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Abstract 

The current practice of operating and maintaining deteriorating structural systems ensures accepta-

ble levels of structural reliability, but it is not clear how efficient it is. Changing the current pre-

scriptive approach to a risk-based approach has great potential to enable a more efficient manage-

ment of such systems. Risk-based optimization of operation and maintenance strategies identifies 

the strategy that optimally balances the cost for controlling deterioration in a structural system 

with the achieved risk reduction. Inspections and monitoring are essential parts of operation and 

maintenance strategies. They are typically performed to reduce the uncertainty in the structural 

condition and inform decisions on maintenance actions. In risk-based optimization of operation 

and maintenance strategies, Bayesian updating is used to include information contained in inspec-

tion and monitoring data in the prediction of the structural reliability. All computations need to be 

repeated many times for different potential inspection and monitoring outcomes. This motivates 

the development of robust and efficient approaches to this computationally challenging task. 

The reliability of deteriorating structural systems is time-variant because the loads on them and 

their capacities change with time. In most practical applications, the reliability analysis of deteri-

orating structural systems can be approached by dividing their lifetime into discrete time intervals. 

The time-variant reliability problem can then be represented by a series of time-invariant reliability 

problems. Using this methodology as a starting point, this thesis proposes a novel approach to 

compute the time-variant reliability of deteriorating structural systems for which inspection and 

monitoring data are available. The problem is formulated in a nested way in which the prediction 

of the structural condition is separated from the computation of the structural reliability conditional 

on the structural condition. Information on the structural condition provided by inspections and 

monitoring is included in the reliability assessment through Bayesian updating of the system de-

terioration model employed to predict the structural condition. The updated system reliability is 

obtained by coupling the updated deterioration model with a probabilistic structural model utilized 

to calculate the failure probability conditional on the structural condition. This approach is the first 

main outcome of this thesis and termed nested reliability analysis (NRA) approach. It is demon-

strated in two numerical examples considering inspected and monitored steel structures subject to 

high-cycle fatigue. 

An alternative – recently developed – approach, which also follows the strategy of discretizing 

time, describes deteriorating structural systems with hierarchical dynamic Bayesian networks 

(DBN). DBN combined with approximate or exact inference algorithms also enable the computa-

tion of the time-variant reliability of deteriorating structural systems conditional on information 

provided by inspection and monitoring data. In this thesis – as a proof of concept – a software 

prototype is developed based on the DBN approach, which can be used to assess the reliability of 

a corroding concrete box girder for which half-cell potential measurements are available. This is 

the second main outcome of this thesis. 
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Both approaches presented in this thesis enable an integral reliability analysis of inspected and 

monitored structures that accounts for system effects arising from (a) the correlation among dete-

rioration states of different structural elements, (b) the interaction between element deterioration 

and system failure, and (c) the indirect information gained on the condition of all unobserved 

structural elements from inspecting or monitoring the condition of some structural elements. Thus, 

both approaches enable a system-wide risk-based optimization of operation and maintenance strat-

egies for deteriorating structural systems. 

The NRA approach can be implemented relatively easily with subset simulation, which is a se-

quential Monte Carlo method suitable for estimating rare event probabilities. Subset simulation is 

robust and considerably more efficient than crude Monte Carlo simulation. It is, however, still 

sampling-based and its efficiency is thus a function of the number of inspection and monitoring 

outcomes, as well as the value of the simulated event probabilities. The current implementation of 

the NRA approach performs separate subset simulation runs to estimate the reliability at different 

points in time. The efficiency of the NRA approach with subset simulation can be significantly 

improved by exploiting the fact that failure events in different years are nested. The lifetime relia-

bility of deteriorating structural systems can thus be computed in reverse chronological order in a 

single subset simulation run. 

The implementation of the DBN approach is much more demanding than the implementation of 

the NRA approach but it has two main advantages. Firstly, the graphical format of the DBN facil-

itates the presentation of the model and the underlying assumptions to stakeholders who are not 

experts in reliability analysis. Secondly, it can be combined with exact inference algorithms. In 

this case, its efficiency neither depends on the number of inspection and monitoring outcomes, nor 

on the value of the event probabilities to be calculated. However, in contrast to the NRA approach 

with subset simulation, the DBN approach with exact inference imposes restrictions on the number 

of random variables and the dependence structure that can be implemented in the model. 
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1 Introduction 

1.1 Motivation 

Engineering structures are important parts of transport, water, energy and communication infra-

structure systems. Bridges, tunnels, towers and retaining walls are typical examples of this class 

of structures. Generally, these structures are subject to deterioration processes such as corrosion 

and fatigue. Depending on the adopted design principles, the construction quality and the exposure 

to environmental factors, deterioration can have an adverse effect on the performance of engineer-

ing structures. To ensure an adequate performance throughout their service lives, it may be neces-

sary to perform maintenance1 actions. 

On many structures, inspections and monitoring are performed to obtain information on the struc-

tural condition. Their outcomes can support the prediction of the future structural condition and 

performance and enable an improved (condition-based or predictive) planning of maintenance ac-

tions. It is common practice to perform visual inspections, which provide information on visible 

deterioration states such as rust staining on and cracking of concrete surfaces as well as concrete 

spalling. Non-destructive testing is often utilized if visual inspections are insufficient. For exam-

ple, half-cell potential measurements are carried out to detect corroding reinforcement in concrete 

structures. In addition to performing inspections, more and more deteriorating structures are 

equipped with monitoring systems because of recent advances in sensor technology, data trans-

mission and processing. Applications include corrosion sensors embedded in concrete structures 

to monitor the ingress of chlorides, and sensors recording vibration data, which can provide infor-

mation on the structural condition. 

The cost of operating and maintaining deteriorating structures can be substantial. For example, in 

2016 the German federal government spent €4.64 billion on operating and maintaining the 

transregional road network, out of which €0.87 billion were spent on maintaining bridges and other 

types of engineering structures within the network (BMVI 2018). Since resources for operating 

and maintaining deteriorating structures are limited, they should be allocated efficiently. An effi-

cient operation and maintenance strategy balances the cost of controlling deterioration in structural 

systems with the achieved risk reduction, and ensures that the given requirements regarding ser-

viceability, safety of users and personnel as well as risk to the environment are fulfilled at any 

time. Identifying and adopting such strategies is of great importance to society as they affect the 

quality of life and safety of all members of society, the quality of the environment, and budgets of 

governments and industry. 

 
1 In this thesis, maintenance is understood to include repair, replacement and retrofitting actions, and operation is 

understood to include inspection, monitoring and services (see also Sørensen 2009). 
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To optimally plan operation and maintenance actions, a proper assessment and prediction of the 

condition and performance of deteriorating structures is essential. Inspection and monitoring re-

sults should be utilized when they become available to update the present knowledge on the current 

and future condition and performance. As an example of current practice, consider again the as-

sessment of engineering structures within the German federal road network. These structures are 

regularly assessed by expert engineers after performing visual inspections (e.g. Vollrath and 

Tathoff 2002). The engineers determine location, type and extent of visible damages, and rate the 

condition of the affected structural components. The individual component ratings are then aggre-

gated into a system condition rating based on empirical models (Haardt 1999). This approach has 

several limitations: (a) The assessment is subjective and qualitative. In addition, a study conducted 

in the United States of America found that the assessment by inspectors is subject to significant 

variability (Phares et al. 2001). (b) Uncertainties in the assessment are not treated formally. (c) 

There is no consistent basis for including information from past inspections in the assessment. (d) 

The future condition and performance of a structure cannot be predicted. For these reasons, deci-

sions on operation and maintenance activities based on this approach may be inefficient. 

As an alternative, deteriorating structures can be assessed using structural reliability analysis. In 

structural reliability, an engineering model consisting of physics-based deterioration and structural 

models is applied to predict the structural condition and behavior (Ditlevsen and Madsen 1996; 

Melchers 1999). Such predictions are uncertain. Uncertainty is, for example, present in the demand 

on the structure, material properties, geometrical dimensions, and the models themselves. To ac-

count for these uncertainties, the engineering model is combined with probabilistic models of the 

model parameters. By probabilistically modeling the uncertainties in the model parameters and 

propagating them through the engineering model, a probabilistic description of the structural con-

dition and behavior is obtained. Based on the probabilistic engineering model, probabilities of rare 

system states (typically failure) can be computed with structural reliability methods. In structural 

reliability, these probabilities are applied to quantify the system performance. In particular, the 

probability of the complement of the system failure event (i.e. the probability of survival) is the 

system reliability. 

In a probabilistic setting, Bayesian analysis can be applied to systematically and quantitatively 

include uncertain and incomplete (and possibly contradicting) inspection and monitoring data in 

the prediction of the condition and performance of deteriorating structures. Thereby, the posterior 

probabilistic model of the model parameters conditional on inspection and monitoring results is 

determined, which then forms the basis for updating the probabilities of the rare system states. In 

this way, the effect of inspection and monitoring results on the condition and performance of de-

teriorating structural systems can be quantified. 

Probabilistic modelling and structural reliability analysis have high potential to enhance the man-

agement of deteriorating structures. The reasons are: 

(a) An initial prediction of the condition and performance of deteriorating structures can be ob-

tained based on the prior probabilistic engineering model. The uncertainties in the prediction 

are addressed through the prior probabilistic models of the model parameters, which are 
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derived from all relevant sources of information available prior to performing in-service in-

spection and monitoring. This includes, for example, design information, data from tests 

performed during construction, and expert knowledge. 

(b) Bayesian analysis can be applied to consistently include data available from in-service in-

spection and monitoring in the prediction of the structural condition and performance. It 

provides the means to fuse information from different sources in the same model and to 

account for the associated uncertainties. This process can be repeated each time new data 

become available. 

(c) Reliability analysis can be applied to demonstrate that deteriorating structures (in conjunc-

tion with inspection and monitoring data) comply with safety requirements if this cannot be 

demonstrated with standard semi-probabilistic approaches. Target reliabilities are, for exam-

ple, defined in the Probabilistic Model Code (JCSS 2001) and ISO 2394 (2015). 

(d) Reliability analysis forms the basis for optimal planning of operation and maintenance ac-

tions using pre-posterior analysis from classical Bayesian decision theory (Raiffa and 

Schlaifer 1961; Benjamin and Cornell 1970). Pre-posterior analysis is a consistent frame-

work for jointly optimizing decisions on collecting of information on deteriorating structures 

together with decisions on maintenance actions (e.g. Thoft-Christensen and Sørensen 1987; 

Faber et al. 2000; Straub and Faber 2006; Nielsen and Sørensen 2011; Luque and Straub 

2019).  

All this motivates the application of structural reliability analysis to assess the condition and per-

formance of deteriorating structures. Such analyses are mainly performed at the structural element 

level because probabilistic deterioration models are typically available at this level. These models 

are primarily applied to estimate and update the probability of element deterioration states such as 

fatigue failure of welded connections (e.g. Tang 1973; Madsen 1987). However, deterioration pro-

cesses at different locations in a structure are generally correlated due to spatial variability and 

common influencing factors (Hergenröder and Rackwitz 1992; Vrouwenvelder 2004; Malioka 

2009; Luque et al. 2017). This correlation reduces the reliability of redundant structural systems 

(Gollwitzer and Rackwitz 1990; Straub and Der Kiureghian 2011) and has an effect on what can 

be learned about the overall system condition by inspecting and monitoring only parts of a struc-

ture (Vrouwenvelder 2004). For these reasons, the reliability of deteriorating structures should be 

analyzed and updated at the structural system level. 

A number of publications consider modeling of spatial dependence among deterioration processes 

in structural systems by introducing correlations among the parameters of the models describing 

deterioration of structural elements by means of random field models (e.g. Stewart and Mullard 

2007; Ying and Vrouwenvelder 2007; Straub 2011b; Papakonstantinou and Shinozuka 2013), hi-

erarchical models (e.g. Faber et al. 2006; Maes and Dann 2007; Straub et al. 2009; Luque et al. 

2017) and coefficients of correlation (e.g. Moan and Song 2000; Vrouwenvelder 2004; Maljaars 

and Vrouwenvelder 2014). Therein, the effect of inspection and monitoring outcomes on the prob-

ability of either corrosion states in reinforced concrete structures or fatigue failures in steel struc-

tures is quantified using Bayesian analysis. However, the impact of deterioration at different ele-

ments on the structural system reliability is not included in these works. 
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The reliability analysis of deteriorating structural systems requires the solution of time-variant 

reliability problems because the demand on and the capacity of the structure vary with time. Gen-

erally, the outcrossing approach is used to solve such problems (Rackwitz 2001). The main com-

ponent of this approach is the computation of the expected number of outcrossings, which in turn 

is estimated from the corresponding outcrossing rate. Different methods for computing the time-

variant reliability based on the outcrossing approach have been proposed (e.g. Schall et al. 1991; 

Andrieu-Renaud et al. 2004). The application of these methods to structural systems with many 

deteriorating elements subject to arbitrary load processes is, however, non-trivial. Additional chal-

lenges arise when inspection and monitoring data are included in the assessment. 

The time-variant reliability analysis can also be approached by dividing the service life of a struc-

ture into discrete time intervals or occurrences of discrete load events (Melchers 1999). In this 

case, the reliability problem corresponds to the calculation of the probability that failure occurs in 

any time interval or during any load event leading up to a certain point in time. Various researchers 

adopt this approach to analyze the time-variant reliability of deteriorating structural systems (e.g. 

Mori and Ellingwood 1993; Stewart and Rosowsky 1998b; Enright and Frangopol 1999; Val et al. 

2000; Stewart and Al-Harthy 2008; Li et al. 2015; Wang et al. 2017). In these works, the effect of 

correlation among element deterioration, and the effect of inspection and monitoring data on the 

system reliability is not considered. 

While substantial progress has been made over the past decades, an integral framework for ana-

lyzing the reliability of deteriorating structural systems with inspection and monitoring data is not 

available. This motivates the development of novel modeling and computational strategies for this 

task. Ultimately, the modeling approach and the computational methods should lead to efficient 

and robust software that can be used by engineers who are not experts in structural reliability 

analysis. Only in this way can structural reliability analysis enhance the management of deterio-

rating structures in practice. 

1.2 Scope 

Motivated by the above, this thesis explores novel approaches to compute the time-variant relia-

bility of deteriorating structural systems conditional information contained in inspection and mon-

itoring data. Following Straub et al. (2020), the quantification of the time-variant reliability of 

deteriorating structures is reviewed, and situations in which the time-variant reliability problem 

can be transformed into a series of time-invariant problems are discussed. Based on this discussion 

and work published in (Schneider et al. 2017), the core of this thesis then proposes an approach to 

compute the time-variant reliability of deteriorating structural systems conditional on inspection 

and monitoring data. The problem is formulated as a nested reliability problem in which the com-

putation of the system condition is decoupled from the computation of the system reliability con-

ditional on the system condition. The approach is inspired by the work of Wen and Chen (1987) 

and called nested reliability analysis (NRA) approach in the following. This thesis provides a de-

tailed presentation of the proposed NRA approach including: 
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− a description of a generic model for probabilistically representing deterioration in structural 

systems, 

− a brief discussion on modeling dependence among deterioration processes at different locations 

in structural systems,  

− a proposal for a classification of inspection and monitoring technologies, which provide infor-

mation on the structural condition and the parameters influencing deterioration, 

− a proposal for a formulation of the time-variant reliability of deteriorating structural systems 

conditional on inspection and monitoring results, and 

− a proposal for an efficient method to evaluate the time-variant reliability. 

The NRA approach is demonstrated through two numerical examples considering welded steel 

structures subject to high-cycle fatigue. The first example estimates – in analogy to an offshore 

structure – the reliability of an inspected jacket-type frame. It studies the effect of different inspec-

tion scenarios in terms of inspection coverage, times and outcomes. The second example considers 

a monitored Daniels system, which is an idealized redundant structural system. This example pre-

sents a concept for modeling global damage detection information and integrating this type of 

information in the reliability analysis of the deteriorating Daniels system. 

In addition, this thesis applies a novel approach to analyze the time-variant reliability of deterio-

rating structural systems conditional on inspection and monitoring data, which has been originally 

proposed by Straub (2009) and extended by Luque and Straub (2016). The approach represents 

deteriorating structural systems with dynamic Bayesian networks (DBN) and is termed DBN ap-

proach in the following. In this thesis, a detailed summary of the DBN approach is provided in-

cluding a description of: 

− a generic DBN model for probabilistically representing element deterioration, 

− an approach to describing dependence among element deterioration with DBN, 

− a generic model for probabilistically representing inspection and monitoring results in DBN, 

which provide information on element deterioration states and the parameters influencing de-

terioration, 

− a generic DBN model for probabilistically representing deteriorating structural systems, and 

− an existing inference algorithm for evaluating the DBN of the deteriorating structural. 

This thesis employs the DBN approach to analyze and update the time-variant reliability of a con-

crete box girder subject to spatially distributed reinforcement corrosion and demonstrates that it 

can be implemented in a software prototype. The software prototype was developed in collabora-

tion with researchers from the Technische Universität München and the Technical University of 

Denmark (Schneider et al. 2014; Schneider et al. 2015a; Schneider et al. 2015b). The author’s 

main contributions to the software prototype are the development and implementation of the dete-

rioration and structural model of the box girder, as well as the implementation of an existing in-

ference algorithm. 
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1.3 Outline 

Section 2 introduces the theory and methods of time-invariant structural reliability. Section 3 then 

discusses how reliability estimates can be consistently updated with inspection and monitoring 

data using Bayesian analysis. In particular, the BUS (Bayesian updating with structural reliability 

methods) approach recently proposed in (Straub 2011a; Straub and Papaioannou 2015b; Straub et 

al. 2016) is presented. Thereafter, Section 4 reviews the quantification of the time-variant reliabil-

ity of deteriorating structural systems. This section also discusses when the time-variant reliability 

can be approximated through a series of time-invariant reliability problems. Based on this discus-

sion, Section 5 presents the NRA approach and demonstrates it through two numerical examples 

considering an inspected jacket-type steel frame and a monitored Daniels system. Both structures 

are subject to high-cycle fatigue. Subsequently, Section 6 presents the DBN approach and applies 

it in a numerical example considering an inspected concrete box girder subject to chloride-induced 

reinforcement corrosion. The numerical example first describes the model of the deteriorating box 

girder and its implementation in a software prototype. Subsequently, the prototype is applied to 

analyze and update the time-variant reliability of the deteriorating box girder. Finally, the findings 

of this thesis are discussed in Section 7, and concluding remarks are provided together with an 

outlook in Section 8. 

 

 



 

 17 

2 Time-invariant structural reliability 

The following sections introduce the theory and methods of time-invariant structural reliability. 

Section 2.1 formulates the general structural reliability problem, which can be solved with special-

ized methods called structural reliability methods (SRM). The overview on SRM provided in Sec-

tion 2.2 is limited to the scope required for the remainder of this thesis. Subsequently, Section 2.3 

introduces the system reliability problem. Finally, Section 2.4 discusses important aspects of struc-

tural systems reliability analysis. Comprehensive introductions to structural reliability can be 

found in standard textbooks (Ditlevsen and Madsen 1996; Melchers 1999). Throughout this sec-

tion and the remainder of this thesis it will be assumed that the reader is familiar with the basic 

notions of probability theory. The notation used in this thesis follows Straub (2018a). 

2.1 The structural reliability problem 

Consider the case in which the demand on and the capacity of a structural system are time-invari-

ant, i.e. the structure either fails when it is subject to the demand or it never fails. In this case, all 

stochastic parameters that influence the performance of a structural system can be modeled prob-

abilistically by time-invariant random variables. These variables are often called the basic random 

variables and are collectively represented by the random vector 𝐗. Realizations of 𝐗 are denoted 

by 𝐱. Each realization 𝐱 corresponds to a point in the outcome space of 𝐗. The (prior) knowledge 

on the stochastic parameters is characterized through the (prior) joint probability density function 

(PDF) 𝑓𝐗(𝐱) of 𝐗 which is typically derived from both data and expert knowledge.  

In structural reliability, the failure event 𝐹 of a structural system is described through a limit state 

function2 𝑔(𝐱) as a function of the random variables 𝐗 (Ditlevsen and Madsen 1996; Melchers 

1999). By convention, a negative value of the limit state function corresponds to failure of the 

system; hence the failure event 𝐹 is defined as: 

𝐹 = {𝑔(𝐗) ≤ 0} (2.1) 

The limit state function 𝑔(𝐱) includes the (possibly computationally expensive) engineering model 

of the structural system. Within this modeling framework, additional random variables are in-

cluded in 𝐗 to account for (a) model uncertainties arising from a simplified representation of the 

system behavior and from omitting parameters that also influence the structural performance, and 

(b) statistical uncertainties due to the limited data on the system parameters. 

 
 2 Failure of a structural system is generally defined in terms of several limit state functions where each function 

represents a different failure mode (see Sections 2.3 and 2.4). The different limit state functions can be combined into 

a single limit state function as described in Section 2.3. Note that describing system failure by a single limit state 

function is not necessarily the computationally optimal approach. 
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The problem can be interpreted geometrically: The limit state function 𝑔(𝐱) describes a failure 

domain Ω𝐹 = {𝐱 ∶ 𝑔(𝐱) ≤ 0} in the outcome space of 𝐗, and the failure probability is equal to the 

probability of 𝐗 taking a value in the failure domain Ω𝐹. It can thus be calculated by integrating 

the joint PDF of 𝐗 over the failure domain Ω𝐹: 

Pr(𝐹) = Pr[𝑔(𝐗) ≤ 0] = ∫  𝑓𝐗(𝐱) d𝐱
𝑔(𝐱)≤0

 (2.2) 

Equation (2.2) corresponds to the classical formulation of the (time-invariant) structural reliability 

problem. The problem is illustrated in Figure 2.1. 

Note that in the context of system reliability the integral in Equation (2.2) is called a component 

reliability problem (see Section 2.3). Here, the term component refers to the fact that the failure 

event 𝐹 is described in terms of a single limit state function 𝑔(𝐱). In this sense, a component does 

not necessarily correspond to a structural component (or element) of a structural system. 

The probability of the complement of the failure event is the survival probability or the reliability 

of the structural system: 

𝑅𝑒𝑙 = 1 − Pr(𝐹) (2.3) 

An alternative measure of structural reliability is the generalized reliability index 𝛽, which is re-

lated to the failure probability as follows (Ditlevsen and Madsen 1996): 

𝛽 = −Φ−1[Pr(𝐹)] (2.4) 

where Φ−1[∙] is the inverse standard normal cumulative distribution function (CDF). 

2.2 Structural reliability methods 

A variety of methods called structural reliability methods (SRM) are available to solve the integral 

in Equation (2.2). SRM typically transform the problem from the outcome space of the original 

random variables 𝐗 = [𝑋1, 𝑋2, … ,𝑋𝑛]
𝑇 to the outcome space of independent standard normal ran-

dom variables 𝐔 = [𝑈1, 𝑈2 , … ,𝑈𝑛]
𝑇 with joint PDF 𝜑𝑛(𝐮) = ∏ 𝜑(𝑢𝑖)

𝑛
𝑖=1  where 𝜑(∙) is the stand-

ard normal PDF (see, for example, Rackwitz 2001). This transformation is performed by applying 

a one-to-one mapping 𝐔 = 𝑇(𝐗). If all random variables 𝐗 are statistically independent, each var-

iable can be transformed individually as: 

𝑈𝑖 = Φ
−1[𝐹𝑋𝑖 (𝑋𝑖)], 𝑖 = 1, … , 𝑛 (2.5) 

where 𝐹𝑋𝑖 (𝑥𝑖) is the marginal CDF of 𝑋𝑖. In most applications, the random variables will be cor-

related. If the joint distribution of 𝐗 is known, the Rosenblatt transformation can be used 

(Hohenbichler and Rackwitz 1981). If the random variables 𝐗 are defined by their marginal distri-

butions and their stochastic dependencies are described in terms of coefficients of correlation, the 

Nataf transformation can be applied (Liu and Der Kiureghian 1986). 
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Using the inverse of the mapping 𝐗 = 𝑇−1(𝐔), a transformed limit state function 𝐺 describing the 

failure domain Ω𝐹
𝑈 = {𝐮 ∶ 𝐺(𝐮) ≤ 0} in 𝐔-space can now be defined as: 

𝐺(𝐮) = 𝑔[𝑇−1(𝐮)] (2.6) 

Figure 2.2 illustrates the transformation of the structural reliability problem from the original out-

come space to the standard normal space. 

The mapping 𝐔 = 𝑇(𝐗) is probability preserving, i.e. Pr(𝐹) = Pr[𝑔(𝐗) ≤ 0] = Pr[𝐺(𝐔) ≤ 0]. 

Thus, the failure probability can be expressed in the transformed space as:  

Pr(𝐹) = Pr[𝐺(𝐔) ≤ 0] = ∫  𝜑𝑛(𝐮) d𝐮
𝐺(𝐮)≤0

 (2.7) 

Two classes of methods exist for solving the integral in Equation (2.7): (a) methods based on the 

design point including the first-order reliability method (FORM) and (b) sampling-based methods 

such as Monte Carlo Simulation (MCS) and Subset Simulation (SuS). FORM, MCS and SuS are 

briefly introduced in the following. 

2.2.1 First order reliability method 

FORM approximates the failure domain Ω𝐹
𝑈 = {𝐮 ∶ 𝐺(𝐮) ≤ 0} by a half-space. This is achieved 

by linearizing the limit state function 𝐺(𝐮) at the design point (or most likely failure point) 𝐮∗ 

 

Figure 2.1: Illustration of the (time-invariant) structural reliability problem (adapted from Straub 2014a). In this ex-

ample, fatigue of a metal component is modeled with the Palmgren-Miner damage accumulation rule and a single-

slope SN curve with a negative inverse slope of 3. The component is subject to 𝑛 = 107 fatigue load cycles with 

identical amplitude. The constant amplitude fatigue stress range is represented by a normal distributed random variable 

𝑋1. with mean 𝜇𝑋1 = 50 N/mm
2 and standard deviation 𝜎𝑋1 = 12.5 N/mm

2. The intercept with the 𝑁-axis of the SN 

curve at a stress amplitude of 1 N/mm2 is described by a lognormal distributed random variable 𝑋2 with parameters 

𝜇ln𝑋2 = 30.5 ln[(N/mm
2)-3] and 𝜎ln𝑋2 = 0.45 ln[(N/mm

2)-3]. 𝑋1 and 𝑋2 are independent. Fatigue failure of the 

component occurs if the accumulated damage 𝑛 ∙ 𝑋2
−1 ∙ 𝑋1

3 is greater than 1. The limit state function describing com-

ponent fatigue failure is thus formulated as 𝑔(𝐱) = 1 − 𝑛 ∙ 𝑋2
−1 ∙ 𝑋1

3. 
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where the limit state surface 𝑆 = {𝐮 ∶ 𝐺(𝐮) = 0} is closest to the origin of the standard normal 

space. This is the point in the failure domain Ω𝐹
𝑈 with the maximum probability density. The failure 

probability is estimated by integrating 𝜑𝑛(𝐮) over the resulting half-space. The simple result is 

(Hasofer and Lind 1974): 

Pr(𝐹) ≈ Φ(−𝛽𝐹𝑂𝑅𝑀) (2.8) 

where 𝛽𝐹𝑂𝑅𝑀 = ‖𝐮
∗‖ = √𝐮∗𝑇𝐮∗ is the distance from the origin to 𝐮∗, which is called the FORM 

reliability index and Φ(∙) is the standard normal CDF. The principle of FORM is illustrated in 

Figure 2.3. 

The design point 𝐮∗ can be identified by solving the following constrained optimization problem: 

𝐮∗ = argmin‖𝐮‖ subjected to 𝐺(𝐮) ≤ 0 (2.9) 

Several optimized algorithms are available for this task. The most widely applied algorithm is the 

Hasofer-Lind-Rackwitz-Fiessler algorithm (Hasofer and Lind 1974; Rackwitz and Fiessler 1978). 

The accuracy of FORM can be verified and improved by applying a second-order approximation 

of the limit state function at the design point (Breitung 1984). This approach is known as second-

order reliability method (SORM). 

FORM and SORM have been successfully applied to a variety of structural reliability problems. 

However, identifying the design point may become difficult if the limit state function is formulated 

in terms of a numerical model or the dimension of the problem in terms of the number of random 

variables becomes large (Schuëller et al. 2004). Furthermore, in high dimensional problems or in 

  

Figure 2.2: Illustration of the transformation of the component reliability problem from (a) the outcome space of the 

original random variables 𝐗 to (b) the outcome space of independent standard normal random variables 𝐔 (details of 

the example are described in the caption of Figure 2.1). In this example, which follows Straub (2014a), the random 

variables 𝑋1 and 𝑋2 are independent, and they can, therefore, be transformed separately. The inverse transformation 

from standard normal space is 𝑋1 = 𝑈1 ∙ 𝜎𝑋1 + 𝜇𝑋1 and 𝑋2 = exp(𝑈2 ∙ 𝜎ln𝑋2 +𝜇ln𝑋2). 
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problems with highly non-linear limit state surfaces FORM/SORM solutions may become inaccu-

rate (Rackwitz 2001). 

2.2.2 Monte Carlo simulation 

MCS can be derived by rewriting the integral in Equation (2.7) in the following format: 

Pr(𝐹) = ∫ 𝜑𝑛(𝐮) d𝐮
𝐺(𝐮)≤0

= ∫ 𝕀[𝐺(𝐮) ≤ 0] 𝜑𝑛(𝐮) d𝐮
ℝ𝑛

 (2.10) 

where 𝕀[∙] is the indicator function, which is equal to 1 if its argument is true and 0 otherwise. 

Equation (2.10) corresponds to the expected value of 𝕀[𝐺(𝐔) ≤ 0]. It follows that the failure prob-

ability can be estimated by generating 𝑁 independent and identically distributed (i.i.d.) samples 

𝐮(𝑖), 𝑖 = 1, … , 𝑁 from 𝜑𝑛(𝐮) and calculating the sample mean of 𝕀[𝐺(𝐔) ≤ 0]: 

Pr(𝐹) = 𝔼[𝕀[𝐺(𝐔) ≤ 0]] ≈ 𝑃̂𝑀𝐶 =
1

𝑁
∑𝕀[𝐺(𝐮(𝑖)) ≤ 0]

𝑁

𝑖=1

 (2.11) 

 

Figure 2.3: Illustration if the design point and the linear approximation of the limit state surface (adapted from Straub 

2014a). The marginal PDF of 𝐔 in the direction of the design point 𝐮∗ is the standard normal PDF. Consequently, the 

FORM approximation of the failure probability is Pr(𝐹) ≈ Φ(−𝛽𝐹𝑂𝑅𝑀). 
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where 𝑃̂𝑀𝐶  denotes the MCS estimator of the failure probability, which provides an unbiased esti-

mate of the failure probability (see, for example, Straub 2012). MCS is illustrated in Figure 2.4 for 

a two-dimensional problem. 

The accuracy of the MCS estimator 𝑃̂𝑀𝐶  can be measured in terms of its coefficient of variation 

𝛿𝑀𝐶 , which is given by (see, for example, Straub 2012): 

𝛿𝑀𝐶 = √
1− Pr(𝐹)

𝑁 Pr(𝐹)
 (2.12) 

From Equation (2.12), two important conclusions can be drawn. (a) The accuracy of the MCS 

estimator does neither depend on the number of random variables nor on the shape of the limit 

state function. It is therefore a robust method. (b) If the failure probability to be estimated, Pr(𝐹), 

is small, the number of samples 𝑁 has to be large to achieve a reasonable accuracy of the estimate. 

In fact,   

𝑁 =
1 − Pr(𝐹)

𝛿𝑀𝐶
2  Pr(𝐹)

 (2.13) 

samples are required to achieve a coefficient of variation 𝛿𝑀𝐶 . It follows that MCS is inefficient in 

estimating small failure probabilities. 

Several methods have been developed to enhance the efficiency of standard MCS including im-

portance sampling (IS) techniques. IS methods artificially increase the number of samples in the 

failure domain by sampling from an appropriately chosen sampling density commonly centered at 

the design point obtained from an initial FORM analysis (Schuëller and Stix 1987). Adaptive IS 

 

Figure 2.4: Illustration of Monte Carlo simulation with 𝑁 = 104 samples (this example follows Straub 2014a). The 

blue crosses and green circles are i.i.d. samples 𝐮(𝑖), 𝑖 = 1,… ,𝑁 from 𝜑2(𝐮). Two samples – the green circles – are 

in the failure domain.  
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schemes that do not require prior knowledge of the design point are also available (Bucher 1988; 

Au and Beck 1999; Kurtz and Song 2013; Papaioannou et al. 2016). An alternative importance 

sampling scheme is line sampling (Hohenbichler and Rackwitz 1988; Koutsourelakis et al. 2004). 

This method produces samples on a hyperplane orthogonal to a dominant direction pointing to-

wards the limit state surface. The dominant direction is obtained from an initial FORM run. More 

recently, Bucher (2009) has developed asymptotic sampling, which is based on an asymptotic ap-

proximation of the failure probability (Breitung 1984; Gollwitzer and Rackwitz 1988) and esti-

mates the failure probability in terms of the generalized reliability index based on initial MSC runs 

followed by a regression analysis. In recent years, subset simulation (SuS) proposed by Au and 

Beck (2001) has become popular. It expresses the failure probability as a product of conditional 

probabilities of nested intermediate failure events. With a suitable choice of the intermediate fail-

ure events, the conditional probabilities become large enough such that they can be estimated ef-

ficiently by simulation. SuS is presented in more detail in the following section. 

2.2.3 Subset simulation 

SuS proposed by Au and Beck (2001) is a sequential Monte Carlo method. The basic idea of SuS 

is to express the failure event as an intersection of a sequence of nested intermediate events. 

𝐹 = 𝐸0 ∩ 𝐸1 ∩ …∩ 𝐸𝑀  (2.14) 

where 𝐸0 is the certain event and 𝐸0 ⊃ 𝐸1 ⊃ ⋯ ⊃ 𝐸𝑀 = 𝐹 . The events 𝐸𝑖  are defined as: 

𝐸𝑖 = {𝐺(𝐔) ≤ 𝑏𝑖} (2.15) 

where 𝑏0 = ∞ > 𝑏1 > 𝑏2 > ⋯ > 𝑏𝑀 = 0. Applying the chain rule of probability and noting that 

𝐸𝑖−1 = 𝐸0 ∩ 𝐸1 ∩ …∩ 𝐸𝑖−1, the probability of failure can be written as: 

Pr(𝐹) = Pr(𝐸0 ∩ 𝐸1 ∩ …∩ 𝐸𝑀) 

= Pr(𝐸0) ∙ Pr(𝐸1|𝐸0) ∙ Pr(𝐸2|𝐸0, 𝐸1) ∙ … ∙ Pr(𝐸𝑀|𝐸0, … , 𝐸𝑀−1) 

=∏Pr(𝐸𝑖 |𝐸𝑖−1)

𝑀

𝑖=1

 

(2.16) 

With a suitable choice of the thresholds 𝑏𝑖, the conditional probabilities Pr(𝐸𝑖 |𝐸𝑖−1) can be made 

much larger than Pr(𝐹) such that they can be estimated efficiently with smaller sample sizes. 

The conditional probability Pr(𝐸1|𝐸0) = Pr (𝐸1) is computed using standard MCS. The estimator 

𝑃̂1 of the probability Pr(𝐸1) is defined analogous to Equation (2.11): 

Pr(𝐸1) ≈ 𝑃̂1 =
1

𝑁
∑𝕀[(𝐺(𝐮0

(𝑗)
) ≤ 𝑏1)]

𝑁

𝑗=1

 (2.17) 

where 𝐮0
(𝑗)

, 𝑗 = 1, … , 𝑁 are i.i.d. samples from 𝜑𝑛(𝐮|𝐸0) = 𝜑𝑛(𝐮) . The conditional probabilities 

Pr(𝐸𝑖 |𝐸𝑖−1), 𝑖 = 2,… , 𝑀 are computed with an estimator like Equation (2.17), which requires 
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samples conditional on the events 𝐸𝑖−1. These samples are distributed according to the conditional 

PDFs: 

𝜑𝑛(𝐮|𝐸𝑖−1) =
𝜑𝑛(𝐮) 𝕀[𝐺(𝐮) ≤ 𝑏𝑖−1]

Pr(𝐸𝑖−1)
, 𝑖 = 2, … , 𝑀 (2.18) 

Samples from 𝜑𝑛(𝐮|𝐸𝑖−1) are generated by applying Markov Chain Monte Carlo (MCMC) sam-

pling methods, which simulate states of a Markov chain whose stationary distribution is equal to 

the desired conditional distribution. Different MCMC algorithms for subset simulation are dis-

cussed in (Papaioannou et al. 2015). In this thesis, an algorithm called conditional sampling in 𝐔-

space proposed by Papaioannou et al. (2015) is applied due to its simplicity and efficiency (see 

Appendix A for more details). Once samples 𝐮
𝑖−1

(𝑗)
, 𝑗 = 1,… ,𝑁 from 𝜑𝑛(𝐮|𝐸𝑖−1) are available, an 

estimate of the conditional probabilities Pr(𝐸𝑖 |𝐸𝑖−1) can be computed as: 

Pr(𝐸𝑖 |𝐸𝑖−1) ≈ 𝑃̂𝑖 =
1

𝑁
∑𝕀[𝐺(𝐮𝑖−1

(𝑗) ) ≤ 𝑏𝑖 ]

𝑁

𝑗=1

, 𝑖 = 2,… , 𝑀 (2.19) 

The samples 𝐮𝑖−1
(𝑗)

, 𝑗 = 1, … ,𝑁 are identically distributed according to 𝜑𝑛(𝐮|𝐸𝑖−1) but they are 

generally not statistically independent. The correlation among the MCMC samples has an effect 

on the efficiency and accuracy of SuS (see Papaioannou et al. 2015). It is important to adopt an 

MCMC sampling algorithm that produces samples with low correlation such that the conditional 

probabilities Pr(𝐸𝑖 |𝐸𝑖−1) can be estimated with a minimum number of samples (see also Appen-

dix A). 

Finally, an estimator 𝑃̂𝑆𝑢𝑆  of the failure probability can be written as: 

Pr(𝐹) ≈ 𝑃̂𝑆𝑢𝑆 =∏𝑃̂𝑖

𝑀

𝑖=1

 (2.20) 

The intermediate thresholds 𝑏1, 𝑏2 , … , 𝑏𝑀−1 cannot be selected in advance as the actual failure 

probability Pr(𝐹) and the shape of the limit state function 𝐺(𝐮) are not known in advance. Instead, 

the thresholds are chosen on the fly during subset simulation such that the conditional probabilities 

Pr(𝐸𝑖 |𝐸𝑖−1), 𝑖 = 1,… , 𝑀 − 1 are equal to a chosen value 𝑝0 . The first step of subset simulation 

simulates 𝑁 i.i.d samples 𝐮0
(𝑗)

, 𝑗 = 1,… ,𝑁 from 𝜑𝑛(𝐮). The limit state function 𝐺(𝐮) is then eval-

uated for each sample and 𝑏1 is set equal to the 𝑝0-quantile of the 𝑁 resulting values of the limit 

state function 𝐺(𝐮0
(𝑗)), 𝑗 = 1,… ,𝑁. The second step of subset simulation then uses the 𝑁0 samples 

for which 𝐺(𝐮) ≤ 𝑏1 as seeds to generate 𝑁− 𝑁0 additional samples using MCMC sampling, 

making up a total of 𝑁 conditional samples 𝐮1
(𝑗)

, 𝑗 = 1, … ,𝑁 distributed according to 𝜑𝑛(𝐮|𝐸1). 

Subsequently, the limit state function 𝐺(𝐮) is evaluated for each conditional sample and 𝑏2 is set 

equal to the 𝑝0-quantile of the 𝑁 resulting values of the limit state function 𝐺(𝐮1
(𝑗)), 𝑗 = 1, … ,𝑁. 

The second step is repeated until the 𝑝0- quantile becomes negative. At this stage, the failure event 

𝐸𝑀 = 𝐹 is reached, for which 𝑏𝑀 = 0. The estimator 𝑃̂𝑆𝑢𝑆  of the failure probability can now be 

rewritten as: 
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Pr(𝐹) ≈ 𝑃̂𝑆𝑢𝑆 = 𝑝0
𝑀−1𝑃̂𝑀 (2.21) 

where 𝑃̂𝑀  is the estimator of the conditional probability Pr(𝐸𝑀|𝐸𝑀−1), which is computed with 

Equation (2.19) with 𝑖 = 𝑀. The SuS algorithm is summarized in Algorithm 2.1 and illustrated in 

Figure 2.5. 

The value of the conditional probabilities 𝑝0  and the number of samples per subset level 𝑁 can be 

chosen freely. Au and Beck (2001) suggest a value 𝑝0 = 0.1. 𝑁 should be selected large enough 

to give accurate estimates of 𝑝0 . Following Equation (2.13), 𝑁 ≈ 1000 samples are required to 

obtain a coefficient of variation 𝛿𝑀𝐶 = 0.1 in estimating 𝑝0 = 0.1 with standard MCS. Note that 

this estimate of 𝑁 neglects the correlation among the samples generated with MCMC, which de-

termines the number of effective samples at each subset level. Au and Beck (2001) provide an 

approximate expression for estimating 𝑁 to achieve a certain accuracy in the estimate of the failure 

probability that considers the correlation among the MCMC samples. 

The number of intermediate events 𝐸𝑖  required to estimate a failure probability in the order of 

Pr(𝐹) = 10−𝑘  is 𝑀 = 𝑘 if the value of the conditional probabilities is 𝑝0 = 0.1. The total number 

of samples required to estimate Pr(𝐹) with subset simulation is, therefore, proportional to 

− log10[Pr(𝐹)] since the number of samples per subset level 𝑁 is kept constant. In contrast, the 

total number of samples required to estimate Pr(𝐹) with standard MCS is proportional to 1/Pr(𝐹) 

(see Equation (2.13)). Subset simulation is thus considerably more efficient in estimating small fail-

ure probabilities than standard MCS. 

Algorithm 2.1: Subset simulation for estimating Pr(𝐹) = Pr(𝐺(𝐔) ≤ 0) (Au and Beck 2001) 

Input: 𝑝0  (value of conditional probabilities), 𝑁 (number of samples per subset level), and 

𝐺(𝐮) (limit state function describing the failure event 𝐹 in 𝐔-space) 

1. Generate 𝑁 i.i.d. samples 𝐮0
(𝑗)

, 𝑗 = 1,… ,𝑁 from 𝜑𝑛(𝐮). 

2. Set 𝑏1 equal to the 𝑝0-quantile of the samples 𝐺(𝐮0
(𝑗)), 𝑗 = 1,… ,𝑁. 

3. Initialize the counter 𝑖 = 1. 

4. While 𝑏𝑖 > 0: 

a. Increase the counter 𝑖 = 𝑖 + 1. 

b. Use the 𝑁0 samples for which 𝐺(𝐮) ≤ 𝑏𝑖−1 as seeds to generate 𝑁 −𝑁0 additional 

samples using an MCMC sampling algorithm, making up a total of 𝑁 conditional 

samples 𝐮𝑖−1
(𝑗)

, 𝑗 = 1, … , 𝑁 distributed according to 𝜑𝑛(𝐮|𝐸𝑖−1). 

c. Set 𝑏𝑖 equal to the 𝑝0-quantile of the samples 𝐺(𝐮𝑖−1
(𝑗) ), 𝑗 = 1, … , 𝑁. 

5. Evaluate 𝑃̂𝑀  according to Equation (2.19) with 𝑖 = 𝑀. 

6. Return 𝑃̂𝑆𝑢𝑆  as defined in Equation (2.21). 
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2.3 The system reliability problem 

A system reliability problem exists when the failure event 𝐹 is defined by a combination of several 

limit state functions 𝑔𝑖(𝐱), 𝑖 = 1,… ,𝑀. Each limit state function 𝑔𝑖(𝐱) describes a component 

failure event as 𝐹𝑖 = {𝑔𝑖(𝐗) ≤ 0} with corresponding failure domain Ω𝐹𝑖 = {𝐱 ∶ 𝑔𝑖(𝐱) ≤ 0} in the 

outcome space of 𝐗. Two basic types of system reliability problems exist: the series and parallel 

system reliability problem. A series system fails as soon as one component fails. The failure prob-

ability of a series system can, therefore, be written as (Hohenbichler and Rackwitz 1983).  

Pr(𝐹) = Pr (⋃ 𝐹𝑖
𝑀

𝑖=1

) = Pr (⋃ {𝑔𝑖(𝐗) ≤ 0}
𝑀

𝑖=1

) (2.22) 

If the component failure events 𝐹𝑖 are statistically independent, the failure probability of a series 

system is computed as: 

Pr(𝐹) = Pr (⋃ 𝐹𝑖

𝑀

𝑖=1

) = 1− Pr (⋂ 𝐹𝑖

𝑀

𝑖=1

) = 1 −∏ [1 − Pr(𝐹𝑖)]
𝑀

𝑖=1
 (2.23) 

Generally, the component failure events 𝐹𝑖 are statistically dependent. In this case, knowledge of 

the component failure probabilities Pr(𝐹𝑖) is not enough to compute the failure probability of a 

series system. However, simple bounds on the failure probability of a series system can be derived 

based on the extreme cases of fully dependent and mutually exclusive component failure events 

(e.g. Madsen et al. 1986): 

  

Figure 2.5: Illustration of subset simulation with 𝑁 = 500 samples per subset level (this example follows Straub 

2014a). (a) The blue crosses and green circles are i.i.d. samples 𝐮0
(𝑖)

, 𝑖 = 1, … ,𝑁 from 𝜑2(𝐮). The threshold 𝑏1 defin-

ing the first intermediate failure event 𝐸1 = {𝐺(𝐔)≤ 𝑏1} is set equal to 𝑝0-quantile of the samples 𝐺(𝐮0
(𝑗)), 𝑗 =

1,… ,𝑁. The samples for which 𝐺(𝐮) ≤ 𝑏1 – the green circles – are used as seeds for generating samples from 

𝜑2(𝐮|𝐸1) with MCMC. (b) The blue crosses are samples 𝐮1
(𝑖)

, 𝑖 = 1,… ,𝑁 from 𝜑2(𝐮|𝐸1). 
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max
𝑖∈{1,…,𝑀}

Pr(𝐹𝑖) ≤ Pr(𝐹) ≤∑ Pr(𝐹𝑖)
𝑀

𝑖=1
 (2.24) 

If the statistical dependence among the component failure events 𝐹𝑖 is positive (i.e. Pr(𝐹𝑖 ∩ 𝐹𝑗) ≥

Pr(𝐹𝑖) ∙ Pr(𝐹𝑗)), a narrower upper bound can be defined based on statistically independent com-

ponent failure events (see also Thoft-Christensen and Murotsu 1986):  

max
𝑖∈{1,…,𝑀}

Pr(𝐹𝑖) ≤ Pr(𝐹) ≤ 1 −∏ [1 − Pr(𝐹𝑖)]
𝑀

𝑖=1
 (2.25) 

A parallel system fails if all components fail. Consequently, the failure probability of a parallel 

system can be expressed as (Hohenbichler and Rackwitz 1983): 

Pr(𝐹) = Pr (⋂ 𝐹𝑖
𝑀

𝑖=1

) = Pr (⋂ {𝑔𝑖(𝐗) ≤ 0}
𝑀

𝑖=1

) (2.26) 

If the component failure events 𝐹𝑖 are statistically independent, the failure probability of a parallel 

system is: 

Pr(𝐹) = Pr (⋂ 𝐹𝑖

𝑀

𝑖=1

) =∏ Pr(𝐹𝑖)
𝑀

𝑖=1
 (2.27) 

In analogy to Equation (2.24), simple bounds on the failure probability of a parallel system can be 

found based on mutually exclusive and fully dependent component failure events:  

0 ≤ Pr(𝐹) ≤ min
𝑖∈{1,…,𝑀}

Pr(𝐹𝑖) (2.28) 

The two basic types of system reliability problems are illustrated in Figure 2.6. 

A general system can be defined by a cut-set formulation, which describes the system as a series 

system of parallel sub-systems (Hohenbichler and Rackwitz 1983). In this formulation, each par-

allel sub-system is called a cut-set representing a set of component failure events whose joint oc-

currence represents failure of the system. The corresponding failure probability is written as: 

Pr(𝐹) = Pr [⋃ (⋂ 𝐹𝑖
𝑖∈𝐶𝑘

)
𝐾

𝑘=1
] = Pr [⋃ (⋂ {𝑔𝑖(𝐗) ≤ 0}

𝑖∈𝐶𝑘

)
𝐾

𝑘=1
] (2.29) 

where 𝐾 is the number of cut-sets and 𝐶𝑘 ⊆ {1,… , 𝑀} denotes the index set of the 𝑘th cut-set.  

