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Abstract

Model order reduction approaches speed up the design and analysis of high-dimensional
finite element problems by reducing their size while approximately maintaining the
same behavior as the full-order finite element model. As industrial structures such as
wind turbines or air vehicles become more complex, it is crucial to include non-linear
effects in their finite element models for a realistic representation. However, dynamic
analysis of large nonlinear structures is a computationally expensive and sometimes
inadmissible exercise, demanding model reduction for their investigation. A few
challenges exist in model reduction of nonlinear finite element models: 1. How can
one reduce a nonlinear model when it is developed in a commercial finite element
package, which often is the case for industrial applications? 2. Which reduction
basis is very accurate, easy to compute, and robust for different loading conditions?
To cope with the first challenge, non-intrusive model order reduction methods are
presented in the first part of this dissertation. We investigate several basis selection
methods for non-intrusive model reduction and develop three different bases for dif-
ferent non-intrusive approaches. We apply our proposed methods to various flat and
curved structures and show that our developed reduction bases present accurate and
efficient results.

Furthermore, when a nonlinear multi-component structure is under investigation,
whose different components contain numerous degrees-of-freedom and they are de-
veloped by different parties in parallel, it is usually not possible to reduce the model
of the structure monolithically. Therefore, nonlinear substructuring methods are
introduced, which decompose the multi-component structure into smaller compo-
nents (or substructures), reduce the model of each component independently, and
finally assemble the nonlinear reduced order models of all substructures to build
the reduced model of the whole assembly. The second part of this work investi-
gates non-intrusive modal substructuring of nonlinear structures. We first develop a
nonlinear substructuring based on an augmented free-interface method with inter-
face reduction as an alternative of nonlinear Hurty/Craig-Bampton method. After-
wards, we develop a non-intrusive-based nonlinear substructuring approach based on
modal derivatives that remedy some limitations of other methods. We apply our pro-
posed methods to different nonlinear multi-component examples and confirm their
improvements by dynamic validations under random sound pressures.
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Zusammenfassung

Ansätze zur Modellordnungsreduktion beschleunigen die Analyse hochdimensionaler
Finite-Elemente-Probleme, indem sie deren Größe reduzieren und dabei etwa das
gleiche Verhalten wie das Finite-Elemente-Modell des detaillierten Models beibehal-
ten. Da industrielle Strukturen wie Windkraftanlagen oder Luftfahrzeuge immer
größer und komplexer werden, werden nichtlineare Effekte immer wichtiger, um
realitätsnahe Finite Elemente Modelle zu erhalten. Die dynamische Analyse großer
nichtlinearer Strukturen ist jedoch eine (teils zu) rechenintensive Aufgabe, die eine
Modellreduktion für ihre Untersuchung erfordert. Einige Herausforderungen beste-
hen in der Modellreduktion von nichtlinearen Finite-Elemente-Modellen: 1. Wie
kann man ein nichtlineare Modell reduzieren, wenn es in einem kommerziellen
Finite-Elemente-Paket entwickelt wird, was bei industriellen Anwendungen oft der
Fall ist? 2. Welche Reduktionsbasis ist einfach zu berechnen und liefert trotz-
dem gute Ergebnisse für unterschiedliche Belastungsbedingungen? Um die erste
Herausforderung zu bewältigen, werden im ersten Teil dieser Arbeit nicht-intrusive
Methoden zur Modellordnungsreduktion vorgestellt. Wir untersuchen mehrere Ba-
sisauswahlmethoden zur nicht-intrusiven Modellreduktion und entwickeln drei ver-
schiedene Reduktionsbasen. Wir wenden unsere vorgeschlagenen Methoden auf ver-
schiedene flache und gekrümmte Strukturen an und zeigen, dass unsere entwickelten
Reduktionsbasen genaue und effiziente Ergebnisse liefern.

Darüber hinaus ist es bei der Untersuchung einer nichtlinearen Mehrkomponen-
tenstruktur, deren verschiedene Komponenten zahlreiche Freiheitsgrade enthalten
und die von verschiedenen Parteien parallel entwickelt werden, in der Regel nicht
möglich, das Modell der Struktur monolithisch zu reduzieren. Daher werden nicht-
lineare Substrukturierungsmethoden eingeführt, die die Mehrkomponentenstruktur
in kleinere Komponenten (oder Substrukturen) zerlegen, das Modell jeder Kompo-
nente unabhängig voneinander reduzieren und schließlich die nichtlinearen Mod-
elle reduzierter Ordnung aller Substrukturen zusammensetzen, um das reduzierte
Modell der gesamten Baugruppe aufzubauen. Der zweite Teil dieser Arbeit unter-
sucht die nicht-intrusive modale Substrukturierung nichtlinearer Strukturen. Zuerst
entwickeln wir eine nichtlineare Substrukturierung auf Basis der augmentierten Free-
Interface-Methode mit Schnittstellenreduktion als Alternative zur nichtlinearen Hurty/
Craig-Bampton-Methode. Anschließend entwickeln wir einen nicht-intrusiven nicht-
linearen Substrukturierungsansatz auf Basis modaler Ableitungen, welcher bestimmte
Grenzen anderer Methoden aufhebt. Wir wenden unsere Methoden auf verschiedene
nichtlineare Mehrkomponenten-Beispiele an und bestätigen deren Verbesserungen
durch dynamische Validierungen unter zufälligem Schalldruck.
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Chapter 1

Introduction

This Chapter is partly extracted from the author’s work in [65]. In this article, Karamooz
had the idea of the work and performed the literature review. Karamooz implemented a
considerable part of the work and wrote the manuscript. Xu conducted the primary part
of numerical studies and discussed the work. Bartl, Tiso and Rixen gave useful inputs in
the discussions of the work and proof-read the article. Rixen supervised the work.
Furthermore, this dissertation is mainly based on the author’s works in [65–68, 70, 71]

1.1 Motivation

The rapid development of technologies has led to the production of large and com-
plex structural systems, which require an ever increasing computational power for
their design and analysis. Despite the exponential growth in the computer’s per-
formances, predicted by Moore [101], the required computational power outgrowth
the development of computer’s developments. Therefore, it is calling for the develop-
ment of numerical methods, which reduce the computational costs while maintaining
the high accuracy of the analysis.
One of the very efficient ways to reduce the computational costs and simultaneously
keep high accuracies in the design and analysis of large engineering problems is
Model Order Reduction (MOR). The idea of MOR is to approximate the motion of a
large engineering problem with a high dimension by a Reduced Order Model (ROM)
that contain a significantly reduced dimension. The ROM is expected to have almost
the same behavior as the full-dimensional problem in a static or dynamic analysis
with much less computational burden than the full-order system. While MOR ap-
proaches have been investigated in a variety of fields of studies e.g. electrical engi-
neering [8, 24, 41, 53, 139], control theory [79, 89, 100, 140], fluid dynamics [3,
16, 86, 123], etc., the focus of the present work is the investigation and development
of MOR methods in structural dynamics engineering problems.
To analyze the dynamics of a complex structure, it is commonly discretized to nu-
merous Degrees-Of-Freedom (DOFs) using the Finite Element (FE) method [6, 12,
13, 42, 161] with a fine mesh to capture all design properties of the model. The FE
model of the structure is then either simulated directly to obtain the time response
of the system (which is computationally expensive or inadmissible) or reduced to a
compact ROM, which can be rapidly analyzed and simulated. As a result, engineers
can take advantage of such detailed models with numerous number of DOFs and si-
multaneously avoid prohibitively expensive computational costs of their simulation
by reducing the DOFs of the model.

1



2 1 Introduction

Figure 1.1: Schematic of the Helios prototype
in idle (down configuration) and operating (above
configuration) conditions [110, 156]

Wind

Figure 1.2: Schematic of deformation of wind tur-
bine blades under wind flow.

Since more than half a century, linear MOR techniques in structural dynamics have
been widely investigated, developed and applied to many linear structural dynamics
problems, see e.g. [1, 4, 9, 34, 49]. However, linear modeling for some systems
under certain conditions and loading levels do not apply anymore. Instead, nonlinear
models have to be developed and investigated in these cases, which is generally more
computationally expensive. Nonlinearity in structural dynamics can have a variety
of sources and forms, of which nonlinear constitutive law for material [10, 43, 108],
geometric nonlinearity [5, 59, 106, 160], nonlinear damping [32, 74], contact [87,
143], multi-physical interactions [97, 117, 142] are some examples. In this work,
we mainly consider the nonlinear structural problems with linear material properties
and geometric nonlinearity, which is caused by large deformations in the system.
Geometric nonlinearity occurs in many applications such as automotive [77, 109],
wind energy [90, 127, 168] or air vehicle [11, 46] industries, which comprise for
instance thin-walled and/or light weight components operating under relatively high
level of excitation. As an example, Fig. 1.1 shows the Helios Prototype air vehicle
[110, 156], which can operate in high altitudes using solar energy produced by high
efficiency solar cell that are deviced across the upper surface of its wings. Investi-
gating such structures is important due to its potential to pave the path for further
technologies in green airplanes, which operate with solar energies. As it can be seen
in Fig. 1.1, the aircraft is almost straight in idle condition, while it exhibits large
deformations during operating conditions, making it necessary to consider geometric
nonlinear effect in its dynamic analysis.
As the second example of structures with geometrically nonlinear effect, consider the
schematic of a multi-megawatt wind turbine of Fig. 1.2. Since many countries have
aimed to supply larger parts of their energy from renewable sources 1, it has become
more demanding to develop and optimize wind turbine structures. The blades of
wind turbines are made of thin-walled composite materials that make them exhibit
large deformation under high speed of wind loading, as shown in Fig. 1.2.

1As an example, the European Commission has targeted to supply 20% of its total energy from
renewable sources [38] by 2020.
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Accordingly, to develop and analyze these nonlinear structures, a number of nonlin-
ear MOR techniques have been developed in recent decades. One efficient nonlinear
MOR approach is to develop a NonLinear Reduced Order Model (NLROM), indepen-
dent from nonlinear element formulations of the FE code. This approach is especially
beneficial when the full-order model is built in a FE analysis package, provided by a
third party, which do not release the internals of its code, (for instance, commercial
FE software). This MOR approach is known as non-intrusive or indirect approach,
which has been successfully applied to many applications [47, 114, 116, 119, 120].
However, the research challenges in this approach are still reducing the computa-
tional costs for the development of NLROMs, and selecting “cheap” and accurate
reduction bases. The first aim of this dissertation is to further develop non-intrusive
methods to increase their accuracy as well as efficiency. Therefore, this work pro-
poses four reduction bases for non-intrusive methods. These bases consist of two
alternatives of non-intrusive Modal Derivatives (MDs), Modal Truncation Augmenta-
tions (MTA) and Mode Acceleration (MA) correction. It has been shown, that the pro-
posed methods can increase the accuracy of the NLROMS while the computational
efficiency is reduced or remained the same as before.
Furthermore, many large industrial products (e.g. consider wind turbine of Fig. 1.3)
are composed of several components (or substructures), which can not be designed
or analyzed monolithocally. This is because firstly several components of these struc-
tures are developed by different parties in parallel, who can not share all the infor-
mation of their models due to commercial reasons. Secondly, the model of the whole
structure is so large that it can not be reduced at once. As a result, Dynamic substruc-
turing approaches have been investigated in recent decades to solve these problems.
Dynamic substructuring (or Component Mode Synthesis (CMS)) enables engineers to
decompose a large/complex dynamic model into smaller components (or substruc-
tures), reduce the model of each substructure separately, and couple the ROM of all
substructures to build the ROM of the full-order structure, which is computationally
practical. By reducing the model of a structure using dynamic substructuring the
following advantages can be gained:

• It allows speeding up the model reduction process (offline time) as well as sim-
ulation time (online time) of the full-order model by performing parallel reduc-
tion of substructures as well as parallel time integration of the substructures’
ROMs.

• It expedites optimization processes when only one substructure is under inves-
tigation, because the other substructures can be used unchanged.

• It facilitates collaboration of different companies and parties by letting them
to shared a ROM of their developed substructure (instead of the whole model
data) while keeping their confidentialities.

• It allows coupling of experimentally measured components with numerically
derived FE model of substructures [37, 69].

While linear dynamic substructuring techniques have been widely developed in the
1960s and 1970s [25, 26, 28, 56–58, 88, 135], method development in substruc-
turing of nonlinear systems have become an attractive field of study in recent years
(e.g. see [85, 157, 163]). Therefore, the second purpose of this dissertation is to
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Figure 1.3: Schematic of the rotor assembly of the Ampair 600 wind turbine [37].

expand on the nonlinear dynamic substructuring methods in accuracy, persistency,
and computational efficiency. The nonlinear substructuring methods investigated
and developed in this work are based on non-intrusive MOR methods. Firstly, we
have presented a free-interface-based reduction basis as an alternative for the al-
ready existing nonlinear substructuring approach. Secondly, we propose a novel dy-
namic substructuring method, which can be used under various loading conditions.
We demonstrate in this dissertation that the proposed methods present accurate and
robust results compared to the other non-intrusive-based substructuring methods.

1.2 Nonlinear model order reduction: Intrusive vs. Non-intrusive

Nonlinear modeling of many industrial structures are crucial to accurately predict
their dynamic responses, which are computationally expensive to analyze, demand-
ing MOR. However, nonlinear MOR of such structures often face two challenges. The
first one is to find a convenient reduction basis that is easy to compute and repre-
sents the essential properties of the nonlinear full-order model accurately, which is
more discussed in section 1.3. The second challenge is the determination of the re-
duced nonlinear internal forces (also known as restoring forces). To address the later
challenge, nonlinear MOR methods can be classified into two categories depending
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on how the nonlinear internal forces are reduced: intrusive and non-intrusive meth-
ods. The intrusive (or direct) methods [61, 144, 158] are based on obtaining the
reduced internal forces by direct projection of the full-order nonlinear internal forces
onto a reduced set of generalized (or modal) coordinates. These methods are usually
efficient but require specialized codes that release access to the nonlinear element
formulations or closed form Equations Of Motion (EOM).
In case a nonlinear reduced order model is to be developed in a direct approach the
mass, damping and linear as well as nonlinear stiffness tensors are pre- and post-
multiplied with a pre-selected reduction basis, V, to build the NLROM. However, the
computational cost to simulate the time histories from the NLROM is not extensively
reduced, because computation of the reduced nonlinear internal forces as well as its
Tangent Stiffness (TS) is still expensive for each time step. Let us consider the EOM
for a geometric nonlinear FE model as

Mü(t) + Du̇(t) + fint(u(t)) = f (t) (1.1)

The schematic of the dimension of matrix operations for this equation and also after
order reduction is shown in Fig. 1.4. As can be seen from this figure, the matrix
operation of the reduced nonlinear internal vector is even more than the full-order
one. Therefore, unlike the linear systems, only projection of the full order model to
the set of reduced coordinates does not noticeably reduce the simulation time.

+ + =

+ =

u ≈ Vq

V T MV

ü u̇ uM D fint f

q̈ +q̇V T DV fint VV T

q

V T f

Figure 1.4: Schematic of the matrix operation for the full model and the NLROM.

Accordingly, a further step is investigated in literature to approximate the nonlin-
ear internal forces. This approximation can be performed either using linearization
methods [125, 126] or applying the so-called hyper-reduction methods, which can
drastically speed up the computation of reduced restoring force vector at the cost
of approximating it. There are a number of hyper-reduction methods developed in
recent years such as Energy Conserving Sampling and Weighting (ECSW) [39], Dis-
crete Empirical Interpolation Method (DEIM) [20] , or approximation through (Tay-
lor) polynomial expansions, to name a few. The ECSW method is based on taking a
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few weighted elements in the system, which have the highest contribution to approx-
imate the virtual work of the nonlinear restoring forces due to specific excitations.
Whereas, DEIM is based on the interpolation of the nonlinear restoring force under
certain excitations, by computing it at a few well selected nodes. Furthermore, the
coefficients of an approximation by polynomial expansion can be obtained by differ-
entiation of the nonlinear restoring forces. While the hyper-reduction methods are
efficient for many applications, they usually face three challenges:

1. Most of the hyper-reduction methods (e.g. ECSW, DEIM) are load-dependent
approaches, meaning the hyper-reduced model is only appropriate for a special
load case and as soon as the loading condition is changed, a new hyper-reduced
model has to be developed for the system.

2. To apply most of the hyper-reduction methods, a closed form for EOM is re-
quired, which is only the case for specialized FE code (i.e. they are intrusive
methods).

3. A dynamic simulation of the full-order model is generally required to perform
common hyper-reduction methods, although some quasi simulation-free ap-
proaches have been recently proposed for certain cases, see [62, 137].

Alternatively, the non-intrusive methods [98] can be applied to any (commercial) FE
analysis package, as long as the FE package is capable of performing nonlinear static
analysis. Typically, the reduced nonlinear force is expressed as a vector-valued poly-
nomial form of the modal amplitudes directly multiplied by unknown coefficients.
For a geometric nonlinear structure, it is usually sufficient to expand the polynomials
up to cubic terms. The unknown coefficients are called Nonlinear Stiffness Coef-
ficients (NSCs), and are identified by the specific non-intrusive MOR technique at
hand. All non-intrusive methods are based on prescribing selected inputs (either as
forces or displacements) to the FE package and the corresponding output obtained
from it. Then the NSCs are identified based on the given inputs and outputs, as
shown in Fig. 1.5. As a result, the indirect methods seem to be efficient in case the
structures are developed in commercial FE analysis packages (which is the case for
many industrial applications), since there is no need to construct the nonlinear FE
tensors of the full structure.
In the literature, two non-intrusive procedures are present to determine the NSCs.
The first one is the force-based method called Applied Force (AF) or Implicit Con-
densation (IC) method, which was first introduced by McEwan et al. in [95, 96].
This method defines a set of representative static forces associated to combination
of linear low frequency modes (which are typically transverse-dominated ones for
shell-like structures) to be applied statically to the full model and solve for the cor-
responding nonlinear displacements. The displacements obtained in this way implic-
itly contain the nonlinear coupling between the modes (e.g. transverse-membrane
coupling or stretching effect). Therefore, the NLROM developed in this way can ac-
curately approximate the nonlinear dynamic response of transverse DOFs without
using other ingredients in the identification procedure. To also correctly predict the
response for the in-plane motion, Hollkamp and Gordon [54] proposed an extension
to the IC method, known under the name of Implicit Condensation and Expansion
(ICE).
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Figure 1.5: Work flow of non-intrusive model order reduction.

In fact, ICE retrieves the motion of membrane DOFs using the proposed post-processing
by Hollkamp et al. [54], without adding more vectors to the reduction basis. How-
ever, this post-processing method is only valid when the relation between the trans-
verse and membrane coordinates are quadratic (e.g. flat and shallow-curved struc-
tures). For instance, Spottswood et al. [150] discussed that the expansion part of the
ICE method does not work for shallow-curved structures under thermal loads. This is
due to the fact that the assumption of ICE for approximating the membrane motion
is not fulfilled.
Another widely used non-intrusive MOR approach is the Enforced Displacement (ED)
(also known as STEP (STiffness Evaluation Procedure)) method, which was first in-
troduced by Muravyov and Rizzi [103] and later developed in [76, 116]. In this
method, selected static displacements that trigger nonlinearity are prescribed to the
model through the FE package. The FE package then computes the required reaction
forces to create the statically assigned displacements and the NSCs are obtained by
solving a set of linear equations given the input displacements and output forces. To
reduce the number of required nonlinear static solutions, Perez et al. [116] used
the Tangent Stiffness (TS) matrices due to assigned static displacements, instead of
reaction forces for identifying the NSCs. They showed that in this way the number of
needed nonlinear static solutions reduces significantly, leading to less offline compu-
tational costs for the development of NLROMs. The TS-based method of Perez et al.
is called the Enhanced Enforced Displacement (EED) method here.
The basis vectors in (E)ED method have to feature displacement fields that properly
account for in-plane and out-of-plane (stretching effect) coupling. We show in this



8 1 Introduction

work that the (E)ED method (equipped with our proposed basis) does not have the
restriction of ICE for estimating the membrane-dominated DOFs.

1.3 Basis selection for non-intrusive ROM

As discussed before, a challenge of developing an accurate and compact NLROM is
the selection of a reduction basis. It is desired to consider the following properties
while selecting a reduction basis for nonlinear ROMs:

• It must contain all the linear modes of the system in the frequency band of
excitation.

• It must convey all necessary nonlinear properties of the system, including modal
interactions between the modes.

• It should be compact enough to be able to reduce the computational costs after
reduction.

• It should be computationally “cheap” to be obtained.

• It should be possibly obtained in a “load-independent” procedure, such that the
resulting NLROM is valid for a variety of loading conditions.

One class of the reduction bases is the data driven approach. Proper Orthogonal
Decomposition (POD) [22, 72] and Smooth Orthogonal Decomposition (SOD) [21]
are two examples of this approach. Despite a very good accuracy that can be acquired
using these methods, they convey two issues in their computation. The first problem
is that these methods are based on a dynamic simulation of the full-order system,
which is computationally expensive. The second issue is that these methods are
load-dependent, meaning they are valid for one special load case and for different
loading conditions they have to be recomputed. Alternatively, our purpose in this
dissertation is to expand the so-called simulation-free approaches for non-intrusive
ROM, which do not require a dynamic simulation of the full-order system.
The force-based non-intrusive ROM (IC) usually requires a truncated set of low-
frequency linear Vibration Modes (VMs), which are transverse-dominated modes for
shell-like structures, to develop NLROM. Although this basis does not contain mem-
brane VMs, it can accurately develop the NLROM. This is because application of static
forces based on transverse-dominated VMs already induces the nonlinear coupling
between the modes (see [54, 95, 96]).
In some cases, where the system operates under certain load distributions, ICE can be
improved by considering the effect of load distribution on the truncated VMs. In this
work, we compute the (nonlinear) static contribution of the truncated modes due to
an excitation, which is known as Modal Truncation Augmentation (MTA) for linear
structures. The MTA modes are augmented to the linear modes in the reduction basis,
to increase the accuracy of the NLROMs due to an special excitation. The MTA can
in fact be seen as equivalent to dual modes but for ICE.
Furthermore, for the displacement-based methods, the first investigated reduction
basis to reduce the linear matrices as well as identify the NSCs of the NLROM is taking
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the linear Vibration Modes (VM), which is successfully applied to many applications,
see e.g. [103, 119, 121]. However, the main disadvantage of this method is that
keeping only the first few VMs, which are transverse-dominated modes, does not
suffice to build an accurate NLROM. Rather, membrane-dominated modes, which
are typically high-frequency modes, also have to be identified and augmented in the
reduction basis. While manual identification of the important membrane-dominated
VMs is a difficult but feasible work for simple structures, it becomes nearly impossible
for complex structures.
To circumvent the manual selection of membrane modes required for displacement-
based methods, the dual modes were proposed [76] and validated in some appli-
cations [93, 94, 116]. In fact, the concept of dual modes attempts to compute the
coupling effect of the modes in a systematic way, using a set of representative static
loads to obtain them. The dual modes are obtained by applying a set of represen-
tative static forces to the full-order FE model and obtaining the corresponding dis-
placements. These displacements are then orthogonalized to the VMs and a POD
analysis is performed to select the those vectors that have the maximum contribution
in the system’s response. However, by only looking at the POD vectors corresponding
to maximum singular values, one might need a lot of dual modes in the reduction
basis, which lead to relatively large NLROMs. Therefore, Perez et al. [115, 116]
took only those dual modes that have the maximum contribution in a specific load
case. This approach reduces the number of dual modes but the resulting NLROM is
load-dependent.
In this work we propose non-intrusive Modal Derivatives (MDs) as a novel basis for
displacement-based non-intrusive MOR techniques. We discuss that while the com-
putation of MDs is easier than manual selection of membrane modes and dual modes,
they deliver more accurate NLROMs in dynamic simulation of geometric nonlinear
structures under random excitation. We present an approach to compute the MDs
non-intrusively using finite different, which is a relatively cheap process and then
select them in a load-independent manner. The NLROMs obtained with the proposed
basis not only can be used under several loading conditions, but also increase the ac-
curacy of the simulated time and frequency responses. The improvement obtained by
our proposed method does not increase the offline and online computational costs.

1.4 Nonlinear dynamic substructuring

This section is extracted from the author’s publication in [65]. In this article, Karamooz
had the idea of the work and performed the literature review. Karamooz implemented a
considerable part of the work and wrote the manuscript. Xu conducted the primary part
of numerical studies and discussed the work. Bartl, Tiso and Rixen gave very useful in-
puts in the discussions of the work and proof-read the article. Rixen supervised the work.

Large and complex structures usually comprise many components that are designed
by different parties and cannot be reduced or analyzed monolithically. Therefore, the
Component Modes Synthesis (CMS) approach (also known as Dynamic Substructuring
(DS)) has been widely studied in the last decades to improve analysis efficiency and
enable parallel computing. The idea behind the CMS method is that a large struc-
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ture is decomposed into smaller components (or substructures). Each substructure is
reduced or analyzed separately using its component modes, and finally, the reduced
models of all substructures are coupled through their interfaces to build up the ROM
of the assembly.
The component modes (or reduction bases) used in the CMS techniques may be clas-
sified to fixed, free, and hybrid interface mode methods [25]. The first CMS method
was introduced in the 1960s by Hurty [57, 58], which is a fixed-interface mode
method. His method comprises a set of truncated fixed-interface modes in addition
to Rigid Body Modes (RBMs) and Constraint Modes (CMs). This method was later
modified by Craig and Bampton [26] who showed that if the CMs of all interface
DOFs are included in the reduction basis, RBMs can be omitted from the reduction
basis without losing accuracy. In this work, we refer to the method proposed in
[26] as the Hurty/Craig-Bampton (HCB) method, since it is also based on the work
of Hurty. While the classical HCB method has been extensively used and studied
because of its simplicity, two main remarks should be made for this method:

1. To compute or measure the fixed-interface modes, the interface needs to be
constrained, making testing challenging.

2. The set of interface DOFs for the reduced model remains the same as the origi-
nal one.

As an alternative to the fixed-interface CMS method, the free-interface mode method
was proposed by Goldman [45] and Hou [56], which is called the Goldman-Hou
(GH) method here. In this method, a truncated number of free interface modes in ad-
dition to the RBMs are chosen in the reduction basis of each substructure. Therefore,
they do not change the natural BCs of the system (like for computing fixed-interface
modes in HCB method) but fail to approximate statically the modes that are deleted
from the reduction basis. As a first attempt to solve this problem, MacNeal [88] used
the so-called attachment modes to approximate the contribution of the interface loads
on truncated modes. Afterwards, Rubin [135] developed the residual flexibility con-
cept for both mass and stiffness matrices, but he failed to show that his method is
based on the Rayleigh-Ritz method.
Later, Craig and Chang [27, 29, 30] demonstrated that the MacNeal and Rubin meth-
ods are based on the Rayleigh-Ritz approach and also developed a generalized way
to couple the substructures reduced with CMS methods. Martinez et al. [91, 92]
reformulated the method of Rubin and simplified his method by casting it in a re-
duction basis set in the same format as the HCB basis, which is straightforward to
use. The augmented free-interface mode reduction basis based on the work of Mac-
Neal, Rubin, and Martinez et al. will be called the MacNeal/Rubin-Martinez (MRM)
method here.
In contrast to the linear CMS methods that are widely investigated, classified and
compared in literature, few works have investigated dynamic substructuring for non-
linear structures. Wenneker and Tiso [157] recently developed a substructuring
method for geometrically nonlinear structures. They attempted to extend HCB and
MRM reduction bases using the concept of Modal Derivatives explained in [61] for
fixed and free interface modes, respectively. Wu et al. [163–165] also extended this
method for flexible multibody dynamics. However, their method can only reduce a
model in an intrusive manner, requiring specialized nonlinear FE codes to be applied.
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The first nonlinear modal substructuring method based on the non-intrusive ap-
proach was presented by Kuether et al. [84]. They developed the NLROM for
each substructure by taking the HCB reduction basis once, and another time, the
free-interface modes (GH basis) of each substructure to reduce the linear mass and
stiffness matrices. In order to identify the NSCs, they employed the ICE method,
which does not require separate imposition of membrane modes. To generate the
nonlinear static forces required in ICE, they used the columns of HCB and GH trans-
formation matrices. They compared these results and showed that their nonlinear
HCB method performs by far better than the nonlinear GH substructuring method.
However, they did not investigate the effect of the augmented free-interface (MRM)
method in nonlinear substructuring. Therefore, as the next contribution of this dis-
sertation, we have developed a nonlinear substructuring approach based on aug-
mented free-interface method. We compare our method with the previous methods
and show that our method is beneficial compared to the other two methods.
Most of the classical CMS methods developed in the 1960s and 1970s studied the
reduction of internal DOFs, where no connection to the neighboring substructures
exist. However, in case there are numerous DOFs at the interface of the reduced sub-
structures, the final ROM obtained from the classical CMS methods can still be large,
because they keep all the interface DOFs in physical domain. Since the last decades,
several Interface Reduction (IR) methods have been proposed to overcome this prob-
lem. Craig and Chang [31] first introduced three interface reduction techniques
where they reduced the boundary DOFs by applying either a Ritz representation,
Guyan reduction or modal reduction of the interface coordinates. They concluded
that modal reduction is advantageous over the other two methods. Since their meth-
ods reduce the boundary coordinates of the coupled system, it is called System Level
(SL) interface reduction. This method was further investigated by Castanier et al.
[18] where they called the reduced constraint modes the Characteristic Constraint
(CC) modes. Tran [155] developed the SL-IR method on free- and hybrid-interface
mode methods and showed that the attachment modes can be reduced in the same
manner as constraint modes.
The SL-IR method can largely reduce the interface DOFs while maintaining the same
accuracy as the HCB method. However, the challenge is that the interface reduction
can only be done after assembly of substructures, and not at the substructure level.
This is a disadvantage for cases where the reduction of interface DOFs at a local (or
substructure) level is desired. To tackle this issue, Local Level (LL) interface reduc-
tion methods have been proposed. Hong et al. [55] suggested a LL-IR for the HCB
method that is based on the Exact Compatibility (EC) of boundary DOFs of neigh-
boring substructures. In this method, the constraint modes of each substructure are
reduced separately. The reduced constraint modes of the substructures are then cast
into a matrix and orthogonalized with respect to each other. Keuther et al. [82] rec-
ommended a Weak Compatibility (WC) of the boundary coupling while the interface
DOFs are reduced locally. They also developed the SL and LL-WC interface reduction
method for the nonlinear HCB method.
A review of interface reduction techniques on the HCB method is presented by Krat-
tiger et al. [80]. However, to the authors’ knowledge, no study exists in the literature
that shows the performance of different IR methods on the free-interface reduction
approach for nonlinear substructuring. In this work, we further develop the three
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mentioned IR methods for augmented free-interface nonlinear substructuring and
compare these result with their counterpart for nonlinear HCB. We show that our
proposed method performs better than the nonlinear HCB for high level of load lev-
els.
The nonlinear substructuring based on ICE can only accurately predict the response
of the system with the mentioned assumption of quadratic relation between mem-
brane and transverse motion. For instance, ICE may not lead to accurate NLROMs
for a deep-curved structure, as investigated in Chapter 5. We develop a novel sub-
structuring approach, which can be used in a more general case of loading condition
and structures than the ICE-based substructuring method. This method extends ei-
ther ED and EED for substructuring, instead of the work of Kuether et al. [82, 84,
85] that expand ICE. As a reduction basis, we introduce a linear component modes
basis (here HCB), which is augmented by non-intrusive MDs of the selected compo-
nent modes to accurately estimate nonlinear modal interactions. The coupled model
in this way does not have the limitation of ICE anymore to accurately approximate
the membrane motion. The proposed method is also combined with interface reduc-
tion technique and compared to the ICE based substructuring approaches. We show
in this dissertation that our proposed nonlinear substructuring approach is superior
to the previous non-intrusive-based substructuring method, for the examples treated
sofar.

1.5 Scope of the work

The flowchart of the scope of this dissertation is depicted in Fig. 1.6. As it can be
seen from this figure, the first part of this dissertation investigates monolithic MOR
techniques. Chapter 2 studies the governing equations for full-order FE model as
well as the reduced-order one. Furthermore, a few solution techniques that are used
in this work are briefly outlined. Chapter 3 investigates the force-based non-intrusive
ROMs, i.e. IC and ICE, and presents their proposed improvements. Chapter 4 studies
the displacement-based non-intrusive ROMs, i.e. ED and EED, and the new bases are
demonstrated and assessed. As the closure of this part, we apply the investigated
methods of Chapters 3 and 4 to different FE models in Chapter 5. We compare these
methods and draw some concluding remarks for the first part of this work.
The second part of this dissertation examines the nonlinear modal substructuring,
which is necessary to reduce the dimension of multi-component structures. Chap-
ter 6 introduces the most common linear CMS methods as well as interface reduction
techniques that are further used for nonlinear substructuring. Chapter 7 presents
the nonlinear modal substructuring based on ICE method and a discussion of its im-
provement using free-interface mode approach. Moreover, Chapter 8 proposes a new
nonlinear substructuring approach, which is more general than the previous meth-
ods and can be used also for curved structures with and without combined loading
conditions. In the last chapter of part II (Chapter 9), we compare the investigated
methods in Chapters 7 and 8 and discuss the situations where each method can be
used. Finally Chapter 10 presents a summary of the work and discusses the conclud-
ing remarks.
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1.6 Own contributions

In this dissertation, method development in non-intrusive model order reduction
and dynamic substructuring for nonlinear finite element models is aimed. In terms
of non-intrusive ROM the following contribution has been performed

• All of the currently available non-intrusive ROM methods, namely ED, EED, IC
and ICE are implemented in a MATLAB code. These methods are furthermore
applied to several structures and their accuracy, stability and computational
efficiency are assessed statically as well as dynamically.

• The accuracy of ICE is improved by extending the mode acceleration and modal
truncation augmentation methods for nonlinear model reduction. This improve-
ment is achieved by computing the effect of applied loads’ distribution on the
truncated linear VMs of the system and published in [70].

• The accuracy and computational efficiency of the displacement-based ROM
methods are increased by introducing a non-intrusive modal derivative-based
approach to compute NSCs of an NLROM. The results of the developed ap-
proach are compared with the other available methods. This work is submitted
for publication in [66].

In the second part, where nonlinear substructuring based on non-intrusive methods
are investigated, the following contributions are carried out

• Common free- and fixed-interface linear dynamic substructuring methods are
implemented and compared with each other. Three interface reduction meth-
ods, namely, system level, local level with exact compatibility and local level
with weak compatibility, are extended for the free-interface CMS method and
compared to the fixed-interface approach. To the author’s knowledge, the local
level interface reduction methods have been used only for the fixed-interface
methods so far. We show that this extension is more accurate than the fixed-
interface method.

• An augmented free-interface nonlinear substructuring with interface reduction
based on ICE is presented, which can be seen as an alternative of the nonlinear
substructuring approach based on HCB. We furthermore discuss the advantages
and improvements of the proposed method. This work is published in [65].

• A novel non-intrusive based modal substructuring of nonlinear FEs is developed
that is more accurate and generic than the ICE based substructuring meth-
ods. The proposed method contains a set of component modes (e.g., HCB)
augmented by their corresponding non-intrusive (static) MDs as the reduction
basis. To reduce the offline computational costs and avoid the limitation of
the ICE method under combined loading, the displacement methods of ED and
EED are used to identify NSCs of the system. This work is in preparation for
submission in [71].

Finally, all the methods are applied to different numerical examples and their results
are discussed and summarized.
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Nonlinear model order reduction
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Chapter 2

Fundamentals of nonlinear full- and reduced-order
FE models

2.1 Introduction

This chapter reviews the derivation of nonlinear reduced-order models’ governing
equations by starting from a brief explanation of the nonlinear FE method in struc-
tural dynamics. Here the pure displacement-based governing equations are sought,
which are usually more convenient in structural dynamics problems. The first step
in obtaining the FE formulations is an explanation of the Strong and Weak forms for
writing the balance equations and then discretisation of the continues balance equa-
tions using the FE method. This leads to a set of Ordinary Differential Equations
(ODEs), which can not usually be solved analytically. Therefore, in the last part of
this chapter numerical static and dynamic solution methods are outlined.

2.2 Strong and weak forms for for structural dynamic problems

One way to derive the elastodynamic equilibrium Equations (Eqs) of a body V with
surface boundary S is to express the balance of body momentum in its current (de-
formed) configuration, which gives (see [13] for more details)

∫

S

t dS +

∫

V

ρg dV =

∫

V

ρädV , (2.1)

where t and g are the surface traction and the overall body force (e.g. gravity
acceleration), respectively, subjected to the elastic body. The body mass density and
acceleration are denoted by ρ and ä, correspondingly. In the next step, the surface
traction can be written in terms of the Cauchy stress tensor σ and the normal vector
to the body surface, n. Afterwards, the Gauss’ divergence theorem is used to give

∫

S

t dS =

∫

S

n ·σdS =

∫

V

∇ ·σdV . (2.2)

By introducing Eq. (2.2) into (2.1) the balance equation reads
∫

V

(∇ ·σ +ρg −ρä)dV = 0. (2.3)
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Since Eq. (2.3) must apply for any volume of the body, it results

∇ ·σ +ρg −ρä = 0 for a ∈ V. (2.4)

Furthermore, the displacement and force boundary conditions on the surface are
defined as

n ·σ = tb for a ∈ Sσ (2.5)

a = ab for a ∈ Sa (2.6)

where a is the displacement field of the body, and tb and ab are the applied traction
and displacements on the surface of the body. The part of the body surface under
displacement or Dirichlet boundary condition is denoted by Sa and the part under
force or Neumann boundary is denoted by Sσ. The set of Eqs. (2.4 - 2.6) is known
as strong form of the Boundary Value Problem (BVP). To apply the FE method, the
balance equations together with the Neumann boundary (Eq. (2.6)) must be fulfilled
in a weak form. To do so, the principle of virtual work is usually used in the context
of structural dynamics with the divergence theorem to write the total virtual work of
the body as (for more details see [12, 13])

δW =

∫

V

ρδaT ä dV +

∫

V

(Dδa)Tσ dV −
∫

V

ρδaT g dV −
∫

S

δaT t dS = 0 (2.7)

where

DT =





d
d x 0 0 d

d y 0 d
dz

0 d
d y 0 d

d x
d
dz 0

0 0 d
dz 0 d

d y
d

d x



 , (2.8)

and δW is the virtual work due to a prescribed virtual displacement δa. It should
be noted that the Eq. (2.8) is obtained without any assumption about the amount of
the deformation, nor for the material behavior of the body. Therefore, it is valid for
linear and nonlinear solid mechanics with an arbitrary material constitutive law.

