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Abstract

In this thesis, we model and simulate flow cavitation numerically with a Lagrangian–Eulerian (LE)

coupling model, emphasizing an investigation of cavitation bubble cloud. This model comprises

Eulerian and Lagrangian descriptions of cavitation fluid and dispersed gas/vapor bubbles, respectively,

and an LE coupling scheme. While the Eulerian fluid is modeled as a compressible fluid, the cavitation

bubbles are modeled with Lagrangian tracking, describing the bubbles’ motion and radius dynamics.

One- and two-way couplings between the Eulerian frame and the Lagrangian frame are introduced to

investigate different problems relevant to flow cavitation. We propose a new scheme for the numerical

simulation of homogeneous cavitation nucleation based on LE one-way coupling model. Furthermore,

we develop LE two-way coupling model to simulate a cavitation bubble cloud interacting with a

pressure wave and bubble cluster Rayleigh collapse.

In one-way coupling, only the bulk liquid’s effect on the dispersed bubbles is considered, assuming

that the bubbles move passively with the bulk liquid and that their volume is so small that we can

ignore how they affect the carrier liquid. Because the cavitating nuclei are in the spatial scale of the

micro- or nano-meter during homogeneous nucleation, we assume that one-way coupling is a justified

treatment for modeling nucleation. Homogeneous cavitation nucleation occurs in pure liquid when the

liquid is extracted due to a rapid pressure drop, which is reached through the underwater shock-bubble

interaction in a microchannel. This work’s novelty lies in the LE coupling model for numerical

simulation of homogeneous cavitation nucleation and the Lagrangian tracking of each nucleus. The

two-dimensional axisymmetric Eulerian equations are solved to compute shock-bubble interaction

and fluid evolution. Nuclei are treated as dispersed particles, and their dynamics are modeled by the

Rayleigh–Plesset (RP) equation. We apply the Poynting corrected nucleation theory (PCNT) to our

homogeneous nucleation model, as it offers a more accurate nucleation rate with Poynting correction
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than classical nucleation theory (CNT) does. The normalized Gaussian kernel function is applied to

model the vapor volume fraction, based on the size distribution of the dispersed nuclei. This treatment

smooths the void fraction and diffuses the isolated sub-grid interfaces to avoid numerical oscillations.

Nuclei initialization is divided into three steps: bubble location initialization, bubble volume

initialization, and state variables initialization. We conclude that homogeneous nucleation inside a

microchannel can be separated into three stages: energy deposition stage, nuclei generation stage,

and nuclei growth stage. A set of simulations with different initial shock amplitudes is presented to

analyze how initial shock amplitude affects nuclei generation time; total nuclei number and nuclei

size distribution at different stages and under different shock-amplitudes are also analyzed.

With cavitation bubbles expanding, their influence on the carrier liquid has to be accounted for

by two-way coupling. In the second part of this work, the gas-liquid mixture is treated directly as

a compressible fluid with pressure equilibrium. Specifically, we will consider an isobaric closure

as it has better mathematical properties than an isothermal one. We assume that the bubbles barely

influence the mixture’s momentum or velocity, due to the large density ratio between liquid and gas.

Thus, cavitation bubbles, carrier liquid, and mixture are assumed to share the same local velocity. We

also assume that the bubbles’ effect on the flow is introduced by variating the mixture density and the

pressure field, due to their convection and mixing with the carried liquid. Bubble’s compression and

expansion are described by a modified RP equation, which considers the close-by flow properties,

other than the flow properties at infinity, for each bubble. Several benchmark cases are simulated

to validate our model, which we apply further to investigate how the bubble cloud affects the shape

and propagation of a pressure wave when the pressure pulse travels through. In the end, we perform

three-dimensional (3D) simulation of a vapor cloud’s Rayleigh collapse and discuss the extreme

pressure it induces in detail. The total bubble number’s influence on the extreme collapse pressure

and the size distribution of bubbles during the collapse are also analyzed.
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Chapter 1

Introduction

1.1 Background

Dispersed flow is defined as the flow where one phase is dispersed in another continuous carrier phase.

The dispersed phases are usually solid particles, fluid droplets, or gas bubbles. Typical examples

of dispersed flows include solid particles suspended in gas or liquid, atomized droplets in gas, and

bubbly flows with dispersed gas or vapor bubbles. Dispersed flows are of major importance for

many industrial and medical applications, such as fluid mixing and cleaning, sonochemical processes,

and drug- and gene- delivery strategies. The efficiencies of those processes strongly depend on the

dispersed phases [14, 23, 25, 79, 102, 111].

In this thesis, we will investigate flow cavitation, with a focus on the dispersed cavitation bubble

cloud. Cavitation, which is the formation of vapor cavities in liquids, occurs when a liquid is extracted

due to a rapid drop in pressure. Cavitation causes damage in many engineering applications, including

noise and component damage in devices such as propellers, liquid fuel injectors (Fig. 1.1), and

turbines. The collapse of cavitation bubbles is considered as the main event contributing to the

destructive influence of cavitation [61, 62, 108]. When a bubble collapses violently, a shock wave

will form and destroy the surfaces of nearby equipment. Therefore, cavitation is usually undesirable,

and engineering design processes should seek to avoid it. However, cavitation plays a positive role

in many medical applications [23, 74, 104, 111]. Cavitation bubble clouds have been investigated in

high-intensity focused ultrasound (HIFU) surgery as a means to increase treatment efficiency. In drug
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Fig. 1.1 (a) Sketch of a cavitating water jet in a nozzle [90]; (b) erosion damages at the top part and
the two sides of the injection hole [37, 38].

delivery and gene therapy, microbubbles are introduced as vehicles that can be loaded and traced to a

target site and then destroyed or caused to collapse to release a material/drug locally. Additional harm

is prevented by keeping the drug from unrelated cells, blood clots, and tumors.

The presence of cavitation bubbles plays a fundamental role in cavitation’s applications. In Fig.

1.2, cavitation bubbles with various spatial scales during sheet cavitation are shown. The sizes of

different bubbles can vary greatly, ranging from several nanometers to several centimeters. The variety

of cavitation bubble spatial scales increases the complexity of cavitation. At the same time, bubbles

can convect, change dynamically in size, and collapse. Compared to the single bubble physics the

complexity of a bubble cluster is even greater due to the bubble fission/coalescence and bubble-bubble

interactions. As a result, difficulty of the numerical modeling and investigation of cavitation bubble

cloud is increased.
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Fig. 1.2 Multi-scale phenomena involved in sheet cavitation [48].

Various phenomena related to a single cavitation bubble and bubble cloud have been studied

in recent years. One such phenomenon, which occurs with acoustically driven gas bubbles, is

light emission resulting from bubble collapse, which is called sonoluminescence (SL) [67]. The

mechanism of SL induced by bubble oscillation is described in Fig. 1.3. At low pressures, the gas

bubble expands dramatically until the increasing sound-wave pressure triggers its collapse. During

this collapse, the recombination of electrons and ions results in light emission. Bubble nucleation

[16, 26], which initializes liquid-to-vapor transitions, can be categorized into heterogeneous and

homogeneous nucleation [89]. These differ according to where the nucleation occurs. The former

emerges from surfaces in contact with two liquids, and the latter relies on purity in the bulk liquid

[57, 60]. Shock-bubble interactions in a microchannel provide an ideal configuration for the formation

of homogeneous nucleation. In Fig. 1.4, the experimental results of Ando et al. [7] and Quinto

[91] are shown, by which the generation of homogeneous nuclei cloud induced by bubble-shock

interactions in a microchannel was successfully photographed. In the studies of cavitation bubble

clouds, the distribution of bubble sizes is a research focus [13, 64]. Hauptmann [45] studied the

experimentally determined distributions of bubble sizes under pulsed ultrasound and determined the

main mechanisms affecting the oscillating bubbles. Iida et al. [51] [52] experimentally estimated the

sonochemical bubble size distribution and its number density with two different models. According to
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Fig. 1.3 A gas bubble passes through a continuous pressure wave. At a low pressure, the gas bubble
expands until an increase in sound-wave pressure results in its collapse, which triggers SL [67].

their results, the size distribution can be well fitted on a graph using a Weibull distribution function. In

Ref. [77], the Weibull distribution was also applied to describe the size distribution of small particles.

1.2 Numerical simulation of cavitation bubbles

Over the past decades, computational fluid dynamics (CFD) has become an indispensable tool in

the engineering community, where it is widely used. Numerical simulations of fluid flow employ

different physical models and offer the transient solution of fluid flow under different time and space

scales, which can, in return, assist with experimental and theoretical investigations. Many problems

relating to cavitation bubbles have been investigated numerically, such as shock wave propagation

in bubbly flows [6, 28], bubbly flow turbulence [19, 31, 69], and bubble clouds in acoustic fields

[36, 63]. To better understand the physics of cavitation bubbles, numerical models, which can model

the cavitating flow and simultaneously provide the solution for bubble-fluid interfaces, are of great

importance [56, 85, 113, 116].
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Fig. 1.4 Experimental results of the homogeneous nucleation induced from bubble-shock interactions:
(a) snapshots of nuclei in a microchannel in Ref. [7]; (b) nucleation bubbles induced from interaction
between a pair of bubbles in a microchannel in Ref. [91].

1.2.1 Bubble dynamics

Many works have been carried out analytically to study the mechanisms of vapor or gas bubbles

[17]. The fundamental theoretical study of bubble dynamics was carried out by Rayleigh [93] and

Plesset [86], who studied the mechanics and physics of the formation and collapse of a spherical

bubble. They presented a comprehensive model describing the time history of a spherical bubble in a

weakly compressible liquid. This model considers surface tension and viscous effects but ignores

the mass/momentum exchange between gas bubbles and bulk fluid. Afterwards, many researchers

extended this model to consider liquid compression [66, 88], mass transfer effects [78], and non-

spherical bubble dynamics [62]. However, the classic RP equation remains at the core of analytical

models ans is used in a wide range of applications involving hydrodynamic cavitation, acoustic

cavitation, multi-phase bubbly flows, and underwater explosion bubbles.

1.2.2 Numerical models

Cavitation bubbles’ polydispersity, which ranges from dilute to dense, results in a wide variety of

gas volume fractions in computational grids, ranging from 10−10 to 10−1. In general, gas-liquid
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under resolved

resolved

sub-grid 

Fig. 1.5 Schematic of three interface types with respect to the computational grid: fully-resolved,
under-resolved, and sub-grid dispersed interfaces.

interfaces can be separated into fully solved (resolved), under-resolved, and sub-grid interfaces with

respect to grid size. A schematic of the three different interface types is plotted in Fig. 1.5. Different

numerical models have been developed to track or resolve different gas-liquid interfaces. In this

and next sections, we introduce three models which have been widely used to compute gas-liquid

interfaces: the continuum model, the interface tracking model, and the LE model.

The continuum model solves Navier-Stokes (NS) equations for the fluid mixture in an Eulerian

frame [4, 47, 81, 96]. Cavitation bubbles are represented by the gas volume fraction or the gas mass

fraction in the Eulerian grids, which is derived based on the expression of mixture pressure or density

in the equations of state (EOSs). This model is quite popular for Eulerian frame with lower gas volume

fractions and weak bubble oscillations, which can ignore single bubble dynamics. A multicomponent

flow problem with complex interfaces has been favorably simulated by the continuum model due to

its simplicity and numerical stability [47].

To resolve and track the gas-liquid interfaces, interface-tracking models are proposed. Two most

popular interface-tracking models are volume of fluid (VOF) method and level-set method. The VOF

model solves volume fraction advection equations together with the Eulerian equations [41, 47]. The
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actual position of the interfaces is recovered at the end of each computational step by an interface

reconstruction process. In the level set method introduced by Osher and Sethian [84], the interface is

represented as a signed distance function. This approach is more suitable for single bubble simulations,

as it treats the bubble and the fluid as two separated phases with a moving non-spherical interface. It

is popularly applied with computational sharp-interface multi-phase flows [50, 62]. However, it has

the drawback of a high computational cost when the complexity increases to 3D computation.

1.3 Lagrangian-Eulerian model

While there are many different methods of modeling resolved and under-resolved interfaces, such

as those in Refs. [4, 47, 50, 62, 81, 96], in this thesis, we apply the LE coupling method to model

the sub-grid bubble-fluid interfaces, which has been commonly applied in simulations of dispersed

multi-phase flow. The LE model consists of Lagrangian dispersed bubble tracking, an Eulerian

description of the carrier fluid, and an LE coupling scheme [24, 29, 105]. This model is favorable

due to Lagrangian tracking, simple operation (even in 3D operation), and lower computational costs

[24, 29]. Eulerian simulation is based on NS equations, Reynolds-averaged Navier-Stokes (RANS)

equations, large eddy simulation (LES) [9, 112], or direct numerical simulation (DNS) [32, 39].

