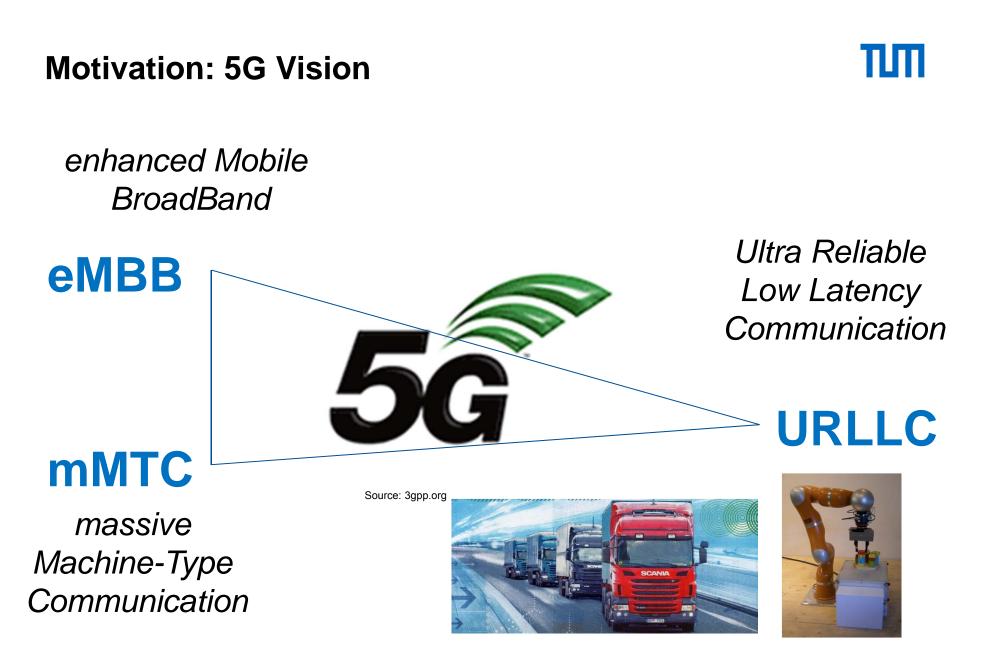


Joint Optimization of Control and Networking in Wireless Cyber Physical Systems

ECC, Naples, Italy June 25, 2019

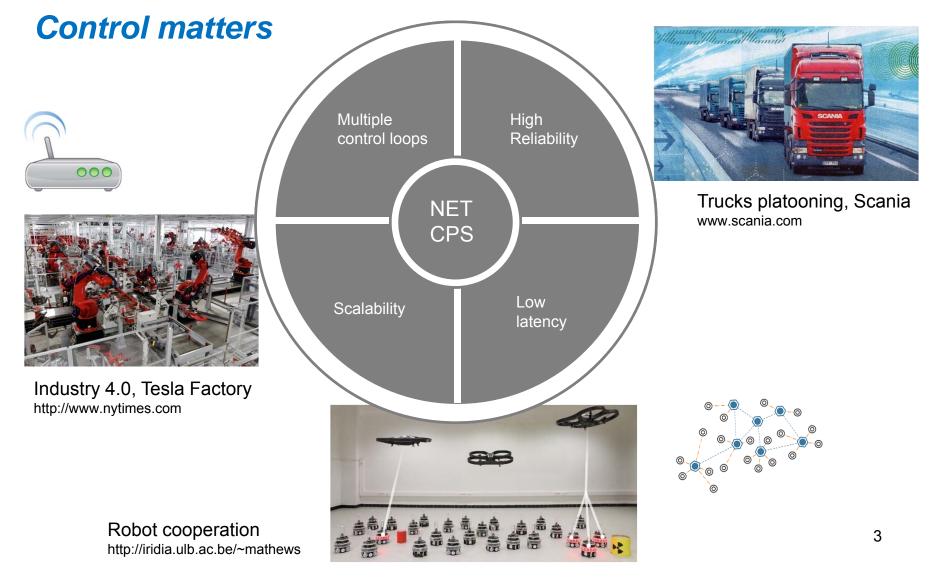
Wolfgang Kellerer


based on joint work with Sandra Hirche (ITR) Onur Ayan (LKN) Markus Klügel (LKN) Vahid Mamduhi (ITR/KTH) Touraj Soleymani (ITR) Mikhail Vilgelm (LKN) Samuele Zoppi (LKN)

DFG SPP 1914 project "Optimal Co-Design of Wireless Resource Management and Multi-loop Networked Control"

Uhrenturm der TVM

This work is supported by the DFG Priority Programme 1914 Cyber-Physical Networking grant number KE1863/5-1

