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Abstract

The process of enhancing the ability of a complex network against various ma-
licious attacks through link addition/rewiring has been the subject of exten-
sive interest and research. The performance of existing methods often highly
depends on full knowledge about the network tepology. »In this article, we
devote ourselves to developing new distributed strategies to perform link ma-
nipulation sequentially using only local accessible topology information. This
strategy is concerned with a matrix perturbation=based approximation of the
network-based optimization problems and a distributed algorithm to compute
eigenvectors and eigenvalues 6f graph matrices. In addition, the development
of a distributed stoppingeeriterion, which provides the desired accuracy on the
distributed estimation‘algorithm, enables us to solve the link-operation problem
in a finite-time manner. Finally, all results are illustrated and validated using

numerical demonstrations and examples.

1. Introduction

Recent years have witnessed a growing interest in the performance analysis
of complex networks across a broad range of disciplines including mathematics,
biology, physics, computer science, sociology, systems and control theory, and

so on [I} 2, [3].
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Among other properties, the resilience of networks is of key importance in
complex network analysis. Network resilience suggests the ability of a network
to promptly recover thereafter to a stable state in the presence of external per-
turbations or structural damages. This phenomenon manifests itself in diverse
domains. For example, in supply chain networks [4], network resilience lies in
its possibility to maintain connectedness and operations under the loss of some
ingredients or functions. Internet (communication networks) [5] is vulnerable
to a wide range of challenges including software and hardware faults, human
mistakes, and large-scale natural disasters. Other malicious attacks in realis-
tic networks include terrorist attacks on transportation networks\6], parasitic
species invasion in ecosystems [7], and cascade failures in power supply sys-
tem [8]. Developing tools for the analysis and designing strategy to strength
network resilience is necessary, not only from the engineering point of view but
also for effective infrastructure construction’and policy design [9].

The resilience of a network is close to.the connectivity of networks: an inten-
sively connected network is fundamentally resilient. Highly resilient networks as
connectivity structure in real-life.applications, for instance, help to accelerate
the spread of information over Sensor networks and to improve synchroniza-
tion phenomenon in biological ‘and engineering systems [10]. Two preventive
approaches t6 enhance network resilience are to add new edges to or to rewire
the existing edges in the network. The major challenge to determine between
which pairs of modes the new connections should be made. Numerous efforts
have been directed towards this line of research [II], [I2]. In general, the link
operation problems can be formulated as an NP-hard optimization problem.
This class of optimization problems is more likely to be solved by brute-force
searching all possibility and selecting the best solutions. However, the compu-
tation complexity increases rapidly as the size of networks grows and quickly
becomes unfeasible even for some moderate networks. About the computational
complexity of problems in systems and control, please refer to the tutorial in-
troduction [I3]. As a result, extensive papers instead look for convex relaxation

and heuristic algorithms to approximate the optimal solution. For example, a
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relaxation method based on semi-definite programming (SDP) can be applied to
tackle this problem [I4], whereas this method does not scale to massive networks.
Moreover, various heuristics are proposed to tackled link operation problem in
the literature [15] [16].

The aforementioned methods, however, performance rely a great deal on
full information of network topology, which is difficult to accumulate in real
large-scale networks due to, e.g., geographical constraints or privacy concerns.
In an attempt to eliminate the dependence on high-level knowledge about the
network, distributed methods using local computation and nearby communica-
tion appear in the recent literature. The authors in [I1] propose a distributed
algorithm for link addition by connecting the node of the minimum degree to a
random another node. Despite needing only local information, i.e. node degree,
this method gives the solution that is not necessarily optimal and especially,
loses its effect in sparse networks. A criterion that adding links between nodes
with the maximal deviation of the eigenvector components of graph Laplacian
is proposed in [I7]. Nevertheless,to obviate the network-wide computation,
numerous distributed algorithms,to estimate the eigenvectors of network ma-
trix emerge in recent publications. |For instance, a decentralized orthogonal
iteration approach is proposed in [18] but with a centralized initialization. In
the work [19], a decentralized power iteration (PI) algorithm is introduced to
estimate’the eigenvectors in a continuous-time setting, suffering from the chal-
lenging application.in practice. Recent contributions that reside in developing
distributed PI methods with nested loops (for decentralized intermediate nor-
malization) can be found, e.g., in [20, 2I]. Yet, this nesting design by means of
consensus averaging (CA) algorithm severely affects the efficiency of these dis-
tributed methods in terms of communication limitation and convergence speed.
This is due to the fact that reaching consensus for CA techniques requires an
infinite amount of lower-level iterations. In addition to the aforecited paper,
most of the (distributed) PI methods appearing in, e.g., [22] 23] converge in an
asymptotic manner. For applicability to real scenarios, however, it is desirable

that the convergence of link operation must do so in finite time rather than
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merely asymptotically.