2.3 Discretization using finite element formulation

Solving the Eq. (2.7) for a continuous body is only possible for a few simple prob-
lems. To solve the balance equations for complex structures, the continuous space of
the structure’s body is discretized to smaller elements, which have a limited number
of nodes (DOFs) and the only fundamental unknowns of the elements are the dis-
placements of the nodes. The displacement field of each element with p nodes can
then be approximated as

ae(X , t)≈
p
∑

k=1

hk(X) dk(t), (2.9)
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where hk(X ) is the kth shape function of an element that satisfies the compatibility
boundary conditions. The shape functions are usually a polynomial function of the
isoparametric local coordinates X = [ξ,η,ζ]. The displacement vector of the kth node
is denoted by dk =

�

dx , dy , dz

�T
. Furthermore, the continuous displacement field of

the element with the interpolation of the node displacements (Eq. (2.9)) can be
written in a compact form as

ae = Hde, (2.10)

where

de = [d1,d2, . . . ,dn]
T , (2.11)

is the vector containing the displacement of all nodes of the element concatenated in
a column and

H =





h1 0 0 h2 0 0 · · · hk 0 0 · · · hn 0 0
0 h1 0 0 h2 0 · · · 0 hk 0 · · · 0 hn 0
0 0 h1 0 0 h2 · · · 0 0 hk · · · 0 0 hn



 ∈ R(3×3n),

(2.12)

is the concatenated form of the shape functions. The displacement field of each
element can be transformed to a global displacement vector using

de = Leu (2.13)

where Le is the localization matrix that expresses the global position of each matrix.
In case the global and local coordinates have parallel axes, the localization matrix
contains only zeros and ones in its components. Otherwise, it comprises sines and
cosines to transform the global axes to the local one. Introducing the Eqs. (2.10) and
(2.13) into (2.7) reads

ne
∑

e=1

∫

Ve

ρ(HLeδu)T HLeü dV +
ne
∑

e=1

∫

Ve

(DHLe δu)Tσ dV =

ne
∑

e=1

∫

Ve

ρ(HLeδu)T g dV +
ne
∑

e=1

∫

Se

(HLeδu)T t dS
(2.14)

This equation can be expressed in the form

Mü + fint = f (2.15)

where

M =
ne
∑

e=1

LT
e

∫

Ve

ρH T H dV Le (2.16)

is called the global mass matrix,

fint=

ne
∑

e=1

LT
e

∫

Ve

(DH)Tσ dV (2.17)
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is known as internal (or restoring) force vector, and

f =
ne
∑

e=1

LT
e

∫

Ve

ρH T g dV +
ne
∑

e=1

LT
e

∫

Se

H T t dS (2.18)

is the vector of applied external loads. It is common in the context of model-order re-
duction for structural dynamics that the internal force vector is split into a linearized
part K (1) (known as linear stiffness) and a nonlinear part fnl as

fint = K (1)u + fnl(u). (2.19)

Furthermore, a viscous damping term in the form Du̇ is added to the governing EOM
to take the dissipation into account. Finally, the EOM for the discretized FE model is
given by

Mü + Du̇ + K (1)u + fnl(u) = f (2.20)

The discretized EOM (2.20) for large nonlinear problems comprises numerous Degrees-
Of-Freedom (DOFs), which is very expensive to be solved. Therefore, Model Order
Reduction (MOR) methods are applied to this equation.

2.4 Nonlinear model order reduction

The first aim of MOR techniques is to find a reduction basis V ∈ R(n×m), which trans-
forms the displacement DOFs of the full-order FE model, u ∈ R(n×1), to a reduced set
of generalized DOFs, q ∈ R(m×1) as

u(t)≈ V q(t), (2.21)

such that m << n and simultaneously the reduced model can accurately represent
the full-order FE model. Substitution of Eq. (2.21) into (2.20) results in an error
induced because of the approximation of (2.21) :

MVq̈ + DVq̇ + K (1)Vq + fnl(Vq) = f + r (2.22)

where r is the residual error due to projection approximation. In order to nullify
this error, the EOM must be projected to a space, which is orthogonal to it. This
orthogonalization process, known as the Galerkin approach, can be performed using
the same basis as the reduction basis or a different one. In this work, the EOM
is projected by the same basis as the reduction basis to remove the residual error,
because it becomes equivalent to the principle of virtual work [44]. This is

V T MV q̈+ V T DVq̇ + V T K (1)Vq + V T fnl(Vq) = V T f , (2.23)

This equation can be written in the compact form as

M̂q̈ + D̂q̇ + K̂ (1)q + f̂nl(q) = f̂ (2.24)
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where

M̂ = V T MV
K̂ (1) = V T KV
D̂ = V T DV
f̂nl(q) = V T fnl(Vq)
f̂ = V T f

(2.25)

While the dimension of the linear terms in Eq. (2.25) is significantly reduced, the
computational costs to compute the reduced nonlinear restoring force is high, be-
cause to compute it in each time step, the full-order nonlinear restoring force has to
be computed in each solution step and then projected to the reduced space, as shown
in Fig 1.4. The second problem of computing the Eq. (2.25) is that in case the FE
model of the structure is developed in a commercial software, the nonlinear internal
force vector is not released by the FE code to directly project it to the reduced space.
In order to address the mentioned problems of projection-based nonlinear ROM, we
have studied the non-intrusive MOR methods in the entire dissertation. In the non-
intrusive techniques, the reduced internal force vector is approximated as a Taylor
series expansion up to cubic terms of generalized coordinates as 1

f̂int(q) = K̂ (1)q + (K̂ (2) · q) · q +
�

(K̂ (3) · q) · q
�

· q (2.26)

In the next step, the unknown coefficients corresponding to quadratic and cubic
terms are identified based on static inputs, which are given to the commercial soft-
ware and the resulting outputs from it. By introducing Eq. (2.26) to (2.24), the i th

EOM for the NLROM reads

M̂i jq̈ j + D̂i jq̇ j + K̂ (1)i j q j + K̂ (2)i jl q jql + K̂ (3)i jl pq jqlqp = f̂i (2.27)

The unknown quadratic and cubic coefficients, K̂i jl and K̂i jl p, are called the Nonlinear
Stiffness Coefficients (NSCs). The NSCs can be obtained either by direct differentia-
tion of the nonlinear internal force vector (in case the closed form EOM is available,
requiring specialized codes) or estimated using non-intrusive methodologies, which
is the main focus of this work. The two available non-intrusive MOR approaches in
structural dynamics are discussed and developed in Chapters 3 and 4.

2.5 Solution techniques

Depending on the type of the application, engineers require to solve the governing
nonlinear FE equation either statically or dynamically. The main aim of this disser-
tation is dynamic solution of such equations, however, since the static solution is
usually much faster than the dynamic one and can give a rapid insight into the cor-
rectness of the dynamic solution, it is briefly explained as a useful tool here. Next,
the common static and dynamic approaches will be outlined.

1For the case of geometric nonlinear von-Karman shell and beam as well as geometric nonlinear
solid elements, this expression is exact. Otherwise, it is an approximation of the nonlinear restoring
force.
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2.5.1 Static analysis

It is sometimes sufficient to solve the EOM (2.20) statically. Therefore this equation
reduces to

K (1)q + fnl(q)
︸ ︷︷ ︸

fint

= f (2.28)

One method to solve this equation is the Newton-Raphson method, which is ex-
plained next.

Newton-Raphson Method

The Newton-Raphson method is an iterative approach, which looks for a solution
by linearizing the equation around an equilibrium point. To solve a nonlinear static
problem under a certain load case, it is divided into incrementing series of load cases
as [12, 102]

fl =
l
∑

r=1

∆ fr . (2.29)

Then a solution is sought for each load increment based on the previous step starting
with an initial value q0. The residual vector r (q) to be minimized in each step can
be written as

r (q) = fint(q)− f = 0. (2.30)

Now, consider for the step n + 1, a displacement vector qn+1 is desired, which can
fulfill the Eq. (2.30) under the load case fn+1:

r (qn+1) = fint(qn+1)− fn+1 = 0 (2.31)

This displacement vector is then defined as

qn+1 = qn +∆qn. (2.32)

The unknown in this Eq. is the increment displacement vector, ∆qn, assuming that
the displacement vector for the previous step is already obtained. To obtain this
unknown vector, Eq. (2.32) is introduced into (2.31) and (2.31) is then linearized
around the previous step displacement vector, giving

r (qn+1) = r (qn +∆qn) = r (qn) + Jr(q)
�

�

�

q=qn
∆qn = 0, (2.33)

where

Jr(q)
�

�

�

q=qn
=







∂ fint1
∂ q1

· · ·
∂ fint1
∂ qm

... . . . ...
∂ fintm
∂ q1

· · · ∂ fintm
∂ qm






= K t(qn), (2.34)
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is the Jacobian of the residual expression and it can be shown that it is equal to the
Tangent Stiffness (TS) matrix, K t(qn), of the system. By computing the TS matrix,
the required displacement increment is obtained from Eq. (2.33) as

∆q k
n = −K t(q k

n)
(−1)

r (q k
n). (2.35)

Therefore, qn+1 can be obtained from Eq. (2.32) and substituted into Eq. (2.31) to
check the convergence of this Eq. In case this displacement does not fulfill the Eq.
(2.31), a new q k+1

n+1 is computed in an iteration process as

q k+1
n+1 = q k

n+1 +∆q k
n+1 (2.36)

where k is the iteration counter. Once the residual becomes smaller than a certain
tolerance, the load is incremented to the next step and the same procedure is per-
formed to obtain the desired displacement under the final load case. A flowchart of
the Newton-Raphson process to obtain the final displacement solution is shown in
Fig. 2.1. While the Newton-Raphson can be applied to a variety of static problems,
it can sometimes converge to wrong solution for unstable problems for instance like
the thermal buckling. In these cases, the Arc-length method can be employed [129].

2.5.2 Dynamic analysis

To solve dynamic problems, time integration schemes are employed. The Newmark
method [107] is a very popular time integration scheme in the field of structural dy-
namics, because it provides a direct formula for the time integration of second-order
differential equations. The time integration scheme can be obtained either in explicit
or implicit forms. In case the displacement vector of the time integration in each
time step depends only on the parameters of the previous step, it is called explicit.
On the other hand, if the displacement vector and its time-derivatives depend also
on the parameters of the current step, it is called implicit. While the explicit time
integration method is faster than the implicit one, it is only conditionally stable. In
contrast, the parameters of the implicit one can be adjusted such that the integration
becomes unconditionally stable.
Since the implicit case has been widely used throughout this dissertation, it is ex-
plained here without the derivation (a detailed discussion is in [44]). Consider the
EOM of a nonlinear dynamic problem as







Mq̈(t) + f (q , q̇) = p(q , t)
q(t = 0) = q0

q̇(t = 0) = q̇0

(2.37)

where f is a general nonlinear force vector (also contains damping) and p denotes
the external applied loads vector. The initial displacement and velocity vectors are
denoted by q0 and q̇0. Let us then define the residual vector r by rewriting the EOM
as

r (q , q̇ , q̈) = Mq̈(t) + f (q , q̇)− p(q , t) = 0. (2.38)
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Initialization:

fint(q), f =
l
∑

r=1
∆ fr

Tol, q0, f0 = 0, n= 0

Load increment:
fn+1 = fn +∆ fn

qn+1 = qn − K t(qn)
(−1) r (qn)

Compute the error:
r (qn+1) = fint(qn+1)− fn+1

‖r‖/‖ f ‖< Tol

Compute the correction:
∆qn+1 = −K t(qn+1)

(−1) r (qn+1)

Update the value:
qn+1 = qn+1 +∆qk+1

Compute fint(qn+1)

no

yes

Figure 2.1: Flowchart of the nonlinear static solution using Newton-Raphson [33].
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The aim is then to obtain the displacement, velocity and acceleration vectors such
that the residual is smaller than a given tolerance. The Newmark time integration
expressions for the (n+ 1)th time step can be derived as

q̈n+1 =
1
βh2 (qn+1 − q∗n+1),

q̇n+1 = q̇∗n+1 +
γ

βh(qn+1 − q∗n+1),
(2.39)

where

q∗n+1 = qn + hq̇n + (
1
2 − β)h

2q̈n,
q̇∗n+1 = q̇n + (1− γ)hq̈n

(2.40)

are the displacement and velocity predictors, respectively. The scalars γ and β are
the integration parameters, which can be adjusted before starting the integration.
The time increment is denoted by h. By introducing (2.39) and (2.40) into (2.38),
the residual expression can be obtained only in terms of one unknown qn+1 as

r (qn+1) = 0 (2.41)

The unknown displacement vector can then be obtained in an iterative process by
linearizing the residual vector. Let us consider the kth iteration of the displacement
vector qn+1 and denote its estimation by q k

n+1. Using the linearization approximation,
the estimation for the next iteration can be then written as

r (q k+1
n+1) = r (q k

n+1) + Jr(q)

�

�

�

�

q=qk
n+1

∆q k
n+1 = 0 (2.42)

where

Jr(q) =
∂ f
∂ q
+
∂ f
∂ q̇
∂ q̇
∂ q
+M

∂ q̈
∂ q
−
∂ p
∂ q

(2.43)

is the Jacobian matrix of the residual expression. The term ∂ f
∂ q is the Jacobian that

represents the tangent stiffness matrix of the system K t; ∂ f
∂ q̇ is the tangent damping

denoted by D t; ∂ p
∂ q is the variation of the external applied forces with respect to

the displacement vector. Furthermore, the variation of the velocity and acceleration
vectors with respect to the displacement can be obtained as

∂ q̈
∂ q =

1
βh2 I

∂ q̇
∂ q =

γ

βh

(2.44)

Therefore, the Jacobian matrix can be written in the following form:

Jr(q) = K t +
γ

βh
D t +

1
βh2

M . (2.45)

The nonlinear Eq. (2.41) is solved for each step in an iterative process to obtain the
displacement increment ∆q k. Then, their corresponding velocity and acceleration
increment vectors are obtained by

∆q̇ k = γ

βh∆q k,
∆q̈ k = 1

βh2∆q k.
(2.46)
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This iteration continues for each step until the norm of residual vector converges to
a defined criterion (tolerance) and then the next time step is iterated. A flowchart of
the nonlinear Newmark scheme is depicted in Fig. 2.2. Furthermore, in case of high-
frequency artificial eigenvalues, HHT [51] and Generalized-α [23] methods have
been proposed. These methods introduce a numerical damping for high frequencies
while keeping an accurate response for low frequency band of interest.

2.6 Validation of nonlinear ROMs

To make sure that the developed NLROMs are accurate enough, they usually have
to be validated dynamically, depending on the underlying application. One way to
dynamically validate the NLROMs in industries, is to compare the NLROM’s nonlinear
response with experimental measurements, under the same loading conditions, see
e.g. [113, 148, 149]. However, in academia it is usual to validate the dynamic
response of an NLROM with its full-order model.
To dynamically validate an NLROM, one can compute the time response of the NL-
ROM under a certain load case and compare its full-model counterpart as done e.g.
in [62, 136, 137]. However, validating the NLROM under this condition does not
assure an engineer if it also operates accurately under different levels of excitation
within a desired frequency band.
Alternatively, Kuether et al. [83] used Nonlinear Normal Modes (NNMs) to validate
an NLROM. NNMs provide an insight into how the system responds to different load
scenarios and can capture a wide range of response amplitudes experienced by the
structure. NNMs were first defined by Rosenberg in [134] as a periodic motion of
the system, in which all DOFs reach the equilibrium position at the same time (syn-
chronous motion). The definition was further extended by Kerschen et al. in [73]
as not necessarily synchronous periodic responses. Although orthogonality and modal
superposition are no longer applicable for NNMs, they show other unique properties
compared to the linear normal modes, such as modal interactions, bifurcation, and
frequency-energy dependency.
Peeters et al. proposed to compute NNMs with numerical continuation methods in
[112]. In order to find the periodic motion of the system, a shooting function is
defined to indicate the difference between the system’s motion at t = 0 and t = T .
The free response of the nonlinear system to a prescribed initial condition is only
then periodic, when the shooting function is smaller than a given tolerance. In this
way, the boundary value problem is transferred into initial value problem that can be
solved with a shooting method. The branch of an NNM is followed with the pseudo-
arclength algorithm presented in [112]. Prediction and correction steps are used to
find the periodic solution, where Jacobian matrices are employed in prediction and
correction steps and play a huge roll in computational efficiency.
The further development of this method by Kuether et al. in [83] made it feasible to
compute the NNMs of models built in a commercial FE package. The Applied Modal
Force (AMF) method defines the initial displacement as the nonlinear static response
of the system to a prescribed external force, which is a weighted truncated subset
of linear mode shapes. The weighting factors, termed as modal force amplitude, are
to be determined with pseudo-arclength continuation. The individual variables are
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Initialize:
M , f , P
q , q̇ , Tol

Initial acceleration:
q̈0 = M (−1)(p0 − f (q0, q̇0))

Time increment:
tn+1 = tn + h

Initial prediction:
q̈n+1 = 0

q̇n+1 = q̇n + (1− γ)hq̈n

qn+1 = qn + hq̇n + (
1
2 − β)h

2q̈n

Compute the error:
rn+1 = Mq̈n+1 + fn+1 − pn+1

Convergence
check:

‖r‖/‖ f ‖< Tol

Compute the correction:
∆q = −J (−1)

r rn+1

Correction:
qn+1 = qn+1 +∆q

q̇n+1 = q̇n+1 +
γ

βh∆q k

q̈n+1 = q̈n+1 +
1
βh2∆q

no

yes

Figure 2.2: Flowchart of the implicit Newmark method [44].
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thus reduced from n to the number of truncated weighting factors m. In this way,
the computational burden caused by Jacobian matrices, is reduced. Only one mode
is used to define the initial displacement at first. The contribution of the remaining
modes is monitored. While the energy in the system rises, corresponding modes will
be activated if necessary.
The most important disadvantage of using NNMs as validation metric is that they
are much more expensive than time integration to be obtained. Therefore, they are
avoided in this work. The main goal of this dissertation is dynamic validation of the
NLROMs under random excitation (which are mostly sound pressures) with a desired
frequency band and different excitation levels. This can guarantee the performance
of the developed NLROMs with less cost than the NNMs. To check the convergence
of developed NLROMs in the desired frequency band, power spectral densities of the
full and reduced models are compared, which will be explained later in this chapter.

2.6.1 Random response prediction

Since many large structures such as air vehicles or wind turbines are operating under
random pressures, this work attempts to validate NLROMs under different random
sound pressure levels, which are generated using a white noise in time and uniformly
distributed in space. The reason to choose this kind of excitation is to check the
convergence of the developed NLROMs in a broad band excitation frequencies with
different intensity levels.
A white noise signal is an uncorrelated random signal, which has the same strength
(or power) at each frequency [17]. A discrete white noise time signal is a series of
uncorrelated variables, which have a zero mean value and a finite variance. In case
a white noise time signal follows a multivariate normal distribution, it is called a
Gaussian white noise [151].
Furthermore, the Sound Pressure Level (SPL) is given in decibel (dB) and is defined
as [128]

SP L = 20 log10

�

Prms

Pre f

�

(2.47)

where Prms is the root-mean-square of the sound pressure signal and Pre f = 2× 10−5

Pa is the reference pressure in the air. To evaluate the nonlinear responses under
different SPLs, power spectral density is used, which is explained next.

2.6.2 Power spectral density

The Power Spectral Density (PSD) expresses the intensity of a signal in a frequency
spectrum. It is mathematically defined as the Fourier Transform (FT) of the auto-
correlation of a variable function X :

SX (ω) = F T [RX (τ)] =

∞
∫

−∞

RX (τ) e
− jωτdτ (2.48)
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where

RX (τ) =

∞
∫

−∞

∞
∫

−∞

x1 x2 f (x1, x2;τ) d x1d x2 (2.49)

is the autocorrelation function of X , x1 = X (t), x2 = X (t + τ) and f (x1, x2;τ) is the
second-order density function [81]. It can be shown that for a zero-mean random
signal, which is measured in the time interval [0, T], the autocorrelation can be esti-
mated as

R̄X (τ) =
1

T − |τ|

T−|τ|
∫

0

X (t)X (t +τ) d t, 0≤ τ≤ T (2.50)

and its corresponding PSD may be written as

S̄X (τ) =

T
∫

−T

R̄X (τ)e
− jωτdτ (2.51)

In case of a discrete time signal, the Eq. (2.50) can be discretized as

R̄X (h) =
1
N

N−h−1
∑

i=1

X iX i+h (2.52)

where h is a time increment. The estimated PSD (also known as periodogram) can
finally be given by

S̄N (ω) =
1
N

�

�

�

�

�

N−1
∑

k=0

Xke− jωk

�

�

�

�

�

2

=
|XN (ω)|

2

N
(2.53)

It can be shown that as the number of samples increases, the periodogram converges
to the true PSD, namely,

SX (w) = lim
N→∞

E
�

S̄N (ω)
�

(2.54)

where operator E [.] is the mean or expected value of a variable. Furthermore, to
filter the noise in a signal and obtain a consistent PSD, the time-windowing approach
has to be applied to the time signal (see [111, 152] for more detail)





Chapter 3

Force-based non-intrusive MOR

This chapter is mainly extracted from the author’s work in [70]. In this paper, Karamooz
had the idea of the work, derived the numerical results and wrote the manuscript. Rixen
gave useful inputs in the discussions of the work and proof-read the paper. Rixen super-
vised the work.

3.1 Introduction

This chapter investigates the Implicit Condensation and Expansion method, which is
a force-based non-intrusive ROM approach. As mentioned before, to identify NSCs
of an NLROM, appropriate inputs have to be assigned to the FE package, which also
capture nonlinear interactions between the modes. E.g., for shell-like structures (i.e.
beams, shells and plates) the input has to trigger the coupling between bending and
membrane (in-plane) displacement (also called stretching effects). Two approaches
have been considered in the literature to determine the unknown parameters. In the
first approach, which is introduced in [95], the procedure of fitting the NLROM to
the full-order FE model is conducted by prescribing series of selected static loads to
the FE package to be solved for the corresponding displacements. This method is
referred to as Applied Force (AF) or Implicit Condensation (IC). In the second class of
approaches, which are discussed in Chapter 4, a set of pre-processed displacements
are statically prescribed to the FE package to obtain the corresponding reaction forces
and identify the NSCs (referred to as the Enforced Displacement (ED) Method).
The main advantage of the IC method over displacement-based methods is that it is
usually sufficient to use a truncated number of linear Vibration Modes (VMs) (which
are transverse-dominated for shell-like structures) to accurately predict the response
of transverse-dominated displacements of the system. In other words, the membrane-
stretching effect is implicitly taken into account when imposing static forces on the
model. However, to be able to accurately predict membrane-dominated vibrations,
the expansion procedure introduced by Hollkamp and Gordon [54] must be per-
formed, which is called Implicit Condensation and Expansion (ICE).
For identification of the NSCs with ICE, linear VMs are often used to generate the
inputs for prescription to the FE package. However, we know from linear structural
dynamics that taking a few modes in the modal response of a linear system for linear
model reduction without considering the static deflection of the truncated modes due
to spatial distribution of external loads will cause inaccuracies in the system. The
Mode Acceleration (MA) [1, 34, 130] and Modal Truncation Augmentation (MTA)

31
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[34, 35, 130] methods have been widely studied to best approximate the effect of
modal truncation on the spatial distribution of applied loads in the linear systems.
In this chapter, we propose extending the MA and MTA methods for nonlinear re-
sponse prediction. In the first approach, the contribution of the truncated modes are
assumed linear and quasi-statically affect the response of the system. Consequently,
these quasi-static deflections due to applied loads are computed from the linear flex-
ibility matrix of the FE model and added to the dynamic response of the NLROM,
which is developed from the ICE method. In the second approach, Modal Truncation
(MT) vectors are first computed from the residual spatial distribution of the applied
loads. Afterwards, these vectors are appended to the reduced mode basis and the
stiffness coefficient identification of ICE is performed with the new reduction basis.

3.1.1 Implicit Condensation

Let us recall from Chapter 2 that the EOM for a geometric nonlinear structure is
written as

M̂q̈ + D̂q̇ + K̂ (1)q + f̂nl(q) = f̂ , (3.1)

where the i th component of the nonlinear restoring force is given by

f̂nli = K̂ (2)i jl q jql + K̂ (3)i jl pq jqlqp, (3.2)

and K̂ (2)i jl and K̂ (3)i jl p are the components of the third-and-fourth-order stiffness tensors
or NSCs, to be identified by ICE.
The IC method was first developed by McEwan et al. [95] and later extended by
Hollcamp and Gordon [54] to improve the approximation of in-plane motions. This
method attempts to identify the unknown NSCs based on prescription of selected
static forces to the nonlinear FE-EOM to solve for the corresponding displacements.
The procedure can be employed in any FE package, which is capable of performing
nonlinear static FE analysis. Since the loads in IC are enforced statically, the velocity
and acceleration in Eq. (3.1) are equal to zero, giving

K̂q + f̂nl(q) = f̂ , (3.3)

or

K̂i jq j + K̂ (2)i jl q jql + K̂ (3)i jl pq jqlqp = f̂i, (3.4)

for the i th component of Eq. (3.3). By applying a set of static loads to solve Eq. (3.3)
for their corresponding displacements, the NSCs can be obtained using any regression
analysis method. Let us assume that the static loads are formed from a combination
of weighted basis vectors, Vi, which activate all the nonlinear coupling between the
modes, namely

f = s1V1 + s2V2 + ...+ smVm =
m
∑

i=1

siVi, (3.5)
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where si is the scalar weighting factor corresponding to its vector, Vi. The most
common choice for the basis vectors Vi, is a truncated number of eigenmodes of the
linearized EOM, as used by McEwan et al. [95] in the original IC method. This
choice is based on the idea of the Mode Displacement method (see section (3.2.1)).
Additionally, for the case that the basis vectors are the truncated linear (transverse)
eigenmodes, Gordon and Hollcamp [46] proposed a physically meaningful value for
the scaling factor. In other words, they defined a scaling factor for each mode as the
force, which is required to linearly obtain the maximum desired displacement as

si =
Wimax

Vimax

ω2
i , (3.6)

where, Wimax
, Vimax

, and ωi denote the maximum desired displacement for the lin-
earized EOM, the maximum (translational) eigenmode component and the eigenfre-
quency, respectively, all for the i th mode. The eigenmodes, Vimax

, are usually normal-
ized with respect to the mass matrix. The maximum desired displacement, Wimax

, is
usually chosen in the order of the thickness of the structure. The computed scaling
factors from Eq. (3.6) are used in both positive and negative signs to generate the
prescribing forces.
A certain number of such static loads are generated and assigned to the FE code to
obtain the corresponding displacements. These forces are afterwards projected onto
the modal domain to be substituted in Eq. (3.4).

f̂ = V T f . (3.7)

Likewise, the displacement is projected onto the reduced set of generalized coordi-
nates by solving

u = Vq (3.8)

for q . The linear stiffness of the FE model is usually available from the FE pack-
age. Therefore, the reduced linear stiffness matrix in (3.4) can be calculated directly
from Eq. (2.25) before performing IC. All the p load cases and their corresponding
displacements are then transformed to modal domain and put in a matrix form as

KnlGnl = Fnl , (3.9)

where Knl is the matrix containing unknown NSCs and Gnl and Fnl are the matrices of
known parameters. We explain more in Appendix A the ingredients of these matrices.
The number of NSCs, which dominantly contribute in the nonlinear behavior of a
structure can be drastically reduced depending on the type of the FE model (e.g.
flat or curves), nonlinearity, loading condition, etc. For instance, if a structure is
symmetric with respect to transverse modes, initially flat and geometric nonlinear,
one can neglect all quadratic terms as well as those cubic terms which contain the
multiplication of more than two generalized coordinates, as shown by McEwan et al.
[96]. In other words, the NSCs consisting of more than three unequal indices are
zero:

K̂ (3)i jl p = 0 f or i 6= j 6= l 6= p. (3.10)
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Consequently, in this case, the nonlinear restoring force in Eq. (3.2) for the r th EOM
is reduced to

fri
= K̂ (3)i j jpq j

2qp + K̂ (3)i j j jq j
3. (3.11)

However, it has been shown in the literature (e.g. see [46, 75]) that for many struc-
tures such as cantilevered or curved FE models, the truncated form of the nonlinear
restoring force (Eq. (3.11)) no longer applies. In this work, the full form of the
quadratic and cubic terms with the presence of all NSCs is investigated, for the sake
of generality.
For the case of a geometrical nonlinear FE problem, it is sufficient to generate the
required loads for IC using permutations of one, two and three basis vectors. One
usual possibility to choose the basis vectors for the static loads is to set them equal to
the columns of the reduction basis matrix V, multiplied with the stiffness matrix as

f = K(Visi + V js j + Vksk) i, j, k = 0, 1,2, ..., m, (3.12)

In this case, the scaling factor to obtain the required force for the linear maximum
desired displacement defined by [46] is

si =
Wimax

Vimax

, (3.13)

Finally, recalling that each scaling factor is used with both signs, the total number of
required prescribing forces [46] is given by

2m+ 4mC2 + 8mC2, (3.14)

where

mCr =
m!

(m− r)! r!
. (3.15)

Once all the prescribed loads and their corresponding displacements are calculated
from the nonlinear static analysis, the NCSs are computed from a regression analysis
procedure, e.g. as explained in [95].

3.1.2 Expansion of the membrane DOFs

This section is extracted from the author’s publication in [65]. In this article, Karamooz
had the idea of the work and performed the literature review. Karamooz implemented a
considerable part of the work and wrote the manuscript. Xu conducted the primary part
of numerical studies and discussed the work. Bartl, Tiso and Rixen gave very useful in-
puts in the discussions of the work and proof-read the article. Rixen supervised the work.

The IC method can only accurately estimate the motion of those DOFs that are
spanned by the reduction basis in Eq. (3.8). The reduction basis usually includes
the first few modes of the system, which are generally transverse-dominated modes
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in shell-like structures. This means that the IC method cannot precisely approximate
the membrane-dominated motions of the system, which are generally high-frequency
modes. This issue becomes more important for analyses, such as stress/strain com-
putation of geometrically nonlinear problems, where the membrane effect plays a
non-negligible role. To solve this problem, Hollkamp and Gordon [54] proposed an
expansion method for the approximation of membrane displacements from the non-
linear static analysis of transverse-dominated modes, without increasing the number
of load cases to be prescribed to the FE package. In other words, their method per-
forms as a post processing procedure. They called this method Implicit Condensation
and Expansion (ICE). Next, this method is briefly explained.
To start with the ICE method, an improved displacement vector, utotal , is defined that
comprises the transverse-dominated displacement of Eq. (3.8) supplemented by a
new vector, um, representing the membrane-dominated motion:

utotal = u + um. (3.16)

The membrane motion vector is then decomposed in a transformation matrix and the
membrane generalized coordinates:

um = Vmθ (3.17)

where Vm denotes the membrane transformation matrix and θ is the vector of gen-
eralized coordinates representing the in-plane motion. Accordingly, substituting Eq.
(3.17) into (3.16) gives

utotal = Vq + Vmθ . (3.18)

Consider now that the displacement solutions to all the p static load cases in the IC
method and their corresponding generalized membrane and transverse coordinates
are embedded in the columns of matrices. This reads

Utotal = VQ+ VmΘ, (3.19)

with Utotal , Q and Θ denoting the matrices of full-static solutions, generalized trans-
verse and generalized membrane coordinates, respectively, and each of their columns
serve as the values for individual static load cases. Since the transformation basis, V
is transverse-dominated, and Vm is the membrane-dominated one, it is assumed that
these two matrices are orthogonal to each other. Therefore, the transverse modal
coordinates can be obtained as

Q = V+Utotal . (3.20)

Now, the vector of membrane coordinates is defined to have a quadratic relationship
with the ones of transverse coordinates, as introduced by Nash [104]:

θ =
�

q2
1 q1q2 q1q3 . . . q1qm q2

2 q2q3 . . . q2
m−1 qm−1qn q2

m

�T
(3.21)

Finally, the only unknown in Eq. (3.19) becomes the basis set for the membrane
motion. Solving Eq. (3.19) for the membrane basis matrix gives

Vm ≈ (Utotal − VQ)Θ+. (3.22)
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To compute the time histories for the membrane DOFs, first the basis set for the
membrane motion is computed from Eq. (3.22) using the static displacement so-
lution and the corresponding generalized transverse coordinates. Afterwards, the
NLROM for the generalized transverse DOFs are integrated as for the IC method to
obtain q1, q2, . . . , qm. Finally, the improved displacement time histories that also con-
tain the membrane motion are obtained using Eq. (3.18) (with θ computed as in
(3.21)) for the whole time steps.

3.2 Basis Selection Methods

The accuracy of the developed NLROM by ICE method, strongly depends on the
“correct” selection of the basis vectors in Eq. (3.12).
The original IC method selects the load bases using the idea of Mode Displacement
(MD) method for linear FE models. The projection in MD method contains a trun-
cated number of linear modes based on mode superposition [1, 25, 159]. When using
the MD method, the applied loads on the system will also be projected by the reduc-
tion basis, which can then change the spatial shape of these loads. This is because it
is usual to choose the truncated modes that only contain the excitation frequencies
of the applied loads. However, these modes do not necessarily represent the spatial
shape of the applied loads accurately. To solve this problem for the linear elastic FE
model, Mode Acceleration (MA) [1, 34, 130] and Modal Truncation Augmentation
(MTA) methods [34, 35, 130] have been developed in the literature.
In this work, we aim to extend these methods to the nonlinear FE structures. First,
we give an overview of the classical MD method, in order to further explain why this
method can cause inaccuracies in the dynamic response of systems.

3.2.1 Mode Displacement

Let us define the governing EOM for the linearized Eq. (2.20) as

Mü(t) +Cu̇(t) + Ku(t) = f (t) = F0 g (t), (3.23)

where, the applied load vector, f (t) is decomposed into a constant matrix, F0 (n× k,
where k is the number of spatial distribution vectors), which represents its spatial
distribution, and a time varying vector, g (t) (k× 1).
According to the MD method, to reduce the dimension of the system, the displace-
ment of the system is approximated by a superposition of a truncated number of
modes multiplied by their corresponding coordinates:

u = Φq =
m
∑

i=1

qiϕi, (3.24)

Here, Φ (n × m, where m is the number of kept modes in the superposition) is the
reduction basis matrix containing the kept eigenmodes of the system in its columns
and q is the vector of the reduced number of modal coordinates. The i th modal
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coordinate and eigenmode of the system are denoted by qi and ϕi, respectively. The
eigenvalue problem for obtaining the i th eigenmode of Eq. (3.23) is given as

(K −ω2
i M)ϕi = 0, (3.25)

where, the i th eigenfrequency of the system is denoted by ωi. The eigenmodes of the
system are usually mass normalized such that:

ΦT MΦ= I ,
ΦT KΦ= Ω= diag(ω2

1,ω2
2, ...,ω2

k),
(3.26)

the matrix Ω here is a diagonal matrix that contains the square of the eigenfrequen-
cies of the system in its diagonals, and I is the identity matrix. The set of k uncoupled
equations of motion is obtained by substituting eq. (3.24) in (3.23) and premultiply-
ing (3.23) with ΦT :

q̈ +Ωq = F̂0g , (3.27)

where

F̂0 = Φ
T F0. (3.28)

McEwan et al. [95] took the MD projection basis also for reduction of the nonlinear
FE-EOM, namely

V =
�

ϕ1 ϕ2 ... ϕm.
�

(3.29)

Therefore, the NLROM can then be written in the following form

q̈ +Ωq + f̂nl(q) = F̂0g (3.30)

The prescribing static forces are computed from Eq. (3.12) to be further employed
in the IC method (section (7.2)) and identify the NSCs. After development of the
(nonlinear) ROM, the velocity and acceleration vector of the physical DOFs can be
obtained from the corresponding ones in the ROM as

u̇ = Φq̇ =
k
∑

i=1

q̇iϕi, (3.31)

and

ü = Φq̈ =
k
∑

i=1

q̈iϕi. (3.32)

In the procedure for choosing the number of kept modes in the reduction basis, it is
usually the case that the eigenvectors are kept such that their corresponding eigen-
frequencies cover the excitation frequencies imposed by the time varying part of the
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applied load, g (t), with a predefined margin. However, choosing the modes in this
way can cause inaccuracies due to the poor approximation of the spatial distribu-
tion of the applied loads by the chosen reduction basis. To quantify the error of the
spatial distribution approximation caused by truncation of the eigenmodes in the re-
duction basis, let us define the residual spatial distribution matrix, Fr , which is the
portion of the full spatial distribution matrix not represented by the superposition of
the kept modes. The residual spatial distribution matrix is obtained by subtracting
the spatial distribution represented by the truncated eigenmodes from the full spatial
distribution matrix, F0:

Fr = F0 − Ft , (3.33)

where the spatial distribution represented by the truncated eigenmodes is given by

Ft = MΦΦT F0 (3.34)

The residual spatial distribution, Fr , is in fact the part of the full spatial distribution,
which is lost due to the use of its truncated mode representation. Accordingly, the
more the number of modes in the reduction basis are taken, the smaller Fr becomes.
However, choosing too many modes in the reduction basis which can reasonably re-
duce Fr , may lose the advantage of computational efficiency achieved by the MD
method. To reduce the loss of spatial distribution of the applied load and simulta-
neously take the advantage of dealing with just a few sets of equation of motions,
Mode Acceleration [1, 34, 130] and Modal Truncation Augmentation [34, 35, 130]
methods have been developed. These will be explained next.

