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a b s t r a c t 

Modern applications of computational fluid dynamics involve complex interactions across scales such as 

shock interactions with turbulent structures and multiphase interfaces. Such phenomena, which occur at 

very small physical viscosity, require high-resolution and low-dissipation compressible flow solvers. Many 

recent publications have focused on the design of high-order accurate numerical schemes and provide 

e.g. weighted essentially non-oscillatory (WENO) stencils up to 17th order for this purpose. As shown in 

detail by different authors, such schemes tremendously decrease adverse effects of numerical dissipation. 

However, such schemes are prone to numerically induced symmetry breaking which renders validation 

for the targeted problem range problematic. 

In this paper, we show that symmetry-breaking relates to vanishing numerical viscosity and is driven 

systematically by algorithmic floating-point effects which are no longer hidden by numerical dissipation. 

We propose a systematic procedure to deal with such errors by numerical and algorithmic formulations 

which respect floating-point arithmetic. We show that by these procedures inherent symmetries are pre- 

served for a broad range of test cases with high-order shock-capturing schemes in particular in the high- 

resolution limit for both 2D and 3D. 

© 2019 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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1. Introduction 

Many modern applications of computational fluid dynamics re-

quire high-order shock-capturing methods for the accurate predic-

tion of compressible flow features involving shock waves and com-

plex flow structures [1–4] . In order to achieve an efficient and

accurate computation, high-order spatial reconstructions are em-

ployed together with essentially non-oscillatory (ENO) schemes to

avoid spurious oscillations near discontinuities [5–7] . 

In their pioneering work, Harten et al. [8] introduced the essen-

tially non-oscillatory (ENO) method. In this method the smoothest

interpolation stencil out of a set of candidate stencils is selected to

adapt the stencil to the actual solution. A further major develop-

ment is the weighted-essentially non-oscillatory (WENO) method,

first introduced by Liu et al. [9] . They proposed to construct a

(2 r − 1) th-order accurate reconstruction from a weighted combi-

nation of several candidate stencils of order r . Effectively, the or-
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er (2 r − 1) is recovered in smooth regions of the flow, whereas

n the vicinity of discontinuities the ENO property is maintained.

he work of Jiang and Shu [10] on the efficient implementation of

ENO stencils allowed for a straightforward design of higher-order

ethods and marks a major breakthrough of the WENO methods

amily. Due to its robust behavior combined with the increased

patial order, their fifth-order variant WENO5-JS gained rapid pop-

larity in numerical solutions of various kinds of applications not

nly in the field of fluid mechanics [11–14] . A thorough overview

f recent applications is given in [15] . Different authors have fur-

her improved the method without changing the overall concept.

enrick et al. [16] dealt with the problem that classical WENO

chemes are not able to recover the full order of accuracy near crit-

cal points by the introduction of a mapping procedure resulting in

he WENO-M scheme. Furthermore, Borges et al. [17] suggested to

ntroduce a high-order global smoothness indicator and increase

he weights of non-smooth stencils. With the resulting WENO5-Z

tencil the dissipation in the vicinity of discontinuities can be fur-

her decreased while maintaining the ENO property. 

Despite the remarkable success in many applications, classi-

al WENO schemes are still too dissipative to fully resolve the
nder the CC BY-NC-ND license. ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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mall-scale flow features of turbulence in direct numerical simula-

ions. For this purpose, the order of the methods has been system-

tically increased starting with the work of Balsara and Shu [18] ,

ho followed the design rules of [10] , and later by Gerolymos et al.

19] , who extended and catalogued the reconstruction for stencils

p to 17 th order. However, these first high-order methods struggle

ith stability problems and tend to lose the ENO property with-

ut further adaptations [19] . Balsara et al. [20] recently introduced

 new class of WENO schemes with adaptive order. By adaptively

ecreasing the order of the method, stability can be maintained

hile reaching higher-order in smooth areas. Furthermore, the re-

onstruction utilizes Legendre polynomials, which enables a more

fficient calculation of the smoothness factors. Another approach

o further reduce the dissipation is provided by the recently pro-

osed class of targeted ENO (TENO) schemes [21,22] . While using

he same stencil size as classical WENO schemes, the numerical

issipation is significantly reduced by an ENO-like stencil selection.

Although high-order methods require an increased amount of

omputational effort, the steady growth in computational power,

hat recently is mainly driven by the massive application of paral-

elization strategies, allows for extreme mesh resolutions (see e.g.

ef. [23] ). Certainly, there is an increasing trade-off between re-

onstruction order and higher numerical resolutions in terms of

bsolute error level [5] . However, the combination of high-order

ethods with fine meshes leads to a strong decrease in numerical

issipation. Eventually, diminishing numerical dissipation fails to

uppress physical instabilities of well-established verification cases

or the inviscid Euler equations, which may develop symmetry

reaking as numerical artifact, see e.g. the Rayleigh-Taylor insta-

ility [5,21,22,24–27] or the two-dimensional Riemann problems

28,29] . This sort of phenomena depends on the chosen scheme,

n mesh resolution, but also on algorithm implementation as it

s driven by roundoff errors. For moderate mesh resolutions, such

ymmetry breaking typically can be observed for small-scale struc-

ures near the resolution limit. However, for higher-order schemes

ith lower dissipation, the small-scale symmetry breaking exhibits

nverse-cascade phenomena and affects the macroscopic flow evo-

ution leading to a drastically changed flow topology [22,24] . 

Remacle et al. [24] already suspected floating-point inaccura-

ies due to roundoff errors to be the relevant mechanism behind

umerical symmetry breaking for discontinuous Galerkin methods.

utherland [29] introduced an approach to control the floating-

oint truncation error. Changes to physical variables that are

maller than a defined threshold are considered to be non-physical

nd therefore discarded. In the context of high-order (W/T)ENO-

ype methods in fluid mechanics, the problem has not been care-

ully addressed or it is qualified as induced by the low dissipa-

ion [21] . Shock or interface-driven (nearly) inviscid flows are the

omain of high-resolution shock-capturing schemes. In this paper,

e show that it is exactly these schemes which suffer from non-

hysical artifacts when they are validated for such flows. 

We demonstrate the effect of inaccuracies in floating-point

rithmetic for the numerical solution of the inviscid Euler equa-

ions with low-dissipative (W/T)ENO-type methods. We demon-

trate the occurrence of numerical symmetry breaking and develop

trategies to control and avoid this artifact. Unlike Sutherland [29] ,

e do not reduce the accuracy range of the calculations. Instead,

e show the importance of consistent algorithms that take into ac-

ount the shortcomings of floating-point arithmetic systematically.

ventually, fully symmetric results can be achieved even for very

ow-dissipative schemes at large resolutions, thus enabling verifi-

ation by grid-converged states and cross-code validation. 

The remainder of the paper is organized as follows.

ections 2 and 3 briefly review the inviscid Euler equations

s governing equations and the finite volume method along

ith the method-of-lines approach. Furthermore, the relevant
elations for the HLLC approximate Riemann solver and the

haracteristic decomposition strategy that is applied along with

he high-order stencils are presented. In Section 4 , we identify

umerical symmetry-breaking mechanisms and explain straight- 

orward workarounds as well as a generalized solution strategy. In

ection 5 , we present simulation results for a set of benchmark

ases and an extension of the implosion test case to three di-

ensions applying both high-order methods and high resolutions.

onclusions are drawn in Section 6 . 