The main contribution of this article is to develop a distributed strategy to
provide a near-optimal solution to link operation problem under the inaccessibil-
ity of global network topology. Central in this framework is to operate a budget
of links one after another instead of all at once. The rationale behind the sequen-
tially adding/rewiring edges is the mimicking of the gradient-based approach.
With the aid of matrix perturbation analysis, the primary optimization prob-
lem is approximated by a maximization problem involving the Fiedler vector of
networks, thus avoiding NP-hardness. Since the approximation requires access
to the entries of a network-wide vector, we propose a distributed algorithm,
based on distributed power iteration and maximum-consensus to estimate the
Fiedler vector. In this developed distributed algorithm, each node commits to
estimate a single entry of the Fiedler vector and undertakes local computation
using only limited knowledge of network topology. More fundamentally, we
develop a distributed stopping criterion.for the distributed computation mecha-
nism, providing an explicit bound en the accuracy of the estimation algorithm.
As such, the strategy of link operation for.the enhancement of network resilience
performs in a fully distributed and finite-time manner.

The remainder of this articleis organized as follows. After introducing basic
notions from‘graph theory and matrix algebra, the problem of interest is for-
mulatedin Section [2] The main results of this article including gradient-based
approximation, distributed power iteration method, and stopping criteria for
distributed computation are presented in Section The developed strategies
are demonstrated and its performance is evaluated via some numerical exam-
ples in 4} Finally, section [5| concludes this article and all proofs are given in the

appendices.
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2. Preliminaries and Problem Formulation

2.1. Basic Notations and Concepts

Let R (Rso) and Z (Zso) be set of (positive) real numbers and (positive)
integers, respectively. 1 (0) denotes the column vector of all ones (zeros) with
appropriate dimension. An identity matrix with dimensions inferred from con-
text is given by I. For a given set C, |C| denotes the cardinality of this set. For
a symmetric matrix C, A;(C) denotes its i-th maximal eigenvalues sorted in
the increasing order A1(C) < ... < A\, (C) and sr(C) = maxy|\;(C)| represents
the spectral radius of matrix C.

Consider a network of n nodes represented by a connected undirected graph
G = (V,E) with a set of nodes V = {1,...,m} and’a set of edges E C V x
V. In this article, we confine our attention to unweighted graphs for the sake
of simplicity and the outcomes can be easily extended-to weighted cases as
discussed in [24]. If there exists an edge (4, 7) € E meaning (j,¢) € E, then node
i and j are neighboring. The complement graph of G is a graph G with the
same vertex set V as G and its edge set,E has an element (i,5) € E if and only
if (i,7) ¢ E. The adjacency/matrix of a graph is given by A(G) € R™*™ and
its entries are defined by [A(G)];;="1 if (j;7) € E; otherwise 0. The Laplacian
matrix of a graphiis then given by L(G) = diag(327_; a1y, -5 D2 iy anj) — A(G)
which has'atleast one eigenvalue at zero. A graph is connected if there is a
path between any pair of distinct nodes. In particular, the second smallest
eigenvalue, known as algebraic connectivity, assesses the connectedness of the
graph, i.e., Ao(L) > 0 if G connected; otherwise disconnected. For the sake of
convenience, we postulate that the spectrum of the connected graph Laplacian
always satisfies A2(L) < A3z(L) throughout this article. The normalized right

T corresponding to Ao (L), called Fiedler vector,

eigenvector vo(L) := [13,..., 8]
is informative of the topological properties of networks. After assigning a label
li; € {1,...,|E|} to the edge connecting node ¢ and j, the Laplacian matrix

L can be factorized by L = ZE1 eie] where e, = [ef,...,eMT € R" is edge
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vector and for l;; ~ (j,4) € E, its elements are defined as

1 if k=1,
ef =1¢_1 if k= j, for k={1,...,n}.
0 otherwise

Note that relabeling the edges does not change the analysis, so we sometimes
drop the subscript in /;; if there is no risk of confusion.

Furthermore, we say an n x n matrix C = [¢;;] is compatible with a graph
G if ¢;; = 0iff (j,4) ¢ E and j # 4. Matrix C is nonnegative,ii€. C > 0, if all
its elements are nonnegative. A nonnegative symmetric matrix C'is irreducible
if and only if its compatible graph is connected. A _symmetric matrix C is
primitive if it is irreducible and has at least one positive diagonal element. A
primitive symmetric matrix C has a simple largest eigenvalue and thus one has
sr(C) = M\, (C).

In the article, the minimum/maximum-consensus algorithm serves as a key
tool to design link-operation strategy, allowing all nodes to compute distribu-
tively the maximum and minimum of locally*computable quantities, respectively.

