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Abstract

This dissertation aims to optimize the measurement of velocity with the optical encoder,
and velocity and displacement with the laser self-mixing interferometry (SMI). The main
contributions are as follows: An efficient and tuning-easy fixed gain filter is provided to
obtain the position, velocity, and acceleration in electrical drives by analyzing the shaft
position signal from the optical encoder. With employing the SMI, in an attempt to in-
crease the accuracy of velocity measurement, algorithms including the interpolation of fast
Fourier transform (FFT), maximum likelihood estimation (MLE), and extended Kalman
filter (EKF) are thoroughly investigated and fully detailed. The algorithm for displace-
ment retrieving is improved by proposing a simple and effective method for estimating the
feedback factor C of the interference signal. In addition, the EKF is used for retrieving
displacement under weak feedback regime. It simplifies the process for discarding the
tedious transition detection and the feedback factor C estimation in the general phase
unwrapping method (PUM).

Kurzzusammenfassung

Das Ziel der vorliegenden Dissertation besteht in der Optimierung der
Geschwindigkeitsmessung mit dem optischen Encoder, und der Geschwindigkeit- und
Verschiebungsmessung mit der Laser-Self-Mixing-Technologie. Die wichtigsten Erken-
ntnisse dieser Arbeit sind wie folgt aufgeführt: Es wird ein effizienter und einfach
einzustellender Filter mit fester Verstärkung vorgeschlagen, um die Winkelposition,
Geschwindigkeit und Beschleunigung des elektrischen Antriebs durch die Analyse des
Positionssignals von der Antriebswelle durch einen optischen Encoder zu erhalten. Bei der
Verwendung der Self-Mixing-Interferometrie (SMI) werden die Algorithmen zur Erhöhung
der Genauigkeit in der Geschwindigkeitsmessung gründlich untersucht und ausführlich
dargelegt, einschließlich der Interpolation der schnellen Fourier-Transformation (engl.
fast Fourier transform, FFT), der Maximum-Likelihood-Schätzung (engl. maximum
likelihood estimator, MLE) und der Extended-Kalman-Filterung (EKF). Währenddessen
wird der Algorithmus zur Verschiebungsbestimmung verbessert, indem eine einfache und
zugleich effiziente Methode zur Schätzung des Rückkopplungspegelfaktors C des interfer-
ometrischen Signals vorgeschlagen wird. Zusätzlich wird der EKF für die Bestimmung
der Verschiebung unter einem schwachen Rückkopplungssignal verwendet. Es vereinfacht
den Prozess durch die Verwerfung der Übergangsdetektion sowie die Schätzung des
Rückkopplungsfaktors C durch die allgemeine Phasen-Unwrapping-Methode (PUM).
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Chapter 1

Introduction

This work focuses on the measurement of velocity and displacement using optical tech-
nology, including the optical encoder and the laser SMI. In this chapter, the background,
research focus, motivations, and objectives of this dissertation are introduced. The con-
tributions indexed to each of the following chapters are summarized as well.

1.1 Motivations and objectives

Velocity and position are critical parameters in the electrical drive, for the purpose of
current control on the motor side, and for providing feedback information for superior
regulation of the load on the machine side. Different types of transducers are customarily
used to provide angular displacement and angular velocity information in the digital or
analog form [1]. According to the measurement principle, they can be classified into
four categories: magnetic, capacitive, conductive, and optical. In practice, the optical
incremental encoder is the most popular position sensor in the industrial field due to its
simple detection circuit, high resolution, high accuracy, and relative easy adaptability to
digital control systems. Since the optical encoder only provides position information, it is
necessary to numerically obtain a high-quality velocity signal from the measured angular
displacement [2].

Numerous solutions have been explored and published to estimate the velocity and
acceleration based on the angular displacement obtained by the optical incremental en-
coder. Generally, these solutions are roughly divided into three types: the finite-difference
method (FDM), inverse-time method (ITM), and Kalman filter (KF). The FDM is more
suitable in the high-speed range, and the ITM is better suited in the low-speed range.
Therefore, these two methods can be used in combination, namely, in the high-velocity
region using the FDM, and in the low-velocity region using the ITM. However, it is prob-
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lematic to determine the critical point of these two methods. Moreover, discontinuous
points in the velocity estimation may severely disturb the controller. Another drawback
of this combination method is that its update period is variable. Thus, conventional
methods are difficult to guarantee an accurate estimation of the entire velocity range.
Due to the quantization errors, the acceleration estimates based on these two methods
are much worse. Then, extensive research was conducted on the KF to estimate the
position and speed of electric motors in academics and industry [3–5]. The KF usually
requires a relatively accurate model of the control plant [6, 7] and its parameters (for ex-
ample, the inertia and friction factor). The implementation steps involve complex matrix
calculations and bring a lot of computational burden to the digital controller. The tuning
process that needs knowledge of process noise and measurement noise requires a lot of
professional knowledge and is quite tedious. Motivated by these considerations, a simple
method to solve the above problems will be proposed and discussed.

High-resolution encoders are usually required to precisely control speed and/or position,
especially when control at very low speeds is required. The positioning accuracy and speed
stability of the machine axes greatly determine the quality of the workpiece and product.
This necessitates a position encoder with a large number of measurement steps and high
signal quality. In addition, at low speed, the position error of the encoder within one signal
period affects speed stability. Encoder with higher resolution and accuracy can decisively
improve the speed stability of the motor and significantly reduce the disturbance in the
motor current. However, the increase in the resolution of the optical encoder is related
to the increase in cost. Diffraction-based optical encoders utilize the diffraction and
interference characteristics of high-precision grating disks, enabling designers to improve
system performance while reducing cost and size.

In 2008, P. Drabarek and R. M. Kennel reported some developments in the field of laser
interferometric encoder based on Laser Doppler technology, which are designed to provide
a very high resolution [8]. The interferometric sensors do not rely on the teeth or poles of
the object, but obtain the measurement parameters by interfering with their center wave-
lengths. Therefore, they have inherent high resolution and accuracy. The technical results
obtained through some preliminary studies and experiments are quite encouraging. This
showed that the interferometric encoders have good potential, and further investigation
and research should be carried out to improve the performance-to-cost ratio by using the
homodyne type interferometer, instead of the heterodyne interferometer.

The laser Doppler anemometers (LDAs), laser Doppler velocimeters (LDVs), and laser
Doppler vibrometers are optical metrology systems that use the laser Doppler effect to
encode information generated by the displacement and velocity of the measured surface [9].
They can easily obtain fairly high resolution and accuracy. The major drawbacks of
them are high cost and large size due to the complex optical system of the sensing head.
With the continuous pursuit of precise control, smaller feature sizes, and lower prices,
there has been a growing interest in another interference technology, namely laser SMI,
which is based on dynamic characteristics of the optical feedback effect. Based on this
technology, Philips, Microsoft, and Covidien have been granted U.S. patents pertaining
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to optical input devices and movement sensors [10–27]. In 2008, Pruijmboom et al.
reported a commercial product based on this technology, the Philips Twin-Eye Laser
sensor for quasi-three-dimensional displacement measurement [28, 29]. This miniature
laser Doppler interferometer can work on all light scattering surfaces, and can be compared
with expensive laser interferometers, but at a cost that is compatible with the requirements
for consumer products.

Generally, a laser SMI consists of a laser diode, a focusing lens, and related electronics
without any additional or complicated optical components. The field within the laser
cavity is superimposed with the weak field back-reflected or back-scattered by a remote
target, thereby causing modulation of the amplitude and frequency of the laser field. The
modulated power emitted by the laser is a function of the phase of the back-reflected field.
The fringe shift caused by the feedback light is related to the amount of displacement [30],
which is the same as the LDV. In comparison with the traditional LDV, the first significant
feature of this SMI is that this technique allows the laser to perform as both a light source
and a detector. It has the advantages of lower cost, fewer components, and a self-aligning
system for various applications, such as solid and liquid velocity measurement [31–34],
displacement construction [35–37], absolute distance measurement [38,39], and vibration
detection [40–42]. Another important feature of SMI is that the signal can be asymmetric,
which makes it possible to discriminate the direction of the moving target. Moreover, it is
self-aligned because the signal can be detected by the monitoring photo-diode integrated
into the laser diode, so no complicated adjustment process is required. In spite of its
simple configuration, it also has good resolution and accuracy.

Sensing applications based on the self-mixing effect in low-cost commercial semiconduc-
tor lasers has begun to appear in scientific researches since 1986 [31,32]. The feasibility of
velocity, distance, and displacement measurements has been demonstrated in enormous
quantities of literature [31–33]. The advantages of self-mixing sensing are listed as follows:

• Only one or two lenses are required, without any other additional optical compo-
nents, thus realizing a very simple and compact system.

• The integrated photo-diode included in most laser diodes can be used as a detec-
tor. Therefore, no external photo-detector is required. The change in the terminal
voltage of the laser diode can also be used to obtain the SMI signal.

• Due to the simple configuration, the system is self-aligned and spares the trouble of
aligning the optical path.

• The system is very sensitive because it realizes a coherent detection of the return
field and can easily attain the quantum detection regime [43].

• The inclination of the power fringe can be exploited to discern the direction of
motion.

• The basic resolution using the fringe counting method is half the wavelength. Using
other signal processing techniques, the resolution can be several nanometers.
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• The effective information is carried by the laser beam.

• It can operate on rough surfaces.

• High bandwidth.

Although numerous studies using SMI to measure velocity and displacement have been
reported, there are still some problems remained before the SMI based sensors can be
reliably used to provide high accuracy:

• When a rough target scatters the light emitted from the coherent laser, the gener-
ated SMI signal will be affected by the multiplicative noise caused by the speckle
effect. The speckle effect leads to random amplitude modulation of the signal, which
results in the loss of the ideal sinusoidal waveform of the signal and broadens the
spectrum in the frequency domain. In addition, wide-band additive noise often
appears in practical situations. The presence of these two types of noise makes it
more difficult to acquire the accurate Doppler frequency. Therefore, a suitable and
effective frequency estimation algorithm has to be developed [44].

• In the case of velocity measurement, it is difficult to discriminate the direction of
velocity using the differential method due to the speckle effect or the weak feedback
level.

• The retrieve process of conventional PUM for measuring displacement is tedious,
and it has a poor performance when the signal is affected by noise.

1.2 Contributions

This dissertation aims to improve the velocity and displacement estimation results of the
optical encoder and the laser SMI sensor. The original contributions presented in this
dissertation are listed as follow:

1. The methods of measuring position and velocity of electric motors using an optical
incremental encoder were revisited, and an efficient and tuning-easy fixed gain filter
was proposed.

2. A system for measuring velocity and displacement using laser self-mixing interfer-
ence technology has been developed.

3. The methods of accurately estimating the Doppler frequency of SMI signal were
analyzed.
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4. A new algorithm based on the EKF for estimating velocity and displacement using
the SMI was proposed. Based on the model of SMI signal, the multiplicative noise
caused by the speckle effect and the direction of the velocity are taken into account.

5. In order to retrieve the displacement, a simple and effective method was proposed to
estimate the feedback factor C of the SMI sensor. Discarding the complicated and
demanding calculation process of the general C estimation method, a final equation
is obtained.

6. An algorithm based on the theory of EKF for retrieving displacement using SMI
sensor under weak feedback regime was presented. The main novelty of the algo-
rithm is the ability to discriminate the direction of displacement inherently and no
extra effort is required. It does not need the process of transition detection and
feedback factor C estimation in the general PUM.

1.3 Outline

Following this introduction, the basic principles of optical encoder and SMI are presented
in Chapter 2. The resonator model and rate equation model of SMI and its applications
are introduced in detail.

In Chapter 3, an efficient and tuning-easy fixed gain filter is proposed to estimate
position, velocity, and acceleration from the position of shaft encoder.

In Chapter 4, a system using the SMI technology to measure velocity is introduced. The
error analysis and different algorithms for precise measurement of velocity are discussed.

In Chapter 5, the SMI is used to measure displacement. Algorithms improving its
measurement performance are thoroughly investigated.

Finally, this dissertation finishes with some concluding remarks and thoughts on future
work in Chapter 6.
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Chapter 2

Background and theory

This chapter reviews the theoretical background of the optical encoder and laser SMI.
In commercial electrical drives, the most common sensor used for the position and speed
measurement is the optical incremental encoder, because of its simple detection circuit,
high resolution, high accuracy, and relatively easy adaptation in digital control systems.
The general methods used to estimate velocity from the position obtained by the encoder
are introduced in this chapter.

Laser interferometry is a well-established technique, widely used in industry. In the
past decades, extensive research on optical feedback has proven that it is a promising
solution for a wide range of applications, such as chaotic signal transmission, coherent
echo detection, measurement of physical quantities, etc. This chapter describes why the
optical feedback in a system consisting of a semiconductor laser and a remote reflector or
diffuser can be regarded as an interferometric system. It also provides detailed analysis
of the signal characteristic, which is a function of target distance, target motion, optical
feedback strength, and semiconductor laser parameters.

2.1 Optical encoder

2.1.1 Introduction

Servo drives are widely used in automation technology, robotics, and handling systems,
as well as drive technology for production machines and machine tools. The requirements
regarding dynamics, speed stability, and rigidity necessitate ever-increasing gain factors
in the control loops. Position resolution and error are important factors for the quality
of drive control. The selection of a certain encoder technology strongly depends on the
resolution and accuracy requirements of the corresponding application. The properties
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of encoders have a decisive influence on important motor qualities (such as positioning
accuracy, speed stability, bandwidth), which determine drive command-signal response
and disturbance rejection capability, power loss, size, noise emission, and safety [45].

The optical encoder has become the most popular encoder among all encoding methods
due to its long-life, simple structure, versatility, high accuracy, and high resolution. An
optical encoder is an electromechanical device used to convert the mechanical position of
a shaft or axle into an analog or digital electrical signal. The most common configuration
of optical encoders is based on a dual grating system. It has two gratings in tandem: one
is the scale, and the other is placed in the scanning head. This pair of gratings forms a
fringe pattern at a certain distance from the second grating. Optical encoders can mainly
be divided into two types: incremental and absolute. The structures of these two types are
quite similar. However, they differ in physical properties and movement interpretation.
Incremental rotary encoder utilizes transparent discs that contain evenly spaced opaque
sections. As the encoder rotates, it generates a train of equally spaced pulses. By counting
the pulses or by timing the pulse width using a clock signal, the angular displacement
can be determined. The absolute encoder contains components that can also be found
in the incremental encoder, but the absolute encoder uses a disc with concentric circle
patterns instead of a disc with evenly spaced lines. When the disc of the absolute encoder
rotates, it generates multiple pulse trains simultaneously, the number of which is equal to
the tracks on the disc. Therefore, the output of the absolute encoder provides a unique
code for each shaft position. In other words, each position of the absolute encoder is
distinctive. Another feature of the absolute encoder is that it does not lose position
information whenever the power is switched off. In the following section, only the optical
incremental encoder is studied because it is the most widely used encoder. After this, the
optical encoder always denotes the optical incremental encoder in this dissertation.

Generally, an optical encoder consists of five essential components: a light source, a
moveable disc, a fixed mask, a photo-detector, and electronics. The moving disc has been
etched with concentric tracks. These tracks have a periodic opening called a window.
Corresponding tracks and windows are also grooved on the mask. As the light source
shines onto the mask through the moving disc, different unique light patterns illuminate
the detector. Each optical rotary encoder track contains one or two detectors. Each
detector outputs its own signal, and the outputs are slightly shifted from each other,
creating slightly offset outputs. Therefore, the output of the optical encoder can be a
single line of pulses (an “A” channel) or two lines of pulses (an “A” and “B” channel)
that are quadrature.

The optical encoder generates a specified amount of pulses in one rotation. It does not
indicate an absolute position, but only provides incremental changes in position, namely
the angular displacement. The number of lines of an optical disc is equivalent to the
number of pulses per revolution (PPR), which is usually defined as the resolution. En-
coder pulse refers to the smallest segment of a given physical quantity that the encoder
can measure or display. In other words, it is the granularity with which the encoder can
monitor the equipment. On the code disc of an optical encoder, the denser the pattern is
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scribed, the higher the resolution. For each incremental change in position, the encoder
produces a sinusoidal electrical signal. These signals are counted by a calibrated starting
point in an up-down counter or processed by other complicated algorithms. Except for de-
termining the position of the shaft, the dual-channel encoder can also provide information
about the direction of rotation by identifying the leading channel. For example, in the
case of clockwise rotation, channel A leads channel B, and in the case of counter-clockwise
rotation, channel B leads channel A.

The position accuracy is limited by the quantized position measurement of the encoder.
The quantization errors can be reduced using more expensive encoders with more incre-
ments, at the expense of increased cost price. Counting pulses of optical encoder only
provide information about angular displacement. In order to obtain velocity and accel-
eration of the motion, an additional state observer is required to perform the estimation
algorithm with good accuracy and dynamics. In the last several decades, a myriad of
solutions has been explored and published. These solutions can be broadly categorized
into three types: FDM, ITM, and KF. They will be introduced in the following sections.

2.1.2 Finite-difference method

The FDM is also called the M method, which is the most widely used method for estimat-
ing velocity from encoder pulses. The basic concept of the FDM is to count the number of
pulses in a fixed time interval and estimate the velocity by dividing the number of pulses
by the duration. The shaft speed N in revolutions per minute (RPM) is given by

N = 60me

TsP
, (2.1)

where P is the PPR of the encoder, and me refers to the number of encoder output pulses
during a fixed sampling period Ts.

This method can provide the simplest and most efficient velocity estimation when
precisely sampling the position. Due to the limitation of resolution and the existence
of measurement noise, the number of pulses in a fixed time interval may vary abruptly,
hence, severe noise will be generated in the velocity estimation, especially in the low-
velocity range. To solve this problem, digital filters are often used to smooth the velocity.
However, an inevitable delay caused by the filter will greatly reduce the bandwidth of the
control loop. Since the time interval Ts and the PPR P are fixed in (2.1), it is obvious
that the shaft speed N is proportional to the number of the pulses me. In the high-speed
region, the number of pulses me is large, so the quantization error is relatively small.
As the speed decreases, the encoder pulse-width becomes wider. If the speed is small
enough, the number of pulses me will be a decimal, and the error would be significantly
large. Thus, the FDM is more suitable for use in the high-speed range.
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2.1.3 Inverse-time method

The ITM, also called T method, is usually used to provide higher accuracy in the low-
velocity range. This method calculates velocity by dividing the angle by the time interval
between two consecutive position pulses. The shaft speed N in RPM is given by

N = 60ft
Pms

, (2.2)

where P is the PPR of the encoder, ft is the frequency of the clock pulses, and ms is the
number of frequency clock pulses between two encoder pulses. The estimator is updated
each time when an encoder pulse event is received. However, due to the limited resolution
of time measurement, accuracy cannot be ensured at high-speed.

These square-wave input signal counting methods for position and velocity measure-
ment are very sensitive to quantization errors. This is a digital residual error, which is
mainly caused by sampling the analog square wave signal and obtaining an approximate
digital value.

2.1.4 Kalman filter

The latest advancements in velocity estimation techniques concentrate more on state-
estimation approaches. The KF is one of the most famous and commonly used methods in
the significant toolbox of mathematical tools, which can be used for stochastic estimation
from noisy sensor measurements. For a long time, it has been regarded as the optimal
solution for many tracking and data prediction tasks. The KF is named after Rudolph
E. Kalman, who published a famous paper in 1960, describing a recursive solution of the
discrete-data linear filtering problem [46]. The KF is essentially a set of mathematical
equations that can implement a predictor-corrector type of estimator that is optimal in
the sense of minimizing the estimated error covariance when certain assumptions are
satisfied [47].

To use the KF to estimate the internal state of a process, given only a sequence of noisy
observations, the process must be modeled in accordance with the framework of the KF.
The dynamic model is commonly described as

xk+1 = Fxk + Guk + Γwk, (2.3)

where
x is the state variable;
u is the system input;
w is the process noise;
F is the state transition matrix;
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G is the control-input matrix;
Γ is the process noise transition matrix.

The measurement model is given by

yk+1 = Hxk + Dvk, (2.4)

where
y is the measurement output;
v is the measurement noise;
H is the observation matrix which maps the state variable into observed variable;
D is the observation noise transition matrix.

Because the process noise wk and measurement noise vk are white Gaussian random
sequences with zero mean, the following equations hold:

ε {wk} = 0, ε {vk} = 0, (2.5)

where ε {} denotes the expected value. Both of these two sequences are uncorrelated
random variables, then it can be expressed as

ε
{
wiw

T
j

}
= 0, ε

{
viv

T
j

}
= 0, (i 6= j) (2.6)

Thus, the covariances are defined as

ε
{
wkw

T
k

}
= σ2

w, ε
{
vkv

T
k

}
= σ2

v . (2.7)

The KF is usually used to process position signals to estimate position, velocity, and
acceleration. When the target motion and the measurement model are linear, and the
process error and the measurement error are Gaussian, the KF gives the minimum mean-
square error estimate. For an angular motion system, the position θ, angular velocity ω,
and acceleration a are selected as the state variables, which is x =

[
θ ω a

]T
. The

system matrix described in (2.3) is

F =


1 Ts T 2

s /2
0 1 Ts

0 0 1

 , (2.8)

where Ts is the sample interval.

Since the input vector of the system is zero, the input matrix is G = 0. When using
a Wiener-sequence acceleration model assuming that the acceleration increment is an
independent (white noise) process, the acceleration increment in a time period is the
integral of the jerk over the period. Therefore, the noise transmission matrix can be
directly expressed as

Γ =
[
T 2

s

2 Ts 1
]T
. (2.9)
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If we know the initial state x0, the matrix P is initialized to zero. Otherwise, appropri-
ate values on the diagonal should be used to initialize the matrix P. According to (2.8),
the state transition matrix F only depends on the time interval Ts.

Since the position is usually measured in the optical encoder, the observation matrix
H is expressed as

H =
[

1 0 0
]
. (2.10)

The observation noise transition matrix is D = 1. Using these coefficient matrices, the
KF algorithm can be used to estimat the state. The whole process of the KF involves two
sub-processes, namely prediction and correction, as demonstrated in Algorithm 1. In the
prediction step, the current state variables are estimated along with their uncertainties.
Once the next measurement that is corrupted by some amount of error is observed, these
estimates are updated using a weighted average. The KF is recursive and can run in
real-time, using only the current input measurement and the previously calculated state
and its uncertainty matrix. No additional past information is required.

1 Prediction:
2 Predicted state estimate, x̂−k = Fx̂k−1 + Guk−1;
3 Predicted state covariance, P−k = FPk−1FT + Γσ2

wΓT ;
4 Correction:
5 Optimal Kalman gain, Kk = P−k HT

(
HP−k HT + Dσ2

vDT
)−1

;
6 Corrected state estimate, x̂k = x̂−k + Kk

(
yk −Hx̂−k

)
;

7 Corrected estimate covariance, Pk = (I−KkH) P−k ;
8 k = k + 1;

Algorithm 1: The Kalman filter.

2.2 Theoretical model of laser self-mixing interfer-
ometry

Laser interferometry is a well-established technique widely used in industrial and lab-
oratory environments. Applications have been flourishing in the fields of mechanical
metrology, machine-tools control, profilometry, velocimetry, and vibrometry, etc. The
optical feedback is mostly an unavoidable consequence with the application of lasers. It
appears everywhere in optical systems, such as optical communication systems, optical
data storage, optical measurements, etc. The effects of optical feedback in semiconductor
lasers have been studied from the beginning of their development [48, 49]. This effect is
usually used for the control of oscillation frequency, selection of mode, suppression of side
modes, and interferometry in semiconductor lasers.
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The mixing of the field in the laser cavity and the weak field back-reflected/back-
scattered by the remote target modulates both the amplitude and frequency of the laser
field. For static operation, it is sufficient to model the laser and the target as a com-
pound cavity resonator, which is fully detailed in Section 2.2.1. For dynamical operation,
the resonant operation of the laser can be evaluated at different points in time, which is
known as a quasi-stationary or steady-state analysis. Another more accurate analysis of
the optical feedback interferometer, which is performed by using the standard Lang and
Kobayashi rate equations that consider the amplitude of the electric field and the dy-
namical interplay between the electrical charge carriers and photons in the semiconductor
laser cavity, will be introduced in Section 2.2.2.

2.2.1 Theory of resonator model

The semiconductor laser described here is a Fabry-Perot type with a mono-layer of the
active region. Theoretically, other narrow-stripe edge-emitting lasers, such as multi-
quantum well (MQW) lasers and distributed feedback (DFB) lasers, can be treated in
the same way as Fabry-Perot lasers. Therefore, from the viewpoint of chaotic dynamics,
the macroscopic features of these lasers show the same behaviors, although their detailed
characteristics strongly depend on the laser structure and the particular values of the
device parameters [50].

To analyze this behavior, a simple model is sketched in Figure 2.1, which consists of
a three-mirror Fabry-Perot-type laser with a reflection/scattering surface. For ease of
analysis, the laser is assumed to operate in single mode, although this is not always true
in actual situations. Lasers sometimes oscillate in multi-mode under certain parameter
conditions of optical feedback [50].

Photo-diode Laser cavity

External cavity

Reflecting/Scattering
          surface

Figure 2.1: Basic configuration of optical feedback in a Fabry-Perot semiconductor laser.

The surfaces P1 and P2 are facets of the laser cavity with a uniform active medium that
the refractive index is µ1. The reflection coefficients of P1 and P2 are r1 and r2. Surface P3
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represents the external surface with reflection coefficient r3. d and L denote the length of
the laser cavity and the length of the external cavity with uniform medium, respectively.

Combining the external cavity, the surface P2, and the surface P3 into a single term,
an reflection coefficient reff is introduced [51],

reff = r2 +
(
1− |r2|2

)
r3 exp(−i2πντext), (2.11)

where 1 − |r2|2 accounts for the light transmission through the laser facet P2. ν and
τext = 2L/c denote the optical frequency and the round trip delay in the external cavity,
respectively. c is the speed of light in the vacuum. Equation (2.11) only counts for a single
round trip in the external cavity. Generally, the external reflection r3 is much less than the
reflection coefficient r2 in the case of weak optical feedback (|r3| � |r2|). Therefore, the
multiple round trips in the external cavity are ignored [52]. For strong optical feedback
with multiple reflections in the external cavity, we can refer to [53–56]. To simplify
the expression of the rest chapters, only the single round trip mode is considered. The
reflection coefficient reff in (2.11) can be represented as

reff = |reff| exp(−iφr), (2.12)

where |reff| and φr denote the amplitude and phase of reff, respectively.

For the weak feedback condition with |r3| � |r2|. The reflection coefficients r2 and r3
are considered as real and positive. In this case, we can write

|reff| ≈ <(reff) = r2[1 + κext cos(φext)], (2.13)

φr = =(reff)
r2

= κext sin(φext), (2.14)

where κext = r3/r2 (1− |r2|2) is the coupling coefficient, and φext = 2πντext denotes the
phase of external cavity. The required threshold gain denoted as g = gc for the compound
cavity laser must satisfy the amplitude condition

r1|reff| exp [(gc − as)d] = 1, (2.15)

where the losses as represent any optical loss in the laser cavity that does not yield a
generation of carriers in the active layer, such as scattering losses.