. Governing equations 

An inviscid compressible flow evolves according to the three-

imensional Euler equations 

 t + F ( U ) x + G ( U ) y + H ( U ) z = 0 , (1)

here U is the density of the conserved quantities mass ρ , mo-

entum ρv ≡ ( ρu, ρv, ρw ) and total energy E = ρe + 

1 
2 ρv 2 , with e

eing the internal energy per unit mass. 

The fluxes F, G and H are defined as 

 = 

⎛ 

⎜ ⎜ ⎝ 

ρu 

ρu 

2 + p 
ρu v 
ρuw 

u ( E + p ) 

⎞ 

⎟ ⎟ ⎠ 

, G = 

⎛ 

⎜ ⎜ ⎝ 

ρv 
ρu v 

ρv 2 + p 
ρv w 

v ( E + p ) 

⎞ 

⎟ ⎟ ⎠ 

, H = 

⎛ 

⎜ ⎜ ⎝ 

ρw 

ρuw 

ρv w 

ρw 

2 + p 
w ( E + p ) 

⎞ 

⎟ ⎟ ⎠ 

. (2)

he set of equations is closed by the ideal-gas equation of state,

here the pressure p is given by p = ( γ − 1 ) ρe with the ratio of

pecific heats γ . 

. Finite volume approach 

In this section, we briefly recall necessary details of the

ethod-of-lines approach for finite volumes, which is widely used

o solve systems of hyperbolic equations. We focus on aspects that

re particularly important for considering floating-point inaccura-

ies. More detailed descriptions of the overall scheme can be found

.g. in [30,31] . 

The time evolution of the vector of cell-averaged conservative

tates Ū is given by 

d 

dt 
Ū i = 

1 

�x 
(f i − 1 

2 , j,k − f i + 1 2 , j,k 

+ g i, j− 1 
2 ,k 

− g i, j+ 1 2 ,k 
+ h i, j,k − 1 

2 
− h i, j,k + 1 2 

) , (3) 

here �x ( =�y = �z) is the cell size of a uniform Cartesian grid

nd f, g and h approximate the cell-face fluxes in x -, y - and z -

irection, respectively. These fluxes are determined dimension-by-

imension from an approximate Riemann solver combined with

 high-order WENO [10,18] or TENO [21] spatial reconstruction

cheme. Additional volume source terms, such as gravitational ac-

eleration, are omitted here for simplicity. The resulting ODE (3) is

ntegrated in time using a second-order strong stability-preserving

SSP) Runge–Kutta scheme [32] . Note, that a higher-order time in-

egration does neither trigger symmetry breaking nor affect the

eneral results of the simulations presented in this paper and is

herefore omitted to save computational cost. 

.1. HLLC approximate Riemann solver 

The majority of state-of-the-art methods relies on approximate

iemann solvers since exact Riemann solvers are computationally

xpensive. Two common types of approximate Riemann solutions

re the Roe [33] and the HLL(C) [34] approximation. With the

estoration of the contact wave by Toro et al. [35] , the HLLC ap-

roximation models all wave types of the Euler equations explic-

tly. Compared to the Roe approximation it is slightly more dissi-
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pative. Nevertheless, the better positivity-preservation of the first-

order Godunov scheme with the HLLC approximation renders it fa-

vorable for problems with low density or pressures [36] . We fo-

cus on a HLLC flux formulation, although for the high-order recon-

structions as used in this work, it does not fully maintain positiv-

ity, see also [37] . We emphasize that all concepts or workarounds

essentially apply also to other approximate Riemann solvers. 

As “HLLC solver” we define an algorithm that delivers approx-

imate cell-face fluxes of the Riemann problem with reconstructed

left and right face states, U 

L and U 

R , respectively. Following the

compact formulation of Johnsen and Colonius [38] , the HLLC flux

is defined as 

f HLLC = 

1 + sign (s ∗) 
2 

[
f L + s −

(
U 

∗L − U 

L 
)]

+ 

1 − sign (s ∗) 
2 

[
f R + s + 

(
U 

∗R − U 

R 
)]

, (4)

where two intermediate states, U 

∗L and U 

∗R , are separated by the

contact wave and are determined from 

 

∗K = 

s K − u 

K 

s K − s ∗

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

ρK 

ρK s ∗

ρK v K 
ρK w 

K 

E K + 

(
s ∗ − u 

K 
)(

ρK s ∗ + 

p K 

s K −u K 

)

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

(5)

with k = L, R . The wave speeds s − and s + are estimated according

to Batten et al. [36] from 

s − = min (s L , 0) , s + = max (s R , 0) , (6)

with 

s L = min ( ̄u − c̄ , u 

L − c L ) , s R = max ( ̄u + c̄ , u 

R + c R ) . (7)

ū and c̄ are determined from arithmetic averages ū = 

1 
2 

(
u L + u R 

)
and c̄ = 

1 
2 

(
c L + c R 

)
. Alternatively, Roe averaging can be applied to

determine ū and c̄ , both procedures achieve nearly identical nu-

merical results [39] . Following Einfeldt et al. [40] , the contact wave

speed is obtained from 

s ∗ = 

p R − p L + ρL u 

L 
(
s L − u 

L 
)

− ρR u 

R 
(
s R − u 

R 
)

ρL 
(
s L − u 

L 
)

− ρR 
(
s R − u 

R 
) . (8)

3.2. High-order spatial reconstruction with application of local 

characteristic decomposition 

At the beginning of each time step, only cell-averaged conser-

vative variables Ū are available. For the application of the HLLC

procedure as described above, the values at cell faces have to be

reconstructed. Different higher-order spatial interpolations, such as

WENO and TENO schemes [10,18,21] , are available in the literature

for this purpose. Note that if the reconstruction is performed di-

rectly on conservative variables, spurious oscillations may be in-

troduced in the vicinity of discontinuities due to interactions of

different characteristic fields [41] . The issue becomes even more

relevant when the order of reconstruction is increased, and essen-

tially non-oscillatory behavior can no longer be guaranteed. As a

remedy, all cell-averaged conservative variables within the stencil

range are locally projected onto characteristic space and the recon-

struction of the cell-face variables is performed with these char-

acteristic variables W̄ . Afterwards, the reconstructed characteristic

variables at the cell faces are projected back onto physical space

and passed to the HLLC solver. This procedure is computationally

costly and also challenging in terms of floating-point consistency.

