
2019 European Conference on Computing in Construction
Chania, Crete, Greece

July 10-12, 2019

AUTOMATIC DETECTION OF PLAN SYMBOLS IN RAILWAY EQUIPMENT
ENGINEERING USING A MACHINE LEARNING APPROACH

Deian Stoitchkov1, Peer Breier1, Martin Slepicka1, Cengiz Genc2, Felix Harmsen2,
Tobias Köhler,2 Simon Vilgertshofer1 and André Borrmann1

1Technical University of Munich, Germany
2Signon Deutschland GmbH, Berlin, Germany

Abstract

Exact data in the form of technical drawings and plans of
built assets are a significant requirement for the success-
ful operation and reconstruction of such assets. When the
consistency between this data and the real world situation
cannot be assured, the data is not reliable and needs to be
updated by comparing plans and reality. Depending on the
size and number of assets this may involve an enormous
amount of manual effort. In the scope of this research,
an approach for supporting and automating such a process
by utilizing concepts developed in the field of machine
learning was developed. This paper focuses on the inter-
pretation of technical drawings in terms of detecting and
classifying plan symbols as this is a time intensive and
error prone process when done manually. It is described
how the capabilities of Convolutional Neural Networks
are employed in analyzing images to automatically de-
tect important plan symbols in the field of Train Traffic
Control and Supervision Systems and how those networks
are trained without the need for a time consuming-manual
labeling process.

Introduction

The railway network in Germany, which consists of more
than 30.000 kilometers of railway, is mainly operated and
managed by the DB Netz AG. As this integral part of Ger-
man infrastructure has grown over the last century both
tracks and railway equipment are of various technological
levels. This is also the case for corresponding technical
drawings and plans. However, management, operation and
especially rebuilding and reconstruction of railway infras-
tructure rely heavily on the availability of such technical
drawings which need to be exact and up to date. In a
vast railway network of several thousand kilometers that
has grown over decades, discrepancies between archived
drawings and the actually built infrastructure are almost
inevitable due to various circumstances. As the purely
manual effort required for comparing and updating the
stock data consisting of technical drawings and plans in-
volves an enormous amount of manual effort, we devel-

oped an approach for supporting and automating parts of
this process by utilizing concepts developed in the field of
machine learning.

The research presented here is part of the RIMcomb re-
search project (Railway Information Modeling: Equip-
ment technology for rail infrastructures (Vilgertshofer
et al. 2018)). Among the main goals of the research project
is the digitization of the information on conventional 2D-
drawings depicting railway equipment. While most draw-
ings are available as digitally stored images by now, the
interpretation of these plans and, most importantly, the var-
ious symbols they contain has to be undertaken manually
to create a semantically rich digital railway representation.

Our approach aims at supporting this process in order to
reduce the manual effort by automating at least parts of this
image interpretation process. The first step towards this
goal is the automatic recognition and highlighting of plan
symbols on a given drawing and the subsequent storing
of their count and location. To achieve this, we employed
Convolutional Neural Networks (CNN) and developed a
process in which to train these networks without the need
for a time-consuming manual labeling process to generate
training and testing data. The results can then be compared
to the actual situation on the track in order to check for in-
consistencies or confirm the accuracy of a plan. Naturally,
this comparison process also requires the recognition of
infrastructure elements on the track as a counterpart. In
the scope of the RIMcomb research project, a second ap-
proach for automating this process has been developed
and is summarized in the following section (Genc et al.
2018). The combination of those approaches is currently
underway and will result in a semi-automated process of
the otherwise highly labor intensive comparison of the
as-planned and as-built situation of railway infrastructure.

This paper is structured as follows: In Section 2 we will
discuss existing approaches to detect and classify symbols
in technical drawings. We will further describe the techno-
logical background that our approach involves. Addition-
ally, we will give an overview of a related development
that focuses on the recognition of railway equipment in



images/videos and acts as a counterpart to our approach.
Section 3 provides a detailed description of our methodical
approach and the conducted research work, while Section
4 focuses on our implementation work and the general
quality of our results. In Section 5 we show how we ap-
ply our approach on a set of real-world technical drawings
to deliver a proof of concept. Finally, we will sum up
our findings and describe how we will further develop our
approach.

Related research and theoretical background

Symbol recognition in technical drawings is a well-known
challenge in the engineering field. In technical drawings,
symbols often appear to be strongly distorted or overlapped
with other objects, making their recognition a significant
challenge. Therefore, numerous solutions to this problem
have already been proposed.

