reverse
semantic kriging, as three parameters [LST (Z1), NDVI (Z2) and MSI (Z3)] are
chosen as the auxiliary parameter for the prediction of LULC, the corresponding
estimation equations can be expressed as follows:
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Fig. 5.2 Spatio-semantic semivariogram (Parameter: LST ) [3]

Ẑ(x0) =
N∑

i=1

wST−RevSemK
1i Z(xi ) such that: Ẑ1(x0) =

N∑

i=1

wST−RevSemK
1i Z1i (5.7)

Ẑ(x0) =
N∑

i=1

wST−RevSemK
2i Z(xi ) such that: Ẑ2(x0) =

N∑

i=1

wST−RevSemK
2i Z2i (5.8)

Ẑ(x0) =
N∑

i=1

wST−RevSemK
3i Z(xi ) such that: Ẑ3(x0) =

N∑

i=1

wST−RevSemK
3i Z3i (5.9)

Being a variant of the basic semantic kriging process, these estimation equa-

tions adheres to the following conditions:
N∑
i=1

wST−RevSemK
1i =

N∑
i=1

wST−RevSemK
2i =

N∑
i=1

wST−RevSemK
3i = 1 (as unbiased estimator). The wST−RevSemK

si s are the weights

assigned to the interpolating points, calculated from the semivariogram models. In
ST-RevSemK framework, the dependencies among the meteorological and terres-
trial LULC parameters are modeled through experimental spatio-temporal semivar-
iograms. In this application, as the primary prediction parameter Z is the terrestrial
LULC distribution, the semantic kriging modeling of this semantic knowledge is
carried out. Therefore, the semantic similarity and the spatial importance metric of
SemK quantifies this knowledge from the ontology (refer Chap. 3). The spatial and
temporal semivariogram models then analyze the changes in the prediction parame-
ter in space and time domain with respect to different combinations of the secondary
parameters.Hence, for each of the three auxiliary parameters, the spatio-semantic and
temporal-semantic semivariogram models (for spatial region Kolkata, WB, India)
are depicted in Figs. 5.2, 5.4, 5.6, 5.3, 5.5, and 5.7 respectively. These temporal and
spatial semivariogram models considers temporal lag and distance respectively as
an independent variable along the X axis, the change in meteorological parameter as
another independent variable along Y axis and the corresponding change in LULC
as the dependent variable along Z axis.

shrutilipi.2007@gmail.com



112 5 Spatio-Temporal Reverse Semantic Kriging

Fig. 5.3 Temporal-semantic semivariogram (Parameter: LST ) [3]

Fig. 5.4 Spatio-semantic semivariogram (Parameter: NDVI) [3]

Fig. 5.5 Temporal-semantic semivariogram (Parameter: NDVI) [3]
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Fig. 5.6 Spatio-semantic semivariogram (Parameter: MSI) [3]

Fig. 5.7 Temporal-semantic semivariogram (Parameter:MSI) [3]

However, different combinations or all the secondary meteorological parameters
together can be considered to evaluate the change in LULC with respect to the
change in these secondary parameters. For this analysis, the semivariogram models
considering two or more semivariograms or cross-semivariograms [6, 23] should be
modeled further. Anisotropy ratios can be introduced to model the trade-off among
the secondary parameters in spatio-temporal domain. Figures5.8 and 5.9 show the
change in semantic LULC information with respect to three secondary parameters
in spatial and temporal domain respectively.