Nevertheless, the decomposition is required whenever spurious os-

cillations cannot be tolerated or positivity of density and pressure

is violated. 
Here, we present the characteristic decomposition in x -direction

n detail. Since the flux is computed dimension-by-dimension, the

rocedure in y - and z -directions is analogous. All conservative vari-

bles within the stencil range are projected onto characteristic

pace by 

¯
 = L · Ū = L 1 ρ + L 2 ρu + L 3 ρv + L 4 ρw + L 5 E (9)

ith L = ( L 1 , L 2 , L 3 , L 4 , L 5 ) being the left eigenvector matrix of the
inearized system 

 = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

1 
4 

q 2 

ˆ H − 1 
2 q 

2 
+ 

1 
2 

ˆ u 
c 

1 
2 

ˆ u 
ˆ H − 1 

2 q 
2 

− 1 
2 c 

− 1 
2 

ˆ v 
ˆ H − 1 

2 q 
2 

− 1 
2 

ˆ w 
ˆ H − 1 

2 q 
2 

1 
2 

1 
ˆ H − 1 

2 q 
2 

−q 2 + 

ˆ H ˆ u ˆ v ˆ w −1 

ˆ v 0 −1 0 0 

− ˆ w 0 0 1 0 

1 
4 

q 2 

ˆ H − 1 
2 q 

2 
− 1 

2 
ˆ u 
c 

1 
2 

ˆ u 
ˆ H − 1 

2 q 
2 

+ 

1 
2 c 

− 1 
2 

ˆ v 
ˆ H − 1 

2 q 
2 

− 1 
2 

ˆ w 
ˆ H − 1 

2 q 
2 

1 
2 

1 
ˆ H − 1 

2 q 
2 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

(10)

with q 2 = ˆ u 2 + ̂

 v 2 + ˆ w 

2 and enthalpy H . Note that quantities with

at-notation “ˆ . ” denote density-based Roe averages of the cell-

veraged variables of the cells adjacent to the face. 

After reconstruction, the resulting characteristic cell-face vari-

bles W̄ recon are projected back onto physical space by 

¯
 = R · W̄ recon = R 1 w 1 + R 2 w 2 + R 3 w 3 + R 4 w 4 + R 5 w 5 , (11)

here R = ( R 1 , R 2 , R 3 , R 4 , R 5 ) denotes the right eigenvector matrix

f the linearized system and is given by 

 = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

1 

1 
ˆ H − 1 

2 q 
2 

0 0 1 

ˆ u − ˆ c ˆ u 
ˆ H − 1 

2 q 
2 

0 0 

ˆ u + 

ˆ c 

ˆ v ˆ v 
ˆ H − 1 

2 q 
2 

−1 0 

ˆ v 

ˆ w 

ˆ w 

ˆ H − 1 
2 q 

2 
0 1 

ˆ w 

ˆ H − ˆ c ̂  u 

ˆ H 
ˆ H − 1 

2 q 
2 

− 1 −ˆ v ˆ w 

ˆ H + 

ˆ c ̂  u 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

. (12)

. Mechanisms of numerical symmetry breaking 

In the following, we show how nominally symmetric problem

onfigurations may result in asymmetric flow evolution due to

oating-point errors in various steps of the numerical algorithm.

or simplicity, we first consider two spatial dimensions. Strate-

ies for three-dimensional problems, which reveal additional chal-

enges, are presented afterwards. 

We have chosen the Rayleigh-Taylor instability and a gas im-

losion problem as test cases given their sensitivity to small dis-

urbances. 

The Rayleigh-Taylor instability is a common test case for accu-

acy studies of numerical schemes [5,21,22,24] , since it contains

oth discontinuities and complex flow structures. Two initial gas

ayers with different densities are exposed to gravity with unity

agnitude, where the resulting acceleration is directed towards

he lighter fluid. A small disturbance of the contact line triggers

he instability. The set-up is chosen according to [5] , where the

omputational domain is [0, 0.25] × [0, 1] and the interface is

laced at y = 0 . 5 . Initial states are given by ( ρ, u, v , p ) y ≤0 . 5 =
( 2 , 0 , −0 . 025 c · cos (8 πx ) , 2 y + 1 ) and ( ρ, u, v , p ) y> 0 . 5 =
(1 , 0 , −0 . 025 c · cos (8 πx ) , y + 1 . 5) , where the speed of sound

s c = 

√ 

γ p 
ρ with γ = 

5 
3 . Top and bottom boundary states are fixed

o (1, 0, 0, 2.5) and (2, 0, 0, 1), respectively. Symmetry boundary

onditions are imposed at the left and right boundary. 

The second test case describes a two dimensional implosion

f a gas in a square box of size L = 0 . 6 as described by Liska

nd Wendroff [42] . The low-density core region forms another

quare box, yet its size is smaller and it is centered but rotated
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Fig. 1. Illustration of the asymmetric floating-point evaluation of Eq. (9) for two symmetrically placed cells. 

Fig. 2. Implosion test case t = 1 . 0 : density contours from 0.37 (blue) to 1.18 (red); (left) straightforward implementation without sorting during characteristic decomposition; 

(right) adapted order of evaluations during characteristic decomposition. (For interpretation of the references to colour in this figure legend, the reader is referred to the 

web version of this article.) 

Fig. 3. Implosion test case t = 2 . 5 : density contours from 0.4 (blue) to 1.05 (red); (left) implementation without brackets for contact wave speed calculation; (right) imple- 

mentation with brackets for contact wave speed calculation. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 

this article.) 
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y 45 º. The corner points of the inner square box are located at

 ± 0.15, 0) and (0, ± 0.15). Symmetry boundary conditions are ap-

lied at all boundaries. Initially, both fluids are at rest with the ini-

ial states ( ρ, u, v , p ) core = ( 0 . 125 , 0 , 0 , 0 . 14 ) and ( ρ, u, v , p ) outer = 

( 1 . 0 , 0 , 0 , 1 . 0 ) and γ = 1 . 4 . For simplicity, this problem is usually

tudied by employing the two axial symmetries. The reduced prob-

em still reveals an inherent symmetry along the diagonal axis. The

volution of the jet developing along this axis is very sensitive to

mall disturbances and can be easily deflected, especially for long-

ime simulations up to t = 2 . 5 . Once the symmetry is slightly per-

urbed, frequent shock-wave interactions lead to a strong increase

f asymmetry. 
.1. Lack of associativity 

Standard requirements of modern programming languages en-

ure that summation and multiplication are commutative for two

omponents, i.e. the result given in floating-point notation equals

he correctly rounded analytic solution. However, if more than two

omponents are summed up or multiplied, the final floating-point

alue typically depends on the order of operations, i.e. associativity

s lost 

( a + b ) + c � = a + ( b + c ) . (13)
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Fig. 4. Rayleigh-Taylor instability t = 1 . 95 : density contours from 0.85 (blue) to 2.25 (red); symmetry breaking due to limited representation of π to the given number of 

digits with a resolution of 256 × 1024 using a TENO5 stencil. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version 

of this article.) 

Fig. 5. Rayleigh-Taylor instability t = 1 . 95 : density contours from 0.85 (blue) to 2.25 (red); symmetry breaking due to cosine evaluation inaccuracy. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Numerical algorithms build upon a series of such elementary

operations. Accordingly, effects of truncation errors cannot be sup-

pressed completely, however, we found that only few recurring al-

gorithmic patterns trigger asymmetric flow behavior that leads to

macroscopic flow deviations. These patterns occur essentially for

all employed numerical discretization schemes. 