Luqman et al. (2009) describe a method which represents
symbols by their graph-based signatures and a Bayesian
network is trained to encode the common probability dis-
tribution of symbol signatures. The Bayesian network is
trained in two phases – the structure learning phase and the
parameter learning phase. Another approach is described
by Weber & Tabbone (2012), where a template match-
ing operator HMTAIO (Hit or Miss Transform Adapted to
Information Overlapping) is used. The advantage of this
approach is its robustness against occlusion and overlap-
ping. Another interesting approach for symbol spotting is
proposed by Rusiñol & Lladós (2005). The authors de-
scribe their approach as follows: “In this paper, we present
a method to determine which symbols are probable to
be found in technical drawings using vectorial signatures.
These signatures are formulated in terms of geometric and
structural constraints between segments, as parallelisms,
straight angles, etc.” (Rusiñol & Lladós 2005). Differ-
ent symbol recognition methods are also described by
Le Bodic et al. (2012) and Nayef et al. (2012).

Although many approaches have been proposed, they
could not deliver satisfactory results for detecting rail-
way equipment symbols. In our approach, we train artifi-
cial neural networks to recognize symbols in engineering
plans. This method shows promising results and can be
used in various contexts. It is not only invariant of scale
and rotation operations, but it also works for heavily dis-
torted symbols. The approach recognizes many types of
symbols, thus demonstrating its practical applicability.

Convolutional Neural Networks (CNNs)

Artificial neural networks are used for different tasks such
as text, speech and image recognition, and even self-
driving cars. Convolutional neural networks (CNNs) have

been used here, as they appear to be very useful for image
recognition. One of the first CNNs developed is the LeNet
(LeCun et al. 1998), and since its creation, there has been a
tremendous improvement in the field of image recognition
and object recognition in general.

CNNs use filters to detect patterns in an image. An image
is searched for these patterns, and a value is saved, which
represents how good each pattern matches the images at
specific locations. In this way, an image can be inspected
for features such as horizontal or vertical lines. Via com-
bination, they can represent more complex shapes such as
symbols. Figure 1 shows an example for two filters of a
horizontal and a vertical line on the left side and how they
are matched in the image on the right-hand side.

Figure 1: Searching for filters in an image

Each filter pixel is multiplied with the corresponding pixel
from the image, and the resulting values are added up.
Afterward, this value is divided by the pixel number of
the filter. If the filter is found in the image with a 100%
accuracy, the result for this location of the image is 1
(upper filter with the blue box in the image). On the other
hand, if the filter has no common values with the current
location in the image, the result is -1. The overall result is
a map which represents where the different features occur
in the image. A ReLU activation function can then be
used to normalize the values in the feature map that was
calculated, which improves the training process (Figure
2).

Figure 2: Max pooling



Images usually consist of thousands or even millions of
pixels, which can make the training of a CNN compu-
tationally expensive, as bigger images result in a bigger
feature map. Therefore, an operation is introduced that re-
duces the size of the feature map. We chose the so-called
max pooling operation. It takes only the maximum value
of a given window and saves it at the correct location in
a new, smaller feature map (Figure 2). These techniques
can be used multiple times in so-called layers, where each
layer takes as input the output of the previous layer. The
image gets more filtered for each convolution layer and
smaller for each pooling layer (Stoitchkov 2018).

The extracted features are then fed into the neural network.
A very simplified example neural network can be seen in
Figure 3. By adjusting the weights (marked with a W
in Figure 3) between the neurons, an output is calculated
from a given input. In the training process, the neural

Figure 3: Neural network structure

network tries to minimize the difference between the out-
put it has generated and the ground truth result which is
targeted. In order to reach a good accuracy, meaning exact
recognition, thousands of images are required. However,
one of the biggest challenges of training a neural network
is to prevent overfitting. Overfitting occurs when the train-
ing images are similar to one another, and the network is
extremely optimized in recognizing these images but fails
to recognize a new set of images. Instead of learning, the
model then starts to memorize the training data.

Recognition of infrastructure elements in video data

As already mentioned Genc et al. (2018) have developed
an approach that also relies on the use of CNNs in order
to automate the process of detecting and cataloging in-
frastructure elements on railway tracks. In contrast to the
method presented in this paper, their approach focuses on
video data, that was obtained by filming the tracks with
a camera positioned at the front of a train. While these
videos have been used to manually detect existing infras-

tructure elements in the past as a basis for maintenance or
reconstruction tasks, they are now used as the basis for an
automated process. Figure 4 gives an impression of the
types of objects that are recognized (ETCS balises, light
signals, and switches) and the general results of the ap-
proach. The findings in this research can now be used to
analyze infrastructure data to save cost and time compared
to a manual process.