3.2.2 Mode Acceleration Correction

The mode acceleration method [1, 34, 124, 130] is proposed to minimize the error of
spatial distribution of the applied loads induced by modal representation of them in
linear FE analysis. The idea of the MA method is based on the definition that the kept
modes in the MD method comprise all the frequency content that exist in the applied
loads to the system. Therefore, the response of the system due to the truncated
modes is quasi-static and contains no dynamics. In other words, the truncated modes
do not make any appreciable contribution to the velocity and acceleration of the
system and the acceleration, for example, can be computed using Eq. (3.32). The
truncated modes affect only the displacement of the system, and therefore, the only
parameter which has to be modified is the displacement.
To compute the modified displacement from the MA method, let us consider the
governing equations of motion (3.23) and rewrite it in the following form:

Ku = f −Mü. (3.35)

Since by definition the truncated modes quasi-statically affect the response of the
system, the acceleration of Eq. (3.35) can be directly substituted by Eq. (3.32), and
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Eq. (3.35) is solved for the displacement:

u = K (−1) f − K (−1)M
k
∑

i=1

q̈iϕi. (3.36)

From Eq. (3.27), the acceleration for the i th generalized coordinate is written as

q̈i = ϕi
T f −ωi

2qi, (3.37)

Substituting eq. (3.37) in (3.36) and rearranging (3.36) gives

u = K (−1) f − K (−1)M
k
∑

i=1

(ϕi
T f −ωi

2qi)ϕi. (3.38)

Finally, from eq. (3.38), the displacement achieved by the MA method is derived:

u =
k
∑

i=1

qiϕi + (K
(−1) −

k
∑

i=1

ϕiϕ
T
i

ω2
i

) f . (3.39)

If a structure contains rigid body modes, the linear stiffness matrix is singular and
the generalized inverse methods have to be used. In this chapter, the generalized
coordinates, q , are first computed from the NLROM in Eq. (3.30) and substituted in
Eq. (3.39) instead of (3.24) to correct, in a post-processing step, the linear quasi-
static effect of the truncated modes on the external loads.

3.2.3 Modal Truncation Augmentation

The method of Modal Truncation augmentation [34, 35, 130] compensates for the
inaccuracies in the modal representation of the spatial distribution of the applied
loads by appending some correction vectors to the reduction basis. MTA employs the
Rayleigh-Ritz method to compute the modal truncation (MT) vectors, which has the
advantage of being mathematically consistent.
To compute the MT vectors, we start from the computation of the Ritz vectors by a
static problem under the residual force distribution:

KX = Fr , (3.40)

where, X is the static displacement matrix, which comprises the static displacement
(Ritz) vectors in its columns. Afterwards, the reduced mass matrix, M̄ , and stiffness
matrix, K̄ are obtained using these Ritz vectors:

K̄ = X T KX , (3.41)
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M̄ = X T MX , (3.42)

The reduced eigenvalue problem is then given by

(K̄ −ω2
i M̄)vi. (3.43)

Here, the i th eigenvector and eigenfrequency of the reduced eigenvalue problem are
denoted by ωi and vi, respectively. This procedure is performed to obtain a set of
numerically stable MT vectors. The MT vectors are consequently defined by

Φmt = XV , (3.44)

where, the matrix V contains the reduced eigenvectors, vi, in its columns. Finally,
the new reduction basis according to the MTA method is constructed by appending
the MT vector to the set of kept modes Φ, namely

Ψ = [ Φ Φmt ], (3.45)

Now, the procedure of model reduction is exactly the same as the MD method, ex-
cept that the new reduction basis, Ψ, is used as the reduction basis to obtain the
displacement and acceleration as

u = Ψ q , (3.46)

and

ü = Ψ q̈ . (3.47)

The novelty of this work is that we propose to use the MT vectors in addition to the
linear modes as the basis vectors in the identification procedure of ICE . In other
words, we define the following reduction basis to identify the NSCs as

V = [ Φ Φmt ], (3.48)

to compensate for the spatial representation of the external loads in the nonlinear
restoring forces. In th next section we study the performance of the proposed meth-
ods.

3.3 Numerical Example

To assess the accuracy of the proposed approach, a two-side clamped geometric non-
linear beam model is investigated, as shown in Fig. 3.1. The material, geometry, and
mesh properties of the model are illustrated in Table 3.1. The structure is modeled
in Abaqus R© and the nonlinear static analysis required in ICE are performed therein.
The model is imposed under two load distributions: a point load and a uniformly



3.3 Numerical Example 41

B Al
4

l
2

t

l

f (t)

(a) Beam under distributed load

A

f (t)

(b) Beam under point load

Figure 3.1: Schematic of the two side clamped beam model.

Property (dimension) Value

Material
Mass density (kg/m3) 7870
Young’s modulus (GPa) 2.05× 1011

Poisson’s ratio 0.28

Geometry
l (mm) 300
t (mm) 1

FE model

Element-type Timoshenko (Abaqus B21)
Number of Elements 60
Number of DOFs 177

Table 3.1: Geometry, material and FE model properties of the investigated flat beam model.

distributed sound pressure as shown in Figs. 3.1b and 3.1a, respectively. Both load
distributions are random signals in time and are applied to the structure in two in-
tensity levels. The frequency band of excitation for both load cases is 0-800 Hz.
The NLROMs are developed using the proposed bases and are compared with the
full-model as well as the NLROMs based only on linear modes. The time integration
for the NLROMs are performed by implicit Newmark scheme with a time step of
5×10−5 and for five seconds duration. To compare the performance of the NLROMs,
Power Spectral Densities (PSD) of the time signals are computed and compared.
Furthermore, the relative error of selected DOFs in time are computed and compared.
The relative error is given by

εn =



u f ul l,n − uROM ,n





uaverage,n
× 100 (3.49)

where u f ul l,n, uROM ,n and uaverage,n are the time response of the full model, the ROM
model and the root-mean-square of the full model’s time signal, respectively, all for
the nth DOF. To identify the NSCs of the developed NLROMs, the value of the maxi-
mum desired displacement to have the most accurate results is chosen as

Wimax
= 1

4 t, (3.50)

where, t is the thickness of the beam. All the NLROMs are developed in MATLAB R©
and using the ICE method. For this example, we developed three NLROMs with the
same size but with different reduction bases as

• The first six linear VMs (NLROM-6VM).
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Figure 3.2: PSDs Comparison of three NLROMs: NLROM-6VM, NLROMMA-6VM, NLROM-5VM-1MTA
with the full-order model and linear reduced model (LROM-6VM) under two excitation levels of 135dB
and 150dB.

• The first six linear VMs augmented with the MA method explained in section
(3.2.2) (NLROMMA-6VM).

• The first five linear VMs in companion with one MT vector proposed in section
(3.2.3) (NLROM-5VM-1MTA).

These NLROMs are compared with the full-order model as well as the linear reduced
model with 6 linear VMs in its basis (LROM-6VM). In fact, the LROM is employed
here to show the difference between the linear and nonlinear responses. Fig. 3.2
shows the PSD comparison of the mentioned NLROMs under two uniform distributed
sound pressures with 135dB and 150dB Sound Pressure Levels (SPL). The PSDs for
the transverse direction of point A and membrane direction of point B are shown
(see Fig. (3.1a)), because the maximum transverse and membrane motion occur
near these two points, respectively. For both relatively low and and high levels of ex-
citations, the transverse PSD has been improved (Figs. 3.2a and 3.2c) by adding one
MTA vector instead of one linear VM in the reduction basis, while the improvement
by the MA method is much smaller than MTA. However, the PSD in the membrane
direction has not been importantly improved for both low and high level of excita-
tion. To observe the improvement of the NLROM with MTA in the basis, the relative
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(b) Membrane DOF of point B under 135 dB
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(d) Membrane DOF of point B under 150 dB

Figure 3.3: Relative error comparison for the first half seconds (out of five seconds) of the time signals
that are used to compute the PSDs of Fig. 3.2.

error for the first half second of the time integration used in Fig. 3.2 is depicted in
Fig. 3.3. This figure confirms that the relative error for the transverse direction of
the NLROM with MTA (Figs. 3.3a and Fig. 3.3c) is smaller compared to all other
developed ROMs. The improvement of the transverse direction is not observed when
they are expanded to obtain the membrane motion (Figs. 3.3b and Fig. 3.3d).
The same analysis is performed when a point load is applied to the structure (see
Fig. 3.1b), which is a random signal in time. Fig. 3.4 shows the PSD comparison of
the transverse direction of point A as well as the in-plane direction of point B for two
excitation levels with RMS of 0.5N and 2N. Fig. 3.5 demonstrates the relative error
of the same DOFs under the same loads for the first half seconds of time integration.
The accuracy of the transverse direction for the low level of excitation is improved
(Figs 3.4a), while this improvement is very small for the high level of excitation.
This is because the induced error for high level of excitation is not only because of
approximation of load distribution, rather due to activation of interaction of lower
modes with high frequency modes.
Furthermore, the effect of higher order terms of the MTA vectors considered in [130]
is not investigated in this work, because first it is shown that this improvement is
slight even for linear models. Secondly, taking the higher order terms in the reduction
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Figure 3.4: PSDs Comparison of three NLROMs: NLROM-6VM, NLROMMA-6VM, NLROM-5VM-1MTA
with the full-order model and linear reduced model (LROM-6VM) under two point loads of 0.5 and 2 N.

basis leads to increasing the dimension of the NLROM, which is usually not desired.

3.4 Summary

This chapter extends the Mode Acceleration Correction and Modal Truncation Aug-
mentation methods in nonlinear model order reduction. To develop the nonlinear
reduced order model, a force-based non-intrusive approach has been employed. This
has the advantage that the model order reduction procedure can be performed in any
FE package without requiring direct access to the nonlinear finite element equations
of motion of the full-order model. In this way, a set of static loads has to be gener-
ated and applied to the nonlinear FE formulation, which is called the Applied Force
or ICE method. In the original ICE, the static loads are constructed using a truncated
number of linear (transverse) eigenmodes, which are in the frequency range of inter-
est with a margin and a scaling factor that can trigger the nonlinear restoring force.
However, these modes are not able to accurately approximate the spatial distribution
of the external excitation. Therefore, in this work we extended the classical force
bases with two new methods in nonlinear model order reduction field.
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(b) Membrane DOF of point B under 0.5 N
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(c) Transverse DOF of point A under 2 N
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(d) Membrane DOF of point B under 2 N

Figure 3.5: Relative error comparison for the first half seconds (out of five seconds) of the time signals
that are used to compute the PSDs of Fig. 3.4.

In the MA method, the displacements computed from the original ICE are augmented
by linear static contribution of truncated modes due to external loads. Furthermore,
in the MTA method, the quasi-static contribution of truncated modes is obtained
using the Rayleigh-Ritz method, as Modal Truncation (MT) vectors. These vectors
are afterwards employed as new basis vectors to generate the static loads required
for the identification of the Nonlinear Stiffness Coefficients (NSC) in ICE.
The two proposed methods are implemented for a clamped-clamped beam example
with geometric nonlinear effects. A random excitation is imposed on the structure
to check the accuracy of the proposed methods. It has been shown that the MA
method does not improve the time response of the NLROM when the response is
in the nonlinear regime. However, the proposed nonlinear MTA method discernibly
enhances the accuracy of the NLROM for distributed load cases and more slightly for
point load cases. This improvement is mostly achieved for transverse vibration of the
system.





Chapter 4

Displacement-based non-intrusive MOR

This chapter is extracted from the author’s work in [66], which is submitted for publi-
cation. In this article, Karamooz had the idea of the work, derived the numerical results
for the shown examples, and wrote the manuscript. Brandt conducted parts of the nu-
merical implementations, discussed the work and proof-read the article. Tiso and Rixen
gave very useful inputs in the discussions of the work, proof-read the article and modified
it. Rixen supervised the work.

4.1 Introduction

The Implicit Condensation and Expansion method that we investigated in Chapter 3
has two main challenges. First, it can only be used to build NLROMs with a small
number of DOFs, because the number of required nonlinear static solutions is a cubic
function of the number of modal coordinates of the the NLROM. Second, the assump-
tion of ICE to retrieve the in-plane motion of a shell-like structure is only valid when
the relationship between transverse and membrane coordinates is quadratic, which
is only valid for certain cases. This will be discussed more in Chapter 5, where the
methods are compared.
An alternative approach for non-intrusive MOR is the Enforced Displacement (ED)
(also known as STEP (STiffness Evaluation Procedure)) method, which was first in-
troduced by Muravyov and Rizzi [103]. In this method, selected static displacements
that trigger nonlinearity are prescribed to the model through the FE package. The
FE package then computes the required reaction forces and the NSCs are obtained
by solving a set of linear equations given the input displacements and output forces.
To reduce the number of nonlinear static solutions in NSCs identification, Perez et al.
[116] used the Tangent Stiffness (TS) matrices due to assigned static displacements,
instead of reaction forces for identifying the NSCs. They showed that in this way the
number of required nonlinear static solutions reduces significantly, leading to less
offline computational costs for the development of NLROMs. The TS-based method
of Perez et al. is called the Enhanced Enforced Displacement (EED) method here.
The accuracy of the developed NLROM in the non-intrusive methods highly depends
on the “correct” selection of assigning displacement bases. For instance, in the MOR
of shell-like structures, choosing a set of truncated vibration modes as displacement
bases in (E)ED, which are bending-dominated modes, does not deliver accurate NL-
ROMs. Instead, the membrane-dominated modes also have to be manually selected
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and augmented to the input displacements to achieve accurate results1, which is a
cumbersome work and the challenge of this method [98, 133].
In order to cope with this problem, Dual or Companion modes are proposed in [76]
to capture the nonlinear interaction between the vibration modes. The idea is to en-
force a set of selected static load cases from the kept linear modes to the system and
compute the corresponding nonlinear displacements. These displacements are then
orthogonalized to the linear modes kept in the basis and appended to them in the re-
duction basis. By this, the basis is enriched in a quasi-systematic way to approximate
the nonlinear response of the NLROM accurately. However, the main issue with the
dual modes is that, to be able to acquire good results using this approach, a relatively
large number of representative load cases are required to be generated from near
linear to strong nonlinear responses. Moreover, the procedure for the selection of the
important dual mode is in many cases load-dependent and based on trial and error,
which can be expensive for large structures.
In this chapter, we propose appending non-intrusively computed Modal Derivatives
(MDs) to a basis of dominant vibration modes to form a reduction basis for a non-
intrusive ROM. To compute the MDs non-intrusively, two different strategies are out-
lined, namely for the cases where either the tangent stiffness or nonlinear reaction
forces are available from a nonlinear static solution.
The first advantage of the proposed method is that by using MDs, one does not
require manual selection of membrane-dominated modes demanded to accurately
develop the NLROM. Instead, the most important nonlinear features of the full-order
response are conveyed by non-intrusive MDs, which are systematically derived from
the originating vibration modes (i.e do not require trial and error selection) and
are easy to compute. The second advantage is that the MDs are selected in a load-
independent manner and the resulting NLROM can be valid for a range of loading
conditions. The accuracy as well as the computational efficiency of the proposed
method is evaluated by applying it to different FE models subject to various ran-
dom sound pressure levels. These results are also compared with the results of the
NLROMs, which are obtained by using either only linear modes or linear modes aug-
mented with dual modes in the reduction basis. The validation is carried out by
comparing the Power Spectral Density (PSD) of the displacements of the NLROMs
and the full model. Our results indicate that the method we propose improves accu-
racy when compared to other available non-intrusive techniques, without increasing
offline and online costs.

4.2 Non-intrusive model order reduction

Let us rewrite the governing equations for an FE model with linear material proper-
ties and large deformations (i.e. geometric nonlinearity) and n Degrees-Of-Freedom
(DOFs) as (for more details see e.g. [12, 13])

Mü(t) + Du̇(t) + fint(u(t)) = f (t), (4.1)

1In case of curved structures, this augmentation is not necessarily membrane-dominated, see
[146].
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where the mass matrix is denoted by M and fint is the nonlinear internal force vector
modeling geometric nonlinearity. In this work, a linear viscous damping (denoted by
D) is adopted. The displacement and external force vectors are u and f , respectively.
Following standard notation, time derivative is indicated by ˙( ). Note that in Eq.
(4.1) and the remainder of this work the time-dependency is omitted for the sake of
simplicity, unless otherwise indicated.
In order to obtain a ROM for Eq. (4.1), a reduction basis must be defined, which maps
the full-order model with n DOFs, to a reduced set of m generalized coordinates, with
m<< n, namely

u ≈ Vq , (4.2)

where V (n×m) is the reduction basis and q (m×1) denotes the vector of the reduced
set of generalized coordinates. The ROM is then achieved by introducing Eq. (4.2)
to (4.1) and pre-multiplying it by V T (the superscript T denotes the transpose of
the matrix) to enforce the generated errors due to model reduction orthogonal to
the reduction basis, as explained in Chapter 2. The nonlinear reduced internal force
vector is approximated by a Taylor series expansion up to cubic terms

f̂int(q) = K̂ (1)q + (K̂ (2).q).q +
�

(K̂ (3).q).q
�

.q . (4.3)

The NSCs, K̂ (2) and K̂ (3) in Eq. (4.3) can be obtained either by direct projection of
the full-order tensors (in case fint is of polynomial form up to cubic terms, as is the
case for linear solid elements and von-Karman shells) or by identification through
non-intrusive methods. If the FE model of the structure is developed in a commercial
FE analysis package, there is usually no access to the nonlinear stiffness tensors of
the underlying structure. Therefore, to obtain the NSCs of the reduced model, we
explain two displacement-based non-intrusive MOR techniques next.

4.2.1 Enforced Displacement

The Enforced Displacement (ED) method was first developed by Muravyov and Rizzi
[103], and later modified by Kim et al [76] for the case where the linear stiffness
matrix is also unknown. The ED method is based on enforcing a series of nonlin-
ear static displacements to the FE model, and computing the corresponding forces
required to create these displacements. Having the applied displacement and the
corresponding forces, the unknown coefficients can be computed by solving a series
of linear algebraic equations.
Since the identification procedure here is based on static cases, Eq. (4.1) for the
NLROM reduces to

K̂ (1)i j q j + K̂ (2)i jl q jql + K̂ (3)i jl pq jqlqp = f̂i. (4.4)

The first step in the ED parameter identification methodology is the construction of
two different displacements (in case the linear stiffness is available) from each single
generalized coordinate while all other coordinates are zero, i.e.

u(a) = q(a)r Vr , a = 1,2, r = 1, 2, ..., m, (4.5)
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where u(1) and u(2) are the static displacement fields to be given to the FE pack-
age; q(1)r and q(2)r are different scaling factors for the r th generalized coordinate
(r = 1,2, ..., m), and Vr is the r th column of the reduction basis matrix. To form
the two required displacement vectors for each generalized coordinate, usually one
scaling factor is chosen with different signs. By static imposition of the displacement
fields of Eq. (4.5) to the structure, all the stiffness coefficients corresponding to two
or three different generalized coordinates are zero (e.g. K (2)i jl = K (3)i jl p = 0, j 6= l 6= p).
The modal forces corresponding to these displacements for the i th equation of (4.4)
are then given by

f̂ (a)i = V T
i f (a) a = 1,2, (4.6)

where f (1) and f (2) are the reaction forces due to the applied displacement in physical
domain and f̂ (1)i and f̂ (2)i are the i th component of their counterparts in modal domain
(i = 1, 2, ..., m). By substituting Eqs. (4.5) and (4.6) into Eq. (4.4) one obtains

K̂ (1)ir q(a)r + K̂ (2)ir r (q
(a)
r )

2 + K̂ (3)ir r r(q
(a)
r )

3 = f̂ (1)i , a = 1, 2, (4.7)

which lead to the solution of all unknown coefficients in the form of K̂ (2)ir r and K̂ (3)ir r r ,
in Eq. (4.7). Note that if the reduced linear stiffness is not obtained in advance from
direct projection of the full-order linear stiffness, then three static displacement per
each generalized coordinate must be imposed in Eq. (4.5) to also compute K̂ir [76].
In the next step, a combination of two columns of the reduction basis with different
generalized coordinates are imposed on the system while all other modes are zero,
namely

u =
�

V(r ) V(s)
�

�

qr −qr qr

qs −qs −qs

�

, s ≥ r. (4.8)

The corresponding forces required to induce the three displacements are then com-
puted and projected in the modal domain to obtain the components of the modal
force needed to be substituted in Eq. (4.4). This leads to three Eqs., which are uti-
lized to obtain the unknown parameters K̂ (2)irs , K̂ (3)irss, and K̂ (3)issr corresponding to the
multiplication of two different modal coordinates (qr 6= qs). It should be mentioned
here that due to the symmetry of the stiffness tensors, the elements of the nonlin-
ear stiffness tensors K̂ (2)i jl and K̂ (3)i jl p are only computed and stored for the case where
p > l > j.
The last step in the parameter estimation procedure of ED method is the identifi-
cation of the unknown NSCs corresponding to the combination of three different
modes, i.e. K̂ (3)irst . To do so, a combination of three different generalized coordinates
are employed, as

u =
�

V (r ) V (s) V (t )
��

qr qs qt

	T
, t ≥ s ≥ r. (4.9)

Imposing these nonlinear static displacements result in the corresponding forces,
which are transformed to the modal domain and introduced to Eq. (4.4), leading
to the identification of NSCs of the form K̂ (3)irst . The number of the nonlinear static
solutions required to develop an NLROM with m DOFs is

N = 2 m+ 3 mC2 + mC3 (4.10)
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where

mCr =
m!

(m− r)! r!
(4.11)

As can be seen in Eq. (4.10), the number of required nonlinear static solutions of the
ED method is in the same order as ICE (O(m3)), which limits the number of possible
DOFs in the NLROM. In order to reduce the order of required static solutions, the
Enhanced ED (EED) method was proposed by [116] and is explained in the next
section.

Generalized coordinates factor

Theoretically, a variety of magnitudes of the generalized coordinates (scaling factors)
q can be applied to the ED method. However, in practice these values must be large
enough to trigger geometric nonlinearity in the system and not too large, to avoid
convergence problem of the solution in the FE package. For instance, Mignolet et al.
[99] have studied different scaling factors for transverse and membrane motion of
shell-like structures. It is usually suggested to prescribe scaling factors, which result
in one thickness deformation of the structure for transverse-dominated modes and
1
10 to 1

100 of that for membrane-dominated modes (or other augmentations to the
transverse-dominated modes, like dual modes or modal derivatives).

4.2.2 Enhanced Enforced Displacement

The Enhanced Enforce Displacement method was first introduced by Perez et al.
[116], and further validated for nonlinear structures under thermal, aerodynamic
and acoustic loading conditions in [93, 94]. The key idea of the EED method is
employing the TS matrix, instead of the restoring forces of the FE model, due to an
imposed displacement. The TS matrix contains more information about the NSCs
than the restoring forces, resulting in the identification of more coefficient from one
nonlinear static analysis.
To identify the NSCs of an NLROM with EED, let us assume that the FE package, in
which the nonlinear model is developed, releases the TS matrix out of a nonlinear
static analysis (this is the case for many commercial software, e.g. Abaqus, Nas-
tran, etc.). The TS matrix of the full-order model from a nonlinear static analysis is
then mapped into the reduced space of generalized coordinates using the previously
defined reduction basis (section 4.3). This gives

K̂ t(q) = V T K t(u)V , (4.12)

where K̂ t and K t are the TS matrices for the reduced- and full-order models, respec-
tively. The TS matrix is the Jacobian of the nonlinear restoring force vector with
respect to generalized coordinates, namely,

K̂ t = J f̂int
(q) =









∂ f̂int1
∂ q1

· · ·
∂ f̂int1
∂ qm

... . . . ...
∂ f̂intm
∂ q1

· · · ∂ f̂intm
∂ qm









, (4.13)
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where its ir th component is

K̂ t
ir =

∂ f̂inti
∂ qr
= ∂

∂ qr
[K (1)i j q j + K (2)i jl q jql + K (3)i jl pq jqlqp]

= K (1)ir + [K
(2)
i jr + K (2)ir j ]q j + [K

(3)
i jl r + K (3)i jr l + K (3)ir jl]q jql .

(4.14)

Similar to the ED method, to obtain the first set of unknown NSCs, two static dis-
placements are formed per each single generalized coordinate, as per Eq. (4.5).
Then, the ir th element of the resulting TS in modal domain yields

K̂ t(a)

ir = K (1)ir + [K
(2)
i jr + K (2)ir j ]q

(a)
j + [K

(3)
i j jr + K (3)i jr j + K (3)ir j j](q

(a)
j )

2, a = 1, 2. (4.15)

Let us recall the assumption of section 4.2.1 that the coefficients of the form K (2)i jl and

K (3)i jl p are put to zero except the case where p > l > j, due to symmetry of the tensors.
This assumption splits Eq. (4.15) into three conditions, namely

K̂ t(a)
ir = K (1)ir + K (2)i jr q(a)j + K (3)i j jr(q

(a)
j )

2 i f j < r,
K̂ t(a)

ir = K (1)ir + 2K (2)ir r q(a)j + 3K (3)ir r r(q
(a)
j )

2 i f j = r,
K̂ t(a)

ir = K (1)ir + K (2)ir j q
(a)
j + K (3)ir j j(q

(a)
j )

2 i f j > r.
(4.16)

For each condition, there are two unknowns corresponding to the quadratic and
cubic NSCs, which are obtained using the corresponding modal coordinates and TS
components from the two previously performed static analyzes. In this way, all the
coefficients in the form of K̂ (2)ir j , K̂ (3)ir j j, K̂ (3)i j jr , and K̂ (3)ir r r are identified, given that the
linear stiffness is previously computed from Eq. (2.25).
The second and final step, is the identification of those cubic NSCs, K̂ (3)i jl r , where
j 6= l 6= r. Static displacements of the form

u = V jq j + Vlql , (4.17)

have to be enforced on the FE model to attain the TS matrices demanded for the last
step. After transforming the TS to the modal domain, its ir th component is written
as

K̂ t
ir = K (1)ir + [K

(2)
i jr q j + K (2)il r ql] + [K

(3)
i jl rq jql + K (3)i j jrq

2
j + K (3)il l rq

2
l ]. (4.18)

The only unknown in this equation is K (3)i jl r , which can then be computed.
As can be seen in the identification procedure of the EED method, the displacements
from a combination of three generalized coordinates are no longer required to iden-
tify all the coefficients. The exact number of static cases required is given by

N = 2 m+ mC2. (4.19)

Therefore, the order of nonlinear static analysis reduces from O(m3) to O(m2). The
work flows of ED as well as EED are shown in the flowchart of Fig. 4.1. Furthermore,
Fig. 4.2 shows the rate of growth of the required nonlinear static solution versus
the number of generalized coordinates in the NLROM for ED and EED methods.
This figure shows a significant reduction of the static solutions for the EED method
compared to the ED method while the number of DOFs in the NLROMs are increased,
which results in less computational costs for reducing the model.
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ED EED

Step 1
u1 = +ϕ jq j

u2 = −ϕ jq j
Step 1

K̂ (2)i j j and K̂ (3)i j j j K̂ (2)i jl , K̂ (3)i j jl and K̂ (3)i jl l

Step 2
u1 = +ϕ jq j +ϕkqk

u2 = −ϕ jq j −ϕkqk

u3 = +ϕ jq j −ϕkqk

Step 2

K̂ (2)i jk , K̂ (3)i j jk and K̂ (3)i jkk

Step 3 u = +ϕ jq j +ϕkqk +ϕlql

K̂ (3)i jkl K̂ (3)i jkl

Figure 4.1: Flowchart of the steps to identify nonlinear stiffness coefficients of an NLROM using ED and
EED.
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Figure 4.2: The number of required nonlinear static solutions versus the number of kept modes in the
reduction basis for the ED and EED methods.

4.3 Basis selection: simulation-free methods

As mentioned before, selection of an appropriate basis for nonlinear model reduction
techniques is one of the key challenges. The reduction basis should generally contain
all the linear modes of the system in the frequency band of excitation and convey the
main nonlinear features of the response. It should furthermore be computationally
cheap and possibly load-independent.
There are generally two types of reduction bases in the context of nonlinear ROM.
The first class of bases is derived by data driven methods, which are based on per-
forming a dynamic simulation of the full-order model. Examples of these approaches
are Proper Orthogonal Decomposition (POD) or Smooth Orthogonal Decomposition
(SOD) (see [22, 50, 118, 120, 132, 158]). These methods are not considered in this
work, as we aim at both avoiding the need of time integration of the full system and
devise a basis construction that is not load dependent. To this end, we look at the
so-called simulation-free methods, which do not require full dynamic simulation and
yield a basis that is not dependent of the specific excitation. As such, the resulting
ROM can be valid for different loading conditions. While methods along this line
already exist, here we propose a new basis suitable for non-intrusive ROM methods.

4.3.1 Linear vibration modes

The original ED method in [103] proposed the use of linear Vibration Modes (VMs)
as the basis for projection of the full-order linear matrices as well as identification of
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the NSCs. This basis has been further investigated in different works (see e.g. [119,
121, 133] ). The VMs are the solution of the eigenvalue problem associated to the
linearized system, namely,

(K (1) −ω2
j M)ϕ j = 0, (4.20)

whereω j and ϕ j are the j th eigenfrequency and linear VM of the system, respectively.
A set of these modes are then selected according to the frequency band of interest to
form the reduction basis matrix as

V = [ϕ1, ϕ2, · · · , ϕm] . (4.21)

The linear VMs are usually mass-normalized before being used in NSCs identification
procedure. The number of VMs can be highly reduced if they are selected according
to a specified spatial load distribution [119, 121, 133].
However, the main disadvantage of this basis is that selection of a set of truncated
VMs does not suffice for the basis, because they are usually not well representing the
nonlinear behavior. For instance, when the structure is made of plates and shells,
the low-frequency modes are typically of a bending nature, and as such, they do
not feature axial displacements that are needed to represent the nonlinear bending-
stretching coupling. Therefore, to complete the basis in this way, a few high fre-
quency membrane-dominated modes must be identified and augmented to the basis
to develop an accurate NLROM. Manual identification of the membrane-dominated
modes for simple structures is a difficult but feasible work. However, for complex
structures, the computation and selection of the required high frequency modes be-
comes an unfeasible approach. Therefore, it is desiderable to find an accurate basis
in a systematic way.

4.3.2 Dual modes

In order to avoid the manual selection of membrane modes in the primary basis of
ED (section 4.3.1), dual modes are proposed (cf. [76]) and further investigated in
many applications (e.g. see [48, 75, 93, 94, 116]). The key concept of dual modes is
based on the selection of a set of representative static forces to be applied to the full-
order model and solving for the corresponding displacements with nonlinear static
solutions. These displacements are then orthogonalized to the linear modes basis to
leave only the nonlinear effects therein. There are generally three generations of the
dual modes investigated in [76]. However, it is shown in [98, 116] that it is usually
sufficient to choose the set of representative forces in the form of

f (r)i = α(r)i K (1)ϕi, i
∆
= dominant mode (4.22)

and

f (r)i j =
α
(r)
i

2
K (1)[ϕi +ϕ j], i

∆
= dominant mode, and i 6= j (4.23)

to obtain the corresponding displacement sets. Here, the r th load case and scaling
factor are denoted by f (r) and α(r)i , respectively. Note that a dominant mode in this
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context is loosely defined as a mode, which contributes the most in the nonlinear re-
sponse of the system. Furthermore, several scaling factors α(r)i with positive and neg-
ative signs have to be chosen and imposed on the system such that the corresponding
displacements range from near linear to strongly nonlinear responses. Afterwards,
the dual modes are mass-orthogonalized to the kept linear modes and one another
using the Gram–Schmidt process.
The next step consists in performing a sequential POD of the representative dual
modes for each combination of modes with different scaling factors, and selecting
them according to their maximum singular values as well as strain energies, as ex-
plained in [76, 98]. Consider the displacement vectors, xs,1, xs,2, . . . , xs,p, are obtained
with p scaling factors from the sth combination of modes in (4.22) or (4.23). These
vector are cast into a matrix as

Ds =
�

xs,1, xs,2, . . . , xs,p

�

, (4.24)

which are then orthogonalized to the linear modes and the previously selected duals.
Afterwards, a POD is applied to Eq. (4.24) to select the left singular values with
the corresponding k highest left singular values, ψs,1,ψs,2, . . . ,ψs,k, as potential dual
modes. To obtain the final dual modes from these singular vectors, their correspond-
ing strain energy measures are computed as

Es,r =

� p
∑

j=1

β2
r, j

�

ψT
s,r K (1)ψs,r , (4.25)

where

βr, j =
ψT

s,r xs, j

ψT
s,rψs,r

. (4.26)

The Eq. (4.25) introduces those left singular vectors, which are mostly present in
the nonlinear displacements obtained from different scaling factors, and also have
the highest strain energy. Accordingly, those singular vectors ψs,r are selected, which
have the maximum value of Es,r .
Alternatively, the dual modes can be selected regarding their contribution in a spe-
cific loading condition, as performed by Perez et al. [116], which results in very
accurate NLROMs. However, the issue with the procedure explained in [116] is that
the modes are load-dependent, meaning that they are selected for a specific load
case, in a trial and error procedure. Therefore, to compare the efficiency of this
basis with our proposed alternative (non-intrusive model derivatives), we apply the
POD to the representative dual modes and take the singular vectors corresponding to
both maximum singular values from the POD analysis and maximum induced strain
energy, as done in [76]. Furthermore, in this work we found that performing the
orthogonalization procedure of the duals modes after the POD process (instead of
before it) can also lead to accurate results. One issue with the construction of the
dual modes is that dominant modes in Eqs. (4.22) and (4.23) are loosely defined in
the literature without presenting clear criteria to select them. Instead, we propose
the use of non-intrusive modal derivatives, which not only can be computed in a
systematic way (without manual selection of modes and load-independent), but also
can deliver accurate NLROMs.
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4.3.3 Modal derivatives: a new basis for non-intrusive ROM

In this section, we propose MDs for non-intrusive MOR methodology. While the
linear vibration modes can greatly approximate the motion of linear systems, it is
not the case for approximating nonlinear structures. This is because the tangent
stiffness K t(u) matrix of the system is displacement-dependent and therefore, the
eigenmodes out of each tangent stiffness eigenvalue problem is different from linear
vibration modes. As a result, the motion of the system can be written in the form
of eigenmodes (also called shape functions) that are a function of a reduced set of
coordinates multiplied with the corresponding generalized coordinates as

u ≈ ueq +
m
∑

i=1

ϕi(q)qi. (4.27)

To account for the effect of change of TS at least up to the second order, Idelsohn
and Cardona [60] developed the displacement vector as a Taylor series expansion, at
q = 0, which gives

u = ueq +
∂ u
∂ q

�

�

�

�q=0
q + 1

2

∂ 2u
∂ q∂ q

�

�

�

�

q=0

: (q ⊗ q) +H.O.T. (4.28)

By introducing Eq. (4.27) into Eq. (4.28), we obtain

∆u = u(q)−ueq ≈
m
∑

i=1

ϕi(q = 0)qi+
m
∑

i=1

m
∑

j=1

1
2

�

∂ϕi

∂ q j
(q = 0) +

∂ϕ j

∂ qi
(q = 0)

�

qiq j. (4.29)

This equation expresses that the nonlinear displacement of a system can be approx-
imated as a superposition of linear eigenmodes of the system and corresponding
derivatives. By introducing a new generalized coordinate, ηr , for each quadratic
term, qiq j, Eq. (4.29) is obtained as a superposition of linear modes and their deriva-
tives. Lastly, the reduction basis can be written in the form

V =
�

ϕ1, ϕ2, · · · , ϕm, θ11,
1
2
(θ12 + θ21), · · · ,

1
2
(θi j + θ ji), · · · , θmm

�

, (4.30)

where

θi j =
∂ϕi

∂ q j
, (4.31)

is called the i j th MD of the system.
The main advantage of using MDs instead of membrane-dominated or Dual modes
is that they enrich the linear transverse-dominated basis in a systematic and load-
independent manner. Furthermore, it will be shown in this work that augmenting
the linear modes with MDs in the reduction basis represents very accurate results
compared to the other two bases (sections 4.3.1 and 4.3.2) under the same condition.
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Calculation of modal derivatives

There are different ways to compute the MDs (e.g. see [60, 61, 105, 144]). In this
work we consider two of them, which can be computed non-intrusively. To obtain
the i j th MD, Eq. (4.20) is differentiated with respect to the generalized coordinate
q j, giving

�

K (1) −ω2
i M
� ∂ϕi

∂ q j
=

�

∂ω2
i

∂ q j
M −

∂ K
∂ q j

�

ϕi. (4.32)

The derivative of the eigenvalue,
∂ω2

i
∂ q j

is obtained by multiplying Eq. (4.32) with ϕT
i .