The simulation of the implosion test case using low-dissipative

schemes is an illustrative example for symmetry breaking along

the diagonal line, see Fig. 1 . The effect that triggers this asymme-

try can be traced back to operations where directionally dependent

quantities are subject to summation or multiplication operations,

e.g. for the velocity components. Considering two isolated cells

symmetric to the diagonal line, see Fig. 1 , and a perfectly symmet-

ric flow at this time instant, the velocity component in x-direction
f the cell A equals the velocity component in y-direction of cell B

nd vice versa. Together with the lack of associativity, Eq. (13) , the

haracteristic projection in Eq. (9) is prone to floating-point round-

ff errors, and small-scale disturbances are triggered. These distur-

ances are amplified by physical instability mechanisms of the in-

iscid flow (e.g. Kelvin-Helmholtz instabilities) and deflect the di-

gonal jet in the given example. Aiming for preserving symmetry

e have to ensure that the algorithmic pattern is dimensionally

nvariant. Such patterns with explicit directional dependencies to-

ether with more than two components occur with the character-

stic decomposition in high-resolution schemes. 

One straightforward solution to handle the issue is to enforce

he order of the evaluation of matrix multiplications by insert-

ng appropriate brackets into the source code. This will force the
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Fig. 6. Rayleigh-Taylor instability t = 1 . 95 : density contours from 0.85 (blue) 

to 2.25 (red); (left) straightforward implementation of Roe-averaging procedure; 

(right) efficient implementation of Roe-averaging procedure. (For interpretation of 

the references to colour in this figure legend, the reader is referred to the web ver- 

sion of this article.) 
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ompiler to handle the operations consistently for any cell. In 2D,

q. (9) becomes 

¯
 = L · Ū = L 1 ρ + ( L 2 ρu + L 3 ρv ) + L 4 E. (14)

he actual implementation, however, is cumbersome as Eq. (14) is

art of a matrix multiplication that involves loops. 

Alternatively, we can order the evaluation of Eq. (14) such that

he sum of momenta is computed first, and the other terms are

dded subsequently, i.e. 

¯
 = L · Ū = (L 2 ρu + L 3 ρv ) + L 1 ρ + L 4 E. (15)

he same procedure is applied to Eq. (11) . 

When the directional dependence of the characteristic projec-

ion is eliminated, the expected perfectly diagonal post-implosion

et is observed, see Fig. 2 . 

A second example is shown to clarify the symmetry-breaking

echanism for a different part of the solver. The same implosion

roblem is now calculated on the full domain. The loss of symme-

ry in the second and fourth quadrant, as shown in the left frame

f Fig. 3 , is caused by an inconsistent calculation of the wave-speed

 

∗ in the HLLC solver. By enforcing proper summations using addi-

ional brackets, Eq. (8) becomes 

 

∗ = 

(
p R − p L 

)
+ [ [ [ ρL u 

L 
(
s L − u 

L 
)

− ρR u 

R 
(
s R − u 

R 
)
] ] ] 

ρL 
(
s L − u 

L 
)

− ρR 
(
s R − u 

R 
) . (16) 

emarkably, this marginal modification removes these artifacts, see

he right frame of Fig. 3 . The only difference between both simu-

ations is the introduction of brackets in one single line of code. 

Note, that the driving mechanism behind symmetry breaking

n both cases is the lack of associativity. Despite the fact that all

esults in this paper are demonstrated for one specific type of

ow solver (HLLC) for simplicity, we emphasize that the underly-

ng principles and derived best-practice guidelines are not limited

o these methods, but apply for high-resolution schemes for flow

olvers in general. 

.2. Generalized solution strategy 

The simple workarounds that were presented in detail in the

revious section demonstrate the fundamental mechanisms, how-

ver, they are only applicable to two-dimensional situations. They

o not work for more complex problems, especially not for three

imensions. This can be demonstrated exemplarily for the calcula-

ion of the velocity magnitude q . Since three components have to

e summed, three different floating-point results 

 

2 = 

{ 

(v 2 + w 

2 ) + u 

2 , 

(w 

2 + u 

2 ) + v 2 , 
(u 

2 + v 2 ) + w 

2 

(17) 

an be obtained. The same problem arises in several other parts of

he algorithm, where subterms related to the three Cartesian direc-

ions have to be summed up, e.g. in Eq. (3) the fluxes in x, y , and z -

irection. This summation of direction-related terms can be found

or a wide range of other algorithms in CFD codes including curva-

ure calculations, multiresolution approaches and level-set meth-

ds. 

For certain operations, where the preferential direction is

nown a priori, the simple bracketing strategy is applicable such

s 

 

2 = 

{ 

(v 2 + w 

2 ) + u 

2 for flux calculation in x-direction , 

(w 

2 + u 

2 ) + v 2 for flux calculation in y-direction , 

(u 

2 + v 2 ) + w 

2 for flux calculation in z-direction . 

(18) 

However, generalization of this procedure under relaxed con-

itions is not possible. Instead, we propose to use a consistency-

nsuring function for all relevant summations in the code. Consis-

ency means in this context that the result of the summation is
dentical for all cases of Eq. (17) . Thus, the consistency-ensuring

ummation restores associativity for floating-point numbers. This

ailored summation takes the sum of three floating-point values a,

 and c according to 

UM consistent = 

1 

2 

( max (s 1 , s 2 , s 3 ) + min (s 1 , s 2 , s 3 ) ) (19) 

ith 

s 1 = ( a + b ) + c, 

s 2 = ( c + a ) + b, 

s 3 = ( b + c ) + a, (20) 

nd four floating-point values a, b, c and d with 

s 1 = ( a + b ) + ( c + d ) , 

s 2 = ( c + a ) + ( b + d ) , 

s 3 = ( b + c ) + ( a + d ) . (21) 

ote, this procedure does not necessarily provide the floating-

oint representation of the exact analytical result, but it delivers

 consistent result that is independent of the sequence of terms.

ence, the evaluation of the sum becomes directionally indepen-

ent. Extension to higher numbers of summands is straightfor-

ard, yet in our experience not required for common applications.

n alternative, well-known approach to avoid errors in the sum

f numbers with different order of magnitude is to sort the val-

es before adding them up. In principle, this would also work

ere, however, we compared the run time of both procedures and

ound our solution to be around 30 times faster than the applica-

ion of “std::sort” in C++. The overall performance impact of the
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C++ Code Example 1. A straightforward algorithm of the Roe-averaging procedure. 

C++ Code Example 2. An efficient algorithm of the Roe-averaging procedure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

s  

b

v  

a  

l  

l

4

 

m  

d  

v  

o

 

a  

s  

d

k  

w  

w

consistency-managed sums for the simulations shown in this pa-

per is never higher than 10%. 

4.3. Influence of initial disturbance 

Although it seems obvious that perturbations in the initial con-

dition can affect the simulation result, here we want to raise

awareness of unintentionally initialized asymmetries. 