Subgrid bubbles are discretized into Lagrangian particles, which move dynamically according to

bubble dynamics and motion equations. The physics of the bubble cloud, governing such aspects

as bubble-liquid interactions, bubble-bubble interactions, bubble-wall interactions, and bubble-fluid

mass transfers, can be simulated directly in the bubble dynamics equation. Note that the LE model

has a higher computational cost when bubble-bubble interactions are taken into account inside bubble

dynamics equation [24].

The LE model is widely used in the simulation of spray flow with droplet acceleration, evaporation,

collision, coalescence, and breakup. Williams first studied spray droplets based on a Lagrangian

description in Ref. [115]. Consequently, Amsden et al. [5] and O’Rourke [82, 83] applied the LE

model to simulate spray flow in internal combustion engine applications. The LE model was then

further developed to simulate flow cavitation with a focus on cavitation bubble cloud. In Ref. [24],

Darmana et al. studied a new parallel algorithm for the LE model and applied it for the numerical
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simulation of dispersed gas-bubble flow. In Ref. [71], dynamics of a bubble cloud near a rigid wall

was studied using a two-phase LE model. Fuster and Colonius [36] proposed a new simulation model

for cavitating flow with which they solved volume-averaged Eulerian equations for the carrier liquid

alongside Lagrangian tracking for each gas bubble. The motion of the gas bubbles was tracked with

the velocity of the bulk fluid. A more accurate expression of bubble dynamics equation was derived

based on potential flow theory. Their results showed that their method can capture the pressure

disturbance induced in the liquid. Recently, Maeda and Colonius [73] proposed a new formulation for

the pressure at infinity in the bubble dynamics equation. They determined the incoming acoustics

and the pressure scattered by the bubbles. The resulting fluid pressure at the computational cells is

assumed to be a combination of the fluid pressure and the pressure disturbance from each bubble.

LE coupling formulation can be divided into two branches: one-way and two-way coupling. In

one-way coupling, only the influence of the carrier phase (the carrier fluid in flow cavitation) on the

dispersed phase (cavitation bubbles) is considered (under the assumption that the small bubbles move

passively with the carrier fluid and that the dilute gas void fraction is rather small), so we can ignore

the influence of the dispersed phase on the carrier phase. Two-way coupling increases the complexity

of the nonlinear behavior of the system by considering how the dispersed bubbles influence the carrier

fluid. In two-way coupling, the advection of the gas volume fraction and the pressure closure of the

gas-liquid mixture are the two main challenges and still open questions.

1.4 Contribution and outline

Most numerical investigations of cavitation focus on topics ranging from erosion due to cavitating flow

to the collapse of cavitation bubble cloud; see, e.g., [2, 28, 75]. Numerical studies of homogeneous

nucleation are quite scarce, and scholarly understanding of the homogeneous nucleation mechanism

is still limited. Inspired by the experimental homogeneous nucleation investigation by Ando et al. [7],

we simulate the underwater shock-bubble induced homogeneous nucleation process in a microchannel

using the LE one-way coupling scheme. The simulation of bubble-shock interaction is carried out

using a compressible multi-phase fluid solver. Dynamics of the dispersed nuclei is modeled in the

Lagrangian frame, which describes the motion of each individual nucleus and its size variations driven
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by the bulk fluid. All nuclei are in the spatial scale of several micro- or nano-meters, so we assume

their surface tension is great enough to maintain their spherical form. Bubble dynamics are modeled

by the spherical bubble dynamics equation. A new scheme for the 3D simulation of homogeneous

nucleation will be proposed by applying PCNT. The novelty of this work lies in the implementation

of the LE coupling model for the numerical simulation of homogeneous cavitation nucleation in a

microchannel and the Lagrangian tracking of each nucleus.

As the second achievement in this thesis, we develop the LE two-way coupling model by applying

an isobaric closure, which is commonly applied in the simulation of multi-component problems. In

general, closure laws are classified into two types: isobaric and isothermal. We will apply isobaric

law, as it is preferable due to their mathematical properties (which are superior to those of isothermal

law), including consistency and hyperbolicity [4]. We solve the cavitation fluid mixture directly

in the Eulerian frame. Indeed, unlike EOSs in Refs. [24, 36, 71], which are applied using only

bulk liquid pressure, we directly obtain the bubble-fluid mixture equilibrium pressure using the gas

volume fraction. Tracking bubble locations and concentrations provides the gas volume fraction,

which is modeled based on a normalized truncated Gaussian kernel function. The dispersed bubbles

move passively with the bulk fluid, and their dynamics are described by a modified RP equation.

The equilibrium pressure will consequently be applied to formulate the nearby flow properties in

the modified RP equation, which allows the bubble dynamics to more physically model the fluid

surrounding each bubble. After validating the model with several benchmark cases, we apply it to

investigate two typical problems within a cavitation bubble cloud: the propagation of a pressure wave

and Rayleigh collapse of a vapor bubble cloud.

The thesis is organized as follows:

• In Chapter 2, the physical models are reviewed. The governing equations of the LE model will

be discussed.

• In Chapter 3, the numerical methods of spatial discretization and time integration in the LE

coupling model’s realization are introduced.

• In Chapter 4, we apply the one-way coupling LE method to simulate homogeneous nucleation

in a microchannel, as induced by the underwater shock-bubble interaction.
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• In Chapter 5, we apply the two-way coupling LE model. Some benchmark cases are sim-

ulated and investigated to validate our methods. In the end, simulation of a pressure wave

passing through a bubble cluster and 3D simulation of Rayleigh collapse of a bubble cloud are

performed.

• Conclusion and future work are provided in Chapter 6.



Chapter 2

Physical models

In this chapter, physical models considered for the numerical simulation of flow cavitation are

introduced. The cavitating liquid is modeled as an Eulerian fluid and aligned with the cavitation

bubbles modeled in a Lagrangian frame. Physical quantities of the dispersed bubbles are advanced

by the bubble motion and dynamics equations, while the physical quantities of the Eulerian fluid are

evolved based on the NS equations.

In the end, the one- and two-way Lagrangian–Eulerian coupling schemes are introduced and will

be applied to simulate homogeneous cavitation nucleation in Chapter 4 and cavitation bubble cloud

dynamics in Chapter 5, respectively.

2.1 Bubble dynamics

The dispersed bubbles’ dynamics are investigated in a Lagrangian frame to dynamically describe the

volume and motion of each individual bubble. A microbubble’s behavior in an infinite domain of

liquid at rest (in Fig.2.1) is modeled under the following assumptions:

• Because dispersed vapor/gas bubbles normally are extremely small (in the scale of nanometers

or micrometers), the surface tension is large enough to maintain the bubble’s spherical shape.

• Bubble fission and coalescence physics are not considered.

• Each bubble’s mass mb and temperature Tb remain the same.
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Vapor/Gas Bubble

R

Liquid
r

Bubble Surface

Fig. 2.1 Schematic of a spherical vapor/gas bubble in an infinite liquid at rest.

• The bulk fluid’s temperature at infinity T∞ stays constant.

2.1.1 Rayleigh-Plesset equation

The equation proposed by Rayleigh [93] and Plesset [86] has been widely used for bubble dynamics

modeling in hydrodynamic cavitation, multi-phase bubbly flows, and underwater explosion bubbles.

Based on the RP equation, dynamics of a spherical bubble surrounded by a weakly compressible

liquid at infinite (Fig.2.1) can be expressed as

ρ

[
RR̈+

3
2
(
Ṙ
)2
]
= pB − p∞ − 2S

R
− 4µ

R
Ṙ, (2.1)

where ρ is the density of the liquid, R is bubble radius, t is time, the dot denotes the substantial

time derivative, S is surface tension, µ is viscosity, pB is the pressure inside the bubble, and p∞ is

the far-field pressure of the surrounding fluid. Generally, a cavitation bubble contains vapor, whose

pressure is labeled as pv, and some quantity of contaminant gas, who has pressure pg0 at a reference

bubble size R0. When the temperature T∞ is constant, pv is considered constant. Pressure pB inside
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the bubble has the following expression:

pB = pv + pg0

(
R0

R

)3κg

, (2.2)

where κg is approximately constant. κg = 1 models constant bubble temperature, and κg = γg models

adiabatic behavior, which is normally the ratio of specific heats for gas γg = 1.4.

Besides bubble growth and collapse process, the bubble can oscillate stably when the bubble

reaches its equilibrium condition. For the given values of pB and p∞, the equilibrium radius Re can be

written as

Re =
2S

pB − p∞

. (2.3)

The bubble under Re in the liquid without viscous forces will oscillate with a resonance frequency,

which is also the natural frequency ωr of the bubble

ω
2
r =

1
ρR2

e

[
3κg (p∞ − pB)+

2S
Re

(3κg −1)
]
. (2.4)

2.1.2 Keller-Miksis equation

To model bubble growth and collapse, the Keller–Miksis equation proposed in Ref. [59] has also

been widely used. This equation is derived for the large amplitude oscillations of bubble radius. To

determine R(t), the second-order, nonlinear ordinary differential equation (ODE) in term of the radius

of a single, isolated bubble in an infinite weakly compressible flow is used:

(
R
(

1− Ṙ
c

))
R̈+

3
2

Ṙ2
(

1− Ṙ
3c

)
=

pn − p∞

ρ

(
1+

Ṙ
c

)
+

Rṗn

ρc
, (2.5)

pn = pB −
4µṘ

R
− 2S

R
, (2.6)

where pn is the pressure at bubble-fluid interface and c is the speed of sound in the liquid:

c2 =
d pl

dρ
, (2.7)

where pl is pressure of the carrier fluid.
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2.1.3 Equation of bubble motion

The spherical bubbles can move either passively or actively (slip or no-slip) with the carrier fluid.

When the bubbles move no-slip with the carrier fluid, there is no relative motion between the two

phases; the velocity of each bubble is derived directly from the velocity of the carrier fluid. The

position of each bubble xb is tracked by

dxb

dt
= u(xb), (2.8)

where b is the bubble index and u(xb) is the velocity of the carrier fluid at xb.

The slip motion also has been accounted for when the bubbles move actively with the carrier fluid.

The slip motion equation for spherical microbubbles of a high Reynolds number (Re) was described

by Sridhar and Katz [103] for studying spherical bubbles in a laminar vortex. Ford and Loth [34]

applied the same equation to study liquid forces acting on bubbles in a turbulent free shear flow and

in a turbulent boundary layer [33]. Considering buoyancy, fluid stress, and drag and lift forces, the

slip motion equation of a spherical bubble can be written as

Vb

(
ρb +

1
2

ρ

)
dub/dt =Vb (ρb −ρ)g+Vbρ [(1+CA)Du/Dt]+D+L (2.9)

where Vb =
4
3 πR3 is the bubble’s volume; ρb is the bubble’s density; ub is the bubble velocity; g is

gravitational vector; and CA is the added mass coefficient [68]. The lift and drag forces can be written

as

D =
1
2

CDρSB|(ub −u) |(ub −u) , (2.10)

L =
1
2

CLρSB|(ub −u) |2 ((ub −u)×ωl)/|((ub −u)×ωl) |, (2.11)

where CD is the quasi-steady drag coefficient, CL is the quasi-steady lift coefficient, ωl is the fluid

local vorticity, and SB = πR2 is the bubble projected area. Results from Auton et at. in Ref. [12] show
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that the lift coefficient CL is proportional to the local vorticity and L can be written as

L =−1
2

ρVb (ub −u)×ωl. (2.12)

2.2 Navier-Stokes equations

The carrier fluid’s dynamics are modeled in an Eulerian frame, of which the governing equations (i.e.

NS equations) can be written as

∂ρ

∂ t
+∇ · (ρu) = 0, (2.13)

∂ (ρu)
∂ t

+∇ · (ρuu+ pδ ) = ∇ · τ, (2.14)

∂E
∂ t

+∇ · (u(E + p)) = ∇ · (u · τ − q̇), (2.15)

where p is pressure of the Eulerian fluid, E = ρe+ ρu·u
2 is the total energy, q̇ =−k∇T computes the

heat flux, and δ is unit matrix. τ is viscous stress tensor, which follows the Stokes’ hypothesis for a

Newtonian fluid:

τ = 2µS− 2
3

µ(∇ ·u)δ , (2.16)

where S is the strain rate sensor defined as S = 1
2(∇u+(∇u)T ). Without considering the heat transfer

and viscous effect, NS equations can be further written under hyperbolic conservation law:

∂U
∂ t

+∇ ·F(U) = 0, (2.17)

where U = (ρ,ρu,E)T is vector of the conservative variables. These are comprised of density ρ ,

momentum ρu, and total energy E = ρe+ ρu·u
2 , where ρe is the density times the internal energy for

the fluid and F = (ρu,ρuu+ pδ ,u(E + p))T represents the flux vector.

