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Abstract

The process of enhancing the ability of a complex network against various ma-

licious attacks through link addition/rewiring has been the subject of exten-

sive interest and research. The performance of existing methods often highly

depends on full knowledge about the network topology. In this article, we

devote ourselves to developing new distributed strategies to perform link ma-

nipulation sequentially using only local accessible topology information. This

strategy is concerned with a matrix-perturbation-based approximation of the

network-based optimization problems and a distributed algorithm to compute

eigenvectors and eigenvalues of graph matrices. In addition, the development

of a distributed stopping criterion, which provides the desired accuracy on the

distributed estimation algorithm, enables us to solve the link-operation problem

in a finite-time manner. Finally, all results are illustrated and validated using

numerical demonstrations and examples.

1. Introduction

Recent years have witnessed a growing interest in the performance analysis

of complex networks across a broad range of disciplines including mathematics,

biology, physics, computer science, sociology, systems and control theory, and

so on [1, 2, 3].5
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Among other properties, the resilience of networks is of key importance in

complex network analysis. Network resilience suggests the ability of a network

to promptly recover thereafter to a stable state in the presence of external per-

turbations or structural damages. This phenomenon manifests itself in diverse

domains. For example, in supply chain networks [4], network resilience lies in10

its possibility to maintain connectedness and operations under the loss of some

ingredients or functions. Internet (communication networks) [5] is vulnerable

to a wide range of challenges including software and hardware faults, human

mistakes, and large-scale natural disasters. Other malicious attacks in realis-

tic networks include terrorist attacks on transportation networks [6], parasitic15

species invasion in ecosystems [7], and cascade failures in power supply sys-

tem [8]. Developing tools for the analysis and designing strategy to strength

network resilience is necessary, not only from the engineering point of view but

also for effective infrastructure construction and policy design [9].

The resilience of a network is close to the connectivity of networks: an inten-20

sively connected network is fundamentally resilient. Highly resilient networks as

connectivity structure in real-life applications, for instance, help to accelerate

the spread of information over sensor networks and to improve synchroniza-

tion phenomenon in biological and engineering systems [10]. Two preventive

approaches to enhance network resilience are to add new edges to or to rewire25

the existing edges in the network. The major challenge to determine between

which pairs of nodes the new connections should be made. Numerous efforts

have been directed towards this line of research [11, 12]. In general, the link

operation problems can be formulated as an NP-hard optimization problem.

This class of optimization problems is more likely to be solved by brute-force30

searching all possibility and selecting the best solutions. However, the compu-

tation complexity increases rapidly as the size of networks grows and quickly

becomes unfeasible even for some moderate networks. About the computational

complexity of problems in systems and control, please refer to the tutorial in-

troduction [13]. As a result, extensive papers instead look for convex relaxation35

and heuristic algorithms to approximate the optimal solution. For example, a
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relaxation method based on semi-definite programming (SDP) can be applied to

tackle this problem [14], whereas this method does not scale to massive networks.

Moreover, various heuristics are proposed to tackled link operation problem in

the literature [15, 16].40

The aforementioned methods, however, performance rely a great deal on

full information of network topology, which is difficult to accumulate in real

large-scale networks due to, e.g., geographical constraints or privacy concerns.

In an attempt to eliminate the dependence on high-level knowledge about the

network, distributed methods using local computation and nearby communica-45

tion appear in the recent literature. The authors in [11] propose a distributed

algorithm for link addition by connecting the node of the minimum degree to a

random another node. Despite needing only local information, i.e. node degree,

this method gives the solution that is not necessarily optimal and especially,

loses its effect in sparse networks. A criterion that adding links between nodes50

with the maximal deviation of the eigenvector components of graph Laplacian

is proposed in [17]. Nevertheless, to obviate the network-wide computation,

numerous distributed algorithms to estimate the eigenvectors of network ma-

trix emerge in recent publications. For instance, a decentralized orthogonal

iteration approach is proposed in [18] but with a centralized initialization. In55

the work [19], a decentralized power iteration (PI) algorithm is introduced to

estimate the eigenvectors in a continuous-time setting, suffering from the chal-

lenging application in practice. Recent contributions that reside in developing

distributed PI methods with nested loops (for decentralized intermediate nor-

malization) can be found, e.g., in [20, 21]. Yet, this nesting design by means of60

consensus averaging (CA) algorithm severely affects the efficiency of these dis-

tributed methods in terms of communication limitation and convergence speed.

This is due to the fact that reaching consensus for CA techniques requires an

infinite amount of lower-level iterations. In addition to the aforecited paper,

most of the (distributed) PI methods appearing in, e.g., [22, 23] converge in an65

asymptotic manner. For applicability to real scenarios, however, it is desirable

that the convergence of link operation must do so in finite time rather than

3



Prep
rin

t

merely asymptotically.

The main contribution of this article is to develop a distributed strategy to

provide a near-optimal solution to link operation problem under the inaccessibil-70

ity of global network topology. Central in this framework is to operate a budget

of links one after another instead of all at once. The rationale behind the sequen-

tially adding/rewiring edges is the mimicking of the gradient-based approach.