Specifically, individual node follows the update rule by

xi(t + 1) = a l‘j(t), (1)

= max
je{k|(k,i)eE UL}

zi(t+1) = min x;(t). (2)

~jetkl(ki)ERIU{i}
Compared with average consensus whose exact equilibrium can only be reached
after an infinite amount of iterations, the iterative algorithms (IJ) and (2] con-

verge in no more than n steps [25].

2.2. Problem Formulation

Given a connected undirected graph Gy = (V,Eq) with the Laplacain Ly,
our goal is to add m, > 1 number of links formulated by the set ARt C E,
with |AET| = m,, such that the algebraic connectivity of the resulting graph
G = (V,Eq UAE") is maximized. As a motivating instantiation, the alge-

braic connectivity is of great significance to reflect the resilience of a network



against random failures and targeted attacks. Furthermore, increasing the con-

vergence rate of the consensus algorithm is another paradigmatic application of

the theoretical treatments in this article [I2]. Hence, one approach to enhance

network resilience is by constructing additional interconnection in the network

to increase its algebraic connectivity, which can be mathematically cast as
max_ (L} )

AE*CEo (Pla)

s.t. |AET| = my,

where Lj;la is the Laplacian associated to g;ga. With the edge labeling ;5 ~
(4,7) € Eg on the complement graph Gy and Laplacian factorization, ithe opti-

mization problem (Pla) can be recast as

max )\2 (LO + AL;Q)

ge{0,1}/Eol
(P1b)
L T T
s.t. AL} = Z Ui, €1, €, 1 g =ma,
(4,1)€Eq
where €y, is the edge vector adjunet to.G and the Boolean vector § = [91, . . ., glm}T

amounts to that g7, = 1 means the edge (j,7) € Ey is selected to add into the
graph Gg.

Moreover, swapping a portion of existing links is another way to improve the
network resilience [6]. Here, we reroute m, > 1 number of existing edges in Eg
to maximize thedalgebraic connectivity of the resulting graph QAmT, = (V, Em)
where |I/Emr| = |Eg|. Analogously, one has the following optimization problem

max Xo(Lp,) >0

Emr (P2a)
st. |En, NEo| = |Eo| — my, [Ep,| = |Eol,

where i7m is the Laplacian of rewired graph Q\mr. Likewise, we restate the
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optimization problem (P2a) as

max  Ag(Lo+ AL}, — AL, )>0

vy
st. ALY = > 7.8, e, 1g=m (Pab)
(4,5)€Eo
ALf_nr = Z Yi;; €l 6?;],, ]-Ty = My,
(4,4) EBL,.

where l; ~ (j,1) € Eo, § = 1, -, 9, |" € {0, 1Bl gy = [y, .. Yo m, )T €
{0, 1}Eol+me “and 1;; ~ (j,1) € E, .

The optimization (P1b) and (P2b) are NP-hard whose global solution can
be acquired by exhaustively searching all possibility or the suboptimal solutions
based on heuristic [26]. However, those algorithms often depend fairly on prior
knowledge of the entire network topology and also the existence of a central
coordinator. Often, those prerequisites are unsubstantialin practice for several
reasons, such as computational restrictions and privacy concerns. Hence, the
remainder of this article focuses on.developing a’ distributed computation algo-
rithm to solve the optimization problem (P1b) and (P2b) individually by nodes

based on the gather local information.

3. Main Results

In this section, we propose a distributed algorithm to (sub-)optimally solve
the optimization problem (P1b)/(P2b). Especially, the resultant topology ma-
nipulation process’is performed by individual nodes in the network and depends

only on the neighboring information.

3.1. A Greedy Heuristic for Maximization

To circumvent the NP-hard nature, the matrix perturbation analysis [27] is
first used to provide an approximation of the original problems. This eigenvalue
sensitivity analysis shows the variation of matrix eigenvalues when the matrix is

perturbed. For link addition, the matrix AL} can be treated as a perturbation

Ma
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imposing on Lg. Then, a suboptimal solution to the optimization problem (P1b)

can be obtained by solving the following approximation.

Lemma 1 (Link addition). Optimization problem (P1b) can be approximated

as
max > wp, Wb — )
(3:4)€Eo (Plc)
175 =m,, g e {01}
where l;; ~ (i,§) € Eg and va(Lo) = [va, ..., v is the eigenvector correspond-

ing to the eigenvalue A2(Ly).

Lemma [I| means to preferentially select links ~ (j,i) & Eo associted with
large deviation |vi — u§| Noteworthily, the aggregated. squared- difference of
Fiedler vector elements, i.e., Y7 a;;(v5 — v})2fappears asia metric to assess
the criticality of individual node [28].

The approximation of the optimization problem (P2b) is in some way anal-
ogous to the link addition problem,. More importantly, we postulate explicitly

for the rewired graph being connected in the following approximated problem.