The round trip phase within the semiconductor laser cavity must be equal to an integer
multiple of 2π, which generates the phase condition

2βd+ φr = 2πm, m = integer. (2.16)

where β is the phase constant of the optical wave. The phase constant β depends on the
optical frequency ν, so (2.16) yields the possible emission frequency of the laser resonator.
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The optical feedback causes changes in laser emitting properties, such as threshold
gain, optical frequency, line-width, etc. The threshold gain gth in the absence of optical
feedback can be written as

gth = as + 1
d

ln
( 1
r1r2

)
. (2.17)

The threshold gc in the presence of optical feedback can be found by substituting |reff|
for r2 in (2.17),

gc = as + 1
d

ln
(

1
r1r2 [1 + κext cos(φext)]

)
. (2.18)

Thus, the excess gain ∆g due to the optical feedback is

∆g = gc − gth = − ln [1 + κext cos(φext)]
d

. (2.19)

Since natural logarithm can be expanded into a power series as

ln(1 + x) = x− x2

2 + x3

3 −
x4

4 · · ·+ (−1)n−1x
n

n
, (2.20)

equation (2.19) is rewritten as

∆g ≈ −κext
d

cos(φext) (κext � 1). (2.21)

The equation (2.21) indicates that the excess gain depends on the phase of external
cavity φext = 2πντext with a periodic variation. The maximum gain can be obtained when
φext = m2π, where m is an integer.

By using the effective refractive index µ1 = cβ/(2πν), the phase condition in (2.16) is
rewritten as

4πµ1νd

c
+ φr = 2mπ (m = integer). (2.22)

Due to the optical feedback, the emission frequency ν may change as well as the thresh-
old gain, thus, the refractive index has a change of [57]

∆(µ1ν) = ∆µ1νth + (ν − νth)µ1. (2.23)

Hence, the change of phase condition with optical feedback can be presented as

∆φ = 4πd [∆µ1νth + (ν − νth)µ1]
c

+ φr. (2.24)
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In absence of optical feedback, the output frequency of laser is ν = νth. In consequence
of optical feedback, the emission frequency ν changes. The effective refractive index µ1
can be expressed as [51]

µ1 = µ0 + ∂µ1

∂ν
(ν − νth) + ∂µ1

∂n
(n− nth), (2.25)

where µ0 denotes the refractive index with frequency νth and threshold carrier density nth
without optical feedback.

Inserting (2.25) into (2.24), where ∆µ1 = µ1 − µ0, one obtains

∆φ = 4πd
c

[
νth

∂µ1

∂n
(n− nth) + µ1(ν − νth)

]
+ φr, (2.26)

where the effective group refractive index µ1 can be rewritten as [51]

µ1 = ν
∂µ1

∂ν
+ µ1. (2.27)

To present the wave propagation in a laser active medium, a complex refractive index
is introduced [51],

µ1 = µ′1 − iµ′′1. (2.28)

with i =
√
−1. In fact, µ′1 is more strongly affected by the stimulated emission than µ′′1,

which is expressed by a parameter α = δµ′1/δµ
′′
1, relating a change in µ′′1 to a change in µ′1.

The parameter α called linewidth enhancement factor of usual semiconductor lasers has
positive values from 3 to 7 [50, 58, 59].This nonzero value gives rise to complex dynamics
of semiconductor lasers. The typical feature of semiconductor lasers is a broad linewidth
of laser oscillations due to a nonzero α.

The gain g is related to µ′′1 by

µ′′1 = −gλ4π = − gc

4πνth
. (2.29)

The variation of the refractive index with varying carrier density is related to gain
variations through the parameter α,

∂µ1

∂n
= α

∂µ′′1
∂n

= −α∂g
∂n

c

4πνth
. (2.30)

Thus [51],
∂µ1

∂n
(n− nth) = − αc

4πνth
(g − gth). (2.31)
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Because g must satisfy the amplitude condition of g = gc, the excess phase is

∆φ = −αd(gc − gth) + 4πµ1d

c
(ν − νth) + φr. (2.32)

Inserting (2.14) and (2.21) into (2.32), ∆φ can be expressed as

∆φ = 4πµ1d

c
(ν − νth) + κext [sin(φext) + α cos(φext)] . (2.33)

The equation (2.33) can be rewritten with time delay in the laser cavity τd = 2µ1d
c

as

∆φ = 2πτd(ν − νth) + κext [sin(φext) + α cos(φext)] . (2.34)

Since
sin(φext) + α cos(φext) =

√
1 + α2 sin(φext + arctanα), (2.35)

equation (2.34) can be rewritten as

∆φ = 2πτd(ν − νth) + κext
√

1 + a2 sin(2πντext + arctanα). (2.36)

The phase condition of the compound cavity satisfies for ∆φ = 0 [51],

∆φ = 2πτd(ν − νth) + κext
√

1 + a2 sin(2πντext + arctanα) = 0. (2.37)

Here an important parameter C called feedback factor that represents the external
feedback strength can be introduced [60],

C = τext
τd
κext
√

1 + α2, (2.38)

where the value of C denotes different feedback regimes. Then (2.37) can be rewritten as

∆φ = 2πτext(ν − νth) + C sin(2πντext + arctanα) = 0. (2.39)

If C << 1, very weak optical feedback regime. Both the instantaneous frequency and the
emitted power are represented by cosine function. The linewidth of the laser oscillation
becomes broad or narrow depending on the feedback fraction [57].

If 0.1 < C < 1, weak feedback regime. The interference signal gets distorted with a
non-symmetrical shape.

If 1 < C < 4.6, moderate feedback regime. The function of power exhibits hysteresis,
and the interference signal becomes like a sawtooth.
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If C > 4.6, strong feedback regime. The function of power may become five-valued. In
some cases, the semiconductor laser enters the mode-hopping regime, and interferometric
measurements cannot be performed due to the instability of the signal [61].

The simulation of the excess phase versus the change of optical frequency is implemented
in MATLAB. The simulation results are shown in Figure 2.2. Values of C are presented
in Figure 2.2 and other parameters used for simulation are given below:

1) The central wavelength of the semiconductor laser without optical feedback is 785 nm.

2) The internal cavity length d of the semiconductor laser is 1.5 µm, and the group
refractive index µ1 of the medium in the laser cavity is 3.53.

3) The initial external cavity length L is 30 mm.

4) The linewidth enhancement factor α is 3.
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Figure 2.2: Simulation results of excess phase ∆φ versus the change in the emission
frequency (ν − νth).

Without the optical feedback (C = 0), the excess phase ∆φ has a linear relationship
with the frequency change ν − νth as plotted in Figure 2.2, and the excess phase ∆φ will
be 0 when ν = νth. For the weak feedback regime(0 < C < 1), the excess phase versus
frequency change is monotonic and yields only one solution for ∆φ = 0, and for C > 1,
it may have several solutions when ∆φ = 0. Therefore, for C < 1, equation (2.39) can be
solved by using a first-order approximation. According to Newton iterative formula, it is
assumed that r is the root of f(x) = 0, and x0 is selected as the initial value of r, thus
x1 = x0 − f(x0)

f ′(x0) is the first-order approximate solution of f(x).

For (2.39), the first-order approximate solution is

x1 = x0 −
x0 − νth + C

2πτext
sin(2πx0τext + arctanα)

1 + C cos(2πx0τext + arctanα) . (2.40)
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Table 2.1: Parameters of the semiconductor laser for simulation [54]

Symbols Parameters Values
d Internal cavity length 1.5 µm
L External cavity length 30 mm
Ts Spontaneous recombination time 5 ns
γ Longitudinal confinement factor 0.012
λ Central wavelength without feedback 785 nm
g Gain cross-section 2× 10−20

ηex External quantum efficiency 0.22
I Operating current 10 mA
Ith Threshold current 6 mA
V Active volume of the laser cavity 37.5 µm3

If the initial value is the frequency without feedback, that is x0 = νth,

ν = ν0 −
C sin(2πν0τext + arctanα)

2πτext[1 + C cos(2πν0τext + arctanα)] . (2.41)

So far, the external cavity is considered to be a fixed position, and the length from
the laser facet is L. If the external face moves with a displacement of l, the external
delay time is τext = 2(L+ l)/c. The device parameters related to the semiconductor laser
are listed in Table 2.1. Firstly, the relationship between the frequency change and the
displacement according to (2.41) is simulated. The results are shown in Figure 2.3.
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Figure 2.3: Change of frequency versus displacement.
For small variations in threshold gain with optical feedback, namely |gc− gth|/gth � 1,

both the threshold current Ith and the threshold gain gth can be expanded in the first
order of the threshold carrier density nth [51, 62]:

∆Ith = qV (1/Ts)∆nth, (2.42)
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∆g = aγ∆nth, (2.43)
where
a is a constant that depends on the threshold gain-carrier density characteristics;
q is the elementary charge;
V is the active volume of the laser cavity;
Ts is the spontaneous recombination time;
γ is the mode confinement factor [51].

Combine eqs. (2.21), (2.42) and (2.43) to obtain the change of threshold current [51],

∆Ith = −qV κext cos(2πντext)
Tsaγd

. (2.44)

The stimulated optical power Pin inside the laser cavity linearly increases with the
injection current I according to [63]

Pin = ηinhν(I − Ith)
q

, (2.45)

where ηin denotes the internal quantum efficiency, h is the Planck constant, and I is the
operating current of the semiconductor laser. The external power Pext is

Pext = ηexthν(I − Ith)
q

, (2.46)

where the external differential quantum efficiency ηext is [63]

ηext = 1
2αsd/ ln

(
1

r1r2

)
+ 1

ηi, (2.47)

where αs represents photons lost in the laser cavity, and (1/2d) ln(1/r1r2) corresponds to
the number of photons that have a chance to leave the cavity [51].

The typical differential external quantum efficiency listed in the specification of com-
mercial semiconductor laser is given in the form of W/A, which can be obtained by

η = ηext
hν

q
. (2.48)

For weak feedback, the threshold current is ∆Ith + Ith, and the external power is

Pext = ηexthν

q
[I − (∆Ith + Ith)] , (2.49)

where ν is the output frequency. The simulation of output optical power is shown in
Figure 2.4. The output power has an asymmetric shape and is periodic with a period of
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Figure 2.4: Output power versus displacement.

λ/2. With the increase of the feedback factor C, the amplitude becomes larger and the
inclination becomes stronger. The total incremental power ∆Pext emitted from the laser
can be expressed as

∆Pext = Pext − P0 = ηexth

q
{ν [I − (∆Ith + Ith)]− ν0(I − Ith)} . (2.50)

The spectral linewidth of laser oscillation decreases with the increase of photon rate.
Therefore, as the laser output power increases, the linewidth becomes narrower. Hence,
semiconductor lasers show stable operation for higher output power, and they often be-
come unstable oscillations at lower output power. It should be noted that unstable be-
havior is not only observed under low output power but also observed at high output
power by introducing external perturbations [57].

Even though the above derivation is carried out for Fabry-Perot-type lasers, it is quali-
tatively applicable to DFB lasers. As long as ν is very close to the emission frequency νth
of the solitary laser, the round trip phase change of DFB lasers may also be set up as in
(2.37). However, the appropriate round trip delay and the external reflection coefficient
must be determined for DFB lasers.

2.2.2 Theory of rate equation model

In the previous section, the semiconductor laser with optical feedback was introduced
under the weak feedback regime based on the resonator model. In this section, another
model will be detailed to discuss the laser output of all feedback regimes.

A milestone paper that proposed a rate equation model for semiconductor lasers under
optical feedback has been published by Lang and Kobayashi in 1980 [64]. The scat-
tered/reflected light injects back into the laser cavity and superimposes on the existing
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internal field. The dynamical change of the carrier density of the semiconductor laser
caused by the optical feedback will lead to a modification of the refractive index, which
in turn changes the resonant frequency of the laser [63]. The static characteristics of
semiconductor lasers with optical feedback can be theoretically investigated through re-
lationship among the reflectivity of the internal cavity and external reflector, the gain in
a medium, and other static laser parameters [50].

This model shuns details and dynamics of interaction between the optical field and
substance. According to the rate equation of Lang and Kobayashi, the field equation can
be written as [57,63],

dE(t)
dt = 1

2

{
Gn [N(t)−N0]− 1

τp

}
E(t) + κext

τin
E(t− τext) cos [ω0τext + φ(t)− φ(t− τext)] ,

(2.51a)
dφ(t)

dt = 1
2αGn [N(t)−Nth]−

κext
τin

E(t− τext)
E(t) sin [ω0τext + φ(t)− φ(t− τext)] , (2.51b)

dN(t)
dt = Jη

ed
− N(t)

τe
−Gn [N(t)−N0]E2(t), (2.51c)

where,
E(t) is the slowly changing envelope of the electric field and it is normalized to make
E2(t) corresponding to the photon density S [m−3];
Gn is the modal gain coefficient (typical value: Gn = 8× 10−13 m3s−1);
φ(t) is the electric field phase;
N(t) is the spatially averaged carrier density;
N0 is the carrier density without optical feedback (typical value: 1.4× 1024 m−3);
Nth is the carrier density at the laser threshold (typical value: Nth = 2.3× 1024 m−3);
τext is the time delay in the external cavity;
τp is the photon lifetime within the cavity, a typical value for a Fabry-Perot semiconductor
laser is 1.6ps, and the following equation holds: 1/τp = Gn(Nth −N0) ;
τe is the carrier lifetime (typical value: τe = 2 nm);
τin is the time delay in the internal cavity (typical value τin = 8 ps);
κext is the feedback coefficient of external optical feedback. It can be calculated by
considering the multiple reflection effects of light in the external cavity;
ω0 is the angular oscillation frequency of the unperturbed semiconductor laser;
J is the injection current density;
d is the active layer thickness;
q is the electron charge;
η is the internal quantum efficiency;
α is the linewidth enhancement factor.

The dynamics of semiconductor lasers with optical feedback can be studied by numer-
ically solving the above equations. Stationary solutions are found by setting the time
derivation of (2.51a) and (2.51c) to zero. Since the instantaneous frequency is given by
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ω(t) = ω0 + dφ(t)/dt, where dφ(t)/dt is the deviation of instantaneous frequency, we
can take φ(t) = [ωF (τext) − ω0]t , where ωF (τext) is the instantaneous angular oscillation
frequency of the semiconductor laser with optical feedback. By substituting (2.51a), the
carrier density can be expressed as

NF (τext) = Nth −
2κext
τinGn

cos[ωF (τext)τext]. (2.52)

The angular oscillation frequency with optical feedback can be written as

ωF (τext) = ω0 −
κext
τin

{
α cos [ωF (τext)τext] + sin [ωF (τext)τext]

}
. (2.53)

Here an important parameter C called feedback factor can be introduced [60],

C = τext
τin

κext
√

1 + α2. (2.54)

Equation (2.53) can be rewritten as

ωF (τext)τext = ω0τext − C sin[ωF (τext)τext + arctanα]. (2.55)

The feedback factor C dictates the degree of nonlinear coupling between the phase
stimulus and response, while the linewidth enhancement factor α governs the asymmetry
of the phase transfer function induced by 2.55.

To determine the output power of the semiconductor laser, equation (2.52) is substituted
into the carrier density equation (2.51c), obtaining

P ∝ E2
F (τext) = Jη/ed−NF (τext)/τe

Gn[NF (τext)−N0] = τp
τe

τeJη/ed−Nth + 2κext

τinGn
cos[ωF (τext)τext]

1− 2κextτp

τin
cos[ωF (τext)τext]

.

(2.56)

Equation (2.56) can be linearized under the assumption κext � τin/2τp,

P ≈ τp
τe

{
τeJη/ed−Nth + 2κext

τinGn

cos[ωF (τext)τext]
}{

1 + 2κextτp
τin

cos[ωF (τext)τext]
}

(2.57)

≈ τp
τe

{
τeJη/ed−Nth

}{
1 + 2κextτp

τin
cos[ωF (τext)τext]

}
. (2.58)

The output power of the semiconductor laser without optical feedback is

P0 ∝ E2
0 ≈

τp
τe

(τeJη/ed−Nth). (2.59)
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Therefore, the output power of the semiconductor laser can be expressed as follow,

P (φ) = P0[1 +mF (φ)], (2.60)

where m is a modulation index,

m = 2κextτp
τin

= C
2τpc

L
√

1 + α2
. (2.61)

The modulation function F (φ) is

F (φ) = cos[ωF (φ)τext] = cos

[
ωF (φ) φλ2πc

]
, (2.62)

where
ωF (φ) is the instantaneous angular oscillation frequency of laser with feedback;
λ is the wavelength of laser without feedback;
F (φ) is a periodic function of the interference phase φ using the relation τext = φλ

2πc [51].

Figure 2.5 depicts the dependence of the change of angular frequency ∆ω and the output
power P (φ) on the displacement L for different values of C. For C=0.1, ∆ω and P (φ)
are represented by a cosine-like function. As the feedback factor C increases, the fringes
in the signal will be tilted and sharpened, resulting in an abrupt vertical feature when
C > 1. For C=1, ∆ω and P (φ) will be distorted. When C=3, for some specific values,
the function has three solutions, and a hysteresis will occur. Thus, a stability analysis is
performed. For C=7, for some specific values, the function exists five solutions.

2.3 Applications of laser self-mixing interferometry

The first report of velocity measurement with the self-mixing technique in a gas laser
was published by Rudd in 1968 [65], whereas in the first report [66] in 1978, both the
amplitude modulation and frequency modulation of SMI were demonstrated. With the
rapid development of laser technology, numerous preliminary applications for velocity
measurement using semiconductor lasers instead of gas lasers have been reported [32,44].
The applications of SMI were introduced in [43,57,63], and an overview of instrumentation
and measurement developed according to the concept of SMI was presented in [67,68].

With a continual pursuit of more precise control, smaller feature size, and lower cost,
there is a growing interest of laser self-mixing sensors. Compared with the traditional
LDV, the SMI has a very simple configuration. It consists of a laser diode, a focusing
lens, a test target, and related electronics for extracting the self-mixing signals without
any additional or complicated optical components. Figure 2.6 outlines a standard laser
self-mixing interferometer. The light beam emitted from the laser diode is focused by the
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Figure 2.5: Dependence of the change of angular frequency ∆ω and the output power
P (φ) on the displacement L for different values of C. (a) and (b) C=0.1; (c) and (d)
C=1; (e) and (f) C=3; (g) and (h) C=7.

lens and then strikes on the target. The light scattered by the target surface injects back
into the laser cavity, superimposed on the existing internal field, and modulates both the
amplitude and frequency of the laser field. The self-mixing signal is simply obtained by
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observing the laser output power with the integrated photo-diode [61] or by recording the
terminal voltage [69].

Laser driver

TIA

PD LD

Target

Figure 2.6: The schematic of a standard laser self-mixing interferometer. LD is the laser
diode, and PD is the photo-diode. v is the velocity of the moving target.

The first significant feature of such SMI is that this technique allows the laser to perform
as both a light source and a detector, and possibly offers the advantages of lower-cost,
fewer-component, and self-aligned system for a variety of applications as follows:

• related to the optical path length, such as displacement reconstruction [35–37], solid
and liquid velocity measurement [31–34], absolute distance measurement [38, 39],
and vibration detection [40–42];

• sensing of weak optical echoes, return loss and isolation factor measurements [70];

• measuring the physical parameters of special features that interact with the medium,
such as laser linewidth [71], alpha factor [72,73], and coherence length [74];

• sensing of thickness, refractive index [75], roughness [76, 77], and mechanical reso-
nance [78–80].

Following, the applications of the SMI are introduced in detail.

2.3.1 Velocity measurement

Velocity measurement based on the self-mixing effect has been well performed before the
non-ambiguous interferometric measurement was demonstrated [81, 82]. In the past few
decades, numerous researches have been conducted on self-mixing sensors to measure the
velocity of solids and fluids. Generally, the photo-diode integrated into the laser diode is
used to observe the variation of laser output power. In the case of velocity measurement,
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the output power of the laser with optical feedback is modulated by a frequency fD, which
is related to the linear speed v by the following equation,

fD = 2v cos(θ)
λ

, (2.63)

where λ is the wavelength of the laser diode, θ is the angle between the moving direction
of the target and the incident direction of the laser beam.

In (2.63), the speed v is linearly proportional to the frequency fD, which indicates that
a sensor monitoring Doppler frequency fD can be used to measure the speed. A variety of
methods have been used to accurately estimate the Doppler frequency. The most widely
used processing method is the classical spectral analysis based on the FFT, which can
provide reasonable high resolution for a sufficiently long data length.

In the absence of the speckle effect, an ideal SMI signal is a harmonic function with
constant amplitude. However, in practice, when a rough target back-scatters light from
a coherent laser, the SMI signal is corrupted by the multiplicative noise caused by the
speckle effect. As shown in Figure 2.7, an example of SMI signal from velocity measure-
ment is exhibited. It can be clearly seen that the amplitude is strongly altered by the
speckle effect, and there may be difficulties in reconstructing the target motion.
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Figure 2.7: Example of an experimental self-mixing signal obtained from velocity mea-
surement of a solid target.

In addition to measuring the velocity of solid, the self-mixing velocimetry has been also
performed on scattering fluids. Of particular interest are medical applications for mea-
suring blood flow in vitro and vivo. It is achieved through an optical fiber, which guides
the light into biological vessels [31, 83]. Another approach based on speckle-correlation
has been applied to in vitro and in vivo blood flow measurement, and different self-mixing
signal auto-correlation functions have been obtained for different blood flow regimes [84].

Directional discrimination is necessary for SMI sensors, because the spectrum analy-
sis of SMI signal only provides the absolute value of the velocity but does not provide
information about the direction of velocity. One feature of SMI differing from other
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interferometry methods is that the inclination of the power fringe can be exploited to
discern the motion direction. It provides a significant advantage over other interference
techniques, allowing to discriminate the direction of the velocity vector. This feature is
indeed attractive because it can be applied to reduce the complexity of the optical solution
used to determine the velocity direction.

1) Sawtooth-like waveform
The asymmetry in the shape of SMI signal when C > 0.5 allows clear discrimination of
the target direction of motion in the time domain. The inclination of the sawtooth-like
waveform reverses when the target changes its moving direction [85]. This distortion
has been extensively used to discriminate the direction of movement. Usually, by
differentiation of the SMI signal [30, 86, 87], the moving direction can be achieved.
In [88], another method using the duty cycle of the fringe was utilized to discern the
movement direction.
However, in practice, many factors may affect the signal and make it difficult to dis-
criminate direction.

• The rough surface will cause the speckle effect, which strongly modulates and
reduces the amplitude of the SMI signal.

• For weak coupling factor, the waveform is almost symmetrical, keeping from
waveform recognition[1].

2) Triangular driving current modulation of the laser diode
Another method is to discern the direction by modulating the current of the laser diode.
When the injection current is modulated, the optical frequency is also modulated.
In 1994, Tsukuda et al. [89] successfully realized the direction discrimination in the
velocity range of 4-30 mm/s through the triangularly modulating current. However,
the measurable velocity range is so narrow that the application of the SMI is limited. In
2002, Philips used triangle modulation of the laser current to determine the direction of
movement in optical motion sensors [90]. The working principle is that the frequency
of the SMI signal is different in the rising part and the falling part of the triangular
modulation.

3) Frequency-domain method
A novel technique for direction discrimination of SMI was proposed by A. Magnani et
al. in 2013 [91,92]. This method employs the non-linearity of signal to directly recover
the speed sign in the frequency domain. The target speed is measured by the signal
frequency, whereas the speed sign is evaluated by the signal phase.

2.3.2 Displacement measurement

According to the previous analysis, eqs. (2.55), (2.60) and (2.62) give the relationship
between the emitted frequency, the optical power, and the distance. The optical power
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and the emitted frequency are constant when the distance is not changing. Once the
movement occurs in the direction of the light beam, the distance in the external cavity
will change, resulting in the variation of the emitted frequency and optical power. By
detecting and processing variation of the optical power, the displacement can be achieved.
The sensor head of the basic displacement measurement system is the same as that of the
velocity sensor. The laser diode is driven by a constant current, and the light beam is
focused on the target through a conjugating lens. A precaution is generally required for
reflective and retro-reflective targets that an optical attenuator may be inserted into the
optical path to avoid excessive optical feedback, depending on the target type [61]. A
basic SMI sensor has a resolution of λ/2 by easily counting the number of fringes in the
signal according to (2.62)

φ = 2πντ = 4πL
λ
, (2.64)

where φ is the interference phase, λ represents the laser wavelength under free-running
condition, and L is the length of the external cavity.

When C > 0.5, the asymmetry of the shape of function (2.60) can precisely determinate
the direction of the moving target. This property of the SMI makes the non-ambiguous
measurement of the displacement possible by using a single interferometric channel. It
makes the SMI different from conventional interferometry, which usually requires two
quadrature signals or frequency modulation. Therefore, the simplest solution to realize the
SMI sensor for displacement measurement is to operate the laser diode under the moderate
feedback regime (C>1). Then the signal is sawtooth-like and the direction is easy to
discern. In [93], the displacement was reconstructed without ambiguity by counting the
occurrence of negative and positive pulses generated from the analog derivative of the self-
mixing signal. This compact system has a sufficiently wide operation range to ensure 1.2
m displacement measurement of distance up to 2.5 m [93]. Figure 2.8 shows an example
of a sawtooth-like SMI signal obtained from displacement measurement. Obviously, the
inclination of the signal is different in different moving directions.
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Figure 2.8: Example of an experimental self-mixing signal obtained from displacement
measurement of a solid target.

Different methods have been proposed to improve the resolution of the displacement
reconstruction. An SMI with the electro-optic modulator was demonstrated in [94]. The
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lithium niobate crystal produces a phase shift to modulate at a frequency of 580 kHz that
generates an optical path difference between the sensor and the target. The resolution of
the reconstructed displacement is λ0/2N and the separated phase is 2π/N . The overall
accuracy is better than 65 nm for a 1 kHz sinusoidal motion of the target 10 cm away
from the sensor. However, this method increases the complexity and cost of the sensor.

When the feedback factor C is 1 < C < 4.6, in other words, the self-mixing signal is
sawtooth-like, the resolution better than λ/2 can be achieved by linearizing the interfer-
ence fringe into a sawtooth signal [95]. By this approach, even in the case of hysteresis,
a resolution of λ/12 has been obtained for displacements up to several micrometers. The
residual error is mainly caused by the non-linearity of the actual self-mixing waveform.

Another method to improve the resolution is to perform off-line signal processing to
invert the function F (φ) to accurately reconstruct the target displacement. It requires
knowing the derivative sign of the actual displacement. To perform the above reconstruc-
tion, the value of the feedback factor C must be determined. It can indeed be achieved
experimentally by evaluating the asymmetry of the interferometric waveform F (φ) [96].
Experimental results in [96] reported a displacement reconstruction error around 50 nm,
with an increase in accuracy of factor ≈ 10 concerning the fringe-counting method.

Other researchers [35,36] have applied an auto-adaptive signal processing method called
PUM to estimate both harmonic and aleatory displacements under moderate feedback.
This method can realize a joint, online, and adaptive estimation of the target displace-
ment, as well as the two self-mixing fundamental parameters C and α. The displacement
measurement up to 10 µm has been achieved with an accuracy of ±80 nm.

2.3.3 Vibration measurement

Vibration measurement involves the detection of zero-mean displacements, and the vibra-
tion frequency ranges from zero to tens of MHz. Vibration measurement using the optical
non-contact sensing technique is commonlly referred to as laser vibrometry. The most
widely used method is the LDV technique. Commercial LDV has been successfully used
in a variety of scientific and industrial applications. The self-mixing scheme has proven
to be efficient for this application [42, 97, 98]. The sensor developed by M. C. Amann et
al. [98] was able to operate on almost any kind of rough surface, covering a bandwidth
between 0.1 Hz and 70 kHz, and the maximum measurable vibration amplitude is 180
µm. An example of self-mixing interference signal from vibration measurement is shown
in Figure 2.9.
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Figure 2.9: Example of the self-mixing signal from vibration measurement of a diffusive
target.