With the aid of matrix perturbation analysis, the primary optimization prob-

lem is approximated by a maximization problem involving the Fiedler vector of75

networks, thus avoiding NP-hardness. Since the approximation requires access

to the entries of a network-wide vector, we propose a distributed algorithm,

based on distributed power iteration and maximum-consensus to estimate the

Fiedler vector. In this developed distributed algorithm, each node commits to

estimate a single entry of the Fiedler vector and undertakes local computation80

using only limited knowledge of network topology. More fundamentally, we

develop a distributed stopping criterion for the distributed computation mecha-

nism, providing an explicit bound on the accuracy of the estimation algorithm.

As such, the strategy of link operation for the enhancement of network resilience

performs in a fully distributed and finite-time manner.85

The remainder of this article is organized as follows. After introducing basic

notions from graph theory and matrix algebra, the problem of interest is for-

mulated in Section 2. The main results of this article including gradient-based

approximation, distributed power iteration method, and stopping criteria for

distributed computation are presented in Section 3. The developed strategies90

are demonstrated and its performance is evaluated via some numerical exam-

ples in 4. Finally, section 5 concludes this article and all proofs are given in the

appendices.
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2. Preliminaries and Problem Formulation

2.1. Basic Notations and Concepts95

Let R (R>0) and Z (Z>0) be set of (positive) real numbers and (positive)

integers, respectively. 1 (0) denotes the column vector of all ones (zeros) with

appropriate dimension. An identity matrix with dimensions inferred from con-

text is given by I. For a given set C, |C| denotes the cardinality of this set. For

a symmetric matrix C, λi(C) denotes its i-th maximal eigenvalues sorted in100

the increasing order λ1(C) ≤ . . . ≤ λn(C) and sr(C) = maxi |λi(C)| represents

the spectral radius of matrix C.

Consider a network of n nodes represented by a connected undirected graph

G = (V,E) with a set of nodes V = {1, . . . , n} and a set of edges E ⊆ V ×

V. In this article, we confine our attention to unweighted graphs for the sake

of simplicity and the outcomes can be easily extended to weighted cases as

discussed in [24]. If there exists an edge (i, j) ∈ E meaning (j, i) ∈ E, then node

i and j are neighboring. The complement graph of G is a graph G with the

same vertex set V as G and its edge set E has an element (i, j) ∈ E if and only

if (i, j) /∈ E. The adjacency matrix of a graph is given by A(G) ∈ Rn×n and

its entries are defined by [A(G)]ij = 1 if (j, i) ∈ E; otherwise 0. The Laplacian

matrix of a graph is then given by L(G) , diag(
∑n
j=1 a1j , . . . ,

∑n
j=1 anj)−A(G)

which has at least one eigenvalue at zero. A graph is connected if there is a

path between any pair of distinct nodes. In particular, the second smallest

eigenvalue, known as algebraic connectivity, assesses the connectedness of the

graph, i.e., λ2(L) > 0 if G connected; otherwise disconnected. For the sake of

convenience, we postulate that the spectrum of the connected graph Laplacian

always satisfies λ2(L) < λ3(L) throughout this article. The normalized right

eigenvector ν2(L) := [ν1
2 , . . . , ν

n
2 ]T corresponding to λ2(L), called Fiedler vector,

is informative of the topological properties of networks. After assigning a label

lij ∈ {1, . . . , |E|} to the edge connecting node i and j, the Laplacian matrix

L can be factorized by L =
∑|E|
l=1 ele

T
l where el = [e1

l , . . . , e
n
l ]T ∈ Rn is edge
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vector and for lij ∼ (j, i) ∈ E, its elements are defined as

ekl =


1 if k = i,

−1 if k = j,

0 otherwise

for k = {1, . . . , n}.

Note that relabeling the edges does not change the analysis, so we sometimes

drop the subscript in lij if there is no risk of confusion.

Furthermore, we say an n × n matrix C = [cij ] is compatible with a graph105

G if cij = 0 iff (j, i) /∈ E and j 6= i. Matrix C is nonnegative, i.e. C ≥ 0, if all

its elements are nonnegative. A nonnegative symmetric matrix C is irreducible

if and only if its compatible graph is connected. A symmetric matrix C is

primitive if it is irreducible and has at least one positive diagonal element. A

primitive symmetric matrix C has a simple largest eigenvalue and thus one has110

sr(C) = λn(C).

In the article, the minimum/maximum-consensus algorithm serves as a key

tool to design link-operation strategy, allowing all nodes to compute distribu-

tively the maximum and minimum of locally computable quantities, respectively.

Specifically, individual node follows the update rule by

xi(t+ 1) = max
j∈{k|(k,i)∈E}∪{i}

xj(t), (1)

xi(t+ 1) = min
j∈{k|(k,i)∈E}∪{i}

xj(t). (2)

Compared with average consensus whose exact equilibrium can only be reached

after an infinite amount of iterations, the iterative algorithms (1) and (2) con-

verge in no more than n steps [25].