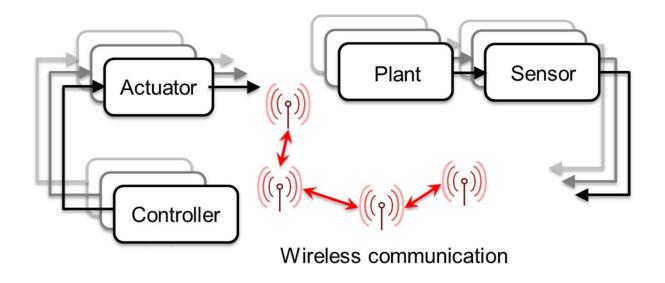


It is mostly machines that communicate over networks

Motivation: Control

■ Networked Machines → Networked Cyber Physical Systems (NET CPS)

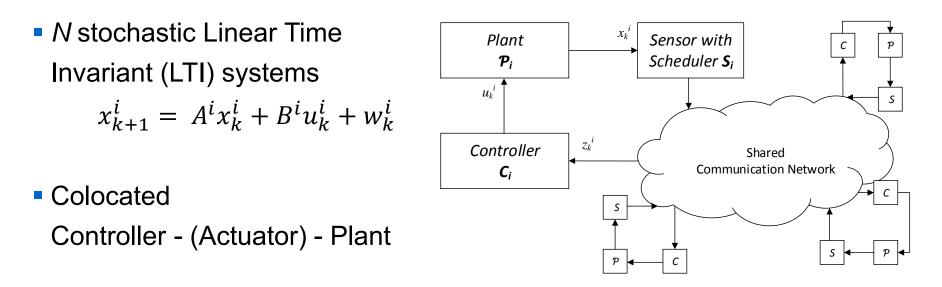
Motivation: Cyber Physical Networking


- Key challenge in design and analysis of cyber-physical systems:
 Control over shared communication networks
 - quality of control may be degraded due to the congestion while accessing the scarce communication resources

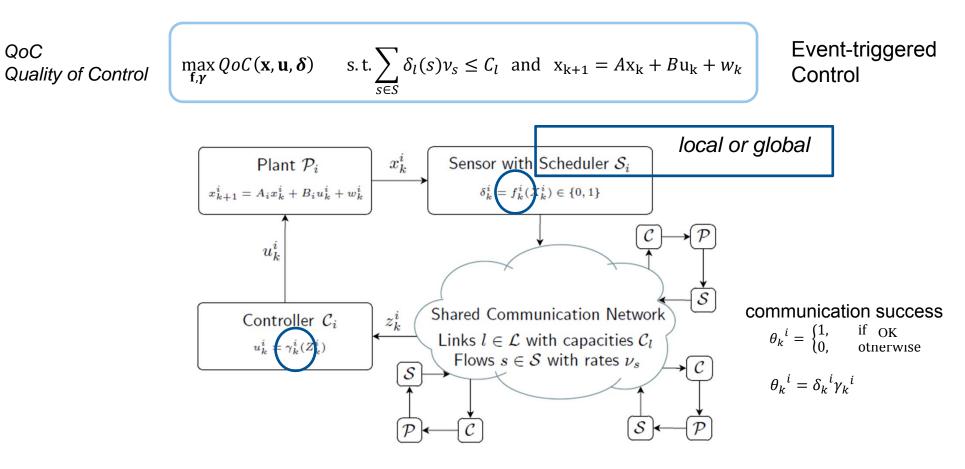
- Cyber Physical Networking: joint consideration of control and networking concepts to improve the system performance
- possibly involving
 - all network layers (cross-layer design,...)
 - all communicating nodes between devices (edge computing,...)
 - multiple control loops with different control strategies

Focus of this talk

- Support of control over shared wireless communication networks
- Focus on
 - -Communication: Medium Access Control (MAC)
 - Control: multi-loop networked control system (NCS), all control loops share a communication network


Outline

- System model: Networked Control System
- Selected use cases and results
 - Decentralized wireless MAC & Control: Adaptive Random Access
 - Scheduled wireless access & Control: Age of Information vs. Value of Information
- NCS experience for everybody: Intro to NCS benchmark platform


- Plant state is sensed remotely, e.g., camera
- Shared network: blocking / collisions / packet errors

$$\theta_k^{\ i} = \begin{cases} 1, & \text{if OK} \\ 0, & \text{otherwise} \end{cases}$$

Generalized optimization problem:

• with control and scheduling/link access policies as optimization problem variables

Dead-beat control law

(linear discrete-time control: feedback \rightarrow stable state)

 $u_k^i = -L_i \mathbb{E}[x_k^i | Z_k^i],$

with $Z_k^i = \{z_o^i, \dots z_k^i\}$ and L_i - arbitrary stabilizing feedback gain

• Model-based estimation (if $\theta_k^i = 0$ *i.e. communication failed*): $E[x_k^i | Z_k^i] = (A_i - B_i L_i) E[x_{k-1}^i | Z_{k-1}^i]$