2.3.4 Distance measurement

Many laser range finder techniques have been developed to measure the absolute dis-
tance of a stationary target. They are broadly classified into three types: geometrical
(or triangulation), time-of-flight, and interferometric [99]. Among them, the interference
technique is the most accurate but the most expensive one. The SMI can measure the
absolute distance by modulating the emission wavelength of a semiconductor laser, which
is realized by modulating the injection current with a triangular waveform. The detected
photo-current is triangularly modulated because of the power variation of the semicon-
ductor laser, and a self-mixing interference signal is superimposed on it. A prototype,
which is capable of measuring distance in the range of 0.2 m to 3 m with an accuracy of
0.3 mm, was developed by M. Norgia et al. [40]. A typical self-mixing signal for absolute
distance measurement is shown in Figure 2.10. By counting the number of interferometric
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Figure 2.10: Example of the self-mixing signal from absolute distance measurement.

fringes, the target distance D is retrieved by

D = Nλ2

2∆λ, (2.65)
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where N is the number of fringes during the increasing and decreasing triangular semi-
period, λ is the wavelength of the laser diode, ∆λ is the known peak to peak wavelength
variation.

2.3.5 Other measurements and developments

In addition to the main general applications of the SMI mentioned above, other applica-
tions have also been developed. A partial summary is reported here.

1) Physical parameter measurement

• thickness measurement of the transparent glass slab [75];
• simultaneous measurement of the linear displacement and two rotation angles

(yaw and pitch) [100];
• measuring both mechanical and thermal deformations in single-mode optical

fibers attached to a solid bar [101];
• measurement of laser-related parameters characteristic of semiconductor

lasers [71, 102].

2) Biomedical applications

• measurement of the shape of the cardiovascular pulse shape from the radial
artery [103];

• measurement of the red blood cell velocity distributions in individual capillar-
ies [104];

• measurement of muscle amplitude of vibration [105].

3) Characterization of sensor performance

• applied to the characterization of micro-electro-mechanical-systems (MEMS) sil-
icon devices such as accelerometers or gyroscopes, to support or complement
electrical techniques [79, 106,107];

• measurement of optical isolators placed into a semiconductor laser package [70];
• absolute calibration of measurement microphones as a laser pistonphone [108].

2.4 Summary

This chapter has presented the theory of optical encoder and SMI for a general overview
of these techniques. The conventional methods for estimating the velocity from the an-
gular displacement provided by the optical encoder have been introduced. Besides, the
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physical phenomenon and applications of the SMI has been outlined. The two models
(the equivalent cavity model and the Lang-Kobayashi equation) describing the optical
feedback in semiconductor laser have been discussed, and the effects of different feedback
levels on the SMI have been presented. Furthermore, a general review of the common
applications of SMI has been introduced. This complete review has shown the advantages
and basics of SMI sensors, and it has also shown the limitations of current researches on
the effects of the feedback level and speckle noise in the signal. In the following chapters,
other solutions for general management of these problems are provided.
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Chapter 3

Velocity measurement with optical
encoder

In this chapter, algorithms for velocity measurement using optical encoder in electrical
drives are introduced. An efficient and tuning-easy fixed gain filter is proposed to esti-
mate position, velocity, and acceleration based on the position of the shaft encoder. Unlike
the traditional KF that requires online tuning of the feedback gain matrix, this solution
employs an optimal fixed feedback gain matrix obtained through a straight-forward calcu-
lation process. This greatly reduces the computational burden. In addition, the proposed
fixed gain filter has only one parameter that needed to be tuned, which is theoretically
calculated and refined to a small range. This greatly simplifies the tuning work required.

The content of this chapter is arranged as follows: in Section 3.2, the mathemati-
cal model of the proposed fixed gain filter will be introduced and developed in detail.
Simulation and experimental results and the hardware implementation are presented in
Section 3.3. Finally, conclusions are drawn in Section 3.4.

3.1 Statement of the problem

High-performance motion control with fast speed and enhanced accuracy has been in-
creasingly used in robotics, precision machining, and many automation processes. The
performances of these systems are decisively influenced by the accuracy/dynamic of sig-
nals of position and/or velocity [109–111]. In the feed-forward control, sometimes the
acceleration signal is also desired, which can be used to ease the adjustment range of
the controller, thereby suppressing the disturbance influences and improving system con-
trol dynamics and robustness, etc. A common solution is to mount different sensors
(e.g., magnetic devices, resolvers, and optical encoders) on the motor shaft to directly
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obtain quantified position signals. According to different measuring principles, they can
be classified into four categories: magnetic, capacitive, conductive, and optical. Magnetic
encoders rely on three main components: a disk, sensors, and a conditioning circuit. The
disk is magnetized and has some magnetic poles on its circumference. The sensors detect
the change in the magnetic field as the disk rotates and convert this information into a
sine wave. Magnetic encoders have a simple structure and have excellent robustness under
harsh environmental conditions. Capacitive encoders have three main parts: rotor, sta-
tionary transmitter, and stationary receiver. The capacitor rotor is a printed circuit board
(PCB) with an etched sinusoidal pattern that predictably modulates the high-frequency
signal of the transmitter as it rotates. Conductive encoders are now rarely seen except
as a user input in digital multimeters. Optical encoders generally consist of four parts:
light sources, photo-detectors, a movable disk, and a fixed mask. Its disk is made of glass
or plastic with transparent and opaque segments. The light coming from the light source
can only pass through the transparent area of the disk and is blocked by the opaque part.
Consequently, a pulse sequence is generated and read out at the output, which serves to
be processed for estimating or calculating position or velocity. In commercial electrical
drives, the optical incremental encoder is the most common sensor to obtain position
signals because of its simple detection circuit, high resolution, high accuracy, and rela-
tive easy adaptation to digital control systems. Since the encoder cannot directly obtain
the instantaneous velocity and acceleration, an additional state observer performing the
estimation algorithm is required to achieve the velocity and the acceleration with good
accuracy and dynamics [112,113].

The latest advancements in velocity estimation technique concentrate more on the state-
estimation approaches. In particular, the KF plays a pivotal role in electrical engineering
due to its excellent observation characteristics. A novel algorithm based on polynomial
approximations was proposed in [114], which has the capability to reduce the total posi-
tion error to a range as small as ±0.2◦. However, the more massive amount of memory
required to store the look-up table (LUT) is a compromise in embedded applications
running on low-cost micro-controller unit (MCU), in which hardware resources are very
limited. In [115], an edge-time Kalman filter (ETKF) including prediction of edge time
and periodic sampling time was proposed to ensure a more accurate state estimation under
the condition of lower encoder resolution and uncertainty of motor parameters. However,
the coefficients need to be tuned according to the changes in the plant parameters (e.g.,
the load side inertia and friction factor). Otherwise, the performance of the ETKF will
be quite limited. Similar drawbacks can also be found in [6, 7].

Although the state-of-the-art KF-based estimators have been proven to have excellent
performance, the performance of the KF estimation method largely depends on the value
or setting of the process noise covariance matrix Q and the measurement noise covari-
ance matrix R, which determine the dynamic characteristics of this kind of estimator.
Therefore, these parameters should be tuned appropriately to obtain a combination of
the filter tuning parameters suitable for the KF. However, the issue of tuning the depen-
dent parameters of the KF and the corresponding time consuming are still a challenge in
industry [116, 117]. How to find the optimal parameter setting of the KF is still an open
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question. Moreover, since the computational time of the feedback gain matrix is relatively
long and will be updated every sampling time, the process of the algorithm is also a high
burden. This means that a faster MCU is required to implement the KF algorithm in
real-time.

Based on the above analysis, in this chapter, an efficient and tuning-easy fixed gain filter
is proposed to solve the problems mentioned above. The concept of the fixed gain filter
has been discussed in radar tracking systems [118–120], but to the best of our knowledge,
it is for the first time synthesized in the estimate of position, velocity, and acceleration
with the position signal from a shaft encoder.

The major contributions include:

(i) the feedback gain of the fixed gain filter is a constant that can reduce the processing
time;

(ii) fixed gain filter employs not only the characteristic of fixed gain, but also the
characteristic of constant covariance that leads to a single regulation coefficient, thereby
reducing the number of tuning parameters;

(iii) the stability of the fixed gain filter is analyzed while taking digital implementa-
tion into account, which allows us to narrow the range of the only and single regulation
coefficient.

As a result, this efficient and tuning-easy method is excellent to be utilized in electrical
drives.

3.2 Fixed gain filter

As mentioned above, the KF can provide more accurate state estimation at a lower encoder
resolution. Nevertheless, the primary drawback of the KF is the calculation and tuning
process. Therefore, the FGF is proposed to inherit the advantages of the KF and make
the calculation and tuning processing more applicable. Since the classical KF has been
reviewed in Section 2.1.4, this section only introduces the FGF in detail. The stability of
FGF is also analyzed to determine the optimal range of the filter parameters.

3.2.1 Mathematical model

As analyzed in Section 2.1.4, to achieve steady-state condition of the KF, the error process
wk and vk must have stationary statistics, and the data rate must be constant. When
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the error process cannot meet these criteria, the proposed filter provides a suboptimal
estimate. Because the input matrix is G = 0, the proposed optimal steady-state filter
could be expressed as

x̂−k = Fx̂k−1,

x̂k = x̂−k + K
(
yk −Hx̂−k

)
,

(3.1)

where x̂−k is the predicted state estimate, the gain K is a constant, and x̂k is the updated
state estimate. Therefore, the error covariances P−k and Pk−1 converge to a steady state
value according to Kk = P−k HT

(
HP−k HT + Dσ2

vDT
)−1

and P−k = FPk−1FT + Γσ2
wΓT .

Theoretically, the condition that P− and P are constant is necessary, but not sufficient
for K is constant. In other words, when P− and P are constants, K is also a constant. On
the contrary, when K is a constant, P− and P are not always constants. In this chapter,
this feature is fully utilized to obtain the relationship of the three terms in K. Thus, the
following equations can be obtained

P−k = P−k−1,

Pk = Pk−1.
(3.2)

The prediction function and correction function are expressed as

P−k = F (I−KH) P−k FT + Γσ2
wΓT , (3.3)

KDσ2
vDT = (I−KH) P−k HT . (3.4)

For the fixed gain filter, the fixed gain can be written as

K =
[
α β

Ts

2γ
T 2

s

]T
. (3.5)

To better simplify the solution process, the target maneuvering index (that is, the
ratio of the motion to the observation uncertainty) is defined as: λ = T 2

s σw

σv
. Therefore,

solving (3.3) and (3.4) yields the following relations

λ = 2 γ√
1− α

, (3.6)

γ = β2

4α, (3.7)

β =
(

4− 4
√

1− α− 2α
4
√

1− α− 2α + 4

)
. (3.8)
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Since λ > 0, thus, 0 ≤ α < 1. By defining s =
√

1− α, α, β, and γ can be characterized
by using the free parameter s,

α = 1− s2,

β =
[
β0

β1

]
=
 2(s− 1)2

2(s+ 1)2

 ,
γ =

[
γ0

γ1

]
=
 (1−s)3

s+1
(s+1)3

1−s

 .
(3.9)

The curves of α, β, and γ are shown with s as the horizontal axis in Fig. 3.1. As can
be seen from the Fig. 3.1, α, β0, and γ0 have the same monotonicity. Therefore, β0, and
γ0 are the real solutions. β1 and γ1 can also be excluded by the stability analysis, because
the conjugate pair of the complex roots lies outside of the unit circle. Once the process
noise and the measurement noise are evaluated, the optimal steady-state gain parameters
α, β, and γ are specified in advance and applied to the system directly.
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Figure 3.1: Graph of α, β0, β1, γ0, and γ1 taken s as input.

The value of s is expressed as

s = σ

6 −
λ

6 + λ (λ− 18)
6σ + 1, (3.10)

where
σ = 3

√
27λ2 − 108λ− λ3 + 3

√
3λ
√

432− λ2. (3.11)

The detailed algorithm process of the fixed gain filter is listed in Algorithm 2. It is
clear to see that the calculation process is very simple. The algorithm only requires three
equations with multiplication and additions, which greatly simplify the calculation process
compared to the traditional KF in Algorithm 1. Therefore, it is very efficient in terms of
computation and application with a digital signal processor (DSP) controller.
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1 Function Initialization
2 if k=0 then
3 θ̂0 = 0; ω̂0 = 0; k = 1;
4 end if
5 Function Calculation
6 if k>1 then
7 ∆θk = θk − θ̂−k ;
8 âk = âk−1 + 2γ

T 2
s

∆θk;
9 ω̂k = ω̂k−1 + âk−1Ts + β

Ts
∆θk;

10 θ̂k = θ̂k−1 + ω̂k−1Ts + âk−1
T 2

s

2 + α∆θk;
11 θ̂k = θ̂k mod 2π;
12 end if
13 k = k + 1;

Algorithm 2: Algorithm of fixed gain filter-based estimation.

3.2.2 Evaluation of parameter tuning process

To tune the KF to achieve its best performance, a parameter-tuning process is needed.
The main aim of parameter tuning is to find the best parameter settings to minimize the
total number of iterations (TNI). Assuming that the number of independent parameters
of the KF is m, the TNI of the KF is O (nm), where n is the average number of iterations
needed for one parameter to make the found performance close enough to the optimal per-
formance. Therefore, the parameter-tuning process of KF is usually very time-consuming.
They may not be achievable in practice.

Since the proposed method has only one tuning parameter, the TNI is O (n). Further-
more, the average number of iterations needed for one parameter in the proposed method
is less than the average number of iterations in the KF. According to the discrete sys-
tem control theorem, the asymptotic stability requirement of a discrete system is that all
eigenvalues (roots of the characteristic equation) must be strictly within the unit circle.
Thus, the range of s can be refined to 3− 2

√
2 < s < 1, and the range of each term in Q

and R in the KF is the entire set of real numbers.
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3.3 Simulation and experimental results

3.3.1 Programming complexity evaluation

To compare the complexity of the KF and fixed gain filter (FGF) in programming real-
ization, these two algorithms are run in C language on the 168 MHz advanced reduced
instruction set computing machine (ARM) processor STM32F417IGTx. All variables are
represented by normalized values to better evaluate the performance and make it easier
to compare in different system setups. When using floating-point numbers, because of
the large dynamic range, both algorithms are easy to implement. In the case of using
fixed-point numbers, the KF and fixed gain filter have different complexity although the
same scale factors of the variables (θ, ω, a) can be selected for both algorithms. Since the
covariance matrix P of the KF is unknown and has a wide dynamic range, the scale factors
of each element of the matrix P should be selected carefully. Because P is symmetric,
the 3 × 3 matrix has only six unique terms. Therefore, P is composed of six different
elements. Besides, all results having operations based on the matrix P must be scaled
to the respective format according to the scale factor of the operator. Therefore, it is
tough to design a proper program to satisfy the accuracy requirements of the KF using
fixed point (FXP) numbers (KF-FXP). It is much easier to implement the fixed gain filter
using fixed-point numbers (FGF-FXP), because the parameters (α, β, γ) only involve one
factor s and can be calculated offline. Thus, it saves a lot of effort to choose a proper
scale factor for the fixed-point numbers. The factor is selected according to its range. In
the implementation, the scale factors of α, β

Ts
, and 2γ

T 2
s
are selected as 229, 219, and 26,

respectively. This is another reason for choosing normalized values instead of physical
values.

Firstly, the KF and fixed gain filter are evaluated by comparing their programming
complexity. Based on the preceding analysis, the level of implementation complexity is
divided into three stages from the most positive to the most negative degree, namely,
positive (1), neutral (0), and negative (-1), as shown in Table 3.1. It can be noted that
the KF using fixed-point numbers is the most complicated programming.

The second assessment is the computational time. Table 3.1 shows the execution time
of the KF and fixed gain filter in different cases. Among them, the KF using floating
point (FLP) number (KF-FLP) with a floating point unit emulator (FPUE) takes the
longest time (9.7µs) to execute, while the fixed gain filter using floating point number
(FGF-FLP) with a floating point unit (FPU) takes the shortest time (only 0.7µs) to
execute. Compared to the KF-FXP, the execution time of FGF-FXP is reduced by 83.3%.
Compared to the KF-FLP with an FPU (KF-FLP-FPU), the execution time of FGF-FLP
with an FPU (FGF-FLP-FPU) is reduced by 63.2%. In comparison with the KF-FLP
with an FPUE (KF-FLP-FPUE), the execution time of FGF-FLP with an FPUE (FGF-
FLP-FPUE) is reduced by 45.2%. In short, the execution time of fixed gain filter is much
shorter than the KF under any circumstances.
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Table 3.1: Programming complexity and execution time of the KF and FGF

Methods Complexity CPU ticks Execution time

KF-FXP −1 1105 6.6µs
FGF-FXP 0 187 1.1µs
KF-FLP-FPU 1 320 1.9µs
FGF-FLP-FPU 1 121 0.7µs
KF-FLP-FPUE 1 1631 9.7µs
FGF-FLP-FPUE 1 894 5.3µs

Table 3.2: System parameters and configuration of the KF and FGF

Symbols Parameter Value
θbase base value of position 2π rad
ωbase base value of velocity 100π rad s−1

abase base value of acceleration 10 00π rad s−2

Ts sampling time 100µs
n encoder bits 12
Dσ2

vDT covariance of measurement noise 1
Γσ2

wΓT covariance of process noise diag[5e−5, 2.5e6, 4e10]
s FGF tuning parameter 0.8339
α FGF parameter 0.3047
β FGF parameter 0.0552
γ FGF parameter 0.0025

Considering the programming complexity and the execution time, it is recommended
to use the FGF-FLP when the micro-controller has an FPU, and the FGF-FXP is rec-
ommended when the micro-controller does not have an FPU. This conclusion can also be
applied to other processors.

3.3.2 Performance evaluation with simulation

In this section, numerical simulations are performed in the matrix laboratory (MATLAB)
with the proposed algorithm and other mentioned methods to demonstrate its perfor-
mance. To assess the performances of the FDM, KF, and FGF, these methods are per-
formed under both ideal conditions and quantized input conditions. The parameters used
for simulation are listed in the Table 3.2. All the positions, velocities, and accelerations
acquired through simulation and experiment are normalized using the base value.

The tracking performances of step, ramp, and parabolic velocities under ideal conditions
are shown in Figure 3.2(a), Figure 3.4(a), and Figure 3.6(a), respectively. The position
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Figure 3.2: The step response of the FDM, KF, and FGF. The velocity is a step signal.
θk is the real position. θ̂FDM

k , θ̂KF
k , and θ̂FGF

k are the estimated positions with the FDM,
KF, and FGF, respectively. ωk is the real angular velocity. ω̂FDM

k , ω̂KF
k , and ω̂FGF

k are
the estimated angular velocities with the FDM, KF and FGF, respectively. ak is the real
acceleration. âFDM

k , âKF
k , and âFGF

k are the estimated accelerations with the FDM, KF,
and FGF, respectively.

input of the estimator is the real position signal, which is generated by integrating velocity
over time. Since the input position signal has no quantization error under the ideal
condition, the position θ̂FDM

k and velocity ω̂FDM
k estimated using the FDM are very close

to the ideal position θk and ideal velocity ωk. However, in practice, the position signals in
electrical drive always have quantized errors that affect the estimated results. Therefore,
comparisons of the conventional FDM, KF, and FGF tracking positions with quantized
errors are also shown in Figure 3.2(b), Figure 3.4(b), and Figure 3.6(b). Note that the
FDM uses a second-order low-pass filter (LPF) (the cut-off frequency is set to 500 Hz) to
smooth the quantization error.

Errors of the estimated position, velocity, and acceleration in Figure 3.2 where the
velocity is a step signal are shown in Figure 3.3. Under the ideal condition, the errors of
these three methods are very small after about 0.06 s. In the case of noisy conditions, the
error of the estimated position δFDM

θ using the FDM is 0.025%, while the position errors
of δKF

θ and δFGF
θ are 0.020%. The error of the estimated velocity δFDM

ω using the FDM at
the base value ωbase is 0.71%, while the velocity errors of δKF

ω and δFGF
ω are 0.50%. The

error of the estimated acceleration δFDM
a using the FDM is larger than 30%, as the errors
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Figure 3.3: Errors for tracking a step velocity under ideal and noisy conditions. δFDM
θ ,

δKF
θ , and δFGF

θ are the estimated errors of positions with the FDM, KF, and FGF. δFDM
ω ,

δKF
ω , and δFGF

ω are the estimated errors of angular velocities with the FDM, KF, and FGF.
δFDM
a , δKF

a , and δFGF
a are the estimated errors of accelerations with the FDM, KF, and

FGF.

of δKF
a and δFGF

a are 6.70%.

The performance indices of the estimated step velocity using the three methods ex-
hibited in Figure 3.2 are summarized in Table 3.3. The root mean square error (RMSE)
generated from the position difference is calculated as the performance metric and defined
as

RMSE =

√√√√√ n∑
k=1

(
θ̂k − θk

)2

n
, (3.12)

where n is the number of experimental sampling points, θ̂k is the estimated position, and
θk is the true position at the kth sampling instant.

The comparison in Table 3.3 indicates that compared with the KF, the proposed fixed
gain filter method can provide similar performance (e.g., rising time, peak time, settling
time, and RMSEmax

ω ) except for a slightly higher overshoot under both ideal conditions
and noisy conditions. Meanwhile, the FDM has better performance (smaller rising time,
peak time, settling time, overshoot, and RMSEmax

ω ) than the KF and FGF for step velocity
estimation. However, it can be seen from Figure 3.2(b) that the FDM is unable to track
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Table 3.3: Performance indices of step velocity obtained with FDM, KF, and FGF.

Ideal conditions Conditions with noise
FDM KF FGF FDM KF FGF

Rising time (ms) 0.3 0.6 0.5 0.4 0.6 0.6
Peak Time (ms) 0.7 1.1 1.0 0.7 1.1 0.9
Settling time1(ms) 0.6 1.6 1.6 0.6 1.6 1.6
Overshoot (%) 5.1 8.0 18.2 5.2 8.2 20.2
RMSEmax

ω
2 0.0384 0.0418 0.0435 0.0383 0.0417 0.0434

1 Error band of the settling time is taken as 5%.
2 RMSEmax

ω means the maximum RMSE value of velocity and acceleration
between 0 and 0.04 s.
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Figure 3.4: Performance for tracking a ramp velocity. θk is the real position. θ̂FDM
k , θ̂KF

k ,
and θ̂FGF

k are the estimated positions with the FDM, KF, and FGF, respectively. ωk is
the real angular velocity. ω̂FDM

k , ω̂KF
k , and ω̂FGF

k are the estimated angular velocities with
the FDM, KF, and FGF, respectively. ak is the real acceleration. âFDM

k , âKF
k , and âFGF

k

are the estimated accelerations with the FDM, KF, and FGF, respectively.

the acceleration under the noisy condition, whereas the FGF tracks the acceleration âFGF
k

with a similar result as the âKF
k of the KF. It should be noted that the ideal acceleration

is set to zero in Figure 3.2 due to its infinite value.

Figure 3.5 presents estimate errors of tracking the ramp velocity in Figure 3.4. The



46 CHAPTER 3. VELOCITY MEASUREMENT WITH OPTICAL ENCODER

errors of the estimated position, velocity, and acceleration are very small in ideal cir-
cumstances. Under noisy conditions, the estimated position error δFDM

θ with the FDM is
0.025% in the whole process. The position errors δKF

θ and δFGF
θ are 0.025% at zero speed,

and the errors reduce to 0.02% after the speed becomes non-zero. The velocity errors
δFDM
ω are around 1.3%, while the errors δKF

ω and δFGF
ω are within 0.7%. And the errors of

acceleration clearly illustrate that the FDM method is unable to estimate the acceleration
while the KF and the FGF can measure the acceleration.
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Figure 3.5: Errors for tracking a ramp velocity under both ideal and noisy conditions.
δFDM
θ , δKF

θ , and δFGF
θ are the estimated errors of positions with FDM, KF, and FGF. δFDM

ω ,
δKF
ω , and δFGF

ω are the estimated errors of angular velocities with the FDM, KF, and FGF.
δFDM
a , δKF

a , and δFGF
a are the estimated errors of accelerations with the FDM, KF, and

FGF.

The performance indices of the estimated step acceleration shown in Figure 3.4 are
listed in Table 3.4. Under ideal conditions, the rising time, peak time, settling time of the
KF is slightly faster than the FGF, while the RMSEmax

ω is larger than that of the FGF.
Under the noisy conditions, the FDM is unable to estimate the acceleration. In addition
to that, the RMSEmax

ω of the FDM method is larger than the other two methods that
have quite close results. The similar results can also be obtained for tracking parabolic
velocities in Figure 3.6, where the FDM is unable to estimate the acceleration under noisy
conditions. Figure 3.7 shows the errors for tracking the parabolic velocity in Figure 3.6.
Under noisy conditions, the position error using the FDM is within 0.025%. The position
errors using the KF and FGF are within 0.025% when the velocity is zero and the errors
δKF
θ and δFGF

θ decrease as the velocity is non-zero. The velocity error δFDM
ω is around 1.3%,
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Table 3.4: Performance indices of step acceleration obtained with FDM, KF, and FGF.

Ideal conditions Conditions with noise
FDM KF FGF FDM KF FGF

Rising time (ms) 0.3 8.4 9.8 N/A 8.5 8.5
Peak Time (ms) 0.6 79 81 N/A 34.5 34.5
Settling time1(ms) 0.7 23.9 25.7 N/A 22.5 22.9
Overshoot (%) 5.1 N/A N/A N/A 7.1 8.3

RMSEmax
ω

2(×10−4) 13.9 6.30 5.19 40.9 26.3 29.1
RMSEmax

a
2 0.038 0.20 0.21 2.78 0.20 0.21

1 Error band of the settling time is taken as 5%.
2 RMSEmax

ω and RMSEmax
a mean the maximum RMSE value of velocity

and acceleration between 0 and 0.2s.
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Figure 3.6: Performance for tracking a parabolic velocity. θk is the real position. θ̂FDM
k ,

θ̂KF
k , and θ̂FGF

k are the estimated positions with the FDM, KF, and FGF, respectively. ωk
is the real angular velocity. ω̂FDM

k , ω̂KF
k , and ω̂FGF

k are the estimated angular velocities
with the FDM, KF, and FGF, respectively. ak is the real acceleration. âFDM

k , âKF
k , and

âFGF
k are the estimated accelerations with the FDM, KF, and FGF, respectively.

while the errors δKF
ω and δFGF

ω are within 0.9%.

In conclusion, when the input position signal has quantization errors, the errors of the
estimated position and velocity using the FDM are greater than errors of the KF and
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Figure 3.7: Errors for tracking a parabolic velocity under both ideal condition and noisy
condition. δFDM

θ , δKF
θ , and δFGF

θ are the estimated errors of positions with FDM, KF,
and FGF methods. δFDM

ω , δKF
ω , and δFGF

ω are the estimated errors of angular velocities
with the FDM, KF, and FGF methods. δFDM

a , δKF
a , and δFGF

a are the estimated errors of
accelerations with the FDM, KF, and FGF methods.

the FGF, and the FDM is not able to estimate the acceleration. The KF and the FGF
acquire very similar estimated position, velocity, and acceleration under both ideal and
noisy conditions. It should be noted that the parameters of the KF need to be tuned with
a lot of effort, and the selected parameters are the parameters that make the KF have
the optimal performance in the entire tuning process.

3.3.3 Performance evaluation with experiment

To verify the effectiveness of the proposed FGF in practice, an experimental setup has
been implemented. The speed control drive system for induction motors is used to fully
evaluate the proposed FGF and the other conventional methods. The optical incremental
encoder used in the experiment is the KUBLER T5.2400.1222.1024 that usually provides a
resolution of 1024. Since the quadrature signal generated by the encoder is combined with
the XOR gate, its output will be connected to the counter. When recording the position,
the encoder can provide a resolution of 4096. Since the drive system is controlled using
vector control, the feedback speed has a significant impact on the control performance.
The parameters of the each filter used in the experiment are selected in the same way as
in the simulation.
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The step velocity in Figure 3.2 cannot be obtained in practice. In the experiment,
only the ramp and parabolic velocities are tracked. The experimental results of using the
FDM, KF, and FGF to track ramp velocities are shown in Figure 3.8. The three methods
successfully track the positions θ̂FDM

k , θ̂KF
k , θ̂FGF

k and velocities ω̂FDM
k , ω̂KF

k , ω̂FGF
k . The

accelerations âKF
k , âFGF

k and torque current iq have the same tendency, indicating that the
KF and FGF can correctly track the acceleration, while the FDM fails to track it. It can
be seen that the acceleration tracking performance of the KF and FGF are almost the
same.
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Figure 3.8: Experimental comparison for tracking position, velocity, and acceleration with
ramp velocity. iq is the torque current. ia, ib, and ic are the three-phase current.