After modeling these semivariograms, the separable spatio-temporal SemK is car-
ried out further. The traditional spatio-temporal semivariance matrix ([CST ]i j [N×N ])
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Fig. 5.8 Spatio-semantic cross-semivariogram (Parameter: LST, NDVI, MSI) [3]

Fig. 5.9 Temporal-semantic cross-semivariogram (Parameter: LST, NDVI, MSI) [3]

(considering the interpolating points) and the distance matrix ([DST ]0i [N×1]) (con-
sidering the interpolating and the prediction points) are undated with the semantic
measures, which results in [C]ST−RevSemK and [D]ST−RevSemK respectively for the
prediction of LULC. The individual element of these two matrices, CST−RevSemK

i j in

[C]ST−RevSemK K andDST−RevSemK
0i in [D]ST−RevSemK aremodified as:CST−RevSemK

i j =
Δ fi j and DST−RevSemK

0i = Δ f0i , whereΔ f pq denotes the amount of change in LULC,
calculated from the semivariograms. Hence, The weight vector produced by ST-
RevSemK framework is given as follows:

WST−RevSemK =
[ [CST ]i j− · − · −(

[SIST ]i j◦[SS]i j
)
]−1[[ [DST ]0i− · − · −(

[SIST ]0i◦[SS]0i
)
]

− λST−RevSemK1
]

(5.10)

where λST−RevSemK is the spatio-temporal Lagrange multiplier of ST-RevSemK for
the prediction of LULC.
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5.4 Empirical Proof for ST-RevSemK

For the empirical validation of the ST-RevSemK approach, an experiment is per-
formed with meteorological data in two RoIs Kolkata, WB, India and Dallas, TX,
USA. For the case study, the same zones, as considered in Figs. 3.3 and 3.4 in Chap.3,
are chosen here. The NDVI, LST andMSI time-series data are derived from the raw
satellite imagery. The supervised classification is performedwith the satellite imagery
to get the LULC information of theRoIs. Six LULC classes are considered to perform
this classification, which are given as follows: settlements, river/deep waterbodies,
waterlogged areas, moist land, agriculture and unclassified. Different signature sets
have been used for different time instances. In this analysis, past eleven years data
of meteorological and terrestrial parameters, for the duration 2005–2015, are used.
Here, past ten years data (duration 2005–2014) are considered to plot the semivar-
iograms, to forecast the LULC distribution in 2015. For the accuracy analysis of
ST-RevSemK, the data (LULC) of the year 2015 is assumed to be missing.

The following constraints can be stated as the experimental specifications of this
study. A one kilometer (1km) radius is considered against each prediction point
for the selection of interpolating points. In this study, twenty interpolating points
has been randomly selected from different past and present time instances within
this radius for each prediction point. The experimental semantic semivariograms are
modeled by taking approximately 500 sample points within lag distance h = 5km and
temporal lag t = 10years with 1year interval. The result is specified for five selected
zones from Kolkata, WB, India and Dallas, TX, USA. Four types of external drifts
have been reported, such as: three individual secondary parameters LST, NDVI and
MSI and all of them altogether. Here, the error in prediction/forecasting cannot be
measured by the error metrics as specified in earlier chapters. The meteorological
parameters are continuous variable. However, the prediction of LULC class of a
pixel is either correct or incorrect. Hence, for each of the zones, binary error metric
is evaluated such that %Error = (total number of incorrectly predicted pixels/total
number of pixels) of that zone. The %Error of each of the zones of both the spatial
regions are depicted in Fig. 5.10 and Fig. 5.11 respectively. It is observed from the
results that ST-RevSemK approach performs better when the external drift of multiple
correlated meteorological parameters are considered, compared to the drift with
single parameter.

5.4.1 Discussions on Empirical Proof

Themapping imageryof forecastedLULC distributionof ten spatial zones ofKolkata,
WB, India andDallas, TX,USAarepresented inTables5.3 and5.4. In these tables, the
actual LULC imagery are shown for different zones and the corresponding predicted
imagery are also reported. The predicted imagery are constructed by ST-RevSemK
approach, using four type of drifts such as the bivariate drift of LST, NDVI,MSI and
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Fig. 5.10 Comparison study with error graph for ST-RevSemK (Region: Kolkata, WB, India)

Fig. 5.11 Comparison study with error graph for ST-RevSemK (Region: Dallas, TX, USA)

the multivariate drift considering all the parameters altogether. The same symbology,
as mentioned in Chap. 1, has been considered for all the imagery. For better pictorial
representations, each of the imagery is presentedwith stretched symbology. The error
surfaces are also reported in binary scale, where the black pixel represents wrongly
predicted pixels and white pixels are the ones which are correctly predicted.