• Network Induced Error (~estimation error) [MTH15] $e_{k+1}^{i} = (1 - \theta_{k}^{i})A_{i}e_{k}^{i} + w_{k}^{i}$

Network Induced Error (~estimation error) [MTH15]

$$e_{k+1}^i = \left(1 - \theta_k^i\right) A_i e_k^i + w_k^i$$

→ Separation of Control and Communication problems

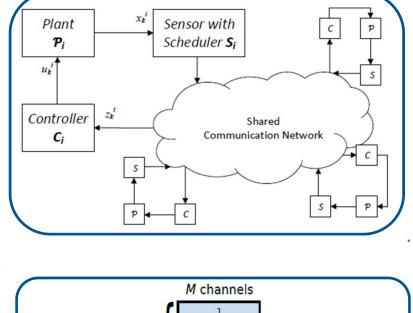
Two application examples:

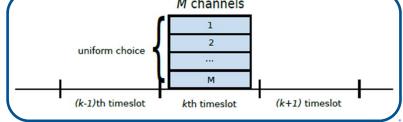
(1) Decentralized wireless MAC & Control

(2) <u>Scheduled</u> wireless access & Control (up-/downlink scheduling)
 → Aol and Vol based scheduling

Decentralized wireless MAC & Control: Adaptive Random Access

Vilgelm M, Mamduhi MH, Kellerer W, Hirche S. Adaptive Decentralized MAC for Event-Triggered Networked Control Systems, ACM HSCC, 2016


Adaptive Random Access: Scenario



- Adaptive decentralized MAC for Event-Triggered NCS
- LTI control loop

$$x_{k+1}^i = A_i x_k^i + B_i u_k^i + w_k^i,$$

- State dynamics \rightarrow estimation error dynamics
 - $e_{k+1}^{i} = (1 \theta_{k}^{i})A_{i}e_{k}^{i} + w_{k}^{i}.$
- Local scheduler: event-based with threshold Λ_i
- Decentralized medium access with M_k channels
 - timeslot == control period
 - uniform choice of the channels
 - collision occurs if the same channel is chosen
 - channel feedback: *collision (1,0), M_k*

Vilgelm M, Mamduhi MH, Kellerer W, Hirche S. Adaptive Decentralized MAC for Event-Triggered Networked Control Systems, ACM HSCC, 2016

Adaptive Random Access: Treshold-based Trigger

Event-triggered NCS and Multichannel Slotted ALOHA

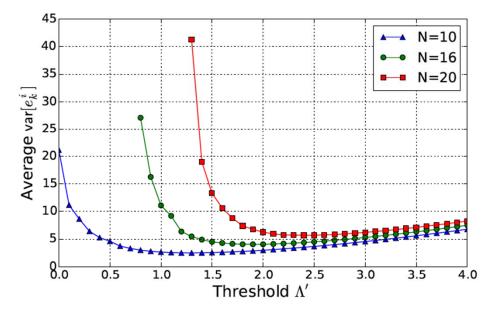
- Communication delay \approx connection establishment delay
- Threshold-based event triggering:

$$P[\delta_k^i = 1 | e_k^i] = \begin{cases} 0, & \text{if } || e_k^i || \le \Lambda_i \\ 1, & \text{otherwise} \end{cases}$$

with δ_k^i (local) scheduling variable.

• Successful reception: $\theta_k^i = \delta_k^i \gamma_k^i$ with

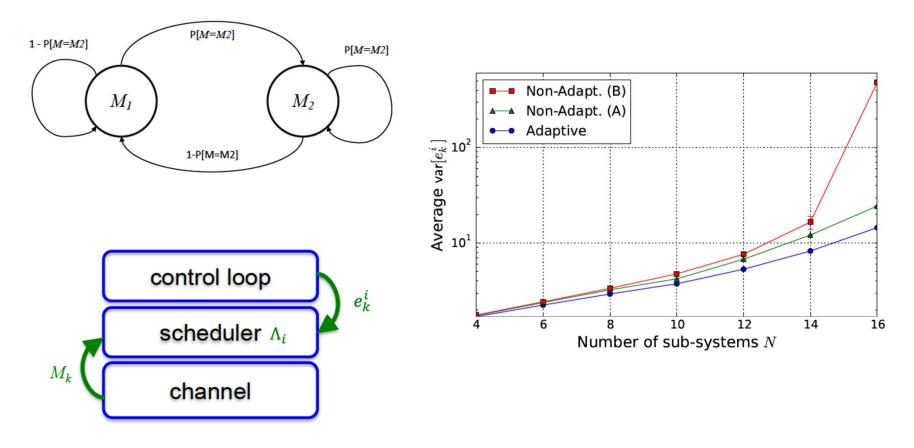
$$\mathbf{P}[\gamma_k^i = 1 | \delta_k^i = 1] = \left(\frac{M_k - 1}{M_k}\right)^{g_k}$$