Figure 4: Application of object recognition (Genc et al.
2018)

Methodical Approach

The project NNdips (Neural Network for the detection and
interpretation of plan symbols) aims to facilitate the detec-
tion of plan symbols for large amounts of technical draw-
ings, i.e., plans of train tracks. The process is composed
of three main parts, namely the import and preprocessing
of data, the training of CNNs and the detection of symbols
using the CNNs. All steps have been automated and thus
provide a technique that does not require classification by
users. We were provided with a large data set of real tech-
nical drawings and plans of railway tracks by the DB Netz
AG. These formed the basis of our research in terms of
data and are especially important as they were used for
validating our results.

In the first stage of this project, the framework for the
research was set. As there are numerous ways to utilize
neural networks, it was decided at first which type of neu-
ral network was to be used and how it should be applied to
the data. Considering that the aim was to detect plan sym-
bols in railway plans – usually image files – we decided
on using CNNs. As mentioned before, CNNs are par-
ticularly suitable for image recognition, and their use has
been successfully tested for symbol recognition purposes
by Stoitchkov (2018).

The symbols that need to be recognized are tiny compared
to the complete plan and do not occur in large numbers.



Also, on most technical drawings there is much white space
where it is unreasonable to scan for a symbol as nothing
is depicted. Therefore, it makes sense to “cut” the plan
into small pieces, so-called regions of interest (ROI) and
to scan only those ROIs, which are not empty. In other
words, white ROIs are ignored to minimize the amount of
data and thereby the computational effort.

The size of those ROIs is a critical parameter, as the com-
putational effort increases disproportionally when very
small ROIs are used. In the case of large ROIs, the training
time increases drastically while at the same time the de-
tection accuracy decreases. At the same time, it is crucial
how the plan is divided into regions. It is possible that
a significant symbol is located on a border between two
regions of interest and thus will not be detected, as the
partial symbol cannot be recognized by the CNN in either
of the two regions. We found that the simplest solution for
this problem is an overlap of the ROIs at the expense of
some computational overhead.

Generation of training Data

Providing thousands of input images for the training pro-
cess is usually a big challenge and can result in tedious
work if the images have to be selected and classified by
hand. In the case of plan symbol detection, training images
can be generated artificially due to the inherently repeti-
tive nature of drawing symbols. This generation process
is done in the following steps.

In a first attempt, a large background image was created by
lumping some random image parts together, such as parts
of technical drawings, text elements, and random patterns.
Subsequently, thousands of smaller images containing the
symbol to be detected and having the same size as the
ROIs in the recognition process were created. This was
done by copying random parts of the same size from the
background image and placed the symbol on each of them.
To ensure that a large variety of images was generated,
this process was entirely randomized by choosing arbitrary
parameters, such as the position and rotation of the symbol
relative to the image (cf. Figure 5).

After many tests, which did not yield sufficiently accu-
rate prediction results, we concluded that an improvement
of the generation process was necessary. A first attempt
adapted the background image and made sure it mostly
contains elements such as line shapes, numbers, and text
that may occur in the technical drawings that should be
scanned later on. The random patterns, which were put
in the background image before, did not provide any in-
crease in training accuracy. The plan elements (such as
line shapes), however, helped to reduce the detection of
false positives drastically.

Figure 5: Cutting the background image into ROIs and
placing training symbols in different configurations

Afterward, the symbol placement was also improved. For
this, a set of variations of the symbol the CNNs was sup-
posed to recognize was created. This was achieved by
resizing and stretching the symbol. These measures in-
crease the detection capabilities of the trained CNNs and
therefore reduce the number of false negatives.

For every symbol that the network is being trained for,
the same background image may be used. However, to
improve the training accuracy, the background image was
modified by placing plan sections containing markings
similar to the target symbol to reduce false positives and
increase the specificity of the resulting classifier.

At the same time, training images were also created to gen-
erate the output data which contains the exact information
that the CNNs are supposed to predict. For each training
image, the information is stored separately.