The Figs. 5.10, 5.11 andTables5.3, 5.4 advocate that the ST-RevSemK considering
moremeteorological parameters as secondary information, generates better mapping
images and reports lesser amount of error compared to single parameter drift (≈6–
13% higher for Kolkata, WB, India and ≈4–12% higher for Dallas, TX, USA). This
actually matches with our F-test results for both the regions, where evaluated F
statistic declare that the drift of all the secondary parameters together can predict the
future LULC distribution most accurately. Among the single parameters drifts, it is
also observed that the performance of individual parameter is almost similar.
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Table 5.3 Comparison study for ST-RevSemK (Region: Kolkata, WB, India)
Zone Actual image Predicted image

using LST using NDVI using MSI using LST,
NDVI, MSI

BB: [(88◦21′56.75′′E 22◦53′3.338′′N); (88◦26′11.684′′E 22◦56′20.576′′N)]

Zo
ne

1

Error surfaces
(In binary

scale)

%Error=29% %Error=31% %Error=32% %Error=22%

BB: [(88◦16′37.345′′E 22◦43′16.086′′N); (88◦20′51.518′′E 22◦46′33.581′′N)]

Zo
ne

2

Error surfaces
(In binary

scale)

%Error=33% %Error=33% %Error=33% %Error=24%

BB: [(88◦21′3.362′′E 22◦34′43.896′′N); (88◦25′17.437′′E 22◦38′1.121′′N)]

Zo
ne

3

Error surfaces
(In binary

scale)

%Error=30% %Error=30% %Error=31% %Error=25%

BB: [(88◦10′24.797′′E 22◦29′45.122′′N); (88◦14′38.046′′E 22◦33′3.055′′N)]

Zo
ne

4

Error surfaces
(In binary

scale)

%Error=16% %Error=18% %Error=21% %Error=8%

BB: [(88◦24′21.572′′E 22◦24′41.309′′N); (88◦28′35.399′′E 22◦27′58.463′′N)]

Zo
ne

5

Error surfaces
(In binary

scale)

%Error=50% %Error=50% %Error=50% %Error=41%
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Table 5.4 Comparison study for ST-RevSemK (Region: Dallas, TX, USA)
Zone Actual image Predicted image

using LST using NDVI using MSI using LST,
NDVI, MSI

BB: [(96◦48′52.626′′W 32◦53′19.252′′N); (96◦46′4.031′′W 32◦55′15.003′′N)]

Zo
ne

1

Error surfaces
(In binary

scale)

%Error=35% %Error=35% %Error=36% %Error=28%

BB: [(96◦52′26.827′′W 32◦49′41.121′′N); (96◦49′38.61′′W 32◦51′36.489′′N)]

Zo
ne

2

Error surfaces
(In binary

scale)

%Error=12% %Error=16% %Error=18% %Error=6%

BB: [(96◦44′48.861′′W 32◦47′22.359′′N); (96◦42′0.958′′W 32◦49′17.557′′N)]

Zo
ne

3

Error surfaces
(In binary

scale)

%Error=23% %Error=23% %Error=24% %Error=18%

BB: [(96◦50′50.616′′W 32◦44′1.516′′N); (96◦48′2.552′′W 32◦45′56.856′′N)]

Zo
ne

4

Error surfaces
(In binary

scale)

%Error=26% %Error=28% %Error=28% %Error=21%

BB: [(96◦44′27.666′′W 32◦42′20.309′′N); (96◦41′39.631′′W 32◦44′15.74′′N)]

Zo
ne

5

Error surfaces
(In binary

scale)

%Error=18% %Error=18% %Error=19% %Error=14%
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5.5 Further Discussions