M. Vilgelm, M. H. Mamduhi, W. Kellerer, S. Hirche, "Adaptive Decentralized MAC for Event-Triggered NCS," ACM HSCC, 2016

Adaptive Random Access: Eval. of Threshold

- Performance Evaluation: Threshold
- Network and control performance are *coupled via the threshold*
- If the threshold is set too low, performance degrades drastic due to *collision*
- If the threshold is set too high, performance degrades slowly due to *underutilized network*
- Always exists a threshold (global), for which control and network performance are optimal

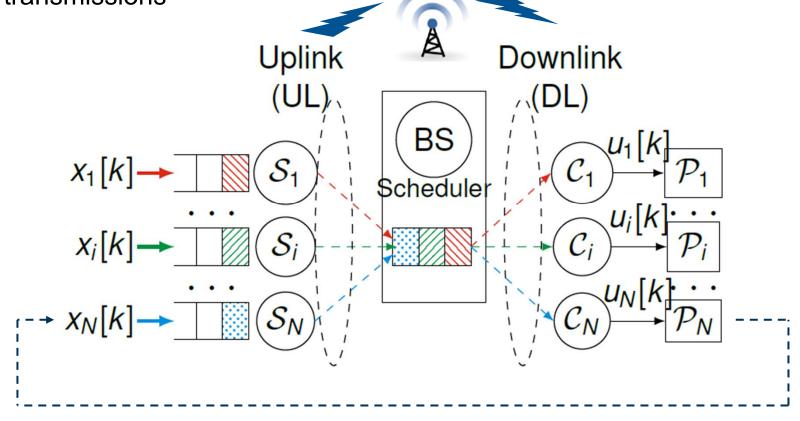
 \rightarrow to optimally use the network, adaptive scheduling policy is required



Adaptive Random Access: Adaptation

Adapting to varying number of channels – network state

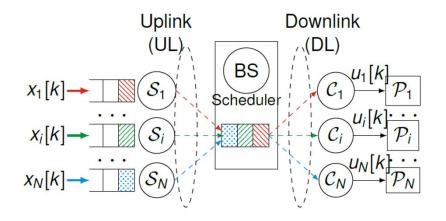
M. Vilgelm, M. H. Mamduhi, W. Kellerer, S. Hirche, "Adaptive Decentralized MAC for Event-Triggered NCS," ACM HSCC, 2016


Scheduled wireless access and control: Age of Information vs. Value of Information

O. Ayan , M. Vilgelm, M. Klügel, S. Hirche, W. Kellerer, "Age-of-Information vs. Value-of-Information Scheduling for Cellular Networked Control Systems", ACM/IEEE International Conference on Cyber-Physical Systems, Montreal, Canada, April 16 - 18, 2019.

Scheduled wireless access: Scenario

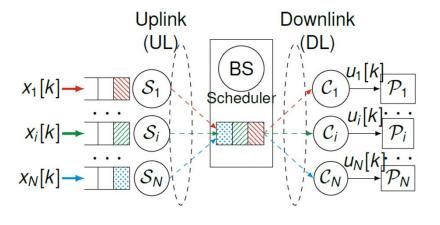
- N stochastic LTI control loops share the same network (event-triggered)
- Centralized scheduler in Base Station (BS) determines UL and DL transmissions



Plant N is observed by Sensor N

Scheduled wireless access: Scenario

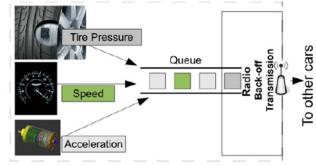
- *N* stochastic LTI control loops share the same network
- Each sub-system consists of sensor S_i, controller C_i and plant P_i

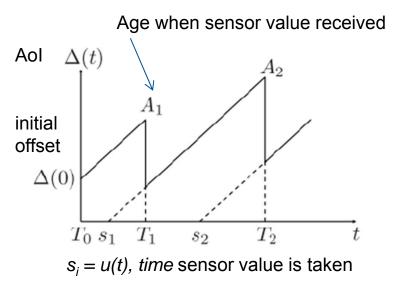

- Observed plant state $x_i[k_i]$ at time-step k_i is transmitted towards C_i
 - First on uplink (UL) from S_i to base station (BS)
 - Then on downlink (DL) from BS to C_i
- Only the latest generated measurement is stored in the packet queue
- Centralized scheduler determines UL and DL transmissions

How to distribute (schedule) the UL and DL resources among the sub-systems (control loops)?