To save computational cost, an axisymmetric 3D configuration can be modeled by a 2D axisym-

metric conservation law, assuming that there is no circumferential variation in the fluid. If the fluid

is inviscid and compressible, the axisymmetric governing equation in its conservative form can be
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written as
∂U
∂ t

+∇ ·F(U) = Q, (2.18)

where the state vector Q represents the source term due to transformation to cylindrical coordinates.

For an axisymmetric problem, we assume that the two coordinates are x-axis and z-axis. U, Fx, Fz,

and Q can be written as

U = (ρ,ρu,ρw,E)T , (2.19)

Fx =
(
ρu,ρu2 + p,ρuw,(E + p)u

)T
, (2.20)

Fz =
(
ρw,ρuw,ρw2 + p,(E + p)w

)T
, (2.21)

Q =
1
x

(
−ρu,−ρu2,−ρuw,(E + p)u

)T
. (2.22)

2.3 Equations of state

To close the system of the Eulerian governing equations, pressure p can be defined by an EOS. This

section introduces four widely used EOSs. For weakly compressible fluid, p can be defined as a

function of density ρ by

p = p0

[(
ρ

ρ0

)γ

−1
]
+ pb, (2.23)

where p0, ρ0, and pb are reference pressure, reference density, and background pressure, respectively.

In Tait’s EOS, assuming that the fluid’s temperature is constant, p and E are functions of ρ only.

p = B
(

ρ

ρ0

)γ

−B+A, (2.24)

E =
1

γ −1
(p+B−A)+B−A+

1
2

ρu2. (2.25)

where B, A, and ρ0 are constant parameters. We set B = 3310 bar, A = 1 bar, ρ0 = 103 kg/m3, and

γw = 7.15 for water.
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For gas-liquid mixture, the Mie-Gruneisen fluid EOS [94] has been widely applied in the multi-

component five-equation model. The Mie-Gruneisen EOS for each fluid reads

pi (ρi,ei) = pre f
i +Γi (ρi)ρi

(
ei − ere f

i

)
, (2.26)

where i equals l for liquid or g for gas and the coefficients pre f = ρ0c2
0η/

(
1− sη2

)2, η = 1− (ρ0/ρ),

Γ(ρ) = Γ0ρ0/ρ , ere f = 0.5pre f η/ρ0 and ρ0, c0, s, and Γ0 are constant coefficients for each phase.

The stiffened-gas EOS, which is popular for gas-phase modeling, can be written as

pi = (γi −1)ρiei − γiBi, (2.27)

involving adiabatic exponent γ and reference pressure Bi for each fluid i. For gas bubbles, we take γg

= 1.4 and Bg = 1 atm; for carrier water, γl = 5.5 and Bl = 492 atm.

2.4 Gas volume fraction

The key function of the LE coupling scheme is the formulation of the gas/vapor volume fraction

αg distribution derived from the size and location of instantaneous bubbles. A mapping function is

required to calculate αg, as it satisfies the criteria: it is a smooth function with a continuous first

derivative; it has the absolute maximum value in the computational cell where the bubble center is

located; it works only in a finite domain and outside the boundary its value is zero; and integral of the

function over the entire domain is unity.

In this study, we apply the concept of kernel function which has been widely used in the smooth

particle hydrodynamics (SPH) methodology [49, 76, 106, 107]. The sub-grid interface is allowed

to diffuse on the computational cells around the bubble center within a kernel width, as is shown

in Fig.2.2. In the limit of a vanishing smoothing length h, the radially symmetric smoothing kernel

function W should reduce to a delta function as

lim
h→0

W (x−xb,h) = δ (x−xb), (2.28)
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Dispersed Bubbles
Computing Cell

interface diffuse area

Fig. 2.2 Illustration of bubble-fluid interface diffuse area.

which gives an exact integral interpolation. The normalization condition

∫
W (x−xb,h)dx = 1, (2.29)

where dx denotes the differential volume, is necessary for zero-order consistency. Examples of kernel

functions include Gaussian kernel, cubic spline, and quartic spline [87].

In the bubbly flow simulation, we apply the Gaussian smoothing kernel function, with xk and xb

as the 3D volume cell center location and bubble location, respectively. The Gaussian smoothing

kernel function is written as

ζσ (xk,xb) =
1(

σ
√

2π
)d exp

([
−(xk −xb)

2

2σ2

])
, (2.30)
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where d is dimension and σ is the kernel width. To save computational cost, the Gaussian kernel

function can be replaced by a truncated Gaussian kernel function:

ζσ (x−xb) =


1(

σ
√

2π
)d exp

[
−(x−xb)

2

2σ2

]
, |xk −xb| ≤ 3σ ,

0, |x−xb|> 3σ ,

(2.31)

where 3σ is the cut-off radius. To enforce mass conservation, the kernel function is normalized over

the volume of integration by ∫
Vcv

ζσ (xk,xb)dV = 1, (2.32)

Here, Vcv is the integration finite volume. Using the above formulations, αg is calculated as


αg (xk) = ∑

Nb
i=1 Rbiζσ (xk,xb) , if d = 1;

αg (xk) = ∑
Nb
i=1 πRbi

2ζσ (xk,xb) , if d = 2;

αg (xk) = ∑
Nb
i=1

4
3

πRbi
3ζσ (xk,xb) , if d = 3,

(2.33)

where Nb is the total number of the dispersed bubbles and Rbi is the radius of bubble i.

2.5 Fluid-mixture pressure

In the LE two-way coupling model, we also introduce liquid volume fraction αl in the Eulerian frame

to model how the gas bubbles affect the carrier fluid. αl , mixture density ρ , and mixture internal

energy ρe follow the following expression during gas-liquid mixing

αl +αg = 1, (2.34)

ρ = αlρl +αgρg, (2.35)

ρe = αl(ρe)l +αg(ρe)g, (2.36)

where subscripts l and g denote the carrier fluid and the gas bubbles, respectively.

We apply an isobaric closure to obtain the fluid-mixture equilibrium pressure p. To avoid

numerical oscillation near the interfaces [4], such closure must have consistency properties: (a) the
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mixing of two fluids with the same pressure should keep a mechanical equilibrium and (b) the mixture

pressure should degenerate correctly when one phase is vanishing. Here, we apply the stiffened-gas

EOS to model pl and pg. Introducing ξg =
1

γg −1
, ξl =

1
γl −1

and ξ = αlξl +αgξg, an implicit

expression for p is given as [1, 96]

ρe = pξ +αlγlBlξl +αgγgBgξg, (2.37)

which yields the equilibrium pressure

p =
ρe
ξ

− 1
ξ
(αlγlBlξl +αgγgBgξg) . (2.38)

It is easy to discover that Eq. (2.38) satisfies the consistency properties. In addition, such pressure

closure has been used to numerically model multicomponent flows with immiscible interface to obtain

the fluid pressure [1].

2.6 Nucleation theory

2.6.1 Classical nucleation theory

CNT [58, 110] is typically applied to describe the nucleation rate in molecular dynamics (MD)

simulations [8, 30]. According to CNT, a nucleus is spontaneously generated as a result of density

fluctuations in the metastable liquid. MD simulations by Diemand et al. [30] agree with CNT

at moderate negative pressure; however, CNT underestimates the nucleation rate at large negative

pressure. As such, several alternative theories [27, 97, 98, 114] have been proposed to model the

nucleation rate.

According to nucleation theory (see e.g. [35]), the nucleation rate J, which determines the average

number of nuclei formed in a unit volume of the metastable fluid per unit time, is given by

J = J0n0exp
(
−△G

kBT

)
, (2.39)
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where J0 is a prefactor, n0 is the liquid molecule number density, ∆G is the free energy of nucleus

formation, kB is the Boltzmann constant, and T is the temperature. In CNT [16], formation free energy

is

△GCNT =
16πS3

3(pv − p)2 . (2.40)

The CNT nucleation rate has the expression

JCNT =

√
2S
πM

n0exp

[
− 16πS3

3kBT (pv − p)2

]
, (2.41)

resulting in the prefactor J0,CNT =

√
2S
πM

, where M is the molecular mass of water. The critical

size of the bubble Rc,CNT is defined as the radius, at which clustering molecules are in a meta-stable

equilibrium and a nucleus grows; it is expressed as

Rc,CNT =
2S

pv − p
. (2.42)

2.6.2 Poynting correction nucleation theory

Blander and Katz [16] derived expressions of higher accuracy for the critical radius and the nucleation

rate. This Poynting correction nucleation theory (PCNT) gives

Rc,PCNT =
2S

(pe − p)δ
, (2.43)

J =

√
2S
πM

n0exp

[
− 16πS3

3kBT (pe − p)2
δ 2

]
, (2.44)

where pe is the equilibrium vapor pressure of the liquid. The Poynting correction factor is

δ = 1− υl

υg
+

pe − p
2pv

(
υl

υg

)2

, (2.45)

where υg is the molecular volume of gas and υl is the molecular volume of the liquid. The ratio υl/υg

is assumed to be constant when T is constant. A comparison between the nucleation rate of CNT and

PCNT under different p and υl/υg is discussed in Sec.4.3.2.
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2.7 Summary of Lagrangian-Eulerian coupling model

In the Eulerian framework, NS equations in conservative form work as the governing equations, with

a pressure closure to close the system. For each individual bubble, the radius and position change

follow spherical bubble dynamics equation and bubble motion equation, respectively. The transfers

of mass, moment, and energy between the dispersed and continuous phases are defined in an LE

coupling scheme.

LE one-way coupling is applied in the realization of homogeneous cavitation nucleation and

only considers the carrier fluid’s influence on the cavitation nuclei. The 2D axisymmetric two-phase

Euler equations are solved to compute shock gas bubble and bulk fluid evolution in the microchannel,

applying a sharp and conservative interface model in Ref. [42, 50]. As a nucleation model, we apply

the modified classical formula proposed by Blander and Katz [16]. Bubble dynamics are modeled

by the spherical bubble dynamics, where the volume change of individual bubbles is determined by

the pressure inside the bubble and the surrounding flow properties. A detailed description of the

homogeneous cavitation nucleation scheme’s realization will be given in Chapter 4.

To further consider the influence of the dispersed cavitation bubbles on the carrier fluid, LE

two-way coupling is applied. Cavitating fluid mixture is assumed a homogeneous, compressible fluid

by which the conservation law is solved for the fluid mixture instead of the carrier fluid. We assume

that the bubbles have barely significant influence on the momentum or velocity of the mixture, due

to the large density ratio between liquid and gas [18]. Thus, the bubble, carrier fluid, and mixture

are assumed to share the velocity field. However, cavitation bubbles still affect the convection of the

mixture by influencing the density and the pressure field. The mixture density is defined using the

gas volume fraction. By tracking the bubbles’ locations and solving their dynamics equations, the

instantaneous gas volume fraction is derived based on the projection from the discrete bubbles to the

carrier fluid [72]. To close the Eulerian system, the isobaric closure for multi-component problem is

applied to describe the equilibrium pressure [4]. The close-by flow properties will be considered to

model the bubble dynamics for the bubble cloud simulation in Chapter 5. We will apply this model in

Chapter 5 to simulate typical problems within cavitation bubble cloud.



Chapter 3

Numerical models

In this chapter, the numerical methods of spatial discretizaion and time integration for LE model’s

realization are introduced. The spatial discretization of one-dimensional (1D) hyperbolic conservation

law is introduced in both the finite difference (FD) and finite volume (FV) frameworks. The classical

weighted essentially non-oscillatory scheme (WENO) scheme for spatial discretization and Runge-

Kutta (RK) method for time integration for solving hyperbolic conservation law will be introduced.

To well resolve the bubble dynamics equation especially the bubble collapse and rebound process, a

variable time-step algorithm is also applied.

3.1 Spatial discretization

We describe the spatial discretization of hyperbolic conservation law in Eq. (2.17). For simplicity, the

1D hyperbolic conservation law of the conservative values q can be written as

∂q
∂ t

+
∂

∂x
f(q) = 0, (3.1)

where q(x, t) = (ρ,ρu,E)T and f(q) = (ρu,ρu2+ p,u(E+ p))T. The spatial discretization of Eq. (3.1)

is made on a uniform mesh, with a computational cell i written as
[
xi−1/2,xi+1/2

]
. A system of ordinary

differential equations (ODEs) inside all grids is formed:

dqi

dt
=− ∂ f

∂x
|x=xi , i = 0, · · · ,n (3.2)
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Eq. (3.2) can be further discretized by a FD or a FV formula in a semi-discrete form.

3.1.1 Finite difference reconstruction

Eq. (3.2) can be discretized under FD framework as

dqi

dt
=− 1

∆x

(
hi+1/2 −hi−1/2

)
, (3.3)

where the primitive function h(x) is implicitly defined by

f(x) =
1

∆x

∫ xi+1/2

xi−1/2

h(ξ )dξ . (3.4)

We introduce f̂i±1/2 ≈ hi±1/2, which are reconstructed from flux fi at the cell centers. After this, Eq.