Consider the classical Rayleigh-Taylor instability where the ve-

locity field is perturbed according to 

v = −0 . 025 c · cos (8 πx ) . (22)

We want to highlight the effect of the accuracy of π when eval-

uating Eq. (22) . In Fig. 4 we show the Rayleigh-Taylor instabil-

ity at t = 1 . 95 for a resolution of 256 × 1024 and varying accu-

racy of the numerical representation of π . Only from 12 digits,

the error becomes negligible and the Rayleigh-Taylor instability

seems symmetric. Another well-known effect is an inaccurate co-

sine evaluation with C++ routines, shown in Fig. 5 . The fact that

cos (π − ε) � = cos (π + ε) is known in the computer science com-

munity, yet little attention is payed to its consequences in compu-

tational fluid dynamics. Again, the symmetry breaking in Fig. 5 is

simply induced by the violation of cosine-symmetry and could lead

to wrong interpretations with respect to the quality of numerical
chemes. As a remedy, we enforced symmetric initial conditions

y 

 = 

{
−0 . 025 c · cos (8 πx ) , if x < 0 . 125 , 

−0 . 025 c · cos [ 8 π(0 . 25 − x ) ] , otherwise 
(23)

nd observed perfectly symmetric results even for unprecedentedly

arge resolutions for the Rayleigh-Taylor instability as compared to

iterature (see next section). 

.4. Caveats of performance optimization 

In this last example, we demonstrate the effect of code opti-

izations with emphasis on runtime minimization. Given a low-

issipative scheme with careful implementation following our pre-

ious guideline, round-off errors can still be triggered from code

ptimization effort s. 

We consider a scheme which involves the density-based Roe-

veraging procedures as required for the characteristic decompo-

ition, see Eqs. (10) and (12) . Following Roe [33] , the average is

efined as 

ˆ 
 = 

k̄ i · √ 

ρi + ̄k i +1 · √ 

ρi +1 √ 

ρi + 

√ 

ρi +1 

, (24)

here k is replaced by the averaged quantity of interest, e.g. u, v,

 or H . A straightforward algorithm is given in Example 1 . 
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Fig. 7. Rayleigh-Taylor instability: density contours; (top) 128 × 512; (bottom) 256 × 1024. 
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From a computational efficiency point of view, the operation

ount of this implementation can be reduced. The evaluation of 

ˆ 
 = 

k̄ i + ̄k i +1 ·
√ 

ρi +1 

ρi √ 

ρi +1 

ρi 
+ 1 

(25) 

s analytically identical to Eq. (24) , yet computationally prefer-

ble for the saving of one costly root function evaluation. How-

ver, this popular rearrangement causes asymmetry as demon-

trated in the following. The optimized C++ code is shown in

xample 2 . 

In Fig. 6 , we show two snapshots of the density contours from a

ayleigh-Taylor instability simulation using the implementation of

q. (24) (left figure) and Eq. (25) (right figure), respectively. Both

imulations are performed with TENO5 ( C = 10 −5 ) using 128 × 512
T 
ells and the density is shown at t = 1 . 95 . Obviously, the opti-

ized algorithm strongly affects the quality of the results and ini-

iates symmetry breaking. Successive mathematical operations, es-

ecially within the costly root function, lead to a fast amplification

f floating-point errors that affects the overall flow evolution even

or moderate resolutions. 

. High resolution examples and discussion 

We have reported several strategies to improve the solver im-

lementations for the Euler equations with symmetry preserving

roperty. In this section, we demonstrate their efficiency for mod-

rn low-dissipative numerical schemes together with large spa-

ial resolutions. The Rayleigh-Taylor instability problem, the im-

losion problem and a classical Riemann problem are computed
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Fig. 8. Rayleigh-Taylor instability t = 1 . 95 : density contours; (top) 512 × 2048; (bottom) 1024 × 4096. 
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in two-dimensions with unprecedented resolution and different

high-order stencils. The results are compared to literature data

and show very good agreement. Finally, we present a new three-

dimensional implosion test case, which is directly obtained by the

extension of the two-dimensional case of Liska and Wendroff [42] .

The high number of inherent symmetries together with the high

number of wave interactions makes this case particularly interest-

ing and challenging to study the directional independence of the

framework in three dimensions. 

The inviscid Euler equations are formally scale-free due to the

infinite Reynolds number, thus numerical schemes with vanishing

dissipation predict an infinite cascade evolution of small structures.

Numerical dissipation retards small disturbance amplification, thus

a delayed evolution of asymmetries is observed. For this reason, of-

ten in literature the onset of an asymmetric Rayleigh-Taylor insta-

bility evolution is used as an indicator for the amount of artificial
umerical dissipation [5,21,22] . In this work, we demonstrate that

umerical dissipation does basically determine the growth rate of

ither initially present or algorithmically induced asymmetric dis-

urbances but does not trigger them itself. In other words, visible

ymmetry breaking is an indicator of insufficiently damped artifi-

ial disturbances rather than the result of some underlying physics

hat is observable due to higher-order methods. 

The CFL number is set to 0.6 for all test cases. Calculations were

erformed on the SuperMUC Petascale System using CPUs of the

ype Xeon E5-2697 v3 (Haswell). The C++ source code is compiled

sing the Intel compiler (ICC) version 16.0.4. 

.1. Rayleigh-Taylor instability 

We start evaluating the Rayleigh-Taylor instability test case,

hich is already described in Section 4 . This test case is widely
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Fig. 9. Rayleigh-Taylor instability t = 1 . 95 : (left) density contours; (right) color density map (blue = 0 . 85 to red = 2 . 25 ). (For interpretation of the references to colour in this 

figure legend, the reader is referred to the web version of this article.) 
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sed for verification of numerical methods. The resolution and

ichness of vortical structures of this test case can be utilized

s a measure of the numerical dissipation introduced by the

ethod. The loss of symmetry in this test case is an effect

f reduced numerical dissipation as shown by different authors

5,21,22,24,26] . Remacle et al. [24] supposed that the only cause

f the asymmetric behavior of the flow might be due to roundoff

rrors, however, they did not achieve symmetric results for higher

esolutions. 

We simulated the Rayleigh-Taylor instability with increasingly

igh resolution applying four different high-order stencils, namely

he WENO5-JS [10] , the TENO5 ( C T = 10 −5 ) [21] , the WENOCU6

43] and the WENO9 [18] stencil. The resulting density contours

re shown in Figs. 7 and 8 for four different resolutions 128 × 512,

56 × 1024, 512 × 2048 and 1024 × 4096. 15 contour lines are

qually spaced from ρ = 0 . 952269 to ρ = 2 . 14589 according to [5] .

he final simulation time is t = 1 . 95 . Unlike in Fig. 2 in [5] , Fig. 20

n [21] and Fig. 20 in [22] , where asymmetric results are presented

or high-order methods, the symmetry is exactly maintained up to

oating-point precision. To our best knowledge, there is no result

f the Rayleigh-Taylor instability reported in literature for resolu-

ions beyond 512 × 2048. 

Fig. 9 shows the Rayleigh-Taylor instability at t = 1 . 95 for an

xtreme resolution of 4096 × 16 , 384 using the TENO5 scheme.
ymmetry is preserved quantitatively up to floating-point pre-

ision. Thus, the consistent floating-point arithmetic in our

ramework enables the usage of high-order methods combined

ith highly resolved meshes without any numerical symmetry

reaking. 