Challenge: two-hop communication system

- Central scheduler has to consider the importance of a sensor value to decide for scheduling considering both hops
- Possible "importance" metrics:
 - Delay → Age of Information (Aol)
 - Meaning of content of sensor value \rightarrow Value of Information (Vol)
- We compare both in this example: Age-of-Information vs. Value-of-Information Scheduling for Cellular Networked Control Systems

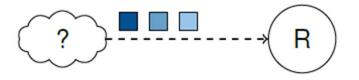

Age of Information (AoI)

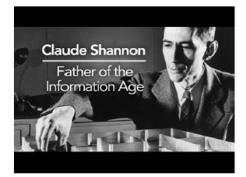


- a recently proposed performance metric that measures information
 freshness at the destination node
- proposed in 2011 by S. Kaul and R. Yates for vehicular networks [1,2]
 - [1]: "Average end-to-end (application-to-application) delay observed in any vehicle's state"
 - [3]: "Time since last update was received"
- Age of Information $\Delta(t)$:

 $\Delta(t) = t - u(t)$

- *t*: current time
- *u(t)*: time-stamp of the most recent update





[1] Kaul, et al. Minimizing age of information in vehicular networks. 8th IEEE Conference on Sensor, Mesh and Ad Hoc Communications and Networks, 2011.
 [2] Kaul, Yates, Gruteser, Real-time status: How often should one update? IEEE INFOCOM, 2012.
 [3] Talak et al. Minimizing age-of-information in multi-hop wireless networks. 55th Annual Allerton Conference on Communication, Control, and Computing, 2017.

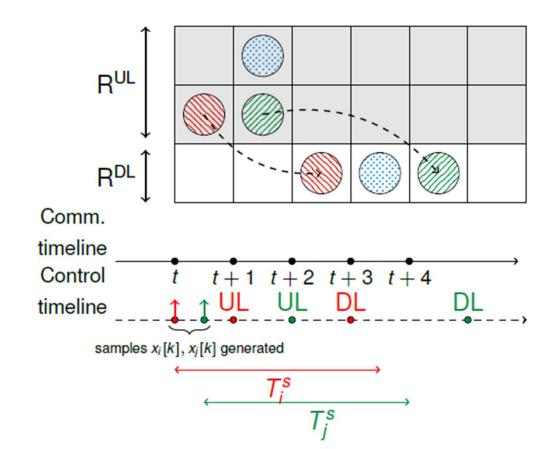
Value of Information (Vol)

- deals with the **content** of a new update independently of its timeliness
- Vol stems from information theory (Shannon)
- The amount of reduction in the uncertainty of a stochastic process at the recipient

Not of the Age-of-Information!

Value-of-Information

deals with the **content** of a new update independently of its timeliness


Age-of-Information

deals with the **freshness** of a new update independently of its content

Network Model

R^{UL}: Number of UL resources (per slot)

R^{DL}: Number of DL resources (per slot)

T_i^s: Sampling period of the *i*-th sub-system

Control Model (1)

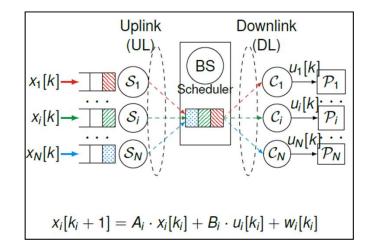
Stochastic LTI control systems:

$$x_i[k_i+1] = A_i \cdot x_i[k_i] + B_i \cdot u_i[k_i] + w_i[k_i]$$

with $x_i[0] = w_i[0]$ and $w_i \sim \mathcal{N}(0, W_i)$.

- Periodic sampling with sampling period T_i^s slots with initial sampling $T_i^o \sim U(0, T_i^s)$
- Stairwise system evolution:

$$k_i(t) = \left\lfloor \frac{t - T_i^o}{T_i^s} \right\rfloor$$


• Sampling events at slots $\{k \cdot T_i^s + T_i^o\}, k \in \mathbb{N} \Rightarrow TX$ -Buffer update at sensor S_i

ТШ

Control Model (2)

• Packet reception indicator variable $\delta_i[k_i] \in \{0, 1\}$:

$$z_i[k_i] = \begin{cases} x_i[k_i] & \text{, if } \delta_i[k_i] = 1 \\ \emptyset & \text{, if } \delta_i[k_i] = 0. \end{cases}$$

• Information set $\mathcal{I}_i[k_i]$ available at \mathcal{C}_i :

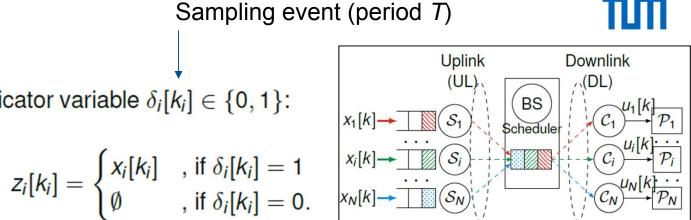
$$\mathcal{I}_i[k_i] = \{k_i, z_i[0], \ldots, z_i[k_i], u_i[0], \ldots, u_i[k_i - 1]\}$$