A general system can also be defined by a link-set formulation, which describes the system failure 

event 𝐹 by the intersection of the unions of component failure events (Hohenbichler and Rackwitz 

1983):  

Pr(𝐹) = Pr [⋂ (⋃ 𝐹𝑖
𝑖∈𝐿𝑘

)
𝐾

𝑘=1
] = Pr [⋂ (⋃ {𝑔𝑖(𝐗) ≤ 0}

𝑖∈𝐿𝑘

)
𝐾

𝑘=1
] (2.30) 
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where 𝐾 is the number of link-sets and 𝐿𝑘 ⊆ {1,… ,𝑀} is the index set of the 𝑘th link-set. A link-

set is a set of components whose joint survival corresponds to survival of the system.  

Different methods are available for solving system reliability problems including first-order solu-

tions for series and parallel system problems (Hohenbichler and Rackwitz 1983; Enevoldsen and 

Sørensen 1992) and for general systems defined as series systems of cut-sets (Enevoldsen and 

Sørensen 1993). More recently, the matrix-based system reliability method (Kang et al. 2008; Song 

and Kang 2009) and the sequential compounding method (Kang and Song 2010) have been pro-

posed to solve the general system reliability problem. In addition, Song and Der Kiureghian (2003) 

show that linear programming can be applied to compute bounds on the system failure probability 

of any type of system. 

Alternatively, the component limit state functions 𝑔𝑖(𝐱), 𝑖 = 1, … , 𝑀 can be combined into a single 

equivalent limit state function 𝑔(𝐱). As an example, the equivalent limit state function 𝑔(𝐱) for a 

general system defined by a cut-set formulation reads (Madsen 1987): 

𝑔(𝐱) = min
𝑘∈{1,…,𝐾}

[max
𝑖∈𝐶𝑘

𝑔𝑖(𝐱)] (2.31) 

Series and parallel systems are special cases of a general system. A series system consists of 𝐾 

cut-sets with a single component. Thus, the equivalent limit state function for a series system can 

be written as 𝑔(𝐱) = min[𝑔1(𝐱),… , 𝑔𝐾(𝐱)]. A parallel system consists of a single cut-set with 𝑀 

components, and the equivalent limit state function is defined as 𝑔(𝐱) = max[𝑔1(𝐱), … , 𝑔𝑀(𝐱)]. 

Once an equivalent limit state function 𝑔(𝐱) is formulated, the system failure probability can be 

computed by integrating the joint PDF 𝑓𝐗(𝐱) of 𝐗 over the domain Ω𝐹 = {𝐱 ∶ 𝑔(𝐱) ≤ 0}. This 

problem is equivalent to a component reliability problem defined in Equation (2.2). Note that the 

equivalent limit state function 𝑔(𝐱) defined by Equation (2.31) is generally not differentiable. 

Hence, the resulting component reliability problem must be solved using sampling-based methods 

(see Section 2.2). 

  

Figure 2.6: Illustration of the (a) series and (b) parallel system reliability problem. 
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2.4 Reliability of structural systems 

Structures can be understood as systems of structural elements such as braces, columns, joints, 

bearings and foundations. Each structural element can fail in several different ways. A beam may, 

for example, fail in bending or lateral torsional buckling. Most structural systems can sustain fail-

ure of more than one structural element before system failure occurs. However, the degree of extra 

reliability due to structural redundancy depends on the post-failure behavior of the structural ele-

ments, as well as the functional and stochastic dependence among individual element failure 

events. These aspects must be considered when evaluating the failure probability of structural sys-

tems. In the following sections, the basic theory of time-invariant structural system reliability is 

presented. Section 2.4.1 describes a model suitable for evaluating the failure probability of stati-

cally determinate structures. Subsequently, some important aspects of modeling statically indeter-

minate structures are discussed in Section 2.4.2. Section 2.4.3 concludes with an analysis of an 

idealized redundant structural system to illustrate the influence of post-failure behavior of struc-

tural elements and dependence among element failure events on the system reliability. A more 

detailed introduction to the underlying theory can, for example, be found in (Thoft-Christensen 

and Murotsu 1986; Melchers 1999). 

2.4.1 Statically determinate structures 

Statically determinate structures do not exhibit any redundancy with respect to element failures. 

Such structural systems fail as soon as one structural element fails. They can, therefore, be modeled 

as a series system of 𝑀 component failure events 𝐹𝑖 (Thoft-Christensen and Murotsu 1986) where 

each component failure event 𝐹𝑖 corresponds to an element failure mode. The failure probability 

of statically determinate structures is thus defined by Equation (2.22). 

As an example, consider the statically determinate steel truss illustrated in Figure 2.7(a) with 𝑁 

structural elements subject to external loading. The truss is here assumed to lose its load carrying 

capacity as soon as one structural element fails either due to section yielding in tension or buckling 

in compression. Therefore, the truss has 𝑀 = 2𝑁 failure modes.  

Depending on the structural system, the reliability assessment of statically determinate structures 

must also consider possible global instability modes. Such modes can be included as component 

failure events in the series system model. 

2.4.2 Statically indeterminate structures 

Statically indeterminate structures such as the truss shown in Figure 2.7(b) do not necessarily fail 

as soon as one structural element fails since the applied loads may still be sustained due to a redis-

tribution of the load effects within the structural system. Failure of a statically indeterminate struc-

ture usually requires the joint and/or sequential formation of more than one element  failure mode 

such that a system failure mode forms. Let 𝑀 denote the number of component failure events 𝐹𝑖 

representing the different element failure modes. Each system failure mode 𝑘 of a statically inde-

terminate structure can be modeled by a parallel system of component failure events 𝐹𝑖, ∀𝑖 ∈ 𝐶𝑘 

where 𝐶𝑘 ⊆ {1, … , 𝑀} denotes the index set of 𝑘th system failure mode. Most statically indeter-

minate structures have a large number of possible system failure modes, and overall system failure 
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takes place when the weakest system failure mode forms (Thoft-Christensen and Murotsu 1986). 

Statically indeterminate structures can, therefore, be modeled as a series system of 𝐾 parallel sys-

tems or cut-sets of component failure events 𝐹𝑖 where 𝐾 denotes the number of possible system 

failure modes. The corresponding failure probability is defined by Equation (2.29). 

Load effects must be redistributed within a statically indeterminate structure when an element 

failure mode occurs. It is, therefore, important to correctly model the mechanical behavior of ele-

ment failure modes. Two important types of element failure modes are “ideal elastic - ideal brittle” 

and “ideal elastic - ideal plastic” failure modes as illustrated in Figure 2.8. In the following, “ideal 

elastic - ideal brittle” behavior will be called brittle behavior and “ideal elastic - ideal plastic” 

behavior will be called ductile behavior. 

An element failure mode is brittle if there is no load-bearing capacity left in the structural element 

after failure has taken place. As an example, consider a welded connection in an offshore steel 

structure weakened due to fatigue crack growth. Such a connection may fail in a brittle mode under 

storm conditions because of rupture. After failure, the welded connection can no longer transfer 

any load effects. Another example is buckling of a compression member, which may also be ide-

alized as a brittle failure mode. 

An element failure mode is ductile if the structural element can sustain the maximum load effect 

after failure while deformation occurs. Therefore, the failed element still contributes to the load 

carrying capacity of the structural system. When considering ductile failure modes, it is important 

to ensure that enough plastic deformation capacity exists. For example, the plastic rotation capacity 

of a steel member may be limited due to the occurrence of local section buckling. 

The effect of residual load-carrying capacity and load redistribution must be described in each step 

of a failure sequence leading to the formation of a system failure mode. Thus, the limit state func-

  

Figure 2.7: Statically (a) determinate and (b) indeterminate truss (adapted from Thoft-Christensen and Murotsu 1986). 

 

Figure 2.8: (a) Ideal elastic - ideal brittle (brittle) and (b) ideal elastic - ideal plastic (ductile) element failure mode 

behavior. 
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tions 𝑔𝑖(𝐱) describing the component failure events 𝐹𝑖 of a parallel sub-system have to be formu-

lated sequentially (Thoft-Christensen and Murotsu 1986). The first limit state function describes 

the occurrence of the first element failure mode without failure in any other structural elements. 

The second limit state function describes the formation of the second element failure mode given 

that the first element failure mode has occurred, i.e. after redistribution of the load effects. This 

process is continued until a system failure mode is completely described. 

As an example, consider the continuous girder with two spans illustrated in Figure 2.9(a) (see 

Faber 2009 for a similar example). Each span has length 𝑎. A point load 𝑆 is applied at the center 

of the left span. Assuming ductile material behavior, the girder has one system failure mode under 

the applied load as shown in Figure 2.9(b). The system failure mode may form in two different 

ways: (a) the first plastic hinge forms at location 1 followed by the formation of a plastic hinge at 

location 2 or (b) the plastic hinges form in reverse order. Let 𝑅1 and 𝑅2 denote the plastic moment 

capacities of the girder at locations 1 and 2. The random variables of the current problem are 𝐗 =

[𝑅1,𝑅2, 𝑆]
𝑇. 

The limit state functions describing the formation of the initial plastic hinges at locations 1 and 2 

can be written as: 

𝑔1(𝐱) = 𝑟1 −𝑚1 = 𝑟1−
13

64
𝑠 ∙ 𝑎 (2.32) 

𝑔2(𝐱) = 𝑟2 +𝑚2 = 𝑟2 −
3

32
𝑠 ∙ 𝑎 (2.33) 

where 𝑚1 and 𝑚2 are the bending moments at locations 1 and 2 determined by linear elastic anal-

ysis of the undamaged girder.  

Suppose the first plastic hinge forms at location 1. The structural model is modified by introducing 

a corresponding hinge and fictitious bending moments to counteract the rotation. The modified 

structural model is shown in Figure 2.9(c). 

  

  

Figure 2.9: (a) Continuous girder with point load, (b) system failure mode of the girder, formation of a plastic hinge 

and fictitious bending moments at (c) location 1 and (d) location 2. The fictitious bending moments are introduced to 

counteract the rotation. 
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The limit state function describing the formation of a plastic hinge at location 2 given that a plastic 

hinge has formed at location 1 can now be defined as: 

𝑔2|1(𝐱) = 𝑟2 + 𝑚2|1 = 𝑟2 −
𝑠 ∙ 𝑎

2
+ 2𝑟1 (2.34) 

where 𝑚2|1 is the bending moment at location 2 computed by linear elastic analysis of the modified 

structural model. 

The modified structural model corresponding to the case in which the first plastic hinge forms at 

location 2 is shown in Figure 2.9(d). The conditional limit state function describing the formation 

of a plastic hinge at location 1 after the formation of a plastic hinge at location 2 is defined as: 

𝑔1|2(𝐱) = 𝑟1 −𝑚1|2 = 𝑟1−
𝑠 ∙ 𝑎

4
+
𝑟2
2

 (2.35) 

where 𝑚1|2 is the bending moment at location 1 resulting from an linear elastic analysis of the 

modified structural model. This limit state function is equivalent to the one defined in Eq. (2.34).  

The girder can now be modeled as a series system of two cut-sets where each cut-set represents a 

failure sequence leading to the formation of the system failure mode of the girder. The correspond-

ing system failure probability is defined as: 

Pr(𝐹) = Pr[{𝑔1(𝐗) ≤ 0 ∩ 𝑔2|1(𝐗) ≤ 0} ∪ {𝑔2(𝐗) ≤ 0 ∩ 𝑔1|2(𝐗) ≤ 0}] (2.36) 

Based on Equation (2.31), an equivalent limit state function describing failure of the girder can be 

formulated as: 

𝑔(𝐱) = min[max[𝑔1(𝐱), 𝑔2|1(𝐱)] , max[𝑔2(𝐱), 𝑔1|2(𝐱)]] 

= min[𝑔2|1(𝐱), 𝑔1|2(𝐱)] 
(2.37) 

Since 𝑔2|1(𝐱) and 𝑔1|2(𝐱) are equivalent, it is sufficient to describe the event of system failure of 

the girder with ductile material behavior by either of these functions. 

Now suppose the girder behaves brittle, i.e. it suddenly loses its rotation resistance after failure. 

To describe the brittle failure mode behavior, the conditional limit state functions must be modified 

as follows: 

𝑔1|2(𝐱) = 𝑟1 −𝑚1|2 = 𝑟1−
𝑠 ∙ 𝑎

4
 (2.38) 

𝑔2|1(𝐱) = 𝑟2 +𝑚2|1 = 𝑟2−
𝑠 ∙ 𝑎

2
 (2.39) 

The above example demonstrates that the sequential definition of the limit state functions requires 

a reanalysis of the structure after the formation of each new element failure mode. The applied 

structural model has to be capable of correctly describing the mechanical behavior of each step in 

the failure sequence. 
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In structural systems with a low degree of redundancy, redistribution of load effects following the 

occurrence of a brittle failure mode typically leads to sudden overloading of the remaining struc-

tural elements. This effect is known as progressive collapse. Such structural systems are typically 

modeled as series systems of element failure events (Thoft-Christensen and Murotsu 1986; 

Melchers 1999). When assessing the reliability of structures with brittle and instabili ty failure 

modes, it is also important to accurately model the sequence in which external loads are applied. 

This problem is known as load-path-dependence (Melchers 1999). 

Ductile structural systems can also be modeled at mechanism level (Thoft-Christensen and 

Murotsu 1986). This approach considers each event 𝐹𝑖 = {formation of collapse mechanism 𝑖} as 

a component failure event defined in terms of a limit state function 𝑔𝑖(𝐱). System failure occurs 

when any of the possible collapse mechanism forms. It can, thus, be modeled as a series system of 

𝐾 component failure events 𝐹𝑖 where 𝐾 is the total number of possible system collapse mecha-

nisms. The system failure probability is then given by Equation (2.22). As an example, consider 

the portal frame shown in Figure 2.10 (see also Madsen et al. 1986). The frame is subject to a 

horizontal point load 𝐻 and a vertical point load 𝑉. It behaves ductile and 𝑅1, … ,𝑅5 are the plastic 

moment capacities at the locations where plastic hinges are likely to form. Thus, the random vari-

ables of the current problem are 𝐗 = [𝑅1, … , 𝑅5,𝐻, 𝑉]
𝑇. The three dominant collapse mechanisms 

of the frame are also shown in Figure 2.10. 

The limit state functions describing all three collapse mechanisms can be derived using the prin-

ciple of virtual work (Madsen et al. 1986): 

 𝑔1(𝐱) = 𝑟1 + 𝑟2 + 𝑟4 + 𝑟5− ℎ ∙ 𝑎 (2.40) 

 𝑔2(𝐱) = 𝑟2 + 2𝑟3 + 𝑟4 − 𝑣 ∙ 𝑎 (2.41) 

 𝑔3(𝐱) = 𝑟1+ 2𝑟3+ 2𝑟4 + 𝑟5 − ℎ ∙ 𝑎 − 𝑣 ∙ 𝑎 (2.42) 

 

Figure 2.10: Frame with three dominant collapse mechanisms (adapted from Madsen et al. 1986). 
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The frame fails if any of the three collapse mechanisms forms. Its failure probability is, therefore, 

defined as: 

Pr(𝐹) = Pr(𝐹1 ∪ 𝐹2 ∪ 𝐹3) = Pr({𝑔1(𝐗) ≤ 0} ∪ {𝑔2(𝐗) ≤ 0} ∪ {𝑔3(𝐗) ≤ 0}) (2.43) 

The girder with ductile material behavior shown in Figure 2.9(a) can also be modeled at mecha-

nism level. The limit state function describing the system failure mode is also found by the prin-

ciple of virtual work: 

𝑔(𝐱) = 2𝑟1 + 𝑟2 −
𝑠 ∙ 𝑎

2
 (2.44) 

As expected, this limit state function is equivalent to limit state functions given in Equations (2.34) 

and (2.35). 

An important aspect of system reliability analysis is the dependence among the individual compo-

nent failure events 𝐹𝑖, 𝑖 = 1, … ,𝑀 as well as the dependence among the 𝐾 different system failure 

modes. The dependence among the individual component failure events 𝐹𝑖 exists because the cor-

responding limit state functions 𝑔𝑖(𝐱) contain common and/or correlated random variables. As an 

example, consider the limit state functions in Equations (2.32) to (2.35) describing the component 

failure events of the girder shown in Figure 2.9(a). The load 𝑆 is contained in each limit state 

function. The component failure events are, therefore, functionally dependent. In addition, the limit 

state functions contain the capacities 𝑅1 and 𝑅2. These capacities may have different realizations, 

but they are likely to be correlated. The component failure modes are, therefore, also stochastically 

dependent. Furthermore, dependence among the 𝐾 different system failure modes exists as they 

often share common and/or stochastically dependent component failure events. 

In theory, all possible system failure modes should be considered in the system reliability assess-

ment. However, the total number of possible failure modes of real structures can be intractably 

large. For this reason, only the dominant system failure modes with the highest probability of 

occurrence are typically considered in structural system reliability analyses (see, for example, 

Murotsu et al. 1984; Thoft-Christensen and Murotsu 1986). Several methods are available that 

identify dominant failure modes and estimate the failure probability of structural systems (see Shao 

and Murotsu 1999 for an overview). Among existing methods the branch-and-bound technique 

(Murotsu et al. 1984) and simulation-based methods (Ditlevsen and Bjerager 1989; Melchers 

1994) are considered theoretically rigorous but computationally expensive. Alternative methods 

such as the incremental loading method (Moses 1982), the 𝛽-unzippng method (Thoft-Christensen 

and Murotsu 1986), techniques employing linear programming in combination with simulation 

methods (Corotis and Nafday 1989) and methods utilizing heuristics (Shetty 1994; Xiao and 

Mahadevan 1994) are computationally efficient but they do not guarantee to find all dominant 

system failure modes. As a compromise, Shao and Murotsu (1999) and Kim et al. (2013) employ 

a simulation-based selective search technique utilizing a genetic algorithm to identify dominant 

system failure modes, and subsequently apply the matrix-based system reliability method (Kang 

et al. 2008; Song and Kang 2009) to compute the system failure probability. 
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2.4.3 Daniels system 

Consider the idealized structural system with 𝑛𝐸 elements shown in Figure 2.11. Such a system is 

known as a Daniels system (Daniels 1945). The elements of a Daniels system are equally elongated 

under the applied load 𝑆 and each element can fail in tension. Daniels (1945) assumes that all 

elements have the same axial stiffness, and independent and identically distributed axial capacities 

𝑅𝑖, 𝑖 = 1,… , 𝑛𝐸. When the load 𝑆 is applied, the weakest structural element fails first, followed by 

the second weakest element and so on. After failure of one element, the load redistributes among 

the remaining elements. At some point, the applied load cannot be sustained by the remaining 

elements and the system fails. It follows that a Daniels system has exactly one system failure mode. 

Note that Daniels (1945) neglects any dynamic effects during load redistribution. 

To illustrate the influence of mechanical failure mode behavior on the system reliability of redun-

dant structures, the reliability of the Daniels system is computed for brittle and ductile element 

behaviors following a parameter study presented by Gollwitzer and Rackwitz (1990). The element 

capacities 𝑅𝑖, 𝑖 = 1,… , 𝑛𝐸 are modeled as i.i.d. normal random variables with mean 𝜇𝑅  and stand-

ard deviation 𝜎𝑅. The coefficient of variation of the element capacities 𝑅𝑖 is chosen to be 𝛿𝑅 =

𝜎𝑅/𝜇𝑅 = 0.2. The applied load is modeled as a deterministic variable 𝑆 = 𝑠. Its value is selected 

such that the reliability index of each element 𝑖 is 𝛽𝑒 = 2, i.e. 𝑠 = 𝑛𝐸(𝜇𝑅 − 𝛽𝑒𝜎𝑅). The random 

variables of the current problem are 𝐗 = [𝑅1, … , 𝑅𝑛𝐸]
𝑇. 

If the elements behave brittle, the maximum capacity 𝑅𝑏 of the Daniels system is given by 

(Gollwitzer and Rackwitz 1990): 

𝑅𝑏 = max
𝑖∈{1,…,𝑛𝐸}

{(𝑛𝐸 − 𝑖 + 1)𝑅̂𝑖} (2.45) 

where 𝑅̂𝑖 are the ordered element capacities 𝑅𝑖 such that 𝑅̂1 ≤ 𝑅̂2 ≤ ⋯ ≤ 𝑅̂𝑛𝐸. Daniels (1945) 

provides an exact recursive expression for the distribution of 𝑅𝑏. Gollwitzer and Rackwitz (1990) 

note that the system failure probability of a brittle Daniels system is given by: 

Pr(𝐹) = Pr [⋂ {(𝑛𝐸 − 𝑖 + 1)𝑅̂𝑖 ≤ 𝑠}
𝑛𝐸

𝑖=1
] (2.46) 

This expression corresponds to a parallel system problem. Gollwitzer and Rackwitz (1990) solve 

the problem using first/second-order methods. However, the problem is here simply solved using 

 

Figure 2.11: Daniels system with 𝑛𝐸 elements. 𝐸𝐼 is the flexural rigidity. 
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MSC with 106 samples. The corresponding limit state function defining the system failure event 

is 𝑔(𝐱) = 𝑟𝑏 − 𝑠. 

If the members behave ductile, the maximum capacity of the Daniels system 𝑅𝑑 is simply given 

by the sum of the normal distributed capacities, i.e. 𝑅𝑑 = ∑ 𝑅𝑖
𝑛𝐸
𝑖=1

. Consequently, 𝑅𝑑 is also normal 

distributed with mean 𝑛𝐸𝜇𝑅 and standard deviation √𝑛𝐸𝜎𝑅. It follows that the failure probability 

of the ductile Daniels system is given by: 

Pr(𝐹) = Pr(𝑅𝑑 ≤ 𝑠) = Φ(
𝑠 − 𝑛𝐸𝜇𝑅

√𝑛𝐸𝜎𝑅
) (2.47) 

The parallel system and series system configuration are also considered as bounding cases. In the 

current example, the component failure events 𝐹𝑖 are independent since the element capacities 𝑅𝑖 

are independent. The system failure probability of the parallel system is thus defined as (see also 

Equation (2.27)): 

Pr(𝐹) =∏ Pr(𝐹𝑖)
𝑛𝐸

𝑖=1
 (2.48) 

where Pr(𝐹𝑖) = Φ(−𝛽𝑒), 𝑖 = 1,… , 𝑛𝐸. The failure probability of the series system is given by (see 

also Equation (2.23)): 

Pr(𝐹) = 1 −∏ [1 − Pr(𝐹𝑖)]
𝑛𝐸

𝑖=1
 (2.49) 

Note that the parallel system has no plausible mechanical meaning since load redistribution after 

element failure is not considered in this system configuration. 

Figure 2.12 shows the system reliability index 𝛽 = −Φ−1[Pr(𝐹)] of the Daniels system as a func-

tion of the number of structural elements 𝑛𝐸 for different mechanical failure mode behaviors. 

The reliability of the series system decreases with 𝑛𝐸 whereas the reliability of the parallel system 

significantly increases with 𝑛𝐸. When load redistribution is considered, the system reliability 

strongly depends on the mechanical behavior of the element failure modes. The reliability of the 

ductile system is considerably higher than the reliability of the brittle system. The reliability of the 

brittle system initially decreases below the reliability level of a single element 𝛽𝑒 = 2. In a brittle 

system with a small number of elements, it is unlikely that the extra load can be sustained by the 

remaining members after the weakest element fails. Brittle systems with a low degree of indeter-

minacy behave like a series system. Only for a larger number of elements, the reliability of the 

brittle system exceeds the element reliability level. 

As discussed in Section 2.4.2, the dependence among element failure modes also influence the 

reliability of structural systems. To demonstrate this effect, a Daniels system with 𝑛𝐸 = 5 elements 

is considered. The same probabilistic model is applied as in the previous example. However, the 

element capacities 𝑅𝑖, 𝑖 = 1,… , 𝑛𝐸 of the Daniels system are now modeled as equi-correlated nor-

mal random variables with common correlation coefficient 𝜌𝑅  among all pairs 𝑅𝑖 and 𝑅𝑗, 𝑖, 𝑗 =
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1, … , 𝑛𝐸, 𝑖 ≠ 𝑗. Ductile and brittle element behavior, and the series system configuration are con-

sidered. 

For the ductile case, it can be shown that the mean value and variance of the normal distributed 

maximum capacity 𝑅𝑑 = ∑ 𝑅𝑖
𝑛𝐸
𝑖=1  are 𝜇𝑅𝑑 = 𝑛𝐸𝜇𝑅 and 𝜎𝑅𝑑

2 = 𝑛𝐸𝜎𝑅
2(1 + (𝑛𝐸 − 1)𝜌𝑅). The failure 

probability of the ductile Daniels system is thus given by: 

Pr(𝐹) = Pr(𝑅𝑑 ≤ 𝑠) = Φ(
𝑠 − 𝑛𝐸𝜇𝑅

√𝑛𝐸[1 + (𝑛𝐸 − 1)𝜌𝑅 ] 𝜎𝑅
) (2.50) 

The system failure probability of the brittle Daniels system is again estimated using MSC with 

106 samples, and the first-order solution given in (Hohenbichler and Rackwitz 1983) is applied to 

compute the system failure probability of the series system. The results are shown in Figure 2.13.  

The largest redundancy exists if the structural members behave ductile and their resistances are 

uncorrelated. In case of full positive correlation, the reliability of the ductile system is equal to the 

 

Figure 2.12: System reliability index 𝛽 = −Φ−1[Pr(𝐹)] of the Daniels system as a function of the number of elements 

𝑛𝐸 for different mechanical failure mode behaviors (see also Gollwitzer and Rackwitz 1990). 

 

Figure 2.13: System reliability index 𝛽 = −Φ−1[Pr(𝐹)] of the Daniels system with 𝑛𝐸 = 5 elements as a function of 

the common correlation coefficients 𝜌𝑅 among all pairs of element capacities 𝑅𝑖 and 𝑅𝑗 for different mechanical failure 

mode behaviors (see also Gollwitzer and Rackwitz 1990). 
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reliability of a single structural member. In this case the ductile system has no redundancy. Medium 

positive correlations reduce the reliability of a small brittle system even further when compared to 

the zero-correlation case. For 𝜌𝑅 = 1 the reliability of the brittle system is also equal the member 

reliability. The reliability of the series system increases with increasing positive correlation.  
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3 Bayesian analysis 

3.1 Introduction 

For structural systems with large consequences of failure, target failure probabilities related to a 

one year reference period and ultimate limit states are in the order of 10−4 - 10−6 (JCSS 2001; 

ISO 2394 2015). As highlighted by Straub et al. (2016), an estimation of such small failure prob-

abilities by means of probabilistic structural models corresponds to an extrapolation from the do-

main of observation, and the computed failure probabilities must be carefully interpreted (see also 

Melchers 1999). However, information on the demand and capacity of a structural system provided 

by inspection and monitoring can be applied to improve the probability estimates. Bayesian anal-

ysis is a consistent framework for this task (Tang 1973; Madsen 1987; Sindel and Rackwitz 1998; 

Straub 2011a). 

Essentially, inspection and monitoring of structural systems provide information on the stochastic 

parameters 𝐗 that influence their performance. The information is typically incomplete as inspec-

tion and monitoring do not provide information on all parameters in 𝐗. In addition, the information 

is subject to uncertainty. Bayesian analysis is the mathematical framework for updating the joint 

PDF of 𝐗 with incomplete and uncertain information. As illustrated in Figure 3.1, the analysis 

corresponds to classical statistical inference if the joint PDF of 𝐗 is updated with direct measure-

ments or samples of one or more parameters in 𝐗 (see, for example, Gelman et al. 2004). The 

analysis corresponds to a probabilistic inverse analysis if it is applied to update the joint PDF of 𝐗 

with measurements or observations of the structural performance. The updated joint PDF of 𝐗 then 

forms the basis for updating the probability of the failure event 𝐹. 

 

Figure 3.1: Illustration of Bayesian updating with direct or indirect information on the stochastic parameters 𝐗 that 

influence the structural performance (adapted from Straub and Papaioannou 2015a). The information is direct if pa-

rameters in 𝐗 are directly measured or sampled, and indirect if the relation between 𝐗 and a measurement or observa-

tion is defined through a model. 
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An inspection or monitoring outcome can be modeled probabilistically by a random variable 𝑍𝑖 . 

Essentially, two cases can be distinguished: 𝑍𝑖  is a continuous random variable if it represents a 

measurement or sample of a continuous quantity, or it is a discrete random variable if it represents 

an inspection or monitoring outcome with discrete states. A typical example is an inspection or 

monitoring outcome with discrete states “indication” and “no indication” of damage. 

All probabilistic inspection and monitoring outcomes are collectively represented by the random 

vector 𝐙 = [𝑍1, … , 𝑍𝑁]
𝑇. In a Bayesian setting, the relation between the joint observation 𝐙 = 𝐳 

and the stochastic parameters 𝐗 is modeled through the likelihood function 𝐿(𝐱|𝐳), which is pro-

portional to the conditional probability of observing 𝐙 = 𝐳 when the stochastic parameters 𝐗 take 

a value 𝐱 (Straub and Papaioannou 2015b): 

𝐿(𝐱|𝐳) ∝ Pr(𝐙 = 𝐳|𝐗 = 𝐱) (3.1) 

Bayes’ theorem formalizes the process of updating the joint PDF of 𝐗 with the observation 𝐙 = 𝐳: 

𝑓𝐗|𝐙(𝐱|𝐳) =
𝐿(𝐱|𝐳) 𝑓𝐗(𝐱)

∫ 𝐿(𝐱|𝐳) 𝑓𝐗(𝐱) d𝐱𝑫𝐗

 (3.2) 

where 𝑫𝐗 denotes the domain of definition of 𝐗, and 𝑓𝐗(𝐱) and 𝑓𝐗|𝐙(𝐱|𝐳) are the prior and poste-

riors PDF of 𝐗. As an example, Figure 3.2 illustrates the computation of the posterior PDF 

𝑓𝑋|𝑍(𝑥|𝑧) of a single random variable 𝑋, whose value is directly measured. The measurement is 

subject to an additive measurement error (this example follows Straub and Papaioannou 2015b). 

Closed-form solutions of Equation (3.2) rarely exist, and Bayesian updating is typically performed 

using sampling methods. A popular class of methods for generating samples from the posterior 

PDF 𝑓𝐗|𝐙(𝐱|𝐳) are Markov chain Monte Carlo (MCMC) methods (Gilks et al. 1996; Gelman et al. 

2004). These methods simulate states of a Markov chain whose unique stationary distribution is 

equal to the posterior PDF 𝑓𝐗|𝐙(𝐱|𝐳). A disadvantage of MCMC methods is the “burn-in problem”, 

which means that it takes several initial samples before the marginal distribution of the generated 

 

Figure 3.2: Bayesian updating of a random variable 𝑋, whose prior PDF is the standard normal PDF 𝑓𝑋(𝑥)= 1/√2𝜋 ∙
exp(−𝑥2/2) (see also Straub and Papaioannou 2015b). 𝑋 is measured to be 2. The measurement is subject to a normal 

distributed additive measurement error with zero mean and standard deviation 0.5. The likelihood function describing 

this measurement is therefore 𝐿(𝑥|𝑧 = 2) = 1/(0.5 ∙ √2𝜋) ∙ exp(−0.5 ∙ (2 − 𝑥)2/0.52) (see also Section 3.2). 
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samples is sufficiently close to the chain’s stationary distribution. In addition, it is difficult to 

choose an appropriate burn-in period, and hence it may be possible that the generated samples 

have not yet converged to the stationary distribution of the Markov chain after the chosen burn-in 

period (Plummer et al. 2006). 

An alternative sampling method that does not suffer the “burn-in problem” is an implementation 

of BUS (Bayesian updating with structural reliability methods) with subset simulation. BUS pro-

posed by Straub and Papaioannou (2015b) interprets the classical rejection sampling algorithm for 

Bayesian updating (Smith and Gelfand 1992) as generating samples in a “failure” domain defined 

in the outcome space of the stochastic system parameters augmented with an additional standard 

uniform random variable. This interpretation enables the application of existing structural reliabil-

ity methods (SRM) to learn the posterior distribution of the stochastic system parameters. In addi-

tion, Straub et al. (2016) demonstrate that BUS can be adapted to directly perform Bayesian up-

dating of failure probabilities. 

The following sections present the BUS framework in more detail. First, Section 3.2 briefly de-

scribes how different types of inspection and monitoring outcomes are modeled with likelihood 

functions. Section 3.3 then introduces the basic idea behind BUS and its implementation with 

subset simulation. Finally, Section 3.4 shows how BUS can be applied to perform Bayesian up-

dating of failure probabilities. 

3.2 Likelihood functions 

First, consider a single inspection or monitoring outcome 𝑍𝑖 = 𝑧𝑖 representing a measurement of 

a continuous quantity predicted by a model 𝑞𝑖(𝐗). If the measurement is subject to an additive 

measurement error 𝐸𝑖  with PDF 𝑓𝐸𝑖 (𝜀𝑖), the following equality holds 𝑍𝑖 = 𝑞𝑖(𝐗) + 𝐸𝑖 . It follows 

that 𝐸𝑖 = 𝑍𝑖 − 𝑞𝑖(𝐗). In this special but common case, the likelihood of observing 𝑍𝑖 = 𝑧𝑖 given 

𝐗 = 𝐱 is equal to the probability density of the measurement error 𝛦𝑖  taking the value 𝑧𝑖 − 𝑞𝑖(𝐱). 

The likelihood function 𝐿(𝐱|𝑧𝑖) ∝ Pr(𝑍𝑖 = 𝑧𝑖 |𝐗 = 𝐱) of the inspection or monitoring outcome 

𝑍𝑖 = 𝑧𝑖 can thus be written as: 

𝐿(𝐱|𝑧𝑖) = 𝑓𝐸𝑖 [𝑧𝑖− 𝑞𝑖(𝐱)] (3.3) 

This example assumes that the model 𝑞𝑖(𝐱) predicts the true value of the measured quantity. In a 

probabilistic setting, this assumption is reasonable if the problem is formulated such that certain 

random variables are included in the model to explicitly represent model uncertainties (Ditlevsen 

1982; JCSS 2001). These additional random variables are simply added to the random vector 𝐗. 

Probabilistic inspection and monitoring outcomes for which equalities like 𝑍𝑖 = 𝑞𝑖(𝐗) + 𝐸𝑖  can 

be formulated are said to provide equality information (Madsen 1987; Straub 2011a). The likeli-

hood function for inspection and monitoring outcomes 𝑍𝑖 = 𝑧𝑖 providing this type of information 

is generically defined as (Straub and Papaioannou 2015b): 

𝐿(𝐱|𝑧𝑖) = 𝑓𝑍𝑖 |𝐗(𝑧𝑖|𝐱) (3.4) 
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where 𝑓𝑍𝑖 |𝐗(𝑧𝑖|𝐱) is the conditional PDF of the (continuous) inspection or monitoring outcome 𝑍𝑖  

given 𝐗 = 𝐱, which is typically defined in terms of the PDF of the associated measurement error  

(see also Betz 2017 for more details on formulating likelihood functions). Note that the likelihood 

function defined in Equation (3.4) includes the evaluation of the model, which predicts the meas-

ured quantity as in Equation (3.3). 

Next, let 𝑍𝑖 = 1 represent the (discrete) inspection or monitoring outcome “a quantity predicted 

by the model 𝑞𝑖(𝐗) is larger than a threshold 𝑞𝑖,𝑇”, and let 𝑍𝑖 = 0 represent the complement. The 

inspection or monitoring outcome 𝑍𝑖 = 1 can be defined by the limit state function ℎ𝑖(𝐱) = 𝑞𝑖,𝑇 −

𝑞𝑖(𝐱) as: 

{𝑍𝑖 = 1} = {ℎ𝑖(𝐗) ≤ 0} (3.5) 

In this formulation, measurement and model uncertainties are included as additional random vari-

ables in 𝐗. An inspection or monitoring outcome of this type is said to provide inequality infor-

mation (Madsen 1987; Straub 2011a). The conditional probability of observing 𝑍𝑖 = 1 given 𝐗 =

𝐱 is: 

Pr(𝑍𝑖 = 1|𝐗 = 𝐱) = 𝕀[ℎ𝑖(𝐱) ≤ 0] (3.6) 

where 𝕀[∙] is the indicator function: 𝕀[∙] = 1 if the condition [∙] is true and 𝕀[∙] = 0 otherwise. The 

likelihood function for the inspection or monitoring outcome 𝑍𝑖 = 𝑧𝑖 can thus be written as: 

𝐿(𝐱|𝑧𝑖) = {
1 − 𝕀[ℎ𝑖(𝐱) ≤ 0] if 𝑧𝑖 = 0

𝕀[ℎ𝑖(𝐱) ≤ 0] if 𝑧𝑖 = 1
 (3.7) 

More generally, the likelihood function for an inspection or monitoring outcome 𝑍𝑖 = 𝑧𝑖 providing 

inequality information is defined as: 

𝐿(𝐱|𝑧𝑖) = 𝑝𝑍𝑖 |𝐗(𝑧𝑖|𝐱) (3.8) 

where 𝑝𝑍𝑖 |𝐗(𝑧𝑖|𝐱) = Pr(𝑍𝑖 = 𝑧𝑖 |𝐗 = 𝐱) is the conditional probability mass function (PMF) of the 

(discrete) inspection or monitoring outcome 𝑍𝑖  given 𝐗 = 𝐱. 

When several inspection and monitoring outcomes 𝐙 = 𝐳 are available, the joint likelihood func-

tion 𝐿(𝐱|𝐳) must be formulated to describe the joint observation 𝐙 = 𝐳. If the probabilistic inspec-

tion and monitoring outcomes 𝐙 are statistically independent given 𝐗 = 𝐱, a likelihood function 

𝐿(𝐱|𝑧𝑖), 𝑖 = 1,… ,𝑁 can be formulated for each inspection or monitoring outcome 𝑍𝑖 = 𝑧𝑖 sepa-

rately, and the likelihood function for the joint observation 𝐙 = 𝐳 is computed as (Straub and 

Papaioannou 2015b): 

𝐿(𝐱|𝐳) =∏𝐿(𝐱|𝑧𝑖)

𝑁

𝑖=1

 (3.9) 
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If the probabilistic inspection and monitoring outcomes 𝐙 are statistically dependent for given 

values 𝐗 = 𝐱, the combined likelihood function 𝐿(𝐱|𝐳) must be formulated such that the depend-

encies among the individual inspection and monitoring outcomes are modeled properly (e.g. 

Simoen et al. 2013). As an example (see also Straub and Papaioannou 2015b), consider measure-

ments 𝐳 = [𝑧1, … , 𝑧𝑁]
𝑇 of quantities 𝐪(𝐗) = [𝑞1(𝐗), … , 𝑞𝑁(𝐗)]

𝑇. Suppose the measurements are 

subject to correlated, additive measurement errors 𝐄 = [𝐸1, … ,𝐸𝑁]
𝑇, which are probabilistically 

modeled by a joint normal PDF 𝑓𝐄(𝛆) with zero mean and covariance matrix 𝚺𝐄𝐄. The correspond-

ing observation is defined as {𝐙 = 𝐳} = {𝐪(𝐗) + 𝐄 = 𝐳}, and the likelihood function 𝐿(𝐱|𝐳) de-

scribing these measurements takes the following form: 

𝐿(𝐱|𝐳) = 𝑓𝐙|𝐗(𝐳|𝐱) =
1

√(2𝜋)𝑁 det(𝚺𝐄𝐄)
exp [−

1

2
[𝐳 − 𝐪(𝐱)]𝑇𝚺𝐄𝐄

−1[𝐳− 𝐪(𝐱)]] (3.10) 

3.3 Bayesian updating with structural reliability methods (BUS) 

3.3.1 Rejection sampling 

Samples from the posterior PDF 𝑓𝐗|𝐙(𝐱|𝐳) can be generated with a simple rejection sampling al-

gorithm described by Smith and Gelfand (1992). To derive this algorithm, it is first noted that the 

following relation holds for any likelihood function 𝐿(𝐱|𝐳): 

𝑐𝐿(𝐱|𝐳) = 𝐹𝑃[𝑐𝐿(𝐱|𝐳)] (3.11) 

where 𝑃 is an independent standard uniform random variable with PDF 𝑓𝑃(𝑝) = 1 and CDF 

𝐹𝑃(𝑝) = 𝑝, and 𝑐 is a positive constant that ensures 𝑐𝐿(𝐱|𝐳) ≤ 1 for all 𝐱. The quantity 𝑐𝐿(𝐱|𝐳) 

can now be expressed as: 

𝑐𝐿(𝐱|𝐳) = ∫ 𝑓𝑃(𝑝) d𝑝
𝑐𝐿(𝐱|𝐳)

0

= ∫ 𝑓𝑃(𝑝) d𝑝
𝑝≤𝑐𝐿(𝐱|𝐳)

 

= ∫ 𝕀[𝑝 ≤ 𝑐𝐿(𝐱|𝐳)] 𝑓𝑃(𝑝) d𝑝
1

0

 

(3.12) 

Consequently, the product 𝐿(𝐱|𝐳) 𝑓𝐗(𝐱) can be written as: 

𝐿(𝐱|𝐳) 𝑓𝐗(𝐱) = [𝑐
−1∫ 𝕀[𝑝 ≤ 𝑐𝐿(𝐱|𝐳)] 𝑓𝑃(𝑝) d𝑝

1

0

]  𝑓𝐗(𝐱) 

= 𝑐−1∫ 𝕀[𝑝 ≤ 𝑐𝐿(𝐱|𝐳)] 𝑓𝐗(𝐱) 𝑓𝑃(𝑝) d𝑝
1

0

 

(3.13) 

Inserting Equation (3.13) into Equation (3.2) gives: 
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𝑓𝐗|𝐙(𝐱|𝐳) =
∫ 𝕀[𝑝 ≤ 𝑐𝐿(𝐱|𝐳)] 𝑓𝐗(𝐱) 𝑓𝑃(𝑝) d𝑝
1

0

∫ ∫ 𝕀[𝑝 ≤ 𝑐𝐿(𝐱|𝐳)] 𝑓𝐗(𝐱) 𝑓𝑃(𝑝) d𝑝
1

0
d𝐱

𝑫𝐗

 (3.14) 

The posterior cumulative distribution function (CDF) of 𝐗 is obtained by integrating the posterior 

PDF of 𝐗 (Straub and Papaioannou 2015b): 

𝐹𝐗|𝐙(𝐱0|𝐳) =
∫ ∫ 𝕀[𝑝 ≤ 𝑐𝐿(𝐱|𝐳)] 𝑓𝐗(𝐱) 𝑓𝑃(𝑝) d𝑝

1

0

𝐱0

−∞
d𝐱

∫ ∫ 𝕀[𝑝 ≤ 𝑐𝐿(𝐱|𝐳)] 𝑓𝐗(𝐱) 𝑓𝑃(𝑝) d𝑝
1

0
d𝐱

𝑫𝐗

 

=
∫ ∫ 𝕀(𝐱 ≤ 𝐱0) 𝕀[𝑝 ≤ 𝑐𝐿(𝐱|𝐳)] 𝑓𝐗(𝐱) 𝑓𝑃(𝑝) d𝑝 d𝐱

1

0𝑫𝐗

∫ ∫ 𝕀[𝑝 ≤ 𝑐𝐿(𝐱|𝐳)] 𝑓𝐗(𝐱) 𝑓𝑃(𝑝) d𝑝
1

0
d𝐱

𝑫𝐗

 

(3.15) 

A Monte Carlo approximation of the posterior CDF 𝐹𝐗|𝐙(𝐱0|𝐳) can be computed as: 

𝐹𝐗|𝐙(𝐱0|𝐳) ≈
∑ 𝕀(𝐱(𝑖) ≤ 𝐱0) 𝕀[𝑝

(𝑖) ≤ 𝑐𝐿(𝐱(𝑖)|𝐳)]𝑁
𝑖=1

∑ 𝕀[𝑝(𝑖) ≤ 𝑐𝐿(𝐱(𝑖)|𝐳)]𝑁
𝑖=1

 (3.16) 

where 𝐱(𝑖), 𝑖 = 1, … , 𝑁 are samples from 𝑓𝐗(𝐱) and 𝑝(𝑖), 𝑖 = 1,… , 𝑁 are samples from the standard 

uniform PDF 𝑓𝑃(𝑝). It follows that all samples 𝐱(𝑖) from 𝑓𝐗(𝐱) that fall into the domain 

Ω = {(𝐱, 𝑝) ∶ 𝑝 ≤ 𝑐𝐿(𝐱|𝐳)} (3.17) 

are distributed according to the posterior PDF 𝑓𝐗|𝐙(𝐱|𝐳). Based on this, the rejection sampling 

algorithm summarized in Algorithm 3.1 for generating 𝐾 samples from the posterior PDF of 𝐗 can 

be defined. The principle of rejection sampling is illustrated in Figure 3.3. 

The probability that a sample is accepted is equal to the denominator in Equation (3.14) (Straub 

and Papaioannou 2015b): 

𝑝𝑎𝑐𝑐 = ∫ ∫𝕀[𝑝 ≤ 𝑐𝐿(𝐱|𝐳)] 𝑓𝐗(𝐱) 𝑓𝑃(𝑝) 𝑑𝑝

1

0

𝑑𝐱

𝑫𝐗

 (3.18) 

This probability becomes very small if the number of observations and, consequently, the differ-

ence between the prior distribution and the likelihood function is large. In this situation, the rejec-

tion sampling algorithm is inefficient. 

3.3.2 The BUS approach 

Straub and Papaioannou (2015b) note that the denominator in Equation (3.14) corresponds to a 

structural reliability problem and interpret the domain Ω = {(𝐱, 𝑝) ∶ 𝑝 ≤ 𝑐𝐿(𝐱|𝐳)} as a “failure” 

domain in the augmented outcome space of 𝐗 and 𝑃. In agreement with structural reliability con-

ventions, they define the domain Ω through a limit state function: 
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ℎ(𝐱, 𝑝) = 𝑝 − 𝑐𝐿(𝐱|𝐳) (3.19) 

as Ω = {(𝐱, 𝑝) ∶ ℎ(𝐱, 𝑝) ≤ 0}. The limit state function ℎ(𝐱, 𝑝) describes an observation event 𝑍 as: 

𝑍 = {ℎ(𝐗,𝑃) ≤ 0} (3.20) 

The probability 

Pr(𝑍) = Pr[ℎ(𝐗, 𝑃) ≤ 0] = ∫ ∫ 𝕀[ℎ(𝐱, 𝑝) ≤ 0] 𝑓𝐗(𝐱) 𝑓𝑃(𝑝) d𝑝
1

0

d𝐱
𝑫𝐗

 (3.21) 

Algorithm 3.1: Rejection sampling algorithm for generating 𝐾 samples from the posterior PDF 𝑓𝐗|𝐙(𝐱|𝐳) (Smith and 

Gelfand 1992; Straub and Papaioannou 2015b) 

Input: 𝐾 (number of required posterior samples), 𝑓𝐗(𝐱) (prior PDF of 𝐗), 𝐿(𝐱|𝐳) (likelihood 

function), and 𝑐 (constant chosen such that 𝑐𝐿(𝐱|𝐳) ≤ 1 for all 𝐱) 

1. Initialize the counter 𝑖 = 1. 

2. While 𝑖 ≤ 𝐾: 

a. Generate a sample 𝐱(𝑖) from 𝑓𝐗(𝐱). 

b. Generate a sample 𝑝(𝑖) from the standard uniform PDF 𝑓𝑃(𝑝). 

c. If 𝑝(𝑖) ≤  𝑐𝐿(𝐱(𝑖)|𝐳): 

i. Accept 𝐱(𝑖) as a sample of the posterior PDF 𝑓𝐗|𝐙(𝐱|𝐳) 

ii. Increase the counter 𝑖 = 𝑖 + 1. 

3. Return 𝐱(𝑖), 𝑖 = 1, … , 𝐾. 

 

Figure 3.3: Illustration of rejection sampling (following Straub and Papaioannou 2015b). 𝑋 is standard normal dis-

tributed and measured to be 2. The measurement is subject to a normal distributed additive measurement error with 

zero mean and standard deviation 0.5. The likelihood function describing this measurement is 𝐿(𝑥|𝑧 = 2) = 1/(0.5 ∙

√2𝜋) ∙ exp(−1/2 ∙ (2 − 𝑥)2/0.52). The constant 𝑐 is selected as 𝑐 = 0.5 ∙ √2𝜋. The green and red circles are inde-

pendent and identically distributed (i.i.d.) samples from 𝑓𝑋,𝑃(𝑥, 𝑝) = 𝑓𝑋(𝑥) ∙ 𝑓𝑃(𝑝). The red circles are samples in the 

domain Ω = {(𝑥, 𝑝) ∶ 𝑝 ≤ 𝑐𝐿(𝑥|𝑧 = 2)} and are thus accepted. 
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is the “failure” probability of the equivalent reliability problem, which is equal to the potentially 

very small acceptance probability 𝑝𝑎𝑐𝑐  of the original rejection sampling algorithm defined in 

Equation (3.18). 