To compare the estimation results of these three methods, the zoomed-in positions and
velocities from the red frames and blue frames in Figure 3.8 are shown in Figure 3.9 and
Figure 3.10. The velocity in Figure 3.9 is around 0 pu, and it can be seen that the position
θ̂FDM
k acquired with the FDM is a step signal resulting from the quantization error with
a resolution ratio of 1/(214), which is also the maximum error of the estimated position
with the FDM. The KF and FGF successfully smooth out this quantization error. The
difference between estimated positions θ̂KF

k and θ̂FGF
k is inconspicuous. The velocity ω̂FDM

k

has a much more serious ripple and time delay than the velocities ωKF
k and ωFGF

k . The
serious ripple and time delay results in a decreased bandwidth in closed loop systems,
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which will significantly influence the performance. Besides, it can be noticed that the
velocity ωFGF

k has very similar ripple as the velocity ωKF
k , which confirms the analysis

mentioned above that the FGF has very similar performance for estimating position,
velocity, and acceleration as the KF. In Figure 3.13, the velocity is around 0.365 pu.
Since the drawing range of axis y is larger than that in Figure 3.12, it is not apparent to
see the difference between the estimated positions. But it can still notice that the ripple of
velocity ω̂FDM

k is larger than ωKF
k and ωFGF

k . The estimated velocity ω̂FDM
k is smaller than

ωKF
k and ωFGF

k , because the FDM acquires a smaller velocity when the electrical drive is
speeding up, as shown in Figure 3.5.
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Figure 3.9: Zoomed in experimental comparison for tracking position and velocity from
the red frame in Figure 3.8.
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Figure 3.10: Zoomed in experimental comparison for tracking position and velocity from
the blue frame in Figure 3.8.

Figure 3.11 shows the experimental comparison for tracking position, velocity, and ac-
celeration with parabolic velocity using the FDM, KF, and FGF. All these three methods
successfully estimate the position, velocity. Similar results as in Figure 3.8 are obtained.
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Figure 3.11: Experimental comparison for tracking position, velocity, and acceleration
with parabolic velocity.
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Figure 3.12: Zoomed in experimental comparison for tracking position and velocity from
the red frame in Figure 3.11.
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Figure 3.13: Zoomed in experimental comparison for tracking position and velocity from
the blue frame in Figure 3.11.

In conclusion, the experimental results are basically consistent with the simulation re-
sults when the position signal has quantization errors. It confirms that the simulation
model provides a high fidelity in comparison with the real physical hardware. The per-
formance evaluation proves that the results of FGF for tracking positions, velocities, and
accelerations are quite similar to the KF since the FGF is a special form of the KF. The
FGF and KF have excellent performance to significantly improve the accuracy of position
estimation in the entire velocity range, and can reduce the ripple of estimated velocity.
Moreover, they can successfully estimate the acceleration in the experiment, while the
FDM fails. All results verify that the proposed FGF can be utilized as an substitute for
the KF to precisely estimate the position, velocity, and acceleration in electric drives.
In the meantime, the FGF significantly saves calculation time comparing to the KF. It
outperforms the KF, in terms of faster tracking speed, easier tuning, and lower imple-
mentation complexity. The characteristics of fixed gain and narrow tunable range can
considerably simplify the application of the fixed gain filter strategy in industry. Both
simulation and experimental results confirm that this proposed method outperforms the
traditional methods in easier tuning and lower implementation complexity.

3.4 Summary

In this chapter, an efficient and tuning-easy FGF has been proposed to estimate the
position, velocity, and acceleration of the electric drives. As the research has proved,
there is no doubt that the optimal FGF is very simple to implement and it reduces the
execution time compared to the KF, since it takes into account the motion nature of the
tracked object. The proposed FGF is similar to the KF in terms of performance and
effectiveness in estimating position, velocity, and acceleration in electric drives, because
it is a special form of the KF and it is easier to obtain the optimal gain. In this study,
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the FGF used for angular motion estimation is evaluated by the encoder in the electric
drive. In fact, it can also be used for all position feedback applications in industries such
as sensor-less control, grid synchronous, and motion control, etc. With the development
of alternating current (AC) drives, the change and evolution of renewable energy systems
and new and more demanding standards will promote the application of the FGF.
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Chapter 4

Velocity measurement with
self-mixing interferometry

This chapter introduces the SMI applied to measure velocity. In Section 4.1, the back-
ground is introduced. After that, the experimental setup is presented in Section 4.2. The
parameters having effects on the measurement accuracy of velocity are analyzed in Sec-
tion 4.3. In Section 4.4, the spectrum interpolations of the SMI signal are summarized and
detailed. In Section 4.5, the MLE method to improve the estimate results is performed
in the frequency domain. Finally, the EKF method based on the model of the SMI signal
is proposed to estimate the velocity in Section 4.6.

4.1 Introduction

M. J. Rudd reported the first demonstration to use optical feedback principle to detect the
Doppler shift in gas laser with a remote moving target in 1968 [65]. With the rapid devel-
opment of laser technology, numerous preliminary applications for velocity measurement
with semiconductor lasers instead of gas lasers have been reported [32, 44, 121]. Velocity
measurement was performed well before the non-ambiguous interferometric displacement
measurement was demonstrated. The schematic model of the self-mixing interferometry
used in our experiment to measure velocity is shown in Figure 4.1. The sensor layout
of the self-mixing velocimeter is shown on the left side of the figure. The commercial
LDV is used to provide reference velocity. The light beam emitted from the laser diode
is focused by the lens and then strikes on the target. The light back-scattered by the
target surface injects into the laser cavity, superimposes on the existing internal field, and
modulates both the amplitude and frequency of the laser field. The static characteristics
of semiconductor lasers with optical feedback can be theoretically investigated through
the relationships between the reflectivity of the internal cavity and external reflector, the
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gain in a medium, and other static laser parameters [57], as presented in Section 2.2.2.
The self-mixing signal can be simply obtained by observing the laser output power with
the built-in photo-diode [61] or by recording the terminal voltage [69]. Throughout this
study, the SMI signal is obtained from the photocurrent detected by the photo-diode in-
tegrated into the laser diode. The signal is modulated by a frequency fD, which is related
to the linear speed v by (2.63).

According to (2.63), the speed is linearly proportional to the frequency of the self-
mixing signal. As long as the angle θ between the laser beam and the moving surface
is nonzero, the velocity can be deduced from the Doppler frequency fD. Therefore, a
sensor monitoring the Doppler frequency can be used to calculate the velocity. The
velocity of normal incidence can be estimated by analyzing the frequency of the occurrence
of ‘speckle grains’ detected by the amplitude of the self-mixing signal. The reciprocal
of the autocorrelation time of speckle signals has a linear relationship with the surface
velocity [122, 123]. The possible limitation of this technique is the dependence of sensor
calibration on the type of surface being measured [63].

Laser driver

Preprocessing A/D Computer

PD LD LDV

Target

Figure 4.1: The schematic of velocity measurement with an SMI sensor. The commercial
LDV provides a reference velocity of the system in our experiment.

A variety of methods has been used to accurately estimate the Doppler frequency,
which is proportional to the measured velocity. The most widely used method is the
classical spectral analysis based on the FFT. The FFT method can provide reasonably
high resolution for sufficiently long data length. However, it has a severe drawback, that
is, the FFT based spectrum is equal to the correct spectrum only if the analyzed signal
is periodic and an integer multiple of the period is recorded [124, 125]. Otherwise, the
spectrum leakage that strongly depends on the selected time-domain window will occur,
and the energy of the original spectral line will leak into other spectral lines [126–128]. To
deal with the leakage issue, a special method was developed to calculate the frequency,
amplitude, and phase with the spectral disturbed leakage. This method is often called
the interpolated fast Fourier transform (IFFT) [129].

When a rough target back-scatters light from a coherent laser diode, the SMI signal is
corrupted by a multiplicative noise caused by the speckle effect. The speckle effect causes
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random amplitude modulation of the signal, resulting in the loss of the ideal waveform
of the signal and the spectral broadening in the frequency domain. Moreover, wide-band
additive noise often appears in practical situations (i.e., photo-detection shot noise). The
existence of these two types of noise makes it more difficult to accurately estimate the
Doppler frequency. Therefore, a suitable and efficient frequency estimation algorithm has
to be developed [44].

In [130], the Doppler frequency was estimated with Gaussian fitting by minimizing the
sum of the squares of the difference between the fitting function and the acquired data,
but the minimization procedure is very complicated and time-consuming. To handle
the limited record length, parametric techniques which require no restrictive data length
assumptions are adopted. A second-order Auto-regressive (AR) method based on the
Yule-Walker equation has been proposed to measure the Doppler frequency in [131]. This
method has a very low algorithmic complexity, so it is suitable for real-time velocity
measurement. Recently, a power spectral density (PSD) estimation method based on
the multiple signal classification (MUSIC) has been applied to frequency estimation in
distance and velocity measurement [32].

4.2 Experimental system

There are several requirements that affect the design of the laser driver. Foremost is
the ability to drive and protect the laser diode. Due to the sensitivity of laser diodes,
they are easily damaged in various ways, such as static discharge, electrical spikes, and
transients. Therefore, a soft-start mechanism should be established to avoid damage
caused by electrical spikes. Besides, laser diodes may be damaged while the operation
current exceeds the maximum injection current. Thus, the laser driver should be designed
to have the ability to drive the range from threshold current to the maximum operating
current, and to ensure that the laser diode will not operate beyond its current limit. To
ensure a good interference signal, the driver should be designed to provide a stable and
low-noise current.

In the experiment, an AlGaAs laser diode is used as the light source of the SMI. The
designed laser driver consists of a stable current controller and a triangular modulation.
The stable current controller is designed to protect the laser diode as much as possible:

• slow start of the current;

• protection against the voltage and current spikes;

• protection against the excessive direct current through the laser;

• protection against excessive reverse voltage across the junction;
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• current stability within 2 µA.

The sensor head applied to measure velocity consists of a commercial 785 nm laser
diode, a lens, and a preprocessing circuit. The typical threshold current and operation
current of the laser are 20 mA and 28 mA. Figure 4.2 shows the measuring system and
Figure 4.3 shows the labeled photograph of the sensor head. Since the surface of the
motor shaft is not ideal, it can be used as a scattering surface. The laser beam is focused
on a fixed point on the motor shaft, and the distance between the sensor head and shaft
is about 4.9 mm. To acquire a good velocity reference, the servo drive runs at a constant
rotational speed controlled by the feedback control of a 21-bit optical encoder. It is
found that to acquire a proper signal, several parameters should be optimized, such as
the distance between the sensor head and the motor shaft, the noise of the amplifier, and
the focal position.

Figure 4.2: Labeled photograph of the measuring system. A: Sensor head, B: Signal
processing system, C: Motor, D: LDV, E: Power supply.

Figure 4.3: Labeled photograph of the sensor head. A: Sensor head, B: Motor shaft, C:
Motor.
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The self-mixing signal is acquired by tracking the small variations in optical power with
the built-in photo-diode. After converting the current signal into voltage with a trans-
impedance amplifier (TIA), the direct current (DC) component of the signal is removed
by a high-pass filter (HPF), and the weak signal is amplified by a low noise amplifying
circuit. The amplifier is designed to have the ability to sense the small variations caused by
the self-mixing effect. It requires high-gain, low-noise amplification. Then, the amplified
analog signal is digitized for further processing to extract the Doppler frequency. In
the experiment, the maximum rotational speed of servo drives is set to 6000 rpm. The
minimum rotational speed is 3 rpm since it is the minimum speed being set when the servo
drive is controlled by the software provided by the motor manufacturer. Therefore, the
measurement of rotational speed is over the range of 3-6000 rpm. The measuring range
is not limited by the response frequency of the photo-diode, but by the signal processing
circuit, namely, the bandwidth of the amplifier. A potential approach to overcome this
problem is to increase the angle θ between the moving direction of the motor shaft and
the incident direction of the laser beam, which results in a decrease in the cos(θ) term in
(2.63), leading to a lower Doppler frequency.

The output power of a laser diode without optical feedback is linearly proportional to
the injection current. The previous analysis in (2.50) showed that the output power of
a semiconductor laser depends on the injection current, the external cavity length, and
the feedback level. To achieve good performance of the SMI, it is essential to assess the
optimal operation condition related to the injection current.

The PSDs of self-mixing signals recorded under different injection currents are shown
in Figure 4.4. The maximum peak corresponds to the Doppler frequency of the signal. It
can be seen that the peak values increases as the injection current increases. Figure 4.5
shows the measured amplitudes and signal to noise ratios (SNRs) of the signal varying
with the injection current in the range of 16 mA to 36 mA in steps of 1 mA. A linear
increase of amplitude is observed in the range of the injection current. It is consistent
with the theoretical calculations and can be found in [63]. The SNR of the signal increases
with the growth of the injection current.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
−140

−130

−120

−110

Frequency [MHz]

P
SD

[d
B

V
2 /

H
z]

16mA

20mA

25mA

30mA

35mA

Figure 4.4: PSDs of self-mixing signal for different injection currents (16mA, 20mA, 25mA,
30mA, and 35mA).

Achieving shot-noise-limited operation using an op-amp TIA at very low power level
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Figure 4.5: (a) Relationship between amplitudes of signal and laser injection currents.
(b) Relationship between SNRs and laser injection currents.

requires a large feedback resistance, which severely limits the available bandwidth. More-
over, in general, a proper self-mixing operation can be obtained when the semiconductor
laser is operated in a single longitudinal mode, or at least exhibits side-mode suppression
greater than 10 dB. Commonly, this condition is not satisfied if the laser is operating just
above the threshold [63]. Therefore, to maintain a large SNR and the suitable amplitude
of the self-mixing signal, according to the results in Figure 4.5, the optimum operation
can be achieved by increasing the injection current of the laser diode.

4.2.1 Velocity measurement

Figure 4.6 shows several typical self-mixing signals in the time domain. Note that the
time duration of Figure 4.6(a) is different from Figure 4.6(b)-(d). These signals are dis-
torted by the multiplicative noise caused by the speckle effect since the rough surface of
the motor shaft back-scatters the coherent light of the laser diode [132–134]. It results in
random amplitudes, leads to some loss of ideal signal waveform, broadens the spectrum,
and ultimately affects the measurement results. The presence of the speckle effect intro-
duces an undesirable modulation frequency, which is related to the superimposition of
the longitudinal speckle size of the virtual speckles projected on the target side [43, 135]
onto the self-mixing signal. The longitudinal vitual speckle dimension is SSl = λ(2l/DL)2

(where λ is the wavelength of the laser, l is the target-laser distance and DL is the lens
diameter.) [43]. By optimizing the parameters l and DL, the modulation frequency due to
the speckle effect can be reduced, but never eliminated. The servo drive will cause some
noise, as shown in the figure, and the noise can be reduced by proper isolation.

Figure 4.7(a) shows the relationship between the Doppler frequency and the rotational
speed. The Doppler frequency has a linear relationship with the rotational speed according
to (2.63). However, the mechanical errors, the nonzero linewidth of the laser, and the
spectral broadening of the signal will affect the estimated frequency. Among them, the
nonzero linewidth of the laser was proved to have a negligible effect on the Doppler
frequency [136]. The relative error [137], which is defined as the absolute error divided
by the span in this case, is exhibited in Figure 4.7(b). It is found that the relative error
within the usable speed range is less than 2.5%. The accurate measurement of rotational
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Figure 4.6: Time domain self-mixing signals in different rotational speeds. The rotational
speed of (a) is 3 rpm, (b) is 500 rpm, (c) is 1000 rpm, and (d) is 6000 rpm.

speed is hampered by wide distribution range of the PSD.
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Figure 4.7: The measurement results. (a) Doppler frequency of self-mixing signal versus
rotational speed. The red line is obtained by the best fitting of the experimental data.
(b) Relative error versus rotational speed.

In this section, SMI is employed to measure the rotational speed of servo drives. The
Doppler frequencies are acquired by the FFT method. The experimental results demon-
strate that the SMI is applicable to measure the rotational speed of motors up to 6000
rpm or even higher with the relative error within 2.5% in the entire speed range. The
presence of two types of noise, additive noise, and multiplicative noise [44] will broaden
the spectrum making the accurate estimation of the Doppler frequency more difficult. In
the next section, the parameters having an impact on the measurement results will be
discussed.
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4.3 Error analysis

The main purpose of this section is to improve the velocity measurement accuracy by
optimizing the parameters having effect on the speed. Efforts to improve accuracy have
been made in other articles. L. Scalise and N. Paone reported the impact of imprecise
measurement of incident angle on the results by measuring the angle from 30° to 90°, but
it only focused on the impact of imprecise measurement of angle without any analysis
of other parameters [138]. W. Huang et al. obtained the dependence of accuracy on
the incident angle through experiments, and achieved a laser velocimeter with tracking
accuracy better than 1.3% in the range of 10-470 mm/s [139].

In this section, based on studies of the previous papers, the major errors of velocity
measurement with SMI are analyzed, and with the optimizing system, a self-mixing sensor
is applied to measure velocity accurately. With a simple FFT-based spectrum processing,
it can obtain an equally good accuracy as presented by W. Huang [139], where a difference
frequency analog phase-locked loop (PLL) was used to improve tracking precision in a
wide velocity range before A/D conversion. Besides, the dynamic characteristics of the
designed SMI sensor are tested by comparing with a commercial LDV.

The estimated error of Doppler frequency is mainly caused by the spectral broadening.
For instance, the spectrum broadening caused by a range of velocities distributing over
the light spot region, the vibration and change of surface profile adding uncertainty, and
the speckle effect modulating the signal. A comprehensive analysis of factors influencing
the morphology of spectrum acquired from the SMI signal was reported by A. Mowla
et al. [136]. The effect of optical system parameters was evaluated by three spectral
characteristics: central Doppler frequency, broadening, and SNR. A conclusion was drawn
that parameters, which have a major effect on the spectrum, are the incident angle,
velocity, beam numerical aperture (NA), and fractional change of velocity across the beam
spot when the spot is close to the disk center. System vibration, target surface profile,
instability of target velocity, laser non-zero linewidth, and fractional change of velocity
across the beam spot when the spot is distant from the disk center are all parameters
having a minor effect on the spectrum. Therefore, according to the analysis of Russell
Kliese and A. D. Rakić [132], the spectral broadening can be quantified by measuring the
full-width half-maximum (FWHM) with the equation,

FWHM = v sin θ
√

2 ln 2
πwt

, (4.1)

wt = aw0, (4.2)
where wt is the beam radius on the target, w0 is the waist radius of the laser, and a
is the magnification of the optical system. This simple analytic formula of the FWHM
shows that the spectral broadening depends on the velocity component normal to the
optical axis (v sin θ) and the beam radius on the target wt. It is explicitly independent of
the wavelength. The laser linewidth, which is extremely narrow relative to its operating
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frequency, has a minor effect on the Doppler frequency. The research [136] proved that
the maximum FWHM occurs when the angle between the beam axis and the target is
close to zero. When this angle increases, the FWHM decreases. Therefore, when this
angle changes sharply, a significant variation in FWHM will be observed.

Next, we will prove the influence of the angle on the measurement results by introducing
the relative error, which is simply calculated as the difference between the measured ve-
locity and the virtual velocity and then divided by the virtual velocity. In our experiment,
as depicted in Figure 4.1, the magnification of the optical system a and the waist radius
of the laser w0 are constant. Therefore, the error caused by the spectrum broadening
primarily depends on the velocity and the incident angle. Since it is difficult to estimate
the waist radius of the laser beam inferred from the far-field beam [132], the relative error
can be calculated equivalently by (2.63). Assuming that the laser wavelength and the
rotational speed are constant, the Doppler frequency depends on the radius of the disk
and the incident angle of the laser. It is given by

Errm = f ′D − fD
fD

=
(

1 + ∆r
r

)
cos(θ + ∆θ)

cos(θ) − 1, (4.3)

where f ′D is the estimated Doppler frequency, fD is the theoretical Doppler frequency,
r is the radius of the rotary disk, ∆r is the variation of the disk radius, and ∆θ is the
variation of the incident angle.

Figure 4.8 shows the simulation results of the relative error varying with the incident
angle. The relative error is obtained by finding the maximum error with ∆r and ∆θ. The
relative error increases with the growth of the incident angle from 5° to 80°. Between 0°
and 70°, it increases slowly, and then sharply rises after 70°. It illustrates that the incident
angle exerts a tremendous influence on the relative error. When the variation of angle
changes from 0.2° to 0.4°, the relative error is nearly doubled. Likewise, the variation of
the radius also has a great influence on the relative error.
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Figure 4.8: Simulated relative errors versus incident angle.
Figure 4.9 shows the dependence of the relative error on the variation of radius and the

variation of the angle when the incident angle is 45°.

To verify the analysis in simulation, some experimental data are acquired at different
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incident angles θ, as shown in Figure 4.10, while the motor rotates at a constant speed of
100 rpm (209 mm/s). The noise spikes in Figure 4.10(a) and (b) are caused by the servo
drive, and it can be reduced by proper isolation. The speckle phenomenon is observed
as a random amplitude modulation that strongly affects the SMI fringes. Due to this
amplitude modulation, the signal loses its sinusoidal feature or even vanishes in some
segments. It is worth noting that the signal amplitude increases with the incident angle,
and the signal in Figure 4.10(d) has the largest amplitude, because much more light is
scattered back into the laser cavity when the incident angle increases, and the signal
becomes more like a sawtooth-like wave.

The signals in Figure 4.10 are processed to get the Doppler frequency and velocity. The
corresponding PSDs of signals are shown in Figure 4.11. Due to the spectrum broadening,
the spectrum displays a Gaussian distribution, where the frequency at the center of the
peak corresponds to the Doppler frequency, which is representative of velocity at the
center of the beam spot. This velocity and the angular velocity of the disk are easily
calculated. For a given signal, the variance of averaged PSD can be reduced by increasing
the number of blocks. However, the block length determines the maximum time lag of the
PSD resolution. For online measurement, a smaller block length should be implemented.
The FFT is applied to each block and respective PSDs are averaged to find the Doppler
frequency. In Figure 4.11(c) and Figure 4.11(d), it could be clearly noticed that the
PSDs have harmonic components. Besides, Figure 4.11(d) has two maximum peaks near
the Doppler frequency, making it much more difficult to determine the correct Doppler
frequency.

Figure 4.12 shows the Doppler frequency of different incident angles at a velocity of 209
mm/s. Each Doppler frequency is the average of 150 successively Doppler frequencies,
which are determined in the incident angle range of 27°-82°. The Doppler frequencies drop
from 480 kHz to 90 kHz with the increase of incident angle. When the incident angle rises
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Figure 4.10: Examples of time domain self-mixing signal segment with different incident
angles, v=209mm/s. (a) θ=27°, (b) θ=44°, (c) θ=63°, (d) θ=81°.

to 82°, the optical feedback becomes much stronger. Although the back-scattered light
increases, the light carrying the velocity information reduces, making it hard to extract
the accurate Doppler frequency.

Figure 4.13 exhibits the dependence of signal amplitude and relative error on the inci-
dent angle. All the relative errors in this experiment are acquired by finding the maximum
of 150 successive relative errors of velocity. In Figure 4.13(a), the amplitude rises with the
incident angle. In Figure 4.13(b), the trend of the relative error indicates a good match
with the simulation in Figure 4.8. The relative error becomes larger with the increase of
the angle, and it increases slowly as the incident angle is smaller than 70°. In the range
of 27° to 60°, the relative error is less than 1%. Therefore, by decreasing the incident
angle, the relative error can be reduced. However, the incident angle could not be too
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Figure 4.11: Corresponding PSDs of signals in Figure 4.10, v=209mm/s. (a) θ=27°, (b)
θ=44°, (c) θ=63°, (d) θ=81°.
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Figure 4.12: The Doppler frequency of different incident angle.

small, as the signal amplitude should also be considered. Too small amplitude makes the
signal susceptible to noise interference. Moreover, small signal requires a large feedback
resistance, which seriously limits the available bandwidth.

To guarantee the signal amplitude and small relative error, the incident angle is finally
set to 46° to measure velocity from 10.43 mm/s to 1043 mm/s. The measured velocity
using the self-mixing sensor is compared with a commercial LDV (LSV1000, Polytec).
The measuring results are exhibited in Figure 4.14.

Figure 4.14 reveals the average relative errors, the maximum relative errors, and the
minimum relative errors of the self-mixing sensor and the LDV. The average relative error
of LDV is better than that of the self-mixing sensor, because the eccentricity of the rotary
disk modulates the velocity with a small sinusoidal variation. The LDV records the whole
change process of the velocity, and the average of the velocity reduces or even eliminates
the variation, whereas the self-mixing sensor used here cannot acquire the entire change
of the velocity, because the sampling system cannot do non-gap sampling at present.
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Figure 4.13: The dependence of the amplitude of the SMI signal and the relative error on
the incident angle.

0 200 400 600 800 1,000

−1

0

1 (a)

Velocity [mm/s]

R
el

at
iv

e
er

ro
r[

%
]

0 200 400 600 800 1,000

−1

0

1 (b)

Velocity [mm/s]

R
el

at
iv

e
er

ro
r[

%
]

Figure 4.14: The average relative errors, the maximum relative errors, and the minimum
relative errors, θ=46°. (a) The relative errors of the LDV, (b) the relative errors of the
self-mixing sensor.

Nevertheless, the maximum relative error and the minimum relative error of the self-
mixing sensor are comparable to that of the LDV. It proves that the measurement error
of the self-mixing sensor can be reduced under the appropriate incident angle.

In this section, the error analysis of SMI for velocity measurement is presented, and a
simple error model is proposed. The simulation presents that the incident angle exerts
a tremendous influence on the relative error, which will increase with the increase of
the incident angle. Comparison between the simulation and experiment under different
incident angles proves that the relative error can be reduced by decreasing the incident
angle.

4.4 Interpolation of spectrum

Because an integer multiple of periods is not always recorded, the leakage of the spectrum
occurs. Thus, it generates a large unacceptable variance of estimated frequency. Besides,
sufficient data are usually not available in practice, and the use of side-lobe reducing
windows is employed at the expense of estimation variance. F. J. Harris [127] has made
an overview of the properties of different windows for FFT. The general impression of the
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spectrum can be improved by appropriately choosing the time window, but it does not
provide a good solution to measure the frequency of the individual components accurately.
To solve these problems, the IFFT is usually used.

As early as 1970, Rife and Vincent presented approximate solutions for the rectangular,
the Hanning, and the Rife-Vincent formulas [129], which were later also developed by Jain,
et al. [126] (rectangular window), Grandke [128] (Hanning window), Andria et al. [140],
and Ofelli et al. [141] (Rife-Vincent windows). Renders et al. [142] solved the problem for
the rectangular window analytically without making any approximation. The article [125]
studied five IFFT methods concerning their systematic errors and their noise sensitivity.