.2. 2D implosion test case 

The two-dimensional implosion test case of Liska and Wen-

roff [42] is a challenging test case due to the presence of non-

rid aligned shocks and the appearance of axisymmetric jets, see

ection 4 for a more detailed problem description. This test case

s often used for code validation in the astrophysics community

29,44] . Sutherland [29] reports the problem of floating-point in-

ccuracies and handles this by a controlled rounding procedure

ith a non-physical threshold. Fluctuations smaller than this limit

re regarded as floating-point noise and intentionally eliminated.

owever, following the implementation principles of Section 4 , we

chieve strong symmetry preservation without the usage of any

dditional error-cancellation procedure, and furthermore we are

ble to maintain the full precision range. In [29,42,44] only the

rst quadrant of the implosion problem is simulated. The symme-

ry around the diagonal of the first quadrant does not necessarily

nsure the symmetry around the diagonals of all other quadrants
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Fig. 10. Implosion t = 2 . 5 : color pressure map (blue = 0 . 7 to red = 1 . 15 ) is overlaid by 31 density contours (0.35 to 1.1). (For interpretation of the references to colour in this 

figure legend, the reader is referred to the web version of this article.) 

Fig. 11. Implosion t = 2 . 5 : (left) color pressure map (blue = 0 . 7 to red = 1 . 15 ) is overlaid by 31 density contours (0.35 to 1.1); (right) color density map of the inner region 

[0.15, 0.45] × [0.15, 0.45] (blue = 0 . 4 to red = 1 . 0 ) . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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as shown in Fig. 3 . Thus, here we simulated the full problem do-

main. 

Results for the final pressure and density distribution are given

in Fig. 10 . The lowest presented resolution is chosen according to

[42] and delivers comparable results for the WENO5-JS stencil. For

higher resolutions, the jet moves further in diagonal direction and

reaches the end of the domain, where it is then split into two

parts. Thus, the progress of the jet can be used as a measure of the

magnitude of numerical dissipation. The TENO5 stencil is able to
chieve a result close to the one of the WENO9 stencil. Despite the

maller size and reduced computational cost of the TENO5 stencil

s compared to the WENO9 stencil, the level of numerical dissipa-

ion is similar. Thus, it is more efficient to use the TENO5 stencil

o achieve a desired level of numerical dissipation. 

Again, the robustness of the implementation is tested by further

ncreasing the resolution up to 36 · 10 6 cells. The resulting pressure

nd density distribution is shown in Fig. 11 . Due to the absence

f any physical viscosity, no convergence can be expected and the
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Fig. 12. 2D Riemann case at t = 1 . 1 in the region [0, 1.2] × [0, 1.2]: (left) 32 density contour levels from 0.15 to 1.7; (right) color density map (blue = 0 . 14 to red = 1 . 75 ). (For 

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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eduction of the numerical dissipation with increasing resolution

eads to finer and finer structures. All symmetries are quantita-

ively maintained to floating-point precision at the end of the sim-

lation. 

.3. 2D Riemann case 

Schulz-Rinne et al. [45] proposed a series of two-dimensional

iemann test cases with systematic permutations of shockwaves

nd expansion waves running in x- and y-direction, respectively.

ere, we focus on the four-shock setup that was already studied by

everal groups [28,29,42] . However, similarly to Balsara et al. [28] ,

e modify the domain size to [0, 2] × [0, 2] and simulate the prob-

em until t = 1 . 1 . This is advantageous since the relevant region

ow covers more than one quarter of the full domain at the end

f the simulation. In literature, the initial quantities are rounded

fter five digits, resulting in measurable artifacts of the complex

ave system. Here, we apply the exact Rankine-Hugoniot jump re-

ations to obtain 

= 1 . 5 , u = 0 , v = 0 , P = 1 . 5 , for x > 1 , y > 1 , 

= 

33 
62 

, u = 

4 √ 

11 
, v = 0 , P = . 3 , for x < 1 , y > 1 , 

= 

77 
558 

, u = 

4 √ 

11 
, v = 

4 √ 

11 
, P = 

9 
310 

, for x < 1 , y < 1 , 

= 

33 
62 

, u = 0 , v = 

4 √ 

11 
, P = . 3 , for x > 1 , y < 1 . 

(26) 
or this test case, a cutoff value of C T = 10 −4 was used for the

ENO5 stencil. 

The resulting density field (contours and color maps) is shown

n Fig. 12 for a section of the computational domain. The two

esolutions are chosen based on the reference configuration, see

ig. 11 of [28] , and as example of an extreme resolution with

00 · 10 6 cells. Contrary to [28] , here the diagonal symmetry of the

uitar-like shape of the jet is completely maintained. The same is

lso shown for an extreme resolution together with the expected

ncreased richness of the fine structures. 

.4. 3D implosion test case 

Finally, we tested the symmetry preserving property of the

ramework in three dimensions. For this purpose, the two-

imensional test case of Liska and Wendroff [42] ( Section 5.2 ) is

xtended to three dimensions in a straightforward way using an

ctahedral-shaped low-pressure area at the center of a cubical do-

ain of size [0, 0.6] × [0, 0.6] × [0, 0.6]. The six corner points of

he octahedron are placed at (0.3 ± 0.15, 0.3, 0.3), (0.3, 0.3 ± 0.15,

.3) and (0.3, 0.3, 0.3 ± 0.15). With this setup, each of the eight oc-

ants of the coordinate system, which is centered in the middle of

he octahedron, has identical flow conditions. Within each octant,

he problem can be further split into six symmetric subdomains.

hus, the problem can be fully described by one- 48 th of the whole

omain. In order to avoid an asymmetric initialization, the inner
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Fig. 13. 3D implosion: color density map (blue = 0 . 4 to red = 1 . 13 ) for t = 0 and t = 2 . 5 . (For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.) 
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low-pressure domain is given by 

(x − 0 . 3) + (y − 0 . 3) + (z − 0 . 3) < 0 . 15 + 10 

−10 ∩ 

(x − 0 . 3) + (y − 0 . 3) − (z − 0 . 3) < 0 . 15 + 10 

−10 ∩ 

(x − 0 . 3) − (y − 0 . 3) + (z − 0 . 3) < 0 . 15 + 10 

−10 ∩ 

(x − 0 . 3) − (y − 0 . 3) − (z − 0 . 3) < 0 . 15 + 10 

−10 ∩ 

−(x − 0 . 3) + (y − 0 . 3) + (z − 0 . 3) < 0 . 15 + 10 

−10 ∩ 

−(x − 0 . 3) + (y − 0 . 3) − (z − 0 . 3) < 0 . 15 + 10 

−10 ∩ 

−(x − 0 . 3) − (y − 0 . 3) + (z − 0 . 3) < 0 . 15 + 10 

−10 ∩ 

−(x − 0 . 3) − (y − 0 . 3) − (z − 0 . 3) < 0 . 15 + 10 

−10 

(27)

with ( ρ, u, v , p ) inner = ( 0 . 125 , 0 , 0 , 0 . 14 ) , ( ρ, u, v , p ) outer =
( 1 . 0 , 0 , 0 , 1 . 0 ) and γ = 1 . 4 . Symmetry boundary conditions are

applied at each side of the domain. 