Training process

Before the training process could be initiated, it is neces-
sary to compile a CNN model. To create this CNN model
various parameters have to be adjusted, such as the amount
and type of layers, the number of filter types, the mask size
of the filter (kernel size), the type of activation function,
loss function (error calculation) and optimizer.

As there is no single perfect solution to set up the model,
the best parameters had to be determined by systematic
experimentation. In this regard, we created different model



setups by changing one parameter per setup, trained and
tested them for accuracy. The models with the best results
were then further refined until we obtained a model setup
with every good recognition capabilities. In each of these
refinement stages, we trained with only a reduced amount
(a few hundred) of input images, as this process otherwise
would have been inappropriately time-consuming.

After that, we trained a CNN with the obtained model setup
and a few thousand input images and applied it on real plans
of train tracks. The results of these scans revealed that the
model still could not match the expectations, as it failed to
detect symbols which are located close to each other.

To further increase the detection accuracy, the CNN was
split into three more specialized CNNs. The first CNN is
supposed to detect how many symbols are located within
the detection range (Region of interest) and then to ini-
tialize one of the other CNNs, which are responsible for
predicting the location of the symbol center of one or two
symbols (cf. Figure 6).

If num == 0: Do nothing

If num == 1: CNN for 1 symbol

If num == 2: CNN for 2 symbols

Search number of symbols per ROI

Figure 6: CNN types

In a final refining process, we changed the loss function
of the number recognition CNN to a classifying method
rather than a mean square error evaluation.

Overfitting

Because the training images are generated artificially, there
is a high chance for overfitting. Therefore, two types of
input symbols are required. The first type (the training
symbol) is a set of up to five images depicting different
variants of the symbol we want to detect. With these
images, we generate the training data set. The other testing
symbol is cut out from a real, presumably slightly distorted
plan and we generate another set, also with a different
background image – the testing data set. From the training
data set we take 15% as validation data, which is also used
for calculating the accuracy. We measure the accuracy for
both the validation and testing data set and take the average
as our final accuracy.

In the training process, we train one epoch, pause, apply
the trained neural network on both image sets, measure the

accuracy and save the neural network only if it yields the
best accuracy compared to the prior epochs. If the neural
network overfits over the epochs, the accuracy of the test
data will decrease and, because of the averaging with the
training data set, the overfitted network will be discarded.

Implementation and results of the training
process

Facilitating the training and recognition process

We implemented the derived algorithms into a GUI
(Graphical User Interface) in order to simplify their us-
age. It allows for importing plans in several formats, such
as .pdf, .png or .tif and the detection of pre-trained symbols
in the imported plans. Positions and other results are vi-
sualized and can be exported as text files or as annotations
at the positions of detected symbols in PDF-files. Another
feature is the option of training the necessary CNNs au-
tomatically for new symbols. This can be done by using
the predefined parameters or using advanced options that
control, e.g. ROI size, number of epochs or kernel size.

Provided that the user has already trained at least one
set of CNNs, the workflow of our software is straight
forward. The technical drawings that should be evaluated
are imported, then assigned an ID and displayed for the
user to check if any mistakes happened in the conversion
process. After that, the plan is scanned for a chosen symbol
by using the respective set of CNN. The results of the scan
are then presented on the same screen in a list box with an
ID and their respective position in pixel coordinates. All
results can be selected one by one, and on selection, their
position on the plan will be visualized with crosshairs
as well as a zoomed image. At this stage, the user can
manually delete falsely detected symbols and check the
overall quality of the scan. Finally, the user can export
the obtained and reviewed results. Figure 7 illustrates the
workflow schematically.

Load plan data
Apply CNN on 

plan
Export symbol

location

Automatic training Automatic scanning

CNN Model

Figure 7: NNdips workflow



Used software

To build the CNNs we chose the TensorFlow1 framework
for Python. TensorFlow is an open-source software library
for dataflow and contains a symbolic math library. It is fre-
quently used for building neural networks and is released
under the Apache 2.0 open-source license. To enable fast
testing, the Keras API2 was used in this project, which is
an API that runs inside TensorFlow. We avoided conflicts
with the compatibility of different programming languages
by writing the GUI with the TkInter3 library, which is the
standard GUI in Python.

Accuracy

The accuracy is measured in two different ways. For the
number of symbols, it is measured in percent, where the
recognized number is compared to the ground truth num-
ber of symbols in the ROI. It returns 1 for matching num-
bers or else 0 and the sum divided by the total number
of images gives the percentage of the correctly predicted
number of symbols. On the other hand, the accuracy
for the location of a symbol is measured as a distance in
pixels, where the distance denotes the deviation from the
recognized coordinates to the ground truth coordinates of
a given symbol.