This value is then introduced to Eq. (4.32) leading to only one unknown, which is the
MD. However, the coefficient of the MD in the left hand side of Eq. (4.32) is singular
according to Eq. (4.20). Therefore, to solve this equation for the MDs, Nelson [105]
proposed a generalized solution of Eq. (4.32) as

∂ϕi

∂ q j
= vi + ciϕi, (4.33)

where vi is the particular solution and ciϕi is the homogeneous solution of the MD.
According to the Nelson’s method, the solution of the MD is then split into the fol-
lowing form

∂ϕi

∂ q j
=







v (1)i
0

v (3)i







+ ci







ϕ(1)i
ϕir

ϕ(3)i







, (4.34)

where the superscripts (1) and (3) for the vectors denote the 1th to (r − 1)th and
(r+1)th to nth components of the vectors vi and ϕi, respectively. Furthermore, the r th

component of the vectors are chosen such that it is zero for vi and a nonzero value
(ϕir ) for ϕi. Now the components of the vector vi can be obtained by substituting
Eq. (4.34) into (4.32). The last unknown in Eq. (4.33) is the coefficient ci, which
can be achieved by employing the mass normalization relation (i.e. ϕT

i Mϕi = 1) and
differentiating the i th mode with respect to q j. This gives

2ϕT
i M

∂ϕi

∂ q j
= 2ϕT

i M(vi + ciϕi) = 0→ ci = −ϕT
i Mvi. (4.35)

It should be noted that Nelson’s method can be used when all the eigenvalues are
assumed to be distinct. In case multiple eigenvalues exist in a system, the generalized
inverse method can be used to obtain the MDs [7, 40, 44]. Lastly, the computed
MDs have to be orthogonalized to the kept linear modes and one another to avoid
singularity problems in the basis.

Static modal derivatives

Regardless of which method is used to compute the MDs, a factorization of the dy-
namic stiffness matrix (Eq. 4.32) is required for each ϕi. To avoid performing the
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factorization procedure, Idelsohn and Cardona [61] approximated the MDs by ne-
glecting the inertia terms. Accordingly, Eq. (4.32) is simplified to

K (1)
∂ϕi

∂ q j
=
∂ K t

∂ q j
ϕi. (4.36)

The MDs obtained from Eq. (4.36) are called Static MDs (SMDs). The computation
of SMDs is easier than the MDs since the linear stiffness matrix, K (1), needs to be
factorized only once. A mechanical interpretation of the SMDs is discussed in [136].

Non-intrusive computation of (S)MDs

Since the aim of this work is the improvement of the non-intrusive ROM method
using MDs, it is necessary to compute them in a non-intrusive manner. As a result,
a finite difference scheme can be used to obtain (S)MDs. There are two cases where
the (S)MDs can be computed. The first case is when the FE package releases the
TS for each nonlinear static solution (this is the case for many commercial software,
e.g. Abaqus, Nastran, etc.). Then the derivative of the TS can be achieved using for
instance a central finite difference as

∂ K t(ϕ jq j)

∂ q j

�

�

�

�

q j=0

=
K t(u = ϕ jh)− K t(u = −ϕ jh)

2h
, (4.37)

where h is a small perturbation in the direction of the j th mode. A numerical study
for the selection of h is performed in [138]. The second case is when the FE package
only releases the reaction forces due to nonlinear static displacements. In this case,
the right hand side of Eqs. (4.32) and (4.36) can be written in terms of the second
derivative of the nonlinear internal forces as

∂ K t

∂ q j
ϕi =

∂ 2 fint

∂ q j∂ u
∂ u
∂ qi
=
∂ 2 fint

∂ qi∂ q j
. (4.38)

The numerical mixed derivatives of the nonlinear internal force obtained with central
finite difference is given by

∂ 2 fint
∂ qi∂ q j

�

�

� qi=0
q j=0

=

fint(u=ϕihi+ϕ jh j)− fint(u=ϕihi−ϕ jh j)− fint(u=−ϕihi+ϕ jh j)+ fint(u=−ϕihi−ϕ jh j)
4hih j

.

(4.39)

Once the required tangent stiffnesses or nonlinear internal forces for each increment
in Eqs. (4.37) and (4.39) are obtained from the corresponding nonlinear static an-
alyzes, the right hand side of Eqs. (4.32) (for MDs) and (4.36) (for SMDs) are
calculated and accordingly the (S)MD are obtained in a non-intrusive manner.

Load-independent selection of modal derivatives

The total number of added basis vectors in Eq. (4.30) due to (S)MDs is given by

N = mC2 +m, (4.40)
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which means that the number of (S)MDs increases in order O(m2) with respect to the
number of linear modes. Therefore, to still keep the NLROMs compact, only a few
of the most significant (S)MDs should be kept. To select the most important (S)MDs,
a few methods are available in the literature, which are mostly heuristic criteria. In
this work, the method of Maximum Modal Interaction (MMI) [64, 154] with a slight
modification is used. The MMI criterion simply considers the modal time response
of a linear modal model, and takes the product of two arbitrary modal amplitudes
as an indication of the potential interaction of these modes in the nonlinear regime.
Note that the reduced modal model is obtained from the projection of mass and linear
stiffness matrices by mass-normalized VMs. The pairs yielding the largest interactions
are then giving the indexes of the MDs to be included in the basis. More specifically,
a weighting matrix W is defined such that its i j th component is obtained as

Wi j =

∫ T

0

�

�qi(t)q j(t)
�

� d t, (4.41)

where Wi j denotes the weighting value corresponding to the (S)MD θi j. Moreover,
qi(t) is the response of the i th generalized mode in a linear time integration due to
an external load. It should be noted that the original MMI method takes the same
external loading as the load, which is aimed to be applied to the full and reduced
systems for validation. However, this way makes the selection of the (S)MDs load-
dependent. In order to select the (S)MDs in a load-independent approach, a random
excitation with the desired frequency range of interest is applied to the linear reduced
model to compute the weighting matrix. In this way, we propose to choose the
(S)MDs in a load-independent manner.
Consider the reduced EOM (2.24), which is linearized and contains no damping as

M̂q̈(t) + K̂ (1)q(t) = f̂ (t), (4.42)

Now, we choose the components of the external load vector f (t) as a Gaussian ran-
dom signal in time with an arbitrary load distribution in space. Since this force
randomly excites the model in a desired frequency band and its load distribution is
not the same as the one we use later for the simulation of our examples, we call it
the load-independent selections of (S)MDs. For instance, we take the same random
amplitude for the forces/moments that are applied to all dofs, in the examples of this
chapter. The linearized modal coordinates qi, i = 1, 2, . . . , m, are then integrated un-
der this excitation and used in Eq. (4.41) for all time steps to obtain the components
of the MMI matrix. It can be seen that the weighting matrix is symmetric while in
general only SMDs are symmetric and MDs are not symmetric (see [64]). This does
not cause any problem for the selection of MDs, because if a MD θi j is selected to
be in the basis, it will be added by its counterpart θ ji to be symmetrized (as in Eq.
(4.30)) and then added to the reduction basis.

4.4 Numerical examples

To examine the performance of the proposed non-intrusive MOR approach, three
numerical examples featuring geometric nonlinearities are discussed here. The three
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examples are made of beam (flat and curved) and shell elements using Abaqus R©. All
models are excited by sound pressure in the transverse direction, which is randomly
distributed in time and uniform in space. The frequency range of excitation of the
loads is between 0− 800 Hz and each example is excited with two different average
Sound Pressure Levels (SPLs).
The NLROMs are developed using the proposed basis and compared with the full
model as well as the NLROMs based on two previously developed bases for non-
intrusive ROM, namely linear modes and dual modes. The NLROMs are developed
using both the ED and EED methods, only to compare their offline computational
costs. However, only the results of ED is shown here, due to its time integration
stability compared to EED (EED is more compared to other methods in Chapter 5).
Additionally, the required derivatives to compute the non-intrusive (S)MDs are ob-
tained using the TS matrices (Eq. (4.37)). The performance of the NLROMs are
assessed by monitoring the displacement PSD of their nonlinear time response. The
time integration of the NLROMs is performed using the implicit Newmark scheme,
which we implemented in MATLAB R© and the full model is implicitly integrated in
Abaqus. All the models are time-integrated for 5 seconds with the constant time in-
crement of 5× 10−5 to compute their PSDs. For all the time integrations, a Rayleigh
damping in the form D = αM + βK is used. All the simulations in this study are per-
formed on a desktop PC with 32 GB RAM and Intel R© Xeon R© CPU (3.6 GHz). Lastly,
to compare the time response of the NLROMs, the relative error of the selected DOFs
are computed as explained in Chapter 3 (Eq. (3.49)).

l

B Al
4

l
2

t

Figure 4.3: Schematic of the clamped-clamped flat beam model.

4.4.1 Beam models

Flat beam

The first investigated model is a two-side clamped geometric nonlinear flat beam FE
model, shown in Fig. 4.3. The material, geometry and FE model properties of this
structure are illustrated in Table 3.1. The NLROMs of this model are developed using
the proposed non-intrusive SMDs as well as MDs. For this example, two average
SPL levels of 135 dB and 150 dB are applied to the model. All the models are time-
integrated for 5 seconds with the constant time increment of 5×10−5. The coefficients
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Transverse motion
Axial motion

(a) ϕ1 : ω1 = 58.3 Hz

Transverse motion
Axial motion

(b) ϕ2 : ω2 = 160.7 Hz

Transverse motion
Axial motion

(c) ϕ3 : ω3 = 315.1 Hz

Transverse motion
Axial motion

(d) ϕ4 : ω4 = 520.9 Hz

Transverse motion
Axial motion

(e) ϕ5 : ω5 = 778.2 Hz

Transverse motion
Axial motion

(f) ϕ6 : ω6 = 1087.1 Hz

Figure 4.4: The first six vibration modes of the flat beam model.

of the Rayleigh damping are chosen such that the damping ratios for all modes in the
excitation frequency are less than 1% (α= 6.8, β = 3.75× 10−6).
To have an insight into the shape of the linear modes and (S)MDs, the first six linear
modes of the beam structure are depicted in Fig. 4.4, and the six SMDs stemming
from the first three VMs are shown in Fig. 4.5. For a flat beam, the first VMs are
transverse dominated, while the corresponding SMDs are in-plane dominated, as
shown in Figs. 4.4 and 4.5, respectively. As the shapes of the MDs and SMDs are very
similar to each other, the MD shapes are not shown here.
Additionally, the MMI heuristic criterion for the first seven generalized DOFs are
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Transverse motion
Axial motion

(a) θ11 =
∂ φ1
∂ q1

Transverse motion
Axial motion

(b) θ12 = θ21 =
∂ φ1
∂ q2

Transverse motion
Axial motion

(c) θ13 = θ31 =
∂ φ1
∂ q3

Transverse motion
Axial motion

(d) θ22 =
∂ φ2
∂ q2

Transverse motion
Axial motion

(e) θ33 =
∂ φ3
∂ q3

Transverse motion
Axial motion

(f) θ23 = θ32 =
∂ φ2
∂ q3

Figure 4.5: Displacement of the first six SMDs of the flat beam model in axial and transverse directions.

computed using the time integration of the linear reduced system and depicted in
Fig. 4.6. The darkest squares indicate the mode pairs likely to interact the most
when nonlinearities are present. Following this idea, the (S)MDs corresponding to
such indexes are computed and inserted in the reduction basis. Since the excitation
for computation of MMI is random, the selected (S)MDs might be slightly different
for each time that the NLROM is developed. However, this slight difference in the
selection of (S)MDs has a minimal effect on the nonlinear time responses.
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Figure 4.6: Maximum modal interaction matrix values for the flat beam model with seven linear modes
in the basis. Since this matrix is symmetric, only the lower triangle is shown.

NLROM ED offline EED offline
NLROM-5VM-5Dual 275 65
NLROM-5VM-5SMD 275 65
NLROM-5VM-5MD 275 65

Table 4.1: Number of nonlinear static solutions (offline computational cost), only for NSCs identification
part of the flat beam’s NLROMs.

Model online time (sec.)
Full model 5356

NLROM-5VM-5Dual 30
NLROM-5VM-5SMD 30
NLROM-5VM-5MD 31

NLROM-10VM 31

Table 4.2: Online time for integration of flat beams’s NLROMs and full model for 5 seconds under 150
dB load.

Convergence check

To perform a convergence check study and also evaluate the numbers of required
linear VMs as well as (S)MDs, the NLROMs with different number of generalized
coordinates are developed and compared to the full-order model. Fig. 4.7 shows the
PSD comparison of NLROMs under the 150 dB SPL load and using different numbers
of linear modes and (S)MDs with the PSD of the full-order model for transverse
motion of point A and in-plane displacement of point B (see Fig. 4.3). This is done
since the maximum transverse and in-plane displacements of the beam model due
to this load occurs near points A and B, respectively. The transverse PSD of the
NLROMs developed by SMD (Fig. 4.7a), as well as by MDs (Fig. 4.7b), converge to
the full solution of the nonlinear full-order model by increasing the number of linear
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(a) Transverse DOF, point A, NLROMs with SMDs.
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(b) Transverse DOF, point A, NLROMs with MDs.
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(c) Membrane DOF, point B, NLROMs with SMDs.
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(d) Membrane DOF, point B, NLROMs with MDs.

Figure 4.7: The flat beam’s displacement power spectral densities for convergence check of transverse
and in-plane DOFs of the points A and B, respectively, under 150 dB SPL. The NLROM are developed
using VMs augmented once with SMDs and another time with MDs.
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(a) Transverse DOF, point A, NLROMs with dual modes.
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(b) Membrane DOF, point B, NLROMs with dual modes.

Figure 4.8: Flat beam’s PSDs for convergence check of transverse and in-plane DOFs of the points A
and B, respectively, under 150 dB SPL. The NLROM are developed using VMs augmented with dual
modes.
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(b) Membrane DOF of point B under 135 dB.
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(c) Transverse DOF of point A under 150 dB.
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(d) Membrane DOF of point B under 150 dB.

Figure 4.9: The flat beam’s PSD comparison for the NLROMs developed by 5VM-5SMD, 5VM-5MD,
5VM-5Dual and 10VM with the full-order model and the linear reduced model (10VM). The PSDs are
obtained under two load cases of 135 dB and 150 dB SPLs.

modes and corresponding (S)MDs in the basis (the number of used VM as well as
(S)MDs are shown in the legend of each figure). Likewise, the accuracy of the in-
plane PSDs of the NLROMs have been improved by increasing the numbers of linear
modes and (S)MDs (Figs 4.7c and 4.7d) present in the basis. These results confirm
the convergence of the proposed approach.
Furthermore, the convergence check study is performed for the NLROMs relying on
linear modes and dual modes (Fig. 4.8) under the same loading condition as the
NLROMs based on (S)MDs. To obtain the dual modes of each NLROM, 10 scaling
factors α (see. Eqs. (4.22) and (4.23)) ranging from −2.5 to 2.5 are selected and
the corresponding displacements are obtained for sequential POD analysis, which is
explained in section 4.3.2. As can be seen in Fig. 4.8, the NLROMs developed by
linear and dual modes have converged to the full-order solution in a similar manner
as the NLROM developed by VM and (S)MDs (Fig. 4.7).

Comparison of reduction bases

To further compare the performance of different bases, four NLROMs are developed,
with the same number of basis vectors in the reduction basis, as:
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(a) Transverse DOF of point A under 135 dB.
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(b) Membrane DOF of point B under 135 dB.
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(c) Transverse DOF of point A under 150 dB.
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(d) Membrane DOF of point B under 150 dB.

Figure 4.10: Relative error comparison for the flat beam’s NLROMs developed by 5VM-5SMD, 5VM-
5MD, 5VM-5Dual and 10VM with the full-order model and the linear reduced model (10VM). The relative
errors are obtained under two load cases of 135 dB and 150 dB SPLs.

• The first 10 linear vibration modes (NLROM-10VM).

• The first 5 linear vibration modes augmented with 5 dual modes (NLROM-5VM-
5Dual).

• The first 5 linear vibration modes augmented with 5 static modal derivatives
(NLROM-5VM-5SMD).

• The first 5 linear vibration modes augmented with 5 modal derivatives (NLROM-
5VM-5MD).

These NLROMs are compared with the full-order response and the linear ROM with
10 vibration modes (LROM-10VM). The PSD comparison of the transverse DOF of
point A and in-plane DOF of point B under two loading conditions with an average
SPL of 135 dB and 150 dB are shown in Fig 4.9. The maximum displacement for this
example (under 150 dB) is 2.7 times the thickness. This figure confirms the accu-
racy of the NLROMs based on MDs compared to other NLROMs for both transverse
and membrane DOFs, especially as the excitation level increases (see Figs. 4.9c and
4.9d). Additionally, the NLROM based on SMD has almost the same order of accu-
racy as the NLROM based on dual modes for transverse motion, while its accuracy for
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the membrane motion is higher than the NLROM based on dual modes. It should be
noted that if the NLROM based on dual modes is developed by only selecting those
modes and duals, which have the maximum contribution for this specific load distri-
bution (load-dependent), one can obtain excellent results for this NLROM as shown
in [114].
To better observe the improvement of the proposed method, the relative error for
the first half second (from the whole five seconds) of the time integrations used in
PSD computation of Fig. 4.9 are shown in Fig. 4.10 under both excitation levels for
transverse direction of point A (Fig. 4.10a and 4.10c), as well as in-plane direction of
point B (Fig. 4.10b and 4.10d). As can be seen from this figure, both SMDs and MDs
have reduced the relative error of the time signal for both directions, and the NLROM
based on MDs has the minimum relative error among other NLROMs. The total
number of generalized DOFs in the developed NLROMs to accurately represent the
full-order model in the whole range of 0−1000 Hz under different loading conditions
is only 10, which is approximately 6% of the total DOFs of the full-order model.

Computational costs

To compare the computational efficiency of the developed approach, the required
time to develop the NLROMs (offline cost) as well as the the required time to inte-
grate the NLROMs and full-order model (online costs) are compared for the simula-
tions used in Fig. 4.9. The offline computational cost comparison for building the
four NLROMs used in Fig. 4.9 are shown in Table 4.1. As can be seen from this
table, the accuracy achieved by (S)MDs does not increase the offline computational
costs for development of the NLROMs. Since the developed NLROMs are valid for a
variety of load cases with excitation frequency of 0− 800 Hz, the “one-time” offline
cost to compute the NLROMs is amortized when they are used for time simulations
under several loading conditions. Furthermore, the online computational costs for 5
seconds time integration of the NLROMs are compared with the full-order model in
Table 4.2. As can be seen, the required online time for all four NLROMs are in the
same order, because they all have the same number of the generalized DOFs. The
required time for integration of these models are approximately 172 times faster than
the full-order model, leading to highly efficient reduced models.

t

l

0.39l
l
2

AB

h

Figure 4.11: Schematic of the curved beam model.

Curved beam

The second example of this work is a curve beam structure, because it has been shown
in many works (see e.g. [19, 47, 150]) that it has a more complex nonlinear dynamic
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behavior than the flat beam due to the linear coupling between its transverse and in-
plane motion. The schematic of this model is depicted in Fig. 4.11 and its material,
geometry and mesh properties are illustrated in Table 4.3. The shape of the first
six VMs of the model is depicted in Fig. 4.12 for both transverse and membrane
directions. As shown in this figure, although these modes are transverse dominated,
their membrane motion is also nonzero, which is unlike the flat beam model (Fig.
4.4). Moreover, the first six SMDs of the curved beam is shown in Fig. 4.13. In
contrast to the SMDs of the flat beam (Fig. 4.5), these SMDs are not membrane-
dominated anymore due to the coupling between the linear modes.
To select the (S)MDs in the reduction basis of the NLROMs, the MMI criterion is used
for the first five modes. The (S)MD are then chosen according to the components
of the MMI matrix with maximum values. Since the convergence check analysis is
already performed for the flat beam, for the sake of brevity it is not repeated for the
curved beam.

Comparison of reduction bases

To compare the performance of the proposed approach, two random excitations with
SPLs of 158 dB and 168 dB are applied to the model for five seconds, and time
integrations are performed with similar conditions as the flat beam. The NLROM of
the curved beam model is developed using the following bases.

• The first 15 linear vibration modes (NLROM-15VM).

• The first 5 linear vibration modes augmented with 10 dual modes (NLROM-
5VM-10Dual).

• The first 5 linear vibration modes augmented with 10 static modal derivatives
(NLROM-5VM-10SMD).

• The first 5 linear vibration modes augmented with 10 modal derivatives (NLROM-
5VM-10MD).

These NLROMs are compared with the full-order model and the linear ROM using 15
VMs modes and under two mentioned excitations. Like the flat beam model, to obtain
the dual modes of each NLROM, 10 scaling factors α ranging from −2.5 to 2.5 are

Property (dimension) Value

Material
Mass density (kg/m3) 7870
Young’s modulus (GPa) 2.05× 1011

Poisson’s ratio 0.28

Geometry
l (mm) 400
h (mm) 12
t (mm) 2

FE model

Element-type Timoshenko (Abaqus B21)
Number of Elements 100
Number of DOFs 297

Table 4.3: Geometry, material and FE model properties of the shallow-curved beam model.
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Transverse motion
Axial motion

(a) ϕ1 : ω1 = 179.4 Hz

Transverse motion
Axial motion

(b) ϕ2 : ω2 = 298.6 Hz

Transverse motion
Axial motion

(c) ϕ3 : ω3 = 477.6 Hz

Transverse motion
Axial motion

(d) ϕ4 : ω4 = 582.1 Hz

Transverse motion
Axial motion

(e) ϕ5 : ω5 = 879.0 Hz

Transverse motion
Axial motion

(f) ϕ6 : ω6 = 1214.0 Hz

Figure 4.12: The first six vibration modes of the curved beam.

selected and the procedure explained in section 4.3.2 is performed. Fig. 4.15 shows
the PSD comparison of these models for the transverse direction of point A and axial
direction of point B (see Fig. 4.11) under the two mentioned excitation levels (the
maximum transverse and axial motion of the structure occurs near points A and B,
respectively). As can be seen, while the performance of NLROMs based on (S)MDs
are in the same order as the other ROMs for low level of excitation, for relatively
higher excitation level, the NLROM developed by MDs is more accurate than other
NLROMs developed by currently available bases for non-intrusive method, especially
for the membrane motion (Fig. 4.15d). This improvement can also be seen in Fig.
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Transverse motion
Axial motion

(a) θ11 =
∂ φ1
∂ q1

Transverse motion
Axial motion

(b) θ12 = θ21 =
∂ φ1
∂ q2

Transverse motion
Axial motion

(c) θ13 = θ31 =
∂ φ1
∂ q3

Transverse motion
Axial motion

(d) θ22 =
∂ φ2
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Transverse motion
Axial motion

(e) θ33 =
∂ φ3
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Transverse motion
Axial motion

(f) θ23 = θ32 =
∂ φ2
∂ q3

Figure 4.13: Transverse and in-plane displacements of the curved beam’s first six SMDs. The transverse
and in-place displacements have different scaling for visual reasons.

4.16, where the relative errors are shown for the first half seconds time responses that
are used to compute the PSDs of Fig. 4.15 in both transverse and axial directions of
points A and B, respectively. The maximum displacement for this example is 1.1 times
the thickness. Finally, one should note that the results obtained by these NLROMs can
be improved significantly if the NLROMs are developed in a load-dependent manner,
i.e., according to a specific load case, as for instance performed for dual modes in
[147], for the case of a curved beam.
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Figure 4.14: Maximum modal interaction matrix values for the curved beam model with five linear modes
in the basis. Since this matrix is symmetric, only the lower triangle is shown.

NLROM ED offline EED offline
time (sec.) time (min.)

NLROM-5VM-10Dual 5 3
NLROM-5VM-10SMD 5 2
NLROM-5VM-10MD 5 2

NLROM-15VM 4 1

Table 4.4: Offline computational time to develop the curved beam’s NLROMs, only for NSCs identifica-
tion part.

Computational costs

The offline computational costs to develop the investigated NLROMs by the proposed
bases ((S)MDs), as well as the currently available simulation-free bases (linear and
dual modes), are shown in Table 4.4. This table proves that the obtained results of the
proposed bases accompany no increase in the offline computational costs compared
to the NLROM developed by the dual modes. Furthermore, the online computational
costs for 5 seconds time integration of the NLROMs, as well as the full-order model
to obtain the results of Figs. 4.15c and 4.15d (under 168 dB SPL) are presented in
Table 4.5. The required time to integrate all the NLROMs are in the same order,
while they are at least 117 times faster than the full-order model. Furthermore, since
the developed NLROMs can be used for different loading conditions, the “one-time”
offline computational costs are amortized in case of using them in several loading
conditions.
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(b) Membrane DOF of point B under 158 dB.
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(c) Transverse DOF of point A under 168 dB.
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(d) Membrane DOF of point B under 168 dB

Figure 4.15: The curved beam’s PSD comparison for the NLROMs based on 5VM-5SMD, 5VM-5MD,
5VM-5Dual and 10VM with the full-order model and the linear reduced model (10VM). The PSDs are
obtained under two load cases of 158 dB and 168 dB SPLs.

4.4.2 Panel model

The last example of this chapter examines a panel structure, which is when dis-
cretized, of much larger dimensions than the first two beam examples. The model
of the plate, shown in Fig. 4.17, is built and analyzed in Abaqus. The structure is
simply supported at all edges (as shown by black lines in Fig. 4.17) and is meshed by
geometric nonlinear shell elements. The material, geometry and FE properties of this
model are outlined in Table 4.6. The Rayleigh damping coefficients for this structure
are set to α= 16.2 and β = 2.85×10−6. This choice leads to damping ratios less than
1% for all the modes in the frequency range of excitation. All the time integrations
for this example were performed with a constant time increment of 5× 10−5 s with
100, 000 time steps.
As done for the beam examples, the first six linear modes of the plate are plotted in
Fig. 4.18, while the six SMDs relative to the first three VMs are depicted in Fig. 4.19.
As can be seen, all of the SMDs shown are membrane-dominated modes. The MDs
are not shown, as their shapes are very similar to the SMDs. Furthermore, the MMI of
the linear reduced model with 11 linear vibration modes under a random excitation
is computed and shown in Fig. 4.20. Those (S)MDs, θi j (with their counterpart θ ji),



74 4 Displacement-based non-intrusive MOR

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Time (s)

10-1

100

101

102

103
R

el
at

iv
e 

er
ro

r 
(%

)
NLROM-15VM
NLROM-5VM-10Dual
NLROM-5T-10SMD
NLROM-5T-10MD
LROM-15VM

(a) Transverse DOF of point A under 158 dB.
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(b) Membrane DOF of point B under 158 dB.
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(c) Transverse DOF of point A under 168 dB.
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(d) Membrane DOF of point B under 168 dB.

Figure 4.16: Curved beam’s relative error comparison for the NLROMs developed by 5VM-10SMD,
5VM-10MD, 5VM-10Dual and 15VM with the full-order model and the linear reduced model (15VM). The
relative errors are obtained under two load cases of 158 dB and 168 dB SPLs.

are selected for the development of the NLROMs, based on the corresponding largest
components in the MMI matrix, which is obtained under a random excitation.

Convergence check

As done for the flat beam example, a convergence check analysis for the developed
NLROMs based on (S)MDs is performed to check the robustness of the proposed
approach. In this analysis, the PSDs of the NLROMs under the random loading con-
dition with average SPL level of 155 dB are computed while the number of linear
modes as well as (S)MDs are increased for the development of NLROMs. Figs. 4.21a
and 4.21c illustrate the PSDs of the NLROMs developed by SMDs for transverse and
membrane motions of points A and B, respectively. Likewise, Figs. 4.21b and 4.21d
depict the PSDs of the NLROMs based on MDs for the same points and same DOFs.
The PSDs of both transverse and membrane DOFs converge to the one of the full-
order solution by increasing the number of basis vectors in the NLROMs based on
both MD and SMD. These results confirm the convergence as well as robustness of
the proposed approach.
The same analysis is performed but this time for the NLROMs, which are developed
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Model online time (min.)
Full model 117

NLROM-5VM-10Dual 1
NLROM-5VM-10SMD 1
NLROM-5VM-10MD 1

NLROM-15VM 1

Table 4.5: Online time for time integration of curved beams’s NLROMs and full model for 5 seconds
under 168 dB load.
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Figure 4.17: The simply-supported panel model made of geometric nonlinear shell elements.

using different numbers of linear modes and dual modes in the basis, and the cor-
responding PSD results are shown in Fig. 4.22. To develop the dual modes for this
example 10 scaling factors α (see. Eqs. (4.22) and (4.23)) ranging from −2.5 to
2.5 are selected and the POD of their corresponding displacements are then ana-
lyzed. The NLROMs are improved by increasing the number of VMs as well as dual
modes in the basis, which confirms the convergence of the NLROMs developed by
this basis. To develop an accurate NLROM with less number of DOFs, one can select
only the VMs and duals, which are mostly relevant to a specific load case, as done
in [116]. However, the aim of this work is to compare different selection strategies
when modes are computed in a load-independent manner.

Comparison of the reduction bases

To further assess the efficiency of the proposed approach, four NLROMs with the
same number of basis vectors but built by different ingredients are developed as
follows:

• The first 22 linear vibration modes (NLROM-22VM).
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• The first 11 linear vibration modes augmented with 11 dual modes (NLROM-
11VM-11Dual).

• The first 11 linear vibration modes augmented with 11 static modal derivatives
(NLROM-11VM-11SMD).

• The first 11 linear vibration modes augmented with 11 modal derivatives (NLROM-
11VM-11MD).

The nonlinear response of these models under two different average SPL excitations
of 145 dB and 157 dB are obtained and compared with the ones of the full-order and
linear ROM (LROM-22VM) models. The PSD comparison of the transverse DOF of
point A for the two loading levels are depicted in Figs. 4.23a and 4.23c and for the
membrane DOF of point B are shown in Figs. 4.23b and 4.23d, respectively. The
maximum displacement here is 0.8 times the thickness. As can be seen from these
figures, for both excitation levels and in both transverse and membrane directions,
the proposed NLROMs based on (S)MDs are accurately following the full model’s
response. Note that all of the bases in this work are selected in a load-independent
manner, which means that the developed NLROMs can be used for a variety of load
distributions. Furthermore, Fig. 4.24 shows the relative error of the first half second
of time responses, which are used to compute the PSDs of Fig. 4.23. In this figure,
it is discernible that the relative error of the NLROM developed by MDs is smaller
than the NLROMs developed by other bases. The results obtained for this example
show that combining non-intrusive nonlinear model reduction methods and modal
derivatives allows building accurate NLROMs..

Computational costs

The last study for this example is evaluation of the computational costs for the pro-
posed NLROMs and comparison of it with other bases. Therefore, as a sample, the
required offline time to develop the NLROMs used in Fig. 4.23 are computed and
listed in Table 4.7. One can note that the offline computational time of the pro-
posed NLROMs with (S)MDs are not more than the previous methods. This result
together with the one displayed in Fig. 4.23, implies that while the accuracy of the
NLROMs with the proposed bases have been improved, there is no increase in offline
computational costs for the development of the NLROMs.

Property (dimension) Value

Material
Mass density (kg/m3) 7870
Young’s modulus (GPa) 2.05× 1011

Poisson’s ratio 0.28

Geometry
l (mm) 800
w (mm) 400
t (mm) 2

FE model

Element-type Shell 4-node (Abaqus S4R)
Number of Elements 3200
Number of DOFs 19202

Table 4.6: Geometry, material and FE model properties of the investigated panel model.
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(a) ϕ1 : ω1 = 150.5 Hz (b) ϕ2 : ω2 = 240.6 Hz

(c) ϕ3 : ω3 = 391.2 Hz
(d) ϕ4 : ω4 = 513.1 Hz

(e) ϕ5 : ω5 = 602.6 Hz (f) ϕ6 : ω6 = 602.6 Hz

Figure 4.18: The first six vibration modes of the panel structure.

NLROM ED offline time EED offline time
time (min.) time (min.)

NLROM-11VM-11Dual 193 127
NLROM-11VM-11SMD 78 29
NLROM-11VM-11MD 80 30

NLROM-22VM 91 26

Table 4.7: Offline computational time for development of the panel’s NLROMs, only for NSCs identifica-
tion part.

Furthermore, Table 4.8 reports the required online time for 5 seconds time integra-
tion of the NLROMs compared to the full-order model. Although the full model is
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(a) θ11 =
∂ φ1
∂ q1

(b) θ12 = θ21 =
∂ φ1
∂ q2

(c) θ13 = θ31 =
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(d) θ22 =
∂ φ2
∂ q2

(e) θ33 =
∂ φ3
∂ q3

(f) θ23 = θ32 =
∂ φ2
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Figure 4.19: The first six SMDs shown for the panel structure, which are in-plane dominated.

Model online time (min.)
Full model 971

NLROM-11VM-11Dual 14
NLROM-11VM-11SMD 14
NLROM-11VM-11MD 14

NLROM-22VM 14

Table 4.8: Online time for time integration of the panel’s NLROMs and full model for 5 seconds under
157 dB load.

integrated in Abaqus, which usually uses optimized algorithms and NLROMs are in-
tegrated in a research code in MATLAB, the online computational cost for NLROMs
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Figure 4.20: Maximum modal interaction matrix values for the panel structure with eleven linear modes
in the basis. Since this matrix is symmetric, only the lower triangle is shown.

are at least 69 times faster than the full-model.

4.5 Remarks on displacement-based non-intrusive MOR

As discussed in section 7.4, nonlinear reduced-order models using non-intrusive
methods with the proposed basis can improve the accuracy in NLROMs under the
defined load-independent conditions. However, there are still some challenges in
this context, which can direct future research. Some of these challenges are outlined
here:

• While augmentation of the reduction basis with the non-intrusive (S)MDs al-
lows building accurate NLROMs, the resulting size of the generated NLROMs
increases significantly. One possibility is to resort on nonlinear projection (e.g.
quadratic manifolds, see [63, 64]), which enslave modal derivatives (or the
like) to dominant vibration modes, implemented non-intrusively.

• For our investigated examples, it has been observed that the NLROMs devel-
oped by the ED method using VMs with either dual modes or (S)MDs, always
deliver stable time integration results. However, when the EED method of Perez
et al. [116] is used with Abaqus static solutions, sometimes instabilities occur
in the time integration of the resulting NLROMs. This can be due to inaccura-
cies induced by identifying NSCs with the tangent stiffness matrix (instead of
reaction forces in ED) exported from Abaqus. This problem might be solved by
using a “cleaning” procedure demonstrated in [115].
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(a) Transverse DOF of A, NLROMs developed by SMDs.
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(b) Transverse DOF of A, NLROMs developed by MDs.
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(c) Membrane DOF of B, NLROMs developed by SMDs.
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(d) Membrane DOF of B, NLROMs developed by MDs.

Figure 4.21: The panel’s PSDs for convergence check of transverse and in-plane directions of the points
A and B, respectively, under 155 dB SPL. The panel’s NLROMs are developed using linear modes
augmented once with SMDs and then with MDs.
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(a) Transverse DOF of A, NLROMs developed by dual
modes
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(b) Membrane DOF of B, NLROMs developed by dual
modes

Figure 4.22: The panel’s PSDs for convergence check of transverse and in-plane directions of points
A and B, respectively, under 155 dB SPL. The NLROMs are developed using linear modes augmented
with dual modes.
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(a) Transverse DOF of point A under 145 dB.
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(b) Membrane DOF of point B under 145 dB.
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(c) Transverse DOF of point A under 157 dB.
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(d) Membrane DOF of point B under 157 dB.

Figure 4.23: The panel’s PSDs comparison for the NLROMs developed by 11VM-11SMD, 11VM-11MD,
11VM-11Dual and 22VM with the full-order model and the linear reduced model (22VM). The PSDs are
obtained under two load cases of 145 dB 157 dB SPL.

4.6 summary

We propose the use of modal derivatives for the improvement of non-intrusive Model
Order Reduction (MOR) of geometrically nonlinear structures. The main advantage
of the non-intrusive MOR is that a Nonlinear Reduced Order Model (NLROM) can
be developed without having to access nonlinear element formulations of a model.
This advantage enables engineers to develop their models in commercial software
and simultaneously take the advantage of MOR. However, one of the bottlenecks of
the non-intrusive ROM techniques is selection of a proper reduction basis to accu-
rately identify Nonlinear Stiffness Coefficients (NSCs) of the NLROM. This is because
the NSCs are identified based on imposition of a series of nonlinear static displace-
ment inputs to the FE package, which are built from the reduction basis. This basis
has to capture the most important nonlinear interaction between the modes and also
be computed easily. The current available basis vectors in non-intrusive approach
include linear vibration modes and dual modes [76, 98, 116]. In this work, we pro-
pose augmenting the linear modes with the non-intrusive Modal Derivatives (MDs).
We have presented a non-intrusive formulation to compute the MDs for two cases
that the underlying FE package releases either tangent stiffness matrix or nonlin-
ear reaction forces due to a nonlinear static displacement. Furthermore, we intro-
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(a) Transverse DOF of point A under 145 dB.
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(b) Membrane DOF of point B under 145 dB.
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(c) Transverse DOF of point A under 157 dB.
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(d) Membrane DOF of point B under 157 dB.

Figure 4.24: The panel’s relative error comparison for NLROMs developed by 11VM-11SMD, 11VM-
11MD, 11VM-11Dual and 22VM with the full-order model and the linear reduced model (22VM). The
relative errors are obtained under two load cases of 145 dB 155 dB SPLs.

duced a systematic way to select the modal derivatives such that they are chosen in a
load-independent manner. This is unlike the dual modes, which are usually selected
according to the loading conditions of the system. We have applied the proposed
method on three geometrically nonlinear structures with beam and shell elements,
and compared the nonlinear random responses of the proposed NLROM under dif-
ferent excitations levels with the NLROMs that are developed with available bases
and the full-order model. The results show the high accuracy of the proposed basis
compared to the other methods. This improvement is achieved without increasing
the online and offline computational costs, neither for the computation of the basis
nor for identification of NSCs.