Suppose the sampled multifrequency signal is written as

x(k) =
M∑
m=1

Am sin(2πfmkT + φm), k = 0, 1, 2, · · · , N − 1. (4.4)

It is assumed that the sampling frequency exceeds the Nyquist rate, so the aliasing of
spectra does not occur. The discrete Fourier transform (DFT) is given as [124]

X(h) =
N−1∑
k=0

x(k) exp
(
−j 2π

N
hk
)
, k = 0, 1, 2, · · · , N − 1. (4.5)

It can be written to find the expression of the DFT of these windows in terms of the
current frequency fh = h∆f [126,140],

X(h) =
M∑
m=1

Am
2

N−1∑
k=0

[
X
k(h−λm)
N +X

k(h+λm)
N

]
. (4.6)

4.4.1 Interpolation with rectangular window

The rectangle window is unity over the observation interval. The window for a finite
Fourier transform is defined as

ω(n) = 1, n = −N2 , · · · ,−1, 0, 1, · · · , N2 . (4.7)

The Dirichlet kernel, which represents the transform of the rectangular window, is
defined as [127,128,140]

XD(h) =
N−1∑
k=0

Xkh
N = sin(πh)

sin(πh/N) exp
(
−jπN − 1

N
h
)
. (4.8)
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Equation (4.6) can be rewritten as

X(h) =
M∑
m=1

Am
2 [XD(h− λm) +XD(h+ λm)] . (4.9)

Therefore, the DFT of (4.4) can be written to be

X(h) =− 0.5
M∑
m=1

Am

{
exp (j[a(λm − h) + φm]) sin[π(λm − h)]

sin[π(λm − h)/N ]

− exp (−j[a(λm + h) + φm]) sin[π(λm + h)]
sin[π(λm + h)/N ]

}
,

(4.10)

where λm = fm/∆f = h + δm, h are distinct integers, δm is suitable fractions between
zero and one, including zero, and a = π(N − 1)/N .

Suppose the fundamental frequency is described by

x1(t) = A1 sin(2πf1t+ φ1). (4.11)

By setting M = 1 in (4.10), the DFT of (4.11) is

X(h) =− 0.5A1

{
exp (j[a(λ1 − h) + φ1]) sin[π(λ1 − h)]

sin[π(λ1 − h)/N ]

− exp (−j[a(λ1 + h) + φ1]) sin[π(λ1 + h)]
sin[π(λ1 + h)/N ]

}
.

(4.12)

To proceed further, an approximation is made that the second term in (4.12) is ignored.
This approximation contributes to a frequency error of no more than 0.04% when λ ≥ 20
and N ≥ 1024 [126]. Then the largest two spectrum lines are [128]

X(l1) = −0.5A1 exp [j(aδ + φ1)] sin(πδ)
sin(πδ/N) , (4.13a)

X(l1 + 1) = −0.5A1 exp [j(a(δ − 1) + φ1)] sin[π(1− δ)]
sin[π(1− δ)/N ] , (4.13b)

where δ1 = λ1 − l1 and 0 ≤ δ1 < 1, l1 is the position of the largest spectrum. Since the
number of samples N is usually large, the sin function appears in the Dirichlet kernels
can be replaced by their respective arguments.

|X(l1)| = 0.5A1
|sin(πδ1)|
πδ1/N

, (4.14a)

|X(l1 + 1)| = 0.5A1
|sin[π(1− δ1)]|
π(1− δ1)/N ≈ 0.5A1

|sin(πδ1)|
π(1− δ1)/N . (4.14b)
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Then we can get

|X(l1)|
|X(l1 + 1)| = 1− δ1

δ1
. (4.15)

δ1 = |X(l1 + 1)|
|X(l1)|+ |X(l1 + 1)| . (4.16)

From (4.13), the phase φ1 is

φ1 = Phase[X(l1)]− aδ1 + π/2, (4.17a)
φ1 = Phase[X(l1 + 1)]− a(δ1 − 1) + π/2. (4.17b)

Either of the above equations can be used to compute φ1. The one corresponding to
the largest spectral line is recommended.

From (4.14), the amplitude A1 is

A1 = 2πδ1|X(l1)|
N |sin(πδ1)| , (4.18a)

A1 = 2π(1− δ1)|X(l1 + 1)|
N |sin[π(1− δ1)]| . (4.18b)

Either of the above two equations can be used to compute A1. We recommend using
the second one only when |X(l1 + 1)| is larger than |X(l1)|.

4.4.2 Interpolation with Hanning window

The Hanning window is described as

ω(n) = 1
2

[
1− cos( 2πn

N − 1)
]

= sin2( πn

N − 1), n = 1, 2, 3, · · · , N. (4.19)

The spectrum modulus of the Hanning is [143]

|X(x)| = sin(πx)
2πx(1− x2) . (4.20)
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If the Hanning window is utilized, the spectrum of ω(kT ) · x(kT ) is

X(h) =
M∑
m=1

AmXN [(h∆f − fm)T ]. (4.21)

With [127,128]

X(h) = 0.5{XD(h)− 0.5[XD(h+ 1) +XD(h− 1)]}. (4.22)

The sum of the three Dirichlet kernels can effectively eliminate the sidelobes of a single
function. The rate of fall off of the remaining sidelobes is −18 dB per octave as compared
to −6 dB per octave for a single Dirichlet kernel [127]. Substitute (4.8), (4.22) into (4.21)
, we obtain

X(h) =0.5
M∑
m=1

Am

{
sin(π(h∆f − fm)T )

sin(π(h∆f − fm)/N) exp
(
−jπN − 1

N
(h∆f − fm)T

)

− 0.5 sin[π((h∆f − fm)T + 1)]
sin[π((h∆f − fm)T + 1)/N ] exp

(
−jπN − 1

N
[(h∆f − fm)T + 1]

)

− 0.5 sin[π((h∆f − fm)T − 1)]
sin[π((h∆f − fm)T − 1)/N ] exp

(
−jπN − 1

N
[(h∆f − fm)T − 1]

)}
.

(4.23)

Because fm = (h+δm)∆f , where is h are distinct integers, the DFT of the fundamental
signal in (4.23) is written as

X(h) =0.5A1

[
sin(−πδ1)

sin(−πδ1/N) exp
(
jπ
N − 1
N

δ1

)

− 0.5 sin[π(−δ1 + 1)]
sin[π(−δ1 + 1)/N ] exp

(
jπ
N − 1
N

δ1 − jπ
N − 1
N

)

− 0.5 sin[π(−δ1 − 1)]
sin[π(−δ1 − 1)/N ] exp

(
jπ
N − 1
N

δ1 + jπ
N − 1
N

) ]
.

(4.24)

Since the number of samples N is usually large, the sin function appears in the Dirichlet
kernels can be replaced by their respective arguments. Similarly, exp(jπN−1

N
) ≈ −1 +

πj/N . Then

X(h) =0.5A1

[
sin(πδ1)
πδ1/N

exp
(
jπ
N − 1
N

δ1

)

− 0.5 sin(πδ1)
π(−δ1 + 1)/N exp

(
jπ
N − 1
N

δ1

)

+ 0.5 sin(−πδ1)
π(δ1 + 1)/N exp

(
jπ
N − 1
N

δ1

) ]
.

(4.25)
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Finally,

X(l1) =0.5A1
sin(πδ1)

πδ1(1− δ2
1)/N exp

(
jπ
N − 1
N

δ1

)
, (4.26a)

X(l1 + 1) =0.5A1
sin(πδ1)

πδ1(1− δ1)(δ1 − 2)/N exp
(
jπ
N − 1
N

δ1

)
. (4.26b)

The modulus of the maximum spectral line and second spectral line in (4.26) are ex-
pressed as

|X(l1)| =0.5A1
|sin(πδ1)|

πδ1(1− δ2
1)/N , (4.27a)

|X(l1 + 1)| =0.5A1
|sin(πδ1)|

πδ1(1− δ1)(2− δ1)/N . (4.27b)

Finally, we have
|X(l1)|
|X(l1 + 1)| = 2− δ1

1 + δ1
. (4.28)

δ1 = 2|X(l1 + 1)| − |X(l1)|
|X(l1)|+ |X(l1 + 1)| . (4.29)

From (4.26), the phase is

φ1 = Phase[X(l1)]− aδ1 + π/2, (4.30a)
φ1 = Phase[X(l1 + 1)]− a(δ1 − 1) + π/2. (4.30b)

From (4.27), the amplitude A1 is

A1 = 2πδ1(1− δ2
1)|X(l1)|

N |sin(πδ1)| , (4.31a)

A1 = 2πδ1(1− δ1)(2− δ1)|X(l1 + 1)|
N |sin(πδ1)| . (4.31b)

Either of the above equations are able to be used to compute the phase φ1 and amplitude
A1. Only when |XN(l1 + 1)| is larger than |XN(l1)| the second one is recommended.

4.4.3 Parabola fit

The inherent frequency resolution of the digital PSD is fs/N , thus the resolution of the
estimated Doppler frequency can be improved by increasing the record length, but this
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will lead to an increase in the amount of calculation and a decrease in the resolution of
time-frequency. A typical method to improve the resolution is by interpolating the peak
position of the broaden PSD.

The basic assumption of these classical spectral estimation is that the signal is inter-
fered by additive noise, which is supposed to be a white Gaussian noise. However, when
the target has a rough surface, the SMI signal is more disturbed by the speckle effect,
which is multiplicative noise resulting in random amplitude modulation than the additive
noise. Many other applications such as lasers, optics, or Doppler radar must also deal
with multiplicative noise [131]. To precisely estimate the Doppler frequency in SMI, the
interpolation curve should account for the shape of spectral broadening.

For a single speckle, the fundamental signal of the SMI signal is modeled the same as
the signal in LDV, which has the form of

s(ti) = a exp[−η(ti − ta)2] cos(2πfDti + φ0) + h(ti), (4.32)

where a is the maximum signal amplitude at the arrive time ta, η is related to the inverse
of the residence time squared, fD is the Doppler frequency, φ0 is the phase associated
with the signal, and h(ti) is the noise. The DFT of the signal given in (4.32) is [144]

X(s(ti))(fk) =Afs2

√
π

η
exp

(
− π2(fD − fk)2

η

+ j [2π(fD − fk)ta + φ0]
)
.

(4.33)

and the PSD in the spectral line k is

P (fk) = AP exp
[
−ηP (fk − fD)2

]
, (4.34a)

AP = πfsa
2

2ηN , (4.34b)

ηP = 2π2

η
, (4.34c)

where k = 0, 1, ..., N/2, fk = kfs/N , fs is the sampling frequency, and N is the record
length.

In the case of measuring the solid surface, the SMI signal is the sum of several signals,
which can be written as

s(ti) =
M∑
m=1

sm(ti)

=
M∑
m=1

am exp[−η(ti − tam)2] cos(2πfDmti + φm).
(4.35)
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According to (4.5), the DFT of (4.35) is written as

X(h) =
M∑
m=1

N−1∑
k=0

sm(k) exp
(
−j 2π

N
hk
)
, (4.36)

where k = 0, 1, 2, · · · , N −1. According to (4.34a), the PSD generated by a single speckle
is a Gaussian distribution centered at the Doppler frequency. The sum of several Gaussian
distributed PSDs centered at the Doppler frequency is still a Gaussian distribution,

P (fk) = APm exp
[
−ηPm(fk − fD)2

]
, (4.37)

where k = 0, 1, ..., N/2.

For a centered burst with a Gaussian envelope, according to (4.34a), the PSD of the
SMI velocity signal is a Gaussian distribution centered at the Doppler frequency. Taking
the logarithm of the PSD, a parabolic curve can be derived. Therefore, the Doppler
frequency can be obtained by fitting a parabolic curve using the spectral peak and several
adjacent spectral lines. The logarithm of (4.37) can be expressed as

ln [P (fk)] = ln(APm)− ηPm(fk − f̂D)2. (4.38)

Assuming that the spectral peak is at frequency fk0. Subtracting the corresponding
PSD of fk0+n and fk0−n by the PSD of fk0, respectively, we have

ln
[
P (fk0+n)
P (fk0)

]
= ηP (fk0+n − f̂D)2 − ηP (fk0 − f̂D)2, (4.39a)

ln
[
P (fk0−n)
P (fk0)

]
= ηP (fk0−n − f̂D)2 − ηP (fk0 − f̂D)2. (4.39b)

Subtract (4.39b) by (4.39a)

ln
[
P (fk0−n)
P (fk0)

]
− ln

[
P (fk0+n)
P (fk0)

]
=ηP (fk0−n − f̂D)2 − ηP (fk0+n − f̂D)2

=ηP (fk0−n + fk0+n − 2f̂D)(fk0−n − fk0+n).

(4.40)

Add (4.39b) to (4.39a) is

ln
[
P (fk0−n)
P (fk0)

]
+ ln

[
P (fk0+n)
P (fk0)

]
=ηP

[
(fk0−n + fk0 − 2f̂D)(fk0−n − fk0)+

(fk0+n + fk0 − 2f̂D)(fk0+n − fk0)
]
.

(4.41)
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The frequencies fk0−n, fk0 , and fk0+n can be expressed as fk0−n = (k0 − n)∆f , fk0 =
k0∆f , fk0+n = (k0 + n)∆f , where ∆f = fs/N , representing the spectral lined spacing for
the FFT. Thus, (4.40) and (4.41) can be written as

ln
[
P (fk0−n)
P (fk0)

]
+ ln

[
P (fk0+n)
Pfk0

]
= 2n2∆f 2ηP . (4.42)

ln
[
P (fk0−n)
P (fk0)

]
− ln

[
P (fk0+n)
P (fk0)

]
= −2n∆f(2k0∆f − 2f̂D)ηP . (4.43)

Divide (4.43) by (4.42)

ln
[
P (fk0−n)
P (fk0 )

]
− ln

[
P (fk0+n)
P (fk0 )

]
ln
[
P (fk0−n)
P (fk0 )

]
+ ln

[
P (fk0+n)
P (fk0 )

] = −2(k0∆f − f̂D)
n∆f . (4.44)

The Doppler frequency estimated with parabola fit is

f̂D = k0∆f + n∆f
ln
[
P (fk0−n)
P (fk0 )

]
− ln

[
P (fk0+n)
P (fk0 )

]
2
{

ln
[
P (fk0−n)
P (fk0 )

]
+ ln

[
P (fk0+n)
P (fk0 )

] } (4.45)

= k0∆f + n∆f
2

ln
[
P (fk0−n)
P (fk0+n)

]
ln
[
P (fk0−n)P (fk0+n)

P (fk0 )2

] . (4.46)

Zero-padding is another method used to enhance the estimating accuracy of the fre-
quency of spectral peaks. It simply adds zeros at the end of the time-domain signal to
increase its length. This is useful for resolving ambiguities and reducing the quantization
errors when estimating the spectral peaks.

4.4.4 Simulative evaluation

To evaluate the performance of the methods mentioned in the preceding section, sim-
ulations are carried out to estimate the frequency of sinusoids and the simulated SMI
signals.

Figure 4.15 shows the estimated frequency error of sinusoids using the FFT and rectan-
gular interpolation (FR), FFT and Hanning interpolation (FH), and FFT and parabolic
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fit (FP). Since the errors of the FFT method are much larger than other methods with
interpolation, they are not drawn in the figure. The sinusoids are noise-free signals with
frequencies from 200 Hz to 3 kHz. The sampling frequency is 10 kHz, and the signal
length is N = 128. The error is given by

Error = f̂ − f0

fr
× 100%, (4.47)

where the f̂ is the estimated frequency, f0 is the actual frequency, and fr is the measure-
ment range. It is clear to see in Figure 4.15 that the error estimated using the FH method
is superior to the other two methods. The error estimated using the FR method is better
than the FP method in the range of 1.7 kHz to 3 kHz, but in the range of 200 Hz to 1.7
kHz, the error of using the FR method is much larger at some points. In the whole range,
the error of using the FP method is within 0.04%.
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Figure 4.15: Estimated frequency error of sinusoids using the FR, FH, and FP methods.

The maximum absolute error (MAAE) and the RMSE of estimated frequency in Figure
4.15 are listed in Table 4.1. The MAAE and the RMSE of the FFT method are much
larger than other methods, while the FH method is superior to the FR and FP methods.

The SMI signal working under weak feedback regime is simulated using (4.35) and an
example of the simulated signal is shown in Figure 4.16. The signal frequency is 1 kHz,
and the sampling frequency is 10 kHz. The modulated amplitude of signal caused by the
multiplicative noise is seen in Figure 4.16. The corresponding power/frequency of the
signal obtained using the FFT and the Gaussian window is shown in Figure 4.17.

Figure 4.18 shows the estimated frequency error of simulated SMI signals using the
FR, FH, and FP methods. The frequencies of the SMI signals are from 200 Hz to 3 kHz.
The sampling frequency is 10 kHz, and the length of the signal is N = 128. The MAAE
and the RMSE of signals in Figure 4.18 are listed in Table 4.1. It can be seen that the
frequency estimation performance of the FR method is the worst, and the MAAE and
RMSE obtained by the FP method are better than the FFT and FH methods.

The time range of the signal for processing in Figure 4.15 and Figure 4.18 is 0 ∼
(N − 1)Ts, where Ts is the sampling period. It should be noted that, unlike the sinusoid
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Figure 4.16: An example of the simulated SMI signal.
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Figure 4.17: The corresponding power/frequency of the signal in Figure 4.16.

that the estimated frequencies are almost the same in any part of the time-domain signal,
the estimated frequencies using different time range of the SMI signal are different because
of the modulated amplitude. Therefore, the performance of the FFT method being better
than the FR is obtained in Table 4.1. To compare the performance of these methods,
the normalized root-mean-square error (NRMSE) of the mentioned methods in different
frequencies are shown in Fig 4.19. Each NRMSE is achieved with 50 estimated frequencies
that are obtained using the signal in the time range of (n − 1)Ts ∼ (n − 1 + N)Ts, n =
1, 2, 3 . . . 50. Because the errors of the FFT method are much larger than other methods,
they are not drawn in the figure. We can roughly notice that the bias of the NRMSE
using the FR methods is larger than the other two methods. When we look closely at the
figure, it can be seen that the NRMSE of the FP is slightly smaller than the FH. To clearly
compare the results of different methods, the MAAE and the root mean square (RMS)
value of the NRMSE, RMSNRMSE, are listed in Table 4.2. In the case of the sinusoid,
the MAAE and RMSNRMSE of the FH are still superior to the FR and FP methods. The
MAAE is almost the same as the MAAE in Table 4.1. In the case of the SMI signal,
the MAAE is totally different in Table 4.1 and Table 4.2. The MAAE and RMSNRMSE
are the smallest when the FP method is employed. The difference between the results
of the pure sinusoid signal and the simulated SMI signal is due to the broadening of the
main lobe caused by the superposition of the multi-frequency signal in the SMI signal. It
proves that the multiplicative noise resulting from the speckle effect has a great effect on
the estimated Doppler frequency.

For frequency estimation of a signal composed of a single frequency, the frequency
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Figure 4.18: Estimated frequency error of SMI signals using the FR, FH, and FP methods.

Table 4.1: Estimated frequency errors of sinusoids and SMI signals using the FFT, FR,
FH, and FP methods in noise-free condition.

Sinusoid SMI
MAAE(%) RMSE(Hz) MAAE(%) RMSE(Hz)

FFT 1.32 22.5 1.68 23.5
FR 0.53 1.02 2.91 30.3
FH 0.01 0.02 1.25 10.3
FP 0.03 0.50 0.67 8.25

resolution is limited by the Cramér–Rao Lower Bound (CRLB), which applies to the
variance of frequency estimation for an unbiased estimator. The CRLB is given by [145]

δCR
2 = 3fs2

π2ρN(N2 − 1) , (4.48)

where ρ is the SNR, fs is the sampling frequency, and N is the record length.

An essential factor in this comparative study is the noise sensitivity of the different
methods. In practice, the measurement is always distorted by external noise sources, and
the frequency estimation itself becomes a random variable that can be characterized by
its mean value and its standard deviation. Some methods are biased, which means that
the mean value is different from the actual value. To compare the overall quality of these
methods, the NRMSE is used, which takes into account the bias as well as the uncertainty
on the estimate given by its standard deviation.

Figure 4.20 shows the NRMSEs using different methods to estimate the frequency of
a single sinusoid in different noise condition. The noise is white Gaussian. The actual
frequency of the signal is f = 1.1 kHz. All the frequencies are calculated with the record
length of N = 128. The FFT without any interpolation is still the least effective method.
The increase of SNR cannot improve NRMSEs when the FFT method is used, because of
the resolution of FFT is limited by the record length. It is seen that the NRMSEs of FH
decrease linearly with the increase of SNR once SNR> 2 dB. In the whole range (SNR> 2
dB), the FH method has a good NRMSE that is close to the CRLB. When SNR< 20 dB,
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Figure 4.19: NRMSEs of estimated frequency of SMI signals using the FR, FH, and FP
methods.

Table 4.2: Estimated errors and RMS values of the NRMSEs of sinusoids and SMI signals
in noise-free condition using the FFT, FR, FH, and FP methods.

Sinusoid SMI
MAAE RMSNRMSE MAAE RMSNRMSE

FFT 1.31 29.6× 10−3 4.62 33.0× 10−3

FR 0.49 3.20× 10−3 5.08 15.1× 10−3

FH 0.01 1.16× 10−4 4.20 14.8× 10−3

FP 0.03 6.9× 10−3 3.66 12.6× 10−3

the NRMSEs of FP method are equivalent to the FH method, but after SNR> 40 dB,
the NRMSEs of the FP method are not able to be improved as the SNR increases. The
NRMSEs of FR are worse than the other two methods as SNR<23 dB, which illustrates
that the FR is not suitable for estimating the frequency of a sinusoid with low SNR.
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Figure 4.20: NRMSEs of estimated frequency of sinusoids using different methods in
different noise condition.

Figure 4.21 presents the NRMSEs using different methods to estimate the frequency of
SMI signals in different noise condition. The noise is white Gaussian. The frequency of the
signal is fD = 1.1 kHz. Since the purpose is to find a good solution to accurately estimate
the Doppler frequency when the signal is interfered by the inevitable multiplicative noise
in the experiment, the multiplicative noise is not considered as noise when calculating
the SNR in Figure 4.21. As can be seen in Figure 4.17, this kind of noise cannot being
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distinguished in most cases when the length of the sampling data is insufficient. In Figure
4.21, the white Gaussian noise has a small impact on NRMSE after 10 dB. When the SNR
is larger than 20 dB, the NRMSEs cannot be improved with the increase of the SNR. The
NRMSE of the FP method is better than the other three methods, and the NRMSE of
the FH is slightly better than the FR method.
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Figure 4.21: NRMSEs of estimated frequency of SMI signals using different methods in
different noise condition.

In general, the FH interpolation method is more applicable for sinusoid that is not
interfered by adjacent frequencies. In the case of SMI signals corrupted by the speckle
effect that leads to spectral broadening, the FP method is a better solution.

4.4.5 Experimental evaluation

In this section, experiments are conducted to compare the global performance of the
methods presented in the previous sections. The sensor head used to measure velocity
consists of a commercial 785 nm laser diode and a collimation lens. The distance between
the sensor head and the target surface is about 9.5 mm and the incident angle θ is 60◦.
The target is a white covered disc with the diameter of 40 mm attached on the shaft
of the servo motor, of which the rotary speed is controlled by the feedback of a 21 bits
optical encoder. To obtain a good velocity reference, the motor is performed to have
constant rotary speed. The SMI signal modulated by the back-scattering light is acquired
by time tracing the small variation of the optical power with the built-in photo-diode. The
photocurrent from the photo-diode consists of a direct current bias and the SMI signal.
The photocurrent is converted into voltage for further processing, and the DC bias is
removed from the signal with the HPF. Since the SMI signal is extraordinarily small, the
operation amplifier should have much lower offset voltage and noise. After the TIA, the
filter, and the amplifier circuits, the signal is digitized for further processing. The velocity
measurements are performed over the velocity range from 3 rpm (6.28 mm/s) to 400 rpm
(837 mm/s).

Figure 4.22 shows an example of the time-domain SMI signal. The SMI works under
weak feedback regime. The speckle phenomenon is observed as a random amplitude that
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strongly modulates the SMI fringes.
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Figure 4.22: An example of the experimental SMI signal.
Figure 4.23 shows the estimated Doppler frequencies versus the rotational speed using

FFT, FR, FH, and FP methods. Each frequency is the average value of 40 Doppler
frequencies. Estimated Doppler frequencies using the FR, FH, and FP methods show has
a quite good linear relationship with the rotational speed, while the estimated frequency
using the FFT method has a very poor linearity. The errors of estimated frequencies,
referring to (4.47), are shown in Figure 4.24. Since the error of the FFT method is much
larger than other methods, it is not drawn in Figure 4.24. The maximum errors of FFT,
FR, FH, and FP methods in Figure 4.24 are 1.61%, 0.42%, 0.35%, and 0.28%, respectively.

The NRMSEs of the estimated frequencies using different methods are listed in Ta-
ble 4.3. Figure 4.25 shows the NRMSEs of frequency estimation using different methods.
The FP method has a slightly better NRMEs than the FH interpolation method. This
demonstrates that the FP method is also applicable to estimate the Doppler frequency of
the SMI signal.
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Figure 4.23: Estimated Doppler frequencies using the FFT, FR, FH, and FP methods
versus the rotational speed.

4.4.6 Conclusion

This section compares the performance of different FFT interpolation methods for esti-
mating the Doppler frequency of SMI signals. Several results of applying these methods
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Figure 4.24: Errors of estimated Doppler frequencies using the FFT, FR, FH, and FP
methods versus the rotational speed.
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Figure 4.25: NRMSEs of estimated Doppler frequencies using the FFT, FR, FH, and FP
methods versus the rotational speed.

Table 4.3: NRMSEs of estimated frequency versus rotational speed.

Speed (rpm) FFT FR FH FP
3 21.6× 10−3 18.3× 10−3 18.4× 10−3 16.9× 10−3

50 19.8× 10−3 20.0× 10−3 17.1× 10−3 15.7× 10−3

100 1.1× 10−3 17.2× 10−3 15.6× 10−3 10.8× 10−3

150 15.3× 10−3 16.2× 10−3 14.2× 10−3 13.1× 10−3

200 27.5× 10−3 14.3× 10−3 12.2× 10−3 11.9× 10−3

250 5.2× 10−3 11.2× 10−3 9.6× 10−3 7.8× 10−3

300 15.8× 10−3 8.8× 10−3 12.5× 10−3 8.9× 10−3

350 34.1× 10−3 15.0× 10−3 15.8× 10−3 15.1× 10−3

400 18.0× 10−3 14.9× 10−3 12.9× 10−3 12.0× 10−3

on a set of simulated signals have been compared to verify their performance. The ex-
perimental results proved the conclusion of the simulation and demonstrated that the
parabolic fit method can estimate the frequency of SMI signals.

The SMI sensor has the advantages of small feature size and low cost. One big is-
sue is the existence of multiplicative noise, making the estimation of Doppler frequency
difficult. A suitable and efficient digital signal processing method should be developed.
The parabolic fit method considers the Gaussian distribution of the time-domain signal
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and the spectral broadening of the frequency-domain signal. It provides a slightly better
estimation of the Doppler frequency than the FR and FH methods. Other good solutions
for precisely estimating the Doppler frequency are needed for further investigation.

4.5 Maximum likelihood estimation of Doppler fre-
quency

The main goal of this section is to study the quality of Doppler frequency estimation of
the SMI signal by using the MLE. The MLE is a method to estimate parameters of a
statistical model given observations. It provides the estimated parameters by finding the
parameter values that maximize the likelihood. In general, the MLE has the asymptotic
properties of being unbiased, achieving the CRLB, and having a Gaussian probability
density function (PDF). Therefore, it can be said that it is asymptotically optimal.

The signal model regarding the SMI in the weak feedback regime, as given in (4.32),
can be considered as a Trigonometric with modulated amplitude [146, 147]. The MLE
method is practical when the SMI signal has a broad spectrum broadening that makes it
difficult to estimate the accurate Doppler frequency. The SMI signal could be regarded as
a stationary Gaussian random process, assuming that except for one or more parameters,
its power spectrum is known. In this section, a parameter method based on the MLE
optimizing the estimated parameters by an iterative procedure is presented.