Lemma 2 (Link rewiring).| The optimization (P2b) can be approrimated as
follows
max, Y0 i, (5= 1) = Y (s — )
(4,1) €Bo €L, (P2c)
st. 1'g=1"y=m,, Ag(fmr) >0,
where li; ~ (j,i) €, lij ~ (j,i) € B, ;va(Lo) = [13,...,v8]" and pa(L;, ) =
[ud, ..., u5]" specify the eigenvector corresponding to the second smallest eigen-

value of Laplacian matriz of graph Gy and graph G , respectively.

my?

Thus far, the original combinatorial problems (P1b) and (P2b) are approxi-
mated respectively by (Plc) and (P2c) which are concerned with the eigenvector
of interests. Nevertheless, the complete topological knowledge is indispensable
for computing those eigenvectors in question, thus lying the barrier to perform-

ing the topology manipulation process in a distributed fashion.
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8.2. Distributed Estimation of Eigenvectors

Power iteration (PI) method [29] has been widely used to estimate the simple
largest eigenvalue and its associated eigenvector of a symmetric matrix Q in
terms of

Qz.(t)

S A TP EROTk ®)

where Z,,(t) is the variable of PI estimator at time ¢ with a non-zero initial vector
Z,(0). As time evolves, the sequence {Z,(t)}:cr., approaches asymptotically
to the eigenvector corresponding to the principal eigenvalue A, (Q) at the rate
[An—1(Q)/ n(Q)|. A comprehensive description and some refined variants of
power iteration can be found in [30, 29] and the referencesstherein.

One of the major challenges that arise in the application of PL approach for
sizable networks is the intermediate normalization in each iteration step. Yet,
this intermediate operation is necessary to settle the overflow problem, so that
the estimates are unlikely to grow to infinity when A, (Q) > 1 or shrink to zero
when A\, (Q) < 1.

In the following, we develop a completely distributed PI algorithm. When
introducing the general theory, we will drop the subscript of graphs and simply
write G = (V,E) with the Laplacian L. Before jumping into the details, we first
define Perron _matrix"P of a graph by P = I,, — SL, where the scaling factor
satisfies 0.&£ 8 < 1/n, ensuring the power iteration on Perron matrix converges
to the non-negative dominant eigenvalue. Here, n amounts to an estimate of
the size of the network G or an upper bound on it. It is already known that n
can be computed in a distributed manner [31].

Since we aim to estimate the spectrum associated with the second smallest
eigenvalue of Laplacian, a matrix deflation is conducted on Perron matrix as
Q = P — 117 /n whose dominant eigenvector coincides with the one associated
to A2(L). Besides symmetry and positive semi-definiteness, the deflated Per-
ron matrix entails row and column sums equal to zero. The eigenstructures of
Laplacian matrix, Perron matrix, and the deflated Perron matrix are summa-

rized in Table [1| wherein the eigenvalue (e-value) A; and eigenvector (e-vector)

10
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Table 1: Spectrum of matrices

L P Q
i e-value e-vector e-value e-vector e-value e-vector
1 0 1//n 1— B\, v, 0 1/\/n
2 )\2 1) ]-_B)\nfl Vp—1 ]-_B)\n Un
n )\n vy 1 1/\/ﬁ 1-— ,6)\2 Vo

v; for i € V are in reference to Laplacian matrix L.
Let o(t) = [74(t), ..., 75 (t)]" be the estimation variable of the Fiedler vector
v, of the graph G at iteration step ¢. After initializing with arandom non-zero

vector, each node updates its estimate by following the iterative principle,

7yt +1) = hi(t)/a(t),

e , Y @)
n(t) = 24(0) - 6 PR 7)) - 1500,

where a(t) = maxiev | >, (@i v (t)| implies the adoption of the infinity norm
to the iteration method . In the computation algorithm , the normalization
factor a and the matrix deflation require that each node has access to some
network-wide vectors. To obviate this requirement, one can first notice that

t
1
175 = I | - _1TOo'p = 7
Vg(t) p a(t — k) Q I/Q(O) 0, Vte >0,

due to the fact that 1 is the left eigenvector of @ corresponding to the eigenvalue

0. We adjust slightly the initial condition to

72(0) = Lp,  73(0) = Y _[Ali;(pi — ;) (5)

j=1

where p = [p1,...,pn]" is a random non-zero vector, so one has 1T(0) = 0.
The modified initialization can also be achieved in a distributed realization.

Since the graph compatible with matrix @ is connected, the factor «(t) can

11
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be computed distributively by the max-consensus algorithm (1)) with the initial

condition .
z;(0) = ’ Z[Q]zﬂ?ﬁ(t)‘
j=1

Thus, the update rule (4]) can be implemented in a fully distributed fashion
with the aid of the initialization and max-consensus algorithm . As an
inheritance of centralized PI method (3, the estimate D5(t) converges exponen-

tially to the desired eigenvector vo(L) at the rate (1 — SA3(L))/(1 — SA2(L)).