Chapter 5

Evaluation and comparison of non-intrusive NLROMs

In this chapter we compare the accuracy as well as computational efficiency of the
non-intrusive ROM approaches discussed in Chapters 3 and 4. We then discuss the
cases, where each of the methods is more efficient to be employed for NLROM devel-
opment. To start with the comparison of the methods, let us analyze the number of
nonlinear static solutions versus the dimension of the NLROMs, which are required
for ICE, ED or EED, regardless of their accuracy. Fig. 5.1 depicts the comparison
of these three methods. As can be seen from this figure, for the same number of
generalized coordinates in the NLROM, ICE requires the highest number of static so-
lutions, while EED needs much less static solutions. This is due to the fact that EED
uses TS matrices instead of displacements to identify nonlinear stiffness coefficients.
However, it should be noted that the number of required modes to build an accurate
NLROM by ED and EED is more (usually twice) than the number of the modes to
build it with ICE. Nevertheless, it can be stated that to generate an NLROM with a
large number of modes, EED has the least computational cost.
Furthermore, to assess the accuracy of the discussed MOR methods, they are applied
here to two geometric nonlinear FE models, a shallow-curved and a deep-curved
beam, and their results are compared. For flat structures it is already shown in Chap-
ters 3 and 4 that both methods can accurately approximate the full-order response.
However, ICE only needs linear transverse VMs to deliver an accurate NLROM, in
contrast to the (E)ED method that requires also dual modes or (S)MDs. Therefore,
for flat structures, ICE has a more compact NLROM compared to (E)ED.

Property (dimension) Value

Material
Mass density (kg/m3) 7870
Young’s modulus (GPa) 2.05× 1011

Poisson’s ratio 0.28

Geometry
l (mm) 800
h (mm) 200
t (mm) 4

FE model

Element-type Timoshenko (Abaqus B21)
Number of Elements 80
Number of DOFs 237

Table 5.1: Geometry, material and FE model properties of the deep-curved beam model

83
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Figure 5.1: Comparison of the required number of nonlinear static solutions versus the number of kept
modes for the ICE, ED and EED methods.
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Figure 5.2: Schematic of the FE model of the shallow-curved and deep-curved beam structures.

5.1 Examples

In this section we compare the three non-intrusive methods introduced in Chapters
3 and 4 by applying them to a shallow-curved and a deep-curved structure.
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(a) Displacement in y direction under 1 N
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(b) Displacement in x direction under 1 N
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(c) Displacement in y direction under 2.5 N
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(d) Displacement in x direction under 2.5 N

Figure 5.3: Deformation of the shallow-curved beam in x and y directions under two uniform distributed
static loads in y direction, with intensities of 1 N and 2.5 N. The loads are applied to all nodes.

5.1.1 Shallow-curved model

The first example is the shallow-curved beam shown in Fig. 5.2a. The material,
geometry and mesh properties of this structure are illustrated in Table 4.3. Three
NLROMs with the following reduction bases as well as methods are developed for
this model:

• 5 VMs in addition to 10 MDs combined with ED (ED-5VM-10MD).

• 5 VMs in addition to 10 MDs combined with EED (EED-5VM-10MD).

• 10 VMs combined with ICE (ICE-10VM).

Two static uniform distributed loads in y direction with weak and strong intensi-
ties (1 N and 2.5 N) are applied to the structure. The responses of the developed
NLROMs under both load cases are compared with the full model as well as the lin-
earized model (linear full model), in both x and y directions and shown in Fig. 5.3.
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(a) Displacement in y direction under 8 N
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(b) Displacement in x direction under 8 N

10 20 30 40 50 60 70 80

Node number

-2

-1

0

1

2

3

4

D
is

pl
ac

em
en

t (
m

)

10-3

Full model
ED-5VM-10MD
EED-5VM-10MD
ICE-15VM
LROM-15-VM

(c) Displacement in y direction under 20 N
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(d) Displacement in x direction under 20 N

Figure 5.4: Deformation of the deep-curved beam in x and y directions under two uniform distributed
static loads in y direction, with intensities of 8 N and 20 N. The loads are applied to all nodes.

For the case of weak nonlinearity (Fig. 5.3a and 5.3b), all the developed NLROMs
exhibit acceptable results, although the ICE and ED are more accurate than EED in
both directions. However, for the strong level of nonlinearity (Fig. 5.3c and 5.3d),
EED is totally inaccurate and ED and ICE both represent very accurate deformations
compared to the full model response and in both directions. Since, the ED and EED
are mathematically equivalent methods, the poor results of the EED for strong non-
linearity can be because of the inaccuracies induced by Abaqus while exporting TS
instead of restoring forces and very few utilized static solutions that cannot cancel
out some of these inaccuracies.
Furthermore, it should be noted that the NLROM developed by ED contains 15 DOFs,
whereas the NLROM developed by ICE comprises 10 DOFs with a similar accuracy
as ED, which is the advantage if ICE. However, it is discussed in [150] that when
a shallow curved structure is under combined loading conditions (e.g. acoustic and
thermal), the expansion part of ICE method does not work accurately anymore. This
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is because the assumption of ICE method, which is a quadratic relation between
transverse-membrane generalized coordinates is not fulfilled. In these case our pro-
posed methods, namely ED with (S)MDs can be used.

5.1.2 Deep-curved model

The second example of this chapter comprise a deep-curved structure as shown in
Fig. 5.2b. The material, geometry and mesh properties of the model are detailed
in Table 5.1. The importance of considering such a structure comes from the fact
that the assumption of quadratic relation in transverse-membrane generalized coor-
dinate, explained in Nash [104] for flat and shallow-curved structures, does not apply
anymore. Therefore, it is interesting to observe the ability of different non-intrusive
methods to capture the response of such structures accurately.
To evaluate the performance of different non-intrusive methods on this structure, the
following NLROMs with the same number of generalized coordinates are developed
for the model as

• 5 VMs in addition to 10 MDs combined with ED (ED-5VM-10MD).

• 5 VMs in addition to 10 MDs combined with EED (EED-5VM-10MD).

• 15 VMs combined with ICE (ICE-15VM).

It should be noted that to develop the NLROM for this example with ICE, the corre-
sponding scaling factors are scaled down such that the nonlinear static solutions for
NCSs identification converge to a solution.
Two uniform distributed static loads in y direction with intensity of 8 and 20 N, which
activate weak and strong geometric nonlinearity, respectively, are applied to the NL-
ROMs. The response of these NLROMs are compared with the full model and the
linearized model in x and y directions and depicted in Fig. 5.4. For the low level of
nonlinearity, all the methods can accurately track the full model response, although
ICE and ED deliver more accurate results than EED. However, for the strong level of
nonlinearity, the only NLROM that can accurately represent the full model response
is obtained by ED. This means that the most robust non-intrusive method, which can
accurately predict the response of the full model for different structures and under
different loading conditions is the ED method combined with modal derivatives.
Moreover, the number of required static solutions to develop each NLROM with dif-
ferent sizes is demonstrated in Table 5.2. As can be seen from this table, although the
EED method uses much less static solutions than ICE, the NLROM based on EED rep-
resents more accurate results than ICE in x direction. (Fig. 5.4d). This is due to the
aforementioned assumption of ICE to approximate the in-plane motion of structures,
which does not apply here.

5.2 Concluding remarks on non-intrusive ROM methods

From the results outlined in the Part I of this dissertation, the following remarks can
be concluded
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NLROM’s DOFs EED ED ICE
5 20 50 130

10 65 275 1160
15 135 800 4090

Table 5.2: The number of required nonlinear static solutions for each non-intrusive ROM method to
develop NLROMs with different DOFs.

• Non-intrusive model order reduction is a powerful tool to strongly reduce the
computational burden of FE models that are developed in commercial FE pack-
ages. Besides, an NLROM can be developed by a non-intrusive method such
that it is valid for a range of load cases in a broadband frequency, which makes
the offline costs reasonable.

• For the case of flat and shallow-curved structures, ICE delivers a more compact
model than (E)ED, due to the fact that it can develop an accurate NLROM by
only using linear VMs. However, since the number of nonlinear static solutions
is a cubic function of the number of the reduced DOFs for ICE (also for ED),
its offline computational cost becomes expensive when too many modes must
be taken in the reduction basis. In this case, the EED method could be used, at
least if the level of nonlinearity is relatively low.

• For MOR of deep-curved structures, the only method that exhibits very accurate
results in weak and strong nonlinearity, is the ED method combined with modal
derivatives.

• In case of curved-structures under combined loading conditions, the expan-
sion procedure of ICE method does not work as explained in [150], due to
its quadratic relation assumption between transverse-membrane coordinates to
approximate the in-plane motion. For this case, we propose to employ the ED
method combined with non-intrusive modal derivatives, because it is a general
method that does not have the restrictive assumption of ICE.

• It is observed during the time integrations with different non-intrusive ROMs
that the ED and ICE methods with different reduction bases always result in
stable time integrations. However, sometimes instabilities occur while integrat-
ing the NLROMs developed by EED. In this cases, either a new NLROM with
different number of VMs as well as (S)MDs can be developed and tested or
other non-intrusive methods should be used if exactly a certain combination of
modes is desired.

• For a large nonlinear structure with several components developed in a com-
mercial software, it is very cumbersome to reduce the FE model monolithically.
Instead, non-intrusive MOR methods should be combined with dynamic sub-
structuring approaches (e.g. see [67, 68, 85, 164]) to facilitate model reduction
and parallel computation. This will be investigated in Part II if this dissertation.
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5.3 Summary

In this Chapter, we compare the available non-intrusive MOR techniques in terms of
accuracy and computational efficiency. We first give an insight into the offline com-
putational costs of each method by comparing their required number of nonlinear
static solutions. Afterwards, we apply the non-intrusive methods to two geomet-
ric nonlinear structures under different loading conditions, which activate weak and
strong nonlinearity of the models. We then discuss the advantages and disadvan-
tages of each method when employed for different types of structures. We show that
the most robust method to deliver accurate results for different structures under a
variety of loading levels is the ED method combined with modal derivatives. Finally,
we draw the concluding results for non-intrusive model order reduction of nonlinear
structures.





Part II

Nonlinear dynamic substructuring
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Chapter 6

Common linear substructuring methods: primal as-
sembly

This chapter is extracted from the author’s publication in [65]. In this article, Karamooz
had the idea of the work and performed the literature review. Karamooz implemented a
considerable part of the work and wrote the manuscript. Xu conducted the primary part
of numerical studies and discussed the work. Bartl, Tiso and Rixen gave very useful in-
puts in the discussions of the work and proof-read the article. Rixen supervised the work.

6.1 Introduction

In this chapter, we study three common CMS methods that will be further extended
to nonlinear substructuring. We review one fixed-interface CMS method, known as
Hurty/Craig-Bampton (HCB) and two free-interface ones, which we call Goldman-
Hou (GH) and MacNeal/Rubin-Martinez (MRM). These methods are widely studied
in the literature (e.g. see [27–29]).
The classical CMS methods do not reduced interfaces of substructures while reduc-
ing the model of each substructure. However, interface reduction becomes necessary
when several DOFs exist at the connecting surfaces of substructures to deliver com-
pact linear and nonlinear ROMs. Therefore, we investigate three Interface Reduction
(IR) techniques, which have been mostly used so far for fixed-interface CMS. These
IR techniques comprise one system level (after substructures assembly) and two local
level (before substructures assembly) methods. We then apply these IR methods to
free-interface CMS and show that the accuracy of the free-interface method with IR
is better than the accuracy of the fixed-interface method with IR.
Finally, we apply the presented methods in this chapter to two numerical examples
and compare the results of free- and fixed- interface methods.

6.2 Fixed-interface method

The first CMS method in the field of finite element analysis is the fixed-interface mode
method developed by Hurty [58]. This method, which contains rigid-body modes,
constraint modes and fixed interface modes, was modified by Craig and Bampton
[26]. They realized that if the constraint modes for all boundary DOFs are calculated
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in the reduction basis, rigid-body modes are not required to be inserted in the basis.
Before starting with the introduction of the component modes, it is usual to split the
substructures’ DOFs into a set of master DOFs, ub (which are the boundary DOFs)
and slave DOFs, ui (which represent the internal DOFs). The set of the system’s
displacement vector can then be rearranged as

u =
�

ui

ub

�

. (6.1)

Introducing Eq. (6.1) into the governing equation (2.20), the EOM in the rearranged
form reads:
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+
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�
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(6.2)

It should be noted that the connecting forces of the substructure, g are added to Eq
(2.20), which are non-zero for the interface DOFs only. To present the linear CMS
methods, the damping and nonlinear terms in Eq. (6.2) are omitted in this chapter.
The modes required in the HCB basis are outlined below.

Fixed interface normal modes

As the name expresses, the fixed interface modes are the vibration modes of a sub-
structure when all boundary DOFs are constrained. The EOM for a constrained lin-
earized problem gives

Mii üi + K iiui = 0. (6.3)

Accordingly, the fixed interface mode matrix ΦF M is defined as the matrix that con-
tains the eigenvectors of the following eigenvalue problem in its columns

(K ii −ω2
F M , j Mii)ϕF M , j = 0, (6.4)

where ωF M , j and ϕF M , j are the j th fixed-interface eigenfrequency and VM of the sub-
structure, respectively. The fixed interface mode matrix is then mass-normalized to
be used in the HCB transformation matrix.

Constraint Modes

The Constraint Modes are defined as the static deflection of the internal DOFs of a
substructure, if a unit displacement is enforced on each of the boundary DOFs while
all other boundary DOFs remain fixed. According to this definition, the (linearized)
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Eq. (6.2) can be written in the following form to obtain the constraint modes (as
they are static modes, the inertia terms are omitted):

�

K ii K i b

K bi K bb

��

Ψ i b

Ibb

�

=
�

0i b

Fbb

�

, (6.5)

where, Ibb is the identity matrix and Fbb is the reaction force matrix corresponding to
the fixed interface DOFs. Now, the constraint modes matrix can be given by

ΨC M =
�

Ψ i b

Ibb

�

. (6.6)

In order to obtain the unknown matrix Ψ i b in Eq. (6.6), the first line of Eq. (6.5) is
solved, giving

ΨC M =
�

Ψ i b

Ibb

�

=
�

−K−1
ii K i b

Ibb

�

. (6.7)

6.2.1 Hurty/Craig-Bampton basis

Craig and Bampton (CB) [26] described the motion of internal DOFs of a substruc-
ture as a superposition of a truncated number of fixed interface normal modes and
constraint modes while keeping all the boundary DOFs in the reduction basis, namely

ui ≈ ΨC Mi
xb +ΦF Mi

qF M , (6.8)

where the subscript i denotes the components of the matrices corresponding to the
internal DOFs and qF M is the vector of the fixed-interface modes’ generalized coor-
dinates. Therefore, the HCB transformation matrix is written as

�

ui

ub

�

=
�

ΦF M ΨC M

0 Ibb

��

qF M

ub

�

= TCB

�

qF M

ub

�

, (6.9)

for a linear structure. Keuther et al. [84] used the HCB transformation matrix in
the nonlinear substructuring. In fact, they reduced the linear mass and stiffness of
substructures using the HCB basis. Afterwards, they used the HCB basis in the ICE
method (Chapter 7) to identify the nonlinear stiffness coefficients of each substruc-
ture. We propose here a free-interface-based reduction basis with interface reduction
for nonlinear substructuring using ICE.
Once the nonlinear substructures are developed, the localization matrix can be formed
to couple the substructures, which is the same for linear and nonlinear structuring
(see section 6.5). If the system is composed of two substructures, S1 and S2 (for
instance as shown in Fig. 6.3), the assembly expression is given by
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where, LHCB is called the HCB localization matrix.

6.3 Free-interface mode methods

An alternative to build up the reduction basis is the free-interface mode method.
The first free-interface methods were proposed by Goldman [45] and Hou [56].
Both methods employ free-interface elastic modes as well as rigid-body modes in
the reduction basis for substructures, but the ways they coupled the substructures
were different. While the free-interface method of Gordon and Hou (we call it the
Gordon-Hou (GH) method here) construct the basis by computing the natural vibra-
tion modes of substructures, without imposing additional constraints to them (which
is compatible to the experimental test), their accuracy is much lower than the fixed-
interface mode methods. Kuether et al. [84] extended this method to nonlinear
substructuring and showed that its performance is inferior to their developed nonlin-
ear substructuring based on HCB method.
The free-interface method was augmented with the so-called attachment modes by
MacNeal [88] and further modified by Rubin [135]. It is shown in many studies (see
e.g. [27, 29], also in this chapter) that the augmented free-interface mode method
performs remarkably better than the GH method and occasionally superior to the
HCB method. In this work, we develop the augmented free-interface method for
nonlinear substructuring and compare it to nonlinear GH and HCB substructuring
developed in [84]. Next, the original and augmented free-interface mode methods
are outlined.
To start with the introduction of free-interface mode methods, it is convenient to split
the boundary DOFs, b, of each substructure into the rigid body DOFs set r, and the
remaining boundary DOFs sets (or excess DOFs) e, with b = r + e. The set r is a
chain of DOFs that render the substructure exactly statically determined when they
are fixed. Therefore, the Eq. (6.2) can be rewritten as
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(6.11)

The component modes used in free-interface methods are illustrated first.

Free-interface normal modes

The component normal modes of a system are obtained by solving an eigenvalue
problem comprising the whole mass and stiffness matrices of the system or just a
part of them, depending on the fixing of all, some or none of interface DOFs. The
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free-interface normal modes of a system are achieved when all connecting DOFs (not
the boundary conditions) in a substructure are let to move freely. Therefore, one can
write the eigenvalue problem for the j th free-interface mode as

(K −ω2
f ree, j M)ϕ f ree, j = 0 (6.12)

where ω f ree, j and ϕ f ree, j are the j th free-interface eigenfrequency and normal mode,
respectively. The normal modes are usually normalized with respect to the mass
matrix of the system. In other words, the modes are scaled such that

ΦT
f reeMΦ f ree = I , ΦT

f ree KΦ f ree = Λ f ree = diag(ω2
f ree,1,ω2

f ree,2, ...,ω2
f ree,n−r) (6.13)

Here, the matrix of free-interface normal modes is denoted by Φ f ree, which contains
the n− r normal modes of the system in its columns; I is an (n− r)× (n− r) identity
matrix with ones in its diagonal components; and Λ f ree is a diagonal matrix including
the square of the eigenfrequencies in its diagonals.

Rigid body modes

Rigid Body Modes (RBMs) are a special type of normal modes that result in rigid
displacement of a system while no deformation is induced in the structure. In other
words, the system is imposed to a rigid body motion when applying RBMs to the
system. Since there is no deformation in the system due to RBMs, the vibration
frequencies corresponding to RBMs are zero.
According to the definition of RBMs, they are the normal modes in the system that
produce no deformation. Therefore, one may write (for the linearized problem)

KΦRB = 0, (6.14)

where ΦRB is a matrix whose columns are the RBMs. One can compute the RBMs geo-
metrically or alternatively obtain them as the eigenvectors of the eigenvalue problem
of the free-substructures when the eigenfrequencies of the structure are zero. They
can also be obtained by computing the null space of the stiffness matrix K in Eq.
(6.14), as explained in [25, 44].

Attachment modes and residual flexibility attachment modes

A so-called attachment mode is a static deflection of a substructure when a unit force
is imposed on one of the m boundary (or master) DOFs while all other boundary
DOFs are left force free. If a substructure is constrained such that it has no rigid
body modes, the attachment modes are simply the columns of the flexibility matrix
(inverse of the stiffness matrix) of the substructure corresponding to the boundary
nodes. However, the difficulty in the computation of the attachment modes arises
when the substructure is not fully constrained and rigid body modes exist in the
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system. In the latter case, the stiffness matrix K is singular and in order to compute
the attachment modes, it is usually not possible to apply a unit force to the system
because of the rigid motion in the system. One way to compute the attachment
modes in the presence of the rigid body modes is to constrain (fix) a set of r DOFs
that prevent rigid body motions in the system, and applying a unit force on the
remaining master DOFs to compute the cantilever attachment modes as explained in
[44, 52].
Alternatively, one can compute the so-called inertia-relief attachment modes when a
substructure contains rigid body motions, which is first used by MacNeal [88] and
Rubin [135]. The inertial relief modes are generated when the original force vector
applied to the system is equilibrated by the rigid body mode. In other words, the
original force vector f is projected out of the space of rigid body modes by subtracting
the rigid body d’Alembert force vector from it. The inertial-relief attachment mode
(or elastic flexibility) matrix, Ge, can then be defined as [27, 28]

Ge = PIR
T GcPIR, (6.15)

where

PIR = I −MΦRB(ΦRB
T MΦRB)

−1ΦRB
T , (6.16)

is called the inertia-relief projection matrix, and

Gc =





Gii Gie 0ir

Gei Gee 0er

0ri 0re 0r r



= K+, (6.17)

is the cantilever flexibility (or generalized inverse) matrix. Moreover, it can be shown
that an alternative form of the elastic flexibility matrix is given by

Ge = Φ f reeΛ f ree
(−1)Φ f ree

T =
n−r
∑

j=1

φ(s)f ree , j
(φ(s)f ree, j)

T

ω2
j

. (6.18)

This form of elastic flexibility matrix is useful to compute the residual flexibility ma-
trix.
As mentioned before, one of the aims of CMS methods is the reduction of the model
of substructures. Therefore, the whole normal modes of a substructure are truncated
to a reduced number of kept modes Φk, which depend on the frequency range of
interest or cutoff frequency. In this case, to keep at least the static completeness of
the reduced model, the contribution of the set of deleted modes of Φk in the flexibility
matrix is retained. This contribution is called residual flexibility modes, denoted by
GRF . Since the deleted modes are usually not desired to be computed, the residual
flexibility modes are obtained by subtracting the contribution of the kept modes from
the whole elastic flexibility matrix, that is

GRF = Ge −ΦkΛk
(−1)Φk

T (6.19)
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Accordingly, the Residual Flexibility Attachment (RFA) modes are achieved when a
unit force is applied to each of the master (boundary) DOFs, given by

ΨRFA = GRF f = (Ge −
n−m
∑

j=1

φ f ree, j(φ
(s)
f ree, j)

T

ω2
j

) f , (6.20)

where, according to the definition of RFA modes, the force vector f is defined as

f =





0ie

Iee

0re



, (6.21)

and ΨRFA denotes the residual flexibility attachment modes matrix.

6.3.1 Goldman-Hou basis

The displacement of a system by the method of Goldman-Hou (GM) [45, 56] is
approximated as a superposition of r rigid body modes and a truncated set of free-
interface modes:

u ≈ ΦRBqRB +Φ f reeq f ree, (6.22)

where, qRB and q f ree are the vectors of generalized coordinates for rigid body modes
and free-interface modes, respectively. It should be noted that unlike the HCB method,
the method of Hou reduces both internal and interface DOFs in its definition. Accord-
ingly, the transformation matrix is given by

�

ui

ub

�

=
�

ΦRB Φ f ree

�

�

qRB

q f ree

�

= TGH

�

qRB

q f ree

�

. (6.23)

The advantage of this method is that it does not require any augmented static modes
(e.g. the constraint modes). However, it is shown that the accuracy of this method
is far less than the methods that use static augmentations. Keuther et al. [84] ex-
tended this method for nonlinear substructuring and showed it is inferior compared
to the nonlinear HCB method. Since, the boundary DOFs are not conserved in the
physical domain as for the HCB method, the localization matrix for the assembly
cannot be obtained in the form of Eq. (6.10), which is exact compatibility. Instead,
a weak interface compatibility must be satisfied by solving for the null space of the
compatibility condition in modal domain,

BT U
GH

︸ ︷︷ ︸

Bm

qU ≈ 0, (6.24)

where, B is the signed Boolean matrix, T U
GH contains the GH reduction basis set of

all substructures in block diagonal form and Bm is the transformed Boolean matrix
in modal domain. The uncoupled set of generalized coordinates are denoted by qU .
The null space of Bm in general does not exist. Therefore the null space of Bm can be
approximated by computing its Singular Value Decomposition (SVD) and taking the
right singular vectors corresponding to the smallest singular values, in the null space
matrix, Lm. This will be explained more in section (6.4.2).
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6.3.2 Augmented free-interface: MacNeal/Rubin-Martinez basis

The method of Goldman-Hou failed to approximate the effect of truncated modes
in the system due to interface forces. MacNeal [88] developed the Goldman-Hou
method by introducing the attachment modes in the reduction, but only for the stiff-
ness matrix of each substructure, which makes his method inconsistent. Rubin [135]
defined the residual flexibility modes by modifying the attachment modes. He ex-
tended the method of MacNeal by consistently reducing both the mass and stiffness
matrices. However, he failed to show that his method is based on the Rayleigh-
Ritz procedure. Craig and Chang [27, 30] proved that the augmented free-interface
method from MacNeal and Rubin can be derived as a Rayleigh-Ritz approach. They
also introduced a generalized procedure for the coupling of the reduced substruc-
tures, facilitating the substructuring with augmented free-interface methods. Mar-
tinez et al. [91, 92] proposed a transformation matrix for the augmented free-
interface mode method in the same format as the HCB transformation matrix. Here,
this method is referred to as the MacNeal/Rubin-Martinez (MRM) method. Many
authors (e.g. see [27, 92]) have shown that the MRM method represents the best ac-
curacy among all free-interface CMS methods. Subsequently, we explain this method
and develop it for nonlinear modal substructuring.
To develop a statically complete free-interface method, such as the MRM method, the
motion of the system is approximated as a superposition of truncated free-interface
normal modes, rigid body modes and residual flexibility attachment modes:

u ≈ ΦRB qRB +Φ f ree q f ree +ΨRFA g . (6.25)

The residual flexibility modes are in fact the static deflection of the truncated modes
due to interface forces induced by neighboring substructures. In order to provide a
transformation matrix in the format of the HCB method, the interface force vector,
g , has to be computed in terms of the interface displacement vector ub. This can be
achieved by introducing a Boolean matrix, A1 for each substructure such that when
it premultiplies Eq. (6.25), it gives the components of all matrices corresponding to
the boundary DOFs:

A1u = ub ≈ ΦRB,b qRB +Φ f ree,b q f ree +ΨRFA,b g . (6.26)

The matrix A1 (b × n) contains zeros in those elements that are multiplied to the
components of internal DOFs and ones in the elements that are multiplied to the
components of boundary DOFs. The subscript b, denotes the elements of the matrices
for the boundary DOFs. Eq. (6.26) is then solved for g , giving

g ≈ Ψ−1
RFA,b(ub −ΦRB,b qRB −Φ f ree,b q f ree). (6.27)

The Eq. (6.27) is afterwards introduced to Eq. (6.25) to obtain the approximated
displacement in terms of physical and modal displacements. However, only the part
of the approximated displacement is required that corresponds to the internal DOFs,
because the interface DOFs remain unchanged in the physical domain. Therefore, a
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Boolean matrix A2 is defined such that it selects all the components of matrices corre-
sponding to the internal DOFs. This matrix is then pre-multiplied by the displacement
vector to give the final expression for the approximation of internal DOFs

A2u = ui ≈ΨRFA,iΨ
−1
RFA,bub + (ΦRB,i −ΨRFA,iΨ

−1
RFA,bΦRB,b)qRB+

(Φ f ree,i −ΨRFA,iΨ
−1
RFA,bΦ f ree,b)q f ree,

(6.28)

where the subscript i denotes the elements of the matrices with respect to the internal
DOFs. Finally, using Eq. (6.28), the transformation matrix for the augmented free-
interface mode method is obtained by

u =
�

ui

ub

�

≈ TMRM





q f ree

qRB

ub



 , (6.29)

where TMRM is called the MacNeal/Rubin-Martinez transformation matrix here, and
reads

TMRM =

�

Φ f ree,i −ΨRFA,iΨ
−1
RFA,bΦ f ree,b ΦRB,i −ΨRFA,iΨ

−1
RFA,bΦRB,b ΨRFA,iΨ

−1
RFA,b

0 0 I

�

. (6.30)

This matrix is proposed in the format of the HCB transformation. However, unlike the
HCB method it requires no change to the boundary conditions of substructures (i.e.
fixing the boundary DOFs) while computing the component modes, which makes it
compatible with the experiment (as also discussed by Martinez et al. [91]). Further-
more, the CMS method obtained by the MRM projection basis performs considerably
better than the Goldman-Hou method, because it considers the static deflection of
the truncated modes due to interface forces. In this work, we propose using the
MRM transformation matrix for the NSCs identification of geometric nonlinear FE
substructures. Once the substructures are reduced and inserted into block diagonal-
ized matrices, the localization matrix can be obtained like Eq. (6.10) for the assembly
of two substructures, for instance.

6.4 Interface Reduction for free- and fixed-interface methods

The classical CMS methods deal with reduction of the internal DOFs of substruc-
tures. However, the reduced CMS models can still have large dimensions, because
the number of interface DOFs of the substructures after MOR remain the same as
the full-order FE model. If a structure contains several substructures with continu-
ous interfaces (i.e. very fine meshes), the computational costs of the reduced order
model can become inadmissible. This problem is more crucial when it comes to non-
linear substructuring, due to the extra computational burden of nonlinear terms by
adding each single DOF to the reduced model. Therefore, to overcome this prob-
lem, interface reduction is developed. A review of these methods applied to the HCB
technique is available in [80]. This section reviews the three most efficient inter-
face reduction techniques that have been used in the literature for the HCB method,
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namely, System-Level (SL-IR), Local-Level with Exact-Compatibility (LL-EC), and Local-
Level with Weak-Compatibility (LL-WC). Moreover, we propose applying these meth-
ods to the MRM method as an alternative for the HCB method in linear and nonlinear
dynamic substructuring.

6.4.1 System level interface reduction

According to the SL-IR method that was developed by Craig and Chang [31] and
further studied by Castanier et al. [18], the substructures are first coupled in the
primal assembly without changing the number of boundary DOFs. Afterwards, the
interface displacement of the coupled system is approximated by taking a truncated
number of modal displacements, namely

uC
b ≈ Φ

SL
bθq

C
θ

, (6.31)

where, qC
θ

(θ being the reduced number of interface modes) is the vector of reduced
set of generalized interface coordinates, and ΦSL is the matrix of interface modes,
which are also called Characteristic Constraint (CC) modes. The j th CC mode cor-
responding to the j th column of ΦSL is obtained from the eigenvalue solution of the
global mass and stiffness matrices of the system’s interface DOFs, namely

(K̂ C
bb −ω

2
b, j M̂

C
bb)ϕb, j = 0, (6.32)

where, M̂C
bb and K̂ C

bb are the interface DOFs’ mass and stiffness matrices of the coupled
reduced system, respectively. The j th CC eigenfrequency and eigenmode are denoted
by ωb, j and ϕb, j. Furthermore, the transformation matrix to reduce the interface
DOFs from b to θ (θ << b) for the sth substructure is given by

T (s)SL =

�

I (s)ii 0
0 ΦSL

bθ

�

, (6.33)

where, ΦSL
bθ contains θ interface modes in its columns. To develop the non-intrusive

NLROM of each substructure with SL-IR, the reduction basis to be used for NSCs
identification can be obtained as

T (s) = T (s)C MS T (s)SL , (6.34)

where, the transformation matrix, TC MS can be either free- or fixed-interface trans-
formation matrices without interface reduction (Eqs. (6.9) or (6.30)). After the
identification of NSCs with the ICE method, the NLROMs are coupled with an exact
interface compatibility. The localization matrix for two substructures are given by
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where, LSL is the localization matrix for SL-IR method.
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6.4.2 Local level interface reduction

The idea of local level interface reduction is to reduce the boundary coordinates of
each substructure independently before assembly of substructures. In the following,
two significant interface reduction techniques are illustrated.

Exact compatibility

The interface reduction developed by Hong et al. [55] proposes performing an eigen-
value analysis on the interface’s mass and stiffness matrices of the individual sub-
structures before assembly. They then approximate the interface of each substructure
as a superposition of a truncated number of interface modes. For the sth substructure,
it reads

u(s)b ≈ Φ
(s)
bθs

q (s)
θs

, (6.36)

where, the j th column of the matrix Φ(s)bθs
is obtained from the following eigenvalue

problem

(K̂ (s)bb −ω
2
b, j M̂

(s)
bb )ϕ

(s)
b, j = 0. (6.37)

Note that the interface mass and stiffness matrices belong to the reduced substruc-
tures. A truncated number of interface modes, θs, for each substructure is kept. The
IR mode matrices for the corresponding IR DOFs of substructures are cast into an
expanded matrix of reduced boundary modes. For the two substructures of Fig. 6.3,
the expanded matrix is given by

Φex p =
�

Φ
(S1)
bθ1

Φ
(S2)
bθ2

�

, (6.38)

where, Φex p is the expanded matrix containing the IR modes of both substructures.
Since the ingredients of the expanded matrix of reduced boundary nodes do not come
from the same eigenvalue analysis, they are not orthogonal to each other, which
can lead to ill conditioning in matrix operations. In order to make the columns
of the expanded matrices linearly independent from one another, a singular value
decomposition is performed on the expanded matrix:

U ex pΣex p(V ex p)T = Φex p, (6.39)

where, U ex p and V ex p are the left and right singular vectors, respectively, and Σex p

is the diagonal singular value matrix. The ratio of each singular value with respect
to the largest one indicates how important the corresponding left singular vectors
are. For instance, if the ratio of a singular value with respect to the largest one is
very small, it means that the contribution of the corresponding left singular vector in
the interface dynamics is tiny and this vector can be removed from the left singular
matrix. Vice versa, if this ratio for a singular value is large, this implies that its
corresponding singular vector has to be kept in the matrix to maintain good accuracy
of the reduced model.
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Hong et al. [55] defined a cutoff fraction, σcut , which is the ratio of the smallest kept
singular value to the largest one. In other words, they kept all left singular vectors
having a ratio of their corresponding singular values larger than σcut . They defined
this value as σcuto f f = 1 × 10−4, and removed the rest of the left singular vectors.
However, it is observed that although this criterion preserves very good accuracy
for the eigenfrequencies of the reduced model, it is not a fair one to compare it
with other IR methods. This is because, with this criterion the number of kept left
singular vectors usually significantly exceeds the number of the kept interface modes
for each substructure in Eq. (6.36). In other words, for the same number of kept
interface modes for different IR methods, the LL-EC can have more interface vectors,
increasing the size of the reduced model. Therefore, in this work, another criterion
is used, which states a fair condition to compare this method with others. For this
method we keep the same number of left singular vectors corresponding to the largest
singular values as the primary number of the desired kept interface modes.
In the next step, the matrices of kept left singular vectors from each interface group
for individual substructures are collected in a matrix. For the sth substructure, it gives

U (s) = BlockDiag(U1,U2, ...,Up), (6.40)

where, U1, U2, ..., Up are the matrices of left singular vectors for the 1th, 2th, ..., pth in-
terface group, respectively. Finally, the LL-EC reduction basis for the sth substructure
to be pre- and post-multiplied to its mass and stiffness matrices is given by

T (s)LL−EC =

�

I (s)ii 0
0 U (s)

�

. (6.41)

To identify the NSCs for a nonlinear structure with the LL-EC interface reduction
method, the reduction basis becomes

T (s) = T (s)C MS T (s)LL−EC . (6.42)

To the authors’ knowledge, there is no work in the literature investigating nonlinear
substructuring with LL-EC interface reduction. In this work, we have developed this
method for nonlinear substructuring for both free- and fixed-interface modes.
The last step is the assembly of the substructures, which is performed with the local-
ization matrix L. Since, the number of generalized coordinates for common interfaces
of substructures are the same, exact compatibility can be applied. For a structure
composed of two substructures, this gives
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 , (6.43)

where, LLL−EC is the global localization matrix for the assembly with LL-EC. Once
the global localization matrix is obtained, the assembled system can be achieved by
pre- and post-multiplying the block-diagonalized mass and stiffness matrices with the
localization matrix.
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Weak compatibility

The concept of weak interface compatibility [2, 131] holds for the case where the
connecting interface DOFs are allowed to have slight relative movements after as-
sembly, in contrast to the exact compatibility where the matching DOFs are forced to
have exactly the same displacements. In other words, the WC allows a small non-
matching (or a violation of compatibility) on the interfaces. The WC is beneficial
when very few modes for each substructure are kept, leading to a locking problem
for interfaces if exact compatibility is enforced. The LL-WC for interface reduction
of the HCB method is suggested by Kuether et al. [82] and further developed by
Krattiger et al. [80] and is briefly explained next.
Like the LL-EC method, the boundary coordinates of individual DOFs are reduced
before coupling, using the MD method (Eq. (6.36)). However, the interface modes
are not cast into an expanded matrix to compute the SVD vectors, as done in the
LL-EC method; rather, the reduction basis for each substructure is formed using its
individual reduced interface modes as

T (s)SL =

�

I (s)ii 0
0 Φ(s)bθ

�

. (6.44)

The mass and stiffness of all substructures are then pre- and post-multiplied with
the corresponding interface reduction bases to build up the reduced model of all
components before assembly. To develop the NLROM for nonlinear substructures,
the transformation matrix is defined as

T (s) = T (s)C MS T (s)LL−W C . (6.45)

Finally, the reduced order substructures have to be coupled. In general, the numbers
of kept interface modes of the same interface for different substructures are different.
Therefore, traditional localization matrix like Eq. (6.43) by enforcement of an exact
compatibility is not possible. As a result, weak interface compatibility is imposed as
follows. The compatibility equation for the physical displacement of boundary DOFs
is written as

BbuU
b ≈ 0, (6.46)

where, Bb is the part of global Boolean matrix corresponding to the boundary DOFs
and uU

b is the vector of uncoupled boundary DOFs. The interface displacement of
each substructure is substituted by Eq. (6.36), leading to the compatibility condition
for the interface DOFs in modal coordinate,

Bmqb ≈ 0, (6.47)

where, the subscript m represents the Bm matrix in modal domain. For a system with
two substructures, this gives

�

Φ
(S1)
bθS1

−Φ(S2)
bθS2

�

�

q (S1)
b

q (S2)
b

�

≈ 0. (6.48)
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A localization matrix Lm for the interface matrix is required that spans the null space
of Bm. Since this is not generally achievable in the LL-WC method, the null space is
approximated by applying an SVD to Bm, namely

UBΣB(VB)T = Bm. (6.49)

Krattiger et al. [80] introduced a null space matrix V by collecting those right sin-
gular vectors from VB, which correspond to the singular values smaller than a cutoff
ratio σ, with respect to the largest singular value. However, in this work, we keep
the same number of right singular vectors (corresponding to the smallest singular
values) as the number of desired interface modes taken for each substructure. This
facilitates a fair comparison of different methods with the same number of kept in-
terface modes. After choosing the null space matrix V, it will be positioned in the
global localization matrix corresponding to the boundary DOFs of the substructures.
For the case of two substructures, the global localization matrix LLL−W C for the LL-WC
method is then given by
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 , (6.50)

where, V1 and V2 are the component (lines) of the matrix V, corresponding to the in-
terfaces of substructures S1 and S2. Krattiger et al. [80] also discussed the uncoupled
weak compatibility (UWC) method by applying the SVD to each group of interfaces,
separately. They showed that the accuracy of LL-UWC is the same as LL-WC. There-
fore, this method is not applied here for nonlinear dynamic substructuring.