4.5.1 Theory of maximum likelihood estimation

The first step is to mathematically model the data to determine a good estimator.
Assuming a N -point data set {x[0], x[1], . . . , x[N − 1]} that depends on an unknown
parameter θ. Because the data is inherently random, it is described by its PDF,
p(x[0], x[1], . . . , x[N − 1]; θ). If N = 1 and θ denotes the mean, the PDF is written
as

p(x[0]; θ) = 1
(2πσ2)1/2 exp

[
− 1

2σ2 (x[0]− θ)2
]
. (4.49)

According to the model of SMI signal given in (4.32), the MLE is defined with the
parameters θ = [A, η, ta, fD, φ0, h(ti)]T that maximizes the likelihood function. Generally,
the MLE has the asymptotic properties of being unbiased, achieving CRLB for high SNR
and having the PDF [148]:

p(x;θ) = 1
(2πσ2)N/2 exp

[
− 1

2σ2

N−1∑
n=0

(xn − sn)2
]
, (4.50)



84 CHAPTER 4. VELOCITY MEASUREMENT WITH SMI

where x = [x[0], x[1], . . . , x[N − 1]]T . It is clear that the value of θ affects the probability,
therefore, the value of θ could be able to be inferred from the observed value x. Assuming
the Gaussian observations x ∼ N (µ(θ),C(θ)), then the PDF can be written as [148]

p(x;θ) = 1
(2π)N/2 det1/2[C(θ)]

exp
[
−1

2(x− µ(θ))TC−1(θ)(x− µ(θ))
]
, (4.51)

where µ(θ) is the N × 1 mean vector and C(θ) is the N × N covariance matrix. The
PDF is termed as a likelihood function when it is viewed as a function of θ with x fixed.
The natural logarithm of the likelihood of θ is defined as

Γ(x;θ) = ln[p(x;θ)]. (4.52)

The maximum likelihood estimate θ̂ is the value that maximizes the logarithm Γ(x;θ).
Generally, it can be found explicitly by solving the equation,

∂Γ(x;θ)
∂θ

= 0. (4.53)

4.5.2 Asymptotic expression

It is difficult to evaluate the MLE of the Doppler frequency in the time domain since a
large dimension covariance matrix in (4.51) needs to be inverted. Another approximation
method can be used with the power spectrum, which is a known function of the parameter
θ, when the random process is stationary, Gaussian, and zero mean. Almost any wide
sense stationary Gaussian random process x[n] may be modeled as the output of a causal
linear shift invariant filter with a narrow band-pass frequency response H(f) driven at
the input by white Gaussian noise µ[n]. With these assumptions, x[n] can be written
as [148]

x[n] =
∞∑
k=0

h[k]µ[n− k], (4.54)

where h[0] = 1. The only condition is that the PSD should satisfy∫ f2

f1
lnP (f)df > −∞. (4.55)

The signal PSD is contained in the [f1, f2] interval.

The PSD of x[n] is
P (f) = |H(f)|2σ2

µ, (4.56)
where σ2

µ is the variance of µ[n], H(f) = ∑∞
k=0 h[k] exp(−j2πfk).

If N is larger, the representation is approximated by

x[n] =
n∑
k=0

h[k]µ[n− k], (4.57)
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Therefore, x can be written as

x =


h[0] 0 0 . . . 0
h[1] h[0] 0 . . . 0
... ... ... . . . ...

h[N − 1] h[N − 2] h[N − 3] h[N − 3] . . . h[0]


︸ ︷︷ ︸

H

µ, (4.58)

where H has a determinant of (h[0])N = 1, thus it is invertible. Because µ ∼ N (0, σ2
µI),

the PDF of x is N (0, σ2
µHHT), that is [148]

p(x;θ) = 1
(2π)N/2 det1/2(σ2

µHHT)
exp

[
−1

2x
T (σ2

µHHT)−1x
]
. (4.59)

Because
det(σ2

µHHT) = σ2N
µ det2(H) = σ2N

µ , (4.60)

xT (σ2
µHHT)−1x = 1

σ2
µ

µTµ, (4.61)

then,

p(x;θ) = 1
(2πσ2

µ)N/2 exp
(
− 1

2σ2
µ

µTµ

)
. (4.62)

By the Parseval’s theorem

1
σ2
µ

µTµ = 1
σ2
µ

N−1∑
n=0

µ2[n]

=
∫ f2

f1

|X(f)|2
P (f) df.

(4.63)

And
ln σ2

µ =
∫ f2

f1
ln σ2

µdf =
∫ f2

f1
lnP (f)df −

∫ f2

f1
ln|H(f)|2df. (4.64)

Because
∫ f2
f1 ln|H(f)|2df = 0, we have

ln σ2
µ =

∫ f2

f1
lnP (f)df. (4.65)

Finally, the asymptotic log PDF is [148]

ln p(x;θ) = −N2 ln 2π − N

2

∫ f2

f1
lnP (f)df − 1

2

∫ f2

f1

|X(f)|2
P (f) df. (4.66)
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The approximate θ̂ could be found by maximizing the approximate log likelihood func-
tion

Γ(x;θ) = −1
2

∫ f2

f1

[
N lnP (f) + I(f)

P (f)

]
df, (4.67)

where I(f) is the PSD obtained with the periodogram method,

I(f) = 1
N

∣∣∣∣∣
N−1∑
n=0

x[n] exp(−j2πfn)
∣∣∣∣∣
2

, (4.68)

and the dependence of Γ(x;θ) on θ is through the PSD P (f).

4.5.3 Doppler frequency estimation

In the case of Doppler frequency estimation, the equation has the form of

Γ(x; fD) = −1
2

[
N
∫ f2

f1
lnP (f)df +

∫ f2

f1

I(f)
P (f)df

]
, (4.69)

where fD is the Doppler frequency. Assume that for all fD, P (f1) = P (f2), then the first
integral in (4.69) is independent of fD. Therefore, the maximization of (4.69) could be
obtained by minimizing

Ψ(f ; fD) =
∫ f2

f1

I(f)
P (f)df. (4.70)

The minimization of (4.70) cannot be obtained directly. But it can be accomplished
with the Newton-Raphson or scoring method. This leads to an iterative procedure that
optimizes the estimated parameters.

The asymptotic value of the CRLB has the expression [148]

var(θ̂) ≥
N

2

∫ f2

f1

(
∂P (f)
∂θ

/
P (f)

)2

df

−1

=
N

2

∫ f2

f1

(
∂ lnP (f)

∂θ

)2

df

−1

.

(4.71)

And in the case of Doppler frequency estimation, the CRLB is [149]

var(f̂D) ≥
N

2

∫ f2

f1

(
dP (f)
dfD

/
P (f)

)2

df

−1

=
N

2

∫ f2

f1

(
d lnP (f)
dfD

)2

df

−1

.

(4.72)



4.5. MLE FOR ESTIMATING DOPPLER FREQUENCY 87

According to the CRLB, the lack of knowledge of the PSD amplitude does not affect the
estimation variance of the Doppler frequency when the assuming P (f1) = P (f2) holds.

The FFT algorithm is a typical way for Doppler frequency estimation when the spec-
trum broadening is small. In this section, it focuses on the condition that the signal has
a broad spectrum broadening, and the FFT algorithm could not accurately estimate the
Doppler frequency anymore. Figure 4.26 shows the processing steps of velocity measure-
ment with the MLE method. The initial Doppler frequency is estimated by finding the
maximum peak of the spectrum from the FFT algorithm. To minimize the MLE function
in equation (4.70), the derivative is taken and set equal to zero, and it attempts to solve
this equation iteratively,

g(f ; fD) = ∂Ψ(f ; fD)
∂f

= 0. (4.73)

The Doppler frequency obtained with the spectrum is considered as the initial value
fD0. If g(f ; fD) is approximately linear near fD0, we have

g(fD) ≈ g(fD0) + dg(fD)
df

∣∣∣∣∣
fD=fD0

(fD − fD0). (4.74)

With the iterative procedure, the Doppler frequency minimizing (4.70) could be ob-
tained. However, it may not be the global minimum, but possibly only a local minimum.
To avoid this problem, it is essential to determine the initial point close to the global min-
imum. The optimized Doppler frequency is then used to obtain the velocity v through
(2.63).
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Figure 4.26: Processing steps of velocity measurement with the MLE method.

4.5.4 Performance evaluation

To illustrate the global performance of the method, Monte-Carlo simulations are car-
ried out with SMI signals obtained from (4.32). Following, the experimental results are
presented as well.
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To verify the ability of the MLE method to estimate the Doppler frequency of the SMI
signal, 100 Monto-Carlo runs are used. The actual Doppler frequency is 1000 Hz. For
each run, the Doppler frequency is obtained by the MLE. In the simulation, the Newton-
Raphson method is used to accomplish the numerical minimization. The RMSE of the
Doppler frequency using different methods versus the number of samples N is displayed in
Figure 4.27. The MLE method has a much smaller RMSE than the FFT and FH methods
for long data record lengths. The FH method is more accurate than the FFT method for
short data record lengths. As the value of N is larger than 1024, the RMSEs of the FH
method and the FFT method are very similar.
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Figure 4.27: RMSEs of the estimated Doppler frequency with different methods versus
number of samples.

Table 4.4, Table 4.5, and Table 4.6 show the RMSEs of estimating different frequencies
using different methods. The record data lengths are N = 256, N = 512, and N = 1024,
respectively. It can be seen that the RMSEs of the MLE method, RMSEMLE, are smaller
than the RMSEs of the other two methods for different data record lengths. With the
increase of the record length, the difference between the RMSEMLE and RMSEFH is more
significant. The RMSEs of the FH method, RMSEFH, are smaller than RMSEs of the FFT
method, RMSEFFT, as N = 256 and N = 512, while the RMSEs of these two methods
are quite similar in the case of N = 1024.

Table 4.4: RMSEs of estimated frequencies using different methods, N = 256.

f0(Hz) RMSEFFT(Hz) RMSEFH(Hz) RMSEMLE(Hz)
500 34.0 11.5 11.5
1000 20.6 17.1 13.0
1500 27.0 22.6 18.0
2000 44.3 27.2 22.0
2500 25.9 28.2 19.1
3000 18.0 14.1 4.0

The sensor head applied to measure velocity consists of a commercial 785 nm laser
diode and a collimation lens. The target is a white covered disc with the diameter of 40
mm attached on a servo motor, of which the rotary speed is controlled by the feedback of
a 21 bits optical encoder. To obtain a good velocity reference, the motor is performed to
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Table 4.5: RMSEs of estimated frequencies using different methods, N = 512.

f0(Hz) RMSEFFT(Hz) RMSEFH(Hz) RMSEMLE(Hz)
500 11.9 9.5 6.8
1000 23.2 16.5 10.9
1500 20.2 16.4 10.5
2000 20.8 19.4 8.8
2500 5.5 19.1 7.9
3000 26.4 26.3 10.7

Table 4.6: RMSEs of estimated frequencies using different methods, N = 1024.

f0(Hz) RMSEFFT(Hz) RMSEFH(Hz) RMSEMLE(Hz)
500 11.2 6.6 4.8
1000 11.2 10.3 3.7
1500 12.0 12.0 4.0
2000 12.1 12.1 5.1
2500 0.0 18.6 1.8
3000 18.0 14.1 4.1

have constant rotating speed. The self-mixing signal modulated by the back-scattering
light was acquired by time tracing the small variation of optical power with the built-in
photo-diode.

Figure 4.28 shows the Doppler frequencies of the SMI signal and their relative errors
versus velocities. This relative error is calculated as the subtraction of the estimated
velocity and the actual velocity divided by the measurement range of velocity. It can be
seen that Doppler frequencies obtained with all three methods are roughly linear to the
velocities. The errors in Figure 4.28 clearly show that the errors obtained by the MLE
method are superior to the other two methods. The errors of the MLE method are within
0.5%, while the errors of FFT and FH are within 1.1% and 0.8%, respectively.

To further compare the results of the estimated velocities, the RMSEs of the estimated
frequency using different methods are shown in Figure 4.29. The RMSEs of the MLE
method are much smaller than the FFT and FH methods. The results of the FFT and
FH are similar, and the FH method is only slightly better than the FFT method.

4.5.5 Conclusion

The FFT algorithm is a typical way for Doppler frequency estimation when the spectrum
broadening is small. In this section, it focuses on the condition that the signal has a
broad spectrum broadening. A parameter method based on the MLE is presented. It
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Figure 4.28: The estimated Doppler frequency and the estimated error versus velocities.
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Figure 4.29: RMSEs of the estimated Doppler frequency versus velocities.

optimizes the estimated parameters by an iterative procedure, thus generates an accurate
estimation. The parameter optimization is implemented in the frequency domain, and
it is also possible to perform it in the correlation domain. The comparison of the FFT
method, FH method, and MLE method clearly shows that the RMS frequency error and
relative error of the MLE method are better than the other two methods.

Although the MLE method for Doppler frequency estimation could obtain better ac-
curacy, the iterative procedure is time-consuming. That’s why it is presently not widely
applied. However, it has great potential. With the speed and flexibility of digital sig-
nal processors increase, the MLE method could be implemented efficiently for Doppler
frequency estimation of SMI in the future.
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4.6 Extended Kalman filter

4.6.1 Introduction

The interpolation methods and MLE method for accurate Doppler frequency estimation
were introduced in previous sections. They are both the spectral analysis methods based
on the use of N points FFT. The main disadvantage of the classic spectral estimation
techniques is in the distorting impact of the inherent windowing of the finite data set.
This remark is important because the velocimeter application requires a high-precision
estimation of the Doppler frequency. Therefore, a long data sequence is required.

In this section, to reduce the record length needed in traditional FFT based methods, an
algorithm based on the EKF for velocity measurement using the SMI is proposed. Based
on the model of the self-mixing interference signal, the multiplicative noise caused by
the speckle effect and the direction of the velocity are taken into account. The numerical
simulations illustrate that this parametric method can track the velocity and discriminate
the direction of the velocity without any other calculation or modulation, even when
the feedback level is weak. The SMI sensor working under weak feedback is tested in
comparison with a commercial velocimeter.

The Doppler frequency of the SMI signal gives only the absolute value of the velocity,
but not the sign of the velocity. Based on the direction of the inclination of the power
fringe, the direction of motion can be determined. The usually used method is to dif-
ferentiate the SMI signal, and the sign of the differentiation discriminates the direction.
However, in practice, some effects impact the signal (such as the speckle effect and weak
feedback level), making it challenging to obtain the direction. Tsukuda proposed another
method in 1994. The direction was successfully discriminated using the triangular cur-
rent modulation of the laser diode in a velocity range of 4-30 mm/s [89]. In 2004, G.
Plantier et al. proposed a second-order adaptive linear predictor filter, which enables to
track the digital instantaneous Doppler frequency [150]. A model of the output signal of
the laser diode was reported, which showed that the sensor and its associated algorithm
have a global first-order low-pass transfer function with a cutoff frequency expressed as a
function of the speckle perturbations, the SNR, and the mean Doppler frequency.

This section aims to design a velocity estimation method based on the model of the SMI
that can measure the target speed with a sign using only one optical channel without any
additional modulation. Accordingly, the parametric method based on the EKF is proposed
to estimate the velocity and its direction based on the model of SMI signal.

This section is organized as follows: the theory of the EKF and its application for
estimating velocity from the SMI signal are discussed in Section 4.6.2 and Section 4.6.3.
Following, Section 4.6.4 and Section 4.6.5 show the simulative and experimental results
using the developed EKF method to confirm its effectiveness. Finally, concluding remarks
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are summarized in Section 4.6.6.

4.6.2 Theoretical equations

The EKF is widely used in many areas of signal processing, control, and optimization, such
as estimation [151, 152], adaptive filtering, prediction, robust control, state observation,
system identification, target tracking, training of neural networks [153]. The EKF is an
extension of the KF, which was firstly introduced by R.E. Kalman [154] as a recursive
solution to the discrete-data linear filter problem. It is characterized by fast convergence
and robustness in most cases. To reduce the number and complexity of the numerical
calculations, the EKF has been proposed to estimate the Doppler frequency [155, 156].
EKF targets to minimize the covariance of the state estimation error of a nonlinear system.
It is an optimum filter when the system uncertainties and measurement noises exist.

For linear systems, the dynamics matrix, measurement matrix, and fundamental matrix
of the systems are all linear. However, these matrices of the EKF may be nonlinear
because they depend on the system state estimates. The Riccati equations required for
the computation of the Kalman gain are identical to those of the linear case.

The state-space form of a non-linear system is expressed as

ẋ = f(x,µ) +w, (4.75)

where x = [x1, · · · , xn]T ∈ Rn is a vector of the system states, f(x) is a nonlinear function
of those states, µ is the control vector, µ = [µ1, · · · , µn]T ∈ Rm, n,m ∈ N. R and N are
real and natural numbers, respectively. w = [w1, · · · , wn]T ∈ Rn is a random zero-mean
process described by the process-noise matrix Q, i.e., system modeling uncertainties,
which is defined as

ε
{
wwT

}
= σ2

w = Q, (4.76)

where ε {} denotes the expected value.

The measurement equation of the EKF is considered as a nonlinear function of states,

y = h(x) + v, (4.77)

where y = [y1, · · · , ym]T ∈ Rm is the measurement vector, v = [v1, · · · , vm]T ∈ Rm is a
zero-mean random process.

The measurement-noise matrix R describing the random noise v is given by

R = σ2
v = ε

{
vvT

}
. (4.78)
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w and v are assumed to be independent (i.e., ε {ww} = On×m, while ε {w} =
On and ε {v} = Om) and with normal probability distributions (i.e.,P(Xi) =

1
δXi

√
2π exp −(ε{Xi}−Xi)2

2δ2
X

, with δ2
X = ε{(ε{Xi} −Xi)2}, and Xi ∈ {w,v}), P {·} represents

the distribution calculation.

In the discrete system, the nonlinear measurement equation can be written as

yk = h(xk) + vk. (4.79)

The state transition model is

xk = f(xk−1,µk) +wk. (4.80)

The estimation error is defined as

ζk = yk − ŷk, (4.81)

where ŷk is the estimated state.

Since the system and measurement equations are nonlinear, a first-order approxima-
tion is used to define the state transition and observation matrices by the following Jaco-
bians [157]

Fk = ∂f(x,µ)
∂x

∣∣∣∣∣
x=x̂k

=



∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

· · · ∂fn

∂xn

... ... . . . ...
∂fn

∂x1
∂fn

∂xn
· · · ∂fn

∂xn

, (4.82)

Hk = ∂h(x)
∂x

∣∣∣∣∣
x=x̂k

=



∂l1
∂x1

∂l1
∂x2

· · · ∂l1
∂xn

∂h2
∂x1

∂h2
∂x2

· · · ∂hn

∂xn

... ... . . . ...
∂hn

∂x1
∂hn

∂xn
· · · ∂hn

∂xn

. (4.83)

To facilitate understanding and simplify the algorithm description, a recursive algorithm
including the implementation instruction for a generalized nonlinear system is listed in
Algorithm 3, where Pk is a covariance matrix representing errors in the state estimates
after an update and P−k is the covariance matrix representing errors in the state estimates
before an update. Because the functions f and h are nonlinear functions of the state
estimates, the Kalman gain cannot be computed off-line. The whole process of EKF
involves two sub-processes, which are prediction and correction. In the prediction step,
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the current state variables are estimated along with their uncertainties. Once the next
measurement that is corrupted with some amount of error is observed, these estimates
are updated using a weighted average. The EKF is recursive and can run in real-time,
using only the present input measurements and the previously calculated state and its
uncertainty matrix, no additional past information is required.

If the dynamic model of a linear KF matches the real world, the covariance matrix Pk

can be used not only to calculate the Kalman gain, but also to provide a prediction of
the error in the state estimates. The EKF does not offer such guarantees, in fact, the
EKF covariance matrix may indicate excellent performance when the filter performance
is poor or even broken. A basic feature of the EKF is that the Jacobian Hk in the
equation of the Kalman gain Kk serves to correctly propagate or “magnify” only the
relevant components of the measurement information. For example, if there is no one-to-
one mapping relationship between the measurement yk and the state through the function
h, then the Jacobian Hk affects the Kalman gain, so it will only magnify the portion of
the residual yk − h(x̂k) that does affect the state.

1 function EKF(x,µ, k)
2 if k = 0 then
3 State initialization: x̂0, P0 = diag, k = 1;
4 end if
5 if k > 1 then
6 Prediction:
7 Predicted state estimate, x̂−k = f(x̂k−1,uk−1);
8 System Jacobian matrix calculation, F = ∂f(x,u)

∂x

∣∣∣
x=x̂−

k

;
9 Predicted state covariance, P−k = FPk−1FT + Qk;

10 Measurement Jacobian matrix calculation, H = ∂h(x,u)
∂x

∣∣∣
x=x̂−

k

;
11 Correction:
12 Optimal Kalman gain, Kk = P−k HT

(
HP−k HT + Rk

)−1
;

13 Corrected state estimate, x̂k = x̂−k + Kk

(
yk − h(x̂−k )

)
;

14 Corrected estimate covariance, Pk = (I−KkH) P−k ;
15 end if
16 k = k + 1;
17 end function

Algorithm 3: The EKF for nonlinear system.

In practical implementation, the measurement noise covariance R is usually measured
in advance. It is generally possible to measure the measurement error covariance R
by taking some off-line sample measurements. The determination of the process noise
covariance Q is usually tricky, because commonly it is not able to directly observe the
process that is estimated. Usually, a superior filter performance can be obtained by tuning
the filter parameters Q and R, and the tuning is generally implemented off-line.
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4.6.3 Tracking the self-mixing signal

The analysis of optical feedback in semiconductor lasers relies on the rate equation model
published by Lang and Kobayashi in 1980 [64]. The back injected light interferes with the
light existing in the laser cavity and changes the threshold condition of semiconductor
laser. As a consequence, the emitted power of the semiconductor laser changes as the
injected current remains constant while the target is being displaced [63,158]. The emitted
power could be expressed as

P (t) = P0 [1 +m cos (φF (t))] , (4.84)

where P0 is the power emitted by the semiconductor laser without optical feedback, m is
the modulation index. According to the equations first derived by Lang and Kobayashi,
the theory of SMI has been researched in a massive number of articles. The phase equation
can be achieved by (2.55),

φF (t) = φ0(t)− C sin [φF (t) + arctanα] , (4.85)

where α is the linewidth enhancement factor and C is the feedback factor.

Since the amplitude and frequency of laser field are modulated by the term φ = 2kL,
where k = 2π/λ, the phases are given by

φF (t) = 2πνF (t)τ(t) = 2πL0 + v(t)∆t
1
2λF (t) , (4.86)

φ0(t) = 2πν0(t)τ(t) = 2πL0 + v(t)∆t
1
2λ0(t) , (4.87)

where φF (t) and φ0(t) are the phases with and without optical feedback, respectively.
νF (t) and ν0(t) represent the laser frequencies with and without optical feedback. τ(t) is
the round-trip time delay. λF (t) and λ0(t) are the laser wavelengths with and without
optical feedback. L0 is the initial distance between the laser and the target. v(t) is the
velocity component of the target in the direction of the light beam. These equations
eqs. (4.84) to (4.87) are usually used as the signal model to retrieve displacement when
SMI is used to measure displacement. Regarding the use of SMI for velocity measurement,
the signal can also be considered as a special form of this model, in which the speckle
effect modulates the amplitude.

The behavior of laser diodes depends significantly on factor C, whereas the SMI signal
is only slightly affected by the factor α. For ordinary lasers, such as gas lasers, the value of
the linewidth enhancement factor α is almost equal to zero. The α of usual semiconductor
lasers is a positive value from 3 to 7 [57]. Sabina et al. performed some numerical
simulations to demonstrate that the factor α does not critically affect the displacement
measurement [96]. The effect of the value of α on the estimated displacement will be
discussed in detail in the following chapter in Figure 5.3 and Figure 5.13. In the model
parameters, α is considered as a constant with the value of 4. Applying the EKF requires
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a system model. In this case, the system state to estimate is x =
[
A φF v a C

]T
.

where A is the amplitude of the signal, φF is the phase of SMI signal with optical feedback,
v and a are the velocity and acceleration of the moving target, and C is the feedback factor.
The system transition function can be written as

f(x) =



A

φF + 1
1+C cos(φF +arctanα)
v + aTs

a

C


, (4.88)

where Ts is the sampling period. The observation function is

H =
[

cos(φF ) −A sin(φF ) 0 0 0
]
. (4.89)

The partial derivative in the transition matrix is easily evaluated, thereby obtaining
the linearized transition matrix

F =



1 0 0 0 0
0 ∂f

∂φF

∂f
∂v

∂f
∂a

∂f
∂C

0 0 Ts 1 0
0 0 0 1 0
0 0 0 0 1


, (4.90)

where,

∂f

∂φF
= 1, (4.91)

∂f

∂v
= 4πTs
λ[1 + C cos(φF + arctanα)] , (4.92)

∂f

∂a
= 4πT 2

s

λ[1 + C cos(φF + arctanα)] , (4.93)

∂f

∂C
= −4πvTs cos(φF + arctanα)
λ[1 + C cos(φF + arctanα)]2 . (4.94)

The initial covariance matrix is chosen that the off-diagonal elements are zero, and
the diagonal elements represent the square of the best guess in the errors of the initial
estimates. It is a significant step to choose the values of matrices P0, Q, and R, because
they will greatly affect the performance of the EKF and even the convergence.
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P0 represents the covariance (i.e. mean-squared errors) from the initial condition, and
it determines the initial amplitude of the transient behavior. It expresses how much the
initial estimate of the state x0 is known. Since the coupling effect between the system
states is usually neglected, the value of P0 is often selected as a diagonal matrix.

Q and R denote the model accuracy (or model confidence) and measurement noise
characters, respectively. A large value of Q represents that there is considerable uncer-
tainty in the model parameters and will result in a larger Kalman gain (i.e. a faster filter
dynamics). On the other hand, a small value of Q indicates a high degree of confidence in
the system model, and may lead to slow measurement update (i.e. slow but smooth filter
dynamics). Similarly, the value of R is enlarged only when the measurement is greatly
affected by noise.

In this work, these parameters are selected partially following the guiding principles of
the proper parameter selection given in previous articles, and partially through trial and
error manner.

4.6.4 Simulation

To illustrate the global performance of the proposed method, numerical simulations are
carried out. The initial point of the EKF is important for estimation, therefore, in the
simulation, the EKF starts to estimate the velocity only when the signal amplitude is
greater than 0.5. Usually, the feedback level is weak in the self-mixing velocimeter, espe-
cially when the signal is severely corrupted by multiplicative noise caused by the speckle
effect. Therefore, in the simulation, the feedback factor C of the simulated signal is set
to 0.3.

Figure 4.30 shows an estimate of a positive square wave velocity under noise-free condi-
tion. The signal amplitude is not modulated by the speckle effect , therefore the amplitude
is a constant. The results show that the EKF has a very good behavior for tracking the
signal, the displacement, and the velocity, even when the inclinations of the fringes are
not obvious. After approximate five fringes the estimated velocity is close to the real one.
The estimated displacement L̂ has a linear relationship with time and is very close to the
actual displacement L.

Errors of the estimated displacement δL and velocity δv are shown in Figure 4.31. It
can be seen that the error ∆L of estimated displacement is less than 20 nm. The error
δv of estimated velocity is 0.06% after 0.02 ms. This error δv can be further reduced by
changing the parameter of EKF but this leads to lower response speed.

To further test the robustness of the proposed method, another case where the actual
velocity is negative. We can see from Figure 4.32 that the filter can track the negative
displacement L̂ and the negative velocity v̂. Besides, the directions of the displacement
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Figure 4.30: Estimation of positive step velocity with a simulated noise-free and unmod-
ulated SMI signal. The Û and U are tracked signal and ideal signal. L̂, L, v̂, and v are
estimated displacement, ideal displacement, estimated velocity, and ideal velocity, respec-
tively.
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Figure 4.31: Errors of estimated positive velocity in Figure 4.30. δL and δv are the
estimated errors of L̂ and v̂.

and velocity are correctly discriminated. Estimated errors are shown in Figure 4.33, which
indicates that under these circumstances the EKF tracks the negative displacement and
the negative velocity fairly rapid and they are approximate to the actual displacement
and velocity after around 0.01 ms. The error δL of the estimated displacement is less than
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Figure 4.32: Estimation of negative step velocity with a simulated noise-free and unmod-
ulated SMI signal.
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Figure 4.33: Errors of estimated negative velocity in Figure 4.32.

