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Abstract—As we move towards higher levels of automation
in autonomous driving, we see an increase in functionality that
either assists or takes over in both normal and emergency
scenarios. These new functionalities can be switched off by the
user for personalisation. We aim to recognise mistimed and/or
unintended deactivation of vehicle functions, in particular, driver
assistance functions (ADAS), at run-time. This will be done
in addition to already applied methods at design time. Upon
recognition of the occurrence, we propose to inform the user and
the original equipment manufacturer (OEM) in order to improve
both the future and the current system behaviour and to support
development processes. Based on eight customer datasets, we
evaluated our approach on a total of 17 state-of-the-art ADAS
functions per participant, yielding to a total of 136 runs. We
observed that during 24 among them, the user de-activated the
functions at least once for more than a few seconds. For 13
of these 24 runs, we were able to detect and flag possible non-
nominal behaviour over the full trace.

Index Terms—feature selection, anomaly detection, automotive,
E/E architecture

I. INTRODUCTION

We see an increase in driver assistance functions that either

assist or take over in both normal and emergency scenarios.

These functions can be intentionally switched off, but can also

be deactivated unintentionally by (i) accident, (ii) a software

or hardware malfunction, or (iii) an intrusion.

In this work, we consider the deactivation of driver as-
sistance functions such as side impact warning, lane-change

warning, and cross traffic alert. A driver can deactivate such

functions manually (personalisation). A deactivation per se is

not a problem if intended by the driver: for instance, a driver

might deactivate traction control when being stuck in an iced

parking lot. However, if such functions have been deactivated

due to a software or hardware fault, or even after an IT attack,

this is a severe problem that we try to identify and to mitigate.

In addition to already applied methods at design time, we learn

a personalised driver model that contains information about

the context in which drivers intentionally deactivate functions.

We refer to this as nominal behaviour. After detecting an

anomaly the correctness of the detection must be validated by

the driver. The finding is presented as a message on the head-

unit with a warning explaining the affected function and its

possible abnormal behaviour. The driver is expected to confirm

whether the detection of the anomalous function was correct or

the function was reconfigured by her/himself. If the detected
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Fig. 1. Process: ↺-steps are repeatedly done at run-time.

anomaly gets validated it will be sent to the OEM for further

analysis and investigation.

The presented approach heavily relies on data collected at

run-time which raises multiple challenges since current E/E

architectures are not designed for data analytics. Hence, our

approach is designed to minimise stored and transmitted data,

by running in the car in a decentralised structure without relying

on more information as the current observed state of a signal

and interim values for the calculation.

II. APPROACH

This work is a continuation and significant refinement and

extension of the previous work [1] in which we showed that it

is possible to learn the context of a car function when being

used. Our refined approach is depicted in Fig. 1.

Calculation of Statistics: As a first step, the label for the

corresponding function is generated. In this case, the label

holds the information of the current status of the function for

which we want to detect anomalies and is generated based

on status signals from the function itself. Based on this label

the statistical distribution of all car signals in each class is

calculated. The fundamental idea of this step is to continuously
update the mean and standard deviation of each signal, and

the mean and standard deviation of each signal in each class.

This calculation is based on the semi-numerical calculation of

Knuth [2] and Welford [3] and can be performed in a streaming

manner, meaning no past data has to be stored. Moreover, since

the calculation is independent for each signal, we do not have

to consider the synchronisation of all signals and there is no

overhead in sending the data to a central place. This can lead

to a suboptimal feature subset because we do not consider the

relationship of signals to each other. However, we accept this

drawback due to the posed challenges by the automotive E/E

architecture.
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Fig. 2. Exemplary result for Lane Departure Warning Sensitivity

Feature Selection: To resolve the “curse of dimensionality”

[4] posed by the high number of signals, our model selects

a subset of signals showing the best correlations to the label

(here: state of the ADAS function). This is achieved by using

the supervised feature selection algorithm Fisher score [5]:

This algorithm calculates a score for each signal/feature and

is only based on values calculated in the previous step. This

score is then collected in a central place to rank the features

according to their correlation to the label. This is the only step

which is conducted in a non-distributed manner but will only

lead to a minimal amount of communication due to the small

number of parameters. Only the top k ranked features are used

for anomaly detection in the next step.
Checking New Data for Anomalies: For detecting anoma-

lies, our approach is based on finding outliers for each of the

previously selected top k features with the Grubbs’ test [6].

Since this anomaly detection is only based on the previously

calculated values and the current value of each feature, no

additional data has to be stored. Additionally, this calculation

is signal-independent and can be distributed in the architecture

and calculated directly at the source of each signal.
Anomaly Feedback-Loop: After detecting an anomaly for

a number of signals out of the feature set, which is above a

specific threshold, the correctness of the detection must be

validated by the driver. The finding is presented as a message

on the head-unit with a warning explaining the target function

and its possible abnormal behaviour. The driver is expected

to confirm whether the detection of the anomalous function

was correct or the driver changed the state of the function by

her/himself. If the detected anomaly gets validated, then it will

be sent to the OEM for further analysis and investigation.

III. EVALUATION AND RESULTS

We used already collected data from a field study conducted

at the BMW Group to evaluate our approach. The car data has

been collected from eight current generation BMW 7 Series

(G11), which have been equipped with hardware loggers. Each

dataset contains ≈3.800 car signals and based on the time the

car was driven, the number of samples varies from ≈170.000 to

≈850.000. In total we run our approach on 17 ADAS functions
leading to 136 runs (17*8). The experimental setting requires

a function that changed its state at least once for more than

1% of the total length of the trace, leading to 24 runs.

In Fig. 2 an exemplary result is shown. The upper plot shows

the current configuration status of the function Lane Departure
Warning Sensitivity. As depicted, the configuration is changed

by the user in the second half of the trace from late to medium.

The plot beneath the configuration shows the variation of the

feature subsets by using the Jaccard distance [7] of the top

k = 30 features between consecutive time steps of 300s. As

seen right after the reconfiguration, the feature subset initialises,

due to the first observation of another state, with less frequent

changes over time. The next plot shows the true positive ratio

of the anomaly detection on the top k = 30 features. This ratio

considers the opposite state of the function recorded in the

trace. This state was not recorded in the trace, but we consider

this hypothetical change in the function’s state as not intended

by the user and we refer to this as an anomaly, due to not

being present in the real trace. This ratio should always be as

high as possible. As seen in the plot, true positives are detected

for ≈20% of the features with the initialisation of the feature

set. Within this trace, no false positives are detected.
In total, our approach was able to detect possible anomalies

in 13/24 runs. In 16/24 runs, the user was notified at least

once when s/he changed the setting of the function, and in 11

runs no anomalies were detected if a change would not have

been triggered by the user. When comparing the feature subsets

between the different traces, we could not find any relationships

and they highly vary between each car and function.

IV. CONCLUSION

In this work, we proposed a novel approach for providing

proactive safety management for customer function in automo-

tive systems at run-time, which can detect safety violations for

personalisable functions. The approach supports the software

engineering process by gathering run-time vehicle data. We

evaluated the approach on real customer vehicle data.
We conclude from the first results that the described approach

works well—at least in the described setting. It is rare that

drivers configure driver assistance functions, but this happens,

hence personalisation of them is needed and we expect more

functions of that type to be introduced in future. Furthermore,

drivers are and behave diverse, i. e., the selected feature subsets

vary from driver to driver, meaning that a one-fits-all solution

does not work in modelling the drivers’ behaviour. This

demands a learning approach and feature selection at run-time.
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