3.8. Stopping Criteria for Distributed Power Method

In the application to real-life networks, however, the previously proposed dis-
tributed estimation technique, due to its asymptotic eonvergence nature, may
be too slow to respond to e.g., the abruptness of cascade failures in power grids.
In what follows, we endeavor to advance the applicability of the distributed al-
gorithm by providing a stopping criterion, while guaranteeing an ideal error
tolerance of estimation. The textbook:[30],provides’a bound on the accuracy of
the PI-based approximation of eigénvalues and eigenvectors for self-adjoint ma-
trices. Therefore, we start off by tailing this stopping condition to accommodate

the case of the positive semi-definite and symmetric matrices.

Proposition. 4 (Centralized Stopping Criterion). Consider a positive semi-
definite, irreducible, and symmetric matrix Q € R™*™ and the PI method
with the initialization (5). Given a scalar € € [0,1), if ||y(t)|2 < elA2(t)], then

|ve = Da(t)]]2 < 2¢ (1 T i e> )\n(Q)Ai()i)l(Q)’

where Ao (t) == 3 (t)Qi(t)/||7q (t)D2(t)||3 is an estimation of the algebraic con-
nectivity of the graph G at step t and y(t) := Ay (t)Da(t) — Qio(t) denotes the
residual of Do(t) w.r.t. Q.

In the implementation of this stopping criterion, the desideratum of the
network-wide information S\Q(t) hinders the distributed computation. The re-
mainder of this subsection is devoted to explaining how this barrier can be

circumvented.

12
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At the outset, we introduce an auxiliary variable by

75 (t)hi(t)
'3 t = 5 6
PO o, (3(0)7) )
where the sufficiently small constant 0 < § << 1 guarantees that the function

r;(t) is well defined and entails an asymptotic convergence to the eigenvalue

An(Q)-

Lemma 3. Consider the dynamics evolving on a connected graph with the
initialization . The auxiliary states converge asymptotically to a consensus

configuration r1(co) = ... = rp(00) = r* and the consensus state r* is equal to

1— Bro(L).

To this end, we get ready to present a distributed stopping criterion for the
distributed power iteration, providing a bound on the efficiency of the estimation

of the Fiedler vector.

Theorem 1. Consider a connected graph G with the deflated Perron matriz Q
and the distributed in-network computation with the initialization . For
a given threshold e € [0,1), if

€

= (minlr)]). ™)

<<
TEaVXImI <

where p; is the i-th entry of the matriz-vector product

.
o), = (max(|ri(t)] — 1)L + BL + = )a), )

then the estimation error of Da(t) satisfies the following condition

1— BXo(L)
B(As(L) — A2(L))

It is noted that p(t) in reads to a modified residual of Dy w.r.t. the

vz - a0l < 2 (14 1 ) 0

deflated Perron matrix @ and can be computed in a distributed fashion. With
the help of max / min-consensus protocol -a fully distributed content- plays an
important role in the in-network computation. Moreover, Lemmal[3|exposes that

lims oo 7 (t) = 1 —BA2(L) for all ¢ € V, facilitating agents to estimate algebraic

13
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connectivity in a distributed and finite-time manner. Thus, our distributed es-
timation algorithm together with the stopping criterion has a wider range of
applications such as for the distributed connectivity detection and preserva-
tion in flocking control of multi-agent systems [32], and for the distributed link

removal problem aiming at controlling the epidemic spreading [33].

3.4. The Complete Distributed Strategies for Link Operation

This subsection recapitulates the main results of this article. In a nut-
shell, the suboptimal solution to the optimization problem (P1b) can be com-
puted distributively under the stopping criterion using the distributed power
method and the initialization mechanism .

More importantly, we consider the problem of improving network resilience
by sequentially adding/rewiring edges. The rationale behind the idea has been
demonstrated in [33]. In simple terms, the number of linksto be operated can be
treated as the step-size in the gradient-based approach and a smaller step-size

gives rise to a better approximationsquality.

Proposition 2. A sub-optimal solution to the link-addition problem (P1b) can
be derived from solving the.following distributed mazximization problem along the

sequence s € {1,...,mMq}

max > g, (8)l(s) — 7(s)]
(G.)€EE}_, (P1d)

_ _ _ BT CoN =t
where §(s) = [1(s), - Ggr (T € {0, 1}Fl, Ty(s) ~ (5,1) € B, and
Uy(s) = [Pa(s),...,05(s)]" is the estimated Fiedler vector of the graph Lapla-
cian Lj‘ 1 Via the distributed PI computation with the stopping criterion .