20 nm and the error δv of the estimated velocity is about 0.06%. These results are very
similar to the positive velocity in Figure 4.30 and Figure 4.31.

In practice, when a rough target back-scatters the coherent light from the laser diode,
the SMI signal will be corrupted by the multiplicative noise resulting from the speckle
effect. It causes random modulation of the signal amplitude and leads to the loss of the
ideal waveform of the signal. Therefore, to further test the characteristics of the EKF,



100 CHAPTER 4. VELOCITY MEASUREMENT WITH SMI

another case is run in which the noise is added to the signal and the signal amplitude is
modulated.

Figure 4.34 shows the estimate results of the positive velocity with noise and amplitude-
modulated signal. The multiplicative noise that modulates the amplitude is taken into
consideration in the signal model. At first glance, the EKF seems to be working properly
and can appropriately track the signal as well as the velocity and the displacement.
Errors of estimated displacement and velocity are shown in Figure 4.35. It can be seen
that the EKF correctly estimates the positive velocity and displacement. The estimated
displacement and velocity are close to the actual values after about 0.01 ms. It is similar
to the results of the noise-free condition in Figure 4.31. The error of the estimated
displacement is 20 nm, which is the same as the noise-free condition. The error of the
estimated velocity is 0.2%, which is worse than the error under ideal condition.
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Figure 4.34: Estimation of positive velocity with a simulated noisy signal, of which the
amplitude is modulated.

Another case is run where the actual velocity is negative, as can be seen in Figure 4.36.
It is observed that the signal amplitude is modulated, and the actual quantities and their
estimates are quite close. The direction of the displacement and velocity is determined
correctly. The rising time of the estimated step velocity is similar to other cases afore-
mentioned. Errors of estimated displacement and velocity are shown in Figure 4.37. The
error δL of estimated displacement is 20 nm that is the same as other cases. The error δv
of the estimated velocity is 0.3%, which is similar to the estimated error in Figure 4.35.

In general, the simulation results demonstrate that the EKF can estimate velocity
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Figure 4.35: Errors of estimated positive velocity in Figure 4.34.
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Figure 4.36: Estimation of negative velocity with a simulated noisy signal that the am-
plitude is modulated.

and displacement from the SMI signal in both noise-free conditions and noise conditions,
even when the signal amplitude is modulated. Meanwhile, it can correctly discriminate
the directions of displacement and velocity. The simulation also shows that noise and
modulated amplitude will increase the velocity estimation error.
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Figure 4.37: Errors of estimated negative velocity in Figure 4.36.

4.6.5 Experiment

In this section, the implementation of the proposed algorithm to obtain velocity in the
experiment is described and explained in detail. The initial values of x, P, Q, and R for
the experiment are chosen as,

x0 =
[

0.4 0.01 0.01 10 0.5
]T
, (4.95)

P0 =



1 0 0 0 0
0 1 0 0 0
0 0 10 0 0
0 0 0 1 0
0 0 0 0 1


, (4.96)

Q0 =



0.005 0 0 0 0
0 0.005 0 0 0
0 0 10−5 0 0
0 0 0 40 0
0 0 0 0 10−8


, (4.97)

R0 = 1. (4.98)

The experiment setup of the self-mixing sensor is presented in Figure 4.2. The reference
velocity v is obtained from the average of the velocity measured with LDV.
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Figure 4.38: Positive velocity estimation with experimental signal.
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Û

U

−0.40

−0.20

0.00

Ve
lo

ci
ty

[m
/s

]

v̂
v

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

−1.00

0.00

1.00

Time [ms]

Ve
lo

ci
ty

er
ro

r
[%

]

δv

Figure 4.39: Negative velocity estimation with experimental signal.

Figure 4.38 and Figure 4.39 show estimation of the positive and negative velocity from
the experimental signals. It is seen that the amplitude of the SMI signal is strongly



104 CHAPTER 4. VELOCITY MEASUREMENT WITH SMI

altered by speckle effect. In Figure 4.38, the EKF successfully tracks the experimental
SMI signal and velocity. After around 7 fringes, the EKF can estimate the velocity quite
good. This time largely depends on the initial point. The error of velocity is about
0.2%. In Figure 4.39, the EKF correctly tracks the negative velocity and discriminates
the direction of the velocity. The estimated velocity is close to the reference velocity after
0.03 ms, and after around 0.065 ms the error is 0.6%.

The application of this algorithm is not limited to a unidirectional movement, but
is developed for measuring arbitrary movement. Figure 4.40 shows the estimation of an
experimental variable velocity from positive to negative. The results are very encouraging
that the SMI signal is correctly tracked, and the velocity, the displacement, and the
direction of movement are properly retrieved.
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Figure 4.40: Estimation of a variable velocity from positive to negative in the experiment.

Taking the rotational speed of the motor as the abscissa, the measured velocity, and
the errors as the ordinate, draw Figure 4.41. The range of the measured velocity is from
0.1 m/s to 2 m/s. The measured velocities in Figure 4.41 are the average value of the
measured velocities, and the error bars represent the maximum error and minimum error
of the measured velocity. It can be seen that the velocities measured by the LDV have
superior linearity compared with the SMI sensor. Nevertheless, we can see from the
velocity errors that even the errors of the SMI sensor is inferior to the LDV, the average
error is still within 1%. And the maximum and minimum errors are within 1.5%.
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Figure 4.41: The measured velocities and errors versus the rotational speed of the motor.
v and v̂ are the measured velocities with the LDV and the SMI, respectively. δv0 and δv
are the measured errors with the LDV and the SMI.

4.6.6 Conclusion

In this section, an algorithm based on the EKF to measure velocity from the SMI signal
is proposed. Based on the model of the SMI signal, the multiplicative noise caused by
the speckle effect is taken into account. Thus, this parametric method can track a time-
varying velocity and discriminate the direction of velocity without any other calculation
or modulation when the feedback level is weak. The model of the SMI signal in this
section is based on the model of signal for displacement measurement. Therefore, it can
also be applied to the displacement measurement. In the next chapter, the displacement
measurement using SMI sensor based on the EKF will be discussed in detail.

4.7 Summary

In this chapter, the application of SMI in velocity measurement has been revisited and
summarized. Different signal processing algorithms have been presented to improve the
estimation results. These include interpolation of the spectrum, MLE, and EKF. The
derivation process and detailed theoretical principles were introduced, and their perfor-
mance was evaluated using the experiment setup.

The experiment results confirm that the FH method and the FP method are satisfac-
torily applied to the SMI signal affected by the speckle effect when the data record length
is limited. The performance of the FP method is slightly better than the FH method. To
further improve the estimate accuracy, the parameters optimization based on the MLE
was performed in the frequency domain. The comparison of the MLE with the FFT
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and FH methods indicates that the RMSE and relative error of the MLE method are
smaller than the other two methods. However, the iterative procedure of MLE is very
time-consuming. Finally, the EKF method based on the SMI signal model was proposed.
The experimental results verify that the EKF can track the time-varying velocity and
discriminate the direction of velocity.
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Chapter 5

Displacement measurement with
self-mixing interferometry

This chapter introduces the application of SMI in measuring displacement. The methods
for improving the displacement resolution of SMI are closely investigated. Their per-
formance improvements in comparison with the traditional methods are evaluated. In
Section 5.2, a simple factor C estimation method is used under both the weak and mod-
erate feedback regimes. Without the complicated and tedious calculation process of the
general C estimation method, a final equation is obtained through analysis. Thus, the
estimation of C only involves a few simple calculations. Section 5.3 develops an algorithm
based on the EKF for displacement retrieval without any beforehand knowledge of the
displacement. It can unambiguously measure the displacement using a single interference
signal under the weak feedback regime. Comparing to the traditional PUM, it does not
require cumbersome normalization, transition detection, C estimation, etc.

5.1 Background

Displacement retrieval by the SMI is a promising technique due to its compact, self-
aligned, and cost-effective nature. A basic SMI sensor can reach the resolution of λ0/2
by easily counting the number of interference fringes, where λ0 represents the laser wave-
length under free-running condition. In the last few decades, different methods have
been proposed to improve the resolution of displacement reconstruction. An SMI with
an electro-optic modulator was demonstrated by N. Servagent et al. in 2000 [94]. The
resolution of the reconstructed displacement is λ0/2N with the separated phase of 2π/N .
A differential optical feedback interferometry was proposed by F. J. Azcona et al. in 2013.
It can measure the displacement of nanometer-size amplitude by comparing the optical
power of two lasers via optical feedback [159]. However, these two methods increase the



108 CHAPTER 5. DISPLACEMENT MEASUREMENT WITH SMI

complexity of sensors and raise the cost. Efforts have been made to improve the reso-
lution by different processing algorithms. These methods do not need to add external
optical, mechanical or electronic components. In 1997, S. Merlo and S. Donati using the
analytical expressions to exploited a method, whose reconstruction accuracy is on the
order of tens of nanometers for displacements of a few micrometers. The factor C was
obtained by measuring the time duration of increasing and decreasing semi-periods of the
signal. The experiment results showed that waveform retrieval can be achieved under the
weak-feedback regime [96]. The linear interpolation method under the moderate regime
(1 < C < 4.6) was proposed by N. Servagent et al. in 1998 [95] to improve the resolu-
tion to λ0/12. In 2001, M.Wang et al. proposed a method using the Fourier transform
to demodulate the self-mixing signal. The temporal signal phase is extracted by using
the first component of the Fourier spectrum [160]. The Hilbert transform was applied to
obtain the phase for speckle-insensitive fringe detection in 2014. An accurate instanta-
neous phase can be extracted without being affected by amplitude variations induced by
speckle phenomenon [161]. All of these techniques require approximate and local output
signal linearization and/or external optical components, which are either very expensive
or not fully compatible with real-time displacement measurement. Hence, they drastically
reduce the interest of using SMI sensors in industrial applications.

In 2007, the method based on the EKF and using the behavioral model of the SMI signal
was proposed to improve the resolution of SMI displacement sensor. It should be noted
that the displacement of the moving target was sinusoidal with a known frequency [162].
Thus, the displacement, velocity, and an unknown constant position were taken as the
state vector. In 2008, the possibility of using a GaN laser to increase the resolution was
proved, since it has a shorter wavelength (405 nm) than other laser diodes (generally
around 800 nm for SMI) [163]. However, the SNR of the GaN laser was noticeably lower
than either of the investigated infrared lasers or red lasers. A real-time fully analog laser
self-mixing vibrometer was developed by M. Norgia and A. Pesatori in 2011. When the
signal was unwrapped and the jumps of the signal are compensated by analog elaborations,
the resolution was 35 nm with a displacement range of 1 mm [164]. G. Plantier and C.
Bes et al. applied an auto-adaptive signal processing method to retrieve displacement, in
which the PUM was used for harmonic displacement and aleatory displacement of a remote
piezoelectric actuator. This method realizes a joint, online, and adaptive estimation of
the target displacement and the two self-mixing fundamental parameters C and α. It
can measure 10 µm displacement within an accuracy of ±80 nm [35,36]. To improve the
PUM, an analysis of its inherent error and robustness was carried out in a detailed manner
in 2013 [41], where an improved phase unwrapping method (IPUM) was deduced from the
PUM to theoretically remove the errors of the PUM while keeping its inherent robustness.
However, errors of the peaks or valleys are still larger than other points because of the
noise.
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5.2 Phase unwrapping method and feedback factor

The PUM with the estimation of factors C and α is a promising method to realize real-
time measurement with improved resolution. This section aims to present a novel method
to estimate the factor C under both weak and moderate feedback regimes with less cal-
culation. With this simple estimation method (SEM), the resolution is improved well
beyond the basic resolutions. Considering the errors resulting from the noise and the
estimation bias of C, the KF is used to further improve the accuracy of retrieval displace-
ment. Namely, the general PUM is used to obtain an initial displacement, and then the
KF is employed for further improvement.

5.2.1 Theory

The analysis of optical feedback in semiconductor lasers relies on the rate equation model
published by Lang and Kobayashi in 1980 [64]. It is worth noting that the theoretical
model of Lang and Kobayashi was derived under the assumption of a single-mode laser [96].
The back injected light interferes with the light existing in the laser cavity and changes the
threshold condition of the semiconductor laser. As a result, when the target moves, the
emitted power changes as the injected current remains constant. Enormous publications
have dealt with the theory of SMI based on the Lang and Kobayashi equation. The
emitted power of the semiconductor laser can be expressed by (4.84). The phase equation
is given by (4.85). The relationships between the phase and the distance between the
laser and the target are given by

φF (t) = 2πνF (t)τ(t) = 2π L(t)
1
2λF (t) , (5.1)

φ0(t) = 2πν0(t)τ(t) = 2π L(t)
1
2λ0(t) , (5.2)

where φF (t) and φ0(t) are the phases with and without optical feedback, respectively.
νF (t) and ν0(t) represent the laser frequencies with and without optical feedback. τ(t) is
the round-trip time delay. λF (t) and λ0(t) are the laser wavelengths with and without
optical feedback. L(t) is the distance from the laser to the target.

Generally, the output power P of the laser in SMI sensors is converted to voltage signal
by a monitor photo-diode. The wrapped phase φ̂F (t) could be easily retrieved by the
arccos function on the normalized signal,

φ̂F (t) = arccos [(U(t)− U0)/Um] , (5.3)

where U(t) is the SMI signal, U0 is a non-zero voltage offset that is usually removed by
the electric circuit, and Um is the maximum voltage.
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Figure 5.1 shows a typical SMI signal U(t) with a sawtooth shape under the moderate
feedback regime. The wrapped phase φ̂F is acquired by (5.3) and the unwrapped phase
φ̂UF is obtained by adding or subtracting 2π (depending on the sign of the discontinuity) at
the instant of phase discontinuities, which is achieved by a transition detector. According
to (5.1), the factors C and α should be estimated for retrieving the displacement. Thus,
the displacement retrieval using the PUM involves four basic steps [35]:

1) normalization of the SMI signal;

2) a rough estimation and unwrapping of phase φ̂F by adding or subtracting 2π;

3) estimation of C and α;

4) retrieving the displacement with φ̂UF , C, and α.
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Figure 5.1: An example of SMI signal with C = 2.0 and α = 3.0 and its corresponding
retrieved phase φ̂F and unwrapped phase φ̂UF .

For ordinary lasers such as gas lasers, the value of the linewidth enhancement factor α
is almost equal to zero, while the value of usual semiconductor lasers is a positive value
from 3 to 7 [57]. Sabina et al. performed some numerical simulations to demonstrate that
the factor α does not critically affect the displacement measurement [96]. In this work, a
semiconductor laser is used, and the factor α is therefore assumed to be 4. Consequently,
only the factor C should be estimated. The effect of α on the estimated displacement will
be discussed in the simulation.



5.2. PHASE UNWRAPPING METHOD AND FEEDBACK FACTOR 111

5.2.2 Feedback factor estimation

The time duration of increasing and decreasing semi-periods of the SMI signal has been
used to estimate the factor C by S. Merlo and S. Donati [96]. In this work, a similar
method using the increasing and decreasing semi-periods with the values of the peak and
the valley is applied to estimate C under weak feedback regime and moderate feedback
regime.

After the normalization of the SMI signal, the phase φ̂F is obtained by (5.3). According
to (4.85), the phases φ̂F at point A and point B in Figure 5.2(a) are expressed as

φFA − φ0A = −C sin (φFA + arctanα) ,
φFB − φ0B = −C sin (φFB + arctanα) ,

(5.4)

where the signal amplitude at point B is the maximum and the amplitude at point A is
the minimum. In the case of 0 < C ≤ 1, as the signal U1 shown in Figure 5.2(a), we have
φFA = (2k − 1) π , φFB = 2kπ , k = 0, 1, 2, 3, 4 . . ..
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Figure 5.2: Analysis of SMI signal for C estimation. The feedback factor C of signal U1
and signal U2 are C1 = 0.8 and C2 = 2, respectively. Each fringe can be used to estimate
one factor C.

The phase without optical feedback is written as

φ0B = 4πLB

λ0
= 4π
λ0

[
LA +

∫ tB

tA
v(t)dt

]
, (5.5)

where tA and tB are the sampling time at point A and point B. Since the discontinuity
of the target displacement is far less frequent than discontinuity of the SMI signal, to
simplify the estimation process of C, the algorithm assumes that the velocity change
during a period of the discontinuity of the SMI signal can be ignored, namely, v(t) = vx =
λ0[2(tC − tA)]−1 on [tA, tB), where vx is constant. Thus, the equation (5.5) is written as

φ0B = 4π
λ0

[LA + vx(tB − tA)]

= φ0A + 2π tB − tA
tC − tA

.
(5.6)
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The factor C within 0 < C ≤ 1 is

C =
−π + 2π tB−tA

tC−tA
2 sin (arctanα) . (5.7)

If the factor C > 1, as the signal U2 shown in Figure 5.2(a), φFA 6= (2k − 1) π and
φFB 6= 2kπ. The phases are

φFA − φ0A − (φFB − φ0B)

= φFA − 2kπ + 2π tB − tA
tC − tA

.
(5.8)

The factor C is

C =
φFA − φFB + 2π tB−tA

tC−tA
sin (φFB + arctanα)− sin (φFA + arctanα) , (5.9)

where φFB = 2kπ.

Thus, when the target is moving away from the laser, the factor C of both the weak
and moderate feedback regimes could be written as (5.9).

As for the reverse direction that the target is moving toward the laser, as shown in
Figure 5.2(b), the factor C for both weak and moderate feedback regimes is

C =
φFB − φFC − 2π tC−tB

tC−tA
sin (φFC + arctanα)− sin (φFB + arctanα) .

(5.10)

This method is very easy to implement, and each fringe is used to obtain a factor
C, as shown in Figure 5.2. The estimated accuracy of factor C mainly depends on the
reconstructed phases of the peak and valley values of the signal and the factor α. This
requires a good normalization of the signal, which is also a significant factor that influences
the final retrieval displacement. Note that the position where the displacement changes
its direction cannot be applied to estimate C.

One limitation of the feedback factor C estimation method is that the signal ampli-
tude changes continuously in practice, which causes the difficulty of the normalization
procedure and increases the estimation error of the factor C. Besides, due to the noise,
the maximum and minimum values of the signal may not be determined correctly. Thus,
the errors of retrieved displacement increase. The error caused by noise was introduced
in detail in [41]. The authors proposed that reducing the noise level of the experimental
SMI signal would further improve the accuracy of displacement measurement.

To solve these issues, the KF is proposed to process the retrieved displacement. The
KF was firstly introduced by R.E. Kalman [154] as a recursive solution to the discrete-
data linear filter problem. It is well suited to online digital processing. Its recursive
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structure allows its real-time execution without storing observations or past estimates.
The dynamic model of the KF assumes the true state at time k + 1 is evolved from the
state at k according to (2.3).

At time k the measurement yk of the true state xk is made according to (2.4).

The relation regarding the displacement L and velocity v can be described by ẋ =
A(t)x, where the state vector x contains displacement and speed x =

[
L v

]T
,

The state matrix A(t) is

A(t) =
 0 1

0 0

 . (5.11)

In a digital control system, the measurements are usually obtained at time tk = kTs.
When the state at time tk is taken as the initial state, x0 = x (tk). The system matrix
described in (2.3) is

F = e

∫ tk+1
tk

A(τ)dτ =
 1 Ts

0 1

 (5.12)

where Ts is the sample interval.

If the initial state x0 is known, the matrix P is initialized with zero. Otherwise, the
matrix P should be initialized with suitable values on its diagonal. According to (5.12),
the state transition matrix F only depends on the time interval Ts.

Since the displacement is the only input, the observation matrix is expressed as

H =
[

1 0
]
. (5.13)

Based on the preceding analysis, the proposed signal processing method is tested by
simulations and experiments. To evaluate the performance of the proposed SEM, the sim-
ulations and experiments compare the retrieved displacements obtained using the general
joint estimation method (JEM) and the proposed SEM with the KF.

5.2.3 Simulative evaluation

Figure 5.3 presents errors of the retrieved displacement varying with different linewidth
factors α. The results are obtained under the noise-free condition with a constant feedback
factor C = 2.0. Since the α of usual semiconductor lasers is α = 3.0 ∼ 7.0, the range of α
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used for simulation is chosen from 2.0 to 8.0. In Figure 5.3, α is the actual linewidth factor.
Considering the range of α, in this section, the value of α̂, which is the linewidth factor
used to reconstruct the displacement, is set to a constant α̂ =4.0. The reconstructed
results are evaluated with the maximum error δmax, the minimum error δmin, and the
RMSE of the displacement. The error δ is given by the difference between the measured
displacement and its actual value. The RMSE is defined as

RMSE =

√√√√√ n∑
k=1

(
L̂k − Lk

)2

n
, (5.14)

where n is the number of simulated sampling points, L̂k is the estimated displacement, and
Lk is the true value at the kth sampling instant. The maximum δmax (δmax = 29.0nm) and
maximum RMSE (RMSE = 22.4nm) in Figure 5.3 occur at α = 2.0, while the minimum
δmin (δmin = −17.8nm) appears at α = 8.0. When α is in the range of 3.0 to 7.0, the
maximum δmax is 10.6nm, the minimum δmin is −15.1nm, and the maximum RMSE is
11.2nm.
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Figure 5.3: The dependence of errors and RMSEs of reconstructed displacement on the
linewidth enhancement factor α. The range of α is from 2.0 to 8.0, C = 2.0, and α̂ = 4.0.
δmax is the maximum displacement error, δmin is the minimum displacement error.

Figure 5.4 shows an example of the reconstructed displacement using the SEM and KF
with C = 2.0, α = 3.0, and α̂ = 4.0 in noise-free condition. The KF in figures represents
that the KF is used following the SEM. It can be seen that the inaccurate linewidth
factor α̂ results in a bias of the estimated displacement. The KF is not able to improve
the estimation accuracy in this case.

To evaluate these methods under noisy conditions, simulations are implemented by
adding Gaussian random noise and varying amplitude to the SMI signal. The presence of
noise in the SMI signal will not only lead to noise in the recovered phase φ̂F , but also cause
jitter when locating actual peak and valley points, which directly reduces the accuray of
displacement retrieval. Figure 5.5 shows the retrieval of a sinusoidal displacement with
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Figure 5.4: Reconstruction of a sinusoidal displacement with an ideal SMI signal. C = 2.0,
α = 3.0, and α̂ = 4.0. U is the SMI signal, L̂SEM, L̂KF, and L are the reconstructed
displacements with the SEM and KF, and the true displacement, respectively. δLSEM and
δLKFare the errors of reconstructed displacement.

a noisy SMI signal for C = 2.0 and α = 3.0. The sampling frequency is 409.6 kHz and
the SNR of the signal is 35 dB. The corresponding estimated Ĉ of the signal in the red
frame in Figure 5.5 are shown in Table 5.1. The displacement is reconstructed using the
Ĉ estimated at each fringe.

It can be noticed that the noise causes significant retrieval errors, especially in certain
positions where the peaks or valleys are incorrectly determined. In article [41], an IPUM
was proposed to remove this inherent error while maintaining the robustness of the PUM.
In this paper, the KF is used to reduce this kind of errors. The KF needs time to track
the displacement at the very beginning, which causes a large error. In comparison with
the δJEM and δSEM, the error δKF is greatly reduced by the KF. Ultimately, at the points
where the displacement changes its direction, the error is around 35 nm, and at other
points, the error is only around 20 nm.

The retrieval of displacement with C = 0.8 and α = 3.0 under noisy conditions is
exhibited in Figure 5.6. The sampling frequency is 51.2 kHz and the SNR of the signal
is 35 dB. The corresponding estimated Ĉ of the signal in the red frame in Figure 5.6 are
shown in Table 5.2. The displacement is correctly reconstructed with the SEM method in
the case of weak feedback. In comparison with the results in Figure 5.5, the large errors
caused by incorrectly determining peaks or valley are not visible.



116 CHAPTER 5. DISPLACEMENT MEASUREMENT WITH SMI

−1.0

0.0

1.0

Vo
lta

ge
[a

.u
.]

U

−10.0

−5.0

0.0

5.0

10.0

D
is

pl
ac

em
en

t[µ
m

]

L̂JEM L̂SEM

L̂KF L

0 50 100 150 200
−100.0

−50.0

0.0

50.0

100.0

Time [ms]

E
rr

or
[n

m
]

δLJEM δLSEM δLKF

Figure 5.5: Reconstruction of a sinusoidal displacement with a noisy SMI signal for C =
2.0 and α = 3.0. U is the SMI signal. L̂JEM, L̂SEM, and L̂KF are the reconstructed
displacement using JEM, SEM, and KF, respectively. L is the true displacement. δLJEM ,
δLSEM , and δLKF are the errors of the reconstructed displacement using the JEM, SEM,
and KF, respectively.

Table 5.1: Estimated C values of a sinusoidal displacement with noise under moderate
regime using the SEM.

C1 C2 C3 C4 C5 C6 C7
1.93 1.92 1.92 1.93 1.90 1.93 1.91
C8 C9 C10 C11 C12 C13 C14
1.91 2.05 2.08 2.03 2.02 1.97 2.01

Table 5.3 shows the estimated errors in Figure 5.5 and Figure 5.6, where the sinusoidal
displacements under weak and moderate feedback regimes are retrieved. The mean abso-
lute error (MAE) is defined as the average absolute difference between the reconstructed
displacement and the actual displacement. It is clear that the usage of the KF significantly
reduces the maximum absolute error AEmax, which is caused by incorrectly determining
the peaks and valleys. When C = 2.0, the MAE and RMSE of the three methods are
similar, but in the case of C = 0.8, the MAE and RMSE of the JEM is slightly better
than the other two.

Figure 5.7 shows the retrieval of an aleatory displacement. The SMI signal is noisy with
C = 2.0 and α = 3.0. The sampling frequency is 409.6 kHz and the SNR of the signal is
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Figure 5.6: Reconstruction of a sinusoidal displacement with a noisy SMI signal. C =
0.8 and α = 3.0. U is the SMI signal. L̂JEM, L̂SEM, and L̂KF are the reconstructed
displacement using JEM, SEM, and KF, respectively. L is the true displacement. δLJEM ,
δLSEM , and δLKF are the errors of the reconstructed displacement using the JEM, SEM,
and KF, respectively.

Table 5.2: Estimated C = 0.8 values of a sinusoidal displacement with noise under weak
regime using the SEM.

C1 C2 C3 C4 C5 C6 C7
0.96 0.89 0.83 0.80 0.84 0.95 0.81
C8 C9 C10 C11 C12 C13 C14
0.90 0.84 0.83 0.75 0.91 0.90 0.92

35 dB. The similar results as in Figure 5.5 are obtained. The proposed SEM successfully
retrieves the displacement. The errors caused by the wrongly identified peaks and valleys
are effectively reduced with the usage of KF. The maximum absolute errors of the JEM,
SEM, and KF are 79.5nm, 81.2nm, and 39.8nm, and the RMSEs of them are 15.1nm,
10.3nm, and 9.3nm, respectively.

The simulated signal with α = 2.0 is used to analyze the dependence of the errors on
the SNR, because the errors and RMSEs are maximum when α = 2.0, as can be seen in
Figure 5.3. In Figure 5.8, the AEmax of the JEM is larger than the SEM when the SNR
is lower than 80 dB, and the KF has the ability to reduce the AEmax. The SEM has a
superior RMSE compared to the JEM when the SNR is lower than 30 dB, but it reaches
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Table 5.3: Estimated errors of a sinusoidal displacement with noise under weak and
moderate feedback regimes.