The idea behind BUS is to (a) employ existing structural reliability methods to compute the prob-

ability Pr(𝑍), and (b) generate samples that lie in the “failure” domain Ω in a post-processing step. 

The simplest and most robust structural reliability method for computing Pr(𝑍)  is Monte Carlo 

simulation (MCS). The advantage of MCS is that it directly generates samples located in Ω during 

the reliability analysis. In fact, an implementation of BUS with MCS is equivalent to the original 

rejection sampling algorithm. The disadvantage of MCS is that it is inefficient if Pr(𝑍) is small 

(see also Section 2.2.2). As an alternative, IS methods can be applied to compute Pr(𝑍) more 

efficiently. These methods produce weighted samples in the “failure” domain Ω and a re-sampling 

step is required to obtain unweighted samples (see, for example, Doucet et al. 2001). Another 

alternative to standard MCS is subset simulation (SuS), which is commonly applied to implement 

the BUS approach (Straub and Papaioannou 2015b; DiazDelaO et al. 2017; Giovanis et al. 2017; 

Betz et al. 2018b). This is because SuS is efficient in solving high-dimensional reliability problems 

(see also Section 2.2.3) and directly generates samples located in the “failure” domain Ω. The 

combination of BUS and SuS is presented in Section 3.3.4. 

If the number of random variables 𝐗 is limited and the domain Ω is similar to failure domains 

typically encountered in structural reliability, FORM can be used to implement BUS (Straub and 

Papaioannou 2015b; Straub et al. 2016). When applying FORM, the posterior distribution is ap-

proximated by a censored standard multivariate normal distribution in standard normal space (see 

also Section 2.2.1). Samples from this type of distribution can be generated (see, for example, 

Chopin 2012) and subsequently transformed into the outcome space of the original random varia-

bles. 

3.3.3 The constant c in BUS 

To apply the BUS approach, the constant 𝑐 must be selected. As discussed in (Betz et al. 2018b), 

the optimal choice is 1/𝑐 = sup[𝐿(𝐱|𝐳)] where sup[∙] is the supremum of the expression [∙]. Guid-

ance on how to select 𝑐 by inspecting the likelihood function is provided in (Straub and 

Papaioannou 2015b). In special cases, sup[𝐿(𝐱|𝐳)] can be readily selected. Consider, for example, 

a single measurement 𝑍𝑖 = 𝑧𝑖 subject to a measurement error 𝐸 with PDF 𝑓𝐸(𝜀). The supremum 

of the corresponding likelihood function is sup[𝐿(𝐱|𝑧𝑖)] = max[𝑓𝐸(𝜀)]. Betz et al. (2018b) and 

DiazDelaO et al. (2017) demonstrate how 𝑐 can be identified adaptively when BUS is combined 

with SuS. In addition, Betz et al. (2018a) propose a post-processing step for BUS, which returns 

an unbiased estimate of Pr(𝑍) and samples from the posterior distribution even if 1/𝑐 is selected 

smaller than the supremum of the likelihood function. 

3.3.4 BUS with subset simulation 

As discussed in Papaioannou et al. (2015), it is advantageous to perform SuS in standard normal 

space. To this end, the auxiliary random variable 𝑃 and the system model parameters 𝐗 are trans-

formed to independent standard normal random variables 𝐔 = [𝑈1, … ,𝑈𝑛 , 𝑈𝑛+1]
𝑇 with joint PDF 

𝜑𝑛+1(𝐮) = ∏ 𝜑(𝑢𝑖)
𝑛+1
𝑖=1  where 𝜑(∙) is the standard normal PDF. 𝑃 and 𝐗 are independent and can 
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be transformed separately. The inverse transformation from 𝐔 to 𝑃 and 𝐗 is as follows (see also 

Straub and Papaioannou 2015b): 

𝑃 = Φ(𝑈n+1) (3.22) 

where Φ(∙) is the standard normal CDF, and 

𝐗 = 𝑇−1(𝑈1 , … , 𝑈𝑛) (3.23) 

𝑇(∙) is a probability preserving one-to-one mapping from the original outcome space of 𝐗 to the 

standard normal space (see also Section 2.2). The limit state function ℎ(𝐱, 𝑝) defined in Equation 

(3.19) can now be expressed as: 

 ℎ(𝐱, 𝑝) = 𝐻(𝐮) = Φ(𝑢n+1) − 𝑐𝐿(𝑇
−1(𝑢1, … , 𝑢𝑛)|𝐳) (3.24) 

𝐻(𝐮) describes the domain Ω𝑈 in the standard normal space as Ω𝑈  = {𝐮 ∶ 𝐻(𝐮) ≤ 0}. 

In the context of BUS, SuS expresses the probability of the observation event 𝑍 as a product of 

conditional probabilities Pr(𝑍) = ∏ Pr(𝐸𝑖 |𝐸𝑖−1)
𝑀
𝑖=1 , where 𝐸0 is the certain event and 𝐸0 ⊃ 𝐸1 ⊃

⋯ ⊃ 𝐸𝑀 = 𝑍. The intermediate events 𝐸𝑖  are defined in standard normal space as 𝐸𝑖 =

{𝐻(𝐔) ≤ 𝑏𝑖}, where 𝑏0 = ∞ > 𝑏1 > 𝑏2 > ⋯ > 𝑏𝑀 = 0. The thresholds 𝑏𝑖 are determined adap-

tively following the original SuS algorithm (see Section 2.2.3). By applying this procedure, the 

estimator 𝑃̂𝑆𝑢𝑆  defined in Equation (2.21) provides an estimate of the probability Pr(𝑍). 

Betz et al. (2018b) point out that the performance of BUS with SuS can be improved if the transi-

tion between the intermediate events is smooth. This can be achieved by applying an equivalent 

limit state function: 

ℎ̂(𝐱, 𝑝) = ln(𝑝) − ln[𝑐𝐿(𝐱|𝐳)] (3.25) 

The corresponding limit state function in 𝐔-space is then: 

ℎ̂(𝐱, 𝑝) = 𝐻(𝐮) = ln[Φ(𝑢n+1)] − ln[𝑐𝐿(𝑇
−1(𝑢1, … , 𝑢𝑛)|𝐳)] (3.26) 

where ln(∙) is the natural logarithm. The limit state function ℎ̂(𝐱, 𝑝) describes the same “failure” 

domain as ℎ(𝐱, 𝑝) but the intermediate “failure” domains obtained with ℎ̂(𝐱, 𝑝) converge smoothly 

to the final “failure” domain Ω (Betz et al. 2018b). In addition, the limit state function ℎ̂(𝐱, 𝑝) 

avoids numerical problems when the likelihood function 𝐿(𝐱|𝐳) becomes very small for certain 

values 𝐱. 

The original SuS algorithm presented in Section 2.2.3 is adapted as summarized in Algorithm 3.2 

such that 𝐾 samples falling into domain Ω are return in addition to the probability of the observa-

tion event 𝑍. 
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3.4 BUS for failure probabilities 

Straub (2011a) and Straub et al. (2016) apply BUS to perform Bayesian updating of failure prob-

abilities. First, the posterior PDF 𝑓𝐗|𝐙(𝐱|𝐳) defined in Equation (3.14) is rewritten in terms of the 

limit state function ℎ(𝐱, 𝑝): 

𝑓𝐗|𝐙(𝐱|𝐳) =
∫ 𝕀[ℎ(𝐱, 𝑝) ≤ 0] 𝑓𝐗(𝐱) 𝑓𝑃(𝑝) d𝑝
1

0

∫ ∫ 𝕀[ℎ(𝐱, 𝑝) ≤ 0] 𝑓𝐗(𝐱) 𝑓𝑃(𝑝) d𝑝
1

0
d𝐱

𝑫𝐗

 (3.27) 

The conditional probability of the failure event 𝐹 given that 𝐙 = 𝐳 has been observed is obtained 

by integrating the posterior PDF 𝑓𝐗|𝐙(𝐱|𝐳) over the failure domain Ω𝐹 = {𝐱 ∶ 𝑔(𝐱) ≤ 0}: 

Algorithm 3.2: BUS with SuS in 𝐔-space (Straub and Papaioannou 2015b) 

Input: 𝑝0  (value of conditional probabilities), 𝑁 (number of samples per subset level), 𝐾 (num-

ber of required samples of the posterior distribution) and 𝐻(𝐮) (equivalent limit state 

function defined in Equation (3.26) describing the observation event 𝑍 in 𝐔-space) 

1. Generate 𝑁 i.i.d. samples 𝐮0
(𝑗)

, 𝑗 = 1, … , 𝑁 from 𝜑𝑛+1(𝐮). 

2. Set 𝑏1 equal to the 𝑝0-quantile of the samples 𝐻(𝐮0
(𝑗)), 𝑗 = 1, … ,𝑁. 

3. Initialize the counter 𝑖 = 1. 

4. While 𝑏𝑖 > 0: 

a. Increase the counter 𝑖 = 𝑖 + 1. 

b. Use the 𝑁0 samples for which 𝐻(𝐮) ≤ 𝑏𝑖−1 as seeds to generate 𝑁− 𝑁0 additional 

samples using an MCMC sampling algorithm, making up a total of 𝑁 conditional 

samples 𝐮𝑖−1
(𝑗)

, 𝑗 = 1, … , 𝑁 distributed according to 𝜑𝑛+1(𝐮|𝐸𝑖−1). 

c. Set 𝑏𝑖 equal to the 𝑝0-quantile of the samples 𝐻(𝐮
𝑖−1

(𝑗)
), 𝑗 = 1, … ,𝑁. 

5. Evaluate 𝑃̂𝑀  according to Equation (2.19) with 𝑖 = 𝑀. 

6. Evaluate 𝑃̂𝑆𝑢𝑆 = Pr(𝑍) = 𝑝𝑎𝑐𝑐  according to Equation (2.21) 

7. Use the 𝐾0 samples for which 𝐻(𝐮) ≤ 0 as seeds to generate 𝐾 −𝐾0  additional samples 

using an MCMC sampling algorithm, making up a total of 𝐾 conditional samples 𝐮(𝑗), 

𝑗 = 1,… , 𝐾 distributed according to 𝜑𝑛+1(𝐮|𝑍). 

8. Transform the samples 𝐮(𝑗) to the original outcome space as 𝐱(𝑗) = 𝑇−1(𝑢1
(𝑗), … , 𝑢𝑛

(𝑗)), 

𝑗 = 1,… , 𝐾 to obtain samples from the posterior distribution. 

9. Return Pr(𝑍) and 𝐱(𝑗), 𝑗 = 1,… , 𝐾. 
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Pr(𝐹|𝐙 = 𝐳) = ∫  𝑓𝐗|𝐙(𝐱|𝐳) d𝐱
𝑔(𝐱)≤0

=
∫ ∫ 𝕀[ℎ(𝐱, 𝑝) ≤ 0] 𝑓𝐗(𝐱) 𝑓𝑃(𝑝) d𝑝

1

0𝑔(𝐱)≤0
d𝐱

∫ ∫ 𝕀[ℎ(𝐱, 𝑝) ≤ 0] 𝑓𝐗(𝐱) 𝑓𝑃(𝑝) d𝑝
1

0
d𝐱

𝑫𝐗

 (3.28) 

Equation (3.28) can be rewritten to show that conditioning the failure probability on 𝐙 = 𝐳 is 

equivalent to conditioning it on the event 𝑍 defined by Equation (3.20): 

Pr(𝐹|𝐙 = 𝐳) =
∫ 𝑓𝐗(𝐱) 𝑓𝑃(𝑝) d𝑝𝑔(𝐱)≤0 ∩ ℎ(𝐱,𝑝)≤0

d𝐱

∫ 𝑓𝐗(𝐱) 𝑓𝑃(𝑝) d𝑝ℎ(𝐱,𝑝)≤0
d𝐱

 

=  
Pr[𝑔(𝐗) ≤ 0 ∩ ℎ(𝐗,𝑃) ≤ 0]

Pr[ℎ(𝐗, 𝑃) ≤ 0]
 

= Pr(𝐹|𝑍) 

(3.29) 

Pr(𝐹|𝑍) can be expressed in terms of the standard normal variables 𝐔: 

Pr(𝐹|𝑍) =  
Pr[𝐺(𝐔) ≤ 0 ∩ 𝐻(𝐔) ≤ 0]

Pr[𝐻(𝐔) ≤ 0]
 (3.30) 

The numerator of Equation (3.30) corresponds to a parallel system reliability problem and the 

denominator to a component reliability problem. Straub (2011a) and Straub et al. (2016) show how 

these problems can be solved with different structural reliability methods. 

An illustration of BUS for failure probabilities is shown in Figure 3.4. 

 

Figure 3.4: Illustration of BUS for failure probabilities (following Straub and Papaioannou 2015b). The limit state 

function describing failure is 𝑔(𝑥) = 𝑥 − 1. 𝑋 is standard normal distributed and measured to be 2. The measurement 

is subject to a normal distributed additive measurement error with zero mean and standard deviation 0.5. The likeli-

hood function describing this measurement 𝐿(𝑥|2) = 1/(0.5 ∙ √2𝜋) ∙ exp(−1/2 ∙ (2 − 𝑥)2/0.52). The constant 𝑐 is 

selected as 𝑐 = 0.5 ∙ √2𝜋. 
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4 Reliability of deteriorating structural systems 

This section is adapted from Straub, D., Schneider, R., Bismut, E. and Kim, H.-J. 

(2020). Reliability analysis of deteriorating structural systems. Structural Safety 82: 

101877. Some passages and figures are directly taken from this reference. 

4.1 Introduction 

The demand on a structural system is generally time-variant, and its capacity also typically changes 

with time due to deterioration processes. In this case, failure of a structural system is described by 

a time-dependent limit state function3 𝑔(𝐱, 𝑡) as a function of the stochastic parameters 𝐗 that 

influence the system’s condition and performance (Ditlevsen and Madsen 1996; Melchers 1999). 

Depending on the nature of these parameters, they are probabilistically modeled as random varia-

bles (e.g. non-ergodic parameters such as material strengths, model uncertainties and statistical 

uncertainties) or random processes (e.g. loads and environmental conditions randomly varying in 

time). The limit state function 𝑔(𝐱, 𝑡) includes a physics-based engineering model of the structure 

and the deterioration processes. When the limit state function 𝑔 depends on time 𝑡, the structural 

reliability problem is said to be time-variant. 

As usual, a negative value of the limit state function 𝑔(𝐱, 𝑡)  corresponds to structural failure. It is 

thus possible to define a time-dependent failure event (of some sort) as: 

𝐹∗(𝑡) = {𝑔(𝐗, 𝑡) ≤ 0} (4.1) 

This event is commonly called the point-in-time (or instantaneous) failure event. The correspond-

ing point-in-time (or instantaneous) failure probability is given by: 

Pr[𝐹∗(𝑡)] = Pr[𝑔(𝐗, 𝑡) ≤ 0] (4.2) 

Pr[𝐹∗(𝑡)] is often used as a metric for describing the reliability of deteriorating structural systems 

(e.g. Sarveswaran and Roberts 1999; Bastidas-Arteaga et al. 2009; Barone and Frangopol 2014; 

Schneider et al. 2015a; Schneider et al. 2017). However, this probability does not capture what 

happened before time 𝑡, and thus neglects the possibility that the structure might have already 

failed earlier. In time-variant structural reliability, one is instead interested in the event of failure 

at any time up to 𝑡, which can be written as: 

𝐹(𝑡) = {∃𝜏 ∈ [0, 𝑡] ∶ 𝑔(𝐗, 𝜏) ≤ 0} (4.3) 

or, equivalently, 

 
3 see also Footnote 2 on Page 17 
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𝐹(𝑡) = {( min
𝜏∈[0,𝑡]

𝑔(𝐗, 𝜏)) ≤ 0} (4.4) 

Applying the definition in Equation (4.4), the (cumulative) probability of failure within the time 

interval [0, 𝑡] is: 

Pr[𝐹(𝑡)] = Pr [( min
𝜏∈[0,𝑡]

𝑔(𝐗, 𝜏)) ≤ 0] (4.5) 

This probability must be used to quantify the reliability of deteriorating structural systems. Im-

portantly, all measures commonly utilized to describe the time-dependent reliability of engineering 

systems can be expressed as a function of Pr[𝐹(𝑡)] (Rausand and Høyland 2004; Straub 2018a). 

Four important measures are the cumulative distribution function (CDF) of the time to failure 𝑇𝐹 

𝐹𝑇𝐹 (𝑡) = Pr(𝑇𝐹 ≤ 𝑡) = Pr[𝐹(𝑡)] (4.6) 

the corresponding probability density function (PDF) 

𝑓𝑇𝐹 (𝑡) =
d𝐹𝑇𝐹 (𝑡)

d𝑡
=
dPr[𝐹(𝑡)]

d𝑡
 (4.7) 

the reliability of the structure 

𝑅𝑒𝑙(𝑡) = Pr(𝑇𝐹 > 𝑡) = 1 − Pr[𝐹(𝑡)] (4.8) 

and the failure rate or hazard function4 

𝜆(𝑡) =
𝑓𝑇𝐹(𝑡)

𝑅𝑒𝑙(𝑡)
=

1

1 − Pr[𝐹(𝑡)]
∙
dPr[𝐹(𝑡)]

d𝑡
 (4.9) 

An additional quantity, which is relevant for decision making purposes in design as well as in 

operation and maintenance of deteriorating structural systems, is the risk associated with structural 

failure during the system’s service life. The net-present value of the service life risk is computed 

as a function of the PDF of the time to failure 𝑓𝑇𝐹(𝑡) (Rackwitz 2000; Straub 2018a): 

𝑅𝑖𝑠𝑘(𝑇𝑆𝐿) = ∫ 𝑐𝐹(𝑡) exp(−𝛾𝑡)𝑓𝑇𝐹 (𝑡)
𝑇𝑆𝐿

0

d𝑡 (4.10) 

where 𝑇𝑆𝐿 is the (finite) service life of the structure, 𝑐𝐹(𝑡) is the cost associated with failure at time 

𝑡 and 𝛾 is the continuously compounded discount rate. The PDF 𝑓𝑇𝐹 (𝑡) can be computed from 

Pr[𝐹(𝑡)] (see Equation (4.7)). 

 
4 The failure rate 𝜆(𝑡) is the limit of the probability that failure occurs in the interval (𝑡, 𝑡 + Δ𝑡] given that no failure 

has occurred prior to time 𝑡 (Rausand and Høyland 2004), i.e. limΔ𝑡→0 Pr(𝑡 < 𝑇𝐹 ≤ 𝑡 + Δ𝑡|𝑇𝐹 > 𝑡) Δ𝑡⁄  =
limΔ𝑡→0 [𝐹𝑇𝐹 (𝑡 + Δ𝑡) − 𝐹𝑇𝐹(𝑡)] [Δ𝑡 ∙ 𝑅𝑒𝑙(𝑡)]⁄ = 𝑓𝑇𝐹(𝑡)/𝑅𝑒𝑙(𝑡). 
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It can be concluded that the reliability of a deteriorating structural system without maintenance is 

fully described by the failure probability Pr[𝐹(𝑡)]. An estimation of Pr[𝐹(𝑡)] requires the solution 

of a time-variant reliability problem (Ditlevsen and Madsen 1996; Melchers 1999). Solving this 

type of problem is – in the general case – challenging. In most applications, however, deteriorating 

structural systems can be represented by a combination of deterioration and structural models, 

which allow a transformation of the time-variant reliability problem into a series of time-invariant 

reliability problems. The two classes of stochastic models for deteriorating structures that enable 

such a transformation are presented in Sections 4.2 and 4.3. The general case is briefly discussed 

in Section 4.4. Subsequently, the effect of inspection and monitoring as well as the effect of mainte-

nance on the reliability of deteriorating structural systems is discussed in Sections 4.5 and 4.6. 

4.2 Stochastic deterioration models resulting in monotonically decreasing 

limit state functions 

The first common class of stochastic models for deteriorating structures – denoted as model class 

(a) – is illustrated Figure 4.1. Models of this class typically predict deterioration by a function 

ℎ𝐷(𝐗, 𝑡), which is monotonically increasing with time 𝑡 for any realization of the stochastic input 

parameters 𝐗. Failure is considered to occur when the accumulated damage due to deterioration 

exceeds a damage threshold 𝐷𝑐𝑟 , which – in the general case – is modeled by a random variable 

and included in 𝐗. The resulting generic limit state function is: 

𝑔(𝐱, 𝑡) = 𝑑𝑐𝑟 − ℎ𝐷(𝐱, 𝑡) (4.11) 

Limit state functions of this format are monotonically decreasing with time 𝑡 for any value of 𝐗. 

An example belonging to this class of models is fatigue crack growth modeled with Paris’ law, 

when an equivalent stress range is applied to represent the random sequence of stress ranges, and 

when failure is defined as the exceedance of a critical crack size (see also Section 5.7.1.2). This 

class also includes deterioration models based on gamma processes, where failure occurs when the 

resistance falls below a threshold (see, for example, van Noortwijk 2009). 

When the limit state function 𝑔(𝐱, 𝑡) is a monotonically decreasing function, it will be negative at 

time 𝑡 if it is negative at any time before 𝑡. As a consequence, all point-in-time failure events 

 

Figure 4.1: First common class of stochastic models for deteriorating structures (adapted from Straub et al. 2020). 

Models of this class lead to a monotonically decreasing limit state function with time 𝑡.  
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𝐹∗(𝜏) = {𝑔(𝐗, 𝜏) ≤ 0} with 𝜏 < 𝑡 are subsets of the failure event 𝐹∗(𝑡) = {𝑔(𝐗, 𝑡) ≤ 0}, and the 

probability of failure in the time interval [0, 𝑡] is equal to the point-in-time failure probability at 

time 𝑡: 

Pr[𝐹(𝑡)] = Pr [( min
𝜏∈[0,𝑡]

𝑔(𝐗, 𝜏)) ≤ 0] 

= Pr[𝑔(𝐗, 𝑡) ≤ 0] 

= Pr[𝐹∗(𝑡)] 

(4.12) 

From Equation (4.12) it follows that – in this special case – the computation of Pr[𝐹(𝑡)] simply 

involves the solution of a sequence of time-invariant reliability problems.  

Note that this simplified formulation is invalid if the effect of maintenance (e.g. repair, exchange 

or retrofitting actions) is included in the reliability analysis because the limit state function 𝑔(𝐱, 𝑡) 

will not be monotonically decreasing in this case (see also Section 4.6).  

4.3 Deteriorating structures with separable demand and capacity parameters 

The second common class of stochastic models for deteriorating structures – denoted by model 

class (b) – includes those models in which the random variables or processes 𝐗 can be separated 

into a group 𝐗𝑅  influencing the capacity of the structure and a group 𝐗𝑆  determining the demand 

on the structure. In the simplest case, as illustrated in Figure 4.2, the demand on the structure can 

be characterized by a scalar random process 𝑆(𝐗𝑆 , 𝑡) and the capacity of the structure with respect 

to this demand is 𝑅(𝐗𝑅, 𝑡). Depending on the formulation of the problem, the demand 𝑆(𝐗𝑆 , 𝑡) can 

be a load or a load effect. In the former case, 𝐗𝑆  may represent the uncertainty in the parameters 

of the distribution of 𝑆(𝐗𝑆 , 𝑡). In the latter case, 𝐗𝑆  may represent the uncertainty in structural 

properties. For the sake of simplicity, the dependence of 𝑆 on 𝐗𝑆  is dropped in the following. The 

 

Figure 4.2: Illustration of the second common class of stochastic models for deteriorating structures. Models of this 

class include those in which the deteriorating capacity 𝑅(𝐗𝑅, 𝑡) can be modeled statistically independent of the de-

mand 𝑆(𝐗𝑆 ,𝑡). 
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capacity 𝑅(𝐗𝑅 , 𝑡) includes the deterioration processes and is a monotonically decreasing function 

of time 𝑡 for any value of 𝐗𝑅 . The parameters of the deterioration model are included in 𝐗𝑅 . 

The time-dependent reliability of deteriorating structures that can be represented by stochastic 

models of model class (b) can be approximated by a discrete-time approach. In this approach, time 

is divided into intervals 𝑗 = 1,… ,𝑚 such that the 𝑗th interval corresponds to 𝑡 ∈ (𝑡𝑗−1, 𝑡𝑗 ]. The 

length of the interval depends on the overall service life of the structure, on the length of inspection 

and maintenance intervals and on how fast deterioration progresses. A typical choice are yearly 

intervals.  

An interval failure event 𝐹𝑗
∗ can now be defined as the event of failure in the interval (𝑡𝑗−1, 𝑡𝑗 ], 

without considering – like the point-in-time failure event 𝐹∗(𝑡) – the possibility that the structure 

may have failed earlier.  

𝐹𝑗
∗ = {∃𝜏 ∈ (𝑡𝑗−1, 𝑡𝑗 ] ∶ 𝑅(𝐗𝑅 , 𝜏) ≤ 𝑆(𝜏)} (4.13) 

An evaluation of the corresponding interval failure probability Pr(𝐹𝑗
∗) requires the solution of a 

first-passage problem (see Section 4.4). However, if 𝑆(𝑡) and 𝑅(𝐗𝑅, 𝑡) are statistically independ-

ent, a conservative approximation of Pr(𝐹𝑗
∗) can be obtained as: 

Pr(𝐹𝑗
∗) ≈ Pr[𝑅(𝐗𝑅 , 𝑡𝑗) ≤ 𝑆𝑚𝑎𝑥,𝑗 ] (4.14) 

where 𝑅(𝐗𝑅 , 𝑡𝑗) is the capacity at the end of the 𝑗th interval, and 

𝑆𝑚𝑎𝑥,𝑗 = max
𝑡∈(𝑡𝑗−1,𝑡𝑗]

𝑆(𝑡) (4.15) 

is the maximum demand in that interval (a statistic of 𝑆(𝑡)). The distribution of 𝑆𝑚𝑎𝑥,𝑗 can be 

obtained by performing an extreme value analysis. The probability Pr[𝑅(𝐗𝑅, 𝑡𝑗) ≤ 𝑆𝑚𝑎𝑥,𝑗] can be 

computed by performing a time-invariant reliability analysis. 

In most applications, the requirement of statistical independence among 𝑆(𝑡) and 𝑅(𝐗𝑅 , 𝑡) is (at 

least approximately) fulfilled. An example is high-cycle fatigue where fatigue damage is mainly 

caused by average load conditions, and only a minor portion of the damage is accumulated during 

extreme load events (see also Madsen et al. 1986). In contrast, the assumption of statistical inde-

pendence among demand and capacity does not hold if a structure is subject to low-cycle fatigue. 

In this case, fatigue damage is mainly caused by stress cycles during extreme load events, and 

fatigue failure and structural failure can occur during the same load event.  

Most structures are subject to the joint effect of several loads, and the demand on a structure is 

characterized by a vector 𝐒(𝑡), which may again depend on additional random variables 𝐗𝑆 . If 

more than one load is time-variant, a load-combination problem must be considered in the com-

putation of the interval failure probability Pr(𝐹𝑗
∗) (Melchers 1999). Several approximate solutions 

to the load combination problem are available (see, for example, Rackwitz and Fiessler 1978; 

Turkstra and Madsen 1980; Melchers 1999). Ditlevsen (2002) describes an approximate solution 

to this problem, which can be applied if one time-variant load is dominating. In this solution, the 

dominant time-variant load is represented by an extreme value distribution for the interval 𝑗 and 
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the remaining time-variant loads are modeled by conditional distributions. The loads are then sum-

marized in the vector 𝐒𝑚𝑎𝑥,𝑗 for the interval 𝑗. The interval failure probability Pr(𝐹𝑗
∗) is then com-

puted as: 

Pr(𝐹𝑗
∗) ≈ Pr[𝑔(𝐗𝑅 , 𝐒𝑚𝑎𝑥,𝑗 , 𝑡𝑗) ≤ 0] (4.16) 

where 𝑔(𝐗𝑅, 𝐒𝑚𝑎𝑥,𝑗 , 𝑡𝑗) describes the interval failure event 𝐹𝑗
∗ in analogy to the simple expression 

in Equation (4.14), i.e. failure in interval 𝑗 occurs if the maximum of the demand in the interval 

exceeds the capacity at the end of the interval. In the following, it is assumed that the limit state 

function 𝑔(𝐗𝑅, 𝐒𝑚𝑎𝑥,𝑗 , 𝑡𝑗) can be formulated. 

Now consider the event of failure up to time 𝑡𝑗, which is denoted by 𝐹(𝑡𝑗). This event corresponds 

to the union of the interval failure events leading up to time 𝑡𝑗: 

𝐹(𝑡𝑗) = 𝐹1
∗ ∪ 𝐹2

∗ ∪ …∪ 𝐹𝑗
∗ (4.17) 

The corresponding probability of failure up to time 𝑡𝑗 is 

Pr[𝐹(𝑡𝑗)] = Pr(𝐹1
∗ ∪ 𝐹2

∗ ∪ …∪ 𝐹𝑗
∗) (4.18) 

This corresponds to a series system reliability problem among the interval failure events  leading 

up to time 𝑡𝑗. Hence, the following simple bounds can be defined for Pr[𝐹(𝑡𝑗)] (see also Equation 

(2.24)): 

max
𝑖∈{1,…,𝑗}

Pr(𝐹𝑖
∗) ≤ Pr[𝐹(𝑡𝑗)] ≤∑ Pr(𝐹𝑖

∗)
𝑗

𝑖=1
 (4.19) 

The statistical dependence among the interval failure events 𝐹𝑖
∗ will be positive, if the maximum 

demands 𝐒𝑚𝑎𝑥,𝑖  are statistically independent, or if their statistical dependence is positive5. In this 

case, a narrower upper bound can be defined (see also Equation (2.25)): 

max
𝑖∈{1,…,𝑗}

Pr(𝐹𝑖
∗) ≤ Pr[𝐹(𝑡𝑗)] ≤ 1 −∏ [1 − Pr(𝐹𝑖

∗)]
𝑗

𝑖=1
 (4.20) 

Note that the failure probability Pr[𝐹(𝑡𝑗)] will be closer to the upper bound if the reliability is 

dominated by the uncertainty on the time-variant loads and if their maxima in different intervals 

are independent or weakly correlated. It will, however, be closer to the lower bound if the reliabil-

ity is dominated (a) by the uncertainty on the capacity or the time-invariant loads; or (b) by the 

uncertainty on the time-variant loads and if their maxima in different intervals are strongly corre-

lated. 

The computation of the failure probability Pr[𝐹(𝑡𝑗)] = Pr(𝐹1
∗ ∪ 𝐹2

∗ ∪ …∪ 𝐹𝑗
∗) requires the solu-

tion of a series system problem, which is computationally more demanding than the evaluation of 

the individual interval failure probabilities Pr(𝐹𝑖
∗). In Section 5, a strategy for computing Pr[𝐹(𝑡𝑗)] 

 
5 Note that the capacities 𝑅(𝐗𝑅, 𝑡𝑖) will be positively correlated among different 𝑡𝑖. 
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is proposed, which can be applied when the structural system performance is described by the 

conditional probability of failure in any interval 𝑖 given the structural condition at the end of the 

interval. Subsequently, Section 6 discusses how deteriorating structural systems that can be repre-

sented by model class (b) are modeled with hierarchical dynamic Bayesian networks (DBN). 

Based on the hierarchical DBN, the interval failure probabilities Pr(𝐹𝑖
∗) of the system are com-

puted. The failure probability Pr[𝐹(𝑡𝑗)] is then approximated by the upper bound in Equation 

(4.20). Such an approximation has been frequently applied in the past (see, for example, Val et al. 

2000; Stewart and Al-Harthy 2008). 

Once the probabilities Pr[𝐹(𝑡𝑗)] for times 𝑡𝑗, 𝑗 = 1,… ,𝑚 are available, the cumulative distribution 

function of the time to failure 𝐹𝑇𝐹 (𝑡) = Pr[𝐹(𝑡)] can be approximated by interpolation. The reli-

ability 𝑅𝑒𝑙(𝑡) and the failure rate 𝜆(𝑡) can subsequently be computed based on the approximation 

of 𝐹𝑇𝐹 (𝑡) (see Section 4.1). 

4.4 General case: the first-passage problem 

In the general case, as illustrated in Figure 4.3, failure of a deteriorating structure is considered to 

occur when the time-dependent limit state function 𝑔(𝐱, 𝑡)  takes a negative value for the first time. 

The problem of estimating the cumulative distribution function 𝐹𝑇𝐹 (𝑡) = Pr[𝐹(𝑡)] of the time to 

failure 𝑇𝐹 is known as the first-passage (or outcrossing) problem. The usual approach to solving 

this type of problem is the outcrossing approach (Rackwitz 2001). This approach has been used in 

the literature to compute the reliability of relatively simple deteriorating structures (see, for 

example, Schall et al. 1991; Andrieu-Renaud et al. 2004). However, challenges arise if it is applied 

to large deteriorating structures subject to arbitrary load processes. In addition, it is important to 

realize that available solutions to the outcrossing problem introduce approximation errors of their 

own. Consequently, the outcrossing approach should only be applied if the problem cannot be 

represented by model class (a) or (b).  

For the sake of completeness, the main principles of the outcrossing approach are briefly summa-

rized in the following. Let 𝑁+(𝑡) be the random number of crossings of 𝑔(𝐗, 𝑡) from a positive to 

a negative value in the time interval (0, 𝑡]. Failure in the time interval [0, 𝑡] occurs if the structure 

fails at time 𝑡 = 0 or if 𝑁+(𝑡) > 0. Hence, the failure probability Pr[𝐹(𝑡)] can also be written as: 

 

Figure 4.3: Illustration of the first-passage (or outcrossing) problem. 
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Pr[𝐹(𝑡)] = Pr[{𝑔(𝐗, 0) ≤ 0} ∪ {𝑁+(𝑡) > 0}] (4.21) 

Bounds on Pr[𝐹(𝑡)] can be found as (Shinozuka 1964; Bolotin 1981): 

max
𝜏∈[0,𝑡]

Pr[𝐹∗(𝜏)] ≤ Pr[𝐹(𝑡)] ≤ Pr[𝐹∗(0)] + 𝔼[𝑁+(𝑡)] (4.22) 

where Pr[𝐹∗(𝜏)] is the point-in-time failure probability and 𝔼[𝑁+(𝑡)] is the expected number of 

outcrossings in the time interval (0, 𝑡]. The upper bound in Equation (4.22) is typically applied as 

an approximation of the failure probability Pr[𝐹(𝑡)]. 

The expected number of outcrossings 𝔼[𝑁+(𝑡)] is determined from the outcrossing rate 𝜈+(𝜏), 

which is defined as (Rackwitz 2001): 

𝜈+(𝜏) = lim
Δ𝜏→0

Pr[{𝑔(𝐗, 𝜏) > 0} ∩ {𝑔(𝐗, 𝜏 + Δ𝜏) ≤ 0}]

Δ𝜏
 (4.23) 

if the point process of outcrossings is a regular process, i.e. if the probability of having more than 

one outcrossing in the time interval [𝜏, 𝜏 + Δ𝜏] is negligibly small when Δ𝜏 → 0. Under this regu-

larity condition, 𝔼[𝑁+(𝑡)] can be computed as (Rackwitz 2001): 

𝔼[𝑁+(𝑡)] = ∫ 𝜈+(𝜏) 𝑑𝜏
𝑡

0

 (4.24) 

Analytical and asymptotic solutions for the outcrossing rate 𝜈+(𝜏) are available in the literature 

for the case when the limit state function 𝑔 only depends on sufficiently mixing random processes 

(see, for example, Ditlevsen and Madsen 1996; Melchers 1999; Rackwitz 2006). 

When modeling deteriorating structures, the limit state function 𝑔 typically depends on random 

processes and time-invariant random variables. In this case, an approach proposed by Schall et al. 

(1991) can be applied, which separates the stochastic parameters 𝐗 into sufficiently mixing random 

processes 𝐒, slowly mixing random processes 𝐐 having slow fluctuations compared to 𝐒, and time-

invariant random variables 𝐑. The conditional outcrossing rate 

𝜈+(𝜏|𝐐 = 𝐪, 𝐑 = 𝐫) = lim
Δ𝜏→0

Pr[{𝑔(𝐒, 𝐪, 𝐫, 𝜏) > 0} ∩ {𝑔(𝐒, 𝐪, 𝐫, 𝜏 + Δ𝜏) ≤ 0}]

Δ𝜏
 (4.25) 

is then determined based on analytical and asymptotic solutions. Subsequently, the conditional 

expected number of outcrossings is evaluated as: 

𝔼[𝑁+(𝑡)|𝐐 = 𝐪, 𝐑 = 𝐫] = ∫ 𝜈+(𝜏|𝐐 = 𝐪, 𝐑 = 𝐫) d𝜏
𝑡

0

 (4.26) 

Finally, the (unconditional) expected number of outcrossings is obtained by taking the expectation 

with respect to 𝐐 and 𝐑: 
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𝔼[𝑁+(𝑡)] = 𝔼𝑄,𝑅[𝔼[𝑁
+(𝑡)|𝐐 = 𝐪, 𝐑 = 𝐫]] = 𝔼𝑄,𝑅 [∫ 𝜈+(𝜏|𝐐 = 𝐪,𝐑 = 𝐫) d𝜏

𝑡

0

] (4.27) 

Alternatively, parallel system concepts can be applied, which directly solve Equation (4.23) to 

compute the outcrossing rate 𝜈+(𝜏) (Andrieu-Renaud et al. 2004; Sudret 2008).  

4.5 Deteriorating structures with inspection and monitoring data 

Inspection and monitoring data contain information on the stochastic parameters 𝐗 that influence 

the condition and reliability of deteriorating structural systems. In structural reliability, data ob-

tained up to time 𝑡𝑍 is described by the event 𝑍(𝑡𝑍) and Bayes’ rule is applied to learn the proba-

bility distribution of 𝐗, i.e. the prior probability distribution 𝑓𝐗(𝐱) of 𝐗 is updated with 𝑍(𝑡𝑍) to 

the posterior probability distribution 𝑓𝐗[𝐱|𝑍(𝑡𝑍)] (see also Section 3.3). Consequently, the estimate 

of the failure probability is also updated. The updated failure probability is Pr[𝐹(𝑡)|𝑍(𝑡𝑍)] (see 

also Section 3.4). Note that the information obtained through inspections and monitoring does not 

change the actual condition and reliability of the structural system as it does not physically change 

the system. However, the information enables an improved estimation of the system condition and 

reliability and thus an improved decision-making regarding actions that physically change the sys-

tem (e.g. repair and retrofitting actions).  

For model class (a), the probability of failure at time 𝑡 conditional on data obtained up to time 𝑡𝑍 

is equal to the point-in-time failure probability at time 𝑡, i.e. Pr[𝐹(𝑡)|𝑍(𝑡𝑍)] = Pr[𝐹
∗(𝑡)|𝑍(𝑡𝑍)]. 

In this case, it is sufficient to compute Pr[𝐹∗(𝑡)|𝑍(𝑡𝑍)]. 

For model class (b), the failure probability at time 𝑡𝑗 conditional on 𝑍(𝑡𝑍) is given by: 

Pr[𝐹(𝑡𝑗)|𝑍(𝑡𝑍)] = Pr[𝐹1
∗ ∪ 𝐹2

∗ ∪ …∪ 𝐹𝑗
∗|𝑍(𝑡𝑍)] (4.28) 

Equation (4.28) implies that all interval failure events 𝐹1
∗ to 𝐹𝑗

∗ must be considered in the compu-

tation of Pr[𝐹(𝑡𝑗)|𝑍(𝑡𝑍)]. The updated failure probability Pr[𝐹(𝑡)|𝑍(𝑡𝑍)] is approximated by in-

terpolation based on the updated failure probabilities Pr[𝐹(𝑡𝑗)|𝑍(𝑡𝑍)] for times 𝑡𝑗, 𝑗 = 1,… ,𝑚. 

When applying the outcrossing approach, the conditional point-in-time failure probability 

Pr[𝐹∗(0)|𝑍(𝑡𝑍)] and the conditional expected number of outcrossings 𝔼[𝑁+(𝑡)|𝑍(𝑡𝑍)] must be 

evaluated based on the conditional probability distribution of the stochastic parameters 𝐗 given 

𝑍(𝑡𝑍). Pr[𝐹
∗(0)|𝑍(𝑡𝑍)] and 𝔼[𝑁+(𝑡)|𝑍(𝑡𝑍)] are then applied to compute an updated estimate of 

the upper bound of the updated failure probability Pr[𝐹(𝑡)|𝑍(𝑡𝑍)] (see Equation (4.22)). 

Once the updated failure probability Pr[𝐹(𝑡)|𝑍(𝑡𝑍)] is available, the updated PDF of the time to 

failure 𝑓𝑇𝐹 [𝑡|𝑍(𝑡𝑍)], the updated reliability 𝑅𝑒𝑙[𝑡|𝑍(𝑡𝑍)] and the updated failure rate 𝜆[𝑡|𝑍(𝑡𝑍)] 

are computed by substituting Pr[𝐹(𝑡)] in Equations (4.7) to (4.9) with Pr[𝐹(𝑡)|𝑍(𝑡𝑍)]. 

In the literature, the updated probability of the failure event 𝐹(𝑡) is typically presented conditional 

on the inspection and monitoring data available up to time 𝑡, i.e. it is shown as Pr[𝐹(𝑡)|𝑍(𝑡)]. This 

process is known as filtering (Straub 2009) and illustrated in Figure 4.4(a), which shows the fil-

tered failure probability of the welded jacket-type steel frame considered in the numerical example 
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in Section 5.7.1. The frame is subject to high-cycle fatigue and some of its welded connections are 

inspected in year 𝑡𝑍 = 10 yr. The inspections do not indicate any fatigue cracks. The results in 

Figure 4.4(a) are reproduced from Figure 5.14(b) and demonstrate that conditioning the failure 

probability on data obtained at time 𝑡𝑍 can lead to a drop in that probability. Such a drop in the 

(cumulative) failure probability seems counterintuitive since it is a non-decreasing function of 

time. This effect can be explained by the fact that the failure probability before and after the up-

dating is not based on the same data and thus not on the same probability distribution of the pa-

rameters 𝐗 (see also Schneider and Straub 2020). In this example, the failure probability shown in 

Figure 4.4(a) for times 𝑡 ≤ 𝑡𝑍 (before the updating) is computed based on the prior probability 

distribution 𝑓𝐗(𝐱) whereas the failure probability for times 𝑡 ≥ 𝑡𝑍 (after the updating) is estimated 

based on the posterior probability distribution 𝑓𝐗[𝐱|𝑍(𝑡𝑍)]. To further illustrate this, Figure 4.4(b) 

separately shows the prior failure probability Pr[𝐹(𝑡)] computed based on 𝑓𝐗(𝐱) and the posterior 

failure probability Pr[𝐹(𝑡)|𝑍(𝑡𝑍)] computed based on 𝑓𝐗[𝐱|𝑍(𝑡𝑍)] for times prior to and after 𝑡𝑍. 

The results in Figure 4.4(b) also demonstrate that updating of the probability distribution of 𝐗 with 

data obtained at time 𝑡𝑍 affects the reliability estimates before and after 𝑡𝑍. The process of com-

puting Pr[𝐹(𝑡)|𝑍(𝑡𝑍)] for times 𝑡 < 𝑡𝑍 is known as smoothing (see also Straub 2009). 

Related to the above, it has been argued that if data are obtained at time 𝑡𝑍, the period before 𝑡𝑍 

can be neglected because the structure must have survived up to that time. However, the history 

prior to time 𝑡𝑍 cannot be neglected6 since the observation of survival up to time 𝑡𝑍 contains val-

uable information, i.e. survival up to time 𝑡𝑍 is an indication that the structure has a certain mini-

mum capacity and that the demand is not excessively large. In addition, the observation of survival 

up to the time of inspection and monitoring is not independent of the inspection and monitoring 

data. To formally include (a) the observation of survival up to time 𝑡𝑍 and (b) the inspection and 

monitoring data obtained up to that time in the prediction of the failure probability for times 𝑡 ≥

 
6 This issue is irrelevant for model class (a) because Pr[𝐹(𝑡)|𝑍(𝑡𝑍)] = Pr[𝐹

∗(𝑡)|𝑍(𝑡𝑍)]. 

  

Figure 4.4: (a) Filtered failure probability Pr[𝐹(𝑡)|𝑍(𝑡)] of the welded steel frame considered in Section 5.7.1 (the 

results are reproduced from Figure 5.14(b)). The frame is subject to high-cycle fatigue and some of its welded con-

nections are inspected in year 𝑡𝑍 = 10 yr. No fatigue cracks are indicated. (b) Prior and posterior failure probability 

Pr[𝐹(𝑡)] and Pr[𝐹(𝑡)|𝑍(𝑡𝑍)] of the frame. 
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𝑡𝑍, one must condition the probability of failure on the survival event 𝐹(𝑡𝑍) and the event 𝑍(𝑡𝑍) 

describing the data, i.e.: 

Pr[𝐹(𝑡)|𝑍(𝑡𝑍) ∩ 𝐹(𝑡𝑍)] =
Pr[𝐹(𝑡) ∩ 𝐹(𝑡𝑍)|𝑍(𝑡𝑍)]

Pr[𝐹(𝑡𝑍)|𝑍(𝑡𝑍)]
 

=
Pr[𝐹(𝑡)|𝑍(𝑡𝑍)] − Pr[𝐹(𝑡𝑍)|𝑍(𝑡𝑍)]

1 − Pr[𝐹(𝑡𝑍)|𝑍(𝑡𝑍)]
 

(4.29) 

As an alternative to the conditional failure probability Pr[𝐹(𝑡)|𝑍(𝑡𝑍) ∩ 𝐹(𝑡𝑍)], the more general 

failure rate 𝜆 at any time 𝑡 can be computed conditional on 𝑍(𝑡𝑍) as described above. The condi-

tional failure rate 𝜆[𝑡|𝑍(𝑡𝑍)] corresponds to the PDF of the time to failure 𝑇𝐹 at time 𝑡 conditional 

on (a) survival up to that time and (b) the data obtained up to time 𝑡𝑍.  

4.6 Deteriorating structures with maintenance actions 

Consider again the simplest case in which the structural capacity with respect to the demand can 

be described by a scalar process 𝑅(𝑡)7. Maintenance actions such as repair, replacement and ret-

rofitting of structural elements physically change the structural system and thus affect the proba-

bilistic distribution of 𝑅(𝑡). An action performed at time 𝑡𝑀 is modeled by adding new random 

variables and/or processes describing 𝑅(𝑡) for times 𝑡 ≥ 𝑡𝑀 (e.g. Madsen et al. 1991; RILEM 

2001; Straub 2014b; Schneider 2019).  

If the structural capacity after time 𝑡𝑀 is statistically independent of the capacity before that time, 

and if the demand on the structure before and after time 𝑡𝑀 is also independent, the events before 

𝑡𝑀 do not have to be considered in the subsequent reliability analysis. Otherwise, the entire history 

of the structure must be considered. 

The modeling of maintenance is not further discussed in this thesis. 

 

 
7 The dependence of 𝑅 on the stochastic parameters 𝐗 is here omitted for readability. 
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5 Nested reliability analysis approach 

This section revises and updates material originally published in Schneider, R., Thöns, 

S. and Straub, D. (2017). Reliability analysis and updating of deteriorating systems 

with subset simulation. Structural Safety 64: 20-36. Some passages and figures are 

directly taken from this reference. 

5.1 Introduction 

Most deteriorating structural systems can be represented by model class (b) described in Section 

4.3. For models of this class, an estimate of the failure probability Pr[𝐹(𝑡𝑗)] = Pr(𝐹1
∗ ∪ 𝐹2

∗ ∪ …∪

𝐹𝑗
∗) involves the solution of a series system reliability problem among the different interval failure 

events 𝐹𝑖
∗, 𝑖 = 1,… , 𝑗, where each interval failure event itself is described by a system reliability 

problem. This section proposes a strategy for computing Pr[𝐹(𝑡𝑗)], which is referred to as nested 

reliability analysis (NRA) approach in the following. It can be applied when the conditional prob-

ability of system failure in any time interval 𝑖 conditional on the structural condition at the end of 

the interval, Pr(𝐹𝑖
∗|𝐗𝑅 = 𝐱𝑅), can be computed efficiently. In contrast to Section 4.3, all time-

invariant random variables of the problem are included in 𝐗𝑅  to ensure that the interval failure 

events 𝐹𝑖
∗, 𝑖 = 1,… ,𝑚 are statistically independent given 𝐗𝑅 = 𝐱𝑅. Such time-invariant random 

variables include, for example, uncertain permanent loads, model uncertainties and statistical un-

certainties. If the interval failure events 𝐹𝑖
∗, 𝑖 = 1, … ,𝑚 are independent given 𝐗𝑅 = 𝐱𝑅, the con-

ditional failure probability can be computed as: 

Pr[𝐹(𝑡𝑗)|𝐗𝑅 = 𝐱𝑅] = 1 −∏[1− Pr(𝐹𝑖
∗|𝐗𝑅 = 𝐱𝑅)]

𝑚

𝑖=1

 (5.1) 

The total probability theorem is then applied to determine the unconditional failure probability of 

the structural system: 

Pr[𝐹(𝑡𝑗)] = ∫ Pr[𝐹(𝑡𝑗)|𝐗𝑅 = 𝐱𝑅] 𝑓𝐗𝑅(𝐱𝑅) d𝐱𝑅
𝑫𝐗𝑅

 (5.2) 

wherein 𝑫𝐗𝑅 is the domain of definition and 𝑓𝐗𝑅(𝐱𝑅) is the prior PDF of 𝐗𝑅 . 