2.2. Problem Formulation115

Given a connected undirected graph G0 = (V,E0) with the Laplacain L0,

our goal is to add ma ≥ 1 number of links formulated by the set ∆E+ ⊆ E0

with |∆E+| = ma, such that the algebraic connectivity of the resulting graph

G+
ma

= (V,E0 ∪ ∆E+) is maximized. As a motivating instantiation, the alge-

braic connectivity is of great significance to reflect the resilience of a network
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against random failures and targeted attacks. Furthermore, increasing the con-

vergence rate of the consensus algorithm is another paradigmatic application of

the theoretical treatments in this article [12]. Hence, one approach to enhance

network resilience is by constructing additional interconnection in the network

to increase its algebraic connectivity, which can be mathematically cast as

max
∆E+⊆E0

λ2(L+
ma

)

s.t. |∆E+| = ma,

(P1a)

where L+
ma

is the Laplacian associated to G+
ma

. With the edge labeling l̄ij ∼

(j, i) ∈ E0 on the complement graph G0 and Laplacian factorization, the opti-

mization problem (P1a) can be recast as

max
ȳ∈{0,1}|E0|

λ2(L0 + ∆L+
ma

)

s.t. ∆L+
ma

=
∑

(j,i)∈E0

ȳl̄ij ēl̄ij ē
T
l̄ij
,1Tȳ = ma,

(P1b)

where ēl̄ij is the edge vector adjunct to G0 and the Boolean vector ȳ = [ȳ1, . . . , ȳ|E0|]
T

amounts to that ȳl̄ij = 1 means the edge (j, i) ∈ E0 is selected to add into the

graph G0.

Moreover, swapping a portion of existing links is another way to improve the

network resilience [6]. Here, we reroute mr ≥ 1 number of existing edges in E0

to maximize the algebraic connectivity of the resulting graph Ĝmr
= (V, Êmr

)

where |Êmr
| = |E0|. Analogously, one has the following optimization problem

max
Êmr

λ2(L̂mr ) > 0

s.t. |Êmr
∩ E0| = |E0| −mr, |Êmr

| = |E0|,
(P2a)

where L̂mr
is the Laplacian of rewired graph Ĝmr

. Likewise, we restate the
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optimization problem (P2a) as

max
ȳ,y

λ2(L0 + ∆L+
mr
−∆L−mr

) > 0

s.t. ∆L+
ma

=
∑

(j,i)∈E0

ȳl̄ij ēl̄ij ē
T
l̄ij
, 1Tȳ = mr

∆L−mr
=

∑
(j,i)∈E+

mr

ylijelije
T
lij , 1Ty = mr,

(P2b)

where l̄ij ∼ (j, i) ∈ E0, ȳ = [ȳ1, . . . , ȳ|E0|]
T ∈ {0, 1}|E0|, y = [y1, . . . , y|E0|+mr

]T ∈

{0, 1}|E0|+mr , and lij ∼ (j, i) ∈ E+
mr

.120

The optimization (P1b) and (P2b) are NP-hard whose global solution can

be acquired by exhaustively searching all possibility or the suboptimal solutions

based on heuristic [26]. However, those algorithms often depend fairly on prior

knowledge of the entire network topology and also the existence of a central

coordinator. Often, those prerequisites are unsubstantial in practice for several125

reasons, such as computational restrictions and privacy concerns. Hence, the

remainder of this article focuses on developing a distributed computation algo-

rithm to solve the optimization problem (P1b) and (P2b) individually by nodes

based on the gather local information.

3. Main Results130

In this section, we propose a distributed algorithm to (sub-)optimally solve

the optimization problem (P1b)/(P2b). Especially, the resultant topology ma-

nipulation process is performed by individual nodes in the network and depends

only on the neighboring information.

3.1. A Greedy Heuristic for Maximization135

To circumvent the NP-hard nature, the matrix perturbation analysis [27] is

first used to provide an approximation of the original problems. This eigenvalue

sensitivity analysis shows the variation of matrix eigenvalues when the matrix is

perturbed. For link addition, the matrix ∆L+
ma

can be treated as a perturbation
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imposing on L0. Then, a suboptimal solution to the optimization problem (P1b)140

can be obtained by solving the following approximation.

Lemma 1 (Link addition). Optimization problem (P1b) can be approximated

as

max
ȳ

∑
(j,i)∈E0

ȳl̄ij (νi2 − ν
j
2)2

1Tȳ = ma, ȳ ∈ {0, 1}|E0|

(P1c)

where l̄ij ∼ (i, j) ∈ E0 and ν2(L0) = [ν1
2 , . . . , ν

n
2 ]T is the eigenvector correspond-

ing to the eigenvalue λ2(L0).

Lemma 1 means to preferentially select links ∼ (j, i) ∈ E0 associted with

large deviation |νi2 − νj2 |. Noteworthily, the aggregated squared difference of145

Fiedler vector elements, i.e.,
∑n
j=1 aij(ν

i
2 − ν

j
2)2, appears as a metric to assess

the criticality of individual node [28].

The approximation of the optimization problem (P2b) is in some way anal-

ogous to the link addition problem. More importantly, we postulate explicitly

for the rewired graph being connected in the following approximated problem.150

Lemma 2 (Link rewiring). The optimization (P2b) can be approximated as

follows

max
ȳ,y

∑
(j,i)∈E0

ȳl̄ij (νi2 − ν
j
2)2 −

∑
∈E+

mr

ylij (µi2 − µ
j
2)2

s.t. 1Tȳ = 1Ty = mr, λ2(L̂mr
) > 0,

(P2c)

where l̄ij ∼ (j, i) ∈ E0, lij ∼ (j, i) ∈ E+
mr

; ν2(L0) = [ν1
2 , . . . , ν

n
2 ]T and µ2(L+

mr
) =

[µ1
2, . . . , µ

n
2 ]T specify the eigenvector corresponding to the second smallest eigen-

value of Laplacian matrix of graph G0 and graph G+
mr

, respectively.