In Fig. 13 , density contours are shown for both the initial time

step t = 0 and the final time step t = 2 . 5 using a resolution of 400 3
Fig. 14. 3D implosion t = 2 . 5 : density contour line for the density value 0.86 col- 

ored according to pressure values (blue = 0 . 8 to red = 1 . 0 ). (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version 

of this article.) 
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ells. We monitored the floating-point representation of the state

alues in all 48 subdomains and found exact agreement for all sim-

lation times. Furthermore, a jet along each diagonal similar to the

ne obtained in two dimensions can be detected using a density

ontour as shown in Fig. 14 . Note, that each of the jets consists of

ix perfectly symmetric parts. 

. Conclusion 

Various examples of symmetry breaking using low-dissipative

chemes are reported in literature. Often this effect is used to

udge the quality, i.e. the effect of numerical dissipation, of a

cheme. Clearly, high-order discretization schemes with highly re-

olved meshes allow to decrease numerical viscosity effects con-

iderably. Thus, damping of the inherent physical instabilities in

he inviscid Euler equations is now insufficient, and the onset of

ymmetry breaking with such low-dissipative schemes first is a

anifestation of algorithmic imperfections rather than of the low

issipation of the numerical scheme. 

We have identified floating-point truncation errors as the main

ource to trigger these instabilities. Due to their exponential

rowth the negligibly small initial disturbances grow rapidly dur-

ng the simulation and may even dominate the final huge-scale

opology of the simulation result. We show that such symmetry-

reaking is not a physical result of highly accurate high-resolution

chemes, but rather the result of algorithmic artifacts such as the

ack of associativity, which no longer are hidden by numerical dis-

ipation. 

We present implementation strategies to evaluate consistently

oating-point arithmetic within a finite volume solver as solution

o the prescribed problem. A generalized procedure is provided to

uarantee directional independence that allows for maintaining the

nherent symmetries as shown for a broad range of test cases both

n two and three dimensions. The symmetry of the state variables

an now be maintained exactly up to floating-point precision inde-

endently of resolution. 

The simulation of inviscid or very-large Reynolds number flows

ith extreme resolutions will become increasingly common with

he evolution from peta- to exascaling computing power. In this

aper we have addressed an important aspect of the increas-

ng relevance of implementation verification that accompanies this

volution. 

eclaration of competing interest 

The authors declare that they do not have any conflict of

nterests. 



N. Fleischmann, S. Adami and N.A. Adams / Computers and Fluids 189 (2019) 94–107 107 

A

 

C  

a  

t  

e  

G

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[  

 

[  

[  

 

 

 

 

[  

[  

 

 

 

[  

 

[  

[  

 

[  

 

[  

 

[  

 

 

[  

[  

[  

 

 

[  

 

[  

[  

[  

 

cknowledgments 

This project has received funding from the European Research

ouncil ( ERC ) under the European Union’s Horizon 2020 research

nd innovation programme (grant agreement No. 667483). The au-

hors gratefully acknowledge the Gauss Centre for Supercomputing

.V. for funding this project by providing computing time on the

CS Supercomputer SuperMUC at Leibniz Supercomputing Centre. 

eferences 

[1] Hadjadj A , Kudryavtsev A . Computation and flow visualization in high-speed

aerodynamics. J Turbul 2005;6:N16 . 

[2] Bermejo-Moreno I , Campo L , Larsson J , Bodart J , Helmer D , Eaton JK . Confine-
ment effects in shock wave/turbulent boundary layer interactions through wal-

l-modelled large-eddy simulations. J Fluid Mech 2014;758:5–62 . 
[3] Kannan K , Kedelty D , Herrmann M . An in-cell reconstruction finite vol-

ume method for flows of compressible immiscible fluids. J Comput Phys
2018;373:784–810 . 

[4] Meng JC , Colonius T . Numerical simulation of the aerobreakup of a water

droplet. J Fluid Mech 2018;835:1108–35 . 
[5] Shi J , Zhang Y-T , Shu C-W . Resolution of high order WENO schemes for com-

plicated flow structures. J Comput Phys 2003;186(2):690–6 . 
[6] Cheng T , Lee K . Numerical simulations of underexpanded supersonic

jet and free shear layer using WENO schemes. Int J Heat Fluid Flow
2005;26(5):755–70 . 

[7] Zhang Y-T , Shi J , Shu C-W , Zhou Y . Numerical viscosity and resolution of

high-order weighted essentially nonoscillatory schemes for compressible flows
with high reynolds numbers. Phys Rev E 2003;68(4):046709 . 

[8] Harten A , Engquist B , Osher S , Chakravarthy SR . Uniformly high order accu-
rate essentially non-oscillatory schemes, III. J Comput Phys 1987;71(2):231–

303 . 
[9] Liu X-D , Osher S , Chan T . Weighted essentially non-oscillatory schemes. J Com-

put Phys 1994;115(1):200–12 . 
[10] Jiang G-S , Shu C-W . Efficient implementation of weighted ENO schemes. J

Comput Phys 1996;126(1):202–28 . 

[11] Zhang P , Wong SC , Shu C-W . A weighted essentially non-oscillatory numerical
scheme for a multi-class traffic flow model on an inhomogeneous highway. J

Comput Phys 2006;212(2):739–56 . 
[12] Carrillo JA , Gamba IM , Majorana A , Shu C-W . A WENO-solver for the transients

of Boltzmann–poisson system for semiconductor devices: performance and
comparisons with monte carlo methods. J Comput Phys 2003;184(2):498–525 .

[13] Filbet F , Shu C-W . Approximation of hyperbolic models for chemosensitive

movement. SIAM J Sci Comput 2005;27(3):850–72 . 
[14] Aràndiga F , Belda AM . Weighted ENO interpolation and applications. Commun

Nonlinear Sci Numer Simulat 2004;9(2):187–95 . 
[15] Shu C-W . High order weighted essentially nonoscillatory schemes for convec-

tion dominated problems. SIAM Review 2009;51(1):82–126 . 
[16] Henrick AK , Aslam TD , Powers JM . Mapped weighted essentially non-oscil-

latory schemes: achieving optimal order near critical points. J Comput Phys

2005;207(2):542–67 . 
[17] Borges R , Carmona M , Costa B , Don WS . An improved weighted essen-

tially non-oscillatory scheme for hyperbolic conservation laws. J Comput Phys
2008;227(6):3191–211 . 

[18] Balsara DS , Shu C-W . Monotonicity preserving weighted essentially non-oscil-
latory schemes with increasingly high order of accuracy. J Comput Phys

20 0 0;160(2):405–52 . 

[19] Gerolymos G , Sénéchal D , Vallet I . Very-high-order WENO schemes. J Comput
Phys 2009;228(23):8481–524 . 
20] Balsara DS , Garain S , Shu C-W . An efficient class of WENO schemes with adap-
tive order. J Comput Phys 2016;326:780–804 . 