Deteriorating structures are usually inspected and monitored to reduce the uncertainty on the struc-

tural condition. Inspection and monitoring employed for this purpose provide information on the 

parameters of the deterioration model, which are included in 𝐗𝑅 . Let the random vector 𝐙1:𝑘 rep-

resent the probabilistic inspection and monitoring outcomes obtained in intervals 1 to 𝑘 with 𝑘 =

1, … ,𝑚. The inspection and monitoring data 𝐙1:𝑘 = 𝐳1:𝑘 are used to update the prior PDF 𝑓𝐗𝑅(𝐱𝑅) 
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of 𝐗𝑅  to its posterior PDF 𝑓𝐗𝑅|𝐙1:𝑗(𝐱𝑅|𝐳1:𝑘). Subsequently, the posterior failure probability 

Pr[𝐹(𝑡𝑗)|𝐙1:𝑘 = 𝐳1:𝑘] is obtained by inserting 𝑓𝐗𝑅|𝐙1:𝑘(𝐱𝑅|𝐳1:𝑘) into Equation (5.2): 

Pr[𝐹(𝑡𝑗)|𝐙1:𝑘 = 𝐳1:𝑘] = ∫ Pr[𝐹(𝑡𝑗)|𝐗𝑅 = 𝐱𝑅] 𝑓𝐗𝑅|𝐙1:𝑘(𝐱𝑅|𝐳1:𝑘)  d𝐱𝑅
𝑫𝐗𝑅

 (5.3) 

Following a discussion on modeling of deterioration, and on modeling of information provided by 

inspection and monitoring data in Sections 5.2 and 5.3, Sections 5.4 and 5.5 show how the integrals 

in Equations (5.2) and (5.3) can be transformed into component reliability problems. The resulting 

component reliability problems are potentially high-dimensional. They are here solved by means 

of subset simulation as discussed in Section 5.6. The NRA approach is demonstrated in two nu-

merical examples in Section 5.7 considering an inspected steel frame and a monitored Daniels 

system subject to high-cycle-fatigue and time-variant loading. 

5.2 Deterioration modeling 

5.2.1 Generic system deterioration model 

Deterioration in structural systems is modeled at the structural element level since probabilistic 

deterioration models are mainly available at this level. An element may be a structural member, a 

welded connection or a segment of a continuous surface (Straub and Der Kiureghian 2011). In a 

discrete-time approach, deterioration is evaluated at the end of each time interval. Let the random 

variable (or random vector) 𝐷𝑖,𝑗 represent the condition of element 𝑖 at the end of the 𝑗th interval. 

The relation between the deterioration model parameters and 𝐷𝑖,𝑗 is described by a deterioration 

model ℎ𝐷,𝑖. Noting again that the capacity parameters 𝐗𝑅  include those influencing deterioration, 

the deterioration model ℎ𝐷,𝑖  is written in generic form as: 

𝐷𝑖,𝑗 = ℎ𝐷,𝑖(𝐗𝑅, 𝑡𝑗) (5.4) 

In this formulation, additional random variables are included in 𝐗𝑅  to account for (a) model un-

certainties arising from a simplified representation of the actual deterioration phenomenon and 

from omitting parameters that also influence the deterioration process, and (b) statistical uncer-

tainties due to the limited information on the deterioration model parameters. 

All random variables describing the condition of the individual elements at the end of interval 𝑗 

are collected in a vector 𝐃𝑗 = [𝐷1,𝑗 ,… ,𝐷𝑛𝐸,𝑗]
𝑇, where 𝑛𝐸 is the number of deteriorating elements 

considered in the system reliability analysis. This vector represents the overall condition of the 

structural system at time 𝑡𝑗. The system condition 𝐃𝑗  is described generically by a system deterio-

ration model 𝐡𝐷  as: 

𝐃𝑗 = 𝐡𝐷(𝐗𝑅 , 𝑡𝑗) = [ℎ𝐷,1(𝐗𝑅 , 𝑡𝑗),… , ℎ𝐷,𝑛𝐸(𝐗𝑅 , 𝑡𝑗)]
𝑇 (5.5) 

Figure 5.1 illustrates the input-output relationship defined by the system deterioration model.  
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5.2.2 Dependence modeling 

Generally, deterioration of different elements in a structural system is interdependent. Such de-

pendencies are in some cases caused by variability, but they mainly exist due to common influenc-

ing factors (Straub 2018b). As an example, in a welded steel structure constructed out of one steel 

grade by one contractor, using the same welding procedure and adopting the same quality stand-

ards, the correlation among fatigue deterioration of different welded connections due to common 

material properties and fabrication quality will be high. The correlation of deterioration influences 

the system reliability and is of relevance when optimizing the collection of information through 

inspection and monitoring. 

Stochastic dependence of deterioration is modeled by introducing correlations among the param-

eters of the models describing the condition 𝐷𝑖,𝑗 of the different elements 𝑖. Unfortunately, only a 

limited number of studies on dependence among deterioration processes exist (e.g. Li et al. 2004; 

Vrouwenvelder 2004; Malioka 2009; Luque et al. 2017). In most applications, correlation among 

the deterioration model parameters has to be estimated based at least partially on engineering judg-

ment. 

Hierarchical models and random field models are commonly applied to represent correlations 

among deterioration model parameters. The latter may be applied to model continuously distrib-

uted deterioration processes such as corrosion in reinforced concrete structures (e.g. Hergenröder 

and Rackwitz 1992; Stewart and Mullard 2007; Ying and Vrouwenvelder 2007; Malioka 2009; 

Straub 2011b; Papakonstantinou and Shinozuka 2013). The random field approach models a spa-

tially varying parameter 𝑋 as a random variable 𝑋(𝑧) at each location 𝑧, and describes the corre-

lation structure of the different random variables 𝑋(𝑧) in terms of a suitable correlation function. 

Such random fields are typically discretized to enable their numerical representation (see, for 

example, Betz et al. 2014). Thus, a random field of a spatially varying parameter is defined by a 

discrete set of correlated random variables, which are part of 𝐗𝑅 . The joint distribution of the 

variables in a random field is commonly represented by a Gaussian copula, also known as the 

Nataf distribution model (Liu and Der Kiureghian 1986). 

Hierarchical models are applied to model stochastic dependence of deterioration due to common 

influencing factors such as common environmental conditions, common material characteristics 

or joint model uncertainties. Such models define the parameters of the deterioration models con-

ditional on random variables called hyperparameters (Faber et al. 2006; Maes and Dann 2007; 

Straub et al. 2009). Models with multiple hierarchies can also be defined (e.g. Luque et al. 2017). 

The additional random variables representing the common influencing factors in a hierarchical model 

are included in 𝐗𝑅 . Hierarchical models can be implemented through the Rosenblatt transformation 

(Hohenbichler and Rackwitz 1981). 

 

Figure 5.1: Illustration of the generic system deterioration model. The model describes the relation between the pa-

rameters 𝐗𝑅 and the system condition 𝐃𝑗. 
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Common influencing factors cannot always be modeled explicitly. As an alternative, statistical de-

pendence among deterioration model parameters can be represented by correlation coefficients. 

As an example, statistical dependence of fatigue deterioration among welded connections due to 

common fabrication quality may be modeled by defining a correlation coefficient among the initial 

defect sizes at different hotspots (Moan and Song 2000; Vrouwenvelder 2004; Maljaars and 

Vrouwenvelder 2014). In this case, the Nataf model can be applied to model the joint distribution 

of the correlated deterioration model parameters. 

Note that deterioration model parameters may also be time-variant. Such parameters are ideally 

modeled by random processes (see, for example, Lin and Yang 1985; Beck and Melchers 2004; 

Straub and Faber 2007; Altamura and Straub 2014). Like a random field, a random process repre-

sents a time-varying parameter 𝑋 as a random variable 𝑋(𝑡) at each time 𝑡, and describes the 

correlation among the random variables 𝑋(𝑡) through a suitable correlation function. Continuous-

time stochastic processes are discretized to facilitate their numerical representation. The resulting 

set of correlated random variables is included in 𝐗𝑅 . The joint distribution of the variables in a 

stochastic process may be represented by the Nataf model. In case a stochastic process has the 

Markov property, the Rosenblatt transformation may be applied (Altamura and Straub 2014). 

5.3 Modeling of inspection and monitoring 

5.3.1 Classification of inspection and monitoring techniques 

To facilitate the modeling of information provided by in-service inspections and monitoring data, 

it is beneficial to classify inspection and monitoring techniques first. In the following, inspection 

and monitoring techniques are classified according to the: 

1. Inspected and monitored quantity: Inspections and monitoring performed to reduce the un-

certainty on the system condition 𝐃𝑗  provide direct or indirect information on the deterioration 

model parameters included in 𝐗𝑅  as illustrated in Figure 5.2. Thus, the inspected or monitored 

quantity associated with a certain inspection or monitoring technique can be a deterioration 

model parameter in 𝐗𝑅  or an element condition 𝐷𝑖,𝑗. For example, the concrete cover depth of 

reinforced concrete structures is a parameter of corrosion initiation models which can be meas-

ured with a cover meter. The size of a surface breaking fatigue crack in a welded connection – 

the output of fatigue crack growth models – can, for example, be determined based on eddy 

current testing. In many cases, however, only indicators of the element conditions 𝐷𝑖,𝑗 or indi-

cators of the system condition 𝐃𝑗  can be measured or observed (Faber and Sørensen 2002). 

Indicators are related to the element conditions 𝐷𝑖,𝑗 or to the system condition 𝐃𝑗  through a 

(possibly stochastic) model, and thus provide indirect information on the deterioration model 

parameters in 𝐗𝑅 . For example, rust staining on the concrete surface is an indicator of rein-

forcement corrosion in concrete structures, which can be observed by visually inspecting the 

concrete surface (see, for example, Faber et al. 2006). As another example, modal parameters 

(modal frequencies, damping ratios and mode shapes) are often considered as indicators of the 

system condition 𝐃𝑗 . They can be derived from measured vibration response data (e.g. Farrar 

et al. 2001). 
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2. Type of information: As discussed in Section 3.2, inspections and monitoring can provide 

equality or inequality information. 

3. Temporal characteristics: Inspections are performed at discrete points in time, whereas mon-

itoring is performed over a longer period. Monitoring can be performed continuously, period-

ically or following a triggering event. The temporal characteristics of inspection and monitor-

ing are illustrated in Figure 5.3. Note that the datasets collected by monitoring systems are 

potentially large. To exploit these datasets, they are generally processed by suitable algorithms 

to derive summarizing statistics or to extract other meaningful features. 

4. Spatial characteristics: Inspections generally cover large parts of a structure, while monitor-

ing systems typically consist of multiple sensors installed at discrete locations in a structure. 

However, a clear distinction among inspection and monitoring due to their spatial characteris-

tics is not necessarily possible since an inspection may only include a few discrete locations in 

a structural system and monitoring may cover continuous parts of a structural system. 

The proposed classification scheme for information provided by inspections and monitoring per-

formed to reduce the uncertainty on the structural condition is summarized in Table 5.1. 

 

Figure 5.2: Inspection and monitoring techniques employed to reduce the uncertainty on the system condition 𝐃𝑗 
provide (a) direct information on the deterioration model parameters in 𝐗𝑅 through direct measurements or samples 

of deterioration model parameters in 𝐗𝑅, or (b) indirect information on the deterioration model parameters in 𝐗𝑅 

through measurements or observation of element conditions 𝐷𝑖,𝑗. Indirect information on the deterioration model pa-

rameters in 𝐗𝑅 is also obtained through measurements or observations of indicators of element conditions 𝐷𝑖,𝑗  or 

indicators of the system condition 𝐃𝑗. 

 

Figure 5.3: Illustration of the temporal characteristics of (a) inspections and (b) monitoring data. 
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5.3.2 Likelihood functions 

The random vector 𝐙1:𝑘 = [𝐙1
𝑇 , … , 𝐙𝑘

𝑇]𝑇 represents all probabilistic inspection and monitoring out-

comes up to the end of the 𝑘th interval, where the different random vectors 𝐙𝑘 represent the prob-

abilistic inspection and monitoring outcomes in the 𝑘th interval. Following Section 3, the relation 

between the joint inspection and monitoring outcome 𝐙1:𝑘 = 𝐳1:𝑘 and the deterioration model pa-

rameters in 𝐗𝑅  is modeled by the joint likelihood function 𝐿(𝐱𝑅|𝐳1:𝑘), which is defined as (see 

also Equation (3.1)): 

𝐿(𝐱𝑅|𝐳1:𝑘) ∝ Pr(𝐙1:𝑘 = 𝐳1:𝑘|𝐗𝑅 = 𝐱𝑅) (5.6) 

Under the common assumption that all inspection and monitoring outcomes 𝑍𝑖,𝑘 are statistically 

independent given 𝐗𝑅 = 𝐱𝑅, the joint likelihood function 𝐿(𝐱𝑅|𝐳1:𝑘) is computed as (see also 

Equation (3.9)): 

𝐿(𝐱𝑅|𝐳1:𝑘) =∏∏𝐿(𝐱𝑅|𝑧𝑖,𝑘)

𝑖𝑘

 (5.7) 

where 𝐿(𝐱𝑅|𝑧𝑖,𝑘) ∝ Pr(𝑍𝑖,𝑘 = 𝑧𝑖,𝑘|𝐗𝑅 = 𝐱𝑅) is the likelihood function describing the 𝑖th inspec-

tion or monitoring outcome in the 𝑘th interval. The actual definition of the likelihood function 

𝐿(𝐱𝑅|𝑧𝑖,𝑘) depends on the specific problem. Examples are presented in Section 5.7.1.3 (inspection 

of welded connections), Section 5.7.2.2 (global damage detection system) and Section 6.5.1.2 (in-

spection of reinforced concrete structures). 

The assumption of conditional statistical independence does not always hold. As an example, spa-

tial correlation among measurements exists if the sensors are closely spaced. In this case, the ac-

curacy of the measurements is influenced by common influencing factors such as, for example, 

temperature. If inspection and monitoring outcomes 𝐙1:𝑘 are statistically dependent given 𝐗𝑅 =

𝐱𝑅, the combined likelihood function 𝐿(𝐱𝑅|𝐳1:𝑘) must be formulated such that the spatial and/or 

Table 5.1: Classification of inspection and monitoring techniques employed to reduce the uncertainty on the structural 

condition (adapted from Fischer et al. 2014). 

Classification Categories 

Inspected/monitored quantity • A parameter of the deterioration model (model input) 

• An element condition (model output) 

• An indicator related to an element condition 

• An indicator related to the condition of the system or subsystem 

Type of information • Equality information 

• Inequality information 

Temporal characteristics • Data collection at discrete points in time 

• Data collection over a longer period 

Spatial characteristics • Spatially discrete data collection 

• Spatially continuous data collection 
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temporal dependencies among the individual inspection and monitoring outcomes are modeled 

correctly (e.g. Straub and Faber 2003; Simoen et al. 2013). 

In general, the observation 𝐙1:𝑘 = 𝐳1:𝑘 does not provide information on all parameters in 𝐗𝑅 . These 

parameters cannot be learned. The likelihood function 𝐿(𝐱𝑅|𝐳1:𝑘) is defined such that it is constant 

with respect to those parameters. 

5.4 Prior failure probability 

The interval failure probability of a deteriorating structural system in any interval 𝑗 is here assessed 

conditional on the capacity parameters 𝐗𝑅 = 𝐱𝑅 (see also Equation (4.16)): 

Pr(𝐹𝑗
∗|𝐗𝑅 = 𝐱𝑅) ≈ Pr[𝑔(𝐱𝑅, 𝐒𝑚𝑎𝑥,𝑗 , 𝑡𝑗) ≤ 0] (5.8) 

where 𝐒𝑚𝑎𝑥,𝑗 represents the maximum demand on the structure in interval 𝑗. Equation (5.8) corre-

sponds a time-invariant (system) reliability problem (see Section 2). To solve this problem, the 

probabilistic structural model used in the reliability analysis is defined with element properties 

according to the system condition at end of interval 𝑗, i.e. 𝐝𝑗 = 𝐡𝐷(𝐱𝑅, 𝑡𝑗). 

To ensure that the different interval failure events 𝐹𝑗
∗, 𝑗 = 1,… , 𝑚 are statistically independent 

given 𝐗𝑅 = 𝐱𝑅, all time-invariant demand parameters are also included in 𝐗𝑅 . If the interval failure 

events are conditionally independent given 𝐗𝑅 = 𝐱𝑅, the conditional probability of failure 

Pr[𝐹(𝑡𝑗)|𝐗𝑅 = 𝐱𝑅] can be computed according to Equation (5.1). To determine the probability of 

failure Pr[𝐹(𝑡𝑗)], the total probability theorem is then applied in Equation (5.2). Following an idea 

proposed by Wen and Chen (1987), it is now shown how the integral in Equation (5.2) can be 

transformed into a component reliability problem. To this end, an auxiliary standard uniform ran-

dom variable 𝑃 with PDF 𝑓𝑃(𝑝) = 1 and CDF 𝐹𝑃(𝑝) = 𝑝 is introduced. The conditional probabil-

ity of failure can now be written as: 

Pr[𝐹(𝑡𝑗)|𝐗𝑅 = 𝐱𝑅] = 𝐹𝑃(Pr[𝐹(𝑡𝑗)|𝐗𝑅 = 𝐱𝑅]) (5.9) 

It follows that (see also (3.12)): 

Pr[𝐹(𝑡𝑗)|𝐗𝑅 = 𝐱𝑅] = ∫ 𝑓𝑃(𝑝) d𝑝
Pr[𝐹(𝑡𝑗)|𝐗𝑅=𝐱𝑅]

0

 

= ∫ 𝑓𝑃(𝑝) d𝑝
𝑝≤Pr[𝐹(𝑡𝑗)|𝐗𝑅=𝐱𝑅]

 

= ∫ 𝕀[𝑝 ≤ Pr[𝐹(𝑡𝑗)|𝐗𝑅 = 𝐱𝑅]] 𝑓𝑃(𝑝) d𝑝
1

0

 

(5.10) 

Insertion Equation (5.10) into Equation (5.2) gives: 
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Pr[𝐹(𝑡𝑗)] = ∫ [∫ 𝕀[𝑝 ≤ Pr[𝐹(𝑡𝑗)|𝐗𝑅 = 𝐱𝑅]] 𝑓𝑃(𝑝) d𝑝
1

0

]  𝑓𝐗𝑅(𝐱𝑅) d𝐱𝑅
𝑫𝐗𝑅

 

= ∫ ∫ 𝕀[𝑝 ≤ Pr[𝐹(𝑡𝑗)|𝐗𝑅 = 𝐱𝑅]] 𝑓𝐗𝑅(𝐱𝑅) 𝑓𝑃(𝑝) d𝑝
1

0

d𝐱𝑅
𝑫𝐗𝑅

 

(5.11) 

Equation (5.11) corresponds to a structural reliability problem in the augmented outcome space of 

𝐗𝑅  and 𝑃 with limit state function:  

𝑔𝐹(𝐱𝑅, 𝑝, 𝑡𝑗) = 𝑝 − Pr[𝐹(𝑡𝑗)|𝐗𝑅 = 𝐱𝑅] (5.12) 

The prior failure probability of the structural system up to time 𝑡𝑗 can thus be written as: 

Pr[𝐹(𝑡𝑗)] = ∫ 𝑓𝐗𝑅(𝐱𝑅) 𝑓𝑃(𝑝) d𝑝 d𝐱𝑅
𝑔𝐹(𝐱𝑅 ,𝑝,𝑡𝑗)≤0

= Pr[𝑔𝐹(𝐗𝑅, 𝑃, 𝑡𝑗) ≤ 0] (5.13) 

All structural reliability methods can be used to solve this integral. 

5.5 Posterior failure probability 

The posterior failure probability up to time 𝑡𝑗, Pr[𝐹(𝑡𝑖)|𝐙1:𝑘 = 𝐳1:𝑘], is computed according to 

Equation (5.3). In the following, the integral in Equation (5.3) is transformed into two component 

reliability problems using the approach presented in Sections 3.4 and 5.4. First, the posterior PDF 

of 𝐗𝑅  given 𝐙1:𝑘 = 𝐳1:𝑘 is written as: 

𝑓𝐗𝑅|𝐙1:𝑘(𝐱𝑅|𝐳1:𝑘) =
𝐿(𝐱𝑅|𝐳1:𝑘) 𝑓𝐗𝑅(𝐱𝑅)

∫ 𝐿(𝐱𝑅|𝐳1:𝑘) 𝑓𝐗𝑅(𝐱𝑅) 𝑑𝐱𝑅𝑫𝐗𝑅

 (5.14) 

Inserting Equation (5.14) in Equation (5.3) gives: 

Pr[𝐹(𝑡𝑗)|𝐙1:𝑘 = 𝐳1:𝑘] =
∫ Pr[𝐹(𝑡𝑗)|𝐗𝑅 = 𝐱𝑅] 𝐿(𝐱𝑅|𝐳1:𝑘) 𝑓𝐗𝑅(𝐱𝑅) d𝐱𝑅𝑫𝐗𝑅

∫ 𝐿(𝐱𝑅|𝐳1:𝑘) 𝑓𝐗𝑅(𝐱𝑅) d𝐱𝑅𝑫𝐗𝑅

 (5.15) 

The following relation holds for the conditional probability Pr[𝐹(𝑡𝑗)|𝐗𝑅 = 𝐱𝑅] and the likelihood 

function 𝐿(𝐱𝑅|𝐳1:𝑘): 

Pr[𝐹(𝑡𝑗)|𝐗𝑅 = 𝐱𝑅] ∙ 𝑐𝐿(𝐱𝑅|𝐳1:𝑘) = 𝐹𝑃[Pr[𝐹(𝑡𝑗)|𝐗𝑅 = 𝐱𝑅] ∙ 𝑐𝐿(𝐱𝑅|𝐳1:𝑘)] (5.16) 

where 𝐹𝑃(𝑝) is again the CDF of the standard uniform random variable 𝑃 and 𝑐 is a positive con-

stant that ensures 𝑐𝐿(𝐱𝑅|𝐳1:𝑘) ≤ 1 for all 𝐱𝑅 (see also Section 3.3). The product Pr[𝐹(𝑡𝑗)|𝐗𝑅 =

𝐱𝑅] ∙ 𝐿(𝐱𝑅|𝐳1:𝑘) can thus be written as (see also Equations (3.12) and (5.10)): 
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Pr[𝐹(𝑡𝑗)|𝐗𝑅 = 𝐱𝑅] ∙ 𝐿(𝐱𝑅|𝐳1:𝑘)

= 𝑐−1∫ 𝕀[𝑝 ≤ Pr[𝐹(𝑡𝑗)|𝐗𝑅 = 𝐱𝑅] ∙ 𝑐𝐿(𝐱𝑅|𝐳1:𝑘)] 𝑓𝑃(𝑝) d𝑝
1

0

 
(5.17) 

In the same way, the likelihood function 𝐿(𝐱𝑅|𝐳1:𝑘) can be expressed as (see also Equation (3.12)): 

𝐿(𝐱𝑅|𝐳1:𝑘) = 𝑐
−1 ∫ 𝕀[𝑝 ≤ 𝑐𝐿(𝐱𝑅|𝐳1:𝑘)] 𝑓𝑃(𝑝) d𝑝

1

0

 (5.18) 

Inserting Equation (5.17) into the numerator and Equation (5.18) into the denominator of Equation 

(5.15) leads to: 

Pr[𝐹(𝑡𝑗)|𝐙1:𝑘 = 𝐳1:𝑘]

=
∫ ∫ 𝕀[𝑝 ≤ Pr[𝐹(𝑡𝑗)|𝐗𝑅 = 𝐱𝑅] ∙ 𝑐𝐿(𝐱𝑅|𝐳1:𝑘)] 𝑓𝐗𝑅(𝐱𝑅) 𝑓𝑃(𝑝) d𝑝 d𝐱𝑅

1

0𝑫𝐗𝑅

∫ ∫ 𝕀[𝑝 ≤ 𝑐𝐿(𝐱𝑅|𝐳1:𝑘)] 𝑓𝐗𝑅(𝐱𝑅) 𝑓𝑃(𝑝) d𝑝 d𝐱𝑅
1

0𝑫𝐗𝑅

 
(5.19) 

The numerator in Equation (5.19) is a component reliability problem in the augmented outcome 

space of 𝐗𝑅  and 𝑃 with limit state function: 

𝑔𝐹∩𝑍(𝐱𝑅, 𝑝, 𝑡𝑗 , 𝑡𝑘) = 𝑝− Pr[𝐹(𝑡𝑗)|𝐗𝑅 = 𝐱𝑅] ∙ 𝑐𝐿(𝐱𝑅|𝐳1:𝑘) (5.20) 

The denominator in Equation (5.19) also corresponds to a component reliability problem in the 

augmented outcome space of 𝐗𝑅  and 𝑃, which is described by the limit state function:  

𝑔𝑍(𝐱𝑅, 𝑝, 𝑡𝑘) = 𝑝 − 𝑐𝐿(𝐱𝑅|𝐳1:𝑘) (5.21) 

The posterior probability of failure up to time 𝑡𝑘 can now be written as: 

Pr[𝐹(𝑡𝑗)|𝐙1:𝑘 = 𝐳1:𝑘] =
∫ 𝑓𝐗𝑅(𝐱𝑅) 𝑓𝑃(𝑝) 𝑑𝑝 𝑑𝐱𝑅𝑔𝐹∩𝑍(𝐱𝑅,𝑝,𝑡𝑗 ,𝑡𝑘)≤0

∫ 𝑓𝐗𝑅(𝐱𝑅) 𝑓𝑃(𝑝) 𝑑𝑝 𝑑𝐱𝑅𝑔𝑍(𝐱𝑅,𝑝,𝑡𝑘)≤0

 

=
Pr[𝑔𝐹∩𝑍(𝐗𝑅 , 𝑃, 𝑡𝑗 , 𝑡𝑘) ≤ 0]

Pr[𝑔𝑍(𝐗𝑅 , 𝑃, 𝑡𝑗) ≤ 0]
 

(5.22) 

The denominator of Equation (5.22) can be interpreted as the probability of an observation event 

𝑍(𝑡𝑘) = {𝑔𝑍(𝐗𝑅 , 𝑃, 𝑡𝑘) ≤ 0} and the numerator corresponds to the probability of the joint event 

𝐹(𝑡𝑗) ∩ 𝑍(𝑡𝑘) = {𝑔𝐹∩𝑍(𝐗𝑅 , 𝑃, 𝑡𝑗 , 𝑡𝑘) ≤ 0}, i.e.: 

Pr[𝐹(𝑡𝑗)|𝐙1:𝑘 = 𝐳1:𝑘] = Pr[𝐹(𝑡𝑗)|𝑍(𝑡𝑘)] =
Pr[𝐹(𝑡𝑗) ∩ 𝑍(𝑡𝑘)]

Pr[𝑍(𝑡𝑘)]
 (5.23) 

Both the numerator and denominator in Equation (5.22) can be solved with structural reliability 

methods. 
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5.6 Computational aspects 

The reliability problems in Equations (5.13) and (5.22) are high-dimensional since they include all 

(correlated) deteriorating elements of a structural system. Subset simulation, briefly introduced in 

Section 2.2.3, has been selected to solve these problems. It is robust and efficient in solving struc-

tural reliability problems with many random variables. In addition, it can be implemented relatively 

easily. In this thesis, the algorithm is implemented following Papaioannou et al. (2015). 

To apply subset simulation, the reliability problems defined in Equations (5.13) and (5.22) are 

transformed to standard normal space following Section 3.3.4. The corresponding limit state func-

tions 𝐺𝐹, 𝐺𝐹∩𝑍 and 𝐺𝑍 are: 

𝐺𝐹(𝐮, 𝑡𝑗) = ln[Φ(𝑢n+1)] − ln[Pr[𝐹(𝑡𝑗)|𝐗𝑅 = 𝑇
−1(𝑢1, … , 𝑢𝑛)]] , (5.24) 

𝐺𝐹∩𝑍(𝐮, 𝑡𝑗 , 𝑡𝑘) = ln[Φ(𝑢n+1)]

− ln[Pr[𝐹(𝑡𝑗)|𝐗𝑅 = 𝑇
−1(𝑢1, … , 𝑢𝑛)] ∙ 𝑐𝐿(𝑇

−1(𝑢1, … , 𝑢𝑛)|𝐳1:𝑘)] 
(5.25) 

and 

𝐺𝑍(𝐮, 𝑡𝑘) = ln[Φ(𝑢n+1)] − ln[𝑐𝐿(𝑇
−1(𝑢1, … , 𝑢𝑛)|𝐳1:𝑘)] (5.26) 

The prior and posterior probability of failure up to time 𝑡𝑗 can now be defined in terms of the 

standard normal random variables 𝐔: 

Pr[𝐹(𝑡𝑗)] = Pr[𝐺𝐹(𝐔, 𝑡𝑗) ≤ 0] (5.27) 

Pr[𝐹(𝑡𝑗)|𝑍(𝑡𝑘)] =
Pr[𝐺𝐹∩𝑍(𝐔, 𝑡𝑗 , 𝑡𝑘) ≤ 0]

Pr[𝐺𝑍(𝐔, 𝑡𝑘) ≤ 0]
 (5.28) 

To compute Pr[𝐹(𝑡𝑗)] with subset simulation, the limit state function 𝐺𝐹 defined in Equation (5.24) 

is used as input to Algorithm 2.1. Similarly, the limit state functions 𝐺𝐹∩𝑍 and 𝐺𝑍 defined in Equa-

tions (5.25) and (5.26) are applied as input to Algorithm 2.1 to evaluate the probabilities 

Pr[𝐹(𝑡𝑗) ∩ 𝑍(𝑡𝑘)] and Pr[𝑍(𝑡𝑘)] with subset simulation. The conditional probability 

Pr[𝐹(𝑡𝑗)|𝑍(𝑡𝑘)] is then simply the ratio of Pr[𝐹(𝑡𝑗) ∩ 𝑍(𝑡𝑘)] to Pr[𝑍(𝑡𝑘)] (see Equation (5.23)). 

Alternatively, Pr[𝐹(𝑡𝑗)|𝑍(𝑡𝑘)] can be computed directly with a new subset simulation run follow-

ing the estimation of Pr[𝑍(𝑡𝑘)] (see also Schneider et al. 2013; Straub et al. 2016). For this pur-

pose, a set of nested intermediate events 𝐸0 ⊃ 𝐸1 ⊃ ⋯ ⊃ 𝐸𝑀  is defined where 𝐸0 = 𝑍(𝑡𝑘), 𝐸𝑖 =

{𝐺𝐹∩𝑍(𝐔, 𝑡𝑗 , 𝑡𝑘) ≤ 𝑏𝑖}, 𝑖 = 1,… , 𝑀 and 𝑏1 > 𝑏2 > ⋯ > 𝑏𝑀 = 0. The conditional probability 

Pr[𝐹(𝑡𝑗)|𝑍(𝑡𝑘)] can now be expressed as: 

Pr[𝐹(𝑡𝑗)|𝑍(𝑡𝑘)] = Pr(𝐸1 ∩ 𝐸2 ∩ …∩ 𝐸𝑀|𝐸0) =∏ Pr(𝐸𝑖 |𝐸𝑖−1)
𝑀

𝑖=1
 (5.29) 

The first threshold 𝑏1 defining the intermediate event 𝐸1 = {𝐺𝐹∩𝑍(𝐔, 𝑡𝑗 , 𝑡𝑘) ≤ 𝑏1} is determined 

from the samples conditional on 𝐸0 = 𝑍(𝑡𝑘), which are obtained as a by-product of estimating 
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Pr[𝑍(𝑡𝑘)] with subset simulation (see also Algorithm 3.2). The remaining thresholds 𝑏𝑖, 𝑖 =

2, … ,𝑀 − 1 are determined following the original subset simulation procedure. When applying 

this approach, the estimator 𝑃̂𝑆𝑢𝑆  defined in Equation (2.21) provides an estimate of the conditional 

probability Pr[𝐹(𝑡𝑗)|𝑍(𝑡𝑘)]. 

5.7 Numerical examples: steel structures subject to high-cycle fatigue 

5.7.1 Zayas frame 

Consider the two-dimensional welded steel frame shown in Figure 5.4, which is known as Zayas 

frame (Zayas et al. 1980). The frame is subject to gravity loads and a time-varying horizontal point 

load at the top to represent an environmental load. In addition, the frame is subject to fatigue loads 

throughout its service life of 𝑇𝑆𝐿 = 50 years. The effect of inspection outcomes on the reliability 

estimates of the structural system is studied. 

5.7.1.1 System model 

The Zayas frame consists of tubular steel elements with welded connections, which are especially 

vulnerable to fatigue deterioration due to material inhomogeneities, imperfections, high stress con-

centrations and residual stresses (Fricke 2003). Locations where fatigue cracks may develop are 

called hotspots. A welded connection may contain several hotspots. 

Fatigue crack growth reduces the capacity of welded connections. In the current example, fatigue 

deterioration is assumed to occur at the welds connecting the braces with the legs and with the 

 

Figure 5.4: Zayas frame (Zayas et al. 1980). OD is the outer diameter and WT the wall thickness of the tubular steel 

members. 
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upper horizontal element as well as at the welds at the intersection of the X-braces. Furthermore, 

it is assumed that each deteriorating welded connection contains only one critical hotspot. Thus, 

there are 𝑛𝐸 = 22 hotspots as indicated in Figure 5.4. 

The approach of Straub and Der Kiureghian (2011) is adopted to determine the reliability of the 

welded steel structure subject to fatigue. At system level, no gradual degradation of the weld ca-

pacities is considered. At a given time 𝑡𝑗, a welded connection has either its full capacity or it has 

completely lost its capacity because of fatigue crack growth. In the current example, it is assumed 

that a welded connection loses its capacity if a fatigue crack at any of the associated hotspots grows 

beyond a critical size (see, for example, Madsen 1997). The condition of any hotspot 𝑖 at time 𝑡𝑗 

is, therefore, modeled by a binary random variable 𝐷𝑖,𝑗, where 𝐷𝑖,𝑗 = 1 is the hotspot fatigue fail-

ure event and 𝐷𝑖,𝑗 = 0 is the complement. The event of fatigue failure of hotspot 𝑖 at time 𝑡𝑗 is 

defined by a limit state function 𝑔𝑖(𝐱𝑅, 𝑡𝑗) as {𝐷𝑖,𝑗 = 1} = {𝑔𝑖(𝐗𝑅, 𝑡𝑗) ≤ 0}, where 𝐗𝑅  represents 

the stochastic parameters influencing the capacity of the frame. 𝑔𝑖(𝐱𝑅, 𝑡𝑗) is written as: 

𝑔𝑖(𝐱𝑅, 𝑡𝑗) = 𝑎𝑐,𝑖 − 𝑎𝑖(𝐱𝑅, 𝑡𝑗) (5.30) 

where 𝑎𝑐,𝑖 is the critical crack size and 𝑎𝑖(𝐱𝑅, 𝑡𝑗) is the realization of the fatigue crack size at 

hotspot 𝑖 at time 𝑡𝑗 given 𝐗𝑅 = 𝐱𝑅. It is computed by means of a fatigue crack growth model 

presented Section 5.7.1.2. 𝑎𝑐,𝑖  may be defined such that failure modes such as plastic collapse or 

unstable crack growth are approximately accounted for. 

The function ℎ𝐷,𝑖(𝐗𝑅 , 𝑡𝑗) defining the relation between the capacity parameters 𝐗𝑅  and the hotspot 

condition 𝐷𝑖,𝑗 can now be written as: 

𝐷𝑖,𝑗 = ℎ𝐷,𝑖(𝐗𝑅, 𝑡𝑗) = 𝕀[𝑔𝑖(𝐗𝑅 , 𝑡𝑗) ≤ 0] (5.31) 

Using Equation (5.5), the system condition 𝐃𝑗 = [𝐷1,𝑗 ,… ,𝐷𝑛𝐸,𝑗]
𝑇 of the Zayas frame can subse-

quently be calculated as a function of the capacity parameters 𝐗𝑅 . It follows that 𝐃𝑗  is a binary 

random vector with 2𝑛𝐸  possible states. 

In the current example, fatigue deterioration is assessed at yearly intervals. The maximum of the 

environmental load in year 𝑗 is denoted by 𝑆𝑚𝑎𝑥,𝑗. The different 𝑆𝑚𝑎𝑥,𝑗, 𝑗 = 1,… ,𝑇𝑆𝐿 are inde-

pendent and identically Gumbel distributed with a coefficient of variation (c.o.v.) 𝛿𝑆𝑚𝑎𝑥,𝑗 = 0.35. 

The CDF of 𝑆𝑚𝑎𝑥,𝑗 is denoted by 𝐹𝑆𝑚𝑎𝑥,𝑗(𝑠). Material and geometry properties are modeled as 

deterministic parameters as listed in Figure 5.4. This simplification is reasonable since the uncer-

tainties associated with these parameters are small compared to the uncertainties associated with 

the hotspot conditions 𝐃𝑗  and the load 𝑆𝑚𝑎𝑥,𝑗. It follows that 𝐗𝑅  consists of the stochastic param-

eters influencing fatigue deterioration of all hotspots considered in the system reliability analysis. 

Now let the random vector 𝐁𝑗 = [𝐵1,𝑗 ,… ,𝐵𝑘,𝑗 , … ,𝐵𝑛𝐵 ,𝑗]
𝑇 represent the condition of the frame’s 

braces at the end of interval 𝑗, where 𝑛𝐵 = 13 is the number of braces (see Figure 5.4). The dif-

ferent 𝐵𝑘,𝑗 are binary random variables modeling the condition of brace 𝑘 at the end of interval 𝑗 

with states 𝐵𝑘,𝑗 = 1 (brace 𝑘 is fully intact at time 𝑡𝑗) and 𝐵𝑘,𝑗 = 0 (brace 𝑘 has completely lost 

its capacity at time 𝑡𝑗). A brace loses its capacity as soon as one of the associated hotspots (i.e. the 
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associated welded connections) fails. The relation between the hotspot conditions 𝐃𝑗  and the con-

dition of the braces 𝐁𝑗  can be defined as follows: 

𝐁𝑗 = 𝐀 ∙ 𝐃𝑗  (5.32) 

where 𝐀 is an adjacency matrix of size 𝑛𝐵 × 𝑛𝐸 with elements 𝑎𝑘𝑖 = 1 if hotspot 𝑖 belongs to brace 

𝑘 and 𝑎𝑘𝑖 = 0 otherwise. 

The capacity of the frame 𝑅 at time 𝑡𝑗 with respect to the applied load is evaluated in function of 

the brace conditions at time 𝑡𝑗, 𝐁𝑗 , and thus implicitly in function of 𝐗𝑅 . Failure of the damaged 

frame in year 𝑗 occurs when the annual maximum load 𝑆𝑚𝑎𝑥,𝑗 exceeds the frame’s capacity 𝑅(𝐁𝑗). 

Consequently, the interval failure probability of the frame in function of a certain realization of the 

brace conditions at time 𝑡𝑗, 𝐁𝑗 = 𝐛𝑗, can be computed as: 

Pr(𝐹𝑗
∗|𝐁𝑗 = 𝐛𝑗) = Pr[𝑟(𝐛𝑗) ≤ 𝑆𝑚𝑎𝑥,𝑗] = 1 − 𝐹𝑆𝑚𝑎𝑥,𝑗 [𝑟(𝐛𝑗)] (5.33) 

where 𝑟(𝐛𝑗) denotes the realization of the frame’s capacity when 𝐁𝑗  takes the value 𝐛𝑗. The mean 

of the annual maximum load 𝑆𝑚𝑎𝑥,𝑗 is selected such that the undamaged Zayas frame has an inter-

val failure probability Pr(𝐹𝑗
∗|𝐁𝑗 = 𝟎) = 1.3 ∙ 10

−6, i.e. 𝜇𝑆𝑚𝑎𝑥,𝑗 = 62 kN. 

The capacity 𝑟(𝐛𝑗) is here computed by performing a pushover analysis based on a non-linear 

finite-element model of the frame with all braces damaged according to 𝐁𝑗 = 𝐛𝑗, i.e. all braces 

with failed welded connections are removed from the model used in the pushover analysis. 

Through such an analysis the ultimate capacity of framed steel structures with respect to the ap-

plied loads can be quantified. Non-linear effects associated with non-linear material behavior, im-

perfections, large displacements and deformations (large strains) are modeled explicitly. The anal-

ysis captures load redistribution within the structural system resulting from local stiffness changes. 

Ultimately, it simulates the entire collapse process of the structural system including initial yield-

ing, formation of plastic hinges, member buckling as well as formation of a global system collapse 

mechanism (see Ultiguide 1999; Skallerud and Amdahl 2002). 

In the current study, 213 = 8192 pushover analyses are carried out using USFOS (2014) to pre-

compute the capacity 𝑟(𝐛𝑗) for all possible realizations of the brace conditions 𝐁𝑗 . This approach 

is here possible since the material and geometry properties are modeled as deterministic parame-

ters and the number of possible realizations of the brace conditions 𝐁𝑗  is manageable. The corre-

sponding conditional interval failure probabilities Pr(𝐹𝑗
∗|𝐁𝑗 = 𝐛𝑗) are computed according to 

Equation (5.33) and collected in a data base. These interval failure probabilities have a reference 

period of one year, but they are independent of year 𝑗 because the annual maximum loads 𝑆𝑚𝑎𝑥,𝑗 

are identically distributed. In the subsequent reliability analysis of the deteriorating frame, the 

computation of Pr(𝐹𝑗
∗|𝐗𝑅 = 𝐱𝑅) corresponds to a lookup operation in which a realization 𝐱𝑅 is 

matched to a pre-computed interval failure probability Pr(𝐹𝑗
∗|𝐁𝑗 = 𝐛𝑗) at time 𝑡𝑗 by combining 

Equations (5.5) and (5.32), i.e. 𝐛𝑗 = 𝐀 ∙ 𝐡𝐷(𝐱𝑅, 𝑡𝑗). 

The structural importance of brace 𝑘 – and thus the structural importance of all hotspots belonging 

to brace 𝑘 – is quantified by the single-element importance measure SEI𝑘  (see Equation (5.34)), 

which is defined as the difference between the interval failure probability of the intact frame and 
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the interval failure probability of the frame with brace 𝑘 removed (Straub and Der Kiureghian 

2011; Straub 2018b). The single-element importance measures for all braces and hotspots of the 

Zayas frame are summarized in Table 5.2. The lower X-braces (braces 5 to 8) are the most im-

portant braces followed by the X-braces on the level above (braces 1 to 4). The top braces (braces 

9 and 10) and the horizontal braces (braces 11 to 13) are the least important braces. 

 SEI𝑘 = Pr(𝐹𝑗
∗|𝐵1,𝑗 = 0,… , 𝐵𝑘−1,𝑗 = 0,𝐵𝑘,𝑡 = 1,𝐵𝑘+1,𝑗 = 0,… ,𝐵𝑛𝐵 ,𝑗 = 0) − 

               Pr(𝐹𝑗
∗|𝐁𝑗 = 𝟎) 

(5.34) 

5.7.1.2 Fatigue model 

Fatigue failure of tubular joints typically occurs by initiation and subsequent growth of surface 

cracks at the weld toe in hotspot regions (Lassen and Recho 2006). For the purpose of illustration, 

the evolution of the fatigue crack depth 𝐴𝑖 at a given hotspot 𝑖 is described by a simple one-di-

mensional crack growth model based on Paris’ law (Paris and Erdogan 1963): 

𝑑𝐴𝑖(𝑛)

𝑑𝑛
= 𝐶𝑖 [Δ𝑆𝑖(𝑛)√𝜋𝐴𝑖(𝑛)]

𝑀𝑖
 (5.35) 

where 𝑑𝐴𝑖(𝑛) 𝑑𝑛⁄  is the crack growth rate, 𝑛 is the number of applied fatigue stress cycles, 𝐶𝑖 and 

𝑀𝑖 are empirical material parameters and Δ𝑆𝑖(𝑛) is the varying far-field fatigue stress range as a 

function of the stress cycles 𝑛. The quantity Δ𝐾 = Δ𝑆𝑖(𝑛)√𝜋𝐴𝑖(𝑛) is the stress intensity factor 

(SIF) range. The model can be extended to describe more complex crack shapes, hotspot geome-

tries and stress distributions (e.g. Straub 2004; Maljaars et al. 2012). If desired, the model can be 

replaced altogether with a more advanced crack growth model (e.g. Altamura and Straub 2014). 

This will not affect the method as described in this case study. 

Fatigue loads are generally random in nature and the load sequence {Δ𝑆𝑖(𝑛)}𝑛=1
∞  is ideally modeled 

by a stochastic process, i.e. for every stress cycle 𝑛 there is a random variable Δ𝑆𝑖(𝑛). Under the 

condition that the fatigue stress process is stationary, ergodic and sufficiently mixing, a simplified 

Table 5.2: Single-element importance (𝑆𝐸𝐼) measure and structural importance category of all braces and hotspots of 

the Zayas frame. 

Brace Hotspot  SEI Structural importance category 

1, 3 7, 8, 9 1.14 × 10−5  medium 

2, 4 10, 11, 12 1.06 × 10−5  medium 

5, 7 15, 16, 17 1.99 × 10−3  high 

6, 8 18, 19, 20 2.00 × 10−3  high 

9, 10 1, 2, 3, 4 7.25 × 10−7  low 

11 5, 6 8.26 × 10−8  low 

12 13, 14 6.31 × 10−7  low 

13 21, 22 2.27 × 10−7  low 
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approach may be adopted in which the crack growth rate 𝑑𝐴𝑖(𝑛) 𝑑𝑛⁄  given by Equations (5.35) is 

approximated by its expected value with respect to Δ𝑆𝑖 (Altamura and Straub 2014)8: 

𝑑𝐴𝑖(𝑛)

𝑑𝑛
≈ 𝔼Δ𝑆𝑖 [𝐶𝑖 [Δ𝑆𝑖(𝑛)√𝜋𝐴𝑖(𝑛)]

𝑀𝑖
] = 𝐶𝑖[√𝜋𝐴𝑖(𝑛)]

𝑀𝑖
∙ 𝔼Δ𝑆𝑖 [Δ𝑆𝑖(𝑛)

𝑀𝑖 ] (5.36) 

The fatigue stress process is described by its stationary (long term) distribution 𝑓Δ𝑆𝑖(Δ𝑠𝑖) and an 

annual stress cycle rate 𝜈𝑖 (e.g. Madsen et al. 1986). The quantity 

Δ𝑆𝑒,𝑖 = (𝔼Δ𝑆𝑖 [Δ𝑆𝑖(𝑛)
𝑀𝑖 ])

1/𝑀𝑖
 (5.37) 

is interpreted as an equivalent stress range. In the current case study, it is assumed that the station-

ary distribution of the fatigue stress ranges 𝑓Δ𝑆𝑖 (Δ𝑠𝑖) can be modeled by a Weibull distribution. 

The equivalent stress range is hence given by: 

Δ𝑆𝑒,𝑖 = 𝐾Δ𝑆,𝑖Γ(1 +
𝑀𝑖
𝜆Δ𝑆,𝑖

)

1/𝑀𝑖

 (5.38) 

Γ(∙) denotes the Gamma function and 𝐾Δ𝑆,𝑖 and 𝜆Δ𝑆,𝑖 are the Weibull scale and shape parameters. 

𝐾Δ𝑆,𝑖 is modeled as a lognormal random variable to represent statistical uncertainty in the estima-

tion of the parameters of 𝑓Δ𝑆𝑖 (Δ𝑠𝑖). 𝜆Δ𝑆,𝑖 is assumed to be deterministic. 

The parameters 𝐶𝑖 and 𝑀𝑖 of Paris’ law are modeled as time-invariant random variables to capture 

uncertainties due to the variability of the material properties and material inhomogeneities. Proper 

attention must be paid to modeling the correlation among 𝐶𝑖 and 𝑀𝑖. They are empirical parameters 

generally derived from the same experiments and are therefore strongly correlated. To model the 

dependence among the Paris’ law parameters, the linear relationship between ln 𝐶𝑖 and 𝑀𝑖 given 

in (Gurney 1978) is adopted9: 

ln 𝐶𝑖 = −15.84 − 3.34𝑀𝑖  (5.39) 

Equation (5.39) is valid if stresses are given in N/mm2 and the crack growth rate in m/cycle. In the 

following, 𝐶𝑖 is modeled as a lognormally distributed random variable. 𝑀𝑖 is thus normal distrib-

uted due to the linear relationship between ln 𝐶𝑖 and 𝑀𝑖. 