Thus far, the original combinatorial problems (P1b) and (P2b) are approxi-

mated respectively by (P1c) and (P2c) which are concerned with the eigenvector155

of interests. Nevertheless, the complete topological knowledge is indispensable

for computing those eigenvectors in question, thus lying the barrier to perform-

ing the topology manipulation process in a distributed fashion.
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3.2. Distributed Estimation of Eigenvectors

Power iteration (PI) method [29] has been widely used to estimate the simple

largest eigenvalue and its associated eigenvector of a symmetric matrix Q in

terms of

z̃n(t+ 1) =
Qz̃n(t)

‖Qz̃n(t)‖
, (3)

where z̃n(t) is the variable of PI estimator at time t with a non-zero initial vector160

z̃n(0). As time evolves, the sequence {z̃n(t)}t∈R≥0
approaches asymptotically

to the eigenvector corresponding to the principal eigenvalue λn(Q) at the rate

|λn−1(Q)/λn(Q)|. A comprehensive description and some refined variants of

power iteration can be found in [30, 29] and the references therein.

One of the major challenges that arise in the application of PI approach for165

sizable networks is the intermediate normalization in each iteration step. Yet,

this intermediate operation is necessary to settle the overflow problem, so that

the estimates are unlikely to grow to infinity when λn(Q) > 1 or shrink to zero

when λn(Q) < 1.

In the following, we develop a completely distributed PI algorithm. When170

introducing the general theory, we will drop the subscript of graphs and simply

write G = (V,E) with the Laplacian L. Before jumping into the details, we first

define Perron matrix P of a graph by P = In − βL, where the scaling factor

satisfies 0 < β < 1/ñ, ensuring the power iteration on Perron matrix converges

to the non-negative dominant eigenvalue. Here, ñ amounts to an estimate of175

the size of the network G or an upper bound on it. It is already known that ñ

can be computed in a distributed manner [31].

Since we aim to estimate the spectrum associated with the second smallest

eigenvalue of Laplacian, a matrix deflation is conducted on Perron matrix as

Q = P − 11T/n whose dominant eigenvector coincides with the one associated180

to λ2(L). Besides symmetry and positive semi-definiteness, the deflated Per-

ron matrix entails row and column sums equal to zero. The eigenstructures of

Laplacian matrix, Perron matrix, and the deflated Perron matrix are summa-

rized in Table 1 wherein the eigenvalue (e-value) λi and eigenvector (e-vector)
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Table 1: Spectrum of matrices

L P Q

i e-value e-vector e-value e-vector e-value e-vector

1 0 1/
√
n 1− βλn νn 0 1/

√
n

2 λ2 ν2 1− βλn−1 νn−1 1− βλn νn
...

...
...

...
...

...
...

n λn νn 1 1/
√
n 1− βλ2 ν2

νi for i ∈ V are in reference to Laplacian matrix L.185

Let ν̃2(t) = [ν̃1
2(t), . . . , ν̃n2 (t)]T be the estimation variable of the Fiedler vector

ν2 of the graph G at iteration step t. After initializing with a random non-zero

vector, each node updates its estimate by following the iterative principle,

ν̃i2(t+ 1) = hi(t)/α(t),

hi(t) = ν̃i2(t)− β
n∑
j=1

[A]ij

(
ν̃i2(t)− ν̃j2(t)

)
− 1

n
1Tν̃2(t),

(4)

where α(t) = maxi∈V |
∑n
j=1[Q]ij ν̃

i
2(t)| implies the adoption of the infinity norm

to the iteration method (3). In the computation algorithm (4), the normalization

factor α and the matrix deflation require that each node has access to some

network-wide vectors. To obviate this requirement, one can first notice that

1Tν̃2(t) =
t∏

k=0

1

α(t− k)
1TQtν̃2(0) = 0, ∀ t ∈ Z>0,

due to the fact that 1 is the left eigenvector ofQ corresponding to the eigenvalue

0. We adjust slightly the initial condition to

ν̃2(0) = Lp, ν̃i2(0) =
n∑
j=1

[A]ij(pi − pj), (5)

where p = [p1, . . . , pn]T is a random non-zero vector, so one has 1Tν̃2(0) = 0.

The modified initialization can also be achieved in a distributed realization.

Since the graph compatible with matrix Q is connected, the factor α(t) can

11
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be computed distributively by the max-consensus algorithm (1) with the initial

condition

xi(0) =
∣∣∣ n∑
j=1

[Q]ij ν̃
i
2(t)

∣∣∣.
Thus, the update rule (4) can be implemented in a fully distributed fashion

with the aid of the initialization (5) and max-consensus algorithm (1). As an

inheritance of centralized PI method (3), the estimate ν̃2(t) converges exponen-

tially to the desired eigenvector ν2(L) at the rate (1− βλ3(L))/(1− βλ2(L)).

3.3. Stopping Criteria for Distributed Power Method190

In the application to real-life networks, however, the previously proposed dis-

tributed estimation technique, due to its asymptotic convergence nature, may

be too slow to respond to e.g., the abruptness of cascade failures in power grids.