C = 2.0 C = 0.8
JEM SEM KF JEM SEM KF

AEmax(nm) 83.8 82.3 33.2 39.5 40.3 34.5
MAE(nm) 7.6 8.5 7.9 4.0 6.3 5.7
RMSE(nm) 9.5 10.4 8.9 5.6 8.7 8.2
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Figure 5.7: Reconstruction of an aleatory displacement with a noisy SMI signal. C =
2.0 and α = 3.0. U is the SMI signal. L̂JEM, L̂SEM, and L̂KF are the reconstructed
displacement using JEM, SEM, and KF, respectively. L is the true displacement. δLJEM ,
δLSEM , and δLKF are the errors of the reconstructed displacement using the JEM, SEM,
and KF, respectively.

its error limitation (RMSE = 22.5nm) after 30 dB, while the errors of the JEM are much
smaller than that of the SEM after 30 dB. This is proven in Figure 5.3 that the RMSE of
the noisy-free signal using the SEM method is 22.4 nm. All the other α within the range
of 2.0 to 8.0 leads to a smaller error and RMSE than that in Figure 5.8.

In general, the proposed SEM can adequately estimate the factor C under both weak
and moderate regimes, even when the displacement is aleatory. The errors of retrieved
displacements using the SEM are comparable to the JEM. The SEM is more effective for
low SNR (SNR< 30dB), and the JEM might be superior for high SNR. The use of KF
effectively reduces the error of displacement retrieval under the noisy condition, especially
at the discontinues points that the peaks and valleys are incorrectly determined.
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Table 5.4: Estimated C value of an aleatory displacement with noise under moderate
regime using the SEM.

C1 C2 C3 C4 C5 C6 C7
1.93 1.92 1.91 1.94 1.94 1.94 1.94
C8 C9 C10 C11 C12 C13 C14
2.05 2.10 2.02 1.97 2.06 2.08 2.02
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Figure 5.8: The AEmax and RMSE versus SNR curves. α = 2.0, α̂ = 4.0, and C = 2.0.

5.2.4 Experimental evaluation

These methods are tested experimentally. In the experiment, the SMI sensor used to
measure displacement consists of a commercial 785 nm laser diode (L785P5) with a power
of 5 mW, a lens, a laser driver, and a preprocessing circuit. The typical threshold current
of the laser diode is 20 mA. Figure 5.9 shows the experimental setup for displacement
measurement using the SMI sensor. The distance between the sensor head and the target
surface is 9.5 cm. The drive current of the laser diode is 30 mA, which is provided by a
self-designed current source. The light beam is focused by a lens on a loudspeaker, which
is excited by a 500 Hz sine wave. This generates a sinusoidal displacement signal with an
amplitude of approximately 5 µm. The SMI signal is directly detected by the monitoring
photo-diode enclosed in the laser package, and processed by a personal computer after a
data-acquisition card.

The collected signals are exhibited in Figure 5.10 and Figure 5.11, of which the sampling
frequencies are 500 kHz and 2.5 MHz. The signals are processed as described earlier.
Firstly, the signal U is normalized to Un. Then φ̂F is reconstructed, and Ĉ is estimated
by locating the maximum and minimum values within a fringe of the signal. Next, the
displacement L̂ is reconstructed with φ̂F and Ĉ. Finally, a more accurate displacement
L̂KF is obtained using KF.
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Figure 5.9: Experiment setup of the SMI sensor for displacement measurement.
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Figure 5.10: Experimental reconstruction of a sinusoid displacement with different meth-
ods. U is the original SMI signal and φ̂UF is the unwrapped phase. L̂JEM, L̂SEM, and L̂KF
are the reconstructed displacement using JEM, SEM, and KF, respectively. L is the ref-
erenced displacement. δLJEM , δLSEM , and δLKF are the errors of reconstructed displacement
using JEM, SEM, and KF, respectively.

In Figure 5.10, the retrieved displacement L̂SEM is similar as the displacement L̂JEM.
The KF slightly decreases the error caused by noise and the bias estimate of the factor
C. The error resulting from the incorrectly determined maximum or minimum values is
not obvious in Figure 5.10 because the sampling frequency is not very high compared to
the frequency of the signal. The noise has less impact on the signal, and it is easy to
determine the correct peak and valley positions of the signal.

The error resulting from noise is prominent in Figure 5.11. It can be seen clearly
in Figure 5.12, which is zoomed in from the red frame in Figure 5.11, that small gaps
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Figure 5.11: Experimental reconstruction of a sinusoid displacement with different meth-
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Figure 5.12: The partial enlarged drawing of retrieved displacement in Figure 5.11.

occur in the retrieved displacement L̂SEM and L̂JEM. It means that the peak and valley
locations of the signal are not correctly determined due to the noise. When the KF is
employed, this issue can be significantly eased and the gaps in the retrieved displacement
are effectively decreased.
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5.2.5 Conclusion

The presented work is inspired by the idea that a simple and effective algorithm, which
is suitable for the online application, should be developed for displacement retrieval and
vibration measurement using SMI sensors. Therefore, an SMI sensor using a simple
factor C estimation method along with the KF is used under both weak and moderate
feedback regimes. Without the complicated and tedious calculation process of the general
C estimation method, a final equation is obtained with the proposed SEM. Thus, the
estimation of C only involves a few simple calculations. To deal with the errors caused
by noise and estimation deviation of C, and to achieve a more accurate displacement,
the KF is used to improve the results obtained by the general PUM. The simulation and
experiment results show that the error of the retrieved displacement using the SEM is
equivalent to the JEM. And the KF can significantly reduce the measurement errors,
especially the error caused by wrongly locating the peak and valley position in signals.

5.3 Extended Kalman filter for displacement mea-
surement

5.3.1 Background

PUM is proposed initially to work for moderate feedback due to the simplicity of fringe
detection and the unambiguity retrieval of direction. It requires a tedious process of
normalization, transition detection, and estimation of C and calibration. It is foreseeable
that the implementation of a complete detection-reconstruction algorithm for real-time
calculation should be compromised by adding more elaborated steps to the derivative-
based fringe detection step of PUM [165]. The wavelet transform was proposed when the
signal is disturbed by electromagnetic fields, mechanical coupling, or speckle effect [166].
This method is dedicated to moderate feedback at present. An algorithm based on the
EKF by using a behavioral model of the SMI signal was proposed to improve the resolution
of SMI displacement sensor. It requires that the displacement of the moving target is
sinusoidal with a known frequency [162].

The main objective of this section is to develop an algorithm based on the EKF to
estimate displacement without any beforehand knowledge of the displacement. It can
unambiguously measure the displacement under the weak feedback regime by using a
single interference signal. The proposed adaptive signal processing algorithm increases
the resolution well beyond the half-wavelength, without any external optical components,
preliminary separate measurements, or target surface preparation. Comparing to the
traditional PUM, it does not need cumbersome normalization, transition detection, C
estimation, etc. Besides, the error of estimated displacement caused by the noise in PUM



5.3. EXTENDED KALMAN FILTER FOR DISPLACEMENT MEASUREMENT 123

will be greatly reduced when the EKF is used.

This section is organized as follows. The theories and analysis of the proposed algorithm
based on the EKF are introduced in Section 5.3.2. Following, Section 5.3.3 and Section
5.3.4 present the simulation and experiment results of displacement retrieval. Finally,
conclusions are drawn in Section 5.3.5.

5.3.2 Theory

According to the equations firstly derived by Lang and Kobayashi, the wavelength of
laser is changed with optical feedback and could be achieved by solving the phase equa-
tions eqs. (4.85) to (4.87). According to (4.85) and (4.87), the displacement can be written
as

L(t) = φF (t) + C sin[φF (t) + arctanα]
4π λ0(t). (5.15)

where φF (t) is the phase with optical feedback, λ0(t) is the laser wavelength without
optical feedback, α is the line-width enhancement factor, and C is the feedback factor. The
equation shows that for a constant current injection diode, the displacement measurement
using the SMI can be achieved by correctly estimating φF , C, and α.

The state transition model of EKF is

xk = f(xk−1,µk) +wk. (5.16)

The measurement equation is

yk = h(xk) + vk. (5.17)

Because the system and measurement equations are nonlinear, a first-order approx-
imation is used in the Riccati equations for the systems dynamics matrix Φ and the
measurement matrix H. The matrices are calculated by

Φ = ∂f(x)
∂x

∣∣∣∣∣
x=x̂

, (5.18)

H = ∂h(x)
∂x

∣∣∣∣∣
x=x̂

. (5.19)

In the case of displacement measurement, the measurement state is the voltage of the
signal. Based on the model of the SMI signal, the system transition function can be
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written as 

Ak

φFk

vk

ak

Ck


=



Ak−1

φFk−1 + 1
1+Ck−1 cos(φFk−1 +arctanα)

vk−1 + ak−1Ts

ak−1

Ck−1


+ Q. (5.20)

The system state to be estimated in this case is x =
[
A φF v a C

]T
, where A is

the amplitude of the signal, v and a are the velocity and acceleration of the target.

Then we can recursively calculate the estimate of the current state vector

x̂(k|k − 1) = f(x̂(k − 1|k − 1)). (5.21)

The predicted state covariance is calculated with its predicted value at k − 1,

P(k|k − 1) = Φ(k)P(k − 1|k − 1)ΦT (k) + Q(k). (5.22)

The Kalman gain K(k) is calculated using the predicted state covariance,

K(k) =P(k|k − 1)HT (k)[H(k)P(k|k − 1)HT (k) + R(k)]−1. (5.23)

The current estimate state is corrected with the Kalman gain,

x̂(k|k) = x̂(k|k − 1) + K(k)[y(k)− h(x̂(k|k − 1))]. (5.24)

The current estimate covariance is corrected by the Kalman gain,

P(k|k) = [I−K(k)H(k)]P(k|k − 1). (5.25)

With the EKF, the state vectors in (5.20) can be estimated. Therefore, two solutions are
able to be applied to obtain the displacement: 1) using estimated phase φF with (5.15); 2)
using the estimated velocity v, and the displacement is Lk = Lk−1 +vkTs. The signs of the
phase φF and velocity v are inherently obtained during the estimate process, and no extra
efforts are needed for the direction discrimination. However, the displacement obtained
from velocity is inherently inaccurate, since the integration typically provides advanta-
geous noise attenuation. Hence, in the following parts, the displacement is acquired by
the estimated phase.
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5.3.3 Simulative verification

To verify the effect of the value of linewidth enhancement factor α on the estimated
displacement. Figure 5.13 shows errors of the retrieved displacement varying with different
linewidth factors α. The results are obtained using the EKF under noise-free conditions
with a constant feedback factor C = 0.5. The displacement is sinusoidal. Since the value
of α of usual semiconductor lasers is α = 3.0 ∼ 7.0, the range of α in Figure 5.13 is
chosen from 2.0 to 8.0. α is the actual linewidth factor and α̂ is the linewidth factor used
to reconstruct the displacement. Considering the range of α, the value of α̂ is set to be
constant α̂ =4.0, which is the same as the α̂ in Section 5.2. The reconstructed results are
evaluated with the RMSE of estimated displacement.
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Figure 5.13: The effect of α on RMSEs of the reconstructed displacement. The range of
α is 2.0 to 8.0, C = 0.5, and α̂ = 4.0.

It can be seen that when α̂ is equal to the actual value of α, the RMSE of the displace-
ment is 3.3 nm, while the RMSE of the displacement is within 6.7 nm when α̂ = 4. In the
range of α = 3.0 ∼ 7.0, the RMSE is within 4 nm. It can be concluded that the value of
α has a negligible effect on the measured displacement when the proposed EKF method
is used. Therefore, the value of the α̂ is chosen to be 4.0 in the following simulations
and experiments. Sabina et al. suggested that the linewidth enhancement factor α could
be actually evaluated by a preliminary, separate measurement on a well-known ramp-like
displacement signal or current modulation. By applying the reconstruction routine with
several trial values for α, the best estimate of the linewidth enhancement factor was clearly
identified as the one yielding the reconstructed waveform closest to an ideal ramp [96].

To theoretically test the validity of the solution, it is evaluated under ideal conditions
that do not contain any noise. For a given simulated displacement, the corresponding
optical output power is calculated according to the previous analysis. In Figure 5.14, the
retrieval of a sinusoidal displacement of peak-to-peak amplitude 16 µm using the EKF
is shown, where the feedback factor and linewidth factor of the SMI signal are C = 0.5
and α = 5. It is observed that the SMI signal and the phase are correctly tracked.
The estimated displacement L̂K obtained with the phase φ̂F is very close to the ideal
displacement L.

The errors of estimated phase and displacement are shown in Figure 5.15. The error
is calculated as the difference between the reconstructed displacement and the actual
displacement. As can be seen that the maximum phase error δ̂φF

is about 0.18 rad, and
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Figure 5.14: Reconstruction of a sinusoidal displacement using the EKF method under
noise-free condition. Û and U are the retrieved and the ideal SMI signals, φ̂F and φF
represent the reconstructed phase with the EKF and the ideal phase, L̂K is the estimated
displacement with the EKF, the L is the ideal displacement.

the maximum error of displacement δ̂LK
is only about 10 nm.

−0.3

0.0

0.3

ph
as

e
er

ro
r[
r
a
d
]

δφF

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

−20.0

0.0

20.0

Time [ms]

D
is

pl
ac

em
en

t
er

ro
r[
µ
m

]

δLK

Figure 5.15: Errors of the retrieved sinusoidal displacement using the EKF method in Fig-
ure 5.14. δφF is the error of the estimated phase φ̂F with the EKF. δLK

is the error of
the estimated displacement with the EKF.
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Figure 5.16 shows the reconstruction of an aleatory displacement based on the EKF
method, where the signal is noise-free. It can be noticed that the SMI signal U and
the phase φF are successfully tracked. The estimated displacement L̂K is close to the
ideal displacement L. The estimated errors are illustrated in Figure 5.17. It can be seen
clearly that the maximum error of the estimated phase is about 0.3 rad, which is slightly
worse than that in the sinusoidal displacement reconstruction. The estimated error of
displacement L̂K has a similar value (about 10 nm) as that of the sinusoidal case.
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Figure 5.16: Reconstruction of an aleatory displacement using the EKF method in noise-
free condition.

In practice, the SMI signal is corrupted by noise and amplitude modulation caused by
the variation of the back-reflected or back-scattered optical power. When the target is
at the focus of the optical system, the intensity of the back-reflected or scattered light is
maximum, which leads to the maximum amplitude of the SMI signal. And the amplitude
gets smaller when the target moves away from the focus. The simulated noisy SMI signal
is shown in Figure 5.18, where the signal amplitude is variable. It can be seen that the
EKF is also able to track the signal U and the phase φF under this condition. The
estimated sinusoidal displacement L̂K is very close to the ideal displacement L. In Figure
5.19, the estimated error of Figure 5.18 is displayed. The estimation error of the phase is
within 0.2 rad, and the error of the displacement is within 20 nm.

Figure 5.20 shows the reconstruction of simulated noisy aleatory displacement. The
aleatory displacement reconstruction is successful, but the errors in Figure 5.21 show that
the results are not as good as the sinusoidal displacement tracking. The errors of the
phase and displacement are within 0.5 rad and 30 nm, except at around 0.72 ms, the



128 CHAPTER 5. DISPLACEMENT MEASUREMENT WITH SMI

−0.4

−0.2

0.0

0.2

0.4

ph
as

e
er

ro
r[
r
a
d
] δφF

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

−20.0

0.0

20.0

Time [ms]

D
is

pl
ac

em
en

t
er

ro
r[
µ
m

]

δLK

Figure 5.17: Errors of the retrieved aleatory displacement in Figure 5.16.
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Figure 5.18: Reconstruction of a simulated sinusoidal displacement using the EKF method
under noisy condition.

displacement error is as high as 40 nm. In general, the simulation illustrates that EKF
can estimate the sinusoidal and the aleatory displacement. All these test results show
reliability and robustness under various optical conditions.
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Figure 5.19: Errors of the retrieved sinusoidal displacement using the EKF method in
Figure 5.18.
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Figure 5.20: Reconstruction of simulated noisy aleatory displacement using the EKF
method, where Û and U are the retrieved and the ideal SMI signal, φ̂F and φF represent
the reconstructed phase and the ideal phase, L̂K is the estimated displacements with the
EKF, the L is the ideal displacement.
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Figure 5.21: Errors of the retrieved aleatory displacement using the EKF method under
noisy condition. δφF is the error of the estimated phase φ̂F . δLK

is the error of the
estimated displacement.

5.3.4 Experimental verification

In the real experimental setup, some parameters appear to add noise to the measure-
ment and further affect the accuracy. To verify the performance of the EKF to estimate
displacement, this method has been tested on actual signal after the tests performed on
simulated signal. The results are compared with the displacement obtained using the
IPUM.

The proposed strategy is also incorporated into the experiment setup mentioned above
in Section 5.2, shown in Figure 5.9. The laser is driven by a self-designed current source
and the light beam is focused by a lens to the loudspeaker, which generates displacement
needed to be measured. The laser yields a single longitudinal mode when biased well
above threshold current. It should be noted that good SMI waveforms can be obtained
by commercially laser diodes as long as the residual side-modes are down concerning the
main mode by 20/30 dB [96]. As a target, the loudspeaker is placed about 9.5 mm away
from the laser and driven by a function generator. Many tests are performed by subjecting
the speaker to sinusoidal and aleatory signals with different frequencies and amplitude of
vibration. The variations in optical output power of the laser are directly detected by
the monitoring photo-diode enclosed in the laser package, and processed by a personal
computer after an electrical circuit and a data-acquisition card.

Figures 5.22 shows the acquired signal and the corresponding reconstruction of the
phase and sinusoidal displacement using the IPUM and EKF. The peak-to-peak value of
the sinusoidal displacement is 9 µm, and the frequency is 200 Hz. The upper part of the
figure shows a typical SMI signal, which is characterized by a fringe in correspondence
to a target displacement equal to half the wavelength. The variation of signal amplitude
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−100.0

0.0

100.0

P
ha

se
[r
a
d
] φ̂P φ̂K

0.95 1.00 1.05
−20

−10

0

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

−8.0

0.0

8.0

Time [ms]

D
is

pl
ac

em
en

t
[µ

m
]

L̂P L̂K

0.95 1.00 1.05

−1.0
−0.5

0.0

Figure 5.22: Experimental reconstruction of a sinusoid displacement using the IPUM and
EKF method. U is the original obtained SMI signal and Û is the tracked signal by EKF.
φ̂P and φ̂K are the reconstructed phases by using the IPUM and EKF, respectively. L̂P
and L̂K are the reconstructed displacements by using the IPUM and EKF, respectively.

is very small. It can be observed that the EKF successfully tracks the SMI signal. The
reconstructed phases and displacements using these two methods are very close. A deeper
view of the partial enlarged drawing of the retrieved phase and displacement shows that
these two methods achieve similar phase and displacement. Because of the noise, the
ripple of the displacement L̂P is more significant than the ripple of the displacement L̂K.

Figure 5.23 shows an example of displacement reconstruction using the IPUM and EKF
with a peak-to-peak value 19 µm and frequency 200 Hz. The signal amplitude slightly
changes with the movement of the target. The upper part of the figure presents that in
this condition, the EKF can also track the SMI signal. The comparison with the IPUM
shows that the EKF correctly retrieves the phase and displacement. In the red circle
in Figure 5.23, when the direction of displacement changes, the IPUM cannot detect it
correctly, because such small change in the SMI signal is difficult to measure according
to the detecting principle of the IPUM. A close look into the phase and displacement of
the zoomed-in part, it is found that the EKF can smooth out the noise of the retrieved
phase and displacement compared with the IPUM.

In Figure 5.24, the reconstruction of an aleatory displacement using the IPUM and EKF
is shown, indicating that the EKF can effectively track the SMI signal. The displacement
is well retrieved by comparing with the IPUM. The partial enlarged drawing shows that
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Figure 5.23: Experimental reconstruction of a sinusoid displacement using the IPUM and
EKF.

the retrieved phase and displacement have ripples caused by the noise of the SMI signal,
and the EKF can effectively smooth them.

In conclusion, under the weak feedback regime, the displacement retrieval method
based on the EKF has good tracking behavior for both the sinusoid displacement and
the aleatory displacement. The comparison between the IPUM and EKF illustrates that
the EKF can correctly reconstruct the displacement and reduce the effect of the noise.
The results of the proposed method are very encouraging, especially when compared with
the results obtained from the derivative processing. As demonstrated in theory, the dis-
placement of the target is retrieved without any problem in the case of weak feedback
regime (C < 1).

5.3.5 Conclusion

An algorithm based on the theory of EKF is proposed in this section for retrieving dis-
placement using the SMI sensor under weak feedback regime. According to the behavior
model of the SMI signal, the phase of the signal and the displacement of the target are
obtained by the tracking algorithm. The main novelty of the algorithm is the ability to
discriminate the direction of the displacement inherently without extra effort. It discards
the process of normalization, transition detection, and feedback factor C estimation of the
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Figure 5.24: Experimental reconstruction of an aleatory displacement using the EKF
method.

general PUM. The simulation is conducted with both sinusoid and aleatory displacement
under ideal and noisy conditions. It has been tested for estimating random and sinusoidal
displacements at different target vibration frequencies. The experimental results confirm
that comparing to the IPUM, the EKF can retrieve sinusoidal displacement and aleatory
displacement under the weak feedback regime.

5.4 Summary

This chapter closely studied the use of SMI for displacement measurement. A novel
method was proposed to estimate the factor C under weak and moderate feedback regimes
with less calculation. Without the complicated and tedious calculation process of the
general C estimation method, a final equation is obtained with the proposed method. On
this basis, the KF was used to improve the results obtained by the general IPUM and this
simple C estimation method. Besides, an EKF based method was investigated to estimate
displacement under the weak feedback regime. In comparison with the traditional PUM,
the EKF does not require the tedious process of normalization, transition detection, C
estimation, etc. The experimental verification confirmed that the EKF could estimate
the displacement from the SMI signal.
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Chapter 6

Conclusions and future prospects

6.1 Conclusions

This dissertation was started with the purpose to optimize the velocity measurement in
electric drives. Another solution for velocity measurement was then investigated by using
the laser SMI, which provides good flexibility and a compact system. Accordingly, the
application and improvement of the SMI in displacement measurement have also been
discussed in detail.

In Chapter 2, traditional methods estimating position, velocity, and acceleration from
the position signal in the optical encoder were introduced. Then the theory of laser SMI
was fully detailed, including the resonator model and rate equation mode, as well as the
applications of SMI.

In Chapter 3, an efficient and tuning-easy solution called FGF was proposed to estimate
position, velocity, and acceleration from the shaft encoder position. The novelty is that,
unlike the conventional KF that requires an online tuning process of the feedback gain
matrix, the proposed FGF uses an optimal fixed feedback gain matrix obtained through a
straight-forward calculation process. The experimental results and implementation steps
show that the FGF significantly reduces the computational burden and executive time.
Additionally, the proposed filter has a single tunable parameter, which greatly eases the
required tuning work. The property of a fixed gain and a narrow tunable range would
considerably simplify the application of the proposed FGF strategy in industry.

In Chapter 4, an in-depth study of the system using the SMI to measure velocity
was conducted. The self-designed test bench for experiments has been presented. Error
analysis and different algorithms for accurately measuring velocity were discussed.

The parabolic fit algorithm considering the Gaussian distribution of the time-domain
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signal and the spectral broadening of the frequency-domain signal was compared with
the traditional interpolation methods. Their performance has been evaluated on the test-
bench, and the experimental results showed that this method could be applied when the
signal is interfered by the speckle effect.

Then a parameter method based on the MLE was presented in the case of the signal with
a wider spectrum broadening. It optimizes the estimated parameters through an iterative
process and generates accurate estimates. This parameter optimization was implemented
in the frequency domain, and it may also be realized in the correlation domain. Its
performance has been verified in both simulation and experimental data. In comparison
with the FFT method and the FH method, the RMS frequency error and relative error
of MLE method were slightly reduced.

To reduce the data record length required by traditional FFT based methods, according
to the model of SMI signal, a new algorithm based on the EKF for velocity estimation
in the SMI was proposed. The multiplicative noise caused by the speckle effect and the
direction of the velocity were taken into account. The numerical simulations and exper-
imental verification illustrated that this parametric method can track the velocity and
displacement and discriminate the direction of movement without any other calculation
or modulation, even when the feedback level is weak.

In Chapter 5, the SMI measuring displacement was deeply studied. A simple and
effective method for estimating the feedback factor C in the SMI sensor was presented
to retrieve displacement. Discarding the complicated and tedious calculation process of
the general C estimation method, a final equation was obtained. Hence, the estimation
of C only involved several simple calculations. It successfully retrieved the sinusoidal and
aleatory displacement with simulated SMI signals and experimental data in both weak
and moderate feedback regimes. To deal with the errors resulting from the noise and to
further improve the retrieval precision, the KF was adopted.

Finally, the method based on the theory of EKF applied to retrieve displacement from
the SMI sensor under weak feedback has been theoretically interpreted and experimentally
assessed. It does not need the tedious process of normalization, transition detection, C
estimation, etc. Another advantage of this algorithm is the ability to inherently discrim-
inate the direction of the displacement, and no extra effort is required. The experiment
results confirmed that the phase of SMI signal and the optical feedback factor C were
properly obtained and the displacement was correctly calculated from them. The experi-
mental comparison with the IPUM showed that the EKF can smooth out the noise in the
retrieved displacement.
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6.2 Future prospects

The FGF was used to estimate position, velocity, and acceleration from the optical encoder
signal in electrical drives. It can also be used in other position feedback fields in industry,
such as sensor-less control, grid synchronous, and motion control, etc. Further study using
the FGF in these fields could be conducted in future work.

Many challenges need to be overcome to realize the practical application of the SMI for
velocity and displacement measurement. Many new areas can yet be explored, and some
points from this work can be further extended. Some ideas along these lines are presented
below.

• At present, a DSP based electronic board is being designed so that various algo-
rithms can be deployed onto it. To realize a robust, reliable, and compact sensor,
the algorithms and the hardware should be further optimized.

• In this work, the bandwidth of the preprocessing system is 1.8 MHz. Future contri-
butions in this area would be increasing the bandwidth of the circuit to extend the
measuring range of velocity.
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Abbreviations

AC alternating current
ARM advanced reduced instruction set computing machine
CRLB Cramér–Rao Lower Bound
DC direct current
DFB distributed feedback
DFT discrete Fourier transform
DSP digital signal processor
EKF extended Kalman filter
ETKF edge-time Kalman filter
FDM finite-difference method
FFT fast Fourier transform
FGF fixed gain filter
FH FFT and Hanning interpolation
FLP floating point
FP FFT and parabolic fit
FPU floating point unit
FPUE floating point unit emulator
FR FFT and rectangular interpolation
FWHM full-width half-maximum
FXP fixed point
HPF high-pass filter
IFFT interpolated fast Fourier transform
IPUM improved phase unwrapping method
ITM inverse-time method
JEM joint estimation method
KF Kalman filter
LDA laser Doppler anemometer
LDV laser Doppler velocimeter
LPF low-pass filter
LUT look-up table
MAAE maximum absolute error
MAE mean absolute error
MATLAB matrix laboratory
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MCU micro-controller unit
MEMS micro-electro-mechanical-systems
MLE maximum likelihood estimation
MQW multi-quantum well
MUSIC multiple signal classification
NRMSE normalized root-mean-square error
PCB printed circuit board
PDF probability density function
PLL phase-locked loop
PPR pulses per revolution
PSD power spectral density
PUM phase unwrapping method
RMS root mean square
RMSE root mean square error
RPM revolutions per minute
SEM simple estimation method
SMI self-mixing interferometry
SNR signal to noise ratio
TIA trans-impedance amplifier
TNI total number of iterations
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