[21] Fu L , Hu XY , Adams NA . A family of high-order targeted ENO schemes for com-
pressible-fluid simulations. J Comput Phys 2016;305:333–59 . 

22] Fu L , Hu XY , Adams NA . Targeted ENO schemes with tailored resolution prop-
erty for hyperbolic conservation laws. J Comput Phys 2017;349:97–121 . 

23] Rossinelli D., Hejazialhosseini B., Hadjidoukas P., Bekas C., Curioni A., Bertsch
A., et al. 11 PFLOP/S simulations of cloud cavitation collapse. Proceedings of

the International Conference on High Performance Computing, Networking,

Storage and Analysis2013;:1–13. 
[24] Remacle J-F , Flaherty JE , Shephard MS . An adaptive discontinuous Galerkin

technique with an orthogonal basis applied to compressible flow problems.
SIAM Rev. 2003;45(1):53–72 . 

25] Xu Z , Shu C-W . Anti-diffusive flux corrections for high order finite difference
WENO schemes. J Comput Phys 2005;205(2):458–85 . 

26] Sun Z-S , Luo L , Ren Y-X , Zhang S-Y . A sixth order hybrid finite difference

scheme based on the minimized dispersion and controllable dissipation tech-
nique. J Comput Phys 2014;270:238–54 . 

[27] Delin C , Zhongguo S , Zhu H , Guang X . Improvement of the weighted essentially
nonoscillatory scheme based on the interaction of smoothness indicators. Int J

Numer Methods Fluids 2017;85(12):693–711 . 
28] Balsara DS , Dumbser M , Abgrall R . Multidimensional HLLC Riemann solver for

unstructured meshes–with application to euler and MHD flows. J Comput Phys

2014;261:172–208 . 
29] Sutherland RS . A new computational fluid dynamics code i: Fyris alpha. Astro-

phys Space Sci 2010;327(2):173–206 . 
30] Toro EF . Riemann solvers and numerical methods for fluid dynamics: a practi-

cal introduction. Springer Science & Business Media; 2013 . 
[31] LeVeque RJ . Finite volume methods for hyperbolic problems, 31. Cambridge

University Press; 2002 . 

32] Gottlieb S , Shu C-W , Tadmor E . Strong stability-preserving high-order time dis-
cretization methods. SIAM Rev 2001;43(1):89–112 . 

[33] Roe PL . Approximate riemann solvers, parameter vectors, and difference
schemes. J Comput Phys 1981;43(2):357–72 . 

34] Harten A , Lax PD , Leer Bv . On upstream differencing and godunov-type
schemes for hyperbolic conservation laws. SIAM Rev 1983;25(1):35–61 . 

[35] Toro EF , Spruce M , Speares W . Restoration of the contact surface in the

HLL-Riemann solver. Shock Waves 1994;4(1):25–34 . 
36] Batten P , Clarke N , Lambert C , Causon DM . On the choice of wavespeeds for

the HLLC riemann solver. SIAM J Sci Comput 1997;18(6):1553–70 . 
[37] Hu XY , Adams NA , Shu C-W . Positivity-preserving method for high-order

conservative schemes solving compressible euler equations. J Comput Phys
2013;242:169–80 . 

38] Johnsen E , Colonius T . Implementation of WENO schemes in compressible

multicomponent flow problems. J Comput Phys 2006;219(2):715–32 . 
39] Coralic V , Colonius T . Finite-volume WENO scheme for viscous compressible

multicomponent flows. J Comput Phys 2014;274:95–121 . 
40] Einfeldt B , Munz C-D , Roe PL , Sjögreen B . On godunov-type methods near low

densities. J Comput Phys 1991;92(2):273–95 . 
[41] Qiu J , Shu C-W . On the construction, comparison, and local characteris-

tic decomposition for high-order central WENO schemes. J Comput Phys
2002;183(1):187–209 . 

42] Liska R , Wendroff B . Comparison of several difference schemes on 1D

and 2D test problems for the euler equations. SIAM J Sci Comput
2003;25(3):995–1017 . 

43] Hu X , Wang Q , Adams NA . An adaptive central-upwind weighted essentially
non-oscillatory scheme. J Comput Phys 2010;229(23):8952–65 . 

44] Schneider EE , Robertson BE . CHOLLA: A new massively parallel hydrodynamics
code for astrophysical simulation. Astrophys J Supplement Ser 2015;217(2):24 . 

45] Schulz-Rinne CW , Collins JP , Glaz HM . Numerical solution of the Rie-

mann problem for two-dimensional gas dynamics. SIAM J Sci Comput
1993;14(6):1394–414 . 

https://doi.org/10.13039/501100000781
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0001
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0001
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0001
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0002
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0002
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0002
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0002
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0002
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0002
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0002
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0003
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0003
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0003
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0003
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0004
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0004
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0004
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0005
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0005
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0005
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0005
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0006
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0006
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0006
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0007
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0007
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0007
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0007
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0007
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0008
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0008
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0008
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0008
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0008
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0009
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0009
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0009
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0009
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0010
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0010
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0010
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0011
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0011
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0011
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0011
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0012
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0012
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0012
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0012
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0012
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0013
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0013
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0013
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0014
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0014
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0014
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0015
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0015
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0016
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0016
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0016
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0016
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0017
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0017
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0017
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0017
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0017
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0018
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0018
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0018
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0019
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0019
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0019
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0019
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0020
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0020
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0020
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0020
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0021
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0021
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0021
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0021
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0022
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0022
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0022
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0022
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0023
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0023
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0023
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0023
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0024
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0024
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0024
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0025
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0025
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0025
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0025
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0025
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0026
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0026
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0026
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0026
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0026
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0027
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0027
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0027
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0027
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0028
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0028
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0029
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0029
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0030
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0030
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0031
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0031
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0031
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0031
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0032
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0032
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0033
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0033
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0033
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0033
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0034
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0034
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0034
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0034
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0035
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0035
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0035
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0035
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0035
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0036
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0036
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0036
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0036
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0037
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0037
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0037
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0038
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0038
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0038
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0039
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0039
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0039
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0039
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0039
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0040
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0040
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0040
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0041
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0041
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0041
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0042
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0042
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0042
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0042
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0043
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0043
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0043
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0044
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0044
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0044
http://refhub.elsevier.com/S0045-7930(18)30839-9/sbref0044

	Numerical symmetry-preserving techniques for low-dissipation shock-capturing schemes
	1 Introduction
	2 Governing equations
	3 Finite volume approach
	3.1 HLLC approximate Riemann solver
	3.2 High-order spatial reconstruction with application of local characteristic decomposition

	4 Mechanisms of numerical symmetry breaking
	4.1 Lack of associativity
	4.2 Generalized solution strategy
	4.3 Influence of initial disturbance
	4.4 Caveats of performance optimization

	5 High resolution examples and discussion
	5.1 Rayleigh-Taylor instability
	5.2 2D implosion test case
	5.3 2D Riemann case
	5.4 3D implosion test case

	6 Conclusion
	Declaration of competing interest
	Acknowledgments
	References