• State estimation at C_i :

$$\hat{x}_i[k_i] = \mathbb{E}\left[x_i[k_i] \mid \mathcal{I}_i[k_i]\right]$$

Age-of-Information $\Delta_i(k_i) = k_i - s_i[k_i]$

• Control input:


$$u_i[k_i] = -L_i \hat{x}_i[k_i]$$

state feedback gain matrix L_i

Control Model

Sampling event (period T)

 $X_1[k]$

 $x_i[k_i+1] = A_i \cdot x_i[k_i] + B_i \cdot u_i[k_i] + w_i[k_i]$

• Information set $\mathcal{I}_i[k_i]$ available at \mathcal{C}_i :

• Packet reception indicator variable $\delta_i[k_i] \in \{0, 1\}$:

$$\mathcal{I}_i[k_i] = \{k_i, z_i[0], \ldots, z_i[k_i], u_i[0], \ldots, u_i[k_i - 1]\}$$

• State estimation at C_i:

$$\hat{x}_i[k_i] = \mathbb{E}\left[x_i[k_i] \mid \mathcal{I}_i[k_i]\right]$$

• Control input:

$$u_i[k_i] = -L_i \hat{x}_i[k_i]$$

state feedback gain matrix L_i

Age-of-Information $\Delta_i(k_i) = k_i - s_i[k_i]$ timestamp of current most recent update time

Age of Information and Value of Information

Aol =time difference to sensor value generation time

with $s_i[k_i] = \sup\{s \in \mathbb{N} : s \le k_i, z_i[s] \ne \emptyset\} \Leftrightarrow s_i[k_i]$: Generation time of the most recent received information

Estimation error:

• Age-of-Information:

 $e_{i}[k_{i}] = x_{i}[k_{i}] - \hat{x}_{i}[k_{i}]$

Value-of-Information:

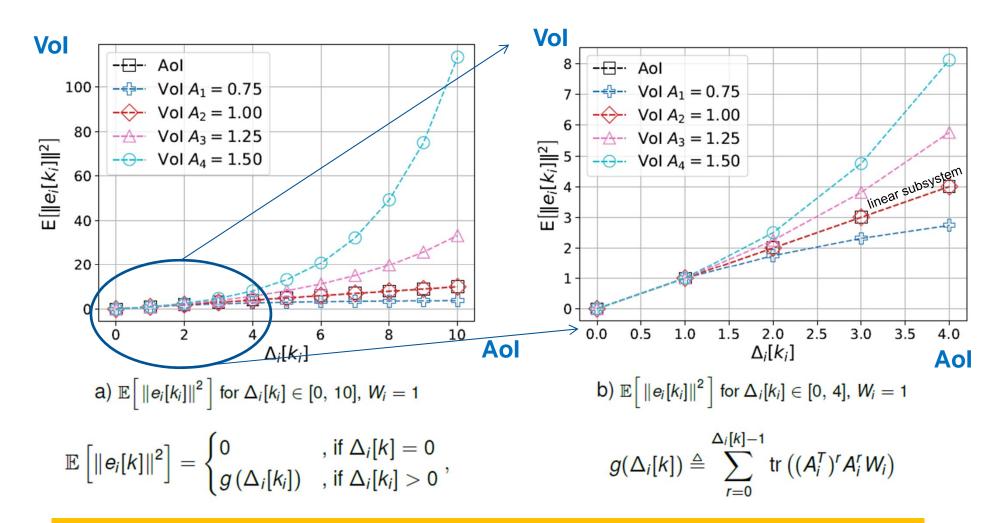
 $\mathbb{E}\left[\left\|e_{i}[k]\right\|^{2}\right] = \begin{cases} 0 & , \text{ if } \Delta_{i}[k] = 0 \\ g\left(\Delta_{i}[k_{i}]\right) & , \text{ if } \Delta_{i}[k_{i}] > 0 \end{cases}, \quad \text{expected value} \\ \text{of squared} \end{cases}$

 $g(\Delta_i[k]) \triangleq \sum_{r=0}^{\Delta_i[k]-1} \operatorname{tr}\left((A_i^T)^r A_i^r W_i\right)$

Vol =estimation error

is a function of Aol

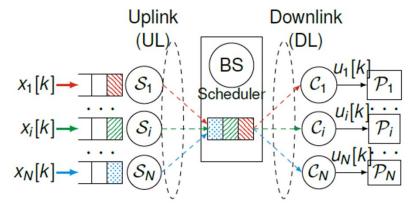
tr(.): Trace operator


with:

$$\Delta_i(k_i) = k_i - s_i[k_i]$$

26

System Dependability of Vol



- Vol depends on plant dynamics (system matrix A)
- A < 1: sub systems tend to stability / A > 1: plant dynamics require control