In what follows, we endeavor to advance the applicability of the distributed al-

gorithm (4) by providing a stopping criterion, while guaranteeing an ideal error195

tolerance of estimation. The textbook [30] provides a bound on the accuracy of

the PI-based approximation of eigenvalues and eigenvectors for self-adjoint ma-

trices. Therefore, we start off by tailing this stopping condition to accommodate

the case of the positive semi-definite and symmetric matrices.

Proposition 1 (Centralized Stopping Criterion). Consider a positive semi-

definite, irreducible, and symmetric matrix Q ∈ Rn×n and the PI method (3)

with the initialization (5). Given a scalar ε ∈ [0, 1), if ‖γ(t)‖2 ≤ ε|λ̃2(t)|, then

‖ν2 − ν̃2(t)‖2 ≤ 2ε

(
1 +

ε

1− ε

)
λn(Q)

λn(Q)− λn−1(Q)
,

where λ̃2(t) := ν̃T
2 (t)Qν̃2(t)/‖ν̃T

2 (t)ν̃2(t)‖22 is an estimation of the algebraic con-200

nectivity of the graph G at step t and γ(t) := λ̃2(t)ν̃2(t) −Qν̃2(t) denotes the

residual of ν̃2(t) w.r.t. Q.

In the implementation of this stopping criterion, the desideratum of the

network-wide information λ̃2(t) hinders the distributed computation. The re-

mainder of this subsection is devoted to explaining how this barrier can be205

circumvented.
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At the outset, we introduce an auxiliary variable by

ri(t) :=
ν̃i2(t)hi(t)

max(δ, (ν̃i2(t))2)
(6)

where the sufficiently small constant 0 < δ << 1 guarantees that the function

ri(t) is well defined and entails an asymptotic convergence to the eigenvalue

λn(Q).

Lemma 3. Consider the dynamics (4) evolving on a connected graph with the210

initialization (5). The auxiliary states converge asymptotically to a consensus

configuration r1(∞) = . . . = rn(∞) = r∗ and the consensus state r∗ is equal to

1− βλ2(L).

To this end, we get ready to present a distributed stopping criterion for the

distributed power iteration, providing a bound on the efficiency of the estimation215

of the Fiedler vector.

Theorem 1. Consider a connected graph G with the deflated Perron matrix Q

and the distributed in-network computation (3) with the initialization (5). For

a given threshold ε ∈ [0, 1), if

max
i∈V
|ρi| ≤

ε√
ñ

(
min
i∈V
|ri(t)|

)
, (7)

where ρi is the i-th entry of the matrix-vector product

ρ(t) = ((max
i∈V

(|ri(t)| − 1
)
)In + βL+

11T

n
)ν̃2(t), (8)

then the estimation error of ν̃2(t) satisfies the following condition

‖ν2 − ν̃2(t)‖2 ≤ 2ε

(
1 +

ε

1− ε

)
1− βλ2(L)

β(λ3(L)− λ2(L))
. (9)

It is noted that ρ(t) in (8) reads to a modified residual of ν̃2 w.r.t. the

deflated Perron matrix Q and can be computed in a distributed fashion. With

the help of max /min-consensus protocol -a fully distributed content- plays an

important role in the in-network computation. Moreover, Lemma 3 exposes that220

limt→∞ ri(t) = 1−βλ2(L) for all i ∈ V, facilitating agents to estimate algebraic
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connectivity in a distributed and finite-time manner. Thus, our distributed es-

timation algorithm together with the stopping criterion has a wider range of

applications such as for the distributed connectivity detection and preserva-

tion in flocking control of multi-agent systems [32], and for the distributed link225

removal problem aiming at controlling the epidemic spreading [33].

3.4. The Complete Distributed Strategies for Link Operation

This subsection recapitulates the main results of this article. In a nut-

shell, the suboptimal solution to the optimization problem (P1b) can be com-

puted distributively under the stopping criterion (7) using the distributed power230

method (4) and the initialization mechanism (5).

More importantly, we consider the problem of improving network resilience

by sequentially adding/rewiring edges. The rationale behind the idea has been

demonstrated in [33]. In simple terms, the number of links to be operated can be

treated as the step-size in the gradient-based approach and a smaller step-size235

gives rise to a better approximation quality.

Proposition 2. A sub-optimal solution to the link-addition problem (P1b) can

be derived from solving the following distributed maximization problem along the

sequence s ∈ {1, . . . ,ma}

max
ȳ(s)

∑
(j,i)∈E+

s−1

ȳl̄ij (s)|ν̃i2(s)− ν̃j2(s)|

s.t. 1Tȳ(s) = 1,

(P1d)

where ȳ(s) = [ȳ1(s), . . . , ȳ|E+
s−1|

(s)]T ∈ {0, 1}|E
+
s−1|, l̄ij(s) ∼ (j, i) ∈ E+

s−1, and

ν̃2(s) = [ν̃1
2(s), . . . , ν̃n2 (s)]T is the estimated Fiedler vector of the graph Lapla-

cian L+
s−1 via the distributed PI computation (4) with the stopping criterion (7).