To capture uncertainties in the fabrication quality, the initial crack size 𝐴0,𝑖 is modeled as a random 

variable with exponential distribution. Uncertainties in the calculation of the hotspot stress and 

SIF range are captured by introducing lognormal random bias factors 𝐵Δ𝑆,𝑖 and 𝐵𝑆𝐼𝐹,𝑖 , which are 

 
8 In general, fatigue loads are characterized by the a random process Δ𝑆(𝑛) representing the stress ranges and a random 

process 𝑅(𝑛) = 𝑆𝑚𝑖𝑛(𝑛)/𝑆𝑚𝑎𝑥(𝑛) representing the corresponding stress ratios, where 𝑆𝑚𝑖𝑛(𝑛) and 𝑆𝑚𝑎𝑥(𝑛) are the 
minimum and maximum stresses during each stress cycle 𝑛 (see also Altamura and Straub 2014). Note that Paris’ law 

disregards the effect of the stress ratio. 
9 Equation (5.39) changes to ln𝐶𝑖+ (𝑀𝑖/2− 1)ln(1000) = −15.84 − 3.34𝑀𝑖 if stresses are given in N/mm2 and 

the crack growth rate in mm/cycle (see Lassen and Recho 2006). 
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multiplied with the calculated equivalent stress range Δ𝑆𝑒,𝑖. The one-dimensional crack growth 

model given in Equation (5.35) is rewritten as: 

𝑑𝐴𝑖(𝑛)

𝑑𝑛
= 𝐶𝑖 [𝐵𝑆𝐼𝐹,𝑖𝐵Δ𝑆,𝑖Δ𝑆𝑒,𝑖√𝜋𝐴𝑖(𝑛)]

𝑀𝑖
 (5.40) 

Using the initial condition 𝐴𝑖(𝑛 = 0) = 𝐴0,𝑖, an analytical function 𝐴𝑖(𝐗𝑅, 𝑡𝑗) can be obtained 

from Equation (5.40) to predict the fatigue crack size at a given hotpot 𝑖 at time 𝑡𝑗 (see also Madsen 

et al. 1986): 

𝐴𝑖(𝐗𝑅, 𝑡𝑗) = [(1 −
𝑀𝑖
2
 ) 𝐶𝑖𝐵𝑆𝐼𝐹,𝑖

𝑀𝑖 𝐵Δ𝑆,𝑖
𝑀𝑖 𝛥𝑆𝑒,𝑖

𝑀𝑖𝜋
𝑀𝑖
2 𝜈𝑖𝑡𝑗 +𝐴0,𝑖 

(1−
𝑀𝑖
2
)
]

(1−
𝑀𝑖
2
)
−1

 (5.41) 

where 𝜈𝑖 is the annual stress cycle rate and 𝜈𝑖𝑡𝑗 is the total number of stress cycles applied at a 

given hotspot 𝑖 up to time 𝑡𝑗. Δ𝑆𝑒,𝑖 is computed as a function of 𝐾Δ𝑆,𝑖, 𝜆Δ𝑆,𝑖 and 𝑀𝑖 according to 

Equation (5.38). 

The vector of all stochastic parameters describing fatigue deterioration of all 𝑛𝐸 hotspots consid-

ered in the system reliability analysis is defined as: 

𝐗𝑅 = [𝐶1, 𝐴0,1, 𝐵𝑆𝐼𝐹 ,1, 𝐵Δ𝑆,1, 𝐾Δ𝑆,1, … , 𝐶𝑛𝐸 , 𝐴0,𝑛𝐸 , 𝐵𝑆𝐼𝐹,𝑛𝐸 , 𝐵Δ𝑆,𝑛𝐸 , 𝐾Δ𝑆,𝑛𝐸]
𝑇
 (5.42) 

For illustration purposes, the same probabilistic models are applied to describe the crack growth 

model parameters for all hotspots 𝑖 = 1,… , 𝑛𝐸. These models are listed in Table 5.3.  

The mean and standard deviation of the equivalent stress range Δ𝑆𝑒,𝑖 are a function of the distri-

butions of ln𝐾Δ𝑆,𝑖  and ln 𝐶𝑖 through Equations (5.38) and (5.39). They are 𝜇Δ𝑆𝑒,𝑖 = 20.1 N/mm2 

and 𝜎Δ𝑆𝑒,𝑖 = 5.65 N/mm2. Note that in real structures, the parameters of the fatigue crack growth 

model will vary from hotspot to hotspot. This will, however, not affect the methods presented in 

this thesis. 

Table 5.3: Prior probabilistic models of the fatigue crack growth parameters for all hotspots 𝑖 = 1,… , 𝑛𝐸 . 

Parameter Dimension Distribution Mean Standard deviation 

ln𝐾Δ𝑆,𝑖  corresponding to N/mm2 normal 2.0 0.275 

𝜆Δ𝑆,𝑖  - deterministic 0.8 - 

𝜈𝑖  yr-1 deterministic 5106 - 

𝐴0,𝑖  mm exponential 0.11 0.11 

𝑎𝑐,𝑖  mm deterministic 20 - 

ln 𝐶𝑖  corresponding to N and mm normal -29.97 0.514 

𝑀𝑖  - calculated from Equation (5.39) 

𝐵Δ𝑆,𝑖 - lognormal 1.0 0.1 

𝐵𝑆𝐼𝐹 ,𝑖  - lognormal 1.0 0.1 
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Fatigue failure of any hotspot 𝑖 is described by the limit state function  𝑔𝑖(𝐱𝑅, 𝑡𝑗) defined in Equa-

tion (5.30). All stochastic input parameters 𝐗𝑅  are time-invariant and 𝑔𝑖(𝐱𝑅, 𝑡𝑗) is monotonically 

decreasing with time 𝑡𝑗. This model thus belongs to model class (a) described in Section 4.2. Based 

on the prior probabilistic models summarized in Table 5.3, the prior marginal probability of fatigue 

failure of any hotspot 𝑖 at time 𝑡𝑗, Pr[𝐹𝑖(𝑡𝑗)] = Pr[𝑔𝑖(𝐗𝑅, 𝑡𝑗) ≤ 0], is computed with FORM. The 

results are shown in Figure 5.5.  

Statistical dependence among hotspot fatigue behavior is modeled through correlation coefficients 

among the fatigue model parameters. In the current example, the fatigue model parameters 𝐴0,𝑖, 

𝐶𝑖, 𝐾Δ𝑆,𝑖, 𝐵Δ𝑆,𝑖 and 𝐵𝑆𝐼𝐹,𝑖  are assumed to be equi-correlated among all hotspots 𝑖 = 1,… , 𝑛𝐸 with 

correlation coefficients 𝜌𝐴0 , 𝜌ln 𝐶 , 𝜌ln 𝐾Δ𝑆 , 𝜌𝐵Δ𝑆  and 𝜌𝐵𝑆𝐼𝐹 . The correlation coefficient 𝜌𝐴0  repre-

sents the stochastic dependence due to common fabrication quality; 𝜌ln 𝐶 reflects the stochastic 

dependence due to common material characteristics; 𝜌ln 𝐾Δ𝑆  models the stochastic dependence due 

to common loading characteristics; and 𝜌𝐵Δ𝑆  and 𝜌𝐵𝑆𝐼𝐹  describe stochastic dependence due to 

common uncertainties in the calculation of the hotspot fatigue stress and SIF ranges. The joint 

distribution of all fatigue model parameters is subsequently modeled through a Gaussian copula 

(Nataf) model (Liu and Der Kiureghian 1986). 

To study the influence of different levels of statistical dependence among hotspot fatigue behavior, 

two different dependence cases are considered (low and high dependence), which are defined in 

terms of the correlation coefficients 𝜌𝐴0, 𝜌ln 𝐶, 𝜌ln 𝐾Δ𝑆 , 𝜌𝐵Δ𝑆   and 𝜌𝐵𝑆𝐼𝐹  listed in Table 5.4. 

5.7.1.3 Inspection model 

In the current context, the relevant inspection outcomes are (a) no detection, (b) detection but no 

measurement, and (c) detection and measurement of a fatigue crack. These inspection outcomes 

are directly related to the crack size at the inspected hotspot at the time of the inspection. Here, 

inspection outcomes of the type (a) and (b) are considered. It is assumed that magnetic particle 

inspection (MPI) is applied to detect a surface crack at a given hotspot (see, for example, Lovejoy 

1993). The method applies a magnetic field in the tested component. At the same time, visible iron 

particles are sprayed onto the tested surface. A surface crack interrupts the magnetic field flowing 

 

Figure 5.5: Prior marginal probability of fatigue failure Pr[𝐹𝑖(𝑡)] of hotspots 𝑖 = 1, … , 𝑛𝐸 . Pr[𝐹𝑖(𝑡)] is approximated 

by interpolation of the failure probabilities Pr[𝐹𝑖(𝑡𝑗)] = Pr[𝑔𝑖(𝐗𝑅 ,𝑡𝑗)≤ 0] for times 𝑡𝑗 = 1,… ,50 yr. Computations 

of Pr[𝐹𝑖(𝑡𝑗)] are performed with FORM. 
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through the component and a leakage field occurs. The iron particles cluster at the edges of the 

crack and thus make it visible. The information provided by an inspection using MPI is classified 

following Section 5.3.1. The classification is summarized in Table 5.5. 

The quality of an inspection technique for detecting surface cracks in welds is commonly described 

by a probability of detection 𝑃𝑜𝐷(𝑎) , which is defined as: 

𝑃𝑜𝐷(𝑎) = Pr("detection of a fatigue crack with depth 𝐴 = 𝑎") (5.43) 

The 𝑃𝑜𝐷 accounts for uncertain factors such as measurement errors, inspector performance and 

environmental conditions (Straub 2004). To model the performance of MPI, an exponential prob-

ability of detection curve is here applied (Moan et al. 2000): 

𝑃𝑜𝐷(𝑎) = 1− exp(−𝑎/𝜆𝐷) (5.44) 

with 𝜆𝐷 = 1.95 mm. 

In addition to the 𝑃𝑜𝐷, an inspection method for detecting fatigue cracks is characterized by the 

probability of false indication (𝑃𝐹𝐼), which is the probability of obtaining an indication of a fatigue 

crack when no fatigue crack is present. It has to be specified relative to a reference weld length 

(Straub 2004). 

During an inspection of a weld, an indication can occur either due to the detection of an existing 

crack or due to a false indication. The events “detection of a fatigue crack” and “false indication” 

Table 5.4: Correlation coefficients modeling stochastic dependence among the parameters of the fatigue crack growth 

model. 

 Low dependence High dependence 

𝜌𝐴0 0.2 0.8 

𝜌ln 𝐶 0.2 0.8 

𝜌ln 𝐾Δ𝑆  0.2 0.8 

𝜌𝐵Δ𝑆   0.2 0.8 

𝜌𝐵𝑆𝐼𝐹  0.2 0.8 

Table 5.5: Classification of magnetic particle inspection employed to detect surface cracks at hotspots in tubular 

joints. 

Classification Categories 

Inspected/monitored quantity An indicator related to an element condition (The observed quantity is 

the cluster of iron particles at the edges of the surface crack at the in-

spected hotspot at the time of the inspection.) 

Type of information Inequality information (detection/no detection of a fatigue crack)  

Temporal characteristics Data collection at discrete points in time 

Spatial characteristics Spatially discrete data collection (Only hotspot regions of tubular joints 

are inspected, which are spatially confined.) 
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cannot be distinguished when performing an in-service inspection. For this reason, Straub (2004) 

combines the 𝑃𝑜𝐷 and the 𝑃𝐹𝐼 into a single quantity called the probability of indication 𝑃𝑜𝐼: 

𝑃𝑜𝐼(𝑎) = 𝑃𝑜𝐷(𝑎) + [1 − 𝑃𝑜𝐷(𝑎)] ∙ 𝑃𝐹𝐼 (5.45) 

The 𝑃𝑜𝐼 is also defined with respect to a certain weld length because the 𝑃𝐹𝐼 is a function of 

length. According to Straub (2004), the 𝑃𝐹𝐼 of MPI for tubular joints is 0.298 per meter. Assuming 

that the inspected weld length is 0.5 m per hotspot and the occurrence of a false indication can be 

modeled by a Poisson point process, the 𝑃𝐹𝐼 is 0.138 per hotspot. This value is adopted in the 

current example. 

In the following, an inspection outcome is modeled by a binary random variable 𝑍𝑖,𝑘 with states 

𝑍𝑖,𝑘 = 0 (no indication of a fatigue crack at hotspot 𝑖 in year 𝑘) and 𝑍𝑖,𝑘 = 1 (indication of a fatigue 

crack at hotspot 𝑖 in year 𝑘). The likelihood functions modeling these inspection outcomes are 

constructed by combining the 𝑃𝑜𝐼 model with the fatigue crack growth model described in Section 

5.7.1.2. The likelihood function describing the inspection outcome 𝑍𝑖,𝑘 = 1 is written as: 

𝐿(𝐱𝑅|𝑧𝑖,𝑘 = 1) = 𝑃𝑜𝐼[𝑎𝑖(𝐱𝑅, 𝑡𝑘)] (5.46) 

The likelihood function describing the inspection outcome 𝑍𝑖,𝑘 = 0 is defined as: 

𝐿(𝐱𝑅|𝑧𝑖,𝑘 = 0) = 1 − 𝑃𝑜𝐼[𝑎𝑖(𝐱𝑅, 𝑡𝑘)] (5.47) 

In the current example, it is assumed – as commonly done in inspection modeling – that different 

inspection outcomes 𝑍𝑖,𝑘 are stochastically independent for given crack depths 𝑎𝑖(𝐱𝑅, 𝑡𝑘). The 

combined likelihood function 𝐿(𝐱𝑅|𝐳1:𝑘) of all inspection outcomes 𝐙1:𝑘 = 𝐳1:𝑘 up to time 𝑡𝑘 is 

thus given by Equation (5.7). 

Note that stochastic dependence in the inspection performance from one location to another often 

exist due to common influencing factors such as environmental conditions and inspector charac-

teristics. Such dependencies can be captured through modeling the parameters of the 𝑃𝑜𝐼 models 

as correlated random variables (see, for example, Straub and Faber 2003; Maljaars and 

Vrouwenvelder 2014). In this way, the uncertainty in the 𝑃𝑜𝐼 and the dependence among inspec-

tion quality at different locations can be accounted for. 

Since indication/no-indication events provide inequality information, the constant 𝑐 that ensures 

𝑐𝐿(𝐱𝑅|𝐳1:𝑘) ≤ 1 for all 𝐱𝑅 can be chosen as 𝑐 = 1. 

5.7.1.4 Prior reliability analysis 

An estimate of the prior probability of failure Pr[𝐹(𝑡)] of the Zayas frame is computed for each 

degree of dependence among hotspot fatigue behavior following Sections 5.4 and 5.6. The problem 

is solved using SuS with conditional probabilities of each intermediate event of 0.1 and 1000 

MCMC samples per subset level, and the statistics of Pr[𝐹(𝑡𝑗)] are determined from 500 inde-

pendent SuS runs. This approach is applied in all numerical examples presented in Section 5.7. 

The results of the analysis are shown in Figure 5.6. The width of the 95% credible interval indi-

cates the accuracy of the SuS. The interval has 0.95 probability of containing the true value of the 
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failure probability (within the confines of the model). The accuracy of the computation varies with 

time 𝑡 since the number of samples per subset level used in the simulation is the same for all years. 

Results are less accurate for low values of 𝑡, because of the associated smaller failure probability. 

The accuracy of the SuS can be improved by increasing the number of samples. 

Figure 5.7 shows the bounds on the failure probability, which are computed following Equation 

(4.20). To determine the required interval failure probabilities Pr(𝐹𝑗
∗), the conditional failure prob-

ability Pr[𝐹(𝑡𝑗)|𝐗𝑅 = 𝐱𝑅] in the limit state function 𝑔𝐹  defined in Equation (5.12) is simply re-

placed by the conditional interval failure probability Pr(𝐹𝑗
∗|𝐗𝑅 = 𝐱𝑅) (see also Schneider et al. 

2017). Pr(𝐹𝑗
∗) is then computed following Equation (5.13). Note that Figure 5.7 only shows the 

mean of the SuS estimate for Pr[𝐹(𝑡)] and the mean of the SuS estimate for the corresponding 

bounds. 

At the beginning of the service life – when deterioration has little effect – the failure probability 

Pr[𝐹(𝑡)] is close to the upper bound. This behavior is more clearly visible in Figure 5.7(a). Over 

time, the failure probability converges to the lower bound indicating that the uncertainty on the 

frame’s condition and thus the uncertainty on the frame’s capacity dominates the reliability. 

  

Figure 5.6: Failure probability Pr[𝐹(𝑡)] of the Zayas frame as a function of different degrees of dependence among 

hotspot fatigue behavior. 

  

Figure 5.7: Best estimate of the bounds on Pr[𝐹(𝑡)] together with the best estimate of Pr[𝐹(𝑡)] as a function of the 

degree of dependence among hotspot fatigue behavior. 
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Figure 5.8(a) compares the mean of the SuS estimate for the failure probability Pr[𝐹(𝑡)] of the 

Zayas frame computed for the different degrees of dependence among hotspot fatigue behavior. It 

additionally shows the failure probability Pr[𝐹(𝑡)] of the Zayas frame without deterioration. The 

corresponding failure rates 𝜆(𝑡) are evaluated from Pr[𝐹(𝑡)] according to Equation (4.9) and 

shown in Figure 5.8(b). The effect of deterioration on the structural reliability of the frame is 

clearly visible. In addition, it is evident that a higher dependence among fatigue failures in the 

structural system leads to a larger system failure probability due to an increased probability of two 

or more simultaneous fatigue failures. This result is expected for a redundant structural system 

(Straub and Der Kiureghian 2011). 

The net-present value of the service life risk is computed following Equation (4.10) with 𝛾 = 2% 

and 𝑐𝐹(𝑡) = €10
6. Without deterioration, the risk is €39.8. With deterioration, it is €3.76 ∙ 104 

when the dependence among hotspot fatigue behavior is small, and €4.98 ∙ 104  when the depend-

ence is high. The effect of deterioration and dependence among hotspot fatigue behavior is again 

evident. 

5.7.1.5 Posterior reliability analysis 

In this section, different inspection scenarios in terms of inspection times, coverage and outcomes 

are considered to study the effect of inspections on the reliability estimates for the Zayas frame. 

Firstly, hotspots {5, 6, 13, 14, 21, 22} are inspected at time 𝑡 = 10 yr. These hotspots are associ-

ated with the least important braces of the frame (see Figure 5.4 and Table 5.2). It is assumed that 

no fatigue cracks are indicated during the inspection. Figure 5.9 shows the probability of failure 

of the structure conditional on the inspection outcome as a function of the degree of dependence 

among hotspot fatigue behavior. At each time 𝑡, the failure probability is conditioned on the in-

spection outcomes available up to time 𝑡 = 10 yr. For times 𝑡 < 10 yr, this corresponds to smooth-

ing (see also Section 4.5). The computation of Pr[𝐹(𝑡)|𝑍(10 yr)] follows Sections 5.5 and 5.6. 

Figure 5.10 compares the best estimate of Pr[𝐹(𝑡)|𝑍(10 yr)] with the best estimate of the corre-

sponding bounds. The bounds on Pr[𝐹(𝑡𝑗)|𝑍(10 yr)] are evaluated by substituting the prior inter-

val failure probabilities Pr(𝐹𝑗
∗) in Equation (4.20) with the posterior interval failure probabilities 

Pr[𝐹𝑗
∗|𝑍(10 yr)]. The probabilities Pr[𝐹𝑗

∗|𝑍(10 yr)] are in turn determined by substituting 

  

Figure 5.8: (a) Failure probability Pr[𝐹(𝑡)] and (b) failure rate 𝜆(𝑡) of the Zayas frame with and without deterioration. 
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Pr[𝐹(𝑡𝑗)|𝐗𝑅 = 𝐱𝑅] in the limit state function 𝑔𝐹∩𝑍 defined in Equation (5.20) with 

Pr(𝐹𝑗
∗|𝐗𝑅 = 𝐱𝑅) (see also Schneider et al. 2017). Pr[𝐹𝑗

∗|𝑍(10 yr)] is subsequently calculated fol-

lowing Equation (5.22). 

The updated failure probability Pr[𝐹(𝑡)|𝑍(10 yr)] is closer to the upper bound approximately for 

the first 10 years. This result implies that in this period, the reliability is dominated by the uncer-

tainty on the time-variant loads. Thereafter, the failure probability approaches again the lower 

bound as the effect of the inspection decreases with time and the uncertainty on the structural 

condition dominates again the reliability. 

Figure 5.11 shows the best estimate of the failure probability at time 𝑡 conditional on the infor-

mation available up to time 𝑡, i.e. Pr[𝐹(𝑡)|𝑍(𝑡)]. This corresponds to filtering (see also Section 

4.5). In addition, Figure 5.11 plots the best estimate of the failure probability at time 𝑡 conditional 

on the information available up to time 𝑡 = 10 yr, i.e. Pr[𝐹(𝑡)|𝑍(10 yr)]. It is evident that the 

failure probability of the frame reduces because of the inspection result. The effect is larger when 

the dependence among hotspot fatigue failures is high. 

  

Figure 5.9: Updated failure probability Pr[𝐹(𝑡)|𝑍(10 yr)] of the Zayas frame. Hotspots {5, 6, 13, 14, 21, 22} are in-

spected at time 𝑡 = 10 yr. No fatigue cracks are indicated during the inspection. 

  

Figure 5.10: Best estimate of the bounds on Pr[𝐹(𝑡)|𝑍(10 yr)] together with the best estimate of Pr[𝐹(𝑡)|𝑍(10 yr)]. 
Hotspots {5, 6, 13, 14, 21, 22} are inspected at time 𝑡 = 10 yr. No fatigue cracks are indicated during the inspection. 
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In the second example, hotspots {15,16,17,18,19,20} are inspected at time 𝑡 = 10 yr. These 

hotspots are associated with the most important braces of the Zayas frame (see Figure 5.4 and 

Table 5.2). It is again assumed that no fatigue cracks are indicated. The corresponding posterior 

failure probability Pr[𝐹(𝑡)|𝑍(10 yr)] of the structure is shown in Figure 5.12 for both degrees of 

dependence among hotspot fatigue behavior.  

Figure 5.13 shows the best estimate of the bounds on Pr[𝐹(𝑡)|𝑍(10 yr)] together with the best 

estimate of Pr[𝐹(𝑡)|𝑍(10 yr)]. The updated failure probability is close to the upper bound approx-

imately for the first 12 years indicating that deterioration is negligible in this period and the relia-

bility is dominated by the time-variant loads. Over time, when the effect of the inspection outcome 

diminishes, the uncertainty on the structural condition dominates again the reliability. 

Figure 5.14 shows best estimate of the filtered failure probability Pr[𝐹(𝑡)|𝑍(𝑡)] together with the 

best estimate of the failure probability conditional on the information available up to time 𝑡 =

10 yr, i.e. Pr[𝐹(𝑡)|𝑍(10 yr)]. In contrast to the first inspection scenario, an inspection of the most 

  

Figure 5.11: Best estimate of the failure probability of the Zayas frame at time 𝑡 conditional the inspection outcome. 

The solid line is the failure probability at time 𝑡 conditional on the information available up to time 𝑡, i.e. Pr[𝐹(𝑡)|𝑍(𝑡)] 
(filtering). The dashed line is the failure probability at time 𝑡 conditional on the information available up to time 𝑡 =
10 yr, i.e. Pr[𝐹(𝑡)|𝑍(10 yr)]. Hotspots {5, 6, 13, 14, 21, 22} are inspected in year 10. No fatigue cracks are indicated 

during the inspection. 

  

Figure 5.12: Updated failure probability Pr[𝐹(𝑡)|𝑍(10 yr)] of the Zayas frame. Hotspots {15,16,17,18,19,20}  are 

inspected at time 𝑡 = 10 yr. No fatigue cracks are indicated during the inspection. 
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important structural elements has a significant effect on the failure probability regardless of the 

degree of dependence among hotspot deterioration. 

In the third scenario, hotspots {15,16,17,18,19,20} are again inspected in year 10. It is assumed 

that no fatigue cracks are indicated at hotspots {15,16,17,18} and fatigue cracks are indicated at 

hotspots {19,20}. The updated failure probability Pr[𝐹(𝑡)|𝑍(10 yr)] is shown in Figure 5.15. The 

best estimate of the bounds on Pr[𝐹(𝑡)|𝑍(10 yr)] and the best estimate of Pr[𝐹(𝑡)|𝑍(10 yr)] are 

shown in Figure 5.16. The filtered failure probability Pr[𝐹(𝑡)|𝑍(𝑡)] together with the failure prob-

ability conditional on the information available up to time 𝑡 = 10 yr, Pr[𝐹(𝑡)|𝑍(10 yr)], are pre-

sented in Figure 5.17. In the low dependence case, the no indication and indication outcomes ap-

pear to counterbalance each other, and the joint inspection outcome has little effect on the esti-

mated failure probability. In the high dependence case, the joint inspection outcome results in a 

small reduction in the failure probability estimate. 

  

Figure 5.13: Best estimate of the bounds on Pr[𝐹(𝑡)|𝑍(10 yr)] together with the best estimate of Pr[𝐹(𝑡)|𝑍(10 yr)]. 
Hotspots {15,16,17,18,19,20} are inspected at time 𝑡 = 10 yr. No fatigue cracks are indicated during the inspection. 

  

Figure 5.14: Best estimate of the failure probability of the Zayas frame at time 𝑡 conditional the inspection outcome. 

The solid line is the failure probability at time 𝑡 conditional on the information available up to time 𝑡, i.e. Pr[𝐹(𝑡)|𝑍(𝑡)] 
(filtering). The dashed line is the failure probability at time 𝑡 conditional on the information available up to year 10, 

i.e. Pr[𝐹(𝑡)|𝑍(10 yr)]. Hotspots {5, 6, 13, 14, 21, 22} are inspected in year 10. No fatigue cracks are indicated during 

the inspection. 
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Figure 5.15: Updated failure probability Pr[𝐹(𝑡)|𝑍(10 yr)] of the Zayas frame. Hotspots {15,16,17,18,19,20}  are 

inspected at time 𝑡 = 10 yr. No fatigue cracks are indicated at hotspots {15,16,17,18} and fatigue cracks are indicated 

at hotspots {19,20}. 

  

Figure 5.16: Best estimate of the bounds on Pr[𝐹(𝑡)|𝑍(10 yr)] together with the best estimate of Pr[𝐹(𝑡)|𝑍(10 yr)]. 
Hotspots {15,16,17,18,19,20} are inspected at time 𝑡 = 10 year. No fatigue cracks are indicated at hotspots 
{15,16,17,18} and fatigue cracks are indicated at hotspots {19,20}. 

  

Figure 5.17: Best estimate of the failure probability of the Zayas frame at time 𝑡 conditional the inspection outcome. 

The solid line is the failure probability at time 𝑡 conditional on the information available up to time 𝑡, i.e. 

Pr[𝐹(𝑡)|𝑍(𝑡)] (filtering). The dashed line is the failure probability at time 𝑡 conditional on the information available 

up to time 𝑡 = 10 yr, i.e. Pr[𝐹(𝑡)|𝑍(10 yr)]. Hotspots {15,16,17,18,19,20}  are inspected at time 𝑡 = 10 year. No 

fatigue cracks are indicated at hotspots {15,16,17,18} and fatigue cracks are indicated at hotspots {19,20}. 
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In the last scenario, regular inspections are performed every 10 years. Hotspots {15,16,7,8,5,6} 

are inspected at time 𝑡 = 10 yr, hotspots {17,18,9,10,13,14} at time 𝑡 = 20 yr, hotspots 

{19,20,11,12,21,22} at time 𝑡 = 30 yr and hotspots {1,2,3,4} at time 𝑡 = 40 yr. This inspection 

scheme ensures that (a) each hotspot is inspected at least once during the structure’s service life, 

(b) hotspots associated with braces of each importance category are checked during each inspec-

tion, with the exception of the last inspection, in which only hotspots associated with braces of the 

low importance category are inspected (see Figure 5.4 and Table 5.2). For simplicity, it is again 

assumed that all inspections result in a “no indication” outcome. The updated failure probability 

Pr[𝐹(𝑡)|𝑍(40 yr)] is shown in Figure 5.18, The results in Figure 5.18 demonstrate that the inspec-

tion outcomes influence the entire lifetime reliability of the frame. 

Figure 5.19 shows the best estimate of the bounds on Pr[𝐹(𝑡)|𝑍(40 yr)] and the best estimate of 

Pr[𝐹(𝑡)|𝑍(40 yr)]. The failure probability Pr[𝐹(𝑡)|𝑍(40 yr)] is close to the upper bound for the 

first 20 years if the dependence among element deterioration is small, and for the first 30 years if 

the dependence is high. This effect is due to the reduced influence of deterioration on the failure 

probability in this period.  

  

Figure 5.18: Updated failure probability Pr[𝐹(𝑡)|𝑍(40 yr)] of the Zayas frame. Hotspots {15,16,7,8,5,6} are in-

spected at time 𝑡 = 10 yr, hotspots {17,18,9,10,13,14}  at time 𝑡 = 20 yr, hotspots {19,20,11,12,21,22} at time 𝑡 =
30 yr and hotspots {1,2,3,4} at time 𝑡 = 40 yr No fatigue cracks are indicated. 

  

Figure 5.19: Best estimate of the bounds on Pr[𝐹(𝑡)|𝑍(40 yr)] together with the best estimate of Pr[𝐹(𝑡)|𝑍(40 yr)]. 
Hotspots {15,16,7,8,5,6} are inspected at time 𝑡 = 10 yr, hotspots {17,18,9,10,13,14}  at time 𝑡 = 20 yr, hotspots 
{19,20,11,12,21,22} at time 𝑡 = 30 yr and hotspots {1,2,3,4} at time 𝑡 = 40 yr. No fatigue cracks are indicated. 
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Figure 5.20 additionally presents the best estimate of the filtered failure probability Pr[𝐹(𝑡)|𝑍(𝑡)] 

of the frame. It also shows the best estimates of the failure probabilities Pr[𝐹(𝑡)|𝑍(𝑡𝑍)] condi-

tioned on the information available up to the different inspection times 𝑡𝑍 = 10, 20, 30, 40 yr. The 

inspection outcomes lead to a reduction in the failure probability Pr[𝐹(𝑡)|𝑍(𝑡)] after each inspec-

tion. The largest reduction is obtained when the dependence among hotspot deterioration is high. 

Table 5.6 summarizes 95% credible interval of the SuS estimates for the quantity10 𝑐−1 ∙ Pr[𝑍(𝑡𝑍)] 

at times 𝑡𝑍 = 10, 20, 30, 40 yr, which is equal to the denominator in Equation (5.14) (Straub and 

Papaioannou 2015b). It is a measure of the plausibility of the assumed model consisting of (a) the 

prior stochastic fatigue deterioration model (i.e. the physics-based deterioration model combined 

with the prior stochastic model of its model parameters) and (b) the inspection model (i.e. the 

likelihood function). In Bayesian system identification, the quantity 𝑐−1 ∙ Pr[𝑍(𝑡𝑍)] is referred to 

as the evidence of the assumed model and used in Bayesian model class selection (Beck 2010). In 

the current example, the two assumed models only differ in the degree of dependence among 

hotspot fatigue behavior. which is defined in terms of the coefficients of correlation specified in 

Table 5.4. The results in Table 5.6 show that high dependence yields the highest model evidence 

given the considered inspection data. 

Figure 5.21(a) shows the conditional failure probability Pr[𝐹(𝑡)|𝑍(40 yr)] of the Zayas frame for 

both degrees of dependence among hotspot fatigue behavior, and Figure 5.21(b) shows the corre-

sponding conditional failure rate 𝜆[𝑡|𝑍(40 yr)]. It is calculated from Pr[𝐹(𝑡)|𝑍(𝑇𝑆𝐿)] as described 

in Section 4.5. Finally, the risk discounted to time 𝑡 = 0 years is computed based on the posterior 

PDF 𝑓𝑇𝐹 [𝑡|𝑍(𝑇𝑆𝐿)] of the time to failure 𝑇𝐹, which is also determined from Pr[𝐹(𝑡)|𝑍(𝑇𝑆𝐿)]. With 

𝛾 = 2% and 𝑐𝐹(𝑡) = €10
6, the net-present value of the risk is €2.17 ∙ 103  in the low dependence 

case and €4.66 ∙ 102 in the high dependence case. These values are one to two orders of magnitude 

 
10 Note that the constant 𝑐 is chosen such that 𝑐𝐿(𝐱𝑅|𝐳1:𝑘)≤ 1 for all 𝐱𝑅. In the current example, it is chosen as 𝑐 = 1 
(see Section 5.7.1.3) 

  

Figure 5.20: Best estimate of the failure probability of the Zayas frame at time 𝑡 conditional on the inspection out-

comes. The solid line is the filtered failure probability Pr[𝐹(𝑡)|𝑍(𝑡)]. The dashed lines are the conditional failure 

probabilities Pr[𝐹(𝑡)|𝑍(𝑡𝑍)] for inspection times 𝑡𝑍 = 10, 20, 30, 40 yr. Hotspots {15,16,7,8,5,6} are inspected at 

time 𝑡 = 10 yr, hotspots {17,18,9,10,13,14}  at time 𝑡 = 20 yr, hotspots {19,20,11,12,21,22} at time 𝑡 = 30 yr and 

hotspots {1,2,3,4} are inspected at time 𝑡 = 40 yr. No fatigue cracks are indicated. 
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smaller than the corresponding values computed for the deteriorating Zayas frame without inspec-

tion (see Section 5.7.1.4). 

5.7.2 Daniels system 

The NRA approach is applied to a Daniels system consisting of welded steel elements with ductile 

element behavior (see Section 2.4.3). The system is subject to a time-variant load 𝑆(𝑡). Addition-

ally, the structural members are subject to fatigue deterioration throughout the system’s service life 

of 𝑇𝑆𝐿 = 50 years. The effect of monitoring results on the reliability of the structural system is 

studied. 

5.7.2.1 System model 

The investigated Daniels system has 𝑛𝐸 = 100 elements with capacities 𝑅𝑖, 𝑖 = 1, … , 𝑛𝐸. Each 

structural element is assumed to have one welded connection with one critical hotspot. Fatigue 

deterioration is again assessed at yearly intervals using the fatigue model presented in Section 

5.7.1.2. The random vector 𝐗𝑅  thus contains the capacities 𝑅𝑖, 𝑖 = 1,… , 𝑛𝐸 and the fatigue model 

parameters described in Section 5.7.1.2. The joint PDF of 𝐗𝑅  is again represented by the Nataf 

model. 

Table 5.6: 95% credible interval of the SuS estimate of the model evidence 𝑐−1 ∙ Pr[𝑍(𝑡𝑍)]as a function of the dif-

ferent degrees of dependence among hotspot fatigue failures. The statistics of 𝑐−1 ∙ Pr[𝑍(𝑡𝑍)] are determined from 

500 independent SuS runs. 

 𝑐−1 ∙ Pr[𝑍(𝑡𝑍)]  

Time 𝑡𝑍 [yr] Low dependence High dependence 

10 [2.48; 3.03] ∙ 10−1 [2.62; 3.18] ∙ 10−1 

20 [5.82; 8.28] ∙ 10−2 [0.75; 1.03] ∙ 10−1 

30 [1.28; 2.22] ∙ 10−2 [2.13; 3.43] ∙ 10−2 

40 [4.41; 8.89] ∙ 10−3 [0.97; 1.66] ∙ 10−2 

 

  

Figure 5.21: Updated (a) failure probability Pr[𝐹(𝑡)|𝑍(40 yr)] and (b) failure rate 𝜆[𝑡|𝑍(40 yr)] of the Zayas frame. 

Hotspots {15,16,7,8,5,6} are inspected at time 𝑡 = 10 yr, hotspots {17,18,9,10,13,14}  at time 𝑡 = 20 yr, hotspots 
{19,20,11,12,21,22} at time 𝑡 = 30 yr and hotspots {1,2,3,4} at time 𝑡 = 40 yr. No fatigue cracks are indicated. 
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The condition of an element 𝑖 at time 𝑡𝑗 is modeled by a binary random variable 𝐷𝑖,𝑗 = 1 (element 

𝑖 is fully functioning at time 𝑡𝑗) and 𝐷𝑖,𝑗 = 0 (element 𝑖 is has completely lost its capacity at time 

𝑡𝑗). An element loses its capacity as soon as its welded connection fails. The function ℎ𝐷,𝑖(𝐗𝑅, 𝑡𝑗) 

describing the relation between the capacity parameters 𝐗𝑅  and the element condition 𝐷𝑖,𝑗 is de-

fined in Equation (5.31). The total capacity of the Daniels system 𝑅 at time 𝑡𝑗 can now be computed 

as: 

𝑅(𝐗𝑅 , 𝑡𝑗) = ∑[1 −𝐷𝑖,𝑗] ∙ 𝑅𝑖

𝑛𝐸

𝑖=1

with 𝐷𝑖,𝑗 = ℎ𝐷,𝑖(𝐗𝑅, 𝑡𝑗) (5.48) 

The element capacities 𝑅𝑖, 𝑖 = 1,… , 𝑛𝐸 are modeled as equi-correlated identically normal distrib-

uted random variables with c.o.v. 𝛿𝑅 = 0.15 and correlation coefficient 𝜌𝑅 = 0.8. The different 

annual maxima of the applied load 𝑆𝑚𝑎𝑥,𝑗, 𝑗 = 1, … ,𝑇𝑆𝐿  are independent and identically lognormal 

distributed with c.o.v. 𝛿𝑆𝑚𝑎𝑥,𝑗 = 0.25. The ratio of the mean values of ∑ 𝑅𝑖
𝑛𝐸
𝑖=1

 and 𝑆𝑚𝑎𝑥,𝑗 is cali-

brated such that the Daniels system without deterioration has an interval failure probability of 

1.3 × 10−6, which corresponds to reliability index of 4.7. The resulting ratio is 𝑛𝐸𝜇𝑅𝑖/𝜇𝑆𝑚𝑎𝑥,𝑗 =

3.97. The calibration is performed with FORM. 

Based on the above, the interval failure probability of the Daniels system in year 𝑗 as a function of 

a realization of the capacity parameters 𝐗𝑅 = 𝐱𝑅 can be written as: 

Pr(𝐹𝑗
∗|𝐗𝑅 = 𝐱𝑅) = Pr[𝑟(𝐱𝑅, 𝑡𝑗) ≤ 𝑆𝑚𝑎𝑥,𝑗 ] = 1 − 𝐹𝑆𝑚𝑎𝑥,𝑗 [𝑟(𝐱𝑅, 𝑡𝑗)] (5.49) 

where 𝑟(𝐱𝑅, 𝑡𝑗) denotes the realization of the frame’s capacity at time 𝑡𝑗 when 𝐗𝑅  takes the value 

𝐱𝑅, and 𝐹𝑆𝑚𝑎𝑥,𝑗(𝑠) is the CDF of 𝑆𝑚𝑎𝑥,𝑗. 

Each element of the Daniels system is equally important due to the perfect load sharing among the 

structural elements. The single element importance measure of an individual element 𝑖 of the Dan-

iels system is SEI𝑖 = 2.0 × 10
−7. It follows that the Daniels system is highly redundant with re-

spect to single element failure when compared to the Zayas frame studied in Section 5.7.1 where 

failure of elements of the highest importance category lead to a significant reduction in system 

reliability (see Table 5.2). 

5.7.2.2 Monitoring model 

Consider a monitoring system that periodically measures vibration time history data (e.g. acceler-

ations) from the Daniels system under ambient excitation over finite time windows. Such data can 

provide information on the condition of the structure and thus indirect information on the capacity 

parameters 𝐗𝑅 . The basic idea is that damages influence the structure’s stiffness and, consequently, 

its dynamic characteristics in terms of its modal parameters (modal frequencies, damping ratios 

and mode shapes). Changes in the dynamic characteristics of the structure may be an indication of 

damage. An introduction to vibration-based damage detection is, for example, provided in (Farrar 

et al. 2001). Following an idea published in (Thöns and Döhler 2012), the current numerical ex-

ample presents a concept for quantifying the monitoring system’s ability to detect fatigue damage 

in the Daniels system and integrating this type of monitoring information in the reliability analysis. 
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As described in Section 5.7.2.1, the elements of the Daniels system are modeled as being in a 

functioning or not functioning state at the end of each interval 𝑘 as a function of fatigue deteriora-

tion. Thus, at any time 𝑡𝑘 there are 𝑁𝐹,𝑘 failed elements and 𝑛𝐸 − 𝑁𝐹,𝑘  elements are available to 

resist the applied load. Because of the exchangeability of its elements, 𝑁𝐹,𝑘  represents the overall 

condition of the Daniels system at time 𝑡𝑘. 𝑁𝐹,𝑘  is computed as a function ℎ𝐷 of the capacity 

parameters 𝐗𝑅  as: 

𝑁𝐹,𝑘 = ℎ𝐷(𝐗𝑅 , 𝑡𝑘) = ∑𝕀[𝑔𝑖(𝐗𝑅 , 𝑡𝑘) ≤ 0]

𝑛𝐸

𝑖=1

 (5.50) 

The limit state function 𝑔𝑖(𝐗𝑅 , 𝑡𝑘) describing fatigue failure of element 𝑖 is defined in Equation 

(5.30). 

Now let the continuous quantity 𝑌𝑖,𝑘  be a feature or indicator that is sensitive to fatigue damages 

in the Daniels system. It is derived from the 𝑖th recorded dataset in year 𝑘 using a suitable algo-

rithm. 𝑌𝑖,𝑘 could, for example, be a damage indicator determined by a damage detection algorithm 

(e.g. Döhler and Mevel 2013). Let 𝑓𝑌𝑖,𝑘|𝑁𝐹,𝑗(𝑦𝑖,𝑘|𝑛𝐹,𝑘) be the conditional PDF of 𝑌𝑖,𝑘 , which repre-

sents the probability that the damage indicator is 𝑌𝑖,𝑘 = 𝑦𝑖,𝑘  given that the number of failed ele-

ments is 𝑁𝐹,𝑘 = 𝑛𝐹,𝑘  at time 𝑡𝑘.It is illustrated Figure 5.22. 

To enable an interpretation of the indicator 𝑌𝑖,𝑘 , a threshold 𝑦𝑇 is defined (see Figure 5.22). The 

Daniels system is assumed to be in the damaged condition if 𝑌𝑖,𝑘  is greater than 𝑦𝑇 and in the 

undamaged condition otherwise. Note that (small) defects are always present in the Daniels system 

even in the undamaged condition, which is here defined as 𝑁𝐹,𝑘 = 0 (see also Section 5.7.1.1). 

It is now possible to define the probability of indication 𝑃𝑜𝐼(𝑛𝐹,𝑘) as (see also Figure 5.22): 

𝑃𝑜𝐼(𝑛𝐹,𝑘) = Pr(𝑌𝑖,𝑘 > 𝑦𝑇|𝑁𝐹,𝑘 = 𝑛𝐹,𝑘) = ∫ 𝑓𝑌𝑖,𝑘|𝑁𝐹,𝑘(𝑦𝑖,𝑘|𝑛𝐹,𝑘) d𝑦𝑖,𝑘

∞

𝑦𝑇

 (5.51) 

The 𝑃𝑜𝐼 can be interpreted as the probability that the monitoring system indicates fatigue damage 

in the Daniel system when the actual number of failed elements is 𝑁𝐹,𝑘 = 𝑛𝐹,𝑘 . It depends on the 

 

Figure 5.22: Illustration of the conditional PDF 𝑓𝑌𝑖 ,𝑘|𝑁𝐹,𝑗(𝑦𝑖,𝑘|𝑛𝐹,𝑘) of the damage indicator 𝑌𝑖,𝑘 and the probability of 

indication 𝑃𝑜𝐼(𝑛𝐹,𝑘) for 𝑛𝐹,𝑘 = 0 and 𝑛𝐹,𝑘 = 𝑥. 
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conditional PDF 𝑓𝑌𝑖 ,𝑘|𝑁𝐹,𝑘(𝑦𝑖,𝑘|𝑛𝐹,𝑘) of the indicator 𝑌𝑖,𝑘  and the threshold 𝑦𝑇. By varying the num-

ber of failed elements 𝑛𝐹,𝑘  for a fixed threshold 𝑦𝑇, the different values of the 𝑃𝑜𝐼 can be deter-

mined. 

To derive the conditional PDF of 𝑌𝑖,𝑘 , data from the undamaged and damaged structure are re-

quired. The acquisition of data from the damaged structure is typically not possible. Thus, the 

monitoring outcomes associated with various damage states have to be generated based on a sto-

chastic data prediction model, which includes a model of the structural system that relates the 

observation to the damage states. The model has to account the associated uncertainties largely 

due to (a) measurement uncertainty, (b) statistical uncertainty due to the limited number of (nu-

merical) trials performed to derive the monitoring model, (c) model uncertainty due to the simpli-

fied representation of the structural system, (d) model uncertainty due to the applied data pro-

cessing method, (e) model uncertainty due to neglecting parameters other than the number of failed 

elements that also influence the monitoring outcome including material parameters, structural ge-

ometry, random defects and varying environmental and operational conditions, and (f) human er-

rors (see also Straub 2004). 

To determine the optimal value of the threshold 𝑦𝑇, Bayesian pre-posterior decision analysis could 

be applied (see, for example, Cottone et al. 2013; Thöns and Lanata 2013). If the monitoring sys-

tem is employed within the context of managing the structural integrity of the Daniels system, the 

optimal threshold minimizes the expected value of the service life cost consisting of inspection, 

monitoring and repair/replacement/retrofitting cost as well as the structural risk. 

A derivation of the conditional PDF of the indicator 𝑌𝑖,𝑘 and the threshold 𝑦𝑇 is beyond the scope 

of this case study. Instead the assumed 𝑃𝑜𝐼 model shown in Figure 5.23 is adopted for illustration 

purposes11. Table 5.7 summarizes the classification of the monitoring system, which follows Sec-

tion 5.3.1. 

In the following, the 𝑖th monitoring outcome in year 𝑘 is modeled by a binary random variable 

𝑍𝑖,𝑘 with states 𝑍𝑖,𝑘 = 0 (no indication of a fatigue damage in the Daniels system in year 𝑘) and 

𝑍𝑖,𝑘 = 1 (indication of a fatigue damage in the Daniels system in year 𝑘). To derive the likelihood 

functions describing these monitoring outcomes, the function ℎ𝐷(𝐗𝑅 , 𝑡𝑘) defined in Equation 

(5.50), which predicts the number of failed elements 𝑁𝐹,𝑘 at time 𝑡𝑘, is embedded in the 𝑃𝑜𝐼 model. 

The likelihood function modeling the monitoring outcome 𝑍𝑖,𝑘 = 1 is written as: 

𝐿(𝐱𝑅|𝑧𝑖,𝑘 = 1) = 𝑃𝑜𝐼[ℎ𝐷(𝐱𝑅, 𝑡𝑘)] (5.52) 

The likelihood function describing the monitoring outcome 𝑍𝑖,𝑘 = 0 is simply: 

𝐿(𝐱𝑅|𝑧𝑖,𝑘 = 0) = 1− 𝑃𝑜𝐼[ℎ𝐷(𝐱𝑅, 𝑡𝑘)] (5.53) 

 
11 In the present example, the following logistic model is used to describe the probability of indication: 𝑃𝑜𝐼(𝑛𝐹,𝑘) =
𝑝0 + 𝐿/[1 + exp(−𝑘 ∙ (𝑛𝐹,𝑘 − 𝑥0))] with 𝑝0 = 0.1, 𝐿 = 0.9, 𝑘 = 1.0 and 𝑥0 = 4. 
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In the current example, it is assumed that the different monitoring outcomes 𝑍𝑖,𝑘 are statistically 

independent given the number of failed elements 𝑁𝐹,𝑘 = 𝑛𝐹,𝑘 . Thus, the combined likelihood func-

tion 𝐿(𝐱𝑅|𝐳1:𝑘) of all monitoring outcomes 𝐙1:𝑘 = 𝐳1:𝑘 up to time 𝑡𝑘 is given by Equation (5.7).  

The constant 𝑐 that ensures 𝐿(𝐱𝑅|𝐳1:𝑘) ≤ 1 for all 𝐱𝑅 is set to 𝑐 = 1 since indication/no-indication 

events provide inequality information (see also Section 3.2). 