6.5 Primal assembly of linear substructures

After reducing the matrices of each substructure using its individual reduction basis,
all substructures are cast into a block diagonal form as

MU q̈U + K UqU = f U + g U (6.51)

where the superscript U denotes the uncoupled matrices and vectors. For instance,
the uncoupled mass matrix reads

MU =











M̂ (S1) 0 · · · 0

0 M̂ (S2) . . . 0
... . . . . . . ...
0 0 · · · M̂ (Sn)











(6.52)

where M̂ (S1), M̂ (S2), . . . , M̂ (S1) are the reduced mass matrices for substructures S1, S2,
. . . , Sn, respectively. All other uncoupled matrices and tensors are similarly arranged
in their corresponding uncoupled matrices, which are not written here for the sake
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of brevity. Furthermore, the vector qU , q̈U , f U and g U are the uncoupled vectors,
which are obtained by casting their corresponding vectors of all substructures into a
successive form. The uncoupled set of displacements is written below as an example:

qU =





q (s1)

...
q (sn)



 (6.53)

For the coupling of substructures, two conditions have to be satisfied at their interface
DOFs: force equilibrium and displacement compatibility. The compatibility condition
states that all connection DOFs at the boundary of substructures must be the same.
This condition can be written as

B qU = 0 (6.54)

where B is a signed Boolean matrix comprising zeros for the internal DOFs of all
substructures, and ones (or minus ones) for the boundary DOFs connecting all the
DOFs of substructures that have to be joined together. The next boundary condition
is the force equilibrium, which means that the reaction forces at the connecting DOFs
of substructures must cancel out each other, namely,

LT g U = 0 (6.55)

Depending on which of the mentioned conditions is enforced a priori, the assembly
can be performed in a Primal or Dual manner. When the compatibility boundary
condition is satisfied first to obtain a unique set of interface DOFs, the assembly is
called primal, which is also the classical FE assembly method. Conversely, dual as-
sembly denotes the case in which the force equilibrium is enforced a priori, leading
to a dual number of all interface DOFs in the global matrices to be solved simulta-
neously with the compatibility condition. In this work, we have considered primal
assembly, because it facilitates the building of individual reduction basis sets per each
substructure. Thorough studies of different assemblies are done in [25, 78].
For the primal assembly, the set of coupled DOFs, qC , which comprises a unique set
of interface DOFs, is defined such that

qU = LqC (6.56)

Eq. (6.56) is then introduced to the compatibility Eq. (6.54), giving

BLqc = 0 (6.57)

This means that in order to satisfy the “exact” compatibility condition, the localiza-
tion matrix L must span the null space of B:

L= null(B) and BT = null(LT ) (6.58)

Finally, to assemble all the reduced substructures, the Eq. (6.56) is introduced to
(6.51) and is pre-multiplied with LT to vanish the interface forces. This gives

LT MU Lq̈C + LT K (1)
U
LqC = LT f U , (6.59)

Which is the EOM for the assembled system. In the next section the accuracy of the
mentioned methods are evaluated on two numerical examples.
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S2S1

(a) Two substructures, S1 and S2 are coupled at their rotational DOFs

point A point B

(b) Assembled beam

Figure 6.1: Schematic of the investigated beam FE model and it substructures. Note that the vertical
and horizontal scales are not the same. Parameters of the example are given in table 6.1.

6.6 Numerical example

6.6.1 Simply supported beams

In the first example we study the assembly of two simply supported beam models as
shown in Fig. 6.1a. The substructures S1 and S2 are coupled at their rotational DOF,
as depicted in Fig. 6.1a. The material, mesh and size properties of the substructures
are illustrated in Table 6.1. To get insight into the utilized linear modes, the first five
fixed and free-interface eigenfrequencies of the beam’s substructures as well as the
eigenfrequencies of the full model are shown in Table 6.2.

Property(dimension) Substructure 1 Substructure 2

Material
Mass density (kg/m3) 7870 7870
Young’s modulus (GPa) 205 205
Poisson’s ratio 0.28 0.28

Geometry
length (mm) 300 200
thickness (mm) 1.5 1

FE model

Element-type Timoshenko Timoshenko
Abaqus B21 Abaqus B21

Number of Elements 60 40
Number of DOFs 179 119
Number of interface DOFs 1 1

Table 6.1: Geometry, material and FE model properties of the investigated beam model
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Beam’s substructure S1 Beam’s substructure S2 Coupled beam
Mode number Free-interface Fixed-interface Free-interface Fixed-interface

1 38.6 Hz 60.3 Hz 57.9 Hz 90.4 Hz 41.3 Hz
2 154.3 Hz 195.3 Hz 231.5 Hz 293.0 Hz 84.1 Hz
3 347.1 Hz 407.4 Hz 520.8 Hz 611.3 Hz 163.2 Hz
4 617.0 Hz 696.5 Hz 926.0 Hz 1045.6 Hz 275.0 Hz
5 964.0 Hz 1062.7 Hz 1447.2 Hz 1595.9 Hz 365.9 Hz

Table 6.2: Eigenfrequencies of the free- and fixed-interface modes for the beam model.

1 2 3 4 5 6 7 8

Eigenfrequency Number

10-6

10-4

10-2

100

102

R
el

at
iv

e 
E

rr
or

 to
 th

e 
F

ul
l M

od
el

 (
%

)

GH

HCB

MRM

(a) Free-interface modes until 1000 Hz
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(b) Free-interface modes until 2000 Hz

Figure 6.2: Beam model’s relative error (in percentage) comparison of the eigenfrequencies for the GH,
HCB and MRM methods. The same number of modes for free- or fixed-interface modes for each model
is used

Linear substructuring results

To develop the NLROM of substructures, first, linear CMS techniques outlined in this
chapter are applied to the beam model of Fig. 6.1 to get insight into the development
of the NLROMs. Two CMS models are developed for each method with kept free-
interface modes of up to 1000 Hz and 2000 Hz, respectively. The same number of
modes as free-interface modes are kept for fixed-interface modes in the HCB method.
Fig. 6.2 depicts the relative error of eigenfrequencies for three linear CMS methods:
GH, MRM, and HCB. The relative error, ε for each eigenfrequency is obtained by

ε j =

�

�ω f ul l, j −ωC MS, j

�

�

ω f ul l, j
× 100, (6.60)

where, ω f ul l, j and ωC MS, j are the j th eigenfrequencies of the full-order and CMS mod-
els, respectively. When only the free-interface modes of the system are used in the
reduction basis (GH method), the accuracy of the estimated linear frequencies is far
inferior to the HCB method. This is due to the fact that the GH method is a statically
incomplete method that does not consider the static effect of truncated modes due
to the interface forces. However, when the free-interface modes are augmented with
the RFA modes (shown as MRM), the eigenfrequency error decreases significantly,
such that the overall accuracy of its eigenfrequencies become the same or better than
the HCB method. The improved accuracy stays the same when the number of kept
modes has been increased to 2000 Hz in Fig 6.2b, confirming the stability of the MRM
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S2

S1 ub
(S2)

ub
(S1)

(a) Two substructures S1 and S2

Full model

A

B

(b) Assembled plate

Figure 6.3: Schematic of the Panel FE model with two substructures and meshed with nonlinear shell
element.

method.

6.6.2 Coupling of two panel models

The second example in this work considers a larger FE model with 33485 DOFs in to-
tal. The example contains two panels with 3-dimensional shell elements, as shown in
Fig. 6.3a, which are assembled in the form depicted in Fig. 6.3b. Both substructures
in Fig. 6.3a are simply-supported at all edges (including the interfaces), similar to
the example studied in [82]. They are then assembled by all rotational DOFs (three
DOFs per node) at the joint nodes, as shown in Fig. 6.3b. The material, geometry
and FE properties of the substructures are demonstrated in Table 6.3. The first nine
eigenfrequencies corresponding to the fixed- and free-interface modes as well as the
eigenfrequencies of the full model are shown in Table 6.4, to have an insight into
them.
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(a) Convergence check analysis for MRM method
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(b) Convergence check analysis for HCB method

Figure 6.4: Convergence check analysis for the maximum error induced by IR versus the number of
kept SL-IR modes for plate model. For the MRM method, three models are studied: kept free-interface
modes of substructures until 500 Hz, 750 Hz and 1000 Hz. The same number of fixed-interface modes
is kept for the HCB method.

Linear substructuring results

For this example, the augmented free-interface mode method is combined with three
interface reduction techniques explained in section (6.4), namely, SL, LL-EC and LL-
WC. The linear eigenfrequency results are compared to the corresponding ones of
the HCB method and also the GH method. In order to figure out how many interface
DOFs are required to be kept in the SL-IR method, a convergence study is performed
for three MRM-reduced systems with kept free-interface modes of the substructures
up to 500 Hz (3 for S1 and 2 for S2), 750 Hz (7 for S1 and 5 for S2) and 1000 Hz (9 for
S1 and 7 for S2). The same procedure is also performed for the HCB method with SL-
IR using the same number of modes as the MRM method. In the linear convergence
check study, the maximum relative error of the reduced system with SL-IR to the

Property(dimension) S1 S2

Material
Mass density (kg/m3) 7870 7870
Young’s modulus (GPa) 205 205
Poisson’s ratio 0.28 0.28

Geometry
length (mm) 400 300
width (mm) 200 200
thickness (mm) 2 2

FE model

Element-type shell (4-node) shell (4-node)
Abaqus S4R Abaqus S4R

Number of Elements 3200 2400
Number of DOFs 19204 14404
Number of interface DOFs 123 123

Table 6.3: Geometry, material and FE model Properties of the investigated panel model
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Panel’s substructure S1 Panel’s substructure S2 Coupled panel
Mode number Free-interface Fixed-interface Free-interface Fixed-interface

1 149.8 Hz 157.0 Hz 173.7 Hz 189.98 Hz 152.7 Hz
2 239.3 Hz 261.1 Hz 333.4 Hz 378.1 Hz 182.0 Hz
3 390.3 Hz 427.8 Hz 535.6 Hz 544.2 Hz 250.0 Hz
4 511.1 Hz 514.6 Hz 601.7 Hz 675.6 Hz 350.6 Hz
5 599.0 Hz 613.3 Hz 694.2 Hz 724.1 Hz 415.1 Hz
6 600.7 Hz 654.9 Hz 961.0 Hz 1018.6 Hz 512.7 Hz
7 749.7 Hz 776.1 Hz 976.7 Hz 1079.6 Hz 540.0 Hz
8 868.8 Hz 941.4 Hz 1137.2 Hz 1143.1 Hz 600.6 Hz
9 957.2 Hz 999.7 Hz 1294.0 Hz 1315.4 Hz 606.7 Hz

Table 6.4: Eigenfrequencies of the free- and fixed-interface modes for the panel model.
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(a) HCB and MRM methods with and without SL-IR
compared with GH method.
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(b) HCB and MRM methods with and without LL-EC IR
compared with GH method.
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(c) HCB and MRM methods with and without LL-WC
IR compared with GH method.
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(d) MRM method with and without SL, LL-EC and LL-WC
compared with GH method

Figure 6.5: Plate’s relative error comparison (in percentage) of the eigenfrequencies for different meth-
ods. For each substructure, the free-interface modes up to 750 Hz are kept in the NLROM. The same
number of modes for free- and fixed-interface modes as well as the interface modes are used for each
method.

original CMS is obtained as

ε =max

�
�

�ωC MS,1 −ωC MS−IR,1

�

�

ωC MS,1
,

�

�ωC MS,2 −ωC MS−IR,2

�

�

ωC MS,2
, . . . ,

�

�ωC MS,m −ωC MS−IR,m

�

�

ωC MS,m

�

×100,
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(6.61)

where ωC MS, j is the j th eigenfrequency attained either by the HCB or MRM methods,
and ωC MS−IR, j is its corresponding eigenfrequency with SL-IR. Fig. 6.4a and 6.4b
show the maximum relative error for the MRM and HCB methods versus the number
of kept interface DOFs. For all three ranges of kept interface modes, after taking only
2 interface modes for the MRM method, the maximum error reaches its plateau and
does not decrease anymore. However, the number of IR modes to reach its plateau
for the HCB is 3 for all three HCB models.
In the next step, the three IR techniques are applied to HCB and MRM and compared
with each other and also with the GH method, which is shown in Fig. 6.5. The
kept free-interface modes for substructures are up to 750 Hz with two retained in-
terface modes (according to Fig. 6.4a), and the same number of modes are kept for
HCB. Fig. 6.5a illustrates the relative error of linear eigenfrequencies for HCB and
MRM, both with and without SL-IR and compared with the GH method. In both HCB
and MRM methods, applying SL-IR does not deteriorate their accuracy significantly.
While the error of the free-interface method of GH is distinctly inferior to the HCB
method, the augmented free-interface method of MRM has overall the same accuracy
as HCB or better. Fig. 6.5b exhibits the relative error comparison when the employed
IR technique is LL-EC. Likewise, IR does not significantly increase the error of HCB
and MRM, but they are both more accurate than GH. Fig. 6.5c demonstrates similar
results for the substructuring with the LL-WC interface reduction. This result indi-
cates that applying the LL-WC interface reduction to both methods can noticeably
increase the relative error of the CMS methods without IR, for lower frequencies.
However, the benefit of the LL-WC is that it can be used for incompatible interfaces
between substructures. Nevertheless, the error of high frequencies remains almost
in the same order as the original methods. Finally, the comparison of all IR methods
applied to MRM with GH is shown in Fig. 6.5d. It can be concluded from this fig-
ure that, despite the relatively large error produced by the LL-WC method for lower
frequencies, appending only two interface generalized coordinates (regardless of the
IR method) to the original GH’s DOFs can significantly increase the accuracy of the
linear free-interface mode CMS.

6.7 Summary

In this chapter we review the common linear component synthesis methods in pri-
mal assembly, namely, fixed-interface mode and free-interface methods. To be able to
generate a compact ROM, we furthermore investigate interface reduction techniques,
which have have been mostly developed for fixed-interface CMS. Interface reduction
is crucial in case of substructures with numerous DOFs at their interfaces to develop
a linear and nonlinear compact ROM. We extend the application of local-level inter-
face reduction methods to free-interface CMS. We finally apply the introduced free-
and fixed-interface methods to two linear numerical examples with beam and plate
elements and compare the results. We show that the augmented free-interface CMS
has better accuracy than other methods for the considered examples.





Chapter 7

Non-intrusive nonlinear substructuring based on ICE

This chapter is extracted from the author’s publication in [65]. In this article, Karamooz
had the idea of the work and performed the literature review. Karamooz implemented a
considerable part of the work and wrote the manuscript. Xu conducted the primary part
of numerical studies and discussed the work. Bartl, Tiso and Rixen gave very useful in-
puts in the discussions of the work and proof-read the article. Rixen supervised the work.

7.1 Introduction

This work proposes a free-interface non-intrusive-based dynamic substructuring of
geometrically nonlinear FE models using residual flexibilities. As explained before,
Keuther et al. developed the first non-intrusive-based nonlinear substructuring method
by using ICE for NSCs identification of substructures’ NLROMs. As reduction basis to
reduce linear matrices as well as identify NSCs of substructures, they proposed using
two different bases: free-interface modes (GH basis) and HCB reduction basis. Here,
instead of taking only the free-interface modes used in the work of Keuther et al. in
[84], we propose the use of the MacNeal/Rubin-Martinez reduction basis to also ap-
proximate the effect of the truncated modes for each substructure. This basis is used
to reduce the linear mass and stiffness matrices of each substructure. Besides, its
columns are taken as the basis to build up the static forces in the nonlinear identifi-
cation procedure of ICE. As a second novel point, three different interface reduction
techniques namely, SL, LL-EC, and LL-WC, are applied to nonlinear substructuring
based on residual flexibilities. The proposed methods are applied to two different
structures with geometric nonlinear effects. Finally, the results are compared to the
nonlinear GH and HCB substructuring methods in [82, 84] with and without in-
terface reduction. We show that the nonlinear dynamic response of the proposed
method in this work is improved significantly when compared to the nonlinear GH
method, and marginally better than the nonlinear HCB method for relatively high
excitation levels.

7.2 Generalized Applied Force for MOR at substructure level

The non-intrusive Applied Force or ICE method [95] proposes the selection of a set
of representative static forces to prescribe onto the full-order FE model and solve for

115
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the corresponding displacements. These forces and displacements are then used to
identify the NSCs. Consider a substructure with geometrical nonlinear effects that
consists of n DOFs.
Let us start with Eq. (2.27) and rewrite the i th Eq. for the NLROM of the substructure
(s) in the static form as

K̂ (1)
(s)

i j q j
(s) + K̂ (2)

(s)

i jl q j
(s)ql

(s) + K̂ (3)
(s)

i jl p q j
(s)ql

(s)qp
(s) = f̂ (s)i + g(s)i , (7.1)

where, g (s) is the connecting force vector with the neighboring substructures. In the
remainder of this chapter, the superscript (s) is omitted for the sake of brevity, unless
it is otherwise indicated. The first crucial point in the identification procedure of
all nonlinear model reduction techniques is to select a reduction basis that activates
and conveys the essential nonlinear effects, e.g. the nonlinear interaction between
linear modes and accurately represents the full-model in the desired frequency and
intensity range of external loads.
Consider the reduction basis matrix, T , possesses the demanded properties for non-
linear MOR problem. Each required static load for the ICE procedure is then con-
structed as a summation of combinations of the columns of this basis, multiplied by
their corresponding weightings (or generalized coordinates)

f = K(T1q1 + T2q2 + ...+ Tmqm) = K(
m
∑

k=1

Tkqk), (7.2)

where, qk is the generalized or modal coordinate corresponding to the kth column
of the reduction basis. McEwan et al. [95] proposed using the truncated number of
linear VMs as the reduction basis, in case a structure is to be reduced monotonically.
However, it is shown by Keuther et al. [84, 85] that in nonlinear substructuring,
the linear eigenmodes (free-interface modes) of the substructures do not suffice to
develop the NLROM of each substructure accurately. Therefore, in this work, we
propose a basis for non-intrusive-based dynamic substructuring that improves the
free-interface method. The basis selection methods (as well as the proposed basis)
are discussed in Chapter 6.

Once the reduction basis is determined, the magnitude of generalized coordinates
must be adapted. These values have to be kept in a certain range where the desired
level of nonlinearity in the system response is activated, and the nonlinear static
analysis can still converge. Gordon and Hollcamp [46] selected each generalized
coordinate for a monolithic ROM as a value that creates the required force to attain
a maximum desired linear displacement, which is also physically meaningful. This
can be written in a generalized form for substructure-based ROM as

qi =
Wi,max

Tqi ,max
, (7.3)

where, Wi,max is the maximum desired displacement for the i th column of the re-
duction basis, T . The maximum translational component of the i th column of the
reduction basis is denoted by Tqi ,max. The maximum desired displacement is usually
chosen in the order of geometry parameters (e.g. the thickness of the structure). For
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a system with only geometric nonlinear effect, a polynomial with maximum cubic
terms appears in the EOM, as explained in Chapter 2. Therefore, it is sufficient to
generate the static forces as a combination of one, two, or three columns of the re-
duction basis with both positive and negative signs of the generalized coordinates for
a geometric nonlinear structure

f = K(Tiqi + T jq j + Tkqk) i, j, k = 0,1, 2, ..., m, (7.4)

Each static force is imposed on the FE model to solve for the corresponding nonlinear
displacement induced by it, and both are transformed to the generalized coordinate.
For the r th load case, the transformation is

f̂r = T T fr (7.5)

and the corresponding displacement transformation reads

qr = T+ur (7.6)

Here, the sign (+) expresses the pseudo-inverse of the matrix. By performing this
procedure for all p load cases and substituting them in Eq. (7.1), a set of p linear
algebraic equations is achieved that exceeds the number of unknown quadratic and
cubic stiffness coefficients. The matrix form of these equations writes

KnlGnl = Fnl (7.7)

where Knl is a matrix comprising all unknown coefficients; Gnl is the known parame-
ters multiplied by the unknowns; and Fnl is the matrix of all known terms, including
the linear modal stiffness and modal static loads. The columns of Gnl and Fnl rep-
resent the results of each load case. The contents of the matrices in Eq. (7.7) are
presented in Appendix A for an NLROM with two DOFs. Finally, the unknown coeffi-
cients in Eq. (7.7) can be determined using a regression analysis (e.g. least squares
[95]). As it was mentioned, the main advantage of the ICE method (as well as other
non-intrusive nonlinear model reduction methods) is that the NLROM for each sub-
structure is developed without requiring one to treat the full-order FE model in closed
form, i.e., it can be combined with commercial FE packages.
The NLROM’s EOM for the sth substructure can be written in the matrix form as

M̂ (s)q̈ (s)+D̂(s)q̇ (s)+ K̂ (1)
(s)

q (s)+(K̂ (2)
(s)

.q (s))
︸ ︷︷ ︸

Q(s)1 (q)

q (s)+[(K̂ (3)
(s)

.q (s)).q (s)]
︸ ︷︷ ︸

Q(s)2 (q)

q (s) = f̂ (s)+ ĝ (s) (7.8)

Here the tensors Q(s)2 and Q(s)2 are functions of generalized coordinates and correspond
to the quadratic and cubic stiffness tensors, which will be used later for coupling of
the substructures.

Expansion for Membrane DOFs

The expansion method for substructures is similar to the monolithic ROM, namely,
the membrane motion is defined as a transformation matrix multiplied with the mem-
brane modal coordinates

um = Tmθ (7.9)
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where, Tm is the membrane transformation matrix and θ denotes the vector of gen-
eralized coordinates representing the in-plane motion. The improved displacement
of each substructure can be then given by

utotal = Tq + Tmθ (7.10)

After applying p static load cases to the FE package, their corresponding displace-
ments and generalized coordinates are cast into the matrix form as

Utotal = TQ+ TmΘ (7.11)

where Utotal , Q and Θ denote the matrices of full-static solutions, generalized trans-
verse and generalized membrane coordinates, respectively, and each of their columns
serve as the values for individual static load cases. The vector of membrane coordi-
nates is now defined as in [104]:

θ =
�

q2
1 q1q2 q1q3 . . . q1qn q2

2 q2q3 . . . q2
n−1 qn−1qn q2

n

�T
. (7.12)

Finally, the only unknown in Eq. (7.11) is the membrane transformation matrix,
which can be obtained by

Tm ≈ (Utotal − TQ)Θ+. (7.13)

The membrane motion for each time step can now be computed from Eq. (7.11). As
can be seen from Eq. (7.12), the expansion procedure is valid as long as the relation
between the transverse and membrane coordinates in a structure is quadratic (e.g.,
for flat or shallow curved structures).

7.3 Nonlinear modal substructuring: primal assembly

The final step in the nonlinear substructuring approach is to assemble the reduced
order model of substructures. To perform the assembly of components, first, all the
matrices and tensors of substructures are written in a block diagonal form,

MU q̈U + DU q̇U + K (1)
U
qU +QU

1 (q
U)qU +QU

2 (q
U)qU = f U + g U , (7.14)

where the superscript U denotes that the matrices and tensors are still uncoupled.
The matrices MU , DU and K (1)

U
are the concatenated mass, damping and stiffness

matrices of all substructures in a block diagonal form. Likewise, the tensors QU
1 (q

U)
and QU

2 (q
U) (see definitions in (7.8)) are the block diagonal concatenated form of

their corresponding pairs for all substructures . Afterwards, the assembled system is
attained by substituting Eq. (6.56) into Eq. (7.14) and pre-multiplying Eq. (7.14)
with LT as

LT MU Lq̈C + LT DU Lq̇C + LT K (1)
U
LqC + LT QU

1 (q)LqC + LT QU
2 (q)LqC = LT f U , (7.15)

noting that the term LT g U vanishes due to Eq. (6.55). Here, L is the standard
localization matrix as explained in section 6.5. Moreover, the damping ratio in all
parts of this work is assumed in the form of Rayleigh damping. Additionally, the
corresponding localization matrix for each method is outlined in Chapter 6, regarding
exact or weak compatibility, and interface reduction.
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7.4 Numerical examples

This section studies the performance of the proposed methods for the nonlinear sub-
structuring of geometric nonlinear FE models on two examples. In the first example,
which is made of beam elements, the nonlinear MRM is assessed and in the second
example, which is constructed by shell elements, nonlinear MRM with three interface
reduction techniques are evaluated. All of these methods are also compared with the
previously developed nonlinear substructuring methods in [82, 84], namely, the non-
linear GH and nonlinear HCB methods with and without IR. For the time integration
of all NLROMs with different methods, the implicit Newmark scheme is employed.
The time increment of 1 × 10−4 seconds with 4 × 104 time steps have been taken
for both full and reduced models. The full models are constructed and implicitly
integrated in Abaqus R© and compared with the NLROMs, which are developed and
integrated in MATLAB R©. During the time integrations, a Rayleigh damping in the
form of αM + βK is used.
Moreover, all the dynamic loads in this work are sound pressures that are uniformly
distributed in space and random in time with the frequency range of excitation be-
tween 0−500 Hz. Each example is excited with two different average Sound Pressure
Levels (SPLs) to check the accuracy of the developed NLROMs for different excitation
levels. Displacement Power Spectral Density (PSD) is utilized as an assessment tool
to compare the efficiency of the nonlinear response of NLROMs with the full-order
model. The time integrations in this work are performed on a desktop PC with 32 GB
RAM and Intel R© Xeon R© CPU (3.6 GHz).

7.4.1 Simply supported beams

The first example is the assembly of two geometric nonlinear beams as shown in Fig.
6.1. The substructures S1 and S2 are simply supported at two ends and coupled at
their rotational DOF.

NLROM-MRM NLROM-GH NLROM-CB Monolithic NLROM
Substructure S1 S2 S1 S2 S1 S2

Free/fixed modes 5 4 5 4 5 4
Interface DOFs 1 1 0 0 1 1
NLROM DOFs 10 9 10 10
Static solutions 232 130 130 64 232 130 1160

Table 7.1: Number of nonlinear static solutions (offline computational cost) for NLROMs development of
the beam model using different methods

NLROM/Full model NLROM-MRM NLROM-CB NLROM-GH Full Model (145 dB)
Online Cost, IC 38 s 37 s 24 s 1055 s

Online Cost, ICE 38 s 38 s 23 s

Table 7.2: Online computational time for four seconds time integration of different NLROMs as well as
the full-order beam model
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(a) Transverse DOF of point A
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(b) Membrane DOF of point A
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(c) Transverse DOF of point B
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(d) Membrane DOF of point B

Figure 7.1: Displacement power spectral density evaluation for the convergence check of the beam’s
NLROM developed with the MRM basis. Three NLROMs are developed when the free modes are kept
until 500 Hz, 750 Hz and 1000 Hz and integrated under a uniformly distributed random pressure with
135 dB SPL.

The material, geometry and mesh properties of the two substructures are given in Ta-
ble 6.1. The two substructures as well as the full model are constructed and analyzed
in Abaqus R©.

Nonlinear substructuring results

The NLROM of each substructure is developed using the non-intrusive method of
ICE with three different bases (GH, HCH and MRM). In order to assess the efficiency
of the proposed method on the beam example, sound pressures are applied to the
assembled structure that are uniform in space and random in time. In this case study,
two average SPLs are applied to the system: 135 dB and 145 dB, for both full-order
and NLROM models. The coefficients for the Rayleigh damping are chosen (α= 4.70
and β = 6.85× 10−6) such that the damping ratio for all the modes in the excitation
frequency are less than 1%.
In the first step, the convergence check for the nonlinear MRM substructuring method
is performed. The NLROMs are developed with three numbers of kept free-interface
modes with eigenfrequencies up to 500 Hz (3 modes S1 and 2 modes S2), 750 Hz
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(a) Transverse DOF of point A under 135 dB SPL load.
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(b) Membrane DOF of point A under 135 dB SPL load.
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(c) Transverse DOF of point A under 145 dB SPL load.
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(d) Membrane DOF of point A under 145 dB SPL load.

Figure 7.2: Comparison of the beam’s full model with the NLROMs using three bases: GH, MRM and
HCB, and also the LROM. The displacement power spectral densities for transverse and membrane
DOFs of point A are compared. The ingredients of these NLROMs are given in Table 7.1.

(4 modes S1 and 3 modes S2), and 1000 Hz (5 modes S1 and 4 modes S2). Fig. 7.1
shows the displacement PSD for the three developed NLROMs with nonlinear MRM
(NLROM-MRM) using the mentioned number of modes and under the SPL of 135 dB.
Transverse as well as membrane motions for the two points A and B (see Fig. 6.1b for
the location of the points) are plotted. When the frequency range of the kept free-
interface modes is increased from 500 Hz to 1000 Hz, the accuracy of the NLROMs
is increased for both transverse (Figs. 7.1a and 7.1c) as well as membrane DOFs
(Figs. 7.1b and 7.1d). For the case of kept modes up to 1000 Hz, the NLROM’s PSDs
match very well the ones of the full model in the whole frequency range of 0− 800
Hz, for both points. This result confirms the convergence as well as the accuracy of
the proposed method. According to the results of Fig 7.1, the NLROM based on kept
modes up to 1000 Hz is used for the rest of the investigations of this example. It
should be noted that the total number of DOFs for the kept modes until 1000 are 10
after assembly, which are much less than the total number of DOFs for the assembled
model (297 DOFs), resulting in a very computationally efficient model.
Furthermore, the NLROM-MRM is evaluated under the two mentioned SPL loads
and compared with the nonlinear HCB (NLROM-HCB), nonlinear GH (NLROM-GH)
substructuring methods, which are proposed by Kuether et al [84], and also linear
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(a) Transverse DOF of point B under 135 dB SPL load.
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(b) Membrane DOF of point B under 135 dB SPL load.
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(c) Transverse DOF of point B under 145 dB SPL load.
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(d) Membrane DOF of point B under 145 dB SPL load.

Figure 7.3: Comparison of the beam’s full-order model with the NLROMs using three bases: GH, MRM,
HCB, and also the LROM. The displacement power spectral densities for transverse and membrane
DOFs of point B are compared.

GH (LROM). The ingredients of these NLROMs are given in Table 7.1. Figs. 7.2a
and 7.2b show the PSDs of the developed NLROMs under the low SPL (135 dB) for
transverse and membrane DOFs at point A. While the NLROM-GH has a relatively
good accuracy in low frequencies up to 250 Hz, it cannot follow the full-order model
in higher frequencies, in both transverse and membrane directions. However, the
NLROM-MRM, which is based on augmented free-interface modes, has captured the
dynamics of the full nonlinear model in the whole investigated frequency range. This
is also confirmed by the PSDs shown in Figs. 7.3a and 7.3b for the transverse and
membrane motions of point B. The same analysis is performed for a higher SPL
(145 dB). The PSD comparison of NLROMs for transverse DOFs of points A and B
are presented in Figs. 7.2c and 7.3c, and for their membrane DOFs in Figs. 7.2d
and 7.3d. The improved accuracies of NLROM-MRM with respect to NLROM-GH
confirms the superiority of the developed NLROM. Moreover, it can be seen from all
four figures that the NLROM-HCB is less robust than NLROM-MRM for the high level
of external loads, because it exhibits less accurate results than NLROM-MRM.

Computational costs
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The number of nonlinear static solutions for the development of each NLROM with
different methods is shown in Table 7.1, which indicates the offline computational
costs. It can be seen that if the NLROM of two substructures are computed in par-
allel, it leads to less computational time than the case where the NLROM is devel-
oped monolithically without parallel computation, with the same number of reduced
DOFs.
Furthermore, the online computational time for the integration of the NLROMs are
compared with the cost for the full model in table 7.2. It should be recalled that the
integration of the NLROMs is performed in a MATLAB code and compared with the
integration of the full model in Abaqus, which usually uses very optimized algorithms
for integration. Nevertheless, the computational time for all of the NLROMs are more
then 27 times faster than the one of the full model.
Finally, nonlinear model reduction can also be performed using the so-called Hyper-
reduction methods [20, 39]. These methods are for instance based on the selection
of a few elements for the computation of nonlinear internal forces. However, these
methods are typically very sensitive to different load cases, which lead to additional
offline costs for the computation of the NLROM responses for different load condi-
tions. In contrast, the investigated NLROMs in this work can be valid for several
loading conditions up to excitation frequencies of 500 Hz. This means that if the
NLROM is used for numerous loading conditions, the “one-time" offline cost for this
approach will be amortized.

7.4.2 Simply-supported panels

The second investigated example is the panel model studied in section 6.6.2, which is
modeled with geometric nonlinear shell elements. The schematic of the two substruc-
tures as well as the assembled model are depicted in Figs. 6.3a and 6.3b, respectively.
Moreover, the material, geometry and mesh properties of these models are given in
Table 6.3. The Rayleigh damping ratios are chosen (α = 16.2 and β = 2.85× 10−6)
such that all the damping ratios in the frequency range of interest are less than 1%.

NLROM-MRM-SL NLROM-GH NLROM-HCB-SL Monolithic NLROM
Substructure S1 S2 S1 S2 S1 S2

Free/fixed modes 7 5 7 5 7 5
Interface DOFs 2 2 0 0 2 2
NLROM DOFs 14 12 14 14
Static solutions 834 378 378 130 834 378 3304

Table 7.3: Number of nonlinear static solutions (offline computational cost) for NLROMs development of
the panel model using different methods.

Nonlinear substructuring

The geometric nonlinear models of the two substructures are reduced using the ICE
method. As a reduction basis to generate the nonlinear static forces required in ICE,
Kuether et al. used GH and HCB bases in [84]. In a later work in [82], they also
combined SL as well as LL-WC interface reduction techniques for nonlinear HCB to
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(a) Transverse DOF of point A.
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(b) Membrane DOF of point A.
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(c) Transverse DOF of point B.
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(d) Transverse DOF of point B.

Figure 7.4: Displacement power spectral density evaluation for the convergence check of the plate’s
NLROM developed with the MRM basis. Three NLROMs are compared when the free modes are kept
up to 500 Hz, 750 Hz and 1000 Hz under the loading condition of 155 dB SPL. Two SL interface modes
are used for the NLROMs.

NLROM/Full model NLROM-MRM-SL NLROM-CB-SL NLROM-GH Full Model
(155 dB)

Online Cost, IC 4.2 min 4.2 min 3.5 min 597.2 min
Online Cost, ICE 3.5 min 3.4 min 2 min

Table 7.4: Online computational time for four seconds time integration of the plate FE model with different
methods.

reduce the computational costs while developing the NLROMs of substructures. In
this work, we develop the augmented free-interface method (MRM) with SL, LL-EC
and LL-WC interface reductions for nonlinear substructuring and compare it with cor-
responding IR methods applied to nonlinear HCB and GH methods. The evaluation
and comparison of the results are studied on the points A and B (see Fig. 6.3b).
The nonlinear convergence check study of the proposed method is shown in Fig. 7.4
under 155 dB SPL. This study is performed by retaining the free-interface modes up
to 500, 750 Hz and 1000 Hz in the reduction basis. All NLROMs are developed while
only two SL-IR modes for each substructure are kept in the reduction bases. The
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(a) Transverse DOF of point A under 140 dB load.
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(b) Membrane DOF of point A under 140 dB load.
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(c) Transverse DOF of point A under 155 dB load.
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(d) Membrane DOF of point A under 155 dB load.