Urban and city planning have attracted significant research interest in the area of
climatological and geospatial analysis for last few decades. It primarily focuses on
the prediction and forecasting of distribution pattern of LULC in the terrain. Hence,
estimating the future distribution of LULC with high degree of accuracy is a major
research challenge. This work attempts to forecast the LULC distribution pattern
in future considering different correlated meteorological parameters. The proposed
framework (ST-RevSemK) learns and models the historic pattern of three meteoro-
logical parameters, LST, NDVI, and MSI. By evaluating the semantic dependencies
among the LULC and different correlated parameters, the future trend of LULC is
predicted. The ST-RevSemK follows the notion of spatio-temporal semantic kriging
and is a multivariate extension of it. The empirical experimentation with meteoro-
logical data proves the efficacy of the proposed ST-RevSemK method and advocates
the fact that the modeling of more auxiliary meteorological parameter enhance the
estimation accuracy of future LULC pattern.

A major challenge for a multivariate analysis is to efficiently select the corre-
lated parameters from the pool of available ones, which may enhance the accuracy
of prediction. The evaluation of causal dependencies among the spatio-temporal
time-series data is important for any spatial analysis. Similarly, in ST-RevSemK, the
forecasting of the terrestrial parameter LULC is modeled by inferring the causal
dependencies between LULC with the influential meteorological parameters. This
work has considered a preprocessing framework of CTF to check and identify the
secondary parameters that influences the primary parameter significantly and rank
them according to their influence quotient. To evaluate the influence of the auxiliary
parameters in ST-RevSemK approach, a hierarchical GC test is performed on the
secondary parameters individually or in a group. It is observed from the results that
the group considering all the secondary parameters together is the most influential
one for the forecasting of LULC, which is further proved by the empirical analysis
as well. The contributions of ST-RevSemK framework is stated as follows:

• utilizing the SemK interpolation method and its variants for an application, i.e.,
the spatio-temporal prediction/forecasting of LULC distribution of the terrain for
urban landscape modeling.

• extending the separable spatio-temporal SemK approach in multivariate scenario
for LULC prediction.

• finding the causal linkages among the groups of meteorological and terrestrial
parameters to choose the most influential one to achieve enhanced accuracy.

• experimentation with meteorological and terrestrial data proves that proper identi-
fication and utilization of meteorological data can enhance the prediction accuracy
of future LULC pattern.

• this application has a direct implication urban and city planning, prediction of
urban heat island, etc.

Though the separable spatio-temporal SemK approach is considered for extending
it to ST-RevSemK approach, however, the non-separable one also could have been
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used for the same. In this chapter, the basic concept of SemK and spatio-temporal
SemK have been considered for an application, i.e., the change pattern analysis of
LULC distribution. Being this framework a spatio-temporal multivariate interpola-
tion technique, any other forecasting application also could have been tested. For the
considered application, the meteorological and terrestrial factors should be influen-
tial to that application and together must influence the prediction parameter. Though
the basic structure of the spatial and spatio-temporal base methods will remain same,
some other modifications in the ST-RevSemK approach are obvious for other appli-
cations.
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Chapter 6
Summary and Future Research

Abstract This monograph focuses on the prediction and forecasting of themeteoro-
logical parameters that are related to the earth surface. These parameters are mainly
derived from the raster satellite imagery, and generally contain missing and erro-
neous pixels, line gaps, and cloud covers. These issues are considered as the major
hindrances to generate complete raster surface for these parameters. In this situa-
tion, the spatial interpolation methods are reported to be the most efficient choice
in many literature. This monograph attempts to incorporate the LULC-based con-
textual knowledge of the terrain for the interpolation process of the meteorological
parameters.