The monitoring model shown in Figure 5.23 has several limitations. Essentially, the model at-

tempts to extract information from the vibration data that is useful for making inference about the 

capacity parameters 𝐗𝑅 . However, in the current (conceptual) formulation, valuable information – 

which is potentially contained in the measured data – is lost. First, the observation that the (con-

tinuous) indicator 𝑌𝑖,𝑘  is smaller or greater than the threshold 𝑦𝑇 provides less information than the 

observation that 𝑌𝑖,𝑘 is equal to a certain value 𝑦𝑖,𝑘 . Provided that the conditional distribution of 

𝑌𝑖,𝑘  given 𝑁𝐹,𝑘 = 𝑛𝐹,𝑘 , 𝑓𝑌𝑖,𝑘|𝑁𝐹,𝑘(𝑦𝑖,𝑘|𝑛𝐹,𝑘), is available, the likelihood function describing the re-

lation between the observation 𝑌𝑖,𝑘 = 𝑦𝑖,𝑘  and the deterioration model parameters can be written 

as 𝐿(𝐱𝑅|𝑦𝑖,𝑘) = 𝑓𝑌𝑖,𝑘|𝑁𝐹,𝑘 [𝑦𝑖,𝑘|𝑛𝐹,𝑘 = ℎ(𝐱𝑅, 𝑡𝑗)]. 

Second, the indicator 𝑌𝑖,𝑘 is here modeled conditional on the (discrete) number of failed elements 

𝑛𝐹,𝑘 . The measured data can, however, provide information about the (continuous) crack sizes at 

the different hotspots. An improved monitoring model would thus directly describe the relation 

Table 5.7: Classification of the monitoring system employed to detect fatigue damage in the Daniels system. 

Classification Category 

Inspected/monitored quantity An indicator related to the condition of the system (The observed indi-

cator 𝑌𝑖,𝑘 is derived from the recorded data and is related to the number 

of failed elements 𝑁𝐹 ,𝑘 at time 𝑡𝑘.) 

Type of information Inequality information (indication/no indication of fatigue damage in 

the Daniels system)  

Temporal characteristics Periodic data collection over a certain period 

Spatial characteristics Spatially discrete data collection (Data are collected by different sen-

sors, which are installed at discrete locations in the Daniels system.) 

 

 

Figure 5.23: Assumed 𝑃𝑜𝐼 model describing the ability of the monitoring system to detect fatigue damage in the 

Daniels system as a function of the number of failed elements 𝑛𝐹,𝑘. 
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between the indicator 𝑌𝑖,𝑘  and the crack sizes at the different hotspots, which in turn are a function 

of the capacity parameters 𝐗𝑅 . In this case, the dimension of the monitoring model increases sig-

nificantly, and a pre-computation of the conditional distribution of 𝑌𝑖,𝑘  for all possible combina-

tions of crack sizes (based on a stochastic data prediction model as described above) would be 

intractable. Instead, the conditional distribution of 𝑌𝑖,𝑘 conditional on 𝐗𝑅 = 𝐱𝑅 would have to be 

constructed on the fly each time the likelihood function 𝐿(𝐱𝑅|𝑦𝑖,𝑘) is evaluated. Obviously, this 

approach is not suitable for computational purposes. 

Third, the monitoring model in Figure 5.23 assumes that monitoring outcomes (i.e. the indicators 

𝑌𝑖,𝑘) derived from different datasets are independent. This assumption is not necessarily valid as 

the datasets are recorded by the same permanently installed equipment. Hence, different monitor-

ing outcomes can, for example, be correlated because the underlying datasets are recorded under 

similar ambient conditions. Correlation among monitoring outcomes should be properly accounted 

for as it can have a large effect on the posterior distribution of the model parameters (Simoen et 

al. 2013) and, consequently, on the posterior reliability estimates. 

Fourth, the model presented in Figure 5.23 implicitly describes the relation between the indicator 

𝑌𝑖,𝑘  and the structural condition. The indicator is obtained by pre-processing the vibration data. 

Thus, the information in the data is condensed and some of the information that is useful for mak-

ing inference about the capacity parameters is lost. The model could be improved by describing 

the relation between the data and the capacity parameters directly. A corresponding likelihood 

function may be formulated based on (a) a stochastic structural response model, which includes a 

model of the deterioration processes, (b) a prediction-error model describing the relation between 

the true structural response and the predicted structural response (model uncertainty), and (c) the 

observation-error model linking the measurement with the true structural response (measurement 

uncertainty) (e.g. Sedehi et al. 2019). However, it might still be beneficial to pre-process the po-

tentially very large datasets to derive multiple meaningful features (e.g. natural frequencies, mode 

shapes, damping ratio etc.) instead of only a single feature/indicator as described above. The iden-

tified features can subsequently be used to infer the distribution of stochastic parameters defining 

the problem. This approach is similar to a two-stage Bayesian structural system identification (Au 

and Zhang 2016). 

5.7.2.3 Prior reliability analysis 

The prior probability of failure Pr[𝐹(𝑡)] of the Daniels system is estimated for each degree of 

dependence among hotspot fatigue behavior following Sections 5.4 and 5.6. The results are shown 

in Figure 5.24. In general, a large dependence among hotspot fatigue behavior results in a larger 

probability of joint occurrence of several fatigue failures. Figure 5.24 shows that this behavior 

severely reduces the reliability of the Daniels system. This outcome is expected for a structural 

system with a large redundancy (Straub and Der Kiureghian 2011). In contrast, the results com-

puted for the Zayas frame show that the degree of dependence among hotspot fatigue behavior has 

less influence on the failure probability of structural systems with limited or no redundancy (see 

Figure 5.6 and Figure 5.8). 
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Figure 5.25 shows the best estimate of the bounds on the failure probability Pr[𝐹(𝑡)] together with 

the best estimate of Pr[𝐹(𝑡)]. The bounds are computed according to Equation (4.20). With a low 

degree of dependence among hotspot failure behavior, the failure probability Pr[𝐹(𝑡)] of the Dan-

iels system is close to the upper bound throughout the service life indicating that the reliability is 

dominated by the uncertainty on the maximum demands 𝑆𝑚𝑎𝑥,𝑗. The behavior of the Daniels sys-

tem with a high degree of dependence among hotspot fatigue behavior differs significantly. In this 

case, the failure probability Pr[𝐹(𝑡)] approaches the upper bound only at the beginning of the 

service life, when the effect of deterioration is negligible. Subsequently, the failure probability 

Pr[𝐹(𝑡)] approaches the lower bound indicating that the reliability is dominated by the uncertainty 

associated with the deterioration process. 

Figure 5.26 compares the best estimate of the failure probability Pr[𝐹(𝑡)] of the Daniels system 

with and without deterioration. For the Daniels system with a low degree of dependence among 

hotspot fatigue behavior, deterioration has no effect before year 25. In contrast, a high dependence 

among hotspot fatigue behavior significantly reduces the system reliability. 

  

Figure 5.24: Failure probability Pr[𝐹(𝑡)] of the Daniels system as a function of different degrees of dependence 

among hotspot fatigue behavior. 

  

Figure 5.25: Best estimate of the bounds on the failure probability Pr[𝐹(𝑡)] of the Daniels system together with the 

best estimate of Pr[𝐹(𝑡)] as a function of different degrees of dependence among hotspot fatigue behavior. 
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5.7.2.4 Posterior reliability analysis 

Different scenarios are considered in the following to study the effect of monitoring on the relia-

bility estimates for the Daniels system. In the first scenario, monitoring is performed in year 10. 

It is assumed that no damage is indicated. The updated failure probability Pr[𝐹(𝑡)|𝑍(10 yr)] is 

shown in Figure 5.27. For the Daniels system with low dependence among element deterioration, 

the monitoring outcome has no effect since deterioration does not have an effect before year 25 

(see also Figure 5.26(a)). The monitoring outcome has a larger effect on the failure probability of 

the Daniels system with large dependence among element fatigue behavior. Figure 5.28 shows the 

bounds on the posterior failure probability. Figure 5.28(a) confirms that the current monitoring 

outcome has no effect on the estimated failure probability of the Daniels system with low depend-

ence among element deterioration (see also Figure 5.29). Figure 5.28(b) indicates that the moni-

toring outcome reduces the uncertainty on the structural condition of the Daniels system with large 

dependence among element deterioration. Consequently, the reliability is dominated by the uncer-

tainty on the demand and the failure probability approaches the upper bound. Once the uncertainty 

on the structural condition grows again, the failure probability approaches the lower bound. 

  

Figure 5.26: (a) Failure probability Pr[𝐹(𝑡)] and (b) failure rate 𝜆(𝑡) of the Daniels system with and without deteri-

oration. 

  

Figure 5.27: Updated failure probability Pr[𝐹(𝑡)|𝑍(10 yr)] of the Daniels system. Monitoring is performed in year 

10. No damage is indicated. 
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The best estimate of the filtered failure probability Pr[𝐹(𝑡)|𝑍(𝑡)] together with the failure proba-

bility conditional on the information available up to time 𝑡 = 10 yr, Pr[𝐹(𝑡)|𝑍(10 yr)], are pre-

sented in Figure 5.30. Both figures demonstrate again that the monitoring outcome has no effect 

  

Figure 5.28: Best estimate of the bounds on Pr[𝐹(𝑡)|𝑍(10 yr)] together with the best estimate of Pr[𝐹(𝑡)|𝑍(10 yr)]. 
Monitoring is performed in year 10. No damage is indicated. 

 

Figure 5.29: Best estimates of Pr[𝐹(𝑡)] and Pr[𝐹(𝑡)|𝑍(10 yr)] of the Daniels system with low dependence among 

element deterioration. Monitoring is performed in year 10. No damage is indicated. 

  

Figure 5.30: Best estimate of the failure probability of the Daniels system at time 𝑡 conditional the monitoring out-

come. The solid line is the failure probability at time 𝑡 conditional on the information available up to time 𝑡, i.e. 

Pr[𝐹(𝑡)|𝑍(𝑡)] (filtering). The dashed line is the failure probability at time 𝑡 conditional on the information available 

up to time 𝑡 = 10 yr, i.e. Pr[𝐹(𝑡)|𝑍(10 yr)]. Monitoring is performed in year 10. No damage is indicated. 
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on the reliability estimate of the Daniels system with small dependence among element deteriora-

tion while it has a larger effect on the reliability estimate of the Daniels system with large depend-

ence among element deterioration. 

The second scenario assumes that damage is indicated during a monitoring campaign in year 10. 

The corresponding posterior failure probability Pr[𝐹(𝑡)|𝑍(10 yr)] is shown in Figure 5.31. The 

monitoring result has only a marginal effect on the reliability estimate of the Daniels system with 

low dependence among hotspot fatigue behavior. In this case, as additionally illustrate din Figure 

5.32, a reduction in the overall uncertainty on the structural condition because of the monitoring 

outcome leads to an initial reduction of the failure probability. Eventually, the posterior estimate 

of the failure probability exceeds the prior estimate, because the updated deterioration model pre-

dicts a faster fatigue crack growth. The effect is, however, limited. In contrast, the monitoring 

outcome significantly increases the estimate of the failure probability of the Daniels system with 

large dependence among element deterioration. 

The best estimate of the bounds on Pr[𝐹(𝑡)|𝑍(10 yr)] and the best estimate of Pr[𝐹(𝑡)|𝑍(10 yr)] 

are shown in Figure 5.33. While the reliability of the Daniels system with low dependence among 

element deterioration is dominated by the uncertainty in the demand on the structure, the reliability 

  

Figure 5.31: Updated failure probability Pr[𝐹(𝑡)|𝑍(10 yr)] of the Daniels system. Monitoring is performed in year 

10. Damage is indicated. 

 

Figure 5.32: Best estimates of Pr[𝐹(𝑡)] and Pr[𝐹(𝑡)|𝑍(10 yr)] of the Daniels system with low dependence among 

element deterioration. Monitoring is performed in year 10. No damage is indicated. 
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of the Daniels system with large dependence among element deterioration is dominated by the 

uncertainty on the structural condition. 

Figure 5.34 additionally shows the best estimate of the filtered failure probability Pr[𝐹(𝑡)|𝑍(𝑡)] 

together with the probability of the failure event 𝐹(𝑡) conditional on 𝑍(10 yr). The effect of the 

degree of dependence among element deterioration on the reliability estimates of the redundant 

structural system is again evident. 

In the third scenario, monitoring is performed once a year throughout the structure’s service life. 

For simplicity, it is assumed that no damage is indicated throughout the service life. Note that this 

is a monitoring outcome with a low probability of occurrence (see also Figure 5.37). The updated 

probability of failure Pr[𝐹(𝑡)|𝑍(50 yr)] of the Daniels system is shown in Figure 5.35; the best 

estimate of the corresponding bounds on Pr[𝐹(𝑡)|𝑍(50 yr)] together with the best estimate of 

Pr[𝐹(𝑡)|𝑍(50 yr)] are shown in Figure 5.36. In both dependence cases, the positive monitoring 

results leads to a sustained reduction in the failure probability. The monitored structure behaves 

like a structure without deterioration due to the positive monitoring outcome.  

  

Figure 5.33: Best estimate of the bounds on Pr[𝐹(𝑡)|𝑍(10 yr)] together with the best estimate of Pr[𝐹(𝑡)|𝑍(10 yr)]. 
Monitoring is performed in year 10. Damage is indicated. 

  

Figure 5.34: Best estimate of the failure probability of the Daniels system at time 𝑡 conditional the monitoring out-

come. The solid line is the failure probability at time 𝑡 conditional on the information available up to time 𝑡, i.e. 

Pr[𝐹(𝑡)|𝑍(𝑡)] (filtering). The dashed line is the failure probability at time 𝑡 conditional on the information available 

up to time 𝑡 = 10 yr, i.e. Pr[𝐹(𝑡)|𝑍(10 yr)]. Monitoring is performed in year 10. Damage is indicated. 
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Figure 5.37 shows 95% credible interval and the mean of the SuS estimate for the model evidence 

𝑐−1 ∙ Pr[𝑍(𝑡𝑍)] as a function of monitoring time 𝑡𝑍, where the constant 𝑐 is also equal to one (see 

Section 5.7.2.2). The model considering high dependence among hotspot fatigue behavior yields 

the largest model evidence given the considered monitoring outcome (see also Section 5.7.1.5). 

  

Figure 5.35: Updated failure probability Pr[𝐹(𝑡)|𝑍(50 yr)] of the Daniels system at time 𝑡. Monitoring is performed 

every year. No damage is indicated throughout the service life. 

  

Figure 5.36: Bounds on the updated failure probability Pr[𝐹(𝑡)|𝑍(50 yr)] of the Daniels system at time 𝑡. Monitoring 

is performed every year. No damage is indicated throughout the service life. 

  

Figure 5.37: 95% credible interval and mean of the SuS estimate for the model evidence 𝑐−1 ∙ Pr[𝑍(𝑡𝑍)]. Monitoring 

is performed every year. No damage is indicated throughout the service life. 
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6 Dynamic Bayesian network approach 

6.1 Introduction 

Bayesian networks (BN) are probabilistic graphical models, which have been developed in the 

field of artificial intelligence as a tool for reasoning under uncertainty (Russell and Norvig 2010). 

Over the past two decades, BN have increasingly been applied in engineering reliability and risk 

analysis (e.g. Friis-Hansen 2000; Faber et al. 2002; Grêt-Regamey and Straub 2006; Langseth and 

Portinale 2007; Straub and Der Kiureghian 2010b; Bensi et al. 2013; Luque and Straub 2016; 

Zwirglmaier and Straub 2016; Bismut et al. 2017; Luque and Straub 2019).  

A BN is a compact representation of the joint probability distribution of a set of random variables. 

It consists of a set of nodes and a set of directed links, which together form a directed acyclic graph 

(DAG). The nodes in the graph represent the random variables, and the links – or rather the lack 

of links – represent conditional independence assumptions. Each random variable is assigned a 

local conditional probability distribution, which is defined conditional on its parents in the graph. 

The independence assumptions encoded in the graphical structure of the BN enable the factoriza-

tion of the joint probability distribution into the conditional probability distribution of each varia-

ble given its parents. 

BN are useful for Bayesian updating, i.e. for computing the posterior distribution of a set of ran-

dom variables given that the values of another set of random variables are observed. This task is 

called probabilistic inference. Several efficient inference algorithms are available that exploit the 

conditional independence assumptions encoded in the BN (e.g. Murphy 2001; Jensen and Nielsen 

2007). 

The following features make BN a useful tool in engineering reliability and risk analysis (see also 

Straub 2014a; Zwirglmaier 2016) 

(a) The graphical format of a BN facilitates the presentation of the model structure and the as-

sumptions implemented in the model. This in turn helps to understand the capabilities and 

limitations of the model. In addition, the links in the graph often represent causal relations 

among the random variables. Thus, the dependence structure encoded in a BN can be under-

stood by non-experts. 

(b) Data on engineering systems is typically limited. By decomposing the joint probability dis-

tribution of the random variables defining the problem into local conditional probability dis-

tributions, the number of parameters required to quantify the probabilistic model is reduced. 

In addition, the modular structure of BN is ideally suited for constructing probabilistic sys-

tem models required in engineering reliability and risk analysis in which multiple sub-mod-

els are typically combined in an overall system model. 

(c) Bayesian updating can be performed when new observations of some of the random varia-

bles in the model becomes available. 
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(d) BN can be extended to decision graphs by including decision and utility nodes (Jensen and 

Nielsen 2007). Decision graphs can, for example, be utilized to optimize decisions on risk 

mitigation measures following classical Bayesian decision theory (Raiffa and Schlaifer 

1961; Benjamin and Cornell 1970).  

In the context of deteriorating structural systems, Straub (2009) has originally modeled stochastic 

deterioration processes with dynamic Bayesian networks (DBN). Luque and Straub (2016) have 

extended the DBN model from Straub (2009) to model deteriorating structural systems that can be 

represented by model class (b) described in Section 4.3. The DBN model couples a model describ-

ing the condition of the structural system with a model of the structural system performance, which 

is defined conditional on the system condition. In its current format, the DBN model enables an 

evaluation of the interval failure probabilities of the deteriorating structural system conditional on 

inspection and monitoring outcomes that provide information on the structural condition. This 

modeling approach is here termed DBN approach and discussed in more detail in the following. 

First, Section 6.2 provides a more detailed introduction to Bayesian networks. Subsequently, Sec-

tion 6.3 presents the generic DBN model for deteriorating structural systems. Section 6.4 then 

discusses some computational aspects related to the inference process. Finally, the DBN approach 

is applied in Section 6.5 to analyse the reliability of a concrete box girder subject to spatially 

distributed reinforcement corrosion. Section 6.5 also demonstrates how the model of the box girder 

can be implemented into a software prototype. 

6.2 Bayesian networks 

BN can be formulated for discrete and/or continuous random variables. The following introduction 

is restricted to BN consisting exclusively of discrete random variables. It summarizes the basic 

concepts and theory required for the remainder of Section 6. Section 6.2.1 presents the basic no-

tions of graph theory following Kjaerulff and Madsen (2013). Subsequently, Section 6.2.2 formally 

defines discrete BN and explains how the graphical structure of a discrete BN implies the joint 

PMF of a set of discrete random variables in a compact factorized form. Section 6.2.3 provides an 

overview on inference in discrete BN and Section 6.2.4 briefly describes DBN. For a detailed 

introduction to BN, the reader is referred to (Jensen and Nielsen 2007; Russell and Norvig 2010; 

Murphy 2012; Kjaerulff and Madsen 2013). 

6.2.1 Graphs 

A graph 𝐺 = (𝑉,𝐸) consists of a finite set of vertices or nodes 𝑉 and a set of edges or links 𝐸 ⊆

𝑉 ×𝑉. A directed link from node 𝑣 ∈ 𝑉 to node 𝑤 ∈ 𝑉 is designated by an ordered pair (𝑣, 𝑤) ∈

𝐸. Often the notation 𝑣 → 𝑤 is used to denote (𝑣,𝑤). It is assumed that a graph does not contain 

any directed links of the type (𝑣, 𝑣) meaning that there are no self-loops. The sets 𝑝𝑎(𝑣) =

{𝑤 ∶ (𝑤, 𝑣) ∈ 𝐸} and 𝑐ℎ(𝑣) = {𝑤 ∶ (𝑣, 𝑤) ∈ 𝐸} are the parents and children of node 𝑣. A node 𝑣 

is a root node if 𝑝𝑎(𝑣) = ∅. A link between nodes 𝑣 and 𝑤 is an undirected link if (𝑣,𝑤) ∈ 𝐸 and 

(𝑤, 𝑣) ∈ 𝐸. An undirected link between 𝑣 and 𝑤 is typically denoted by 𝑣 − 𝑤. A graph 𝐺 is a 

directed graph if 𝐸 does not contain any undirected links, and a graph 𝐺 is an undirected graph if 

𝐸 does not contain any directed links. 
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A path 〈𝑣1, … , 𝑣𝑛〉 is a sequence of nodes such that 𝑣𝑖 − 𝑣𝑖+1 for each 𝑖 = 1, … , 𝑛 − 1. The length 

of a path is its number of links. A path 〈𝑣1,… , 𝑣𝑛〉 is a directed path if 𝑣𝑖 → 𝑣𝑖+1 for each 𝑖 =

1, … , 𝑛 − 1. The notation 𝑣 ↝ 𝑤 is often applied to designate a directed path from node 𝑣 to node 

𝑤. The sets 𝑎𝑛𝑐(𝑣) = {𝑤 ∶ 𝑤 ↝ 𝑣} and 𝑑𝑒𝑠𝑐(𝑣) = {𝑤 ∶ 𝑣 ↝ 𝑤} are the ancestors and the de-

scendants of node 𝑣. The set 𝑛𝑑(𝑣) = 𝑉 ∖ {𝑣 ∪ 𝑑𝑒𝑠𝑐(𝑣)} are the non-descendants of node 𝑣. 

A directed cycle is a directed path 〈𝑣1, … , 𝑣𝑛〉 of length greater than two in which the start node 𝑣1 

is equal to the end node 𝑣𝑛. A directed graph that does not contain any directed cycles is called a 

directed acyclic graph (DAG). The sequence (𝑣1,… , 𝑣𝑛) is a topological ordering of the nodes in 

a DAG, if 𝑝𝑎(𝑣𝑖) ⊆ {𝑣1,… , 𝑣𝑖−1} for all 𝑖 = 1,… , 𝑛, i.e. parents come before their children in the 

ordering. 

Graphically, nodes are represented as labeled circles and directed links as arrows. Figure 6.1 shows 

a simple DAG and an undirected graph. Both graphs have five nodes and four links. The graphs in 

Figure 6.1 belong to the class of singly connected graphs in which there is a maximum of one 

undirected path between any two nodes (Russell and Norvig 2010). A possible topological ordering 

of the DAG in Figure 6.1(a) is (𝑏, 𝑎, 𝑐, 𝑑, 𝑒). 

Figure 6.2 illustrates the parents, ancestors, children, descendants and non-descendants of a node 

𝑣𝑖 in a more complex DAG. 

6.2.2 Discrete Bayesian networks 

A discrete BN is a directed acyclic graph 𝐺 = (𝑉,𝐸), where 𝑉 = {𝑋1, 𝑋2… ,𝑋𝑛} is a set of discrete 

random variables and 𝐸 ⊆ 𝑉 × 𝑉 is a set of directed links connecting pairs of variables. Each 

variable 𝑋𝑖 with parents 𝑝𝑎(𝑋𝑖)  is assigned a conditional PMF 𝑝(𝑥𝑖|𝑝𝑎(𝑥𝑖)), where 𝑝𝑎(𝑥𝑖) are 

the realizations of 𝑋𝑖’s parents 𝑝𝑎(𝑋𝑖). Thus, each random variable is defined conditional on its 

parents. The joint PMF of the random variables in a BN is given by the product of all conditional 

PMF specified in the BN (e.g. Jensen and Nielsen 2007): 

𝑝(𝑥1,… , 𝑥𝑛) =∏𝑝(𝑥𝑖|𝑝𝑎(𝑥𝑖))

𝑛

𝑖=1

 (6.1) 

 

Figure 6.1: (a) A directed acyclic graph (DAG). (b) An undirected graph. 
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Figure 6.2: DAG with node 𝑣𝑖. The gray nodes respectively indicate 𝑣𝑖’s (a) parents 𝑝𝑎(𝑣𝑖), (b) ancestors 𝑎𝑛𝑐(𝑣𝑖), 
(c) children 𝑐ℎ(𝑣𝑖), (d) descendants 𝑑𝑒𝑠𝑐(𝑣𝑖), and (e) non-descendants 𝑛𝑑(𝑣𝑖). 
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The conditional PMF 𝑝(𝑥𝑖 |𝑝𝑎(𝑥𝑖)), 𝑖 = 1, … , 𝑛 are often called conditional probability tables 

(CPTs) since the numbers defining a PMF can be arranged in tables. As an example, consider the 

BN in Figure 6.3. The joint PMF of the variables represented by this BN is given by: 

𝑝(𝑥1, … , 𝑥5) = 𝑝(𝑥5|𝑥3)𝑝(𝑥4|𝑥2)𝑝(𝑥3|𝑥2,𝑥1)𝑝(𝑥2)𝑝(𝑥1) (6.2) 

To demonstrate the validity of Equation (6.1), it is first noted that the conditional independence 

assumptions encoded in the graphical structure of a BN can be inferred by applying the criteria of 

d-separation (dependence separation) derived for causal networks (Pearl 1988). In a causal net-

work, a directed link from node 𝐴 to node 𝐵 means that node 𝐴 causes node 𝐵. Such networks 

may be interpreted as a mapping of human reasoning (see Jensen and Nielsen 2007 for more 

details). 

Consider now a path 𝜋 = 〈𝑋1, … ,𝑋𝑛〉 between nodes 𝑋1 and 𝑋𝑛 in a BN. Such a path is said to be 

d-separated if at least one of the following conditions holds for any 𝑖 = 2, … , 𝑛 − 1 (see also 

Kjaerulff and Madsen 2013): 

1. 𝜋 contains a serial connection 𝑋𝑖−1 → 𝑋𝑖 → 𝑋𝑖+1  or 𝑋𝑖−1 ← 𝑋𝑖 ← 𝑋𝑖+1, and the state of 𝑋𝑖 

is known (i.e. the value of 𝑋𝑖 is observed) 

2. 𝜋 contains a diverging connection 𝑋𝑖−1 ← 𝑋𝑖 → 𝑋𝑖+1 , and the state of 𝑋𝑖 is known 

3. 𝜋 contains a converging connection 𝑋𝑖−1 → 𝑋𝑖 ← 𝑋𝑖+1, and neither the state of 𝑋𝑖 nor the 

states of any of 𝑋𝑖’s descendants is known. 

Now let the random vectors 𝐔, 𝐘 and 𝐙 represent three disjoint subsets of the random variables in 

a BN. The variables 𝐔 and 𝐘 are said to be d-separated for given values of variables 𝐙 = 𝐳 if all 

paths from 𝐔 to 𝐘 are d-separated for given 𝐙 = 𝐳. In a probabilistic context, d-separation corre-

sponds to conditional independence (e.g. Kjaerulff and Madsen 2013). Hence, if the variables 𝐔 

and 𝐘 in a BN are d-separated for given 𝐙 = 𝐳, they are conditionally independent given 𝐙 = 𝐳, 

and the following relationships must hold: 

 𝑝(𝐮, 𝐲|𝐳) = 𝑝(𝐮|𝐳)𝑝(𝐲|𝐳) (6.3) 

 𝑝(𝐮|𝐲, 𝐳) = 𝑝(𝐮|𝐳) (6.4) 

 

Figure 6.3: A Bayesian network representing the joint probability distribution 𝑝(𝑥1, … , 𝑥5) of five discrete random 

variables 𝑋1 , … , 𝑋5. 
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Note that when constructing BN it is not required that the directed links represent causal relation-

ships among the variables. A BN should, however, not encode any conditional independence prop-

erties, which do not actually exist (Jensen and Nielsen 2007). 

Now consider the BN in Figure 6.4. From the d-separation criteria it follows that 𝑋𝑖 is conditionally 

independent from all nodes 𝑛𝑑(𝑋𝑖) ∖ 𝑝𝑎(𝑋𝑖) (all gray nodes) if the values of its parents 𝑝𝑎(𝑋𝑖) 

(black nodes) are known and the values of its descendants 𝑑𝑒𝑠𝑐(𝑋𝑖) (all white nodes excluding 

node 𝑋𝑖) are unknown. This property of a BN is also called the directed local Markov property 

(Murphy 2012). 

Finally, consider a BN with 𝑛 discrete random variables 𝑉 = {𝑋1, … ,𝑋𝑛} and let (𝑋1, … ,𝑋𝑛) be a 

topological ordering of the variables in the BN. From the directed local Markov property of a BN 

it can be concluded that each variable 𝑋𝑖 is conditionally independent from all nodes 

{𝑋1, … , 𝑋𝑖−1} ∖ 𝑝𝑎(𝑋𝑖) given the values of its parents 𝑝𝑎(𝑋𝑖) are known and the values of its de-

scendants 𝑑𝑒𝑠𝑐(𝑋𝑖) ⊆ {𝑋𝑖+1, … ,𝑋𝑛} are unknown. This means that for every variable 𝑋𝑖 in the BN 

the conditional PMF 𝑝(𝑥𝑖 |𝑥𝑖−1, … , 𝑥1) reduces to 𝑝(𝑥𝑖|𝑝𝑎(𝑥𝑖)). Substituting this into the joint 

PMF 

𝑝(𝑥1,… , 𝑥𝑛) = 𝑝(𝑥𝑛|𝑥𝑛−1, … , 𝑥1)𝑝(𝑥𝑛−1|𝑥𝑛−2, … , 𝑥1)…𝑝(𝑥2|𝑥1)𝑝(𝑥1) (6.5) 

constructed using the chain rule of probability yields that the joint PMF of all variables in a BN is 

simply the product of the conditional PMF of each variable given its parents (see Jensen and 

Nielsen 2007 for a detailed proof). This demonstrates the validity of Equation (6.1). It follows that 

the graphical structure of a BN together with the conditional PMF 𝑝(𝑥𝑖|𝑝𝑎(𝑥𝑖)) are sufficient to 

fully specify the joint PMF of the variables in a BN.  

6.2.3 Inference in discrete Bayesian networks 

Two classes of inference methods can be distinguished for discrete BN: exact and approximate 

inference methods. To demonstrate the basic principles of the former, consider a BN with 𝑛 dis-

crete random variables 𝐗 = [𝑋1, … ,𝑋𝑛]
𝑇. In the following, the variables are partitioned into 𝐗 =

 

Figure 6.4: Illustration of the local Markov property. 𝑋𝑖 is conditionally independent from all gray nodes if the values 

of its parents (black nodes) are known and the values of its descendants (all white nodes excluding node 𝑋𝑖) are 

unknown. 
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[𝐔𝑇 , 𝐘𝑇 , 𝐙𝑇]𝑇 to represent three disjoint subsets of the variables in the BN. Thus, the BN encodes 

the joint PMF 𝑝(𝐱) = 𝑝(𝐮, 𝐲, 𝐳). Suppose the values 𝐳 of the random variables 𝐙 are observed and 

the posterior PMF of the variables 𝐔 given 𝐙 = 𝐳 is of interest. It can be computed as follows: 

𝑝(𝐮|𝐳) =
𝑝(𝐮, 𝐳)

𝑝(𝐳)
=

∑ 𝑝(𝐮, 𝐲, 𝐳)𝐲

∑ ∑ 𝑝(𝐮, 𝐲, 𝐳)𝐲𝐮

 (6.6) 

Essentially, the variables 𝐙 are fixed at their observed values 𝐳, then the variables 𝐘 are marginal-

ized out by summing the distribution 𝑝(𝐮, 𝐲, 𝐳) over all states of the variables 𝐘 and finally the 

distribution 𝑝(𝐮, 𝐳) is normalized. The normalizing constant 𝑝(𝐳) = Pr(𝐙 = 𝐳) is the probability 

of observing 𝐙 = 𝐳. 

The summations in Equation (6.6) can be performed directly if the joint distribution 𝑝(𝐮, 𝐲, 𝐳) is 

represented as a multi-dimensional table. The number of entries in the table is equal to the product 

of the number of states of all random variables. For example, such a table has 𝑚𝑛 entries if each 

of the 𝑛 variables in the BN has 𝑚 states. This number grows exponentially as 𝑛 increases and 

direct summations quickly become intractable. However, by making use of the factorized form of 

the joint distribution 𝑝(𝐮, 𝐲, 𝐳) implied by the BN, it is possible to sequentially marginalize out the 

variables that are not of interest. The sizes of the tables over which summations are performed then 

depend on the order in which the variables are marginalized out. This approach is known as vari-

able elimination (see, for example, Russell and Norvig 2010). 

As an example, consider the BN shown in Figure 6.3 representing the joint PMF of variables 

𝑋1, … , 𝑋5. All variables have 𝑚 states. Suppose 𝑋5 = 𝑥5 is observed and the conditional PMF 

𝑝(𝑥1|𝑥5) is required. The desired posterior distribution is given by 𝑝(𝑥1|𝑥5) = 𝑝(𝑥1,𝑥5)/𝑝(𝑥5). 

Now consider the problem of computing the normalizing constant 𝑝(𝑥5). By applying the factor-

ized form of the joint PMF encoded in the BN, it can be written as: 

𝑝(𝑥5) = ∑∑∑∑𝑝(𝑥5|𝑥3)𝑝(𝑥4|𝑥2)𝑝(𝑥3|𝑥2, 𝑥1)𝑝(𝑥2)𝑝(𝑥1)

𝑥4𝑥3𝑥2𝑥1

 (6.7) 

The idea of variable elimination is to move the sums inside the products by applying distributive 

and communitive laws12. Equation (6.7) can, for example, be rewritten as: 

𝑝(𝑥5) = ∑𝑝(𝑥5|𝑥3)

𝑥3

∑𝑝(𝑥2)

𝑥2

∑𝑝(𝑥3|𝑥2, 𝑥1)𝑝(𝑥1)

𝑥1

∑𝑝(𝑥4|𝑥2)

𝑥4

 (6.8) 

This expression is evaluated from right to left as shown in Equation (6.9). 

 
12 See Jensen and Nielsen (2007) for an overview on the algebra of potentials. 
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𝑝(𝑥5) = ∑𝑝(𝑥5|𝑥3)

𝑥3

∑𝑝(𝑥2)

𝑥2

∑𝑝(𝑥3|𝑥2, 𝑥1)𝑝(𝑥1)

𝑥1

∑𝑝(𝑥4|𝑥2)

𝑥4⏟        
1

 

=∑𝑝(𝑥5|𝑥3)

𝑥3

∑𝑝(𝑥2)

𝑥2

∑𝑝(𝑥3|𝑥2, 𝑥1)𝑝(𝑥1)

𝑥1⏟              
𝜙1(𝑥2,𝑥3)

 

=∑𝑝(𝑥5|𝑥3)

𝑥3

∑𝑝(𝑥2)𝜙1(𝑥2, 𝑥3)

𝑥2⏟            
𝜙2(𝑥3)

 

=∑𝑝(𝑥5|𝑥3)𝜙2(𝑥3)

𝑥3⏟            
𝜙3(𝑥5)

 

(6.9) 

The operations in Equation (6.9) can be interpreted as a series of variable eliminations. First, var-

iable 𝑋4 is eliminated followed by variable 𝑋1, then 𝑋2 and finally 𝑋3. The innermost summation 

over 𝑋4 can be omitted since ∑ 𝑝(𝑥4|𝑥2)𝑥4 = 1. The process thus starts by multiplying together 

the terms in the scope of the summation operator ∑ …𝑥1  to create a temporary table commonly 

called a potential: 

𝜙1
′ (𝑥1,𝑥2, 𝑥3) = 𝑝(𝑥3|𝑥2, 𝑥1)𝑝(𝑥1) (6.10) 

Subsequently, 𝑋1 is marginalized out to compute a new potential: 

𝜙1(𝑥2, 𝑥3) = ∑𝜙1
′ (𝑥1, 𝑥2, 𝑥3)

𝑥1

 (6.11) 

In the next step, all terms in the scope of the summation operator ∑ …𝑥2  are multiplied together to 

create a temporary potential: 

𝜙2
′ (𝑥2, 𝑥3) = 𝑝(𝑥2)𝜙1(𝑥2,𝑥3) (6.12) 

𝑋2 is then marginalized out to obtain a new potential: 

𝜙2(𝑥3) = ∑𝑝(𝑥2)𝜙2
′ (𝑥2, 𝑥3)

𝑥2

 (6.13) 

This process is continued until all required variables are eliminated. Clearly, eliminating the vari-

ables sequentially as shown above is more efficient than enumerating Equation (6.7) directly, be-

cause the summations are performed over smaller potentials (or tables). In the current example, 

the largest created potential is 𝜙1
′ (𝑥1,𝑥2, 𝑥3) with 𝑚3 values. This potential is two orders of mag-

nitude smaller than the potential representing the complete joint PMF 𝑝(𝑥1,… , 𝑥5) which has 𝑚5 

values. 
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This example demonstrates that the efficiency of variable elimination depends on the size of the 

largest potential created during the elimination process. On the one hand, this size is a function of 

the size of the conditional PMF specified in the BN. On the other hand, it depends on the elimina-

tion order and the structure of the BN (Russell and Norvig 2010). Exact inference is typically more 

efficient in singly connected BN such as the network shown in Figure 6.3 than in multiply con-

nected BN such as the network illustrated in Figure 6.4 (see also Bensi et al. 2013). 

Essentially, exact inference algorithms search for an optimal elimination order that minimizes the 

computational time and/or memory demand. This task is NP-hard13 and it is thus unlikely to de-

velop an algorithm that finds the optimal elimination order for all types of BN (Cooper 1990). 

Therefore, existing algorithms apply heuristics to find an efficient elimination order. An overview 

on available algorithms is, for example, provided in (Murphy 2001; Jensen and Nielsen 2007). 

If exact inference becomes inefficient (i.e. in large, multiply connected networks), approximate 

inference methods may be applied as an alternative. Most approximate inference methods are sam-

pling-based such as likelihood weighting and Markov chain Monte Carlo (MCMC) methods. Es-

sentially, these methods generate samples of a set of variables in a BN given that the values of 

another set of variables are observed (see, for example, Russell and Norvig 2010 for more details). 

A significant disadvantage of approximate inference methods is that their efficiency degrades con-

siderably with increasing number of observations and/or decreasing value of the simulated proba-

bilities. 

6.2.4 Dynamic Bayesian networks (DBN) 

Discrete-time random processes can be modeled with dynamic Bayesian networks (DBN) (see, for 

example, Murphy 2002; Russell and Norvig 2010). A DBN consists of a sequence of slices 𝑡 =

0,1, … ,𝑇, each of which represents a discrete time step in the process. Each slice contains a set of 

random variables represented by a vector 𝐗𝑡 , which are typically divided into 𝐗𝑡 = [𝐘𝑡
𝑇 , 𝐙𝑡

𝑇]𝑇 to 

designate unobservable and observable variables. DBN normally encode the first -order Markov 

assumption (Russell and Norvig 2010)14, i.e. the variables 𝐗𝑡  in slice 𝑡 are conditionally independ-

ent of all other predecessors 𝐗0 , … , 𝐗𝑡−2 in slices 0,… , 𝑡 − 2 given its direct predecessors 𝐗𝑡−1 in 

slice 𝑡 − 1. It follows that: 

𝑝(𝐱𝑡|𝐱𝑡−1, 𝐱𝑡−2, … , 𝐱0) = 𝑝(𝐱𝑡|𝐱𝑡−1) (6.14) 

Equation (6.14) implies that the variables 𝐗𝑡  in slice 𝑡 can have parents in the same slice and in 

the previous slice 𝑡 − 1. Figure 6.5 shows a simple DBN with variables 𝑌𝑡 and 𝑍𝑡  in each slice 𝑡. 

In accordance with Equation (6.1), the joint PMF 𝑝(𝐱0:𝑇) of all variables 𝐗0:𝑇 = [𝐗0
𝑇 , 𝐗1

𝑇 , … , 𝐗𝑇
𝑇 ]𝑇 

in a DBN can be written as: 

 
13 NP-hard stands for non-deterministic polynomial time hard. This is a concept from computational complexity theory 

(see, for example, Arora and Barak 2009; Wigderson 2019) 
14 Note that this is not a requirement as discussed by Russell and Norvig (2010) 
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𝑝(𝐱0:𝑇) =∏∏𝑝(𝑥𝑖,𝑡|𝑝𝑎(𝑥𝑖,𝑡)) 

𝑁

𝑖=1

𝑇

𝑡=0

 (6.15) 

where 𝑁 is the number of random variables in each slice. 

Two main inference tasks can be formulated for DBN: 

1. Filtering is the task of computing the posterior PMF of all unobservable variables 𝐘𝑡 in all 

slice 𝑡 given the observations 𝐙0:𝑡 = 𝐳0:𝑡 up to slice 𝑡, i.e. 𝑝(𝐲𝑡|𝐳0:𝑡). 

2. Smoothing is the task of computing the posterior PMF of all unobservable variables 𝐘𝑘  in 

any slice 𝑘 with 0 ≤ 𝑘 < 𝑡 given the observations 𝐙0:𝑡 = 𝐳0:𝑡 up to slice 𝑡, i.e. 𝑝(𝐲𝑘|𝐳0:𝑡) 

with 0 ≤ 𝑘 < 𝑡. 

A number of exact and approximate inference methods are available for solving these inference 

problems, which exploit the repetitive structure of DBN (see Murphy 2002 for more details). 

6.3 Modeling of deteriorating structural systems 

6.3.1 Generic DBN model of element deterioration 

As discussed in Section 4.3, the reliability of deteriorating structural systems belonging to model 

class (b) can be approximated using a discrete-time approach. In this approach, the service life of 

the structure is divided into intervals (𝑡𝑗−1, 𝑡𝑗 ], 𝑗 = 1, … , 𝑚. Deterioration is modeled at the ele-

ment level and evaluated at the end of each interval. To this end, the generic DBN model proposed 

by Straub (2009) is applied. Let 𝐷𝑖,𝑗 again represent the condition of element 𝑖 at the end of the 𝑗th 

interval. The framework describes 𝐷𝑖,𝑗 by a parametric model ℎ𝐷,𝑖, which is written in the generic 

form as: 

𝐷𝑖,𝑗 = ℎ𝐷,𝑖(𝐷𝑖,0, 𝚯𝑖 , 𝛀𝑖,0, … 𝛀𝑖,𝑗 , 𝑡𝑗), 𝑗 = 1,… ,𝑚 (6.16) 

where 𝐷𝑖,0 is the initial condition of element 𝑖, 𝚯𝑖  are the time-invariant model parameters and 𝛀𝑖,𝑗 

are the time-variant model parameters. Additionally, the framework makes two main conditional 

independence assumptions. First, the framework assumes that the element deterioration state 𝐷𝑖,𝑗 

is conditionally Markovian given 𝚯𝑖 = 𝛉𝑖 and 𝛀𝑖,𝑗 = 𝛚𝑖,𝑗, i.e.: 

𝑓(𝑑𝑖,𝑗 |𝑑𝑖,0, … , 𝑑𝑖,𝑗−1, 𝛉𝑖 ,𝛚𝑖,0, … , 𝛚𝑖,𝑗) = 𝑓(𝑑𝑖,𝑗 |𝑑𝑖,𝑗−1, 𝛉𝑖 ,𝛚𝑖,𝑗), 𝑗 = 1,… , 𝑚 (6.17) 

 

Figure 6.5: A simple dynamic Bayesian network. 
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where 𝑓(𝑑𝑖,𝑗 | ∙) is the conditional PDF of 𝐷𝑖,𝑗. Straub (2009) highlights that the conditional Mar-

kov process 𝐷𝑖,𝑗 is not necessarily homogeneous as the conditional PDF 𝑓(𝑑𝑖,𝑗|𝑑𝑖,𝑗−1, 𝛉𝑖 ,𝛚𝑖,𝑗) 

may change with each time step 𝑗. Secondly, the framework requires that the time-invariant model 

parameters 𝛀𝑖,𝑗 are conditionally Markovian given 𝚯𝑖 = 𝛉𝑖 and 𝐷𝑖,𝑗−1 = 𝑑𝑖,𝑗−1, i.e.: 

𝑓(𝛚𝑖,𝑗 |𝛚𝑖,0, … ,𝛚𝑖,𝑗−1, 𝑑𝑖,0, … 𝑑𝑖,𝑗−1, 𝛉𝑖) = 𝑓(𝛚𝑗 |𝛚𝑗−1, 𝑑𝑖,𝑗−1, 𝛉𝑖), 𝑗 = 1,… ,𝑚 (6.18) 

where 𝑓(𝛚𝑖,𝑗 | ∙) is the conditional PDF of 𝛀𝑖,𝑗. The assumptions of this model are discussed in 

(Straub 2009). 

Based on the conditional independence assumptions introduced above, it is possible to construct 

the generic DBN of the element deterioration model shown in Figure 6.6. Each slice 𝑗 of the DBN 

represents a discrete time step in the deterioration process. Note that  the additional vectors 

𝚯𝑖,0, … ,𝚯𝑖,𝑚 are introduced so that all slices 𝑗 = 1,… ,𝑚 are identical. These vectors are determin-

istically related by the following functions 𝚯𝑖,𝑗 = 𝚯𝑖,𝑗−1 for all 𝑗 = 1, … , 𝑚 and 𝚯𝑖,0 = 𝚯𝑖 . This 

approach simplifies the model building and the graphical representation of the DBN. 

As highlighted by Straub (2009), the nodes of the DBN represent vectors of random variables. 

Depending on the specific implementation of the framework, the variables in these vectors may 

be included as individual nodes in the DBN. Such a refinement allows encoding further independ-

ence assumptions in the DBN and can thus increase the efficiency of the model. 

6.3.2 Dependence modeling 

Dependence among the parameters of the models describing 𝐷𝑖,𝑗 can be captured in a BN using a 

hierarchical approach. As an example, consider the dependent continuous random variables 𝐗 =

[𝑋1, … , 𝑋𝑛]
𝑇 with marginal CDFs 𝐹𝑋𝑖 (𝑥𝑖), 𝑖 = 1,… , 𝑛 and correlation matrix 𝐑𝑋 = [𝜌𝑋,𝑖𝑗 ]. The 

following presentation demonstrates how such a correlation model can be translated into a hierar-

chical BN (see Straub and Der Kiureghian 2010a; Luque and Straub 2016 for similar examples). 

Given that the joint CDF of 𝐗 can be approximated by a Gaussian copula, the Nataf transformation 

can be used to transform the correlated random variable 𝐗 = [𝑋1, … , 𝑋𝑛]
𝑇 to correlated standard 

 

Figure 6.6: Generic DBN model of element deterioration (after Straub 2009). 
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normal random variables 𝐘 = [𝑌1, … , 𝑌𝑛]
𝑇 by applying the following marginal transformations 

(Liu and Der Kiureghian 1986): 

𝑌𝑖 = Φ
−1[𝐹𝑋𝑖 (𝑋𝑖)], 𝑖 = 1,… , 𝑛 (6.19) 

where Φ(∙) is the standard normal CDF. The random variables 𝐘 are jointly standard normal dis-

tributed with correlation matrix 𝐑𝑌 = [𝜌𝑌,𝑖𝑗 ], i.e. their joint CDF 𝐹𝐘(𝐲) is equal to the 𝑛-variate 

standard normal CDF Φ𝑛(𝐲, 𝐑𝑌). The elements 𝜌𝑌,𝑖𝑗 of 𝐑𝑌 are defined in terms of the correspond-

ing correlation coefficients 𝜌𝑋,𝑖𝑗 through the following relation (Liu and Der Kiureghian 1986; 

Ditlevsen and Madsen 1996): 

𝜌𝑋,𝑖𝑗 = 𝔼[𝑍𝑖𝑍𝑗 ] = ∫ ∫ 𝑧𝑖𝑧𝑗𝜑2(𝑦𝑖 , 𝑦𝑗 ,𝜌𝑌,𝑖𝑗)
+∞

−∞

d𝑦𝑖  d𝑦𝑗

+∞

−∞

 (6.20) 

with 

𝑧𝑖 =
𝐹𝑋𝑖
−1[Φ(𝑦𝑖)] − 𝜇𝑋𝑖

𝜎𝑋𝑖
 (6.21) 

where 𝜇𝑋𝑖  and 𝜎𝑋𝑖  are the mean and standard deviation of 𝑋𝑖, and 𝜑2(∙) is the two-dimensional 

standard normal PDF. Solutions of Equation (6.20) can be found for most common stochastic dis-

tributions in (Liu and Der Kiureghian 1986; Ditlevsen and Madsen 1996; Melchers 1999). 