(3.3) is further approximated as

dqi

dt
≈− 1

∆x
(̂fi+1/2 − f̂i−1/2), (3.5)

where f̂i±1/2 is assembled by a convex combination of r candidate stencil fluxes

f̂i+1/2 =
r−1

∑
k=0

wkfk. (3.6)

The key point for FD is to reconstruct the flux f at the cell interface i+ 1/2 such that high-order

accuracy is restored in smooth regions and monotonicity is preserved near discontinuities.

In the conservative FD frame, the discretization needs to be done in the characteristic space to

avoid numerical oscillations induced by the interaction between different characteristic waves [54]. q

and f are first projected into the characteristic space by using the left eigenvectors [95]. The projected

fluxes are then split by flux splitting scheme to compute the correct upwind numerical flux. At last,

the inviscid flux in the physical space can be obtained by a reverse projection by using the right

eigenvectors.
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3.1.2 Finite volume reconstruction

In FV reconstruction, we define q̃i as

q̃i =
1

∆xi

∫ xi+1/2

xi−1/2

qidx, ∆xi = xi+1/2 − xi−1/2, (3.7)

so q̃i is the cell averaging of qi, and also one approximation of qi at the cell center. The conservation

law Eq. (3.1) in the computational cell i can be formulated as

dq̃i

dt
=− 1

∆x
(fi+1/2 − fi−1/2), (3.8)

where fi±1/2 is the approximated flux at the cell edge i±1/2. The cell average value q̃i is applied

further to do the reconstruction of on each cell edge qi+1/2. The procedure uses the cell averaged values

in the neighboring cells q̃i−k , ..., q̃i+l (such cell table is defined as the stencil of the reconstruction).

In FV reconstruction, it is also required to be high-order accurate if q is smooth in the stencil and

to be essentially non-oscillatory (ENO) near discontinuities. Same as in the FD reconstruction, the

FV reconstruction is also often performed in the characteristic space. The variables are first locally

decomposed onto the characteristic field and then reconstructed, afterwards they are projected back

to the physical filed. Indeed, q̃i is reconstructed on the left and right sides of each cell to formulate

qL
i+1/2 and qR

i+1/2. An approximate Riemann problem is demanded to reconstruct the correct upwind

flux.

Normally in the FV reconstruction, the conservative variables q̃i are reconstructed to derive the

conservative values of qL
i+1/2 and qR

i+1/2. However, in the problem of the LE approach where isolated

subgrid interfaces exit (the interfaces between sub-grid bubbles and the carrier fluid), there will be

numerical oscillation in pi+1/2 if it is derived by the total energy Ei+1/2 and ξi+1/2 at cell edges

in Eq. (2.38). After reconstructing the total energy Ei+1/2 and ξi+1/2 in the stencil, the pressure

equilibrium will not be maintained, as ξ = αlξl +αgξg is function of the isolated volume fraction,

which is formulated based on the Lagrangian calculation. A FD reconstruction makes the problem

worse because the fluxes in the stencil are applied to do the interpolation. Therefore, instead of the

conservative variables q̃i, the primitive variables are reconstructed to better maintain the pressure
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equilibrium [55]. Thus in our realization, at each time step, we first build the cell-average primitive

variables õi = (ρ̃i, ũi, p̃i,ξi) from q̃ and αg by

ρ̃i = q̃i(1), (3.9)

ũi = q̃i(2)/q̃i(1), (3.10)

p̃i =
q̃i(3)− ρ̃iũ2

i

ξ
− 1

ξ
(αliγlBlξl +αgiγgBgξg) , (3.11)

ξi = αliξl +αgiξg. (3.12)

Then we use õi to do the reconstruction to get the left and right states of oi (i.e. oL
i+1/2 and oR

i+1/2). In

the end, oL
i+1/2 and oR

i+1/2 are applied to build the conservative values qL
i+1/2 and qR

i+1/2 and the flux

vectors fL
i+1/2 and fR

i+1/2.

3.1.3 Weighted essentially non-oscillatory scheme

In consideration that high-order accuracy is restored in smooth regions while monotonicity is preserved

near discontinuities, the key point in FD method is to reconstruct the flux f at the cell interface i+1/2.

Also, in the FV method, the key point is to reconstruct the cell average value to get the left and right

value of qi+1/2 of the Riemann problem.

Second order accuracy can be reached by using limiters in FV method [65]. ENO scheme

reconstruction [101] is realized based on adaptive stencils. We can choose the optimal stencil to

get the high-order accuracy and ENO. After that, WENO reconstruction [53] is developed which

applies a combination of all the candidate stencils. WENO scheme enforces the ENO property

near discontinuities while restore the high-order accuracy in smooth region. The weights in WENO

reconstruction are defined to be nonlinearly adaptive and normalized by αk as

wk =
αk

∑
r−1
k=0 αk

, αk =
dk

(βk + ε)2 , (3.13)

where dk denotes the optimal weight and is optimized to generate (2r−1)-th order upwind scheme

with (2r−1)-point full stencil. For the five-point WENO schemes, the overall fifth-order accuracy is
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achieved with d0 = 0.1,d1 = 0.6, and d2 = 0.3. ε is a small value to prevent denominator to be zero

[20].

3.1.4 HLLC approximate Riemann solver

To compute the numerical flux fi+1/2, approximate Riemann solvers are presented to solve the Riemann

problem at each cell edges. The most well known approximate Riemann solvers are HLL Riemann

solver [43, 44] proposed by Harten, Lax, and van Leer and HLLC Riemann solver [109] proposed by

Toro, Spruce and Speares. In our simulation, the HLLC Riemann solver is applied which satisfies

automatically the entropy condition. Also the HLLC Riemann solver restores the contact waves that

are ignored in HLL Riemann solver and gives better resolutions of the contact discontinuities. The

HLLC solver resolves discontinuities sharply, and isolated shock waves and contacts exactly. Given

the left and right states, the HLLC Riemann solver also preserves positivity [15]. Here, the HLLC

flux can be written as

fHLLC =
1+ sign(b∗)

2
[
fL +b−

(
q*L −qL)]+ 1− sign(b∗)

2
[
fR +b+

(
q*R −qR)] , (3.14)

where the q∗ state is defined as

q∗k = ρk

(
bk −uk

uk −b∗

)


1

u∗

vk

wk

Ek

ρk
+(b∗−uk)

[
b∗+

pk

ρk (bk −uk)

]


, (3.15)

where k = L, R. The smallest bL and the other with the largest wave speed bR are given as

bL = min
(
(u− c)ROE ,uL − cL

)
, br = min

(
(u+ c)ROE ,uR + cR

)
, (3.16)
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The wave speed b− and b+ [15]

b− = min(0,bL) , b+ = min(0,bR) . (3.17)

The intermediate speed b∗ is

b∗ =
pR − pL +ρLuL (bL −uL)−ρRuR (bR −uR)

ρL (bL −uL)−ρR (bR −uR)
. (3.18)

3.2 Time integration

3.2.1 Runge-Kutta scheme

To advance the conservative variables in time, a temporal integration is necessary. While implicit

methods require large time step, explicit methods, e.g. the RK method [99][40], are popular for

resolving the transient flows. For the ODEs derived from the conservation law (i.e. Eq. (3.1)), a

second-order RK method is given as

q(1) = qn + f(qn, tn)∆t/2,

qn+1 = qn + f(q(1), tn +∆t/2)∆t
, (3.19)

where ∆t = tn+1 − tn is the single time step. The choice of ∆t depends on the constraint by a Courant-

Friedrich-Lewy (CFL) condition [22]. The dimensionless CFL number is defined as the physical wave

speed to the grid speed. The maximum CFL number in 1D simulation can be written as

CFL = ∆tmaxi

{
|ui|+(cL)i

δxi

}
, (3.20)

and CFL constraint is given by 0 < CFL < 1.

3.2.2 Variable time-step numerical algorithm

Given the pressure and velocity data from the Eulerian grids, behaviors of the cavitation bubbles

are studied by solving the modified RP equation in Eq. (2.1). Difficulty of the solution of the RP

equation lies to present successfully the collapse and rebound stages, even when a bubble has the
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minimum size and the rate of change of R is extremely large. When R becomes incorrect, negative,

or unstable, it will lead an unsuccessful volume fraction computation in the Eulerian frame. The

variable time-step numerical algorithm [3] is applied to solve this difficulty. In the variable time-step

numerical algorithm, the Rayleigh-Plesset equation is rearranged as

d2R
dt2 = s, R(t0) = R0, (3.21)

here,
ds
dt

=−3
2

s2 +
pB − p∞ −2S/R

ρR
− 4µs

ρR2 , s(to) = Ṙ0. (3.22)

In the adaptive time step algorithm, the time step of the Lagrangian computation is related to the

ratio of the bubble size. We define the time step for each bubble as ∆tb = tbn+1 − tbn. A criterion is

set to ensure that the rate of Rn is numerically controllable in each time step. The criteria is applied as

flows:

• if | ∆Rn | /Rn < 0.02 , ∆tbn+1 = ∆tbn;

• if | ∆Rn | /Rn > 0.02 and ∆Rn < 0, ∆tbn+1 = ∆tbn/1.3;

• if | ∆Rn | /Rn > 0.02 and ∆Rn > 0, ∆tbn+1 = 1.3∆tbn.

Variable time step algorithm is quite necessary to solve bubble dynamics equations if there is

a wide range of pressure values and variations. Thus in our simulation, the time step ∆tb is much

smaller than the required CFL condition in Eulerian simulation. In each big time step ∆t, bubbles

variables are updated for several times until the integration of ∆tb reaches ∆t.

We reproduce the results of a test case where a gas bubble flows passively through a convergent-

divergent nozzle as shown in Fig. 3.1. We assume a gas bubble is in water with the properties

at the constant temperature of 300 K. We set ρl = 996 kg/m3, µ = 0.798 e-3 Pa s, surface tension

S = 0.072 N/m, and vapor pressure pv = 4240 Pa. Using the profile of the pressure as p∞ in Fig. 3.2,

the solution in Fig. 3.3 is derived. The pressure profile drops from a maximum value of 120 kPa

to a minimum value of -10 kPa and afterwards recovers back to the value of 120 kPa. The extreme

collapse stage of bubble history is captured.
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Fig. 3.1 Sketch of a cavitating water jet in a nozzle with a cavitating bubble passing through [90].
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Fig. 3.2 Pressure profile along the cavitating nozzle in the test case.
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Fig. 3.3 Time change of the bubble radius when the bubble passes passively through the nozzle.

3.3 Summary

In this chapter, we reviewed the fundamental numerical methods of spatial discretization and time

integration in our simulations for flow cavitation. Specially, in the LE two-way coupling model,

we solve the hyperbolic conservation law in the Eulerian frame and apply the FV reconstruction

to suppress the numerical oscillation that is generated at the subgrid interfaces between dispersed

bubbles and the carrier fluid. Indeed, instead of the conservative variables, the primitive variables are

reconstructed to better maintain the pressure equilibrium. The high-order accurate shock-capturing

scheme (the fifth-order WENO) is capable to capture the discontinuity when shock exits and HLLC

approximate Riemann solver for flux calculation are implemented. Second-order RK method is

applied in the Eulerian calculation. The extreme collapse and rebound cycles of bubbles are captured

by solving the Rayleigh-Plesset equation through the variable time-step algorithm.





Chapter 4

Homogeneous cavitation nucleation in a

microchannel

The physics of nucleation in water is an important issue in many areas, ranging from biomedical to

engineering applications. We simulate the underwater shock-bubble interaction induced homogeneous

nucleation process in a microchannel to gain a better understanding of the mechanism of homogeneous

cavitation nucleation inside water.

We use an Eulerian method, coupled with Lagrangian tracking of nuclei. The liquid expands due to

the reflected shock and homogeneous cavitation nuclei are generated. We solve the 2D axisymmetric

two-phase Euler equations to compute shock gas bubble and bulk fluid evolution in the microchannel,

applying a sharp and conservative interface model in Ref. [42, 50]. The dynamics of dispersed vapor

nuclei is coupled with the surrounding fluid in a Lagrangian frame, describing the location and size

variation of each nucleus. As nucleation model, we apply the modified classical formula proposed

by Blander and Katz [16], which gives a more accurate nucleation rate than the classical nucleation

theory. The novelty of this chapter lies in the Eulerian-Lagrangian coupling model for the numerical

simulation of homogeneous cavitation nucleation in a microchannel and a Lagrangian tracking of each

nucleus. Our results reproduce nuclei distributions at different stages of homogeneous nucleation and

are in good agreement with experimental results. We obtain numerical data for the negative pressure

that water can sustain under the process of homogeneous nucleation. An energy transformation
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description for the homogeneous nucleation inside a microchannel flow is derived and analyzed in

detail.

The results in this chapter have partially been published in Ref. [70].