Figure 8: Accuracy for the number of symbols

Figure 8 shows the accuracy of the detected number of
symbols, and it can be seen that the network learns very
fast for this specific task. Figure 9 displays the learning
curve for the location of one symbol. Here the learning
happens slower and more time is required for accurate
results. We explain this by the complexity of the problem,
since deciding between 0,1 or 2 is an easier task than to find
the exact x and y coordinates in a ROI. Both figures were

1https://www.tensorflow.org/
2https://github.com/keras-team/keras
3https://wiki.python.org/moin/TkInter

Figure 9: Accuracy for one symbol

created in the scope of the training process with the default
values of the ROI size (160x160 pixels) for 15 epochs and
an amount of 23.996 training images, 4.235 validation
images, and 4028 testing images. Tests were conducted
on different symbols, and the accuracy was consistently
above 99% for the recognition of the number of symbols
in a ROI and less than 2 respectively 4 pixels deviation for
one respectively two symbols. However, when the neural
network is applied on a plan, there are thousands of ROIs
to be searched and the error multiples with the number of
ROIs.

Figure 10: Visualization of the results in a PDF file

Proof of concept and use-case scenario

The output of the CNNs is the coordinates for each found
symbol. These can be visualized by marking the position
in the associated plan. Figure 10 shows an example for
the output in a PDF file. The positions are marked as
annotations. Another possibility is the export of a TXT
file. We expect users to supervise the outputs and allow
deleting and commenting on single results in the GUI.

So far we tested our networks with over 25 different plans



Plans manual count Nndips doubles false + false - [%]
18 215 366 (197) 169 9 12,56 (27)

1 4 7 (4) 3 0 0 (0)

4 22 55 (35) 20 16 13,64 (3)

4 13 42 (37) 5 25 7,69 (1)

4 37 70 (34) 36 2 13,51 (5)

10 28 51 (30) 21 2 0 (0)

6 16 24 (14) 10 0 12,50 (2)

4 96 156 (90) 66 0 6,25 (6)

7 20 43 (21) 22 1 0 (0)

22 29 74 (49) 25 20 0 (0)

26 43 133 (76) 57 36 6,98 (3)

Figure 11: Results of the verification process

provided by the DB Netz AG. In those plans, we selected
more than ten symbols to verify our previously described
method. Figure 11 summarizes the results of this veri-
fication process. Each line shows the actual number of
symbols present in a set of plans (column manual count).
The column Nndips shows the number of hits that the
CNN produced. Since we usually have multiple hits for
the same symbol, the number in parenthesis shows the
actual number of symbols found - without counting the
multiple hits. The number of multiple hits is shown in the
column doubles.

In some cases the CNN produced a falsely positive result (a
hit at a position where no symbol is present) - the respective
number is given in the column false +. Unfortunately, the
CNN does not recognize a symbol at all times. Such false
negatives are shown in the column false - as percent values
(the actual number of symbol which were not recognized
is given in parenthesis; the percent value is calculated by
dividing the number of false negatives by the number of
actually present symbols, e.g., 27

215 = 12,56 in the first
row).

While those results are not perfect, they nonetheless in-
dicate that our approach shows promising possibilities -
especially in regard to the very short time required for
training the CNNs (see below). We are currently work-
ing on further improving the general accuracy and also on
automatically removing the unnecessary multiple hits.

Challenges

Training CNNs for the detection of symbols in technical
plans pose multiple challenges. Previous knowledge about
the occurrence of the symbols is essential. In the given
technical plans, we found the occurrence of multiple sym-
bols closely together. One issue that results is the multiple
detection of the same symbol in various ROIs. This is a
well-known issue especially in object detection in videos.
Other works such as Breuers et al. (2016) tackle this by
deleting multiple hits by calculating an overlap-area-ratio
of bounding boxes around the detected objects. We did not
apply any of the possible techniques here, as the plan data
yields cases where multiple symbols are incredibly close
together, and a minimal distance approach or a bounding
box overlap could delete distinct hits. Further investiga-
tion of this phenomenon could minimize the amount of
multiple detection of symbols.