To retain the essential simplicity of what is going on, we omit the dependence
of Dy(s) on the time argument ¢ in Proposition Thus, the problem (P1d)
is a distributed convex optimization problem with a separable cost function

along a sequence of issues (successive link-addition). Algorithm [I| presents the

14
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pseudo-code for the addition of a single link to the current network G | at
issue instant s. To sum up, the distributed strategy for multiple links addition

invokes Algorithm [I] successively until m, links are added.

Algorithm 1 Distributively adding one link to G ;

Require: a connected graph G |, a scalar € € [0, 1), a random non-zero vector
peR™ andt+ 0
1: execute (b)) with p to produce an initial condition (s, 0)
2: while max;cvy |pi(s,t)] > ﬁ(miniev |’I“i(8,t)|> do
3 t+t+1
4 Di(s,t) < hi(s,t —1)/a(s,t — 1)
5 hals,) ¢ 2A(s, 1) — B, 1A(s — Dl (s, 1) (s, BN T2
6 als 1) e maxiey | S, [Q(s — 1))i7(s. 1)
7: end while
8: node assigns ;(s) + 74(s)e; and transmits to neighbors

9: if [m(s)]j 75 0, V’L,j €V then

10:  break

11: else

12:  for j € {k|(i,k) € B ,} do

13: for k =1:12ndo

14: if [7; ()] == 0 & {m;(s)]r # 0 then
15: [mi($)]k < [ ()]

16: end if

17: end for

18:  end for
19:  back to step 9

20: end if

21: Lij=(s) = argmax;c o wyget 3 |[mili(s) = [mil;(s)]
22: compute li-;-(s) < argmax|[m;(s)]; — [mi(s)];-

consensus (1)) with x;(0) < |[m;(s)]; — [mwi(s)];~
23: output GF + (V,E7_, U{(i*,5")})

for (i,j*) using max-

15
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In analogy to link-addition procedure, we can develop a distributed strategy

to rewire the existing links in the network.

Proposition 3. Along the sequence s € {1,...,m,}, solving the following op-

timization problem sequentially and distributively

max Y, ()lh(s) = 73(s)]

Y(s),y(s) B
= Dy, 9)ib(s) — fih(s)] (P2d)
(G)ekd
st. 1Tg(s) =1Ty(s) =1, Ao(L(s)) > 0
provides a suboptimal solution to the link-rewiring probleny’(P2b). Here, Dy (s) =
[72(8),..., 08 ()T and faa(s) = [d(s),..., i8(s)]" are the estimated Fiedler
vector of graph Gs_1 and GF as a result of distributed algorithm , , re-

spectively.

The pseudo-code for distributed single-link-rewiring is shown in Algorithm 2]
In contrast with link-addition, onedmportant issue for rewiring links is how to
preserve the connectedness of the resultingmetwork after removing the existing
links. The lines 8-11 respond . to the distributed verification of the connect-
edness of the graph Gf in the event of removing link (i*,5*). To this end,
the distributed link-rewiring strategy with preserving-connectedness relocates
sequentially the existing links by implementing m, rounds of Algorithm [2|

Thus far, the developed strategy for link-addition (resp. rewiring) provides a
sub-optimal solution to the optimization problem (1a) (resp. (2a)) as also shown
by the next simulation section. The optimality gap between the solution to
(P1d) and the global one to (P1b) involves two aspects: the approximation error
of the matrix perturbation and the estimation accuracy of the distributed PI.
According to matrix perturbation theory [27], the approximation error depends
on all eigenvalues together with their associated eigenvectors of the Laplacian
matrix. In particular, the graph with a large algebraic connectivity and a wide
gap between A3(L)— A2(L) leads to a small error, as well as a tight upper bound
on the accuracy of the distributed PI method in reference to @D

16



270

275

Algorithm 2 Distributively rewiring one link in G

Require: a connected graph G,_1, node i associates with a neighborhood set

10:

11:

12:

N._,, a scalar € € [0,1), and a random non-zero vector p € R"

: use Algorithm 1] to add one link and establish G
: execute with p to produce an initial condition fis(s,0)
. execute line 2-7 to distributively estimate Fiedler vector of the graph G} by

[12(.9, O)

. store Etemp < Ef

: node computes l;;.(s) = argmin |f;(s) — fi;(s)| over graph (V,Eiemp) and

transmits to neighbors

. compute l;«;+(s) = argmin |;(s) — fi;(s)| over graph G using min-consensus

algorithm (2)) with z;(0) < |f:(s) — @+ (s)]

: execute max-consensus algorithm over graph (V,Ef\ {(i*,7*)}) with

zi+ =1and x; =0 forall j #4

. if T # X jx then

Etemp = Etemp \ {(",77)})
go back to step 5

end if

output G, + (V. EZ \{(i*.57))

. Numerical Simulations

In this section, the proposed distributed algorithms to yield sub-optimal

solutions for link adding and rewiring problems are validated and evaluated via

several numerical examples.