4.1 Homogeneous nucleation

Homogeneous cavitation nucleation initializes the liquid-to-vapor transition, which is characterized by

the purity in the liquid. It is different from heterogeneous nucleation with respect to where nucleation

occurs. The heterogeneous nucleation emerges from surfaces in contact with two phases, while the

homogeneous nucleation takes place in a bulk liquid without impurities [57, 60].

Shock-bubble interaction in a microchannel is an idealized configuration for the formation of

homogeneous nucleation. After passing the gas bubble, the shock is reflected at a free-surface as

expansion wave, which expands the liquid. When the pressure becomes sufficiently small (negative),

homogeneous nucleation occurs [92]. The time scale of these processes is typically on the order

of nanoseconds. The volume of the liquid inside the channel is sufficiently small so that we can

assume that the liquid maintains purity during this time. Ando et al. [7] and Quinto [91] successfully

photographed the generation of the bubble nuclei cloud induced by the bubble-shock interaction

in a microchannel. However, the detailed nucleation process can hardly be detected even with

high-resolution cameras.

Several researchers investigated the negative pressure that water can sustain at nucleation using

various experimental techniques [11, 21, 46]. Due to variations of water purity and different water

volumes, the measured negative-pressure data are quite scattered. The majority of numerical inves-

tigations focuses on topics ranging from the erosion due to cavitation to the collapse of cavitation

bubble clouds. Numerical studies of homogeneous nucleation are quite scarce, and the understanding

of the homogeneous nucleation mechanism is still limited.
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4.2 Homogeneous nucleation in microchannel

4.2.1 Nucleation rate calculation

We note that in the simulation of homogeneous nucleation the liquid pressure p is modified using

the void fraction derived from the bubble size and location distributions. Using the Gaussian kernel

function in Sec. 2.4, the volume fraction of the nuclei in every Eulerian grid can be calculated as

αg (xk) =
Nnuclei

∑
i=1

4
3

πRi
3
ζσ . (4.1)

The volume fraction occupied by the nuclei in the volume k is αg and the liquid volume fraction

is αl = 1−αg. We derive the liquid density ρl for all Eulerian cells as ρ ≈ ρlαl , neglecting the

bubble mass effects. We use Eq. (2.24) to compute the liquid pressure p corresponding to ρl for the

nucleation rate in Eq. (2.44),

p = B
(

ρl

ρ0

)γw

−B+A. (4.2)

We define Ji, j,k as the time-dependent nucleation rate in a 3D computation cell with index {i, j,k},

which is the PCNT nucleation rate at each grid. The total number of nuclei generated during all steps

is

Nnuclei = ∑
n

∑
i, j,k

Ji, j,k △i, j,k △tn, (4.3)

where n is the index of the time step and △i, j,k is the cell volume in a Cartesian grid. When Nnuclei > 1,

a nucleus is generated with the critical radius in a randomly chosen cell. The probability of cell

{i, j,k} being selected as the location of the nucleus at its formation is

Pi, j,k =
Ji, j,k

∑i, j,k Ji, j,k
. (4.4)

4.2.2 Simulation set-up

A schematic of the microchannel and simulation set-up is shown in Fig. 4.1. To save computational

time, we consider a 2D axisymmetric to 3D interpolation configuration. This configuration is not an

inherent property of the Eulerian-Lagrangian model but rather a computational bootstrap to accelerate
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validation computations. The bulk flow is computed from a 2D axisymmetric formulation of the

conservative laws. The Euler equations need to be coupled with the equation of state to close the

system. As introduced in Sec. 2.3, for an ideal gas, the pressure is determined by the EOS of ideal

gas; for water, we employ Tait’s EOS. The flow field is fully interpolated to the 3D configuration for

the homogeneous nucleation computation.

The bulk flow dominates bubble motion, whereas the bubble volume is mapped to the Eulerian

frame for the calculation of volume fraction and nucleation rate. We justify the one-way coupling for

homogeneous nucleation given that the small nuclei move passively with the bulk flow. The main

steps of the homogeneous nucleation simulation in a microchannel are:

• Eulerian computation. Compute the bulk flow evolution by the adaptive multi-resolution method

for multi-phase flows [42, 50] on 2D axisymetric cells and interpolate the flow fields to 3D

cells.

• Bubble growth simulation. Update the nuclei positions, velocities and radii by Eq. (2.1) and Eq.

(2.8).

• Nucleation rate calculation. Compute the vapor void fraction in each 3D computation cell by

Eq. (4.1), derive the modified nucleation rate by Eq. (2.44) and integrate the nucleation rate to

get the total number of nuclei by Eq. (4.3) .

• Bubble initialization. The bubble initialization can be subdivided into three parts: bubble

location initialization, bubble volume initialization and state variables initialization. A sketch

for the bubble location initialization is show in Fig. 4.2. We mark the fluid region which has

negative pressure as nucleation region where a new nucleus can be generated. We compute at

each time step △Nnuclei = ∑i, j,k Ji, j,k △i, j,k △tn, the increment of Nnuclei. At the end of each time

step, if △Nnuclei ⩾ 1, △Nnuclei nuclei are initialized at random locations inside the nucleation

region. This is done based on the probability distribution inside the selected computational cells

in Eq. (4.4). The initial bubble radius is set to the critical radius (Eq. (2.43)), and the initial

velocity at the bubble surface is zero. The initial bubble pressure is set to the vapor pressure,

here 4230 Pa. The vapor temperature is considered to be constant and the same as in the liquid.
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Fig. 4.1 Schematic of the simulation set-up. The laser induced shock interacts with a free surface from
distance. To save computational cost, we compute only the 2D-axissymetric computational domain
(light-grey region) and interpolate the results into 3D. ( Reprinted with permission from Lyu et al.
[70]. Copyright 2018, PHYSICAL REVIEW FLUIDS.)

We apply the variable time-step numerical method in Ref. [3] for solving the non-linear second-

order RP equation to compute bubble growth, collapse and rebound. The evolution equations of the

bulk flow are discretized with the fifth-order WENO method [53] and the second-order TVD RK

scheme [100]. All computations are carried out with a CFL number of 0.3.

4.3 Results and discussion

4.3.1 Method validation

For validating our method, we consider a simplified configuration without interactions with boundaries

and free surfaces. As shown in Fig. 4.1, the 2D-axisymmetric domain is 400 µm× 200 µm with

the finest mesh being [1024×512]. A gas bubble is generated initially with a radius of 8µm and

centered at (200 µm,0 µm) and an initial pressure of 6 GPa. The time evolution of shock front and

bubble-fluid interface at different resolutions are compared with experimental results of Ref. [7]
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After InitializationBefore Initialization

Nucleation Region

Existing Nuclei
Computing Cell

Initialized Nuclei

Fig. 4.2 Sketch for bubble location initialization. The black circle indicates nucleation region, in which
nuclei generate. At the end of each computational time step, we generate △Nnuclei nuclei, shown as
red in the right figure. The location is a random selection, the probability of each computation cell
is defined based on Eq. (4.4). ( Reprinted with permission from Lyu et al. [70]. Copyright 2018,
PHYSICAL REVIEW FLUIDS.)



4.3 Results and discussion 39

0 20 40 60 80
0

20

40

60

80

100

120

140

62 63 64 65
34

34.5

35

35.5

Time (ns)

D
is

ta
n
ce

 (
μ

m
)

1024

512

256

experiment

shock front

interface

Fig. 4.3 Simulation results for the shock front and bubble-fluid interface locations with resolutions
of [256×228], [512×256], [1024×512], and experimental results of Ref. [7]. ( Reprinted with
permission from Lyu et al. [70]. Copyright 2018, PHYSICAL REVIEW FLUIDS.)

in Fig. 4.3. We conclude, that our results agree well with the experimental results. Fig. 4.3 also

illustrates the convergence of our method for different resolutions.

4.3.2 Comparison between CNT and PCNT

First, we compare the nucleation rate under extreme negative pressure between CNT and PCNT.

In Fig. 4.4 (a), the nucleation rate for water at room temperature and pressures varying from -55

MPa to -100 MPa are shown, when the ratio υl/υg ratio equals to 0.01, 0.012, 0.015, 0.02, 0.05

and 0.1. We can see from Fig. 4.4 (a), that with increasing negative pressure the nucleation rate J

increases. Based on the experimental observations of Ref. [7] and our simulation results in Fig. 4.5,
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the nucleation pressure is estimated to be around −70±10 MPa. Based on this estimation, we can see

that 0.012 ≤ υl/υg ≤ 0.015 for water at room temperature. In Fig. 4.4 (b), the nucleation rate of CNT

and PCNT with υl/υg = 0.012 and 0.015 from - 60 MPa to -160 MPa are presented. For extremely

large negative pressure homogeneous nucleation, CNT strongly underestimates the nucleation rate by

several orders of magnitudes compared to PCNT. This observation agrees well with the conclusion of

Ref. [30].

4.3.3 Shock bubble induced homogeneous nucleation

We analyze also in detail the numerical simulation of homogeneous nucleation in the microchannel.

We interpolate the values from the 2D-axisymmetric cells into the 3D cells and calculate Ji, j,k for each

cell. The 2D-axisymmetric domain is 400µm×200µm with the finest resolution [1024×512]. An

ideal-gas bubble is placed initially at (200µm,0µm) with a radius of 8µm and an initial pressure of

6 GPa within water at p∞ = 1 bar. The gas bubble at center represents the laser induced vapor region,

through which a spherical shock wave expands. The shock eventually interacts with the free surface

in the distance, which is 75µm away from the gas-bubble center.

Fig. 4.5 presents pressure snapshots at six different time instances (between 38 ns and 74 ns)

after shock reflection at the free surface. The shock front reaches the interface at around 34 ns,

afterwards the shock is reflected at the free surface and a negative pressure region (we mark this

region as the nucleation region) forms between the reflected shock front and the free surface. Inside

this region, homogeneous nuclei are generated, when the energy of the meta-stable water reaches

the nucleation barrier. At 62 ns, the reflected shock front reaches the gas bubble-liquid interface.

Between 68 ns and 74 ns, the minimum pressure inside the nucleation region decreases due to this

second reflection, which indicates the final stage of the homogeneous nuclei generation. During

the whole process, the minimum pressure inside water have reached roughly -80 MPa. Under this

condition we estimate the nuclei to be generated. We compare simulated nuclei locations and

distributions at 58 ns and 74 ns with the experimental observations in Ref. [7]. We perform numerical

simulation for homogeneous nucleation with 0.012 ≤ υl/υg ≤ 0.015. In Fig. 4.6, side views of the

3D nuclei cloud at 58 ns (first row) and 74 ns (second row) with υl/υg = 0.0126,0.0128,0.013 are

shown together with experimental results. The comparison shows that bubble-fluid interface, nuclei
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Fig. 4.4 Nucleation rate for water at room temperature and extreme negative pressure in CNT and
PCNT. (a): nucleation rate of pressures from - 55 MPa to -100 MPa, when υl/υg ratio equals
0.01, 0.012, 0.015, 0.02, 0.05 and 0.1. (b): comparison of nucleation rate of CNT and PCNT
with υl/υg = 0.012 and 0.015. ( Reprinted with permission from Lyu et al. [70]. Copyright 2018,
PHYSICAL REVIEW FLUIDS.)

locations and nuclei distributions in our simulation correspond well to the experiments. We believe

that minor differences in nuclei density are due to experimental uncertainty. We see that υl/υg in the

PCNT method influences both nuclei population and locations. When υl/υg = 0.00128, the nuclei

population fits better with the experimental observations. Hence, we apply υl/υg = 0.0128 for the

further simulations with different initial shock intensities.

Fig. 4.7 shows the locations of 3D homogeneous nuclei at different time instances. Details of the

3D nuclei distributions are visualized in the second row of Fig. 4.7 with the color indicating fluid

pressure at the nuclei location. Between 50 ns and 54 ns, only few nuclei have formed. Afterwards,

nuclei number increases significantly. Size of each nucleus also expands as pressure inside the

nucleation region kept negative until around 70 ns, when the expansion wave reaches the bubble-fluid

interface. Fig. 4.8 shows the evolution of the total nuclei number Nnuclei varying with time. As shown

in Fig. 4.8 (a), we identify three main stages of the homogeneous nucleation process: the energy

deposition stage, the nuclei generation stage, and the nuclei growth stage. At the first stage internal

energy is deposited in the nucleation region by the shock. The shock is reflected as expansion wave,

which generates large negative pressures in the nucleation region. During the second stage, we see

an exponential increase in the number of the nuclei. Finally, a steady state is reached, where the
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Fig. 4.5 Snapshots of the pressure field at different time instants after shock reflection at the free
surface. White color indicates minimum (negative) pressure. ( Reprinted with permission from Lyu et
al. [70]. Copyright 2018, PHYSICAL REVIEW FLUIDS.)
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Fig. 4.6 Numerical simulation of homogeneous nucleation in comparison with the experimental results
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at 74 ns. Three numerical simulations with υl/υg being 0.0126, 0.0128, and 0.013 are shown. (
Reprinted with permission from Lyu et al. [70]. Copyright 2018, PHYSICAL REVIEW FLUIDS.)
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nuclei number saturates. The time evolution of the total nuclei number of the shock-bubble interaction

induced homogeneous nucleation is presented in Fig. 4.8 (b). We see that there are two increments of

the nuclei number at around 48 ns and 62 ns. From Eq. (2.44), the nucleation rate increases when the

negative pressure decreases. These increments are a result of the maximum nucleation rate when the

negative pressure approaches the minimum in the whole process.