Figure 7.5: Comparison of the plate’s full-order model with the NLROMs using three bases: free-
interface, MRM with SL-IR, HCB with SL-IR and also the LROM. The displacement power spectral
densities for transverse and membrane DOFs of point A are compared. Two interface modes are used
for HCB and MRM.

accuracy of PSDs for transverse as well as membrane motions of both points, A and
B, are increased by expanding the number of modes in the basis. This acknowledges
the convergence of the proposed method. Considering the accuracy of the NLROM
with modes up to 750 Hz, this model is used for further comparisons of this example.
Note that the total number of generalized DOFs for NLROM with modes up to 750
Hz is 14, which is only 0.04% of the number of the full-model’s DOFs, leading to a
very compact nonlinear model.
Furthermore, the NLROM of the nonlinear MRM with SL-IR is evaluated under two
uniformly distributed SPLs; 140 dB and 155 dB, with the excitation frequency of
0−500 Hz. This result (NLROM-MRM-SL) is compared with the nonlinear GH model
(NLROM-GH), nonlinear HCB with SL-IR (NLROM-HCB-SL), linear ROM with GH
method (LROM) and nonlinear full-order model (time integrated in Abaqus) for the
transverse and membrane motion of point A, and presented in Fig. 7.5. Unlike the
nonlinear GH method, which fails to capture the dynamics of the full model, the aug-
mented free-interface method of MRM follows very well the PSD of the full-model in
the whole investigated frequency range. This result confirms a significant improve-
ment of the free-interface mode method studied in [84], by increasing the DOFs of
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(a) Transverse DOF of point A under 140 dB load.
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(b) Membrane DOF of point A under 140 dB load.
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(c) Transverse DOF of point A under 155 dB load.
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(d) Membrane DOF of point A under 155 dB load.

Figure 7.6: Comparison of the plate’s full-order model with the NLROMs using three bases: GH, MRM
with LL-EC interface reduction, HCB with LL-EC interface reduction, and also the LROM. The displace-
ment power spectral densities for transverse and membrane DOFs of point A are compared. Two inter-
face modes are used for HCB and MRM.

the GH’s NLROM with only two interface generalized coordinates. Since NLROM-GH
does not work for this example, it is not considered in further comparisons. Addition-
ally, the accuracy of the NLROM-HCB-SL and NLROM-MRM-SL for frequencies up to
700 Hz are acceptable for both transverse and membrane directions. After about 700
Hz, none of the methods can follow the transverse PSD of the full-model accurately
(see Figs. 7.5b and 7.5d), due to the fact that the free-interface modes are kept up
to about 750 Hz in the system (and the same number for fixed-interface modes). To
get acceptable PSDs for higher frequencies, more modes should be preserved in the
reduction basis.
The same analysis for the nonlinear MRM method combined with two interface
modes of LL-EC method (NLROM-MRM-LL-EC) under 140 dB and 155 dB SPLs is
performed and presented in Fig. 7.6. They are further compared with nonlinear HCB
with LL-EC interface reduction (NLROM-HCB-LL-EC), LROM and full-order model.
Figs. 7.6a and 7.6c show the PSD comparison for the transverse DOF of point A under
two aforementioned SPLs, whereas Figs. 7.6b and 7.6d exhibit the PSD comparison
for its membrane DOF. Like the NLROM-MRM-SL, not only does the NLROM-MRM-
LL-EC distinctly improve the PSD accuracy of both transverse and membrane motions
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(a) Transverse DOF of point A under 140 dB load.
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(b) Membrane DOF of point A under 140 dB load.
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(c) Transverse DOF of point A under 155 dB load.

0 100 200 300 400 500 600 700 800

Frequency (Hz)

10-19

10-18

10-17

10-16

D
is

pl
ac

em
en

t P
S

D
 (

m
2
/H

z)

Nonlinear Full Model
NLROM-MRM-LL-WC
NLROM-HCB-LL-WC

(d) Membrane DOF of point A under 155 dB load.

Figure 7.7: Comparison of the plate’s full-order model with the NLROMs using three bases: GH, MRM
with LL-WC interface reduction, HCB with LL-WC interface reduction, and also the LROM. The dis-
placement power spectral densities for transverse and membrane DOFs of point A are compared. Two
interface modes are used for HCB and MRM.

compared to NLROM-GH, but also it has almost the same accuracy as NLROM-HCB-
LL-EC.
Finally, LL-WC interface reduction is combined with MRM for the purpose of nonlin-
ear substructuring (NLROM-MRM-LL-WC) and compared with nonlinear HCB com-
bined with LL-WC (NLROM-HCB-LL-WC), LROM and the nonlinear full-model under
the two aforementioned SPLs. Two LL-WC interface mode are used to develop the
NLROMs with HCB and MRM. The PSD of these results for the transverse as well
as membrane DOFs of point A is depicted in Fig. 7.7. From these results, the same
conclusion can be drawn as was made for the other two proposed methods, namely,
adding just a few interface DOFs (here two) to the previous nonlinear free-interface
substructuring performed in [84] has improved the NLROM in the same order of
accuracy as the nonlinear HCB.
Fig. 7.8 compares the accuracy of all three IR techniques applied to the nonlinear
MRM method. Although all three NLROMs are superior to the NLROM-GH, there is
no notable difference in the accuracy among them in both transverse (Fig. 7.8a) and
membrane (Fig. 7.8b) motions. The overall results discussed in this section lead to
the conclusion that the NLROM-MRM with all three IR techniques can remarkably
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Figure 7.8: Comparison of the plate’s NLROMs with full-order model based on the MRM method with
three interface reductions: SL, LL-EC and LL-WC. The displacement power spectral densities for trans-
verse and membrane DOFs of point A are compared. Two interface modes are used for all NLROMs.

increase the previous nonlinear free-interface (GH) substructuring. The reason why
the reduced model is very accurate even with only two interface modes can be ex-
plained by the fact that the interface is simply supported. This was done to simulate
a similar example as in [82].

Computational costs

The final study for this example investigates the offline as well as online compu-
tational costs for the developed NLROMs. Table 7.3 shows the required nonlinear
static solutions to generate the NLROM of each substructure using different meth-
ods. Like the beam example, it can be seen that if the NLROMs of two substructures
are computed in parallel, the maximum number of required static solution to build
the NLROM is 836 for the MRM-SL and HCB-SL, and 378 for GH. However, mono-
lithic reduction of the full-model with the same number of reduced DOFs needs 3304
static solutions, which show the advantage of substructuring.
Furthermore, table 7.4 describes the required online time for four seconds time in-
tegration of the generated NLROMs described in table 7.3 as well as the full-order
model. Although the full-order model is integrated in Abaqus (which has very op-
timized time integration algorithms) and the NLROMs are integrated in a research
MATLAB code, the required online time integration of the NLROM is about 142 times
faster than the required time for the integration of the full-order model. Besides, the
developed NLROMs can be used for several loading cases with excitation frequen-
cies up to 500 Hz and SPLs up to about 155 dB. This advantage is in contrast to the
hyper-reduction methods, which are load dependent and in general, for each loading
condition, an additional offline computational cost for snapshot generations will be
added.
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7.5 summary

We propose an augmented free-interface-based method for modal substructuring of
geometrically nonlinear finite element models that can significantly improve the free-
interface nonlinear substructuring method. Our novel approach uses the reduction
basis of the MacNeal/Rubin-Martinez method on geometrically nonlinear models.
This basis comprises free-interface modes, rigid body modes, and residual flexibil-
ity attachment modes. Furthermore, we employ three different interface reduction
methods to minimized the number of interface modes and further reduce the size
of the Reduced Order Model (ROM). The coefficients of the nonlinear terms of the
ROM - assumed to be up to cubic order in the modal coordinates - are identified in a
non-intrusive manner using the Implicit Condensation and Expansion (ICE) method.
This approach has the significant advantage of avoiding the requirement to access
finite element formulations for model reduction that are typically not available in
commercial finite element programs used for nonlinear structural dynamics. ICE al-
lows to retrieve the membranal behavior accurately, even when the reduction basis
only features bending dominated low frequency modes.
The method we propose is then equipped with three interface reduction methods
available in literature for the Hurty/Craig-Bampton (HCB) method, namely, system
level, local-level with exact compatibility and local-level with weak compatibility. We
compare our approach - with and without interface reduction - with the nonlinear
HCB and free-interface methods, which were recently presented in [85] and [82]
and stand out as reference. The assessment is performed on two numerical exam-
ples modeled with beam and shell elements, in Abaqus. The numerical results for
both examples show a significant improvement when compared to the free-interface
method. This is due to the fact that the residual flexibility attachment modes can
properly approximate the effect of truncated modes due to interface forces on the
nonlinear response of the system. Furthermore, the nonlinear substructuring devel-
oped with the proposed basis performs marginally better than the nonlinear HCB
for higher excitation levels. While improving accuracy, this addition does not signifi-
cantly compromise the online computational costs associated to the method. Finally,
the proposed method can facilitate experimental testing of nonlinear substructures,
because unlike the HCB method, it does not require to fix the interface DOFs for the
measurement of components.





Chapter 8

Improving non-intrusive substructuring with modal
derivatives

This chapter is extracted from the author’s work in [71], which is in preparation to be
submitted for publication. In this article, Karamooz had the idea of the work, derived
the numerical results for the shown examples, and wrote the manuscript. Tiso and Rixen
give useful inputs in the discussions of the work and proof-read the article. Rixen super-
vises the work.

8.1 Introduction

In this chapter we introduce a generic nonlinear substructuring approach, which is an
extension of our works in Chapters 4 and 7. As discussed before, Kuether et al. [82,
85] developed the first non-intrusive-based substructuring approach for nonlinear FE
models, in which the Hurty/Craig-Bampton (HCB) reduction basis is employed to re-
duce the linear matrices of each substructure. Afterwards, the nonlinear stiffness co-
efficients of each substructure’s NLROM is estimated using ICE. We further extended
this method for nonlinear substructuring with free-interface modes in Chapter 7 and
discussed the advantages of our approach.
The reduction bases used in Chapter 7 are only based on the classical linear CMS
bases. Besides, the ICE method is used in Chapter 7 as well as in [54] to obtain the
Nonlinear Stiffness Coefficients (NSCs) of the substructures’ NLROMs, which predicts
the in-plane motion of the structures only if the relation between the transverse-
membrane modes are quadratic (as explained in Chapter 3). This makes the ICE
method limited for curved structures, as also discussed in Chapter 5.
Another nonlinear substructuring method developed first by Wenneker and Tiso [157],
augments the so called Modal Derivatives (MDs) to the linear HCB basis to more accu-
rately predict the nonlinear response of the reduced model from substructuring. Wu
later extended this method in [163] for using interface reduction and its correspond-
ing (static) MDs. However, both mentioned augmented nonlinear HCB methods are
intrusive methods, which are not applicable when the FE model is developed in a
commercial packages.
In this work, we extend the non-intrusive-based nonlinear HCB method proposed by
Kuether et al. [82, 85] in two ways. First we enrich the reduction basis by intro-
ducing the non-intrusive MDs to the linear HCB basis to increase the accuracy of the
NLROMs. Using the proposed basis, the displacement of the membrane-dominated

131
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DOFs are obtained without requiring to employ the expansion process of the ICE
method, meaning that our method is more general. As the second novelty of this
work, we propose the use of displacement-based non-intrusive ROM methods, intro-
duced in [103, 116], instead of the forced-based ones (like IC and ICE) to develop
the substructures’ NLROMs. The advantage of the displacement-based methods are
that they usually require less number of nonlinear static solutions (If tangent stiff-
ness methodology is used) to obtain the NSCs of each substructure, leading to less
offline computational costs. We apply the proposed method to the FE models of two
numerical examples with geometric nonlinear effect and show the accuracy of the
results obtained from this method.

8.2 Governing equations for substructures’ ROMs

Let us revisit the governing equations for a geometric nonlinear substructure (s) as

M (s)ü(s) + D(s)u̇(s) + K (s)u(s) + f (s)nl (u) = f (s) + g (s), (8.1)

where M ∈ IRn(s)×n(s), D ∈ IRn(s)×n(s) and K ∈ IRn(s)×n(s) are the mass, damping and stiffness
matrices, respectively, and the superscript (s) denote the entities corresponding to the
sth substructure. The displacement vector is denoted by u ∈ IRn(s)×1 and each overdot
represents one time derivative of this vector. Moreover, the vectors fnl ∈ IRn(s)×1,
f ∈ IRn(s)×1 and g ∈ IRn(s)×1 are the nonlinear internal forces, applied external loads
and the connecting forces at the interface, respectively. The superscript (s) is omitted
in the remainder of this chapter for the sake of simplicity, unless otherwise stated.
The matrices as well as the vectors in Eq. (8.1) are then split into their internal and
boundary DOFs as
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,
(8.2)

where the subscripts i and b denote the DOFs corresponding to internal and bound-
ary DOFs, respectively. To reduce the dimension of the substructures’ governing equa-
tions, a reduction basis T ∈ IRn×m is defined as

�

ui

ub

�

≈ T
�

qi

qb

�

, (8.3)

where q ∈ IRm×1 is the vector of generalized (modal) DOFs and m<< n. Substituting
Eq. (8.3) into Eq. (8.1) and pre-multiplying it with T T results in the reduced set of
governing equations for the substructure:

M̂q̈ + D̂q̇ + K̂q + f̂nl(q) = f̂ + ĝ , (8.4)

where the sign ‘ˆ ’ denotes the reduced matrices and vectors of the corresponding
ones in Eq. 8.1. Furthermore, using the Taylor expansion, the i th component of the
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reduced nonlinear internal force vector is approximated as1

f̂nli = K̂ (2)i jl q jql + K̂ (3)i jl pq jqlqp, (8.5)

where K̂ (2) and K̂ (3) are the quadratic and cubic NSCs, respectively. The aim of this
work is to obtain the NSCs in a non-intrusive manner which has the advantages
explained in Chapter 1. We introduce first a new reduction basis for non-intrusive
substructuring using the HCB basis, which is augmented with non-intrusive MDs. Af-
terwards, we identify the NSCs of each substructure using the Enforced Displacement
method.

8.3 Enhanced Craig-Bampton reduction basis: non-intrusive approach

When no interface reduction is intended for a substructure, the motion of its internal
DOFs can be approximated as

ui ≈ ΦF MqF M +ΘF MξF M +ΨC M ub, (8.6)

where ΦF M ∈ IRi×m1 contains the truncated number of fixed-interface modes and its
j th column, ϕF M , j is obtained as

(K ii −ω2
F M , j Mii)ϕF M , j = 0. (8.7)

Moreover, the Constraint Modes (CMs) matrix ΨC M ∈ IRi×b is given by

ΨC M = −K−1
ii K i b (8.8)

The matrix ΘF M ∈ IRi×m2 contains the Modal Derivatives (MDs) of the fixed-interface
modes. The concept of MDs and their non-intrusive computation was already dis-
cussed in section 4.3.3 for monolithic reduction. Here, we summarize them for the
context of substructuring. The jkth MD in Eq. (8.6) can be obtained by differenti-
ating the eigenvalue problem of the fixed-interface modes (Eq. (8.7)) [105, 157]:

�

K (1)ii −ω
2
F M , j Mii

� ∂ϕF M , j

∂ qk
=

�

∂ω2
F M , j

∂ q j
Mii −

∂ K ii

∂ qk

�

ϕF M , j, (8.9)

where

θ jk =
∂ϕF M , j

∂ qk
, (8.10)

is the jkth fixed-interface MD. The matrix of fixed-interface MDs, ΘF M is then obtained
by symmetrizing all the MDs and concatenating them in a matrix as

ΘF M =
�

θ11,
1
2
(θ12 + θ21), · · · , θkk, θ j j,

1
2
(θk j + θ jk), · · · , θmm

�

, (8.11)

1For solid elements and plates with von Kármán assumption, this expression is exact
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The derivative of the eigenfrequency,
∂ω2

F M , j

∂ q j
in Eq. (8.9) is attained by pre-multiplying

this equation with ϕT
F M , j and the only left unknown is then the MD. Since the l.h.s of

the Eq. (8.9) is singular, the MDs can be either computed by Nelson’s method [105]
or using the generalized inverse methodology as explained in [44] (also see section
4.3.3 for more details).
The computation of MDs can be simplified by neglecting the inertia term, which is
first proposed by Idelsohn and Cardona [61]. Accordingly, the Eq. (8.9) reduces to

K ii

∂ϕF M , j

∂ qk
=
∂ K ii

∂ qk
ϕF M , j. (8.12)

To obtain the MDs by the simplified Eq. (8.12), which are called Static Modal Deriva-
tives (SMDs), one does not need to factorize the mass matrix for each mode. The
Enahnced Hurty/Craig-Bampton (EHCB) reduction basis for the sth substructure is
finally defined as

T (s)EHCB =

�

Φ(s)F M Θ(s)F M Ψ(s)C M
0 0 I

�

, (8.13)

This basis is employed to reduce the linear mass and stiffness matrices as well as
identify the NSCs for each substructure.

Interface reduction

In case several DOFs exist at the interface of substructures, reduction of internal
DOFs does not suffice to build a compact NLROM with substructuring. Therefore,
several Interface Reduction (IR) techniques for linear CMS methods have been in-
vestigated in recent years, a review of which can be found in [80]. The main idea
of IR is to approximate the full-order interface DOFs with a reduced set of interface
modal coordinates using a modal reduction of interface’s mass and stiffness matrices,
either from coupled system (System-Level (SL)) or individual substructures (local
level (LL)). For a nonlinear structure, the interface modes can be augmented with
their corresponding modal derivative [163], namely,

ub ≈ ΦIRqIR +ΘIRξIR, (8.14)

where ΦIR ∈ IRb×m3 and qIR ∈ IRm3×1 contain a reduced set of interface modes and
model coordinates, respectively. The (S)MDs of the interface as well as its modal
coordinate are denoted by ΘIR ∈ IRb×m4 and ξIR ∈ IRm4×1, respectively. When an SL-
IR is desired, the j th column (mode) of the matrix ΦIR for SL-IR is obtained from
an eigenvalue problem of the interface mass and stiffness matrices of the coupled
structure:

(K C
bb −ω

2
b, j M

C
bb)ϕb, j = 0, (8.15)

where the superscript C denotes the matrices of the coupled system. Furthermore, to
calculate the columns of ΘIR, the boundary mass and stiffness of the coupled system
must be differentiated similar to the (S)MDs of the fixed-interface modes (Eqs (8.9)
and (8.12), which require dealing with full-order nonlinear coupled reduced system.



8.3 Enhanced Craig-Bampton reduction basis: non-intrusive approach 135

Since in substructuring we avoid working with the full nonlinear system, the (S)MDs
of the SL-IR are neglected. However, the (S)MDs of the interface can computed while
LL-IR is desired.
Once the interface modes as well as (S)MDs (only for LL-IR) are computed, the
projection matrix for IR of the sth substructure yields

T (s)IR =





I (s)m1m1
0 0 0

0 I (s)m2m2
0 0

0 0 (Φ(s)IR )bm3
(Θ(s)IR )bm4



 (8.16)

where T (s)IR is the IR projection matrix. Finally, the total reduction basis with IR for
the substructure s is given by

T (s)EHCB,IR = T (s)EHCB T (s)IR , (8.17)

where T (s)EHCB,IR is total reduction basis for the substructure with interface reduction.
All of the ingredients in the EHCB reduction basis, except the (S)MD, can be com-
puted from linear mass and stiffness of matrices of each substructure, which are avail-
able. In the following, we discuss how to compute (S)MDs non-intrusively, namely,
without having to access the closed form governing equations.

Non-intrusive computation of modal derivatives

Since the aim of this work is to develop the NLROM of each substructure non-
intrusively, we introduce two ways for non-intrusive computation of the fixed-interface
(or boundary modes) (S)MD using central finite difference. In case the FE code re-
leases the TS matrix after solving a nonlinear static solution, the derivative of the TS
matrix is given by

∂ K t
ii(ϕF M , jq j)

∂ q j

�

�

�

�

q j=0

=
K t

ii(ui = ϕF M , jh)− K t
ii(ui = −ϕF M , jh)

2h
, (8.18)

where K t
ii denotes the TS matrix corresponding to the internal DOFs and h is a small

increment for finite difference perturbation. It should be noted that the nonlinear
static solution for each increment is computed while the interface DOFs are made
fixed in the FE code. The second case is when only the reaction forces due to a
prescribed displacement is released by the FE code. In this case the derivative of the
TS, multiplied with each fixed-interface mode is written as

∂ K t
ii

∂ q j
ϕF M ,k =

∂ 2 finti
∂ qk∂ q j

�

�
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(u=−ϕF M ,khi+ϕF M , jh j)+ finti

(u=−ϕF M ,khi−ϕF M , jh j)
4hih j

.

(8.19)

Once the l.h.s of the Eqs. (8.18) and (8.19) are calculated, they can be introduced to
either Eqs. (8.9) or (8.12) to gain the (S)MDs.
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Load-independent selection of modal derivatives

Since the number of (S)MDs increase quadratically (O(m2)) when increasing the
number of fixed interface as well as boundary modes, only the most important ones
are selected in the reduction basis. Here, we use the Maximum Modal Interaction
(MMI) method [64, 154] with a small modification. We use a random signal for
excitation of the system as the modification of this method. We reduce the linear
mass and stiffness matrices, which correspond to the internal DOFs using only the
fixed-interface modes in the basis. Then a linear time integration for the reduced
set of fixed-interface coordinates is performed. The load excitation in this case is
random in time with a desired frequency band, and an arbitrary load distribution. In
this work, we choose the load distribution as a unit load applied to all DOFs (trans-
verse/membrane/rotation). Each component of the MMI matrix is finally computed
as

WF Mi j
=

∫ T

0

�

�qi(t)q j(t)
�

� d t, (8.20)

where WF Mi j
is the i j th component of the MMI matrix. Then those (S)MDs are selected

that their corresponding MMI have the maximum values. The same procedure can be
applied to the linear mass and stiffness matrices of the boundary DOFs and select the
(S)MDs of the interface modes. In other words, this time the mass and stiffness of the
boundary DOFs reduced with IR can be integrated and the generalized coordinates,
qIR, corresponding to the reduced boundary DOF can be used in Eq. (8.20) for the
selection of interface (S)MDs.
The MMI criterion is a heuristic method, which works for (S)MDs selection in some
structures. However, it is more efficient for some examples to simply select those
(S)MDs with lowest indices number (e.g., 11, 12, 22, ...), which is used for the
second example of this work.

8.4 Non-intrusive development of substructures’ NLROMs

To obtain the NSCs of each substructure non-intrusively, a set of nonlinear static
solutions must be performed. Therefore, the i th line of Eq. (8.4) for a substructure
reduces to

K̂ (1)i j q j + K̂ (2)i jl q jql + K̂ (3)i jl pq jqlqp = f̂i + gi. (8.21)

The first step of non-intrusive identification of NSCs is selection of a reduction basis,
which can accurately convey linear as well as nonlinear properties of the full-order
model. Here, we introduced the EHCB as a novel basis for non-intrusive modal sub-
structuring that enriches the reduction basis with modal derivatives. In this section,
we briefly present three approaches to identify the NSCs of each substructure

8.4.1 Enhanced Applied Force for substructuring

The applied force method (also known as Implicit Condensation (IC)) [95] was al-
ready explained in section 7.2; however, we briefly review it here, and explain its
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extension. This method was first developed for monolithic ROM and prescribes a
set of nonlinear static forces to the FE code to solve for the corresponding induced
displacements. These forces are built from a truncated number of linear Vibration
Modes (VMs) of the system that are usually transverse-dominated forces. Therefore,
the membrane-dominated DOFs are not accurately retrieved while using this method.
To also accurately obtain the dynamic response of membrane DOF, the method of Im-
plicit Condensation and Expansion (ICE) was introduced in [54]. Later, Kuether et
al. [84] extended this method for nonlinear substructuring by using only the HCB
modes as the reduction basis. Here, we extend this method by computing the MDs of
the HCB modes in a non-intrusive approach and augmenting it to the reduction basis
to identify the substructures’ NSCs with IC. In this way, we show that no expansion
as in [54, 84] is required to obtain the motion of the membrane DOFs at the cost of
adding extra generalized coordinates to the reduction basis.
To compute the NCSs with the EHCB reduction basis, first a set of static forces are
built from a combination of one, two or three columns of the basis as

f =
�

K ii K i b

K bi K bb

�

(Tiqi + T jq j + Tkqk), i, j, k = 0, 1,2, ..., m, (8.22)

where Ti is the i th column of the reduction basis TEHCB. These static forces are then
prescribed to the FE code, where the substructure’s FE model is developed to solve
for the resulting displacement fields. The applied forces and obtained displacements
are then projected into the modal domain. For the r th load case, this reads,

f̂r = T T
EHCB fr

qr = T+EHCBur ,
(8.23)

where ur and qr are physical and modal displacements, respectively, and fr and f̂r

denote the physical and modal force vectors. After applying all the forces from the
mentioned combination of the columns of the reduction basis, the resulting modal
forces as well as displacements are introduced into the Eq. (8.4), where we are
left with a set of over-determined linear equations and the NSCs are the only un-
knowns. The unknown NSCs are finally calculated using a regression method (e.g.
least squares). We call our method for combining the IC method with the EHCB, the
IC-MD or IC-SMD depending on the type of the modal derivatives that is used in the
basis.

8.4.2 Enforced Displacement for substructuring

An alternative to the IC method is the Enforced Displacement (ED) method to identify
the NSCs of a substructure, which is already described in Chapter 4 for monolithic
ROM and we briefly review it here in substructuring framework. The original ED
method [103] prescribes a set of nonlinear static displacement vectors to the FE code
to solve for the corresponding reaction forces. As a novel approach, we extend the
ED method for nonlinear substructuring and compare it with the IC-based approach.
Here, the procedure of NSCs identification is the same as the work of Muravyov et al.
[103], except that instead of the linear VMs, we use the EHCB reduction basis (Eqs.
(8.13 or 8.17)) in the ED approach. In case the reduced linear stiffness matrix of
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the substructure is obtained by direct projection of its full one, the first step is to set
up two displacements from each column of the reduction basis with different signs,
namely,

u(a)r = q(a)r Tr , a = 1,2, (8.24)

The resulting reaction forces from these displacement are then projected into modal
domain and substituted in Eq. (8.21) along with the modal coordinates to solve for
K (2)ir r and K (3)ir r r , which are the coefficients multiplied with the modal coordinates q2

r
and q3

r , respectively. The second step is to prescribe the displacements obtained from
a combination of two columns of the EHCB reduction basis, namely,

u =
�

Tr Ts

�

�

qr −qr qr

qs −qs −qs

�

, s ≥ r. (8.25)

To identify the coefficients K (2)isr and K (3)issr , which are multiplied with the terms contain-
ing multiplication of two different modal coordinates (e.g., qsqr and q2

s qr ). Finally,
the last set of displacements are prescribed using combinations of three columns of
the EHCB basis as

u =
�

Tr Ts Tt

��

qr qs qt

	T
, t ≥ s ≥ r, (8.26)

which result in identification of the coefficients K (3)i tsr that are multiplied with three
different modal coordinates (qsqrqt). When the ED method is combined with the
EHCB basis, we call it ED-MD or ED-SMD depending on the type of the employed
modal derivatives.

Enhanced Enforced Displacement

To speed up the identification process of ED in monolithic MOR, Perez et al. [116]
introduced an approach of NSCs calculation from tangent stiffnesses, as output of
the FE package, instead of reaction forces. We call this method as Enhanced Enforced
Displacement (EED) and further use it for modal substructuring by employing the
EHCB as the reduction basis to identify the NSCs of each substructure. The procedure
of EED starts similar to the ED by applying two static displacements per columns of
the EHCB basis. However, this time the nonlinear static analysis is sought for the TS
instead of reaction forces as output. Each TS is then projected to the modal domain
as

K̂ t(q) = T T
EHCB K t(u)TEHCB, (8.27)

where K t and K̂ t are the full and reduced TS matrices, respectively. The relation
between the NCSs and ir th component of the reduced TS matrix reads

K̂ t
ir =

∂
∂ qr
[K (1)i j q j + K (2)i jl q jql + K (3)i jl pq jqlqp]

= K (1)ir + [K
(2)
i jr + K (2)ir j ]q j + [K

(3)
i jl r + K (3)i jr l + K (3)ir jl]q jql .

(8.28)

This implies that prescribing all displacements of the first step yields the coefficients
K̂ (2)ir j , K̂ (3)ir j j, K̂ (3)i j jr , and K̂ (3)ir r r of the NSCs ( j > r), as explained in Chapter 4. In the
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Figure 8.1: The number of required nonlinear static solutions versus the number of kept modes for
different non-intrusive methods. For substructuring, the number of DOFs for the coupled system is
divided into two equal substructures (as an example), and the curves are obtained for one substructure,
assuming the identification procedure of substructures is performed in parallel.

second and last step, one displacement per combination of two columns of the the
EHCB basis is generated and prescribed to the FE code:

u = T jq j + Tlql . (8.29)

This leads to obtaining the rest of the coefficients, namely K (3)il jr (l > j > r >). As
can be observed in this method, the last step of the ED method is omitted for NSC’s
identification, which reduces the number of required nonlinear static solutions from
O(m3) to O(m2).
Fig. 8.1 compares the number of static solutions versus the number of the kept modes
in the reduction basis of each substructure’s NLROM, when a structure is divided
into two substructures, compared to the ones of monolithic NLROM. By dividing the
structure into substructures, the NSCs identification procedure can be parallelized,
leading to less offline computational costs. Even if the NSCs identification of sub-
structures are not parallelized, the sum of the total static solutions for the NLROMs
of two substructures are less than the number of static solutions required for develop-
ing a monolithic NLROM with the same number of the DOFs as the coupled system.
This will be shown for the examined examples of this chapter. This figure also con-
firms the significant reduction in nonlinear solution while using EED. However, since
we show in Chapters 9 and 5 that the accuracy of EED is less than ED when Abaqus
is used, we only use ED for the displacement-based substructuring in this chapter.
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8.5 Coupling of substructures’ NLROM

After the NSCs of all substructures are computed, the NLROM for each substructure
can be written as

M̂ (s)q̈ (s)+D̂(s)q̇ (s)+ K̂ (1)
(s)

q (s)+(K̂ (2)
(s)

.q (s))
︸ ︷︷ ︸

Q(s)1 (q)

q (s)+[(K̂ (3)
(s)

.q (s)).q (s)]
︸ ︷︷ ︸

Q(s)2 (q)

q (s) = f̂ (s)+ĝ (s) (8.30)

where Q(s)1 and Q(s)2 are the displacement-dependent stiffness coefficients. To perform
the coupling of substructures, the matrices as well as the tensors of the substructures’
NLROM are cast into a block diagonal matrix form. Without loss of generality, for
two substructures s1 and s2, this reads

�

M̂ (s1) 0
0 M̂ (s2)

��

q̈ (s1)

q̈ (s2)

�

+

�

D̂(s1) 0
0 D̂(s2)

��

q̇ (s1)

q̇ (s2)

�

+
�

K̂ (s1) 0
0 K̂ (s2)

��

q (s1)

q (s2)

�

+

�

Q
(s1)

1 (q
(s1)) 0

0 Q
(s2)

1 (q
(s2))

��

q (s1)

q (s2)

�

+
�

Q
(s1)

2 (q
(s1)) 0

0 Q
(s2)

2 (q
(s2))

��

q (s1)

q (s2)

�

=

�

f̂ (s1) + ĝ (s1)

f̂ (s2) + ĝ (s2)

�

(8.31)

Then, a localization matrix L as in the classical FE method is defined that fulfills
�

q (s1)

q (s2)

�

= LqC (8.32)

where qC is the unique set of coupled generalized coordinates [78]. Eq. (8.32) is
finally introduced to Eq. (8.31) and the whole expression is pre-multiplied with LT

to nullify the interface forces. The coupled reduced system is then given by

LT

�

M̂ (s1) 0
0 M̂ (s2)

�

Lq̈C + LT

�

D̂(s1) 0
0 D̂(s2)

�

Lq̇C+

LT

�

K̂ (s1) 0
0 K̂ (s2)

�

LqC + LT

�

Q
(s1)

1 (q
(s1)) 0

0 Q
(s2)

1 (q
(s2))

�

LqC+

LT

�

Q
(s1)

2 (q
(s1)) 0

0 Q
(s2)

2 (q
(s2))

�

LqC = LT

�

f̂ (s1)

f̂ (s2)

�

(8.33)

The localization matrix for the nonlinear EHCB without interface reduction can be
written as
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F M
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(8.34)
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where LEHCB is the localization matrix for the EHCB reduced system. Furthermore,
the localization matrix for system and local level IR methods with exact compatibility
[80], when the (S)MDs of the interface modes are neglected, is given by
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(8.35)

and in case the (S)MDs for the LL-IR is included (for the SL-IR we cannot compute
the (S)MDs, because the coupled full-order model is not accessible), it reads
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(8.36)

where LEHCB,IR is the localization matrix with IR.

8.6 Application to beam models

To evaluate the performance of the proposed approach, we first investigate modal
substructuring of two simply-supported beam models with geometric nonlinear ef-
fect, as shown in Fig. 6.1. The material, geometry and mesh properties of the beams
are given in Table 6.1. Moreover, the first six fixed-interface modes of the two sub-
structures are shown in Figs. 8.2 and 8.3. The first six SMDs of the substructures
are also depicted in Figs. 8.4 and 8.5. Since the shape of the SMDs and MDs are
very similar to each other, the MDs are not plotted here. As can be seen from Figs
8.2 and 8.3, the fixed-interface modes are transverse dominated modes, while their
corresponding SMDs represent the membrane motion of the beams. Therefore, the
(S)MDs can take into account the transverse-membrane stretching effect and approx-
imate in-plane motion while identifying NSCs.
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NLROM S1 S2 interface modes total DOFs
number of FIM 1

NLHCB-ED-SMD-11 3 2
or number of (S)MDs

NLHCB-IC-SMD-11 3 SMDs 2 SMDs 11
number of FIM 1

NLHCB-ED-SMD-22 4 3
or number of (S)MDs

NLHCB-IC-SMD-22 8 SMDs 6 SMDs 22
number of FIM 1

NLHCB-ED-MD-11 3 2
or number of (S)MDs

NLHCB-IC-MD-11 3 MDs 2 MDs 11
number of FIM 1

NLHCB-ED-MD-22 4 3
or number of (S)MDs

NLHCB-IC-MD-22 8 MDs 6 MDs 22
number of FIM 1

NLHCB-ED-22 12 9
or number of (S)MDs

NLHCB-IC-22 0 0 22

Table 8.1: The number of modes included in different developed NLROMs of the beam model by ED-
(S)MD or IC-(S)MD.

Since the number of (S)MDs increase quadratically with respect to the number of
modes, the MMI heuristic criterion is used for this example to select a few (S)MDs
from a linear time integration of the reduced model (see section 8.3). Figs. 8.6a and
8.6b show the MMI of substructures S1 and S2 when 4 and 3 fixed-interface modes are
used in the substructures’ reduction basis, respectively. The (S)MDs are then selected
according to the components of the MMI matrices with maximum components.
We developed NLROMs of this work in MATLAB and integrated them using the im-
plicit Newmark time integration scheme, while the full-model is implicitly integrated
in Abaqus, both with a time increment of 1 × 10−4 seconds and 4 × 104 time steps.
All the NLROMs as well as the full-model are evaluated under different SPLs with
the excitation frequency of 0− 500 Hz, which are uniformly distributed in space and
random in time.
To compare different developed NLROMs with the full model, their PSDs are com-
puted from their corresponding time integrated displacements. The Rayleigh damp-
ing of the form αM + βK with the parameters α = 4.70 and β = 6.85 × 10−6 is
used throughout all the time integrations, which keeps the damping ratios for all the
modes in the excitation frequency less than 1%. Finally all the simulations through-
out this work is performed on a desktop PC with 32 GB RAM and Intel R© Xeon R© CPU
(3.6 GHz).
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Convergence check

First a convergence check study is performed to investigate the robustness of the pro-
posed methods. Table 8.1 demonstrates the different developed NLROMs with the
ED-(S)MD method. The PSD of these NLROMs for the transverse as well as mem-
brane directions of the points A and B are computed under 145dB SPL and shown in
Fig. 8.7. It can be seen from this figure that as the number of fixed-interface modes
as well as (S)MDs increases in the reduction basis of the NLROMs, the accuracy of
their corresponding PSDs for both transverse and membrane directions improves sig-
nificantly.
Furthermore, we performed the same analysis for the convergence check of the NL-
ROMs developed by IC-(S)MD. Table 8.1 illustrates the ingredients of the reduction
bases that are used to develop the NLROMs. Figs. 8.8a and 8.8c depict the PSDs of
the NLROMs as well as the full-model for the transverse direction of points A and B,
respectively. Figs. 8.8b and 8.8d show the PSDs of the membrane direction of A and
B. As can be seen from these figures, increasing the number linear modes as well as
the (S)MDs results in more accuracy of the obtained PSDs from the NLROMs.
The presented results of this section confirms the convergence of the proposed meth-
ods and also shows the number of fixed-interface modes and (S)MDs that are re-
quired to obtain accurate NLROMs.