As the interconnection structure is shown in Fig. [I} a network of 10 nodes

is taken into account in the first case. The small size of such a network makes

possible the comparison with global optimal solution which is accessible via

exhaustive search approach. We start off by demonstrating the results via

a Monte-Carlo simulation of the distributed estimation algorithm for the

Fiedler vector with a sufficiently large iteration length. By observing Fig.
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Figure 1: Adding 12 new links (colored lines) into a network consisting 10 nodes and 15 edges

(gray lines).

Exhiaustive search
z Distributed link-adding method
-8 Distributed link-rewiring method
I Optimality gap

Fiedler vector

auxiliary variable r,(t)
algebraic connectivity

80 100 120 o 20

20 40 B 60‘ 40 60 80 100 0 2 4 6 8 10 12
iteration iteration t number of operating edges
(a) distributed computation of(b) distributed computation of (c) a network example
va(L) A2(L)

Figure 2: Monte Carlo trial of distributed estimation algorithm and link-operation over a
small-size network: (a) 74 (solid coléted, lines) coniverge asymptotically to v4 (dashed black
line) for all ¢ € V; (b) r; (solid colored lines) ¢onverge asymptotically to A2(L) (solid black line)
for all ¢ € V; (c) comparison of distributed link-addition strategy, the distributed link-rewiring

strategy and brute=force‘search.

(a) Watts-Strogatz small world(b) Erdés Rényi stochastic net-(c) Barabasi-Albert scale free

network work network

Figure 3: Random network models of 100 nodes

the estimate states converge asymptotically to their corresponding true values

independent of initial conditions. Fig. provides the convergence behavior
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4 Distributed linl
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(a) Watts-Strogatz small world(b) Erdés Rényi stochastic network(c) Barabasi-Albert scale free net-

network work

Figure 4: Performance comparison over random networks

of variables r;(t) (i € V), supporting the claim in Lemma[3] Namely, utilization
of the auxiliary variable given in @ allows us to distributively estimate the
algebraic connectivity of a graph.

With the emphasis on finite-time computation in this article, we examine the
effect of the distributed stopping criterion @ The results are summarized in
Table [2]in which a smaller threshold e leads to a higher accuracy of approxima-
tions of the Fiedler vector but a longer iteration time. Since it is not necessary
to compute the exact values ofievery entry<of v in link operation problem, let
the threshold e be equal to 0.01l/in the small-size case.

To evaluate the developed distributed strategy for link addition/rewiring, we
vary the number my, from 1 to 12. The resultant variation of algebraic connec-
tivity after adding (rerouting) m, (m,) links into (of) the network is shown in
Fig. and those.new links are drawn by blue and purple solid lines in Fig.
As shown in Fig. the sub-optimal solution derived from the successive ap-
plication of Algorithm [I]is very close to the global optimizer by a brute-force
search. In addition, it should not be surprising that strengthening network re-
silience by adding new edges into the network outperforms by reallocating the
existing links.

Next, the developed results are evaluated on three random networks: 1).
Watts-Strogatz (WS) small-world model (|V| = 100|, |[E| = 308), 2). Erdds
Rényi (ER) random model (|V| = 100, |E| = 268), and 3). Barabdsi-Albert
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Table 2: Stopping criterion with different thresholds

threshold € iteration steps ||va — Do(t)]|la Aa(LT)

0.085 1 1.4059 0.5101
0.08 25 0.2786 0.7935
0.05 28 0.1935 0.7935
0.01 40 0.0553 0.7935
0.005 47 0.0299 0.7935
0.001 66 0.0063 0.7935
0.0005 75 0.0031 0.7935
0.0001 95 0.0006 0:7935
0.00005 103 0.0003 0.7935
0.00001 123 0.0001 0.7935
0.000005 132 0.00003 0.7935

(BA) scale-free model (|V| = 100,4E| = 281). We first apply the proposed link
addition strategy to constructmg= |Eg|/10 percent new interconnection of the
amount of the existing links for-€ach network and then employ the link-rewiring
strategy to reconstruct m, = |E“T;La| /10 of the existing links. Here, we adopt a
random linkradding method. as an alternative solution of the global optimizer
which is"in general intractable in such large-scale networks. It is evident from
Fig. 4] that the distributed link-addition strategy over all three random net-
works provide much more compelling performance than randomly adding links
when it comes to network resilience improvement. Moreover, the distributed
link-rewiring strategy seems to perform relatively worse than the distributed
link-addition strategy in all three networks. As can be seen in Fig. the
distributed link-rewiring strategy loses its effect in BA networks and does not
provide a better improvement of network resilience. This is mainly due to the
higher heterogeneity of BA networks as compared to WS and ER ones. Here,

heterogeneity of the network is concerned with its properties such as degree,

20



320

325

330

335

340

betweenness, closeness, and centrality.