Now suppose the random variables 𝐘 are Dunnet-Sobel class standard normal random variables, 

i.e. the correlation coefficient between each pair 𝑌𝑖 and 𝑌𝑗 is specified as 𝜌𝑌,𝑖𝑗 = 𝑟𝑌,𝑖 ∙ 𝑟𝑌,𝑗 for 𝑖 ≠ 𝑗 

and 𝜌𝑌,𝑖𝑗 = 1 for 𝑖 = 𝑗. For such a correlation structure, Dunnett and Sobel (1955) have shown 

that the joint CDF of the correlated standard normal random variables 𝐹𝐘(𝐲) = Φ𝑛(𝐲,𝐑𝑌) can be 

written as (see also Thoft-Christensen and Murotsu 1986): 

𝐹𝐘(𝐲) = Φ𝑛(𝐲,𝐑𝑌) = ∫ (∏ 𝐹𝑌𝑖 |𝑈(𝑦𝑖 |𝑢)
𝑛

𝑖=1
)  𝜑(𝑢) d𝑢

+∞

−∞

 (6.22) 

with 

𝐹𝑌𝑖 |𝑈(𝑦𝑖 |𝑢) = Φ

(

 𝑦𝑖 − 𝑟𝑌,𝑖𝑢

√1− 𝑟𝑌,𝑖
2

)

 , 𝑖 = 1,… , 𝑛 (6.23) 

where 𝑈 is an independent standard normal random variable with PDF 𝜑(𝑢) and 𝐹𝑌𝑖 |𝑈(𝑦𝑖 |𝑢) is 

the conditional CDF of 𝑌𝑖, 𝑖,… , 𝑛 given 𝑈. 

From Equations (6.22) and (6.23) it follows that the correlation among the Dunnet-Sobel class 

standard normal random variables 𝑌1,… , 𝑌𝑛  can be modeled through a common parent variable 𝑈 

with standard normal distribution such that 𝑌1, … , 𝑌𝑛  are conditionally independent given 𝑈 = 𝑢 

with conditional CDFs 𝐹𝑌𝑖 |𝑈(𝑦𝑖 |𝑢), 𝑖 = 1,… , 𝑛. The common parent variable 𝑈 is in the following 
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called a hyper-parameter. This correlation model can be represented by the hierarchical BN shown 

in Figure 6.7. 

Using the marginal transformations given in Equation (6.19), the conditional CDFs given in Equa-

tion (6.23) can be expressed in terms of the original random variables 𝑋1, … ,𝑋𝑛 as: 

𝐹𝑋𝑖 |𝑈(𝑥𝑖|𝑢) = Φ

[
 
 
 
Φ−1[𝐹𝑋𝑖 (𝑥𝑖)] − 𝑟𝑌,𝑖𝑢

√1 − 𝑟𝑌,𝑖
2

]
 
 
 

, 𝑖 = 1, … , 𝑛 (6.24) 

Thus, the correlation among the original random variables 𝑋1, … ,𝑋𝑛 can be modeled by the hier-

archical BN shown in Figure 6.8. The nodes 𝑋1, … ,𝑋𝑛 in the hierarchical BN are fully defined by 

the conditional CDFs 𝐹𝑋𝑖 |𝑈(𝑥𝑖|𝑢), 𝑖 = 1, … , 𝑛. 

If all 𝑋𝑖’s have identical marginal distributions 𝐹𝑋(𝑥) and are equi-correlated with correlation co-

efficient 𝜌𝑋, the conditional PDF 𝐹𝑋|𝑈(𝑥|𝑢) reads (see also Luque and Straub 2016): 

𝐹𝑋|𝑈(𝑥|𝑢) = Φ [
Φ−1[𝐹𝑋(𝑥)] − √𝜌𝑌 𝑢

√1− 𝜌𝑌
] (6.25) 

where 𝜌𝑌  is the corresponding correlation coefficient in standard normal space. It can be deter-

mined by solving Equation (6.20). 

As suggested by Song and Kang (2009), the hierarchical BN shown in Figure 6.8 can be extended 

by introducing additional hyper-parameters to represent more general correlation structures among 

the variables 𝑋1, … ,𝑋𝑛 . This approach can be considered as a generalization of the Dunnet-Sobel 

 

Figure 6.7: Hierarchical BN of correlated standard normal random variables 𝑌1 , … , 𝑌𝑛. 𝑈 is an independent standard 

normal random variable. 

 

Figure 6.8: Hierarchical BN of correlated random variables 𝑋1 ,… ,𝑋𝑛. 𝑈 is an independent standard normal random 

variable. 
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class standard normal random variables. Adding additional hyper-parameters typically results in a 

densely connected BN and thus increases the computational costs of inference. Bensi et al. (2011) 

present methods for reducing the complexity of hierarchical BN representing random fields while 

minimizing the error in modeling the correlation structure. 

As noted in Section 5.2.2, spatial dependence of deterioration in most structural systems mainly 

exists due to common influencing factors rather than geometrical proximity (Straub 2018b). If 

these common influencing factors cannot be modeled explicitly, spatial dependence among the 

deterioration model parameters can be represented by correlation coefficients. Such correlation 

structures can often be implemented by applying the simple hierarchical BN shown in Figure 6.8, 

which is based on the Dunnet-Sobel class standard normal random variables. 

Section 5.2.2 also notes that probabilistic hierarchical models (e.g. Maes and Dann 2007) are ap-

plicable if common features and factors influencing deterioration of different elements in a struc-

tural system can be modeled explicitly. Faber et al. (2006) and Straub et al. (2009) apply, for ex-

ample, probabilistic hierarchical models to describe the spatial variability of reinforcement corro-

sion in concrete structures. Such correlation models can be readily implemented in a hierarchical 

BN (see, for example, Qin and Faber 2012; Luque et al. 2017) 

6.3.3 Modeling of inspection and monitoring 

Inspection and monitoring of deteriorating structural systems typically provide information on the 

initial condition 𝐷𝑖,0, the model parameters 𝚯𝑖  and 𝛀𝑖,0, …𝛀𝑖,𝑗, and the element condition 𝐷𝑖,𝑗. Any 

measurement or observation is subject to uncertainty. Following Straub (2009), inspection and 

monitoring outcomes are included in the DBN by introducing additional variables as children of 

the inspected/monitored variables to account for any uncertainties. As an example, consider the 

slice 𝑗 of the generic DBN shown in Figure 6.9. It includes an additional variable 𝑍𝐷,𝑖,𝑗 representing 

an observation of the element deterioration state 𝐷𝑖,𝑗. Following Section 3, the variable 𝑍𝐷,𝑖,𝑗 is 

described by a likelihood function: 

𝐿(𝑑𝑖,𝑗 |𝑧𝐷,𝑖,𝑗) ∝ Pr(𝑍𝐷,𝑖,𝑗 = 𝑧𝐷,𝑖,𝑗 |𝐷𝑖,𝑗 = 𝑑𝑖,𝑗) (6.26) 

This function is proportional to the probability of observing 𝑍𝐷,𝑖𝑗 = 𝑧𝐷,𝑖,𝑗  when the uncertain ele-

ment condition 𝐷𝑖,𝑗 takes a value 𝑑𝑖,𝑗, and it fully defines the variable 𝑍𝐷,𝑖,𝑗 in the DBN. The 

variable 𝑍𝐷,𝑖,𝑗 may, for example, represent the outcome of a measurement of a defect size. In this 

case, 𝑍𝐷,𝑖,𝑗 is a continuous random variable whose outcome space covers all possible defect di-

mensions. The likelihood function of this measurement is characterized by its measurement error 

as described in Section 3.2. Note that this model assumes that the observation 𝑍𝐷,𝑖,𝑗 is conditionally 

independent of all other variables in the DBN given 𝐷𝑖,𝑗 = 𝑑𝑖,𝑗. 

To represent observations of the model parameters 𝚯𝑖  and 𝛀𝑖,𝑗, each slice 𝑗 of the generic DBN 

model of element deterioration shown in Figure 6.9 can extended with additional variables as chil-

dren of these parameters (see Luque and Straub 2016 for more details). 
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6.3.4 Generic DBN model of a deteriorating structural system 

The structural system is divided into 𝑛𝐸 elements to model its deterioration state. Deterioration of 

all 𝑛𝐸 elements is described with separate DBN models as introduced in Section 6.3.1. Spatial 

dependence among element deterioration is modeled by applying a hierarchical approach as de-

scribed in Section 6.3.2. For this purpose, the hyper-parameters 𝐔 = [𝑈𝚯 , 𝑈𝛀 , 𝑈𝐷0]
𝑇 are intro-

duced, which link the uncertain parameters influencing the condition of the individual elements as 

illustrated in Figure 6.10. 

The hyper-parameters 𝐔 = [𝑈𝚯 , 𝑈𝛀, 𝑈𝐷0]
𝑇 explicitly model the correlation among the time-invar-

iant parameters 𝚯𝑖,0, time-variant parameters 𝛀𝑖,0 and initial element conditions 𝐷𝑖,0 at the begin-

ning of the structure’s service life. The correlation among the element conditions 𝐷𝑖,𝑗 in all subse-

quent time steps 𝑗 > 0 are a function of (a) the correlation among the element conditions in the 

previous time step 𝐷𝑖,𝑗−1, (b) the correlation among the time-invariant model parameters 𝚯𝑖,𝑗, (c) 

the correlation among the time-variant parameters 𝛀𝑖,𝑗, and (d) the mathematical relations encoded 

in the underlying deterioration models ℎ𝐷,𝑖 . The correlation among the time-invariant parameters 

𝚯𝑖,𝑗 is the same in each time step 𝑗 whereas the correlation among the time-variant parameters 𝛀𝑖,𝑗 

may vary from time step to time step. The actual cross-correlation among the time-variant param-

eters 𝛀𝑖,𝑗 could be modeled explicitly by introducing additional hyper-parameters as their common 

parents in each slice 𝑗 > 0. However, these additional hyper-parameters are here omitted on pur-

pose as the proposed hierarchical structure shown in Figure 6.10 facilitates the development of 

efficient inference algorithms, which exploit the conditional independence of the individual ele-

ment deterioration models given the hyper-parameters 𝐔 (see Luque and Straub 2016).  

The generic DBN model of a deteriorating structural system shown in Figure 6.10 contains a node 

𝑆𝑗 in each slice 𝑗 to represent the system state at the end of interval 𝑗, which is a stochastic function 

 

Figure 6.9: Slice 𝑗 of the generic DBN model of element deterioration including an additional node 𝑍𝐷,𝑖,𝑗  representing 

an observation of the element deterioration state 𝐷𝑖,𝑗 (after Straub 2009). 
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of the element conditions. This relation is reflected in the generic DBN model by the directed links 

pointing from the nodes 𝐷𝑖,𝑗, 𝑖 = 1,… , 𝑛𝐸 towards the node 𝑆𝑗 as illustrated in Figure 6.11. 

In the general case, 𝑆𝑗 is a multi-state random variable. In most applications, however, 𝑆𝑗 is mod-

eled as a binary random variable, where 𝐹𝑗
∗ = {𝑆𝑗 = 1} is the interval failure event defined in Sec-

tion 4.3 and 𝐹𝑗
∗ = {𝑆𝑗 = 0} is the complement. In this formulation, the node 𝑆𝑗 is fully defined by 

the conditional system failure probability Pr(𝐹𝑗
∗|𝐃𝑗 = 𝐝𝑗), where the vector 𝐃𝑗 = [𝐷1,𝑗 ,… , 𝐷𝑛𝐸,𝑗]

𝑇 

represents the condition of the structural system at end of interval 𝑗 (see also Section 5.2.1). To 

determine these probabilities, a probabilistic model of the structural system is defined with element 

properties modelled according to the system deterioration state 𝐃𝑗 = 𝐝𝑗  and time-invariant struc-

tural system reliability analyses are performed (see Sections 2.4 and 4.3). Note that in most cases 

the number of deteriorating elements is large, and thus the number of possible realizations of the 

 

Figure 6.10: Generic DBN model of a deteriorating structural system (adapted from Luque and Straub 2016). 

 

Figure 6.11: Converging connection at node 𝑆𝑗 in slice 𝑗. Node 𝑆𝑗 models the system state conditional on the system 

condition 𝐃𝑗 = [𝐷1,𝑗 ,… ,𝐷𝑛𝐸,𝑗]
𝑇 at end of interval 𝑗. 
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system condition 𝐝𝑗 is usually intractable. For this reason, more efficient representations of struc-

tural systems are often required (see also Luque and Straub 2016).  

6.4 Computational aspects 

6.4.1 Discretization of continuous random variables 

Probabilistic inference in BN can be performed with exact or approximate algorithms. The latter 

are typically sampling-based, and their performance degrades with increasing number of observa-

tions (see also Section 6.2.3). In addition, sampling-based methods are generally inefficient in 

simulating rare events. In contrast, the performance of exact inference algorithms is not affected 

by the number of observations considered in the analysis (see also Section 6.2.3). Their perfor-

mance is also independent of the value of the probabilities to be calculated. For these reasons, 

exact algorithms are a suitable choice for performing probabilistic inference in BN. 

In most applications, DBN models of deteriorating structural systems include continuous and dis-

crete variables. Such networks belong to the class of hybrid BN. Exact inference in hybrid BN is 

only possible in a few special cases (Langseth et al. 2012): (a) when the model is a conditional 

linear Gaussian model where the joint distribution of the continuous variables given the discrete 

variables is the multivariate normal distribution, or (b) when all continuous variables are defined 

as mixtures of truncated basic functions. A common strategy to overcome this problem is to dis-

cretize the continuous variables such that exact inference algorithms available for discrete BN can 

be applied (Langseth et al. 2012). This approach replaces a continuous variable 𝑋 by a discrete 

counterpart 𝑋̂, which is obtained by dividing the continuous outcome space of 𝑋 into 𝑚𝑋 mutually 

exclusive, collectively exhaustive intervals. Each interval corresponds to a state of the discrete 

variable 𝑋̂. The conditional or marginal PMF of 𝑋̂ is then computed from the conditional or mar-

ginal PDF of 𝑋. 

A strategy for computing the conditional or marginal  of discretized variables is, for example, given 

in (Straub 2009). To demonstrate some basic principles of this computational task, consider the 

simple BN shown in Figure 6.12 with four continuous variables. The variables are discretized 

according to their topological ordering in the BN, e.g. (𝐴,𝐵, 𝐶,𝐷). 

First, root node 𝐴 is discretized. Its discrete counterpart is 𝐴̂ with 𝑚𝐴 states denoted by 𝑎̂𝑖, 𝑖 =

1, … ,𝑚𝐴. The marginal PMF of 𝐴̂ is simply given by: 

𝑝(𝑎̂𝑖) = Pr(𝑎𝑖
𝐿 < 𝐴 ≤ 𝑎̂𝑖

𝑈) = 𝐹𝐴(𝑎̂𝑖
𝑈) − 𝐹𝐴(𝑎̂𝑖

𝐿) (6.27) 

where 𝐹𝐴(∙) is the CDF of 𝐴, and 𝑎̂𝑖
𝑈 and 𝑎̂𝑖

𝐿  are the upper and lower boundaries of the interval 

corresponding to state 𝑎̂𝑖.  

Next, variable 𝐵 is replaced by the discrete variable 𝐵̂ with 𝑚𝐵  states, which are denoted by 𝑏̂𝑗, 

𝑗 = 1,… , 𝑚𝐵. The conditional PMF of 𝐵̂ is computed as: 

𝑝(𝑏̂𝑗 |𝑎̂𝑖) = 𝐹𝐵(𝑏̂𝑗
𝑈 |𝑎̂𝑖)− 𝐹𝐵(𝑏̂𝑗

𝐿|𝑎𝑖) (6.28) 
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where 𝐹𝐵(∙ |𝑎̂𝑖) is the CDF of 𝐵 conditional on 𝐴̂ = 𝑎̂𝑖, and 𝑏̂𝑗
𝑈  and 𝑏̂𝑗

𝐿 are the upper and lower 

boundaries of the interval corresponding to state 𝑏̂𝑗. The CDF of 𝐵 conditional on 𝐴̂ = 𝑎̂𝑖 is com-

puted as: 

𝐹𝐵(𝑏|𝑎̂𝑖) = ∫ 𝐹𝐵(𝑏|𝑎)

𝑎̂𝑖
𝑈

𝑎̂𝑖
𝐿

𝑓𝐴(𝑎|𝑎̂𝑖) 𝑑𝑎 (6.29) 

where 𝑓𝐴(𝑎|𝑎̂𝑖) is the PDF of 𝐴 truncated in the range 𝑎̂𝑖
𝐿 < 𝑎 ≤ 𝑎̂𝑖

𝑈. To evaluate the integral in 

Equation (6.29), MCS may, for example, be applied if no closed-form solution exists. Variable 𝐶 

is substituted by the discrete variable 𝐶̂ with states 𝑐̂𝑘 , 𝑘 = 1, … ,𝑚𝐶 , and the conditional PMF of 

𝐶̂ is computed in the same way as the conditional PMF of 𝐵̂.  

Now suppose variable 𝐷 is a deterministic function of 𝐵 and 𝐶 such that 𝐷 = ℎ(𝐵,𝐶). 𝐷’s discrete 

counterpart is 𝐷 with states 𝑑̂𝑚, 𝑚 = 1,… ,𝑚𝐷 . To obtain the conditional PMF of 𝐷, MCS can 

also be applied. Consider the computation of 𝐷’s conditional PMF for a given combination of its 

parents’ states 𝐵̂ = 𝑏̂𝑗 and 𝐶̂ = 𝑐̂𝑘. For this combination, 𝑁 samples (𝑏(𝑛), 𝑐(𝑛)), 𝑛 = 1,… , 𝑁 are 

generated from the conditional PDFs 𝑓𝐵(𝑏|𝑏̂𝑗) and 𝑓𝐶(𝑐|𝑐̂𝑘). Subsequently, the corresponding sam-

ples 𝑑(𝑛), 𝑛 = 1, … , 𝑁 are computed by evaluating ℎ for each generated pair (𝑏(𝑛) , 𝑐(𝑛)), 𝑛 =

1, … ,𝑁. Finally, a normalized histogram is constructed based on the samples 𝑑(𝑛), 𝑛 = 1,… ,𝑁 to 

approximate the values of the PMF 𝑝(𝑑̂𝑚|𝑏̂𝑗 , 𝑐̂𝑘), 𝑚 = 1, … , 𝑚𝐷. The bins of the histogram are 

defined in accordance with the intervals defining the states 𝑑̂𝑚, 𝑚 = 1,… ,𝑚𝐷 . This process is 

repeated for each of the 𝑚𝐵 ∙ 𝑚𝐶  combinations of 𝐷’s parents.  

The approach presented above is based on two approximations: (a) the joint PDF of 𝐵 and 𝐶 given 

𝐵̂ = 𝑏̂𝑗 and 𝐶̂ = 𝑐̂𝑘 is approximated by 𝑓𝐵𝐶(𝑏, 𝑐|𝑏̂𝑗 , 𝑐̂𝑘) = 𝑓𝐵(𝑏|𝑏̂𝑗) ∙ 𝑓𝐶(𝑐|𝑐̂𝑘), and (b) the condi-

tional PDFs 𝑓𝐵(𝑏|𝑏̂𝑗) and 𝑓𝐶(𝑐|𝑐̂𝑘) have to be assumed since 𝑓𝐵(𝑏) and 𝑓𝐶(𝑐) are here unknown. 

To this end, a uniform distribution on the discretization intervals corresponding to the states 𝑏̂𝑗 and 

𝑐̂𝑘  may be applied as an approximation of 𝑓𝐵(𝑏|𝑏̂𝑗) and 𝑓𝐶(𝑐|𝑐̂𝑘) if these intervals are bounded on 

both sides, and an exponential PDF may be used if a discretization interval is unbounded on one 

side (see Straub 2009 for mode details). 

 

Figure 6.12: A simple BN with four continuous variables. 
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The choice of the intervals influences the accuracy and the computational efficiency of exact in-

ference algorithms. If the number of discrete intervals is small, the discretization may introduce a 

large error as the conditional or marginal PMF of 𝑋̂ can be a poor approximation of the conditional 

or marginal PDF of 𝑋. This error can be reduced by increasing the number of intervals. However, 

introducing too many states has an adverse effect on the performance of exact inference algo-

rithms. As highlighted in Section 6.2.3, their efficiency depends on the size of the largest potential 

handled during the elimination process, which grows approximately exponentially with the num-

ber of states of the involved variables. To achieve an optimal balance between accuracy and com-

putation time, several discretization strategies have been proposed in the context of reliability anal-

ysis (see, for example, Neil et al. 2007; Straub 2009; Straub and Der Kiureghian 2010b; 

Zwirglmaier and Straub 2016). 

In the context of modeling deterioration processes, the heuristics proposed in (Straub 2009) have 

proven to be effective. The model is kept simple by defining the same discretization scheme for 

all time slices. The discretization scheme of the random deterioration model  parameters accounts 

for their influence on the element deterioration state. To this end, the intervals are selected for each 

parameter such that after applying the deterioration model they result in approximately equally 

spaced intervals in the outcome space of the element deterioration state. 

6.4.2 Inference algorithm 

Luque and Straub (2016) propose an exact inference algorithm tailored to evaluate the hierarchical 

DBN of a deteriorating structural system shown in Figure 6.10. The algorithm solves the filtering 

task and hence computes the posterior distribution of all unobserved variables in slice 𝑡 of the 

DBN conditional on the values of all observed variables up to slice 𝑗 (see also Section 6.2.4)15. By 

exploiting the conditional independence of the individual element deterioration models given the 

hyper-parameters 𝐔, the algorithm computes the posterior distribution of all variables except of 

the system state 𝑆𝑗 with nearly linear computational complexity with respect to the number of 

elements and time steps. The computation time is not affected by the number of observations con-

sidered in the analysis. However, the evaluation of the posterior distribution of the system state 𝑆𝑗 

is the computational bottleneck of the algorithm. This task requires operating with the conditional 

PMF 𝑝(𝑠𝑗 |𝐝𝑗), which grows exponentially with the number of elements. Therefore, computing the 

posterior distribution of 𝑆𝑗 can quickly become intractable as the number of elements grows unless 

a more efficient representation of the relation among system and element conditions than the con-

verging connection shown in Figure 6.11 can be identified (Luque and Straub 2016).  

An implementation of the exact inference algorithm proposed in (Luque and Straub 2016) is be-

yond the scope of this thesis. Instead, probabilistic inference is performed using likelihood 

weighting (Fung and Chang 1989; Schachter and Poet 1989). This is a simple approximate method 

that generates samples of the variables in a BN, which are consistent with the values of all observed 

variables in the network. To this end, likelihood weighting fixes the values of all observed variables 

and samples all other variables in topological order. The distribution from which an unobserved 

random variable’s value is sampled is conditional on the values already assigned to its parents. The 

 
15 The algorithm has been adapted by Bismut and Straub (2018) to solve the smoothing task. 
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samples are, however, not equally important. Each generated sample is weighted by the likelihood 

that the sample explains the observed values. The likelihood corresponds to the product of the 

conditional probabilities of each observed variable’s value given the values assigned to its parents. 

This guarantees that samples in which the observations are unlikely are given less weight.  

An advantage of approximate inference algorithms including likelihood weighting is that they can 

be applied to perform inference in BN with continuous random variables. Nevertheless, the con-

tinuous variables are in this thesis discretized with a view to implementing an exact inference 

algorithm in future applications.  

Likelihood weighting is implemented as summarized in Algorithm 6.1. This implementation ex-

ploits the repetitive structure of the DBN and generates 𝐾 weighted samples of the variables 𝐗𝑗 =

[𝐘𝑗
𝑇 , 𝐙𝑗

𝑇]𝑇 in slice 𝑗 of the DBN given 𝐙𝑗 = 𝐳𝑗 is observed and 𝐾 samples of the variables 𝐗𝑗−1 in 

slice 𝑗 − 1 are available. 𝐘𝑗 and 𝐙𝑗 denote the unobservable and observable variables in slice 𝑗. 

The weighted samples (𝐱0
(𝑘)
, 𝑤0

(𝑘)), … , (𝐱𝑚
(𝑘)
, 𝑤𝑚

(𝑘)), 𝑘 = 1,… ,𝐾 are used to solve the filtering, 

prediction and smoothing task as follows (see Section 6.2.4): 

Filtering: The posterior PMF 𝑝(𝑦𝑖,𝑗|𝐳0:𝑗) of any unobserved variable 𝑌𝑖,𝑗 in slice 𝑗 conditional on 

the values of all observed variables 𝐙0:𝑗 = 𝐳0:𝑗 up to slice 𝑗 is computed as (see, for example, Fung 

and Chang 1989): 

Algorithm 6.1: Likelihood weighting for generating 𝐾 weighted samples of the variables 𝐗𝑗 = [𝐘𝑗
𝑇, 𝐙𝑗

𝑇]𝑇 in slice 𝑗 of 
the DBN given 𝐙𝑗 = 𝐳𝑗 is observed and 𝐾 samples of the variables 𝐗𝑗−1 in slice 𝑗 − 1 are available. 

Input: DBN encoding the joint PMF 𝑝(𝐱0:𝑚) of variables 𝐗0:𝑚 = [𝐗0
𝑇 , 𝐗1

𝑇 , … , 𝐗𝑚
𝑇 ]𝑇, 𝐳𝑗 (ob-

served values of variables 𝐙𝑗 in slice 𝑗 of the DBN), 𝐾 (number of samples to be gener-

ated) and 𝐱𝑗−1
(𝑘)

, 𝑘 = 1, … , 𝐾 (𝐾 samples of the variables 𝐗𝑗−1 in slice 𝑗 − 1 of the DBN) 

1. Let (𝑋1,𝑗 ,… , 𝑋𝑛,𝑗) be a topological ordering of 𝐗𝑗. 

2. For 𝑘 = 1,… , 𝐾: 

a. Initialize weight 𝑤
𝑗
(𝑘) = 1. 

b. Generate a sample 𝐱𝑗
(𝑘) = [𝑥1,𝑗

(𝑘), … , 𝑥𝑛,𝑗
(𝑘) ]𝑇: 

For 𝑖 = 1,… , 𝑛: 

Let 𝐩𝑖,𝑗
(𝑘)

 be the values of 𝑋𝑖,𝑗’s parents 𝑝𝑎(𝑋𝑖,𝑗) in (𝐱𝑗−1
(𝑘)
, 𝐱𝑗
(𝑘)) 

If 𝑋𝑖,𝑗 is an observed variable: 

𝑥𝑖,𝑗
(𝑘) = observed value of 𝑋𝑖,𝑗 in 𝐳𝑗 

𝑤
𝑗
(𝑘) = 𝑤

𝑗
(𝑘) ∙ 𝑝(𝑥

𝑖,𝑗

(𝑘)|𝐩
𝑖,𝑗

(𝑘)) 

Else: 

𝑥𝑖,𝑗
(𝑘) = a random sample from 𝑝(𝑥𝑖,𝑗 |𝐩𝑖,𝑗

(𝑘)) 

3. Return (𝐱𝑗
(𝑘), 𝑤𝑗

(𝑘)), 𝑘 = 1, … ,𝐾. 
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𝑝(𝑦𝑖,𝑗 |𝐳0:𝑗) = Pr(𝑌𝑖,𝑗 = 𝑦𝑖,𝑗 |𝐙0:𝑗 = 𝐳0:𝑗) ≈
∑ 𝕀[𝑦𝑖,𝑗

(𝑘) = 𝑦𝑖,𝑗 ] 𝑤0:𝑗
(𝑘)𝐾

𝑘=1

∑ 𝑤
0:𝑗

(𝑘)𝐾
𝑘=1

 (6.30) 

where 𝕀(∙) is the indicator function, 𝑦
𝑖,𝑗
(𝑘)

 is the 𝑘th sample of 𝑌𝑖,𝑗 and 𝑤
0:𝑗
(𝑘) = ∏ 𝑤

𝑖

(𝑘)𝑗
𝑖=0

 is the 

weight representing the joint likelihood of all observed values 𝐳0:𝑗 = [𝐳0
𝑇 , 𝐳1

𝑇 , … , 𝐳𝑗
𝑇]𝑇 in the 𝑘th 

sample of variables 𝐗0:𝑗 = [𝐗0
𝑇 , 𝐗1

𝑇 , … , 𝐗𝑗
𝑇]𝑇. Equation (6.30) simply divides the weight of all sam-

ples 𝐱𝑗
(𝑘)

 with 𝑦𝑖,𝑗
(𝑘) = 𝑦𝑖,𝑗  by the total weight of all samples. 

Smoothing: The posterior PMF 𝑝(𝑦𝑖,𝑙 |𝐳0:𝑗) of any unobserved variable 𝑌𝑖,𝑙 in slice 𝑙 with 0 ≤ 𝑙 <

𝑗 conditional on 𝐙0:𝑗 = 𝐳0:𝑗 is approximated as: 

𝑝(𝑦𝑖,𝑙 |𝐳0:𝑗) = Pr(𝑌𝑖,𝑙 = 𝑦𝑖,𝑙 |𝐙0:𝑗 = 𝐳0:𝑗) ≈
∑ 𝕀[𝑦𝑖,𝑙

(𝑘)
= 𝑦𝑖,𝑙] 𝑤0:𝑗

(𝑘)𝐾
𝑘=1

∑ 𝑤0:𝑗
(𝑘)𝐾

𝑘=1

 (6.31) 

where 𝑦
𝑖,𝑙
(𝑘)

 is the 𝑘th sample of 𝑌𝑖,𝑙. 

When computing the posterior distribution of the system state 𝑆𝑗, two situations can be distin-

guished: (a) the number of states of the system condition 𝐃𝑗  is limited and the conditional PMF 

𝑝(𝑠𝑗 |𝐝𝑗) can be pre-computed, and (b) the number of states of 𝐃𝑗  is too large to enable pre-com-

putations. In case (a), the posterior PMF 𝑝(𝑠𝑗 |𝐳0:𝑗) is approximated by simply generating weighted 

samples of 𝑆𝑗 and applying Equation (6.30) (smoothing is performed by applying Equation (6.31)). 

In case (b), weighted samples of the system condition 𝐃𝑗  are generated and the posterior probabil-

ities of the different states of 𝑆𝑗 are evaluated based on the weighted samples of 𝐃𝑗  in a post-

processing step, in which the conditional probabilities 𝑝(𝑠𝑗 |𝐝𝑗) are computed as required on the 

fly. As an example, consider the case in which the system state 𝑆𝑗 is modeled as a binary random 

variable and the posterior probability of the interval failure event 𝐹𝑗
∗ = {𝑆𝑗 = 1} in any interval 𝑗 

given the observation event 𝐙0:𝑗 = 𝐳0:𝑗 is of interest (this corresponds to filtering). This probability 

is approximated in a post-processing step as follows: 

Pr(𝐹𝑗
∗|𝐙0:𝑗 = 𝐳0:𝑗) =∑Pr(𝐹𝑗

∗|𝐃𝑗 = 𝐝𝑗)𝑝(𝐝𝑗 |𝐳0:𝑗)

𝐝𝑗

≈
∑ Pr[𝐹𝑗

∗|𝐃𝑗 = 𝐝𝑗
(𝑘)] 𝑤0:𝑗

(𝑘)𝐾
𝑘=1

∑ 𝑤0:𝑗
(𝑘)𝐾

𝑘=1

 (6.32) 

where 𝐝𝑗
(𝑘)

 is the 𝑘th sample of the system condition 𝐃𝑗 , 𝑤0:𝑗
(𝑘) = ∏ 𝑤𝑖

(𝑘)𝑗
𝑖=0  is the corresponding 

weight (see also Equation (6.30)), and Pr(𝐹𝑗
∗|𝐃𝑗 = 𝐝𝑗) is the conditional interval failure probabil-

ity conditional on 𝐃𝑗 = 𝐝𝑗. Note that this approach assumes that the computations of 

Pr(𝐹𝑗
∗|𝐃𝑗 = 𝐝𝑗) are relatively inexpensive. Prediction and smoothing of the probabilities of the 

interval events 𝐹𝑗
∗ are performed in analogy to Equation (6.31). 
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6.5 Numerical example: concrete box girder subject to corrosion 

This section revises and updates material originally published in Schneider, R., 

Fischer, J., Bügler, M., Nowak, M., Thöns, S., Borrmann, A. and Straub, D. (2015). 

Assessing and updating the reliability of concrete bridges subjected to spatial deterio-

ration - principles and software implementation. Structural Concrete 16(3): 356–365. 

Some passages and figures are directly taken from this reference. 

For illustration purposes, the DBN approach presented in Section 6.3 is applied to analyze the 

reliability of an existing highway bridge shown in Figure 6.13. The bridge was commissioned in 

1974 and consists of two separate structures; one for each driving direction. Both bridge super-

structures consist of a continuous single-cell prestressed concrete box girder with six spans ranging 

from 46 m to 70 m (see Figure 6.13(a)). Each box girder is 352 m long and 24.5 m wide; their 

cross-sections at mid-span and above the columns are shown in Figure 6.13(b).  

The current case study only considers the north eastern box girder (see Figure 6.13(a)). To assess 

the reliability of the box girder, several assumptions are made, and simplifications introduced. 

First, the box girder is assumed to be subject only to chloride-induced reinforcement corrosion 

throughout its service life. A physics-based stochastic model of the initiation phase of this deteri-

oration process is readily available (see, for example, fib Bulletin No. 34 2006). Secondly, the 

initiation model is extended by a highly-simplified propagation model to predict the loss of rein-

forcement steel after corrosion initiation. Thirdly, a simple structural model is applied to compute 

the conditional interval failure probability of the corroded structure under traffic loading. The 

structural model is developed based on design drawings and considers only global bending failure. 

Section 6.5.1 presents a DBN model that describes the progress of reinforcement corrosion in the 

box girder. The model is motivated by the work of Qin and Faber (2012). It considers the spatial 

correlation of the corrosion process and includes random variables to represent the outcome of 

half-cell potential measurements, which can be performed to detect corroding reinforcement in 

concrete structures. 

The deterioration model underlying the DBN model considers gradual degradation of the box 

girder’s reinforcement after corrosion initiation. The uncertain condition of the box girder is thus 

described by a set of continuous random variables representing the loss of reinforcement cross-

section throughout the structure. Although these variables are discretized as discussed in Section 

6.4.1, the number of possible realizations of the condition is still too large to allow direct modeling 

of the structural system performance (failed/not failed) in the DBN. This is, however, not prob-

lematic, because probabilistic inference in the DBN is performed with likelihood weighting. The 

posterior system failure probability of the box girder can, therefore, be evaluated in a post -pro-

cessing step based on the weighted samples of the system deterioration state as described in Sec-

tion 6.4.2. This post-processing step includes the evaluation of the interval failure probability con-

ditional on each generated sample of the system condition. A structural model that enables the 

evaluation of the conditional interval failure probability is described in Section 6.5.1.4. 
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To proof the concept, the models presented in Section 6.5.1 are implemented in a software proto-

type, which is described in Section 6.5.2. The prototype is applied to analyze the prior and posterior 

reliability of the deteriorating box girder. These analyses are summarized in Sections 6.5.3 and 

6.5.4. 

6.5.1 DBN model of the deteriorating box girder 

6.5.1.1 DBN model of chloride-induced reinforcement corrosion 

The box girder is exposed to chloride attack throughout its service life due to, for example, the 

application of de-icing salt. Over time the chlorides migrate from the concrete surface into the 

concrete. This process is commonly described by a diffusion model. Corrosion of the outer layer 

 

 

Figure 6.13: (a) Elevation and plan view of the highway bridge. (b) Cross-sections of the box girders at mid-span and 

above the columns 
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of reinforcement at depth 𝑊 starts when the concentration of chlorides exceeds a critical value 𝐶𝑐𝑟  

and the passive layer protecting the reinforcement is broken down. Applying a simplified variant 

of the diffusion model given in (fib Bulletin No. 34 2006), the time to initiation of reinforcement 

corrosion 𝑇𝐼  is given by: 

𝑇𝐼 = 𝑋𝐼 ∙
𝑊2

4𝐷
(erf−1 (1 −

𝐶𝑐𝑟
𝐶𝑠
) )

−2

 (6.33) 

where 𝐷 is the diffusion coefficient, 𝐶𝑠 is the chloride concentration on the concrete surface, 𝑋𝐼  is 

a random variable representing the model uncertainty associated with 𝑇𝐼  and erf(∙) is the Gaussian 

error function. Following Straub et al. (2009) and Qin and Faber (2012), all parameters 𝑊, 𝐷, 𝐶𝑐𝑟 , 

𝐶𝑠 and 𝑋𝐼  are modeled as lognormal random variables.  

The state of corrosion initiation at time 𝑡𝑗 is modeled by a binary random variable 𝐶𝐼𝑗, where 𝐶𝐼𝑗 =

0 is the event of no corrosion initiation and 𝐶𝐼𝑗 = 1 is the event of corrosion initiation. Both events 

are described by the limit state function 𝑔𝐶𝐼 (𝑡𝑗): 

𝑔𝐶𝐼 (𝑡𝑗) = 𝑇𝐼 − 𝑡𝑗 (6.34) 

The event 𝐶𝐼𝑗 = 1 occurs if 𝑔𝐶𝐼(𝑡𝑗) ≤ 0, and 𝐶𝐼𝑗 = 0 otherwise. 

The chlorides continue to migrate into the concrete resulting in the de-passivation of the next re-

inforcement layers. At the same time, the various stages of corrosion propagation take place. First, 

corrosion products start to build up on the surface of the reinforcement. Once the volume of the 

corrosion product is sufficiently large, small cracks appear in the concrete cover. The corrosion 

products then disperse through the cracks and become visible on the concrete surface after some 

time16. The concrete cover may spall when the corrosion products continue to accumulate on the 

surface of the reinforcement. Spalling of the concrete cover exposes the structure even further to 

the environment and thus accelerates the corrosion process. Eventually, reinforcement corrosion 

reduces the structure’s serviceability and load carrying capacity beyond acceptable limits.  

Reinforcement corrosion reduces the load carrying capacity of reinforced concrete structures 

mainly because of two effects (Osterminski and Schießl 2012): (a) loss of the cross-sectional area 

of the reinforcement due to uniform and/or pitting corrosion, and (b) loss of bond between the 

reinforcement and the concrete due to spalling and/or delamination. In the current case study – for 

illustration purposes – only the effect of the loss of reinforcement cross-sectional area is considered 

and the propagation phase of chloride-induced reinforcement corrosion is modeled by a simple 

linear model as illustrated in Figure 6.14.  

The state of corrosion propagation at time 𝑡𝑗 is here described in terms of the relative corrosion 

progress Δ𝑗 ranging from 0 to 1. Given Δ𝑗, the remaining cross-sectional area of the reinforcement 

𝐴𝑗 at time 𝑡𝑗 is computed as: 

 
16 Cracking of the concrete cover and visible coloring of the concrete surface are thus an observable indicator of 

progressed reinforcement corrosion in concrete structures (see, for example, Faber et al. 2006). 
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𝐴𝑗 = (1 − Δ𝑗) 𝐴0 (6.35) 

where 𝐴0 is the initial cross-sectional area of the reinforcement. Δ𝑗 is a function of the time to 

corrosion initiation 𝑇𝐼  and the time between corrosion initiation and complete loss of reinforcement 

cross-section 𝑇𝑝 (see Figure 6.14). A deterioration model ℎ𝐷 describing Δ𝑗 can now be written as: 

Δ𝑗 = ℎ𝐷(𝑡𝑗 , 𝑇𝐼, 𝑇𝑝) =

{
 

 
0, 𝑡𝑗 ≤ 𝑇𝐼
1

𝑇𝑃
(𝑡𝑗 − 𝑇𝐼), 𝑇𝐼 < 𝑡𝑗 ≤ 𝑇𝑃 + 𝑇𝐼

1, 𝑡𝑗 > 𝑇𝑃 + 𝑇𝐼

 (6.36) 

For the sake of demonstration, 𝑇𝑃 is modeled as a lognormal variable. Note that the propagation 

model can be replaced by a more detailed, physics-based model (see, for example, Vu and Stewart 

2000; Osterminski and Schießl 2012).  

The deterioration model ℎ𝐷 contains only time-invariant parameters. These are, in terms of the 

generic model described in Section 6.3.1, 𝚯 = [𝑇𝐼 , 𝑇𝑝 ]
𝑻, where 𝑇𝐼  is a function of the variables 𝑊, 

𝐷, 𝐶𝑐𝑟 , 𝐶𝑠 and 𝑋𝐼  as defined by Equation (6.33). The deterioration state is, in terms of the generic 

model, 𝐷𝑗 = Δ𝑗. The resulting DBN model of chloride-induced reinforcement corrosion is shown 

in Figure 6.15.  

The DBN model describes the corrosion process as a discrete time process. In the current example, 

each slice 𝑗 of the DBN represents the state of the corrosion process at end of year 𝑗, and the last 

slice 𝑚 corresponds to the service life of the structure (expressed in years). 

As discussed in Section 6.4, the continuous random variables 𝑊, 𝐷, 𝐶𝑠, 𝐶𝑐𝑟 , 𝑋𝐼 , 𝑇𝐼,𝑗, 𝑇𝑃,𝑗 and Δ𝑗 

are discretized according to their topological ordering in the DBN. First, variable 𝑊 is discretized 

by dividing its continuous outcome space into 𝑚𝑊 intervals. These intervals are defined in terms 

of 𝑚𝑊 + 1 interval boundaries (𝑤0 , 𝑤1, … ,𝑤𝑚𝑊), which are chosen as follows. The boundaries 

𝑤0 and 𝑤𝑚𝑊 are set equal to the lower and upper boundaries of 𝑊’s outcome space. The bounda-

ries 𝑤1 and 𝑤𝑚𝑊−1 are defined such that the probability of 𝑊 taking a value outside the range 

𝑤1 < 𝑤 ≤ 𝑤𝑚𝑊−1 is smaller than a value 𝑝. All remaining boundaries (𝑤2, … ,𝑤𝑚𝑊−2) are se-

lected such that the intervals within the range 𝑤1 < 𝑤 ≤ 𝑤𝑚𝑊−1 have equal lengths. The marginal 

 

Figure 6.14: Initiation and propagation phase of chloride-induced reinforcement corrosion. The propagation phase is 

here described by a simple linear model. 



6 Dynamic Bayesian network approach 

128 

PMF 𝑝(𝑤) is computed following Equation (6.27). Variables 𝐷, 𝐶𝑠, 𝐶𝑐𝑟  and 𝑋𝐼  are discretized in 

the same way as 𝑊.  

Next, variables 𝑇𝐼,𝑗 and 𝑇𝑃,𝑗 are discretized. Their outcome spaces are divided into 𝑚𝑇 = 𝑚+ 1 

intervals. The corresponding interval boundaries are defined as (0,1,2,… , 𝑇, ∞). The same dis-

cretization scheme in applied for all slices 𝑗. The marginal PMF of 𝑝(𝑡𝑃,0) is obtained analytically 

following Equation (6.27). As described in the example in Section 6.4.1, MSC is applied to com-

pute the conditional PMF 𝑝(𝑡𝐼,0|𝑤, 𝑑, 𝑐𝑠, 𝑐𝑐𝑟 , 𝑥𝐼) based on Equation (6.33). The conditional PMF 

𝑝(𝑡𝐼,𝑗 |𝑡𝐼,𝑗−1) and 𝑝(𝑡𝑃,𝑗 |𝑡𝑃,𝑗−1), 𝑗 = 1,… ,𝑚 are unit matrices since 𝑇𝐼,𝑗  and 𝑇𝑃,𝑗 are time-invariant. 

Finally, the 𝑚Δ states of variable Δ𝑗 are defined. The first and last state correspond to the events 

Δ𝑗 = 0 and Δ𝑗 = 1. All remaining states are defined by dividing the outcome space of Δ𝑗 into 𝑚Δ −

2 intervals with equal lengths. It follows that the second state corresponds to the event 0 < Δ𝑗 ≤

1/(𝑚Δ − 2), the third state is equal to the event 1/(𝑚Δ − 2) < Δ𝑗 ≤ 2/(𝑚Δ − 2) and so on. Note 

that the penultimate state of Δ𝑗 corresponds to the event (𝑚Δ − 3)/(𝑚Δ − 2) < Δ𝑗 < 1. The same 

discretization scheme is applied for all slices 𝑗. The conditional PMF 𝑝(𝛿𝑗 |𝑡𝐼,𝑗 , 𝑡𝑃,𝑗) is constructed 

as a function of year 𝑗 based on Equation (6.36). It follows that 𝑝(𝛿𝑗 |𝑡𝐼,𝑗 , 𝑡𝑃,𝑗) changes with each 

slice 𝑗. 

The discrete random variable 𝐶𝐼𝑗 is characterized by the conditional PMF 𝑝(𝑐𝑖𝑗 |𝑡𝐼,𝑗), which is 

determined as a function of year 𝑗 based on the limit state function 𝑔𝐶𝐼 (𝑡𝑗) defined in Equation 

(6.34). Thus, 𝑝(𝑐𝑖𝑗 |𝑡𝐼,𝑗) also changes with each slice 𝑗. 

6.5.1.2 Modeling the outcome of half-cell potential measurements 

Half-cell potential measurements determine the potential difference between an external reference 

electrode and the reinforcement. The measurements are performed on a grid over large concrete 

surfaces. A low potential difference indicates reinforcement corrosion (see, for example, Elsener 

et al. 2003). This inspection method thus provides information on the state of corrosion initiation 

𝐶𝐼𝑗 at time 𝑡𝑗. Let 𝑈𝑗  be the uncertain potential difference determined with a half-cell potential 

measurement at a given location on a concrete surface at time 𝑡𝑗. Furthermore, let 

 

Figure 6.15: DBN model of chloride-induced reinforcement corrosion. 
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𝑓𝑈𝑗|𝐶𝐼𝑗(𝑢𝑗 |𝑐𝑖𝑗 = 0) be the conditional PDF representing the probability that the measured potential 

difference is 𝑈𝑗 = 𝑢𝑗  given that the state of corrosion initiation is 𝐶𝐼𝑗 = 0 (no corrosion initiation). 

Similarly, 𝑓𝑈𝑗 |𝐶𝐼𝑗(𝑢𝑗 |𝑐𝑖𝑗 = 1) indicates the probability that the measurement results in 𝑈𝑗 = 𝑢𝑗  

given that the state of corrosion initiation is 𝐶𝐼𝑗 = 1 (corrosion initiation). The conditional density 

functions 𝑓𝑈𝑗|𝐶𝐼𝑗 (𝑢𝑗 |𝑐𝑖𝑗 = 0) and 𝑓𝑈𝑗|𝐶𝐼𝑗(𝑢𝑗 |𝑐𝑖𝑗 = 1) can be derived from experiments (see, for 

example, Lentz 2001; Johnsen et al. 2003; Keßler et al. 2014). They are illustrated in Figure 6.16. 

A threshold potential 𝑢𝑇 is defined to enable an interpretation of the measurement outcome as 

illustrated in Figure 6.16. By definition, the inspection indicates reinforcement corrosion if the 

measured potential difference is smaller than the threshold potential 𝑢𝑇. A probability of indication 

𝑃𝑜𝐼(𝑐𝑖𝑗) can thus be determined as: 

𝑃𝑜𝐼(𝑐𝑖𝑗) = Pr(𝑈𝑗 ≤ 𝑢𝑇|𝐶𝐼𝑗 = 𝑐𝑖𝑗) = ∫ 𝑓𝑈𝑗 |𝐶𝐼𝑗 (𝑢𝑗 |𝑐𝑖𝑗)

𝑢𝑇

−∞

𝑑𝑢𝑗  (6.37) 

The 𝑃𝑜𝐼 models the quality of half-cell potential measurements. The inspection method would be 

perfect if the probability of indication given that corrosion has started is 𝑃𝑜𝐼(𝑐𝑖𝑗 = 1) = 1 and the 

probability of indication given that corrosion has not started is 𝑃𝑜𝐼(𝑐𝑖𝑗 = 0) = 0. 

The threshold 𝑢𝑇 is typically selected to achieve a high probability of indication given that the 

state of corrosion initiation is 𝐶𝐼𝑗 = 1, e.g. 𝑃𝑜𝐼(𝑐𝑖𝑗 = 1) = 0.9 (see, for example, Lentz 2001). 

With a fixed threshold 𝑢𝑇, the probability of indication given that the state of corrosion initiation 

is 𝐶𝐼𝑡 = 0 is then computed based on Equation (6.37). 

Half-cell potential measurements can now be classified following Section 5.3.1. The classification 

is summarized in Table 6.1. 