We discuss the homogeneous nucleation mechanism of the three stages with respect to energy

transformation. At the second stage, the driving force for nucleation is the energy derived from the

inertial and potential energy of the shock. The contribution of shock energy and the expansion wave

from the reflected shock induce phase transition. The third stage is the vapor volume growing stage.

The rate of the continuous growth is typically controlled by the energy transfer to the nucleation

region. The total growth rate of homogeneous nucleation induced by shock reflection is the deposition

rate, which we can say is the driving force, and the growth rate which results from the pressure

difference between the vapor and fluid pressure.

Fig. 4.9 shows the nuclei distribution at two different time instances (64 ns and 76 ns), after the

nuclei number reaches the maximum value. The nuclei cluster distribution evolves with time. We fit

the nuclei size distribution with a 2-parameter Weibull probability density function (PDF) which can

be expressed as

f (R∗) =
β

η

(
R∗

η

)β

e−
(

R∗
η

)β

, (4.5)

where R∗ = R/Rmean. Rmean is the mean radius of nuclei, η is the scale parameter, and β is the shape

parameter. At 64ns, the bubble radii mainly are distributed between 0 and 1.0µm, as most of the

bubbles in the nucleation region are newly generated. With Rmean = 2.10µm, the nuclei distribution

fits well a Weibull distribution with η = 1.11 and β = 3.5. At 76ns, the end stage of homogeneous

nucleation, the bubble radii mainly are between 0.9µm and 3.0µm. Rmean equals 3.74µm. The

distribution fits well with a pdf with η = 1.06 and β = 7.3.

The nuclei distribution fits well with the Weilbull distribution. Fitting results at six time instants

(between 64 ns and 84 ns) are plotted together in Fig. 4.10. At the same time, time evolution of the

mean radius, scale and shape parameters in PDF fitting are shown in Fig. 4.11. In general, the PDF
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Fig. 4.7 Nuclei in the nucleation region at different instances plotted with the background fluid
pressure field. 3D vapor bubble distributions at each time instance are shown in the second row, with
the color indicating the bulk fluid pressure at the each nucleus location. ( Reprinted with permission
from Lyu et al. [70]. Copyright 2018, PHYSICAL REVIEW FLUIDS.)
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homogeneous nucleation process. (b): Time history of the nuclei number in the shock-bubble
interaction case, here, Nmax is the number of the nuclei formed until the last stage of nucleation. (
Reprinted with permission from Lyu et al. [70]. Copyright 2018, PHYSICAL REVIEW FLUIDS.)

varies with time. Mean radius, scale and shape parameters of the Weibull PDF change with time

increasing. Only the scale parameter η changes weakly.

4.3.4 Water pressure at homogeneous nucleation

In this section, we analyze the negative pressure threshold in water where homogeneous nucleation

takes place. Experimental results are quite scattered. The cavitation threshold ranges from −16 MPa

to −140 MPa due to different temperatures and volumes of the water samples. A summary of the

experimental results can be found in Ref. [46]. Fig. 4.12 shows the pressure evolution along the

symmetry axis at times 58 ns,60 ns and 62 ns of the shock-bubble induced homogeneous nucleation

during which negative pressure reaches the threshold and induces the nuclei cluster growth in

population. At 58 ns, when only few new homogeneous nuclei are generated, the minimum pressure is

around −72.8 MPa. Afterwards, at around 60 ns, there is an obvious increase of the nuclei population.

We observe the absolute minimum pressure during nucleation, about −76.0 MPa, which we say is

the negative pressure threshold. Subsequently, at 62 ns, the minimum pressure inside the nucleation

region is about −73.6 MPa, at this time, the homogeneous nucleation reaches the steady state.
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4.3.5 Homogeneous nucleation under different shock amplitudes

To understand the influence of the initial shock amplitude, which represents different initial energy

input, on the process of homogeneous nucleation, we present in this section a set of simulations with

different initial shock amplitudes inside the center gas bubble. The set-up is the same as is Sec. 4.2.

The controlled variable is the initial pressure inside the gas bubble, which we set in the range from 5.8

GPa to 6.1 GPa. Nuclei in the nucleation region at different instances are plotted with the background

fluid pressure field when the initial shock amplitudes are 5.85 GPa and 6.1 GPa are plotted in Fig.

4.13 and Fig. 4.14, respectively. Fig. 4.15 shows that the maximum number of nuclei Nmax increases

non-linearly when initial shock intensity increases. For shock intensity of 5.8 GPa, Nmax = 62. For

smaller shock intensities, only few nuclei are generated. For shock intensity of 6.1 GPa, Nmax = 1305.

To detect at which time the nuclei population starts to increase exponentially, time progression of the

non-dimensional parameter Nnuclei/Nmax for shock intensities of 5.8 GPa, 5.9 GPa, 6.0 GPa and 6.1

GPa is presented in Fig. 4.16. From Fig. 4.16, we see that Nnuclei increases at the same time instant

for shocks with different intensities. We conclude that the initial shock amplitude influences mainly

the maximum nuclei number. For the nucleation time, there is almost no effect.

4.4 Summary

In this chapter, the LE one-way coupling framework was introduced to a sharp-interface multi-

phase fluid model for numerical simulation of homogeneous cavitation nucleation in microchannel,

describing simultaneously the dynamics of continuous fluid and dispersed vapor bubbles. A modified

classical nucleation theory in Ref. [16] was applied to model homogeneous nucleation induced by the

shock-bubble interaction in the microchannel. The main conclusions are as follows: homogeneous

nucleation inside a microchannel can be separated into three stages: energy deposition stage, nuclei

generation stage, and nuclei growth stage. The modified classical nucleation theory predicts a

homogeneous nucleation rate which is in good agreement with the experiment. Homogeneous

nucleation is a result of the negative pressure induced deposition rate and growth rate. The nuclei

cluster distributions fit well with a 2-parameter Weibull probability density function. The absolute

minimum pressure during nucleation in a microchannel is about −76.0 MPa. A set of simulations
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Fig. 4.13 Nuclei in the nucleation region at different instances plotted with the background fluid
pressure field when the initial shock amplitude is 5.85 GPa. 3D vapor bubble distributions at each
time instance are shown in the second row, with the color indicating the bulk fluid pressure at the each
nucleus location.
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Fig. 4.14 Nuclei in the nucleation region at different instances plotted with the background fluid
pressure field when the initial shock amplitude is 6.1 GPa. 3D vapor bubble distributions at each time
instance are shown in the second row, with the color indicating the bulk fluid pressure at the each
nucleus location.
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with different initial shock amplitudes was presented, through which we find that shock intensities

have no significant influence on the time instant when nuclei are generated.





Chapter 5

The Lagrangian-Eulerian two-way

coupling model

Collapsing bubbles play an important role in the applications of underwater explosions, ultrasonic

cleaning, and non-invasive biomedical processes. For example, in the application of shock-wave

lithotripsy, the collapse of caviation bubbles plays the dominant role for fragmenting kidney or gall

stones. After the interaction with shock waves induced from cavitation bubble collapse, the stone

or tissue generates acoustic signals which induces rather complex acoustic pressure field. Those

acoustic signals propagate to the cavitation bubbles and induce bubble vibrating dynamically. The

whole process results in the complex pressure field, comprising the shock wave and acoustic pressure

disturbances, which is hardly detected and distinguished experimentally. Meanwhile, the detailed

collapse dynamics of bubble clusters has been poorly investigated in experiments, as the length scale

and the time scale during the collapse and the bubble oscillation could hardly be detected due to

measurement limitations.

In this chapter, we validate the LE two-way coupling model with several benchmark cases and

further apply it to investigate a bubble cloud’s influence on a sinusoidal pressure wave when the

pressure pulse travels through the bubble cloud. In the end, we perform a 3D simulation of the

Rayleigh collapse of a bubble cloud and analyze, in detail, the extreme pressure induced by the violent

collapse of bubbles and the size distribution of bubbles during the collapse.
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5.1 Key points of LE model

In the LE two-way coupling model, it is assumed that the cavitating fluid mixture is a homogeneous

compressible fluid in the Eulerian frame. At the same time, each individual bubble in the cavitation

bubble cloud is modeled using Lagrangian discrete tracking. The fluid mixture evolves according to

the conservation law stated in Eq. (2.17). We assume that the bubbles do not significantly influence

the momentum or the velocity of the mixture, due to the large density ratio between liquid and gas

[18]. Thus, the bubble, the carrier liquid, and the mixture are assumed to share the local velocity.

However, the bubbles still affect the convection of the mixture because they influence the local density

and the pressure field of the Eulerian fluid, as described in Sec. 2.4 and Sec. 2.5.

5.1.1 Volume fraction calculation

We apply the truncated Gaussian distribution function in Sec. 2.4 to calculate the gas volume fraction

in mapping the dispersed particles to the Eulerian grids. Note that bubbles may become several times

larger than their initial sizes, so a constant kernel width σ will not meet the requirement that the gas

volume fraction is sufficiently smooth at each time step. To ensure that the interfaces are fully diffused

in neighbor cells and to avoid a negative volume fraction, σ should be larger than both the grid size

and the maximum bubble radius, i.e.,

σ > max(max(Rbi) ,dx) , (5.1)

where dx is the grid size at the finest level of the multi-resolution mesh [42]. The restriction that the

distance between bubbles should be characteristically large is not addressed, which means that the

diffuse areas within the kernel widths of different bubbles are allowed to overlap. Thus, this model

can only resolve a pressure wave if its length is greater than σ . Pressure waves shorter than σ will be

merged.

5.1.2 Modified bubble dynamics

In the classical RP equation (Eq. (2.1)), the radius R of a spherical bubble is determined by the

pressure inside bubble (pB) and the infinity flow properties (p∞ and ρ∞). However, due to the existence
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of a bubble cloud rather than a single, for the RP equation, the reference ρ and p of the surrounding

liquid at infinity should not be defined as the ρ∞ and p∞ to model bubble cloud dynamics. To obtain

the ρ∞ and p∞ in Eq. (2.1), we define the fluid surrounding each bubble as the fluid mixture inside a

limited volume Vs, which encloses the bubble and is larger than the kernel support area. Vs is marked

by |xk −xbi| ≤ 6σ . For bubble i, ρ∞ and p∞ have the expression

p∞ =
1
Vs

∫
Vs

pdV,

ρ∞ =
1
Vs

∫
Vs

ρdV,
(5.2)

respectively.

5.1.3 Finite volume construction

In FV reconstruction, a high degree of accuracy is required for a variable to be smooth in the stencil

and to be essentially non-oscillatory near discontinuities. In this chapter, the Eulerian equations are

solved using the fifth-order WENO reconstruction [53].

In most cases of FV reconstruction, the conservative variables U are reconstructed to derive the

conservative values of UL and UR at cell edges. However, when using the LE model to tack the

isolated interfaces, this reconstruction is problematic because the numerical oscillation introduced

in the pressure which is calculated from the total energy E and ξ , which means that the pressure

equilibrium will not be maintained. Therefore, instead of applying the conservative variables U, the

primitive variables are reconstructed to better maintain the pressure equilibrium [55]. As a result, in

this realization, we first build the primitive variables O = (ρ,u,v,w, p,1/(ξ )) based on the description

in Sec. 3.1.2 then use Oi to reconstruct the left state OL
i+1/2 and the right state OR

i+1/2. In the end,

OL
i+1/2 and OR

i+1/2 are applied to build the conservative values UL
i+1/2 and UR

i+1/2 and the flux vectors

FL
i+1/2 and FR

i+1/2.

5.1.4 Time integration

The second-order RK scheme is applied for the Eulerian time integration. The time-step ∆t = tn+1− tn

in the Eulerian frame of reference depends on the CFL conditions [22]. The dimensionless CFL
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number is defined as the physical wave speed to the grid wave speed. All computations in this chapter

are carried out with a CFL number of 0.6.

In the Lagrangian frame, when bubble radius R becomes incorrect, negative, or unstable, it will

lead to an unsuccessful volume fraction computation in the Eulerian frame. The variable time-step

numerical algorithm [3] is applied to solve this difficulty.

5.2 Computing procedure

The overall computing procedure of the LE two-way coupling model can be briefly summarized as

follows:

• Lagrangian computation. Update the gas bubbles positions xb and radii R. ẋb is directly derived

from the velocity field u of the mixture. The radius R is updated using Eq. (2.1). The p∞ and

ρ∞ in Eq. (2.1) are derived using Eq. (5.2).