This monograph focuses on the prediction and forecasting of the meteorological
parameters that are related to the earth surface. These parameters are mainly derived
from the raster satellite imagery, and generally contains missing and erroneous pix-
els, line gaps, cloud covers. These issues are considered as the major hindrances to
generate complete raster surface for these parameters. In this situation, the spatial
interpolation methods are reported to be the most efficient choice in many literature.
The kriging-based geostatistical interpolation methods can handle the spatial prop-
erties of the terrain most efficiently. Spatial autocorrelation is one such property,
which can be defined as the dependency that exists among the sampled locations
with respect to a parameter. The kriging-based interpolation methods are the most
effective choice tomodel complete autocorrelationmodel for the prediction of spatial
parameters.

It is also observed that, these geostatistical interpolation methods model spa-
tial autocorrelation in terms of Euclidean distances between sampled locations, by
following Tobler’s law of spatial proximity. However, for the meteorological param-
eters, that are nearby to the earth surface (e.g., LST, NDVI, MSI, etc.), the domain
knowledge of the terrain (e.g., land-use/land-cover LULC distribution) plays a cru-
cial role for land–atmospheric interaction modeling, hence for the parameters as
well. As existing interpolation methods fail to integrate this knowledge into the
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prediction process, it leads the methods to be unrealistic for real-life applications.
This monograph attempts to address this issue for the interpolation process of the
meteorological parameters. It assumes this contextual knowledge of the terrain to
be modeled as the “semantic" property of the sampled locations. Hence, the main
objectives of this study are to quantify the contextual LULC knowledge of the earth
surface with some proposed metrics, and then combining the traditional kriging (as
it is the most popular, pragmatic, efficient, and widely used technique) based inter-
polation process with this semantic knowledge. Hence, addressing these objectives
would extend the present state of the art of spatial interpolation process (which cap-
ture numeric input and yield numeric output) to higher dimension (which can capture
numeric as well as contextual input and yield numeric output). Theoretical, empirical
efficacy analyses are also the major contributions of this monograph, which estab-
lishes the usefulness of the proposed scheme for the meteorological parameters’
prediction.

A new spatial interpolationmethod, namely semantic kriging (SemK) is proposed,
which extends ordinary kriging with the contextual LULC knowledge of the terrain
for the prediction of land surface temperature. Further, some variants of the basic
SemK method are also proposed, which can be regarded as the enhancement of
SemK for some advanced geospatial applications such as spatio-temporal prediction,
forecasting, multivariate analysis, etc. The following section presents the detailed
contributions of SemK and its variants.

6.1 Summary

The primary goal of this monograph is to propose a more pragmatic interpolation
method for the meteorological parameters. Assuming the influencing auxiliary infor-
mation or covariates to be useful to enhance the prediction accuracy, it has been
investigated that the LULC distribution of the sampled locations are significant for
different parameters. For incorporating this knowledge into the prediction process,
the semantic kriging and its variants are proposed for different categories of predic-
tion. The primary contributions of each of the variants are specified in the following
subsections.

Spatial Semantic Kriging

It is the base framework for spatial interpolation. That is, to carry out the prediction
at a certain location, the sampled interpolating points are considered from the same
time instance. An ontology-based semantic hierarchy organizes the semantic LULC
knowledge for further quantification. The two proposed metrics processes this hier-
archy and measures the semantic distance between sampled locations. It is further
blendedwith traditional interpolation (ordinary kriging) process to achieve enhanced
accuracy. Hence, the broad contributions of spatial SemK can be listed as follows:

• presenting a novel generic framework to quantify contextual semantic knowledge
with ontology hierarchy.
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• providing semantic metrics by analysis of the semantic hierarchy and extending
the traditional process with these metrics.

• proposing 3D spatio-semantic semivariogram model (to model spatial autocorre-
lation) by extending traditional 2D semivariogram with semantic knowledge.

• presenting a Euclidean vector analysis based approach to theoretically compare
the proposed and existing interpolation techniques.