Another challenge is the rare case of more than two sym-
bols in a single ROI that are not detected by the overlap
of ROIs. We built a fourth CNN for the task of the detec-
tion of three symbols in a ROI but found lack of accuracy.
The fourth CNN worsened the amount of multiple found
symbols, referred to as false positives. If in further test-
ing, symbols are overlooked by the algorithm due to more
than two symbols in a ROI, this error can presumably be
corrected by merely reducing the ROI size.



Time of training and recognition

When using the parameters and symbols shown in this pa-
per, the time for the training process of a single symbol
took between 20 to 30 minutes on a Computer with an
8 core i7-7700 CPU at 3.60GHz and an NVIDIA Quadro
P2000 graphics card. The recognition process, which con-
sists of the calling of the trained model and drawing of the
symbols on a single plan took about ten seconds on the
same machine. Similar results could be achieved on a lap-
top with an NVIDIA GeForce 940MX; thus the training
can presumably be done within a reasonable time on any
modern graphics card.

Summary and outlook

This paper has introduced a method to automatically rec-
ognize important symbols in technical drawings of railway
infrastructure by using a Convolutional Neural Network.
The authors have shown how their approach was devel-
oped, implemented and tested in order to reduce the man-
ual effort that would otherwise be necessary in order to
obtain digital information from the aforementioned tech-
nical drawings. This information can then be further used
as the basis for planning purposes or to check the accuracy
of the drawings against the actual as-built situation. Since
the accuracy of the method is only at approx. 90 % at
the moment we are continuously improving the automated
training process. In regard of the fact that the training
process does not require a large number of manually la-
beled images and is automated as well as fast, we conclude
that the accuracy of the approach shows the possibility of
reducing the manual effort in recognizing plan symbols.
Furthermore, we plan to combine our method with the ap-
proach by Genc et al. (2018) to enable a semi-automated
consistency check of technical drawings. For this purpose,
we are currently acquiring video data as well as plan data
for a specific stretch of railway track. By applying both
approaches to the data and comparing the results we plan
to show the applicability of the combined approach.

Acknowledgements

We gratefully acknowledge the support of the Bavarian
Research Foundation for funding the project.

References
Breuers, S., Yang, S., Mathias, M. & Leibe, B. (2016).

Exploring bounding box context for multi-object tracker 
fusion. In: 2016 IEEE Winter Conference on 
Applications of Computer Vision (WACV) , IEEE, pp. 
1–8.

Genc, C., Harmsen, F. & Köhler, T. (2018). Automated
recognition of infrastructure elements using neural net-
works. SIGNAL+DRAHT | Ausgabe 009/2018.

Le Bodic, P., Héroux, P., Adam, S. & Lecourtier, Y. (2012).
An integer linear program for substitution-tolerant sub-
graph isomorphism and its use for symbol spotting in 
technical drawings. Pattern Recognition 45(12),
pp. 4214–4224.

LeCun, Y., Bottou, L., Bengio, Y. & Haffner, P. (1998).
Gradient-based learning applied to document recog-
nition. In: Proceedings of the IEEE, Vol. 86, IEEE, 
pp. 2278–2324.

Luqman, M. M., Brouard, T. & Ramel, J.-Y. (2009).
Graphic symbol recognition using graph based sig-
nature and bayesian network classifier. In: 10th 
International Conference on Document Analysis and 
Recognition, IEEE, pp. 1325–1329.

Nayef, N., Afzal, M. Z. & Breuel, T. M. (2012). Learning
feature weights of symbols, with application to sym-
bol spotting. In: Proceedings of the 21st International 
Conference on Pattern Recognition (ICPR), IEEE, pp. 
2371–2374.

Rusiñol, M. & Lladós, J. (2005). Symbol spotting in tech-
nical drawings using vectorial signatures. In: Interna-
tional Workshop on Graphics Recognition, Springer, 
pp. 35–46.

Stoitchkov, D. (2018). Analysis of methods for automated
symbol recognition in technical drawings. Bachelor’s 
thesis, Technical University of Munich

Vilgertshofer, S., Stoitchkov, D., Esser, S., Borrmann, A.,
Muhič, S. & Winkelbauer, T. (2018). The RIMcomb 
research project: Towards the application of building 
in-formation modeling in railway equipment 
engineering. In: Proceedings of the 12th ECPPM, 
Copenhagen, Denmark.

Weber, J. & Tabbone, S. (2012). Symbol spotting for tech-
nical documents: An efficient template-matching ap-
proach. In: Proceedings of the 21st International 
Conference on Pattern Recognition (ICPR), IEEE, pp. 
669–672.