• Update the volume fraction in each computation cell using Eq. (2.33).

• Eulerian computation. Compute the temporal evolution of the fluid mixture using the adaptive

multi-resolution method [42, 50]. The isobaric pressure closure in Eq. (2.38) is applied to

derive the equilibrium pressure p.

5.3 Validation

5.3.1 Isolated bubble

As a validation of this method, we reproduce the results which have been published in Ref. [36, 73].

A single gas bubble inside water is excited by a pressure wave towards the bubble center. The pressure

wave follows

pl =

 p0 +△psin(2π f t) , 0 ≤ t f < 1,

p0, t f ≥ 1,
(5.3)

where p0 = 1 atm, △p = 2 atm, and f = 150 kHz. The bubble’s initial radius is Rb0 = 50 µm and the

bubble’s pressure pB is initially in equilibrium with p0. This case is simulated in both 1D and 3D. In
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Fig. 5.1 Progression of the dimensionless bubble size R∗ = R/Rb0 of 1D simulation. Results of grid
resolutions of 100 (dx = 4 Rb0) and 200 (dx = 2 Rb0) are compared with the analytical solution.

the 1D simulation, the domain is 20 mm and the grid size dx is 4Rb0 or 2Rb0. The width of the kernel

support is initialized as 6Rb0. The results for two simulations using different grid sizes as well as their

analytical solutions are plotted in Fig. 5.1. It is clear that the results agree with the analytical solutions

for both the amplitude of the bubble’s radius and the bubble’s frequency. In the 3D simulation, the

domain is 20 mm × 10 mm × 10 mm with two grid setups ([64 × 32 × 32] or [32 × 16 × 16]). A

spherical bubble with identical initial conditions is placed at the center of the computational domain.

The time evolutions of the dimensionless parameter R∗ for two different meshes and the analytical

solution are shown in Fig. 5.2. Compared to the results in Ref. [36], which use the resolution [100

× 50 × 50], our model efficiently solves the bubble radius time history with a coarse resolution of

only [64 × 32 × 32]. Since our model applies the isobaric closure and the modified RP equation, it

calculates with sufficient accuracy the pressure and the density field surrounding the bubbles, even

using a coarse resolution.
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32

64

Analytical

Fig. 5.2 Temporal evolution of the dimensionless bubble size R∗ = R/Rb0 excited by a single pressure
wave in 3D simulation. Results of different resolutions ([64 x 32 x 32] and [32 x 16 x 16]) are
compared with the analytical solution.

5.3.2 1D bubble advection

When a gas bubble streams with the same speed as the carrier fluid under no-slip motion, the exact

solution to this problem is the advection of the volume fraction and mixture density at a constant

speed. The numerical model should also preserve, to a high degree, the constant pressure and velocity

profile along the streamline. In the dispersed Lagrangian model, there is an inconsistency between the

volume fraction αg and the mixture pressure p if the interface is advected. This is because the volume

fraction is derived directly from the bubbles’ sizes and locations. Indeed, the numerical oscillation

induced from this inconsistency cannot be completely removed.

We consider one gas bubble inside another phase with the initial states


(ρ,u0, p0,γ)

T
E = (1.0,0.1,1.0,1.4)T ,

(ρ,u0, p0,γ)
T
L = (10.0,0.1,1.0,1.6)T ,

(5.4)

where the subscripts E and L denote Eulerian phase and Lagrangian phase, respectively. Dimensional

units are given using 1 atm and 0.1 mm. The length of the computational domain is 5.12 with a finest
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Fig. 5.3 1D advection of the gas-gas interface. The solid line represents the initial fluid condition.
At t = 0.0, the gas bubble is at the center of the computational domain. ◦: the results when the
Lagrangian bubble reaches x = 2.86 at t = 3.0.

resolution of 1024. The initial Lagrangian bubble is placed at the domain center, which has an initial

diameter of 0.02. The kernel width is initialized as σ = 0.03. In Fig. 5.3, the volume fraction αl ,

mixture density ρ , pressure difference (p− p0)/p0, and velocity difference (u−u0)/u0 at t = 0 and

t = 3.0 are shown. A numerical peak emerges after the first time-step and propagates afterwards. The

normalized magnitude of the pressure and the velocity oscillation has been limited to the order of

10−4 and 10−3, respectively. This is taken to be acceptable for later simulations.

5.3.3 Single bubble oscillating

Next, we consider a single gas bubble’s oscillation in water. The bubble actively oscillates at

R = R0 (1− εsin2πωt), where ε is the perturbation magnitude and ω is the frequency. We set

R0 = 100 µm, ε = 0.1, and ω = 100 kHz. The 1D dimension length is L = 300R0. The bubble
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Fig. 5.4 Liquid volume fraction αl along the bubble radius for different resolutions.

is initially located at the center of the domain. The width of the support in the Gaussian kernel

is initialized as σ = 6.0R0. Fig. 5.4 indicates the volume fraction αl along the radial axial under

three different resolutions (128, 256, and 1024). The resolution of 1024 is used for later simulations.

The bubble actively oscillates for half-period 0.5t f ; after oscillation, the volume of the bubble

returns to its initial radius and remains still. In Fig. 5.5, the pressure wave along the radius axis

at t∗ = t f = 0.5,1.0,3.0, and 5.0 are given. The bulk fluid is first expanded, then compressed, due

to the vibration of the bubble. As a result, there is a first-negative second-positive pressure wave

which propagates along the radius axis. Fig. 5.6 indicates the pressure waves along the radius axis

at t∗ = t f = 0.5,1.0,3.0 , and 5.0 of the second case, in which the bubble oscillates without pause.

Pressure amplitude and frequency of the continuous pressure wave induced by the bubble’s oscillation

are also well resolved.
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Fig. 5.5 Pressure wave induced from an oscillating gas bubble in the bulk fluid. The pressure field at
t∗ = t f = 0.0,1.0,3.0, and 5.0.
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5.4 Application of a pressure wave traveling trough a cylindrical bub-

ble cloud

The interaction between a cavitation bubble cloud and a pressure wave is important for many biomedi-

cal and chemical applications [80]. To better understand the transformation of a pressure wave as it

passes through a bubble cloud and to analyze the acoustic pressure oscillation induced by the bubble

cluster, a 2D cylindrical bubble cloud interacting with a sinusoidal pressure pulse in the fluid will be

simulated. In the research from Ref. [36], the bulk fluid has low nuclei concentration, with the gas

volume fraction in the order of 10−5 and 10−4. Under the lower gas volume fraction, the shape of

the pressure wave was only slightly disturbed by the dispersed bubbles [10]. In our simulation, the

average gas volume fraction is larger, in the order of 10−3.

As shown in Fig. 5.7, the bubble cloud, with a radius of A0 = 2 mm, contains 200 gas bubbles

with a random radius distribution between 1 µm and 5 µm. The sinusoidal pressure wave moving

from left to right is initialized using p = p0 +∆p sin
(

2π
x− x0

λ

)
, with a wave length of λ = 0.5A0

and a wave amplitude of ∆p = 15 atm, with pressure at infinity p0 = 1.0 atm. The negative pressure

reaches the bubble cloud first, inducing the bubbles to expand. The initial velocity is set to zero m/s.

The computational domain of 2L × L (L = 10.24 mm) has the finest resolution of [2048 x 1024]. The

kernel width for each gas bubble is initialized as σ = 3.0 dx, where dx is the finest grid size. Four

bubbles are marked: Bubble A (on the left side), Bubble B (on the bottom), Bubble C (at the center of

the bubble cloud), and Bubble D (on the right side). They are used to analyze the influence of the

pressure wave on the bubbles at different locations in the cloud.

At t = 0, the center of the bubble cloud is at (0.5L, 0.78L) and the center of the pressure wave is at

x0 = 0.34 L. The initial distribution of the gas fraction αg, ranging from 0.0 to 0.003, is plotted with a

gray scale contour in Fig. 5.7. Then, the pressure wave propagates from left to right and interacts with

the bubble cluster. The pressure fields of p at 1.0 µs, 2.5 µs, 3.5 µs, 4.5 µs, and 5.5 µs are shown

in Fig. 5.8. It is clear that the pressure wave reaches the bubble cluster boundary and is reflected by

the cloud boundary. When the fluid has a low gas volume fraction, the shape of the pressure wave is

almost unaffected [36]. In our results, the pressure wave is partially reflected, and the rest of the wave
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Fig. 5.7 Initial setup of the simulation of a pressure wave traveling through a bubble cloud. The radius
of the bubble cloud is A0 = 2 mm, and it has 200 bubbles with a random size distribution between
1 µm and 5 µm. The computation domain is 2L × L (L = 10.24 mm). The distribution of the gas
bubbles is visualized both by the volume fraction αg and the Lagrangian spherical particles of the
radius R. Four bubbles (bubbles A, B, C, and D), located at the centers of the four boxes, are marked
for future reference.
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Fig. 5.8 The pressure fields induced by the bubble cluster when the bubble cluster interacts with a
sinusoidal pulse. The initial state and the pressure fields at 1.0 µs, 2.5 µs, 3.5 µs, 4.5 µs, and 5.5 µs
are shown.
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Fig. 5.9 Temporal evolution of the pressure at the bubble cloud center without (the dashed line) and
with bubble cloud for two different resolutions.

travels through the cluster. The bubbles vibrate when the pressure arrives and the bubbles before the

pressure wave remain in equilibrium with the bulk fluid.

As shown in Fig. 5.8, the pressure pulse inside the bulk fluid induces the bubbles’ vibration; in

turn, the vibration of the gas bubbles induces the pressure disturbance in the bulk fluid. The pressure p

evolution at the cloud’s center is plotted in Fig. 5.9. The results are shown according to two different

resolutions on the x-axis. The driving pressure wave propagation in the liquid that does not have

bubbles is also plotted. With a higher resolution of 2048 in x-axis, the amplitude of the pressure wave

is increased, but the frequency of the pressure wave is already accurately solved in a resolution of

1024. Due to the bubbles’ oscillation and the bubble-bubble interactions, the pressure at the cloud’s

center can reach an amplitude of 30 atm.

Meanwhile, in Fig. 5.10, the αg at 1.5 µs, 2.0 µs, 2.5 µs, 3.0 µs, 3.5 µs, and 4.5 µs are plotted.

A larger gas volume fraction should be achieved when the bubbles are approached by negative pressure,

since the bubbles would expand. Instead, overpressurization compresses the bubbles, indicating a

smaller value of αg. As the pressure wave is partially reflected at the cluster’s boundary, there is no

major change in the volume fraction at the cloud’s center. To better understand the pressure wave’s
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Fig. 5.10 Plots of αg when the bubble cluster interacts with a sinusoidal pulse at 1.5 µs, 2.0 µs,
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influence on the αg, the time evolutions of radii for Bubbles A–D are plotted in Fig. 5.11. From

Fig. 5.11, it’s clear that the bubbles’ radii are constant before the arrival of the pressure wave, which

means the bubbles are in equilibrium with the carrier fluid. The negative pressure first reaches Bubble

A, causing Bubble A to violently expand. This corresponds well with the larger volume fraction

field at t = 2.0 µs in Fig. 5.10. The positive pressure wave that follows then condenses Bubble A;

thus, the bubble becomes unstable, actively oscillating as a result. Similarly, Bubble B expands at

first, then shrinks, and finishes by actively oscillating. However, Bubble C (at the cloud’s center) and

Bubble D (on the right) demonstrate no obvious expansion when the pressure wave arrives. This also

corresponds well with the volume fraction field at t = 3.0 µs, 3.5 µs, and 4.5 µs in Fig. 5.10. As

shown in Fig. 5.8, the pressure wave is reflected at the interface and absorbed; only a small amount of

pressure successfully passes through the bubble cloud. In the end, all four bubbles actively oscillate

as a result of the pressure wave until they return to a state of equilibrium with the carrier fluid.