Fuzzy Bayesian Semantic Kriging

This approach is a probabilistic variant of basic SemK process as SemK’s correlation
analysis process between each pair of LULC classes can be improved further by
considering the mutual effect of other nearby LULC classes. For this purpose, a
fuzzy Bayesian network based approach is adopted which gives a graphical model to
analyze the causal dependency among the LULC classes. By processing this directed
acyclic graph, the effect of other classes on a particular LULC can be inferred. Then,
the actual correlation analysis is carried out with the influenced values (by other
LULCs) of the sampled locations. The overall contributions of this extension can be
stated as follows:

• dependency analysis between each pair of LULC classes and proposing a directed
acyclic graph for this dependency.

• applying fuzzy Bayesian network based approach on the LULC classes to evaluate
a-posterior correlation between each pair.

• incorporating this probabilistic correlation analysis into SemK process to enhance
the prediction accuracy of SemK.

• presenting empirical evaluations for the comparison with other methods and SemK
to check whether this added computation is actually beneficial.

Spatio-Temporal Reverse Semantic Kriging

It is a multivariate extension of separable spatio-temporal SemK approach to apply
the proposed SemK (or its variants) for a forecasting application. For this purpose,
the forecasting of LULC distribution of a terrain is considered in this study, which
has direct impact on urbanization, city planning, and other socioeconomic activities.
Themeteorological data ofmultiple parameters have been considered as the auxiliary
information for this multivariate model. A causality testing component is proposed
to investigate whether a parameter is causal to the LULC (primary parameter) dis-
tribution of the terrain, else pruning it for further analysis. The empirical analysis
is carried out with different combinations of parameters’ drift. Therefore, the major
contributions of this variant of the proposed work are given as follows:

• extending the notion of univariate separable spatio-temporal SemK method in
multivariate approach for the forecasting of LULC distribution of the terrain.

• proposing a causality testing module to identify the meteorological parameters
that are actually causal to the LULC distribution of the terrain from a group of
parameters.

• modeling 3D spatio-semantic and temporal-semantic semivariogram models for
different combinations of parameters drift.
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Fig. 6.1 Semantic kriging and its variants [1]

• identifying the best combination of the parameters (from the causality testing
module and also from the empirical analysis) that are most causal to the LULC
and forecast LULC distribution most accurately.

Therefore, the interrelationships among the semantic krigingmethod and its vari-
ants are depicted through Fig. 6.1 [1]. The input and output specifications of each of
the components are also presented in the figure. The hallow arrow ( ) represents
the type of extension from the base component to the extended component.

6.2 Future Research

Some of the research challenges which may be taken up as the future extensions of
this work are as follows:

• verification of SemK and its variants with other LULC datasets (such as NLCD:
National Land Cover Data from USGS), different LULC ontologies, other sample
techniques than uniformly random sampling (such as area weighted sampling,
stratified sampling, etc.), to check its effect on the prediction accuracy.

• parallelization of SemK and making it scalable to be applied for large volumes of
raster datasets.
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• the theoretical performance evaluations have been carried out for the base method,
i.e., spatial semantic kriging. It has explored the cases such as the conditions in
which SemK would perform better than other existing methods, impact of the
granularity of the ontology hierarchy for the prediction accuracy, ability of SemK
to accurately capture and incorporate the semantic knowledge into the interpola-
tion process, etc. However, the same theoretical performance evaluations can be
more extensively carried out for all its variants also. Therefore, this theoretical
analysis for FB-SemK and ST-RevSemK can be considered as the future work of
this monograph.

• an extensive empirical analysis can be carried out to choose the fuzzy membership
function that is considered for the FB-SemK method. For the present approach,
we have relied upon domain experts’ knowledge to fuzzify the meteorological
parameters. However, depending on the empirical dataset, a data preprocessing
can be carried out to check which is the best suitable fuzzy membership function
that reports highest accuracy for FB-SemK- based interpolation.

• the non-separable spatio-temporal SemK approach can also be extended further in
multivariate model to model ST-RevSemK.

• the proposed SemK framework its other variants can be deployed to predict and
forecast some hazardous climatic events such as drought, urban heat island, etc.
by incorporating other semantic knowledge in its land–atmospheric interaction
modeling.
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