To retain the essential simplicity of what is going on, we omit the dependence240

of ν̃2(s) on the time argument t in Proposition 2. Thus, the problem (P1d)

is a distributed convex optimization problem with a separable cost function

along a sequence of issues (successive link-addition). Algorithm 1 presents the
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pseudo-code for the addition of a single link to the current network G+
s−1 at

issue instant s. To sum up, the distributed strategy for multiple links addition245

invokes Algorithm 1 successively until ma links are added.

Algorithm 1 Distributively adding one link to G+
s−1

Require: a connected graph G+
s−1, a scalar ε ∈ [0, 1), a random non-zero vector

p ∈ Rn, and t← 0

1: execute (5) with p to produce an initial condition ν̃2(s, 0)

2: while maxi∈V |ρi(s, t)| > ε√
ñ

(
mini∈V |ri(s, t)|

)
do

3: t← t+ 1

4: ν̃i2(s, t)← hi(s, t− 1)/α(s, t− 1)

5: hi(s, t)← ν̃i2(s, t)− β
∑
j [A(s− 1)]ij

(
ν̃i2(s, t)− ν̃j2(s, t)

)
−

∑
j ν̃

j
2(s,t)

n

6: α(s, t)← maxi∈V |
∑n
j=1[Q(s− 1)]ij ν̃

i
2(s, t)|

7: end while

8: node assigns πi(s)← ν̃i2(s)ei and transmits to neighbors

9: if [πi(s)]j 6= 0, ∀i, j ∈ V then

10: break

11: else

12: for j ∈ {k|(i, k) ∈ E+
s−1} do

13: for k = 1 : 1 : n do

14: if [πi(s)]k == 0 & [πj(s)]k 6= 0 then

15: [πi(s)]k ← [πj(s)]k

16: end if

17: end for

18: end for

19: back to step 9

20: end if

21: l̄ij∗(s)← argmaxj∈{k|(i,k)/∈E+
s−1}
|[πi]i(s)− [πi]j(s)|

22: compute l̄i∗j∗(s) ← argmax |[πi(s)]i − [πi(s)]j∗ | for (i, j∗) using max-

consensus (1) with xi(0)← |[πi(s)]i − [πi(s)]j∗ |

23: output G+
s ← (V,E+

s−1 ∪ {(i∗, j∗)})

15
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In analogy to link-addition procedure, we can develop a distributed strategy

to rewire the existing links in the network.

Proposition 3. Along the sequence s ∈ {1, . . . ,mr}, solving the following op-

timization problem sequentially and distributively

max
ȳ(s),y(s)

∑
(j,i)∈Ês−1

ȳl̄ij (s)|ν̃i2(s)− ν̃j2(s)|

−
∑

(j,i)∈Ê+
s

ylij (s)|µ̃i2(s)− µ̃j2(s)|

s.t. 1Tȳ(s) = 1Ty(s) = 1, λ2(L̂(s)) > 0,

(P2d)

provides a suboptimal solution to the link-rewiring problem (P2b). Here, ν̃2(s) =

[ν̃1
2(s), . . . , ν̃n2 (s)]T and µ̃2(s) = [µ̃1

2(s), . . . , µ̃n2 (s)]T are the estimated Fiedler250

vector of graph Gs−1 and G+
s as a result of distributed algorithm (4), (7), re-

spectively.

The pseudo-code for distributed single-link-rewiring is shown in Algorithm 2.

In contrast with link-addition, one important issue for rewiring links is how to

preserve the connectedness of the resulting network after removing the existing255

links. The lines 8-11 respond to the distributed verification of the connect-

edness of the graph G+
s in the event of removing link (i∗, j∗). To this end,

the distributed link-rewiring strategy with preserving-connectedness relocates

sequentially the existing links by implementing mr rounds of Algorithm 2.

Thus far, the developed strategy for link-addition (resp. rewiring) provides a260

sub-optimal solution to the optimization problem (1a) (resp. (2a)) as also shown

by the next simulation section. The optimality gap between the solution to

(P1d) and the global one to (P1b) involves two aspects: the approximation error

of the matrix perturbation and the estimation accuracy of the distributed PI.

According to matrix perturbation theory [27], the approximation error depends265

on all eigenvalues together with their associated eigenvectors of the Laplacian

matrix. In particular, the graph with a large algebraic connectivity and a wide

gap between λ3(L)−λ2(L) leads to a small error, as well as a tight upper bound

on the accuracy of the distributed PI method in reference to (9).
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Algorithm 2 Distributively rewiring one link in G0

Require: a connected graph Gs−1, node i associates with a neighborhood set

Nis−1, a scalar ε ∈ [0, 1), and a random non-zero vector p ∈ Rn

1: use Algorithm 1 to add one link and establish G+
s

2: execute (5) with p to produce an initial condition µ̃2(s, 0)

3: execute line 2-7 to distributively estimate Fiedler vector of the graph G+
s by

µ̃2(s, 0)

4: store Etemp ← E+
s

5: node computes lij∗(s) = argmin |µ̃i(s) − µ̃j(s)| over graph (V,Etemp) and

transmits to neighbors

6: compute li∗j∗(s) = argmin |µ̃i(s)−µ̃j(s)| over graph G+
s using min-consensus

algorithm (2) with xi(0)← |µ̃i(s)− µ̃j∗(s)|

7: execute max-consensus algorithm (1) over graph (V,E+
s \ {(i∗, j∗)}) with

xi∗ = 1 and xj = 0 for all j 6= i

8: if xi∗ 6= xj∗ then

9: Etemp ← Etemp \ {(i∗, j∗)})

10: go back to step 5

11: end if

12: output Ĝs ← (V,E+
s \ {(i∗, j∗))

4. Numerical Simulations270

In this section, the proposed distributed algorithms to yield sub-optimal

solutions for link adding and rewiring problems are validated and evaluated via

several numerical examples.