5.5 3D Rayleigh collapse of a bubble cloud

5.5.1 Rayleigh collapse

The Rayleigh collapse is a typical transient behavior when a bubble passes through a rigid channel. It

is considered to be the main reason for the erosion of rigid channels. Overpressurization from the

background fluid results in the bubble’s collapse. If the viscous effects and the surface tension are

neglected, the temporal evolution of a spherical vapor bubble can be described by the equation

RR̈+
3
2

Ṙ2 =
pv − p∞

ρ
. (5.5)

The Rayleigh time, which is the approximate average collapse time for a single bubble, is

tRayleigh = 0.915R0

√
ρ

p∞ − pv
. (5.6)
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5.5.2 Results and discussions

A schematic of the initial setup is shown in Fig. 5.12. First, the spherical bubble cluster with N0 =

200 spherical bubbles is placed into still water, the radii of which are initially randomly distributed

between 100µm and 500µm. The average bubble radius is 308µm. The radius of the bubble cluster is

A0 = 7.5 mm. The 3D domain size is 25.6 mm × 25.6 mm × 25.6 mm, and the finest level of resolution

is [256 × 256 × 256]. The center of the bubble cluster coincides with the center of the computational

domain. All boundary conditions are outflow conditions. The velocity field is initialized as zero m/s

and the temperature remains at 293 K. The viscosity and the non-condensible gas inside the bubbles

is neglected. All the bubbles are vapor bubbles and the vapor pressure remains constant (pv = 2430

pa). The initial bulk fluid overpressure is p∞ = 10.0 atm. The initial, strong over-pressure induces

the violent collapse of the cloud. To minimize the cost of computation, bubbles with an extremely

small volume are marked "inactive," to signify their collapse, and the Lagrangian computation of the

inactive bubbles will be terminated. Thus, in our collapse simulation, the cloud rebound will not be

considered. The collapse time here refers to the time at which the bubble cloud meets the first collapse

point. For the coupling scheme, the width of the Gaussian kernel function is initialized as σ0 = 6.0 dx.

Fig. 5.13 shows the iso-surfaces of the volume fraction αg = 0.002 (i.e. αl = 0.998) at six different

points in time (t = 0 µs, 6 µs, 9 µs, 12 µs, 14 µs, and 16 µs). Meanwhile, the vapor bubbles are

plotted in Fig. 5.13, which indicate the location and the volume of the bubbles. The collapse process

happens non-symmetrically from outside to inside. At the beginning of the process until around t = 9

µs, the cloud collapses slowly. After that point, the rate of collapse increases considerably, and the

bubble cloud collapse violently between 14 µs and 16 µs. The collapse qualitatively agrees with the

first collapse of the simulation result in Ref. [31].

During the collapse, extremely high pressures are generated from the center of the bubble cloud.

In Fig. 5.13, the slices of higher pressure region (the region greater than 10 atm) are plotted at each

time instant. The higher pressure increases over time. At the end of the collapsing process, the

extreme pressure reaches its maximum value of approximately 174 atm at the same time that the

collapse rate reaches its maximum value. In Fig. 5.14, revolutions of the dimensionless active bubble
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Fig. 5.12 Schematic of setup of the bubble cloud’s Rayleigh Collapse. A spherical bubble cloud with
N0 vapor bubbles is submerged; A(t) indicates the bubble cloud’s radius.

number Nb/N0 and the dimensionless averaged gas fraction β/β0 (β = ΣVcαg/Vc) are shown. The

vapor cloud collapse completely at about t = 14.5 µs.

To analyze the influence of the bubble initial number N0 on the cloud’s collapse time, we simulate

N0 = 300 and 400 under the same initial conditions as above. Fig. 5.15 and Fig. 5.16 provide

snapshots of the collapse process at t = 0 µs, 6 µs, 9 µs, 12 µs, 13 µs, and 14 µs. In Fig. 5.17, the

time changes of Nb/N0 (N0 = 400) and β/β0 are shown. We can see, similar to N0 = 200 in Fig. 5.14,

that the collapse time of the bubble cloud with N0 = 300/400 is also at around 14.5 µs. However, the

larger bubble number induces greater pressure at the cloud’s center. For N0 = 300, the maximum

pressure is roughly 226 MPa. For N0 = 400, the maximum pressure is roughly 313 MPa. For the

bubble cloud with N0 = 400, the distribution of bubble radii during the collapse is analyzed according

to their sizes. Fig. 5.18 shows the bubble size density distribution at t = 0 µs, 6 µs, 9 µs, 12 µs,

13 µs, and 14 µs. The first bar on the left indicates the density of the collapsed (inactive) vapor

bubbles. Fig. 5.18 shows that the vapor bubbles become compressed all together due to the higher

environmental pressure. As indicated in Eq. (5.6), as a bubble radius increases, its collapse time

tRayleigh also increases. For a bubble cloud, we find there are two factors affecting the final collapse

time: the bubble size distribution and the initial overpressurization. In the three above conditions of
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Fig. 5.13 Snapshots of the collapsing process of a bubble cloud with N0 = 200 vapor bubbles (at t
= 0 µs, 6 µs, 9 µs, 12 µs, 14 µs, and 16 µs). The distribution of the vapor bubbles is visualized
both by the iso-surfaces of the volume fraction αg = 0.002 (αl = 0.998) and the Lagrangian spherical
particles of the radius R. Cut-sections of the high pressure area (higher than 10 atm) at the center of
the bubble cloud are also plotted, which indicate that the cloud’s collapse induced violent pressures.
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Fig. 5.14 Time change of the non-dimensional active bubble number Nb/N0 (N0 = 200) and the
average gas fraction β/β0, here β = ΣVcαg/Vc.

different initial bubble numbers, bubbles in the cloud follow the same initial size distribution, which

means that the average bubble radii are same. When the bubble radius distribution keeps unchanged,

the number of bubbles inside the cloud has no significant influence on the time instant when the cloud

finally collapses; even the higher number of bubbles increases the average vapor volume fraction

β = ΣVcαg/Vc. However, the larger bubble number induces greater pressure at the cloud’s center

because of a larger vapor void.

5.6 Summary

The LE two-way coupling model offers simultaneous simulations of the cavitating fluid and allows

the tracking of the cavitation bubbles. Benchmark simulations were designed to validate this method

in both 1D and 3D. This model was applied to simulate the pressure wave that traveled through a

cylindrical bubble cloud. The pressure pulse inside the cavitation fluid induced the bubbles’ vibration;

conversely, the gas bubbles’ vibration induced the pressure disturbances. The pressure wave induced

by the oscillating bubbles was effectively predicted using this method. The shape of the pressure pulse

in the fluid significantly changed as a result of the reflection at the cloud’s boundary and the bubbles’

oscillation when the gas void fraction was in the scale of 10−3. In the 3D simulation of Rayleigh
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Fig. 5.15 Snapshots of the vapor bubble cloud collapse process with N0 = 300 vapor bubbles (t = 0
µs, 6 µs, 9 µs, 12 µs, 13 µs, and 14 µs). Distribution of the vapor bubbles is visualized both by the
iso-surfaces of the volume fraction αg = 0.002 (αl = 0.998) and the Lagrangian spherical particles
of the radius R. Cut-sections of the extreme pressure area (higher than 10 atm) at the center of the
bubble cloud are also plotted, which indicate the cloud collapse induced violent pressure.
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Fig. 5.16 Snapshots of the vapor bubble cloud collapse process initially with N0 = 400 vapor bubbles
(t = 0 µs, 6 µs, 9 µs, 12 µs, 13 µs, and 14 µs). Distribution of the vapor bubbles is visualized both by
the iso-surface of the volume fraction αg = 0.002 (αl = 0.998) and the Lagrangian spherical particles
of the radius R. Slices of the high pressure area (higher than 10 atm) at the center of the bubble cloud
are also plotted, which indicate the cloud collapse induced violent pressure.
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Fig. 5.17 Time change of the non-dimensional active bubble number Nb/N0 (N0 = 400) and the
averaged gas fraction β/β0 (β = ΣVcαg/Vc).

collapse of a bubble cloud, the number of bubbles comprising the cloud has no significant influence

on the cloud’s final collapse time if the bubble size distribution keeps the same. However, the larger

number of bubbles causes the averaged vapor volume fraction to become much higher, thus inducing

more violent, higher pressures.
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Fig. 5.18 The bubble distributions (radii density bar graphs) of the bubbles’ radii at t = 0 µs, 6 µs,
9 µs, 12 µs, 13 µs, and 14 µs. The first bar on the left indicates the density of the collapsed vapor
bubbles.





Chapter 6

Summary and conclusion

In recent years, dynamics of cavitation bubbles have been studied with the aim of reducing the de-

structive damage they cause in many engineering applications, for example erosions on the propellers

[61, 108]. Cavitation bubble clouds can also be applied as a means to increase treatment efficiency

when they are introduced as vehicles of medicine or drug delivery. A numerical study of cavitation

offers the solution of the fluid in micro time- and space- scales to better detect the behaviors of the

cavitation bubble cloud. In this thesis, flow cavitation was investigated using the LE coupling model

with a particular focus on tracking the cavitation bubbles via Lagrangian tracking [23, 74, 111]. This

model was developed to study the applications of cavitation flow (i.e., the homogeneous cavitation

nucleation inside a microchannel, a cavitation bubble cloud and a sinusoidal pressure wave interaction,

and the bubble cloud undergoes Rayleigh collapse).

In our model, the cavitation fluid is assumed to be a compressible fluid containing initially

dispersed gas bubbles with radii ranging from several micrometers to millimeters in length. The LE

model’s complete system includes the Eulerian formulation of the cavitation fluid, Lagrangian tracking

of each individual cavitation bubble, and an LE coupling scheme. Assuming that the fluid inside

each computational cell is homogeneous and in equilibrium and that each computational cell has only

one velocity and one pressure measurement, the governing equations of the Eulerian fluid follow the

conservation law. To close the system, EOS or an isobaric closure is applied. All the bubbles are quite

small, so we assume the surface tension is significant enough to maintain their spherical form. Thus,

they are treated as dispersed Lagrangian particles, the dynamics of which are modeled by the spherical
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bubble dynamics equation, which considers the properties of the surrounding fluid. Also the bubble

dynamic equation models how the carrier fluid influences the dispersed bubbles. Through two-way

coupling, the bubbles barely affect the velocity or the momentum of the carrier liquid; however, they

play a fundamental role in modeling the gas volume fraction and the pressure closure. The gas/vapor

volume fraction is derived based on a Gaussian kernel function, which smoothens out the volume

fraction and diffuses the isolated interfaces to prevent numerical oscillation. An isobaric closure is

applied to derive the mixture’s equilibrium pressure [1, 4].

First, we applied the LE one-way coupling model to simulate the homogeneous nucleation in

a microchannel induced by shock-bubble interactions. A novel computational scheme for creating

homogeneous cavitation nucleation was proposed applying the modified nucleation rate formula

proposed by Blander and Katz [16], which provides a more accurate nucleation rate than does

the classical nucleation theory. This scheme consists of four parts: Eulerian computation, bubble

growth simulation, nucleation rate calculation, and bubble initialization. The two-dimensional

axisymmetric two-phase equations were solved to compute gas bubble and bulk fluid evolution in

the microchannel. Homogeneous nucleation within the microchannel was completed in three stages:

the energy deposition stage, the nucleus generation stage, and the nucleus growth stage. The total

nucleus number and nucleus distributions at different stages have been analyzed. We found that the

nucleus cluster distributions fit well with a two-parameter Weibull probability density function, and

the modified classical nucleation theory can model the homogeneous nucleation rate very effectively.

Homogeneous nucleation is a result of the negative pressure-induced energy deposition rate and nuclei

growth rate. The absolute minimum pressure at which nucleation can occur in a microchannel is about

−76.0 MPa. In the end, simulations using different initial shock amplitudes were presented, through

which we found that shock intensity has no significant influence on the time instant when the first

nucleus is generated. However, larger shock intensities significantly increase the final total number of

nuclei due to the larger energy deposition that results during the first stage of nucleation.

The LE two-way coupling scheme was developed based on our multi-resolution Eulerian solver.

The gas volume fraction was modeled as a formulation of the sizes and locations of the gas bubbles.

Benchmark simulations were used to validate our method in 1D and 3D contexts. The simulation of a

cylindrical bubble cloud interacting with a pressure wave was carried out as one type of application.
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The pressure pulse induced active bubble vibration, and this vibration induced pressure perturbation

inside fluid. The pressure field induced by oscillating bubbles was effectively predicted by our method.

We found that the shape of the pressure pulse significantly changes after it passes through the bubble

cloud due to the reflection at the cloud’s boundary and at the sub-grid interfaces. This finding differed

from the results of the simulations in which the gas volume fraction is in the scale of 10−4 in Ref.

[10, 36] because we have a larger gas volume fraction of 10−3. In the end, we applied this model

to simulate a 3D bubble cluster Rayleigh collapse. The number of bubbles inside the cloud has

no notable influence on the cloud’s final collapse time when the average bubble radius remains the

same. With the average volume fraction increases, the extreme pressure induced from bubble collapse

increases.

As a suggestion for potential future studies, a direct 3D simulation of homogeneous nucleation

based on the LE two-way coupling model is proposed; this will offer a more accurate modeling of

the nucleation process and an comparison with the LE one-way coupling model. Also, bubbly flow

turbulence could be an important topic of investigation for future studies. Dispersed multiphase flows

are often turbulent. In both experimental measurements and numerical simulations, the presence

of dispersed bubbles increases the complexity of turbulence more significantly than a single phase

turbulence does. At the same time, the influence of carrier phase turbulence on dispersed bubbles can

be notable. Thus, improved LE models and bubble dynamics models that account for multiple factors

are in high demand.
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