Value-of-Information on UL / DL

• Reception variable:

$$z_i[k_i] = \begin{cases} x_i[k_i] & \text{, if } \delta_i[k_i] = 1 \\ \emptyset & \text{, if } \delta_i[k_i] = 0. \end{cases}$$

• Information set $\mathcal{I}_i[k_i]$ available at \mathcal{C}_i :

$$\mathcal{I}_i[k_i] = \{k_i, z_i[0], \ldots, z_i[k_i], u_i[0], \ldots, u_i[k_i-1]\}$$

• State estimation at C_i :

$$\hat{X}_i[k_i] = \mathbb{E}\left[X_i[k_i] \mid \mathcal{I}_i[k_i]\right]$$

Assumption 1. The scheduler at the BS observes the content of any packet it receives on the UL.

Assumption 2. The scheduler is aware of system parameters $A_i, W_i, B_i, L_i, T_i^s, T_i^o, \forall i$

- Reception variable $\delta_i^B[k_i] = \{0, 1\}$
- Age-of-Information $\Delta_i^B[k_i]$ available at BS:
- $-\Delta_i^{\mathcal{B}}[k_i] \leq \Delta_i[k_i]$
- Information set $\mathcal{I}_i^B[k_i]$ available at BS:
- $= \mathcal{I}_i^{\mathcal{B}}[k_i] \supseteq \mathcal{I}_i[k_i] \ \forall i, k_i$
- Analogously:

 $e_i^B[k_i] = x_i[k_i] - \hat{x}_i^B[k_i]$ $\hat{x}_i^B[k_i] = f(\Delta_i^B[k_i], \mathcal{I}_i^B[k_i])$ $\mathbb{E}\left[\left\|e_i^B[k_i]\right\|^2\right] = g(\Delta_i^B[k_i])$

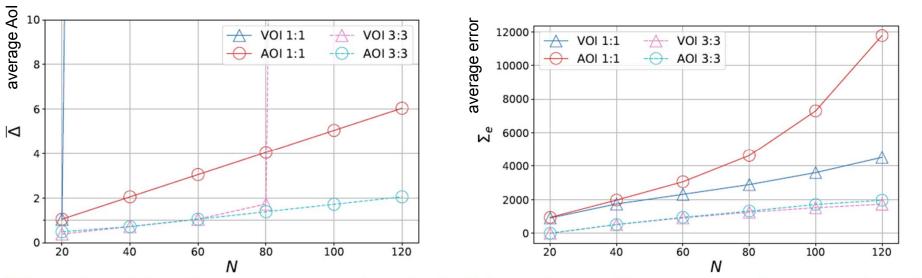
Value-of-Information on UL / DL

• Value of UL packets:

$$\begin{aligned} \boldsymbol{v}_{i}^{\mathsf{UL}}(t) &= \mathbb{E}\left[\left\|\boldsymbol{e}_{i}^{B}[k_{i}] - \boldsymbol{e}_{i}^{S}[k_{i}]\right\|^{2}\right] \\ &= \mathbb{E}\left[\left\|\boldsymbol{e}_{i}^{B}[k_{i}]\right\|^{2}\right] \end{aligned}$$

with $k_i = k_i(t)$ and sensing error $e_i^S[k_i] = 0$.

• Value of DL packets:


$$v_i^{\mathsf{DL}}(t) = \mathbb{E}\left[\left\|\boldsymbol{e}_i[k_i] - \boldsymbol{e}_i^{\mathsf{B}}[k_i]\right\|^2\right]$$
$$= \left\|\hat{x}_i^{\mathsf{B}}[k_i] - \hat{x}_i[k_i]\right\|^2$$

- UL Scheduling:
 - $\max_{\pi^{UL}(t)} \sum_{i=1}^{N} \pi_i^{UL}(t) \cdot v_i^{UL}(t)$ subject to $\sum_{i=1}^{N} \pi_i^{UL}(t) \le \mathbb{R}^{UL},$
- DL scheduling:

$$\begin{array}{ll} \max_{\pi^{\mathsf{DL}}(t)} & \sum_{i=1}^{N} \pi^{\mathsf{DL}}_{i}(t) \cdot v^{\mathsf{DL}}_{i}(t) \\ \text{subject to} & \sum_{i=1}^{N} \pi^{\mathsf{DL}}_{i}(t) \leq \mathsf{R}^{\mathsf{DL}}. \end{array}$$