As the interconnection structure is shown in Fig. 1, a network of 10 nodes

is taken into account in the first case. The small size of such a network makes275

possible the comparison with global optimal solution which is accessible via

exhaustive search approach. We start off by demonstrating the results via

a Monte-Carlo simulation of the distributed estimation algorithm (4) for the

Fiedler vector with a sufficiently large iteration length. By observing Fig. 2(a),
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Figure 1: Adding 12 new links (colored lines) into a network consisting 10 nodes and 15 edges

(gray lines).
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Figure 2: Monte Carlo trial of distributed estimation algorithm and link-operation over a

small-size network: (a) ν̃i2 (solid colored lines) converge asymptotically to νi2 (dashed black

line) for all i ∈ V; (b) ri (solid colored lines) converge asymptotically to λ2(L) (solid black line)

for all i ∈ V; (c) comparison of distributed link-addition strategy, the distributed link-rewiring

strategy and brute-force search.

(a) Watts-Strogatz small world

network

(b) Erdös Rényi stochastic net-

work

(c) Barabási-Albert scale free

network

Figure 3: Random network models of 100 nodes

the estimate states converge asymptotically to their corresponding true values280

independent of initial conditions. Fig. 2(b) provides the convergence behavior
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Figure 4: Performance comparison over random networks

of variables ri(t) (i ∈ V), supporting the claim in Lemma 3. Namely, utilization

of the auxiliary variable given in (6) allows us to distributively estimate the

algebraic connectivity of a graph.

With the emphasis on finite-time computation in this article, we examine the285

effect of the distributed stopping criterion (7). The results are summarized in

Table 2 in which a smaller threshold ε leads to a higher accuracy of approxima-

tions of the Fiedler vector but a longer iteration time. Since it is not necessary

to compute the exact values of every entry of ν2 in link operation problem, let

the threshold ε be equal to 0.01 in the small-size case.290

To evaluate the developed distributed strategy for link addition/rewiring, we

vary the number ma from 1 to 12. The resultant variation of algebraic connec-

tivity after adding (rerouting) ma (mr) links into (of) the network is shown in

Fig. 2(c) and those new links are drawn by blue and purple solid lines in Fig. 1.

As shown in Fig. 2(c), the sub-optimal solution derived from the successive ap-295

plication of Algorithm 1 is very close to the global optimizer by a brute-force

search. In addition, it should not be surprising that strengthening network re-

silience by adding new edges into the network outperforms by reallocating the

existing links.

Next, the developed results are evaluated on three random networks: 1).300

Watts-Strogatz (WS) small-world model (|V| = 100|, |E| = 308), 2). Erdös

Rényi (ER) random model (|V| = 100, |E| = 268), and 3). Barabási-Albert
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Table 2: Stopping criterion with different thresholds

threshold ε iteration steps ‖ν2 − ν̃2(t)‖2 λ2(L+
1 )

0.085 1 1.4059 0.5101

0.08 25 0.2786 0.7935

0.05 28 0.1935 0.7935

0.01 40 0.0553 0.7935

0.005 47 0.0299 0.7935

0.001 66 0.0063 0.7935

0.0005 75 0.0031 0.7935

0.0001 95 0.0006 0.7935

0.00005 103 0.0003 0.7935

0.00001 123 0.0001 0.7935

0.000005 132 0.00003 0.7935

(BA) scale-free model (|V| = 100, |E| = 281). We first apply the proposed link

addition strategy to construct ma = |E0|/10 percent new interconnection of the

amount of the existing links for each network and then employ the link-rewiring305

strategy to reconstruct mr = |E+
ma
|/10 of the existing links. Here, we adopt a

random link-adding method as an alternative solution of the global optimizer

which is in general intractable in such large-scale networks. It is evident from

Fig. 4 that the distributed link-addition strategy over all three random net-

works provide much more compelling performance than randomly adding links310

when it comes to network resilience improvement. Moreover, the distributed

link-rewiring strategy seems to perform relatively worse than the distributed

link-addition strategy in all three networks. As can be seen in Fig. 4(c), the

distributed link-rewiring strategy loses its effect in BA networks and does not

provide a better improvement of network resilience. This is mainly due to the315

higher heterogeneity of BA networks as compared to WS and ER ones. Here,

heterogeneity of the network is concerned with its properties such as degree,
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betweenness, closeness, and centrality.

5. Conclusion

This article provides a distributed strategy to solve the problem of network320

topology manipulation when the global structure information is unavailable.