5. Conclusion

This article provides a distributed strategy to solve the problem of network
topology manipulation when the global structure information is unavailable.
Specifically, we consider the problem of link addition/rewiring in a network to
enhance the network resilience against malicious attacks. Due to the combinato-
rial nature and NP-hardness, an approximation scheme based on eigenvalue sen-
sitivity analysis is applied to these problems, providing a sub-optimal solution
to primary optimization. The approximated problem invelves the informative
eigenvectors associated with the eigenvalues of interests. The development of the
distributed algorithm to estimate the eigenvectors’and the distributed stopping
criteria to support finite-time computation facilitates us.to fulfill link operation
in a distributed manner without complete information’of network topology. So
far, the distributed-topology design problems are focused on an undirected and
unweighted graph. Possible future direction would be the extension of cur-
rent results to edge-consensus problems in line graphs [34], multiple time-scales
multi-agent cooperation fcontrol [35,130], and networks with time-varying [10]

and antagonistic-interactions [37].
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Appendices

. Proof of Lemma

It is already known that the algebraic connectivity of a connected graph is

a non-decreasing function with respect to the edge addition [38]. According

to matrix perturbation theory, the first order expansion of the second smallest

eigenvalue of Ly + AL}, can be computed as

vl ALY v
Ao(Lo + AL, ) = Xa(Lo) + 2,;7,/“2 +O(IALT, %),
2 V2
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which enables us to approximate the objective function in (P1b) by
maxg v3 AL vy

[v2l13

max Az (L, ) ~ Aa(Lo) +
Yy

Upon the factorization of AL}, | we arrive at the approximate algorithm (Plc)

and the proof is completed.

6.2. Proof of Proposition
450 In order to prove the statement in Proposition (1, the following supporting

lemma is necessary.

Lemma 4. Consider two positive semi-definite and symmetric matrices C1, Cy €
R™ ™ Let {, and &, be the eigenvectors associated to thé dominant eigenvalues

M (C1) and A\, (Cs), respectively. Then, one has

[An(C1) — Au(Ca)| < [|IC1 #Colla,

2||Cr= Col|2
(C1) — Mca(Cy)

Proof. The proof follows similar steps as those’in the proof of Lemma 1 and

Lemma 2 in [39)]. O

The proof of Proposition [I} follows along the same steps as in the proof of

w5 Theorem 1 in [39] and thus is saved here.

6.3. Proof of Lemmal[3

Consider a Lyapunov function candidate by the span norm

V(Dg) = :nea&( ’I“i(ljg) — rlnekr/] Ti(172>7

which is continuous for all 75 € R\ {0} and positive semi-definite.

The following computation,

max ri (P2(t + 1)) — max r; (D2(t))

alt) ¥ ri () (t)
= Tgai\;( Wﬁ%(t) ;[Q]”T — TGE%;( Tz(t)

~—

n

1 .
< I .y _ . —
= 0RO jz:l[Q]” 7a(t) mari(t) = max rilt) =0
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implies max;cy r; is non-decreasing, whereby verifying max;cy r; is non-increasing
on the same principle. Thus, it then suffices to address that the max-min
Lyapunov function V is reduced to a constant factor over a sufficiently large
time interval. In particular, it follows that V(¢ 4+ 1) — V(¢) = 0 if and only
if Oy € {Do|r1(D2) = -+ = ry(P2)}. With the consensus configuration at the
equilibrium point and by the fact that

L PL () diag(r (1), 1 (0) ()
s 5] (0)7a(0)

e 0@
G0

one can infer lim; o, 7;(t) =1 — BA2(L) for all i € V.

6.4. Proof of Theorem[]]
From the formulation in (6)), we note the/fact that\|r;|[7i| amounts to the
i-th entry of the matrix-vector product |QDs| for all i‘e V. After carrying out

the matrix (vector) multiplication, this factallows us to expose the relation that

73 (t)Qi(t)
73 (t)a(t)

D3 (t) diag (|1 (t) s ra @D P2(t) _
o3 (B)oa(t)

which implies |/~\2(t)\ >amin;ey |7i(E)]-

)

Moreovers the residual ~ of s with respect to @ can be equivalently stated
as the inverse vector of the rejection of Qs from . Therefore, ||v(t)]|2 is equal
to the shortest distance from Qus to the line spanned by 5. The denotation

of p in can be reformulated by p = (max;cv |74])P2 — QDs, leading to that
Il < llplls < Vimaxos

where the relation ||p|ls < v/7||p||so is used.

To this end, one can immediately conclude that
<V i) < e(min|ri(t)]) < el Xa(t)],
Iyll2 < Va(max|pil) < e(min[ri(t)]) < el Aa(1)]

which provides a bound on the accuracy of the approximation of eigenvector as

a result of the centralized stopping criterion given in Proposition
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