ТШ

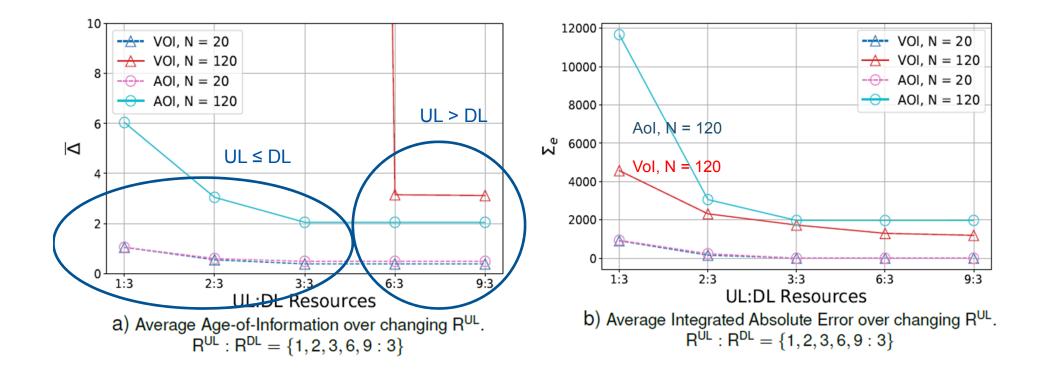
Simulation Results

a) Average Age-of-Information per sub-system over increasing N. b) Average Integrated Absolute Error per sub-system over increasing N. $R^{UL}: R^{DL} = \{1:1, 3:3\}$ $R^{UL}: R^{DL} = \{1:1, 3:3\}$

$$\overline{\Delta} = \frac{1}{N} \frac{1}{T_{\text{sim}}} \sum_{i=1}^{N} \sum_{t=0}^{T_{\text{sim}}-1} \Delta_i(t)$$

 $\Sigma_{e} = rac{1}{N} \sum_{i=1}^{N} \sum_{t=0}^{T_{sim}-1} \|e_{i}[k_{i}(t)]\|$

with simulation run-time Tsim


 $A_{1,2,3,4} = \{0.75, 1.0, 1.25, 1.50\}$

- stable sub-systems (control loops) are less scheduled by VoI-scheduler (→ delay) with scarce resources (increasing N)
- Vol: less improvement expected from sensor values for stable loops

<mark>3</mark>0

Sensitivity to UL/DL Bottleneck Shift

- Uplink (UL) capacity increased => bottleneck shifts from UL to downlink
- Vol-scheduler can better deal with scarce ressources (N=120)
- Vol buffers information that is not urgent (low Vol) (stable loops)

Outline

- System model: Networked Control System
 Including a short primer on control
- Selected use cases and results
- NCS experience for everybody: Intro to NCS benchmark platform

NCS benchmark platform

https://github.com/tum-lkn/NCSbench

NCSbench

- ... a *Benchmarking* Platform that is ...
 - Easy to recreate & affordable
 → Lego Mindstorm EV3

- Easy to reproduce
 - → Public GitHub Repository & Wiki
 - \rightarrow Step-by-step instructions for usage
 - \rightarrow Documentation for extension

Joint work with Jörg Raisch (TU Berlin) and Georg Carle (TUM) and their teams

Conclusion

- M2M Applications \rightarrow Networked Control Systems
- NCS Model → Network Induced Error for Decoupling from Control
- Global Optimization model needs further decomposition
- Threshold-based policy for multi-channel ALOHA
- Network induced error → up-/downlink scheduling problem in a cellular network scenario
- NCSbench to experiment with your favorite
 - Control law
 - Communication network strategy

References

[VMK16] M. Vilgelm, M. H. Mamduhi, W. Kellerer, S. Hirche, *"Adaptive Decentralized MAC for Event-Triggered NCS"*, 19th ACM International Conference on Hybrid Systems: Computation and Control (HSCC), 2016.

[VAZ17] M. Vilgelm, O. Ayan, S. Zoppi, W. Kellerer, "Control-aware Uplink Resource Allocation for Cyber-Physical Systems in Wireless Networks", European Wireless, 2017.

[MTH15] Mamduhi et al., "Decentralized event-based ´ scheduling for shared-resource networked control systems," in Control Conference (ECC), 2015 European. IEEE, 2015, pp. 947–953

[AZV19] Ayan O. et at. "Age-of-Information vs. Value-of-Information Scheduling for Cellular Networked Control Systems", ACM/IEEE International Conference on Cyber-Physical Systems, Montreal, Canada, April 16 - 18, 2019.

[ZAM18] S. Zoppi, O. Ayan, F. Molinari, Z. Music, S. Gallenmüller, G. Carle, W. Kellerer: Reproducible Benchmarking Platform for Networked Control Systems. Technical Report, Technical University of Munich, 2018.

[MMG19] Zenit Music, Fabio Molinari, Sebastian Gallenmüller, Onur Ayan, Samuele Zoppi, Wolfgang Kellerer, Georg Carle, Thomas Seel, Joerg Raisch, "Design of a Networked Controller for a Two-Wheeled Inverted Pendulum Robot", (submitted)

[NCS19] https://github.com/tum-lkn/NCSbench