Specifically, we consider the problem of link addition/rewiring in a network to

enhance the network resilience against malicious attacks. Due to the combinato-

rial nature and NP-hardness, an approximation scheme based on eigenvalue sen-

sitivity analysis is applied to these problems, providing a sub-optimal solution325

to primary optimization. The approximated problem involves the informative

eigenvectors associated with the eigenvalues of interests. The development of the

distributed algorithm to estimate the eigenvectors and the distributed stopping

criteria to support finite-time computation facilitates us to fulfill link operation

in a distributed manner without complete information of network topology. So330

far, the distributed-topology design problems are focused on an undirected and

unweighted graph. Possible future direction would be the extension of cur-

rent results to edge-consensus problems in line graphs [34], multiple time-scales

multi-agent cooperation control [35, 36], and networks with time-varying [10]

and antagonistic interactions [37].335
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6. Appendices445

6.1. Proof of Lemma 1

It is already known that the algebraic connectivity of a connected graph is

a non-decreasing function with respect to the edge addition [38]. According

to matrix perturbation theory, the first order expansion of the second smallest

eigenvalue of L0 + ∆L+
ma

can be computed as

λ2(L0 + ∆L+
ma

) = λ2(L0) +
νT

2 ∆L+
ma
ν2

νT
2 ν2

+O(||∆L+
ma
||2),
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which enables us to approximate the objective function in (P1b) by

max
ȳ
λ2(L+

ma
) ≈ λ2(L0) +

maxȳ ν
T
2 ∆L+

ma
ν2

‖ν2‖22
.

Upon the factorization of ∆L+
ma

, we arrive at the approximate algorithm (P1c)

and the proof is completed.

6.2. Proof of Proposition 1

In order to prove the statement in Proposition 1, the following supporting450

lemma is necessary.

Lemma 4. Consider two positive semi-definite and symmetric matrices C1,C2 ∈

Rn×n. Let ζn and ξn be the eigenvectors associated to the dominant eigenvalues

λn(C1) and λn(C2), respectively. Then, one has

|λn(C1)− λn(C2)| ≤ ‖C1 −C2‖2,

‖ζn − ξn‖2 ≤
2‖C1 −C2‖2

λn(C1)− λn−1(C1)
‖ξn‖2.

Proof. The proof follows similar steps as those in the proof of Lemma 1 and

Lemma 2 in [39].

The proof of Proposition 1 follows along the same steps as in the proof of

Theorem 1 in [39] and thus is saved here.455

6.3. Proof of Lemma 3

Consider a Lyapunov function candidate by the span norm

V (ν̃2) = max
i∈V

ri(ν̃2)−min
i∈V

ri(ν̃2),

which is continuous for all ν̃2 ∈ R \ {0} and positive semi-definite.

The following computation,

max
i∈V

ri (ν̃2(t+ 1))−max
i∈V

ri (ν̃2(t))

=max
i∈V

α(t)

ri(t)ν̃i2(t)

n∑
j=1

[Q]ij
rj(t)ν̃

j
2(t)

α(t)
−max

i∈V
ri(t)

≤max
i∈V

1

ri(t)ν̃i2(t)

n∑
j=1

[Q]ij ν̃
j
2(t)max

k∈V
rk(t)−max

i∈V
ri(t) = 0
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implies maxi∈V ri is non-decreasing, whereby verifying maxi∈V ri is non-increasing

on the same principle. Thus, it then suffices to address that the max-min

Lyapunov function V is reduced to a constant factor over a sufficiently large

time interval. In particular, it follows that V (t + 1) − V (t) = 0 if and only

if ν̃2 ∈ {ν̃2|r1(ν̃2) = · · · = rn(ν̃2)}. With the consensus configuration at the

equilibrium point and by the fact that

lim
t→∞

ν̃T
2 (t) diag(r1(t), . . . , rn(t))ν̃2(t)

ν̃T
2 (t)ν̃2(t)

= lim
t→∞

ν̃T
2 (t)Qν̃2(t)

ν̃T
2 (t)ν̃2(t)

= λn(Q),

one can infer limt→∞ ri(t) = 1− βλ2(L) for all i ∈ V.

6.4. Proof of Theorem 1

From the formulation in (6), we note the fact that |ri||ν̃i2| amounts to the

i-th entry of the matrix-vector product |Qν̃2| for all i ∈ V. After carrying out

the matrix (vector) multiplication, this fact allows us to expose the relation that

ν̃T
2 (t) diag(|r1(t)|, . . . , |rn(t)|)ν̃2(t)

ν̃T
2 (t)ν̃2(t)

=

∣∣∣∣ ν̃T
2 (t)Qν̃2(t)

ν̃T
2 (t)ν̃2(t)

∣∣∣∣ ,
which implies |λ̃2(t)| ≥ mini∈V |ri(t)|.460

Moreover, the residual γ of ν̃2 with respect to Q can be equivalently stated

as the inverse vector of the rejection of Qν̃2 from ν̃2. Therefore, ‖γ(t)‖2 is equal

to the shortest distance from Qν̃2 to the line spanned by ν̃2. The denotation

of ρ in (8) can be reformulated by ρ = (maxi∈V |ri|)ν̃2 −Qν̃2, leading to that

‖γ‖2 ≤ ‖ρ‖2 ≤
√
ñmax
i∈V
|ρi|,

where the relation ‖ρ‖2 ≤
√
ñ‖ρ‖∞ is used.

To this end, one can immediately conclude that

‖γ‖2 ≤
√
ñ(max

i∈V
|ρi|) ≤ ε(min

i∈V
|ri(t)|) ≤ ε|λ̃2(t)|,

which provides a bound on the accuracy of the approximation of eigenvector as

a result of the centralized stopping criterion given in Proposition 1.
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