Comparison of accuracy

Now we compare the accuracy of the NLROMs developed with different reduction
bases and methods but with the same number of generalized coordinate. Four dif-
ferent NLROMs are evaluated under two SPLs of 135dB and 145dB, all with 22 DOFs
and compared with the linear ROM with the same DOFs (LHCB-22) as well as the
nonlinear full-order model.
Fig. 8.9 shows this comparison under the two mentioned excitation levels for the
transverse as well as in-plane directions of point A (on substructure (S1)). Fig. 8.11
shows the same analysis on the point B (on substructure (S2)). As can be seen from
these figures, nonlinear substructuring by the ED method and only with the linear
HCB basis does not deliver accurate results for both transverse and in-plane direc-
tions, whereas the substructuring method based on IC with HCB delivers very ac-
curate results only for the transverse direction. To obtain the accurate results also
for membrane motion, the expansion procedure in [54] must be further performed,
which is widely discussed in Chapter 7. However, the expansion procedure is avoided
in this chapter, because it limits the relation between the transverse and membrane
coordinates to be quadratic (which is valid for flat and shallow curved structures, but
for some other structures it may be invalid).
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Figure 8.2: The first four fixed-interface modes for the substructure S1 of the flat beam model.
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Figure 8.3: The first three fixed-interface modes for the substructure S2 of the flat beam model.
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Figure 8.4: The first eight static modal derivatives for the substructure S1 of the flat beam model.
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Figure 8.5: The first six static modal derivatives for the substructure S2 of the flat beam model.
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Figure 8.6: The maximum modal interaction criterion for the first four fixed-interface modes of substruc-
ture S1 and the first three fixed-interface modes of substructure S2 to select (S)MDs.
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(b) Membrane DOF of point A.
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(c) Transverse DOF of point B.
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Figure 8.7: Flat beam model’s displacement PSDs for convergence check analysis of the NLROMs
developed by ED-(S)MD under 145 dB. The ingredients of the NLROM are demonstrated in Table 8.1.
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(b) Membrane DOF of point A.
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(c) Transverse DOF of point B.
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Figure 8.8: Flat beam model’s displacement PSDs for convergence check analysis of the NLROMs
developed by IC-(S)MD under 145 dB. The ingredients of the NLROMs are outlined in Table 8.1.

Furthermore, we observe from Figs. 8.9 and 8.11 that both proposed methods,
namely, ED-(S)MD and IC-(S)MD exhibit accurate PSDs for both directions and in
both shown points, compared to the reference results. Furthermore, the relative er-
ror of the investigated methods are compared for the first half seconds (out of four
seconds) of the time signals that are used to compute the PSDs of Figs. 8.9 and 8.11
and depicted in Figs. 8.10 and 8.12. These figures confirm that the relative error of
the NLROMs from the proposed substructuring methods are less than the other inves-
tigated methods and the least relative error belongs to the nonlinear substructuring
approach with ED-(S)MD.
Finally, we compare the number of nonlinear static solutions that are required to
identify the NSCs of each substructure to obtain the assembled NLROMs used in
Figs. 8.9 and 8.11. Table 8.2 shows the number of these static solution for the
substructures as well as the whole assembly. As can be seen from this table, if the
same number of generalized coordinates are used in the NLROMs, the number of
required static solutions by the displacement-based method is less than the force-
based method. This was also visualized in Fig. 8.1. However, the number of required
DOFs to develop a proper NLROM with ICE is usually half of those required by (E)ED,
at least for flat structures.
This result together with the accuracy comparison that is performed in Figs. 8.9 and
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8.11 draw the conclusion that our developed modal substructuring based on ED-
(S)MD is performing well, because it presents accurate dynamic results in transverse
and membrane directions, compared to the full-order model. It can also have moder-
ate offline computational costs to develop an NLROM, if the tangent stiffness proce-
dure can be employed to identify its NSCs. Moreover, it does not have the expansion
limitation of ICE, which requires a quadratic relation between transverse-membrane
DOFs to obtain the displacements of in-plane DOFs.

Model S1 S2 Total substructuring Monolithic ROM
NLHCB-IC-22 2626 1160 3786 13288

NLHCB-IC-SMD-22 2626 1160 3786 13288
NLHCB-ED-22 546 275 821 2277

NLHCB-ED-SMD-22 546 275 821 2277

Table 8.2: Number of nonlinear static solutions for NSCs identification of the beam’s NLROMs with
substructuring and monolithic.
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(a) Transverse DOF of point A under 135 dB SPL load.
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(b) Membrane DOF of point A under 135 dB SPL load.
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(c) Transverse DOF of point A under 145 dB SPL load.
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(d) Membrane DOF of point A under 145 dB SPL load.

Figure 8.9: Displacement PSD comparison of the beam’s full model with the NLROMs developed by
different methods and bases, all with 22 DOFs. The comparison is performed under 135 and 145 dB
SPL for transverse and membrane directions. The ingredients of the NLROMs are outlined in Table 8.1.
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(b) Membrane DOF of point A under 135 dB SPL load.
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(c) Transverse DOF of point A under 145 dB SPL load.
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(d) Membrane DOF of point A under 145 dB SPL load.

Figure 8.10: Flat beam’s relative error comparison for the first half seconds (out of four seconds) of the
time signals that are used to compute the PSDs of Fig. 8.9.

8.7 Application on nonlinear panels

The second case study to assess the performance of the proposed method is the panel
structure composed of two substructures, as shown in Fig. 6.3. Both substructure are
simply supported at all edges and coupled through three rotational DOFs per node.
The material, geometry and mesh properties of the substructures are given in Table
6.3. The time integration conditions for developed NLROMs as well as the full model
for this example are chosen the same as the beam model. like the previous example,
we impose SPL excitations, which are random in time and uniform in space and all
have the excitation frequency range of 0−500 Hz. The Rayleigh damping coefficients
are chosen as α = 16.2 and β = 2.85× 10−6, which lead to damping ratios less than
1% for all the modes within the frequency range of excitation.
To have an insight into the fixed-interface mode shapes of the substructures, the first
seven and five of them for the substructures S1 and S2 are plotted in Figs. 8.13 and
8.14, respectively. As can be seen from these figures, the first kept fixed-interface
modes for both substructures are transverse modes and cannot represent the mem-
brane motion in the presence of nonlinearity. To obtain the membrane motion of the
nonlinear substructures, we compute the (S)MDs of the fixed-interface modes and



8.7 Application on nonlinear panels 151

append them to the basis. Figs. 8.15 and 8.16 depict the first eight and six SMDs of
the substructures S1 and S2, respectively, which are used in the reduction basis of the
substructures. Since the shape of MDs are very similar to the SMDs, they are not de-
picted here. These figures display that all the used (S)MDs are membrane-dominated
vectors, which can approximate the membrane-stretching effects for nonlinear defor-
mations.
Furthermore, to select the kept (S)MDs in the reduction basis, the ones with lowest
indices are chosen in this example instead of using the MMI heuristic criterion, be-
cause it is found that choosing the (S)MDs with lowest indices delivers better results.
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(a) Transverse DOF of point B under 135 dB SPL load.
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(b) Membrane DOF of point B under 135 dB SPL load.
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(c) Transverse DOF of point B under 145 dB SPL load.
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(d) Membrane DOF of point B under 145 dB SPL load.

Figure 8.11: Displacement PSD comparison of the beam’s full model with the NLROMs developed by
different methods and bases, all with 22 DOFs. The comparison is performed under 135 and 145 dB
SPL for transverse and membrane directions. The ingredients of the NLROMs are outlined in Table 8.1.
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(a) Transverse DOF of point A under 135 dB SPL load.
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(b) Membrane DOF of point A under 135 dB SPL load.
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(c) Transverse DOF of point A under 145 dB SPL load.
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(d) Membrane DOF of point A under 145 dB SPL load.

Figure 8.12: Flat beam’s relative error comparison for the first half seconds of the time signal that is
used to compute the PSDs of Fig. 8.11.

Convergence check

The convergence check analysis of nonlinear substructuring with both ED-(S)MD and
IC-(S)MD is performed for this example. For each method four different reduction
bases are selected and their corresponding NLROMs are developed. The ingredients
of the two substructures’ reduction bases for the developed NLROMs by ED-(S)MD
and IC-(S)MDs are illustrated in Table 8.3. The number of SL interface modes are
selected as three modes, according to the convergence study performed in section
6.6.2.
Figs. 8.17a and 8.17b display the PSDs of the transverse and membrane directions of
point A (on substructure S1), respectively, for the defined NLROMs in Table 8.3 and
developed by ED-(S)MD, under an SPL of 155 dB. The same results for the point B
on substructure S2 are depicted in Appendix B. These figures show that increasing
the number of fixed interface modes as well as (S)MDs in the reduction basis of the
substructuring by ED-(S)MD result in improvement of the PSDs accuracy for both
directions. Besides, it can be seen from these figures that using SMDs instead of
MDs does not induce any significant difference in the accuracy of the PSDs in both
directions.
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Moreover, Figs. 8.17c and 8.17d depict the PSDs of the defined NLROMs in Table 8.3
and developed by IC-(S)MD, for the transverse and membrane directions of point A,
and the same PSDs for point B are shown in Appendix B. These figures acknowledge
the convergence of the developed NLROMs using IC-(S)MD method to the full model
response by increasing the number of fixed-interface modes and (S)MDs.

NLROM S1 S2 interface modes total DOFs
number of FIM 3

NLHCB-ED-SMD-13 3 2
or number of (S)MDs

NLHCB-IC-SMD-13 3 SMDs 2 SMDs 13
number of FIM 3

NLHCB-ED-SMD-32 7 5
or number of (S)MDs

NLHCB-IC-SMD-32 12 SMDs 5 SMDs 32
number of FIM 3

NLHCB-ED-MD-13 3 2
or number of (S)MDs

NLHCB-IC-MD-13 3 MDs 2 MDs 13
number of FIM 3

NLHCB-ED-MD-32 7 5
or number of (S)MDs

NLHCB-IC-MD-32 12 MDs 5 MDs 32
number of FIM 3

NLHCB-ED-32 19 10
or number of (S)MDs

NLHCB-IC-32 0 0 32

Table 8.3: The number of modes included in different developed NLROMs of the panel model by ED-
(S)MD or IC-(S)MD.
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(a) ϕ1 : ω1 = 157.0 Hz (b) ϕ2 : ω2 = 261.1 Hz

(c) ϕ3 : ω3 = 427.8 Hz (d) ϕ4 : ω4 = 514.6 Hz

(e) ϕ5 : ω5 = 613.3 Hz (f) ϕ6 : ω6 = 654.9 Hz

(g) ϕ7 : ω7 = 776.1 Hz

Figure 8.13: The first seven vibration modes for the substructure S1 of the flat beam model.
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(a) ϕ1 : ω1 = 190.0 Hz (b) ϕ2 : ω2 = 378.1 Hz

(c) ϕ3 : ω3 = 544.2 Hz (d) ϕ4 : ω4 = 675.6 Hz

(e) ϕ5 : ω5 = 724.1 Hz

Figure 8.14: The first five vibration modes for the substructure S2 of the flat beam model.
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(a) θ11 =
∂ φ1
∂ q1

(b) θ12 = θ21 =
∂ φ1
∂ q2

(c) θ13 = θ31 =
∂ φ1
∂ q3

(d) θ14 = θ41 =
∂ φ1
∂ q4

(e) θ22 =
∂ φ2
∂ q2

(f) θ23 = θ32 =
∂ φ2
∂ q3

(g) θ24 = θ42 =
∂ φ2
∂ q4

(h) θ33 =
∂ φ3
∂ q3

Figure 8.15: The first eight static modal derivatives for the substructure S1 of the panel model.
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(a) θ11 =
∂ φ1
∂ q1

(b) θ12 = θ21 =
∂ φ1
∂ q2

(c) θ13 = θ31 =
∂ φ1
∂ q3

(d) θ22 =
∂ φ2
∂ q2

(e) θ23 = θ32 =
∂ φ2
∂ q3

(f) θ33 =
∂ φ3
∂ q3

Figure 8.16: The first six static modal derivatives for the substructure S2 of the flat panel model.
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(a) Transverse DOF of point A.
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(b) Membrane DOF of point A.
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(c) Transverse DOF of point A.
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(d) Membrane DOF of point A.

Figure 8.17: Panel model’s displacement PSDs for convergence check analysis of the NLROMs devel-
oped by ED-(S)MD and IC-(S)MD under 155 dB. The ingredients of the NLROM are outlined in Table
8.3.

Comparison of accuracy

The NLROMs of the panel assembly are developed by four different methods, namely,
ED, IC, ED-SMD and IC-SMD, and compared under two SPLs of 140 dB and 155 dB.
All the NLROMs have the same dimension (32 DOFs) and are compared with the
nonlinear full model as well as the linear reduced model with 32 DOFs (LHCB-32).
This comparison is shown in Figs. 8.18a and 8.18c for the transverse direction and
in Figs. 8.18b and 8.18d for the in-plane direction of point A. The ingredients of
the developed NLROMs (their names are in the legend of the figures) are shown in
Table 8.3. For the transverse direction of point A, the PSD of three methods, namely,
NLHCB-IC, NLHCB-ED-SMD and NLHCB-IC-SMD are accurately representing the full
model for both low and high excitation levels. However, the PSD of NLHCB-ED is not
as accurate as the other methods for both excitation levels. This is due to the fact
that in this method only linear transverse-dominated HCB displacements are used to
identify the NSCs of each substructures, which does not serve appropriately when
the transverse-membrane coupling of the modes are activated.
Furthermore, for the membrane direction of point A, our proposed methods, NLHCB-
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ED-SMD and NLHCB-IC-SMD, represent accurate PSDs for both excitation levels.
Among these NLROMs, NLHCB-ED-SMD represents the best approximation of the
full model’s PSD. This is because the utilized modal derivatives instead of linear HCB
modes in the reduction basis of the substructures are in-plane dominated modes, as
shown in Figs. 8.15 and 8.16. Therefore, the modal coordinates and their corre-
sponding identified NSCs for each substructure contain their representative in-plane
displacements when they are transformed back to to the physical domain.
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(a) Transverse DOF of point A under 140 dB SPL load.
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(b) Membrane DOF of point A under 140 dB SPL load.
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(c) Transverse DOF of point A under 155 dB SPL load.
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(d) Membrane DOF of point A under 155 dB SPL load.

Figure 8.18: Displacement PSD comparison of the panel’s full model with the NLROMs developed by
different methods and bases, all with 32 DOFs. The comparison is performed under 140 dB and 155
dB SPL for transverse and membrane directions. The ingredients of the NLROM are outlined in Table
8.3.

Model S1 S2 Total substructuring Monolithic ROM
NLHCB-IC-32 13288 2626 15914 41728

NLHCB-IC-SMD-32 13288 2626 15914 41728
NLHCB-ED-32 2277 546 2823 6512

NLHCB-ED-SMD-32 2277 546 2823 6512

Table 8.4: Number of nonlinear static solutions for NSCs identification of the panel’s NLROMs with
substructuring and monolithic.



160 8 Improving non-intrusive substructuring with modal derivatives

0 100 200 300 400 500 600 700 800

Frequency (Hz)

10-20

10-18

10-16

10-14

10-12

10-10

D
is

pl
ac

em
en

t P
S

D
 (

m
2
/H

z)
Nonlinear Full Model
NLHCB-ED-32
NLHCB-IC-32
NLHCB-ED-SMD-32
NLHCB-IC-SMD-32
LHCB-32

(a) Transverse DOF of point B under 140 dB SPL load.
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(b) Membrane DOF of point B under 140 dB SPL load.
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(c) Transverse DOF of point B under 155 dB SPL load.
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(d) Membrane DOF of point B under 155 dB SPL load.

Figure 8.19: Displacement PSD comparison of the panel’s full model with the NLROMs developed by
different methods and bases, all with 32 DOFs. The comparison is performed under 140 dB and 155
dB SPLs for transverse and membrane directions. The ingredients of the NLROM are outlined in Table
8.3.

To show the same accuracy on substructure S2, the developed NLROMs are compared
for the transverse and in-plane DOFs of point B. Fig. 8.19 shows this comparison for
both directions and under the two mentioned SPLs. This figure shows that all the
NLROMs except the NLHCB-ED have acceptable PSDs in transverse direction com-
pared to the reference one, although the NLHCB-IC has the highest accuracy for high
frequency levels (500− 800 Hz). The reason for this is that all the used modes in the
reduction basis of NLHCB-IC contain transverse dominated HCB modes, which can
capture all the internal resonances with high frequency transverse modes. However,
for the in-plane motion of point B, those NLROMs have acceptable results whose
reduction basis comprise non-intrusive modal derivatives, namely, NLHCB-ED-SMD
and NLHCB-IC-SMD. As can be seen from Figs. 8.19b and 8.19d, the nonlinear sub-
structuring based on ED-SMD (NLHCB-ED-SMD) has the most accurate PSD result
in membrane direction for both excitation levels.
Finally, the number of required nonlinear static solutions to develop the NLROMs,
which are used in Figs. 8.18 and 8.19 for both substructures are shown in Table
8.4. This table compares these numbers when the same number of DOFs is used in
the NLROMs developed by different methods. However, to develop proper NLROMs
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with different methods, the numbers of required DOFs can be different, which is not
considered in this table.

8.8 Summary

This chapter proposes a generic form of modal substructuring of geometrically non-
linear FE models, which can be used in efficient dynamic analysis of structures. This
method is based on non-intrusive model order reduction approach, which has the ad-
vantage of being useful in case an FE model is developed in a commercial software.
In this method, we present a non-intrusive Enhanced Hurty/Craig-Bampton (EHCB)
reduction basis to reduce the linear matrices of substructures as well as identify their
nonlinear stiffness coefficients. The EHCB basis contains the classical HCB modes
augmented with the non-intrusive modal derivatives of them to account the nonlinear
interaction between the modes.
The procedure of identification of nonlinear stiffness coefficients for each substruc-
ture can be performed either by force-based or displacement-based non-intrusive
methods. However, we demonstrate in this work that using the displacement-based
method results in less offline computational costs while more accuracy of the nonlin-
ear reduced order models is achieved.
One reason that nonlinear modal substructuring with displacement-based substruc-
turing approach was not possible before, is that it was not possible to obtain accurate
result using only the HCB modes as for substructuring with ICE. However, we solve
this problem with our presented basis and show that it delivers accurate results. To
assess the performance of the proposed method, we apply it to two finite element
examples containing geometric nonlinear beam and shell elements. We develop the
nonlinear reduced order models with the presented procedure as well as the classical
methods. We impose random sound pressure levels on the reduced models as well
as the full one and compare the accuracy of our reduced models with respect to the
full one. Finally, we show that our presented results can accurately represent the
nonlinear full-order models.





Chapter 9

Evaluation of the nonlinear substructuring methods
to arch models

In this chapter, we compare our developed enhanced HCB nonlinear substructuring
approaches presented in Chapter 8 with the HCB nonlinear substructuring developed
by Keuther et al. [84]. It is already shown in Chapters 7 and 8 that both the nonlinear
HCB and EHCB methods work accurately for flat structures. Furthermore, when the
dimension of the required substructures’ reduction bases to obtain accurate NLROMs
increases, the number of needed static solutions to build the NLROMs increases in the
order O(m3) for ED and ICE and O(m2) for EED, regardless of their accuracies. Here
we apply these methods to an arch structure and compare the accuracy of different
NLROMs.

x

y

(a) Assembled arches

l1
h2

h1

t2

t1

l2

S1

S2

(b) Two substructures S1 and S2

Figure 9.1: Schematic of the Deep-curved arch FE model with two substructures and meshed with
geometric nonlinear beam elements.
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9.1 Deep-curved arch

To compare the performance of the presented substructuring methods, a deep-curved
arch structure is investigated, as depicted in Fig. 9.1a. The arch model is made of
two simply-supported substructures as shown in Fig. 9.1b, which are coupled at
their rotational DOF. The material, geometry and mesh properties of the model are
illustrated in Table 9.1.
To compare the accuracy of the nonlinear substructuring methods, NLROMs are de-
veloped using four different methods and bases, but all with the same dimension of
24 DOFs. The ingredients of these NLROMs as well as the methods that are used to
generate them are given in Table 9.2. To develop the NLROM of each substructure
for this example with ICE, the corresponding scaling factors should be scaled down
to avoid convergence problems in the nonlinear static solutions required for NSCs
identification.
Four static uniform distributed loads in y direction with negative and positive signs
are imposed to the NLROMs that induce displacements from weak to strong nonlin-
earities and their deformation are compared with the nonlinear full-order and the
linearized models.
Fig. 9.2 shows this static comparison under different load levels and the responses
are plotted for both x and y directions. As can be seen from this figure, both force-
based nonlinear substructuring methods, namely NLHCB-ICE of Kuether et al. [84]
and NLHCB-IC-MD do not work accurately for both weak and strong level of non-
linearity, although NLHCB-ICE performs significantly better than NLHCB-IC-MD. For
the displacement-based methods, NLHCB-EED-MD, which is based on NSCs identifi-
cation from tangent stiffness, cannot present acceptable results for different levels of
nonlinearity. For strong level of nonlinearity, this method becomes even unstable, as
for instance is depicted in Figs. 9.2c and 9.2d. However, NLHCB-ED-MD performs
accurately for negative and positive load cases, weak and strong level of nonlinearity
and in both x and y directions.
Moreover, it is studied by Spottswood et al. [150] that the expansion procedure of
ICE does not work for curved structures under combined loading conditions. There-
fore, we propose to use NLHCB-ED-MD for the substructuring of FE models that are

Property(dimension) S1 S2

Material
Mass density (kg/m3) 7870 7870
Young’s modulus (GPa) 205 205
Poisson’s ratio 0.28 0.28

Geometry
l (mm) 800 600
h (mm) 20 15
thickness (mm) 4 4

FE model

Element-type beam (2-node) beam (2-node)
Abaqus B21 Abaqus B21

Number of Elements 80 70
Number of DOFs 239 209
Number of interface DOFs 81 71

Table 9.1: Geometry, material and FE model Properties of the investigated arch model
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subject to these loading conditions, which needs to be verified in future research.
Finally, we assess the number of required static solutions for the development of
the NLROMs that are used in Fig. 9.2. These numbers are presented in Table 9.3
for the considered four substructuring methods. As can be seen from this table, the
displacement-based substructuring methods require less number of nonlinear static
solutions, although NLHCB-EED-MD was not working for this case.
From the results presented in this Chapter as well as in Chapter 7, we conclude
that the most robust nonlinear substructuring method that performs accurately for
flat and curved structures, and under weak and strong level of nonlinearity, is our
proposed NLHCB-ED-MD method. This method is a load-independent method that
can be extended for free-interface mode substructuring in future works.

NLROM method S1 S2 Total DOFs

NLHCB-ICE

1 number of FIM
15 9

number of (S)MDs
0 SMDs 0 SMDs 24

NLHCB-IC-MD

1 number of FIM
5 3

number of (S)MDs
10 MDs 6 MDs 24

NLHCB-ED-MD

1 number of FIM
5 3

number of (S)MDs
10 MDs 6 MDs 24

NLHCB-EED-MD

1 number of FIM
5 3

number of (S)MDs
10 MDs 6 MDs 24

Table 9.2: The utilized modes in different developed NLROMs of the arch model.

Substructure NLHCB-IC NLHCB-IC-MD NLHCB-ED-MD NLHCB-EED-MD
S1 (15 DOFs) 4090 4090 800 135
S2 (9 DOFs) 834 834 210 54

Table 9.3: The number of required nonlinear static solutions to develop different NLROMs of each
substructure.
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Figure 9.2: Deformation in x and y directions of the deep-curved arch model under four uniform dis-
tributed static loads of 5 N, 9 N, −10 N and −18 N, applied in y direction. The loads are applied to all
nodes.
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Chapter 10

Conclusion and future work

10.1 Summary and conclusion of part I

Model order reduction (MOR) has become an important topic in many industrial ap-
plications, which deal with nonlinear finite element (FE) models. This is due to the
fact that prediction of the structural response of large nonlinear FE models to static
and dynamic loads is extremely time consuming. Therefore, the full order FE model
is mapped to a reduced number of generalized coordinates, to increase the compu-
tational efficiency. The number of reduced coordinates is generally much smaller
than the number of the full-order FE model. Accordingly, the structural response to
different load cases (acoustic, thermal, etc.) can be computed much faster using the
reduced order model (ROM). One general way to reduce the model of a nonlinear
structure is indirect or non-intrusive approach, which does not require to access the
internals of an FE code while building the NLROM. This dissertation focuses on ex-
panding non-intrusive ROM methods to increase their accuracy as well as decreasing
their computational burden.
One of the bottlenecks for developing a non-intrusive reduced order model comes
from performing a “correct” basis selection, which is compact enough, easy to com-
pute, and possibly load-independent. It should also convey the most essential nonlin-
ear properties of the full-order model. In Chapter 3, we investigate accuracy improve-
ment of the ICE method, which is a force-based non-intrusive ROM approach. The
main advantage of ICE is that to develop an NLROM, a truncated number of linear
vibration modes as the reduction basis suffices to accurately predict the most impor-
tant nonlinear properties of the full model, e.g. the transverse-membrane stretching
effect for shell-like structures. However, in case the model is always operating under
a specific load distribution condition, the effect of truncated modes of the system on
spatial distribution of external loads is not considered in ICE.
We propose two reduction bases to improve the accuracy of ICE . In the first method,
which is called Mode Acceleration Correction, the quasi-static contribution of the
truncated modes due to forced excitation is added to the NLROM response. In the
second method, known as Modal Truncation Augmentation, Ritz vectors, which com-
pensate the mode truncation inaccuracies on the spatial distribution of the applied
loads, are used to determine modal truncation (MT) vectors. The MT vectors are
then appended to the linear basis for nonlinear stiffness coefficient identification
procedure of the NLROM. The proposed approaches are examined using a numerical
example under a distributed load as well as a point load with random time signals
and the results are compared with the classically developed NLROM. We show in
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Chapter 3 that the MT vectors has slightly improved the accuracy of NLROM re-
sponses, while the effect of MA correction is almost negligible for nonlinear MOR.
However, it should be noted that in this way the developed NLROMs are not load-
independent anymore.
Furthermore, due to the high number of required nonlinear static solutions in ICE,
which is a cubic function of generalized coordinates of the NLROM, it can only be
used when the dimension of the NLROM remains small (say less than thirty DOFs).
The expansion part of ICE also does not work for curved structures under combined
loading conditions, see [150].
To develop a generalized non-intrusive MOR, we investigate the displacement-based
non-intrusive methods in Chapter 4. One of the challenges of this method is to de-
velop a desired reduction basis that considers the nonlinear coupling between the
modes. The novelty of this chapter consists in combining the so-called modal deriva-
tives with non-intrusive methods. We demonstrate in this work that if the reduction
basis is selected in a systematic manner, then using modal derivatives can increase the
accuracy of nonlinear reduced order models when compared to previously proposed
methods. Moreover, modal derivatives are relatively straightforward to be obtained
and selected, as explained in Chapter 4.
We compute the modal derivatives in a non-intrusive manner using finite deference
and append them to the basis of truncated linear VMs. Then, we employ such basis
to identify nonlinear stiffness coefficients of the reduced model. Another advantage
of the proposed approach is that it is a simulation-free method, namely, it requires
no dynamic simulation of the full-order model to be obtained. Also, the reduced
model developed by non-intrusive modal derivatives can be used for a variety of load
cases in a frequency and amplitude range in which it is designed. We use two alter-
natives to compute the modal derivatives non-intrusively and compare them to each
other. The first method comprises differentiation of the whole eigenvalue problem
and the second one is obtained by neglecting the inertia terms when differentiating
the eigenvalue problem.
The proposed approach is applied to three finite element examples. The dynamic
responses from random excitation at different levels obtained with the reduced order
model we propose are compared to those computed with other available techniques.
Our numerical tests confirm the accuracy of the proposed approach.
We finally compare the non-intrusive MOR methods in Chapter 5 in terms of accuracy
and computational efficiency. We apply them to two numerical FE examples with
geometric nonlinear effect and under weak and strong nonlinear deformations. From
the result of Chapters 3, 4 and 5 we conclude that

• Non-intrusive model order reduction can be used as an efficient tool in a variety
of applications in industries, which deal with large and complex structures. This
is because non-intrusive MOR can reduce the model of nonlinear structures even
when they are developed in commercial FE packages (e.g. Abaqus, Nastran,
etc.), in contrast to the direct (intrusive) methods. The second advantage of
non-intrusive method relies on the fact that the nonlinear reduced order models
in this way can be developed such that they are valid for a variety of load cases
in a broadband frequency.

• All the non-intrusive methods can develop accurate NLROMs for flat and shallow-



10.2 Summary and conclusion of part II 171

curved structures under weak nonlinear excitations. However, for strong level
of nonlinearity only ICE and ED perform accurately. In these cases, ICE usually
delivers more compact NLROMs than ED.

• For MOR of deep-curved structures, the only method that performs accurately
in both weak and strong nonlinear response is the ED method. Furthermore, we
discuss in Chapter 4 that our proposed basis for ED, namely the non-intrusive
modal derivatives, can improve the performance of this method.

• It is discussed in [150] that the expansion procedure of ICE does not work for
curved structures under combined loads, which could be due to the quadratic
assumption for approximation of in-plane motion. In this cases we recommend
to use the ED method with our proposed reduction basis, because it does not
have the constraining assumption of ICE for in-plane dominated DOFs. This
should be verified in future research.

• For large multi-component structures writing the input files for the FE pack-
age as well as reading the output vectors and matrices from it becomes a time
consuming process. This can be alleviated by combining substructuring with
non-intrusive MOR to divide large files to smaller ones and facilitate parallel
computing, as we investigated in the Part II of this dissertation.

10.2 Summary and conclusion of part II

The second part of this dissertation expands on nonlinear modal substructuring for
geometric nonlinear multi-component FE models, based on non-intrusive MOR. It
is usually very cumbersome to reduce or analyze an FE model, which comprises
multi-components with numerous number of DOFs in a monolithic way. Therefore,
nonlinear substructuring methods are developed in recent years to speed up the de-
sign procedure of large FE models by dividing a structure into smaller components
(called substructures) and then analyzing (reducing) each substructure to take ad-
vantage of previously analyzed components and parallel computation. The analyzed
substructures are afterwards assembled to construct the dynamic properties of the
whole structure. Since many industries use commercial FE packages to developed
their models therein, it is important to develop the nonlinear substructuring meth-
ods based on non-intrusive approaches.
To start with the development of nonlinear substructuring methods, we review some
common linear component mode synthesis methods with free- and fixed-interface
DOFs in Chapter 6. Generally, the interface of substructures can contain many DOFs
leading to reduced order models, which are still computationally expensive. There-
fore, we discuss afterwards three interface reduction techniques developed so far
for the Hurty/Craig-Bampton (HCB) method, namely, system level, local level with
weak compatibility and local level with exact compatibility interface reduction meth-
ods. As the novelty of this chapter, we apply these interface reduction methods to
the MacNeal/Rubin-Martinez (MRM), which is an augmented free-interface CMS ap-
proach (To the author’s knowledge, the system level interface reduction was already
applied to the free-interface mode methods in [155]). We then apply all the reviewed
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methods of this chapter to two multi-component FE models. We show that the MRM
method with and without interface reduction has accurate eigenfrequencies com-
pared to other investigated CMS methods, for the investigated examples.
Afterwards, in Chapter 7, we propose a nonlinear dynamic substructuring of geomet-
rical nonlinear FE models, based on MRM reduction basis and interface reduction.
This work conveys two main novel aspects. Firstly, the NLROM of an individual sub-
structure is developed by an augmented free-interface method with Residual Flexi-
bility Attachment (RFA) modes, as a reduction basis. The RFA modes are adapted
such that they approximate the contribution of deleted modes to the nonlinear re-
sponse of the system. Secondly, the NLROMs of substructures are developed when
the augmented free-interface-based method is combined with three interface reduc-
tion techniques (one system-level and two local-level), which so far have only been
used with the fixed-interface method of nonlinear HCB. Finally, the proposed meth-
ods are compared with two previously developed non-intrusive-based modal sub-
structuring methods: nonlinear free-interface and nonlinear HCB methods.
The performance of the improved free-interface method is examined on two geomet-
rically nonlinear structures. The dynamic results show a remarkable improvement
of accuracy compared to the nonlinear free-interface method and the same order or
slightly better accuracy compared to the nonlinear HCB method. The performance of
the reduced order models are assessed by imposing random pressures on the struc-
tures and comparing the power spectral densities of the responses obtained from the
reduced order models and the full-order one.
In Chapter 8, we propose a generic non-intrusive-based nonlinear substructuring
method. First we present an Enhance Hurty/Craig-Bampton (EHCB) reduction ba-
sis, which contains fixed-interface modes, (characteristic) constraint modes and their
corresponding non-intrusive modal derivatives. By augmenting the reduction basis
with the modal derivatives, we can accurately estimate the most important nonlinear
properties of the full model and approximate the in-plane motion of the structure.
Therefore, this method can be used for flat, shallow-curved and deep-curved struc-
tures.
Furthermore, we combine the EHCB reduction basis with both IC (EHCB-IC) and ED
(EHCB-ED) and apply them to two numerical examples with geometric nonlinear
beam and plate elements. We compare the power spectral density of the proposed
NLROMs under random sound pressures with different levels of intensities. Based
on the obtained results, we conclude that our developed EHCB substructuring using
non-intrusive approach is an accurate method to be applied to different structures.
Finally, we compare the investigated nonlinear substructuring methods based on HCB
in Chapter 9 by applying them to a deep-curved FE model with two substructures. We
evaluate the accuracy of these methods under weak and strong nonlinear response.
From the results obtained in Chapters 7, 8 and 9 we conclude that the most accurate
method for MOR of different structures is our developed EHCB-ED.

10.3 Future work

The possible future works in the field of non-intrusive ROM and substructuring can
be investigated at least in the following directions:
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10.3.1 Non-intrusive MOR and substructuring with nonlinear manifold

Although we show in Chapters 4 and 8 that the developed non-intrusive MOR and
substructuring methods by ED and linear manifold basis (linear mode and (S)MDs)
perform accurately, the challenge is the increased number of NLROM’s DOFs due to
appended (S)MDs in the reduction basis. Therefore, it is sometimes desired to use
nonlinear projectors that have configuration dependent vectors and contain the non-
linear properties of the model without increasing the size of the reduction basis. For
instance, Jain et al. [64] developed the quadratic manifold method, which consider
the effect of modal derivative as a quadratic enslavement of the linear generalized
coordinates without adding additional coordinates. However, their method is a di-
rect method, which can not be used in commercial FE packages. We recommend to
extend the quadratic manifold for non-intrusive ROM approaches.
Furthermore, quadratic manifold can be extended for nonlinear substructuring to re-
duced the model of multi-component systems and facilitate parallel computation. In
this case, instead of linear vibration modes and their corresponding modal deriva-
tives, component modes and the modal derivatives of them should be used to build
the nonlinear projectors.

10.3.2 Non-intrusive MOR for flexible multi-body systems

To the author’s knowledge, the non-intrusive MOR techniques in the literature usu-
ally have been investigated for the structures, which have no rigid body motion.
However, in many applications, like wind turbine blades, nonlinear structures en-
dure rigid body motions in operating conditions. A few works exist in the literature,
which investigated nonlinear model reduction in multi body systems using for in-
stance the floating frame of reference, see [162, 165]. To further facilitate MOR of
multi-body structures that are developed in commercial FE packages, we recommend
to extend the non-intrusive MOR approach for the structures, which are moving in a
floating frame.

10.3.3 Modal derivative-based non-intrusive ROM and substructuring un-
der thermal field

In some applications like hypersonic air vehicles [93, 94], the structures are sub-
jected to combined acoustic and thermal loads. In this case the coupled thermoelastic
governing equations have to be investigated, which require model-reduction due to
extreme computational burden of their full models. While nonlinear ROM for such
cases have been developed in the recent years (e.g. in [94, 114]), we propose to
extend the modal derivative-based non-intrusive MOR for them as we showed that it
is the most accurate and robust non-intrusive ROM for elastodynamic problems.
Moreover, the structures under thermal loading condition can contain multi-component
structures that cannot be reduced monolithically, because of their large dimension of
matrices to be imported in-or exported from-the FE package. To facilitate MOR of
such structures, the nonlinear substructuring approaches that developed in Chapters
7 and 8 can be expanded for the thermoelastodynamic multi-component structure.
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10.3.4 Modal derivative-based nonlinear substructuring with free-interface
modes

In Chapter 7 of this dissertation, we extended the work of Keuther et al. [84] us-
ing the augmented free-interface mode method instead of GH and HCB bases and
discussed its advantages. However, the work of Chapter 7 is based on ICE, which
sometimes has the studied limitation for curved structure. Therefore, the augmented
free-interface mode substructuring can be combined with nonlinear substructuring
approach based on ED and modal derivatives to take the advantage of free-interface
mode method and modal derivatives.
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Appendix A

Construction of static equations for ICE method

Consider a nonlinear reduced order model in the form of Eq. (3.1) with two DOFs.
The static equilibrium equations corresponding to the r th static load case for this
NLROM writes
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Note in this equation that the linear and nonlinear stiffness tensors are considered
symmetric, namely

K̂ (2)ii j = K̂ (2)i ji

K̂ (3)iii j = K̂ (3)ii ji = K̂ (3)i jii

(A.2)

In order to obtain the unknown coefficients corresponding to the quadratic and cubic
terms in Eq. (A.1), p static load cases are applied to the full-order model (see Section
7.2) leading to the following over-determined equation:

KnlGnl = Fnl (A.3)

where
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(A.4)

contains the unknown nonlinear stiffness coefficients,

Gnl =
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comprise the known quadratic (and cubic when more than two modes exist in ROM)
combination of generalized coordinates. The matrix Fnl is given by

Fnl =

�
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(A.6)

The Eq. A.3 can be solved by using a regression approach (e.g. least squares, see
[95]).



Appendix B

Supplementary plot of Chapter 8

Figs. B.1 depicts the PSDs of the defined NLROMs in Table 8.3 for the transverse and
membrane directions of point B (on the panel model) to check the convergence of
of the investigated methods. This figure acknowledges the convergence of the devel-
oped NLROMs using ED-(S)MD and IC-(S)MD methods to the full model response
by increasing the number of fixed-interface modes and (S)MDs.
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Figure B.1: Panel model’s displacement PSDs for convergence check analysis of the NLROMs devel-
oped by ED-(S)MD and IC-(S)MD under 155 dB. The ingredients of the NLROM are demonstrated in
Table 8.3.
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