 

Figure 6.16: Illustration of the conditional PDF 𝑓𝑈𝑗|𝐶𝐼𝑗(𝑢𝑗|𝑐𝑖𝑗) of the potential difference 𝑈𝑗 and the probability of 

indication 𝑃𝑜𝐼(𝑐𝑖𝑗) for 𝐶𝐼𝑗 = 0 (no corrosion initiation) and 𝐶𝐼𝑗 = 1 (corrosion initiation). 
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To represent the outcome of half-cell potential measurements, the DBN model shown Figure 6.15 

includes a binary random variable 𝑍𝐶𝐼 ,𝑗 as child of variable 𝐶𝐼𝑗 in each slice 𝑗, where 𝑍𝐶𝐼 ,𝑗 = 0 is 

the event of no indication of corrosion and 𝑍𝐶𝐼 ,𝑗 = 1 is the complement. The variable 𝑍𝐶𝐼 ,𝑗 is de-

scribed by the likelihood 𝑝(𝑧𝐶𝐼,𝑗 |𝑐𝑖𝑗) = Pr(𝑍𝐶𝐼 ,𝑗 = 𝑧𝐶𝐼,𝑗 |𝐶𝐼𝑗 = 𝑐𝑖𝑗). The likelihood 𝑝(𝑧𝐶𝐼,𝑗 |𝑐𝑖𝑗) is 

fully characterized by the probability of indication 𝑃𝑜𝐼(𝑐𝑖𝑗) as shown in Table 6.2. As an example, 

the probability of no indication of corrosion given that corrosion has started, is Pr(𝑍𝐶𝐼 ,𝑗 = 0|𝐶𝐼𝑗 =

1) = 1 − 𝑃𝑜𝐼(𝑐𝑖𝑗 = 1). 

6.5.1.3 DBN model of system deterioration 

Chloride-induced reinforcement corrosion varies randomly throughout the structure due to the spa-

tial correlation among the parameters influencing the progress of corrosion such as concrete cover 

depth, chloride surface concentration and concrete properties. To account for the spatial variability 

of the corrosion process, the box girder is divided into 𝑛𝑆 sections as indicated in Figure 6.17. 

Each section is further divided into four elements (area segments): deck plate, bottom flange and 

two webs. Thus, there are 𝑛𝐸 = 4 ∙ 𝑛𝑆 elements. 

The progress of chloride-induced reinforcement corrosion is modeled at the element level using 

separate DBN models as introduced in Sections 6.5.1.1 and 6.5.1.2. Within an element, the deteri-

oration state at time 𝑡𝑗 is assumed to be uniform, i.e. a relative corrosion progress of 0.05 represents 

an average 5% reduction in the overall cross-sectional area of the reinforcement in the associated 

element. Note that the current discretization scheme does not consider the spatial variability of the 

corrosion process around the circumference of the box girder. To account for this aspect properly, 

each element should be further divided in the direction perpendicular to the longitudinal axis of 

the box girder. 

Following Section 6.3.4, a hierarchical model is applied to represent spatial dependence among 

element deterioration. To this end, the hyper-parameters  𝑈𝑊 , 𝑈𝐷 , 𝑈𝐶𝑠 , 𝑈𝐶𝑐𝑟 , 𝑈𝑋𝐼  and 𝑈𝑇𝑃  are in-

Table 6.1: Classification of half-cell potential measurements. 

Classification Categories 

Inspected/monitored quantity Indicator related to the output of the deterioration model (The measured 

indicator is the potential difference which is related to the state of cor-

rosion initiation) 

Type of information Inequality information (indication/no indication of corrosion initiation)  

Temporal characteristics Data collection at discrete points in time 

Spatial characteristics Spatially (quasi) continuous data collection (The measurements are per-

formed on a grid over the entire concrete surfaces.) 

Table 6.2: Likelihood 𝑝(𝑧𝐶𝐼,𝑡|𝑐𝑖𝑡)= Pr(𝑍𝐶𝐼,𝑡 = 𝑧𝐶𝐼,𝑡|𝐶𝐼𝑡 = 𝑐𝑖𝑡) of half-cell potential measurements. 

 𝐶𝐼𝑗 = 0 (no initiation) 𝐶𝐼𝑗 = 1 (initiation) 

𝑍𝐶𝐼,𝑗 = 0 (no indication) 1 − 𝑃𝑜𝐼(𝑐𝑖𝑗 = 0) 1 − 𝑃𝑜𝐼(𝑐𝑖𝑗 = 1) 

𝑍𝐶𝐼,𝑗 = 1 (indication) 𝑃𝑜𝐼(𝑐𝑖𝑗 = 0) 𝑃𝑜𝐼(𝑐𝑖𝑗 = 1) 
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troduced. In the system model, all element deterioration models are connected through these hy-

per-parameters as illustrated in Figure 6.18. In accordance with the notation introduced in Section 

6.3, all random variables in the DBN model are indexed by the element number 𝑖 and the slice 𝑗. 

The conditional CDFs of variables 𝑊𝑖 , 𝐷𝑖, 𝐶𝑠,𝑖, 𝐶𝑐𝑟,𝑖, 𝑋𝐼,𝑖 and 𝑇𝑃,𝑖,0, 𝑖 = 1,… , 𝑛𝐸 are determined as 

a function of the specified correlation coefficients using Equation (6.24). Subsequently, the hyper-

parameters 𝑈𝑊 , 𝑈𝐷 , 𝑈𝐶𝑠 , 𝑈𝐶𝑐𝑟 , 𝑈𝑋𝐼  and 𝑈𝑇𝑃  are discretized following the same scheme as described 

for variable 𝑊 in Section 6.5.1.1. The conditional PMF of variables 𝑊𝑖 , 𝐷𝑖, 𝐶𝑠,𝑖, 𝐶𝑐𝑟,𝑖, 𝑋𝐼,𝑖 and 

𝑇𝑃,𝑖,0, 𝑖 = 1,… , 𝑛𝐸 are then computed following Equation (6.28). 

The DBN model describes the progress of chloride-induced reinforcement corrosion throughout 

the box girder at yearly intervals. The system condition at the end of year 𝑗 is, in terms of the 

generic model presented in Section 6.3.4, defined as follows: 

𝐃𝑗 = [Δ1,𝑗 , … , Δ𝑛𝐸,𝑗 ]
𝑇 (6.38) 

In the current example, 𝐃𝑗  has 𝑚Δ
𝑛𝐸  distinct states. 

In contrast to the generic system model described in Section 6.3.4, the system model shown in 

Figure 6.18 does not contain a variable 𝑆𝑗 as a child of variables Δ𝑖,𝑗, 𝑖 = 1, … , 𝑛𝐸 in each slice 𝑗 

to represent system state at the end of year 𝑗. This is because the number of realizations of the 

system deterioration state 𝐃𝑗  is here too large to enable pre-computation of the conditional PMF 

𝑝(𝑠𝑗 |𝐝𝑗). Instead, the DBN model is applied to generate weighted samples of 𝐃𝑗  with likelihood 

weighting as summarized in Algorithm 6.1. These samples are subsequently used to approximate 

the posterior interval failure probability of the box girder as described in Section 6.4.2. This post-

processing step includes the computation of the conditional interval failure probability 

Pr(𝐹𝑗
∗|𝐃𝑗 = 𝐝𝑗) of the box girder for each generated sample of 𝐃𝑗 . A model that enables the eval-

uation of Pr(𝐹𝑗
∗|𝐃𝑗 = 𝐝𝑗) is described in the following section. 

6.5.1.4 Conditional interval failure probability 

The box girder is modeled at mechanism level to determine the conditional interval failure proba-

bility Pr(𝐹𝑗
∗|𝐃𝑗 = 𝐝𝑗) (see Section 2.4.2). To this end, a simple beam model is applied that only 

considers global bending failure. The ultimate capacity of the damaged box girder is estimated 

using plastic limit analysis. The damaged box girder is assumed to fail when sufficient plastic 

 

Figure 6.17: Sections defining the element sizes of the deterioration model of the box girder. Each section consists of 

four elements: deck plate, bottom flange and two webs. 



6 Dynamic Bayesian network approach 

132 

hinges develop under the applied loads such that a collapse mechanism forms. This approach ac-

counts for structural redundancies due to the plastic cross-sectional capacity and static indetermi-

nacy of the box girder. It allows for inelastic moment redistribution along the box girder following 

the formation of plastic hinges. 

The box girder is subject to a traffic load. In the current study, the traffic load is represented by a 

spanwise uniformly distributed load whose maximum in year 𝑗 is denoted by 𝑆𝑚𝑎𝑥,𝑗. The different 

𝑆𝑚𝑎𝑥,𝑗 are model as independent and identically distributed random variables with CDF 𝐹𝑆𝑚𝑎𝑥,𝑗(𝑠). 

Different load cases are defined such that the bending moments along each span and at each col-

umn are maximized (see Figure 6.19).  

Dead and prestressing loads, including losses in prestressing due to creep and shrinkage, are mod-

eled as deterministic parameters, likewise the material and geometrical properties of  the box girder. 

Therefore, it is possible to calculate a deterministic maximum plastic bending resistance for each 

cross-section along the box girder as a function of a given system condition 𝐃𝑗 = 𝐝𝑗. In the context 

of reinforcement corrosion, the cross-sectional area of the reinforcement associated with each el-

ement of the deterioration model is reduced according to 𝐃𝑗 = 𝐝𝑗 by applying Equation (6.35). 

Note that in the current example a realization of the system condition 𝐃𝑗 = 𝐝𝑗  defines a combina-

tion of discrete states of variables Δ𝑖,𝑗, 𝑖 = 1,… , 𝑛𝐸. As described in Section 6.5.1.1, a discrete 

state of variable Δ𝑖,𝑗 corresponds to an interval of its continuous outcome space, which ranges from 

0 to 1. To enable the evaluation of Pr(𝐹𝑗
∗|𝐃𝑗 = 𝐝𝑗), a discrete state of variable Δ𝑖,𝑗 is here repre-

sented by the midpoint of the corresponding interval. 

Figure 6.20 shows the plastic bending resistance of the undamaged box girder as a function of 

position 𝑥 along the girder. The plastic bending resistance of each cross-section depends on the 

area of the reinforcement and prestressing tendons, their yield strengths and internal lever arm as 

well as the resistance of the compression zone. The amount and location of the reinforcement and 

the number and locations of the prestressing tendons in the deck plate, webs and bottom flange 

 

Figure 6.18: DBN model of the deteriorating box girder. 
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varies along the girder. This explains the steps in the bending resistance shown in Figure 6.20. 

Note that the statically indeterminate part of the prestressing-induced bending moments is applied 

as a structural load in the analysis. 

Dead and prestressing loads as well as material and geometrical properties are modeled determin-

istically, because the uncertainties associated with these quantities are here estimated to be signif-

icantly lower than the uncertainties associated with the progress of reinforcement corrosion and 

the traffic load. 

The damaged box girder can fail by forming a collapse mechanism under any of the applied traffic 

load cases defined in Figure 6.19. Let 𝐹𝑘,𝑗
∗  denote the event of forming a collapse mechanism in 

year 𝑗 under traffic load case 𝑘. A limit state function 𝑔𝑘  describing this event can be written as: 

𝑔𝑘 (𝐝𝑗 , 𝑠𝑚𝑎𝑥,𝑗) = 𝑟𝑘(𝐝𝑗) − 𝑠𝑚𝑎𝑥,𝑗 (6.39) 

 

Figure 6.19: Traffic load cases. They are defined such that the bending moments along each span and at each column 

are maximized. 
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where 𝑠𝑚𝑎𝑥,𝑗 is a realization of the annual maximum of the traffic load and 𝑟𝑘(𝐝𝑗) is the realization 

of the box girder‘s capacity with respect to traffic load case 𝑘 given 𝐃𝑗 = 𝐝𝑗. With the structural 

model modified according to the deterioration state 𝐃𝑗 = 𝐝𝑗, the deterministic capacity 𝑟𝑘(𝐝𝑗) is 

here computed using plastic limit analysis based on a finite element (FE) beam model. 

Overall system failure of the damaged box girder in year 𝑗 occurs as soon as the weakest collapse 

mechanisms forms. From system reliability theory, it follows that the conditional interval failure 

probability Pr(𝐹𝑗
∗|𝐃𝑗 = 𝐝𝑗) is defined as: 

Pr(𝐹𝑗
∗|𝐃𝑗 = 𝐝𝑗) = Pr(𝐹1,𝑗

∗ ∪ …∪ 𝐹7,𝑗
∗ |𝐃𝑗 = 𝐝𝑗) 

= Pr[𝑔1(𝐝𝑗 , 𝑆𝑚𝑎𝑥,𝑗) ≤ 0 ∪ …∪ 𝑔7(𝐝𝑗 , 𝑆𝑚𝑎𝑥,𝑗) ≤ 0] 
(6.40) 

Following Section 2.2, an equivalent limit state function describing the event 𝐹𝑡 can now be written 

as: 

𝑔(𝐝𝑗 , 𝑠𝑚𝑎𝑥,𝑗) = min[𝑔1(𝐝𝑗 , 𝑠𝑚𝑎𝑥,𝑗),… ,𝑔7(𝐝𝑗 , 𝑠𝑚𝑎𝑥,𝑗)] 

= min[𝑟1(𝐝𝑗)− 𝑠𝑚𝑎𝑥,𝑗 , … , 𝑟7(𝐝𝑗) − 𝑠𝑚𝑎𝑥,𝑗 ] 

= min[𝑟1(𝐝𝑗),… , 𝑟7(𝐝𝑗)] − 𝑠𝑚𝑎𝑥,𝑗 

=  𝑟(𝐝𝑗) − 𝑠𝑚𝑎𝑥,𝑗 

(6.41) 

where 𝑟(𝐝𝑗) = min[𝑟1(𝐝𝑗),… , 𝑟7(𝐝𝑗)] can be interpreted as the minimum capacity of the box 

girder. Once 𝑟(𝐝𝑗) is known, the conditional interval failure probability of the box girder can be 

calculated as: 

Pr(𝐹𝑗
∗|𝐃𝑗 = 𝐝𝑗) = Pr[𝑔(𝐝𝑗 , 𝑆𝑚𝑎𝑥,𝑗) ≤ 0] 

= Pr[ 𝑟(𝐝𝑗) ≤ 𝑆𝑚𝑎𝑥,𝑗 ] 

= 1 − 𝐹𝑆𝑚𝑎𝑥,𝑗 [𝑟(𝐝𝑗)] 

(6.42) 

 

Figure 6.20: Initial plastic bending resistance of the box girder as function of position 𝑥 along the girder. 
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6.5.2 Software prototype 

To prove the concept, the models presented in Section 6.5.1 are implemented in a software proto-

type. It consists of two parts: a front end with a graphical user interface (GUI) implemented in 

Java, and a back end implemented in Matlab. The front end provides the functionality required for 

defining the DBN model of the deteriorating box girder, entering inspection data and visualizing 

results. The back end is the computational engine of the software prototype. This part of the pro-

totype has mainly been implemented by the author of this thesis. The architecture of the software 

prototype is illustrated in Figure 6.21. 

The GUI is divided into two panels as shown in Figure 6.22. The upper panel displays a rotatable 

3D model of the box girder. The data required for the 3D representation is stored in a text file in 

XML (eXtensible Markup Language) format and called the “structural model data base” (see Fig-

ure 6.21). This file also contains information on the sizes and locations of the individual sections 

of the girder. The lower panel consists of different tabs for entering and visualizing model data.  

The user may assign the relevant deterioration models to each element if the “assign damage mod-

els” tab is active. The default data of possible deterioration models is defined in a “deterioration 

model data base” (see Figure 6.21)17. The “assign damage groups” tab provides a table that allows 

the user to define groups of correlated elements. There is no interdependence among elements 

belonging to different groups. The user may set the parameters of the deterioration models in a 

 
17 Currently, only chloride-induced reinforcement corrosion is available. The software can be extended in the future 

to include additional deterioration processes. 

 

Figure 6.21: Architecture of the software prototype. 
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table provided in the “set model parameters” tab. The data for the DBN model of system deterio-

ration (deterioration model assignments, group definitions and parameter data) can be exported to 

an XML file as indicated in Figure 6.21. Inspection results providing information on the condition 

of any element can be entered if the “report observations” tab is active. The inspection results can 

also be exported to an XML file (see Figure 6.21). 

The back end consists of three main modules as indicated in Figure 6.21. The first module gener-

ates a DBN model of the deteriorating box girder as described in Section 6.5.1 based on the “de-

terioration model data” (deterioration model assignments, group definitions and parameter data) 

and the “deterioration model data base” (default deterioration model data) and the “structural 

model data base” (service life). The second module provides the data structure for the DBN model 

and implements the likelihood weighting algorithm as described in Algorithm 6.1. The third mod-

ule implements the structural capacity model of the box girder as described in 6.5.1.4. The data 

required to initialize the structural model is contained in the “structural model data base” (geome-

try, material and load data). The module computes the posterior interval failure probabilities of the 

box girder for each interval 𝑗 based on the weighted samples of the system deterioration state 𝐃𝑗  

following Section 6.4.2. The conditional interval failure probabilities Pr(𝐹𝑗
∗|𝐃𝑗 = 𝐝𝑗) are com-

puted as a function of the ultimate capacity of the damaged box girder 𝑟(𝐝𝑗) following Equation 

(6.42). To determine 𝑟(𝐝𝑗), the third module implements an FE beam model, which forms the basis 

for performing the plastic limit analysis of the damaged box girder. The analysis results (probabil-

ities of element deterioration states and system failure probability) are exported to an XML file 

(see Figure 6.21). These results can be imported and visualized in the “visualize results” tab of the 

GUI as shown in Figure 6.22. 

6.5.3 Prior reliability analysis 

The software prototype is applied to analyze the prior system condition and reliability of the cor-

roding box girder. The box girder is assumed to have a service life 𝑇𝑆𝐿 = 50 years. The maximum 

 

Figure 6.22: Screenshot of the GUI (front end). 
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of the traffic load in any year 𝑗, 𝑆𝑚𝑎𝑥,𝑗, is assumed to have the Gumbel distribution with a coeffi-

cient of variation 𝛿𝑆𝑚𝑎𝑥,𝑗 = 0.3. The parameters of the Gumbel distribution are calibrated such that 

the undamaged box girder has an interval failure probability Pr(𝐹𝑗
∗|𝐃𝑗 = 𝟎) = 1.3 ∙ 10

−6. 

To model the system condition, the box girder is divided into 𝑛𝑆 = 176 sections. Therefore, the 

model has 𝑛𝐸 = 4 ∙ 𝑛𝑆 = 704 elements. Each section is 2 m long. The lengths of the beam ele-

ments are also chosen to be 2 m. The deck plate of the box girder is assumed to be exposed to a 

higher chloride surface concentration than the webs and bottom flange. The prior probabilistic 

models of the corrosion model parameters for all elements of the system deterioration model are 

listed in Table 6.3. 

The corrosion model parameters 𝑊𝑖 , 𝐷𝑖, 𝐶𝑠,𝑖, 𝐶𝑐𝑟,𝑖, 𝑋𝐼,𝑖 and 𝑇𝑃,𝑖,0 are modeled as partially correlated 

among all elements 𝑖 = 1,… , 𝑛𝐸. To study the influence of different levels of statistical depend-

ence among element corrosion behavior, two different dependence cases are considered (low and 

high). These cases are defined in terms of the correlation coefficients 𝜌ln 𝑊, 𝜌ln 𝐷, 𝜌ln𝐶𝑠 , 𝜌ln 𝐶𝑐𝑟  , 

𝜌ln𝑋𝐼  and 𝜌ln 𝑇𝑃 listed in Table 6.4. 

Table 6.5 summarizes the applied discretization scheme for the hyper and corrosion model param-

eters. 

Table 6.3: Prior probabilistic models of the corrosion model parameters for all elements 𝑖 = 1,… , 𝑛𝐸. 

Parameter Dimension Distribution Mean Standard deviation 

𝑊𝑖  mm lognormal 40.0 8.0 

𝐷𝑖  mm2/year lognormal 20.0 10.0 

𝐶𝑠,𝑖a wt.%c lognormal 1.5 0.6 

𝐶𝑠,𝑖
b wt.% lognormal 1.0 0.4 

𝐶𝑐𝑟 wt.% lognormal 0.8 0.1 

𝑋𝐼,𝑖 - lognormal 1.0 0.05 

𝑇𝑃,𝑖,0 year lognormal 20.0 6.0 

a deck plate 
b webs and bottom flange 

c percentage by weight of cement 

Table 6.4: Correlation coefficients modeling stochastic dependence among the parameters of the corrosion model. 

 Low dependence High dependence 

𝜌ln 𝑊 0.2 0.8 

𝜌ln 𝐷 0.2 0.8 

𝜌ln 𝐶𝑠  0.2 0.8 

𝜌ln 𝐶𝑐𝑟 0.2 0.8 

𝜌ln 𝑋𝐼  0.2 0.8 

𝜌ln 𝑇𝑃  0.2 0.8 
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Based on the model data summarized above, prior probabilities of the element conditions and the 

prior interval failure probabilities of the box girder are computed by simulating 105 weighted 

samples of the system condition. Figure 6.23(a) shows the prior (marginal) probability of corrosion 

initiation up to time 𝑡, Pr[𝐶𝐼𝑖(𝑡) = 1], for all deck plate, web and bottom flange elements. In 

addition – to illustrate the progress of corrosion – Figure 6.23(b) shows the prior (marginal) prob-

ability that the relative corrosion progress Δ𝑖 in the deck plate elements, and web and bottom flange 

elements exceeds 0.2 at any time up to time 𝑡, Pr[Δ𝑖(𝑡) ≥ 0.2]. This probability is equal to the 

probability that on average more than 20% of the overall cross-sectional area of the reinforcement 

in the associated elements is lost due to corrosion. The probabilities Pr[𝐶𝐼𝑖(𝑡) = 1] and 

Pr[Δ𝑖(𝑡) ≥ 0.2] are determined by interpolating the different probabilities Pr(𝐶𝐼𝑖,𝑗 = 1) and 

Pr(Δ𝑖,𝑗 ≥ 0.2) computed with the DBN model. 

The results in Figure 6.23 illustrate that the probabilities Pr[𝐶𝐼𝑖(𝑡) = 1] and Pr[Δ𝑖(𝑡) ≥ 0.2] es-

timated for all deck plate elements are higher than the corresponding probabilities calculated for 

all web and bottom flange elements. These results are expected since the deck plate elements are 

exposed to a higher surface concentration of chlorides. 

Note that the corrosion initiation model presented in Section 6.5.1.1 belongs to model class (a) 

described in Section 4.2. Thus, the probability Pr(𝐶𝐼𝑖,𝑗 = 1) = Pr[𝑔𝐶𝐼 (𝑡𝑗) ≤ 0] corresponds to the 

probability of corrosion initiation up to time 𝑡𝑗. The same holds for the overall corrosion model, 

which combines the initiation model with the propagation model. It follows that the probability 

Pr(Δ𝑖,𝑗 ≥ 0.2) = Pr(0.2 − Δ𝑖,𝑗 ≤ 0) is equal to the probability that the relative corrosion progress 

in element 𝑖 exceeds 0.2 up to time 𝑡𝑗. 

Also note that the prior marginal PMF of variables 𝐶𝐼𝑖,𝑗 and Δ𝑖,𝑗, 𝑗 = 1,… , 𝑇𝑆𝐿 are identical for all 

deck plate elements irrespective of the degree of dependence among element corrosion behavior. 

This is because the same prior probabilistic models are here applied to describe the corrosion 

Table 6.5: Discretization scheme for the hyper-parameters and corrosion model parameters. 

Parameter Number of states Interval boundaries 

𝑈𝑊 , 𝑈𝐷 , 𝑈𝐶𝑠 , 𝑈𝐶𝑐𝑟 , 𝑈𝑋𝐼, 𝑈𝑇𝑃  20 0, −3.1: (3.1 − (−3.1))/18: 3.1, ∞ 

𝑊𝑖  12 0,21.3: (72.3 − 21.3)/10: 72.3, ∞ 

𝐷𝑖  12 0,4.2: (77 − 4.2)/10:77, ∞ 

𝐶𝑠,𝑖a 12 0,0.42: (4.6 − 0.42)/10: 4.6,∞ 

𝐶𝑠,𝑖b 12 0,0.28: (3.1 − 0.28)/10: 3.1,∞ 

𝐶𝑐𝑟 12 0,0.54: (1.17 − 0.54)/10: 1.17, ∞ 

𝑋𝐼,𝑖 12 0,0.86: (1.16 − 0.86)/10: 1.16, ∞ 

𝑇𝐼,𝑖,𝑗, 𝑇𝑃,𝑖,𝑗 51 0: 1: 50, ∞ 

Δ𝑖,𝑗 22 0: 1/20: 1c 

a deck plate 

b webs and bottom flange 

c these interval boundaries define states 2 to 21 of variable Δ𝑖,𝑗 (see Section 6.5.1.1) 
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model parameters of each deck plate element (see Table 6.3). The same applies to the web and 

bottom flange elements. 

The corrosion initiation state and the relative corrosion progress of two different elements are cor-

related. To study the correlation among element deterioration, the correlation coefficient between 

the corrosion initiation state 𝜌[𝐶𝐼𝑖(𝑡), 𝐶𝐼𝑗(𝑡)] and the correlation coefficient among the relative 

corrosion progresses 𝜌[Δ𝑖(𝑡), Δ𝑗(𝑡)] of two deck plate elements 𝑖 and 𝑗 are computed from the 

simulated samples. The results are shown in Figure 6.24. The correlations are low at the beginning 

of the service life because of the small probabilities of corrosion initiation. However, they increase 

with time. As expected, the correlation coefficients strongly depend on the correlation among the 

parameters influencing the element deterioration state. 

Figure 6.25 shows the prior estimate of the interval failure probabilities Pr(𝐹𝑗
∗) for each degree of 

dependence among element corrosion behavior. At the beginning of the service life, when the 

probability of corrosion initiation is low, the interval failure probability remains close to its lower 

  

Figure 6.23: (a) Prior marginal probability of corrosion initiation Pr[𝐶𝐼𝑖(𝑡) = 1] of all deck plate, web and bottom 

flange elements. (b) Prior marginal probability that the relative corrosion progress Δ𝑖 in the deck plate elements, and 

web and bottom flange elements exceeds 0.2 at any time up to time 𝑡, Pr[Δ𝑖(𝑡) ≥ 0.2]. 

  

Figure 6.24: (a) Correlation coefficient among corrosion initiation states 𝜌[𝐶𝐼𝑖(𝑡),𝐶𝐼𝑗(𝑡)] and (b) correlation coeffi-

cient among the relative corrosion progresses 𝜌[Δ𝑖(𝑡), Δ𝑗(𝑡)] of two deck plate elements 𝑖 and 𝑗 as a function of time 

𝑡 and degree of dependence among element corrosion behavior. 
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limit. Thereafter, the system failure probability increases noticeably because deterioration increas-

ingly influences the reliability of the structural system. 

The results in Figure 6.25 show that the degree of dependence among element deterioration be-

havior has little influence on the prior estimate of the interval failure probability indicating that 

box girder has limited redundancy. As demonstrated by Straub and Der Kiureghian (2011), corre-

lation among element deterioration has less effect on the reliability of structural systems with lim-

ited or no redundancy. 

Note that the computed interval failure probabilities below approximately 10−4 have a low accu-

racy with the applied importance sampling scheme. The interval failure probability is approxi-

mated following Equation (6.32) based on 105 weighted samples of the system condition. Whereas 

the computation of Pr(𝐹𝑗
∗|𝐃𝑗 = 𝐝𝑗) is exact within the confines of the applied model, the sampling 

approach cannot accurately represent extreme deterioration states that might influence the relia-

bility at the beginning of the service life. Nevertheless, this error is not critical, because the interest 

is typically in the higher failure probabilities occurring later during the service life. Furthermore, 

the lower limit of the interval failure probability, which corresponds to the interval failure proba-

bility of the undamaged box girder, is exact within the confines of the applied model. 

 

Figure 6.25: Prior interval failure probability Pr(𝐹𝑗
∗) of the box girder as a function of the degree of dependence 

among element corrosion behavior. 

 

Figure 6.26: Bounds on the prior failure probability Pr[𝐹(𝑡)] of the box girder with high dependence among element 

deterioration. 
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Figure 6.26 shows the bounds on the failure probability Pr[𝐹(𝑡)] of the box girder with high de-

pendence among element deterioration, which are computed following Equation (4.20). The 

bounds on the failure probability of the box girder with low dependence among element deterio-

ration are similar because the interval failure probabilities Pr(𝐹𝑗
∗) are similar in both dependence 

cases (see Figure 6.25). 

6.5.4 Posterior reliability analysis 

A 20 m long section of the deck plate between 𝑥 = 210 m and 𝑥 = 230 m as indicated in Figure 

6.27 is inspected in year 25 using half-cell potential measurements.  

To model the quality of half-cell potential measurements, the probability of indication given that 

reinforcement corrosion has started is defined as 𝑃𝑜𝐼(𝑐𝑖𝑗 = 1) = 0.9 and the probability of indi-

cation given that the reinforcement is still passive is chosen as 𝑃𝑜𝐼(𝑐𝑖𝑗 = 0) = 0.29 (see also 

Faber and Sørensen 2002). For the numerical evaluations shown in this section, the measurements 

are assumed to result in no indication of corrosion initiation for each inspected element. 

Posterior probabilities of the element conditions and the posterior interval failure probabilities of 

the box girder are computed from 105 weighted samples of the system condition as described in 

Section 6.4.2. Figure 6.28 shows the posterior probabilities of corrosion initiation Pr[𝐶𝐼𝑖(𝑡) =

1|𝐙0:𝑡 = 𝐳0:𝑡] for all deck plate, web and bottom flange elements. At any time 𝑡, the probability of 

corrosion initiation is shown conditional on all inspection outcomes available up time 𝑡. This pro-

cess is known as filtering (see also Section 4.5). The corrosion probability of the inspected deck 

plate elements reduces after the inspection due to the positive inspection result. The inspection 

 

Figure 6.27: Inspected section of the deck plate between 𝑥 = 210 m and 𝑥 = 230 m. 

  

Figure 6.28: Posterior probability of corrosion initiation Pr[𝐶𝐼𝑖(𝑡) = 1|Z0:𝑡 = z0:𝑡] for all deck plate elements, and 

web and bottom flange elements as a function of different degrees of dependence among element corrosion behavior. 

A 20 m long section of the deck plate between 𝑥 = 210 m and 𝑥 = 230 m is inspected using half-cell potential meas-

urements at time 𝑡 = 25 year. No corrosion is indicated. At any time 𝑡, the probability of corrosion initiation is shown 

conditional on all information available up time 𝑡 (filtering). 
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outcome has also a positive effect on the corrosion probabilities of the uninspected elements. This 

effect is larger when the degree of dependence among element corrosion behavior is high. 

Figure 6.29 shows the posterior probability that the relative corrosion progress Δ𝑖(𝑡) in the deck 

plate elements, and web and bottom flange elements exceeds 0.2. The results confirm that the 

indirect effect of the inspection results on the condition of the uninspected elements increases with 

increasing correlation among element deterioration behavior. 

The posterior interval failure probabilities Pr(𝐹𝑗
∗|𝐙0:𝑚 = 𝐳0:𝑚) of the box girder are shown in Fig-

ure 6.30 as a function of the degree of dependence among element deterioration. For any interval 

𝑗, the interval failure probability is shown conditional on all inspection results available up to the 

end of the structure’s service life. This corresponds to smoothing (see also Sections 6.2.4 and 

6.4.2). The interval failure probabilities reduce due to the positive inspection result. As expected, 

the effect is larger when the dependence among element deterioration is high. 

Figure 6.31 shows the bounds on the posterior failure probability Pr[𝐹(𝑡)|𝐙0:𝑡 = 𝐳0:𝑡] of the box 

girder in function of the level of dependence among element corrosion behavior. They are com-

puted by substituting the prior interval failure probabilities Pr(𝐹𝑗
∗) in Equation (4.20) with the 

posterior interval failure probabilities Pr(𝐹𝑗
∗|𝐙0:𝑚 = 𝐳0:𝑚). At any time 𝑡, the bounds on the failure 

probability are shown conditional on the information available up to time 𝑡 (filtering). The influ-

ence of the positive inspection result and the degree of dependence among element deterioration 

is evident. 

  

Figure 6.29: Posterior probability that the relative corrosion progress Δ𝑖(𝑡) in the deck plate elements, and web and 

bottom flange elements exceeds 0.2, i.e. Pr[Δ𝑖(𝑡) ≥  0.2|𝐙0:𝑡 = 𝐳0:𝑡]. The probability is presented as a function of 

different degrees of dependence among element corrosion behavior. A 20 m long section of the deck plate between 

𝑥 = 210 m and 𝑥 = 230 m is inspected using half-cell potential measurements at time 𝑡 = 25 year. No corrosion 

initiation is detected. At any time 𝑡, the probability of the event Δ𝑖(𝑡) ≥  0.2 is shown conditional on all information 

available up time 𝑡 (filtering). 
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Figure 6.30: Interval failure probability of the box girder with and without inspection. The probability is shown as a 

function of different degrees of dependence among element corrosion behavior. A 20 m long section of the deck plate 

between 𝑥 = 210 m and 𝑥 = 230 m is inspected using half-cell potential measurements at time 𝑡 = 25 years. No 

corrosion initiation is detected. For any interval 𝑗, the posterior interval failure probability is shown conditional on all 

information available up the end of the service life (smoothing). 
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Figure 6.31: Bounds on the posterior system failure probability Pr[𝐹(𝑡)|𝐙0:𝑡 = 𝐳0:𝑡] of the box girder as a function 

of different degrees of dependence among element corrosion behavior. A 20 m long section of the deck plate between 

𝑥 = 210 m and 𝑥 = 230 m is inspected using half-cell potential measurements at time 𝑡 = 25 years. No corrosion is 

indicated. At any time 𝑡, the bounds are shown conditional on all information available up to time 𝑡 (filtering). 
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7 Discussion 

7.1 General 

Structural reliability analysis is the most systematic and consistent approach to analyze the condi-

tion and performance of deteriorating structural systems for which inspection and monitoring data 

are available. The application of this approach hinges upon the availability of (a) stochastic system 

deterioration models, (b) structural system reliability models, (c) models of inspection and moni-

toring, and (f) robust and efficient computational procedures. Stochastic deterioration models are 

only available for a few common phenomena including fatigue crack propagation in metallic struc-

tures (e.g. Lin and Yang 1985; Madsen 1997) and reinforcement corrosion in concrete structures 

(e.g. DuraCrete 1998; Stewart and Rosowsky 1998a). In general, predictions of deterioration based 

on quantitative models are associated with large uncertainties as they are only simplified represen-

tations of the actual phenomena and often do not include all relevant influencing parameters. In 

addition, the parameters influencing deterioration are subject to variability and generally there is 

only limited data available on those parameters. Bayesian methods can, however, be applied to 

improve and develop new deterioration models based on in-service inspection and monitoring data 

(e.g. Tran et al. 2016; Luque et al. 2017). 

In addition, structures are typically subject to several deterioration processes at the same time. 

Modeling the interaction among different deterioration processes is an additional challenge. Only 

a limited number of cases exist, in which the interaction between different deterioration processes 

can be captured. For example, the effect of pitting corrosion on the fatigue behavior of aluminum 

structures can be quantified (e.g. Harlow and Wei 1994). Models are also available to describe the 

coupled effect of carbonation and chloride penetration on the condition of reinforced concrete 

structures (e.g. Hackl and Köhler 2016). 

Deterioration in structural systems is typically modeled at the structural element level. Thus, mod-

els of the structural systems are required to assess the effect of deteriorating element capacities on 

the structural reliability. An overview on available structural system reliability models can be 

found in (Shao and Murotsu 1999). Because of their complexity, existing models are rarely applied 

in practice. With advances in computer capacities, it will be increasingly feasible to couple stand-

ard finite element codes with structural reliability methods as the basis for assessing the reliability 

of deteriorating structural systems (e.g. Sudret and Der Kiureghian 2000; Papaioannou 2013). 

Deterioration processes at different locations in a structure are dependent because of spatial vari-

ability and common influencing factors. This dependence reduces the reliability of redundant 

structural systems and determines how much information on the condition of the entire structure 

is obtained from a single observation or measurement. Spatial dependence of deterioration pro-

cesses is typically modeled by introducing correlations among the parameters of the models de-

scribing deterioration of the structural elements. Hierarchical and random field models can be ap-

plied to describe these correlations. Since only a few studies on stochastic dependence among 
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deterioration effects can be found in the literature (e.g. Li et al. 2004; Vrouwenvelder 2004; 

Malioka 2009; Luque et al. 2017), the parameters of the spatial deterioration models generally 

have to be estimated based on engineering judgement. However, Bayesian methods can be applied 

to improve spatial deterioration models with in-service inspection and monitoring results (e.g. 

Luque et al. 2017). 

Models of inspection and monitoring that provide information on the structural condition are 

highly developed in some areas. For example, performance models are available for various in-

spection methods used to detect fatigue cracks in steel structures (e.g. Visser 2002) and for half-

cell potential measurements performed to detect corroding reinforcement in concrete structures 

(e.g. Lentz et al. 2002; Johnsen et al. 2003; Keßler 2015). In other areas, such models are still 

lacking or incomplete. This includes, for example, performance models for monitoring systems 

employed to identify damage in structures based on vibration response data. In this area, significant 

contributions have been made in the field of Bayesian structural system identification (e.g. Beck 

and Katafygiotis 1998; Beck 2010; Papadimitriou and Lombaert 2012; Au and Zhang 2016; Huang 

et al. 2017). One challenge here is to explicitly account for the influence of varying operational 

and environmental conditions on the performance of such systems (Sohn et al. 2004). In general, 

challenges associated with the modeling of inspection and monitoring are related to identifying a 

model that connects the observation or measurement with the quantity of interest, and modeling 

the dependence among the observations or measurements (Straub 2018b). 

The above discussion highlights that challenges associated with the modeling of deteriorating 

structures, and inspection and monitoring remain. Additional challenges arise in computing the 

time-variant reliability of deteriorating structural systems. This thesis contributes to the develop-

ment of robust and efficient approaches to solve these computational challenges. 

7.2 Nested reliability analysis approach 

Section 5 proposes a generic framework for (a) computing the failure probability Pr[𝐹(𝑡𝑗)] of 

deteriorating structures whose deteriorating capacity can be modeled as statistically independent 

of the demand, and (b) updating Pr[𝐹(𝑡𝑗)] with information on the structural condition. The frame-

work can be applied when the performance of the structural system is described by the conditional 

interval failure probability given the structural condition, i.e. Pr(𝐹𝑖
∗|𝐗𝑅 = 𝐱𝑅). The proposed 

framework enables the application of state-of the-art deterioration models to describe deterioration 

at the structural element level. It considers stochastic dependence among the parameters of the 

element deterioration models, and accounts for the relation between deterioration of the structural 

elements and failure of the structural system. As demonstrated in the numerical examples, the 

framework is particularly suitable for structural systems with discrete structural elements, whose 

deterioration state can be represented by a binary model (functioning/not functioning) at the sys-

tem level (i.e. at the system level a structural element has either its full capacity prior to deteriora-

tion failure or it has completely lost its capacity because of deterioration failure). 

Information on the structural condition is included in the reliability estimation through Bayesian 

updating of the deterioration models describing the condition of the different structural elements. 
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By modeling the dependence among deterioration effects at different locations in a structure, the 

condition of the entire system can be inferred from observations of the condition of parts of the 

system. The proposed framework can handle any type of information on the system condition if a 

corresponding likelihood function is formulated (i.e. a stochastic model connecting the observation 

to the stochastic deterioration model parameters). In particular, the framework can also include 

information from monitoring systems. For monitoring systems, which potentially provide a large 

amount of data, it might be beneficial to pre-process the data. In such a pre-processing step (e.g. a 

modal system identification), the probability of the observed data given a certain value of the 

model parameters is determined. This probability is the likelihood function that is inputted into 

Equations (5.20) and (5.21). Such an approach is similar to a two-stage Bayesian structural system 

identification (Au and Zhang 2016). 

The problem of computing the failure probability conditional on inspection and monitoring data is 

formulated such that it can be solved with any structural reliability method. The resulting compo-

nent reliability problems are here evaluated with subset simulation, which is computationally ro-

bust since it provides reasonably accurate results without a need for tailoring the algorithm to 

specific applications. It is also considerably more efficient than crude Monte Carlo simulation (Au 

and Beck 2001; Straub et al. 2016). In most cases, the modeling of deterioration in structural sys-

tems leads to many random variables. Subset simulation does not restrict  the number of random 

variables that can be included in the analysis since it can handle high dimensional reliability prob-

lems. In addition, it is also flexible with regards to the dependence structure of the random varia-

bles defining the problem. It enables an implementation of a variety of models to represent their 

spatial and temporal dependence, including hierarchical and random field/process models.  

In the numerical examples, the number of samples per subset level was chosen such that the results 

have reasonable accuracy. The accuracy can always be improved by increasing the number of 

samples per subset level. It is, however, important to highlight that the number of subsets increases 

with decreasing value of (a) the failure probability and (b) the probability of the observation event 

𝑍(𝑡). As shown in the numerical examples, the probability of the observation event 𝑍(𝑡) reduces 

with the number of inspection and monitoring outcomes. In this case, the difference between the 

prior distribution of the model parameters and the likelihood increases. Simulating smaller proba-

bilities requires more subsets and thus more model evaluations. The efficiency of the subset sim-

ulation in terms of the number of model evaluations is proportional to the logarithm of simulated 

probabilities (see also Section 2.2.3). 

The current implementation of the proposed framework computes the failure probabilities 

Pr[𝐹(𝑡𝑗)] with separate subset simulation runs for different time 𝑡𝑗. The efficiency of this approach 

can be significantly improved by exploiting the fact that the failure event 𝐹(𝑡𝑗−1) is a subset of the 

failure event 𝐹(𝑡𝑗), i.e. 𝐹(𝑡𝑗−1) ⊆ 𝐹(𝑡𝑗) (Kim and Straub 2019; Straub et al. 2020). This implies 

that the following sequential procedure can be applied to compute Pr[𝐹(𝑡𝑗)] with subset simula-

tion. First, the probability of failure up to the end of the last interval 𝑗, Pr[𝐹(𝑡𝑗)], is computed with 

subset simulation. Subsequently, the conditional failure probability Pr[𝐹(𝑡𝑗−1)|𝐹(𝑡𝑗)] is estimated 

with a new subset simulation run, which starts with samples conditional on 𝐹(𝑡𝑗). These samples 
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are available from the final step in the estimation of Pr[𝐹(𝑡𝑗)] with subset simulation. The proba-

bility of failure up to time 𝑡𝑗−1 is then computed as Pr[𝐹(𝑡𝑗−1)] = Pr[𝐹(𝑡𝑗−1)|𝐹(𝑡𝑗)] Pr[𝐹(𝑡𝑗)]. 

The procedure is continued for Pr[𝐹(𝑡𝑗−2)], Pr[𝐹(𝑡𝑗−3)] and so on. Similarly, the posterior failure 

probabilities Pr[𝐹(𝑡𝑗)|𝑍(𝑡𝑘)] can be computed with subset simulation in reverse chronological 

order following the estimation of Pr[𝑍(𝑡𝑘)] (see also Section 5.6). 

The proposed framework relies on the efficient computation of the conditional interval failure 

probability Pr(𝐹𝑖
∗|𝐗𝑅 = 𝐱𝑅). As demonstrated in the numerical example considering the Zayas 

frame, applications in which (a) the uncertainties in the permanent loads and time-invariant struc-

tural properties are negligible and (b) the number of distinct system deterioration states 𝐃𝑖 =

𝐡𝐷(𝐗𝑅 , 𝑡𝑖) is limited, the conditional probability Pr(𝐹𝑖
∗|𝐃𝑖 = 𝐝𝑖) can be pre-computed. If the sys-

tem reliability analysis is demanding, it might take some time to establish a data base with all 

values of Pr(𝐹𝑖
∗|𝐃𝑖 = 𝐝𝑖), but this is typically not critical, as this computation must be carried out 

only once and the data base can be used in all subsequent reliability calculations. In all remaining 

applications, Pr(𝐹𝑖
∗|𝐗𝑅 = 𝐱𝑅) must be computed on the fly. If such calculations are inexpensive, 

as demonstrated in the numerical example considering the Daniels system, the representation of 

the structural system performance by the conditional interval failure probability Pr(𝐹𝑖
∗|𝐗𝑅 = 𝐱𝑅) 

is still beneficial. In cases in which it is infeasible to compute Pr(𝐹𝑖
∗|𝐗𝑅 = 𝐱𝑅) on the fly, two 

possible strategies exist: (a) one can investigate the possibility of developing a response surface 

for Pr(𝐹𝑖
∗|𝐗𝑅 = 𝐱𝑅). Note, however, that many of the classical response surface techniques used 

in structural reliability will not be applicable since the system condition 𝐃𝑖  is usually described by 

a discrete model. This is an area of future research. (b) Alternatively, the failure probability 

Pr[𝐹(𝑡𝑗)] can be computed by explicitly solving the series system problem Pr[𝐹(𝑡𝑗)] =

Pr(𝐹1
∗ ∪ 𝐹2

∗ ∪ …∪ 𝐹𝑗
∗). An efficient solution to solving this problem is presented in Straub et al. 

(2020). It computes the interval failure probabilities Pr(𝐹𝑖
∗) in inverse chronological order using 

subset simulation, and subsequently evaluates the failure probability Pr[𝐹(𝑡𝑗)] based on a FORM 

approximation of the series system reliability problem. In this case, however, the advantages of 

the separating the computation of the system condition and the system reliability conditional on 

the system condition are lost. 

The proposed procedure is here formulated and implemented to compute and update the probabil-

ity of the failure event 𝐹(𝑡𝑗). It can, however, be extended to enable learning of the posterior 

distribution of the deterioration model parameters contained in 𝐗𝑅  and the system condition 𝐃𝑖  at 

the end of each interval 𝑖. Any property of the posterior distributions of 𝐗𝑅  and 𝐃𝑖  can be approx-

imated by applying Monte Carlo techniques based on samples conditional on the observation event 

𝑍(𝑡). These samples are a by-product of estimating Pr[𝑍(𝑡)] with subset simulation. This corre-

sponds to an application of the BUS with subset simulation (see Section 3.3.4). 

When applying the proposed framework, one should keep in mind that it introduces three approx-

imations errors. The first approximation error is introduced in the definition of the interval failure 

probability Pr(𝐹𝑖
∗) in Equation (4.14) or (4.16). It depends on the choice of the time interval and 

on how well the time-dependent demands can be represented by time-invariant random variables 

(see also Straub et al. 2020). This error can be evaluated by considering the non-deteriorating 

structure. Note that the discrete-time approach presented in Section 4.3 is always conservative if 
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the structure is subject to only one time-variant load (Straub et al. 2020). The second approxima-

tion error is introduced in the computation of the conditional interval failure probability 

Pr(𝐹𝑖
∗|𝐗𝑅 = 𝐱𝑅) defined in Equation (5.8). The third approximation error is introduced in the 

evaluation of the reliability problems in Equations (5.13) and (5.22). The last two approximation 

errors are a function of the structural reliability method applied in the analysis (see also Section 

2.2). 

7.3 Dynamic Bayesian network approach 

In Section 6, a generic DBN model for probabilistically representing deteriorating structural sys-

tems with separable demand and capacity parameters is presented, which is based on work pub-

lished by Straub (2009) and Luque and Straub (2016). Deterioration is modeled at the structural 

element level and dependence among the parameters influencing the element conditions is de-

scribed by defining a hierarchical structure. The model describing the correlated element condi-

tions is coupled with a model of the structural system performance, which is defined conditional 

on the element conditions. In this way, the DBN model accounts for the dependence among the 

element conditions, and the relation among the element conditions and the structural system reli-

ability. Combined with inference algorithms that exploit the conditional independence assump-

tions encoded in the DBN, the condition of the system elements and the system rel iability can be 

assessed and updated with (partial) observations of the element conditions or the parameters influ-

encing the element conditions. In addition, the DBN model visualizes the dependence among the 

random variables defining the problem. In this way, it facilitates the communication of the model 

to non-experts. This is an important feature that makes the DBN approach highly useful for prac-

tical applications. 

The generic DBN presented in Section 6 enables the computation of the interval failure probabil-

ities conditional on inspection and monitoring data. Based on the interval failure probabilities, an 

upper bound on the system failure probability is then found following Equations (4.20). The DBN 

can be adapted to directly compute system failure probability. To this end, links from nodes 𝑆𝑗 to 

nodes 𝑆𝑗+1 have to be introduced to capture the situation in which a structure is in the failed state 

at time 𝑡𝑗+1 if it has failed at time 𝑡𝑗. However, the advantages of the hierarchical structure of the 

DBN described in Section 6.3 will be lost if these links are introduced. As discussed further below, 

the hierarchical structure enables the development of efficient exact inference algorithms.  

This thesis focuses on applying the DBN approach in a numerical example considering a concrete 

box girder subject to chloride-induced reinforcement corrosion. In the numerical example, a DBN 

model describing initiation and propagation of the corrosion process is developed. The DBN model 

includes random variables to represent the outcome of half-cell potential measurements, which 

provide spatial information on corrosion initiation. Direct modeling of the structural system state, 

which is represented by a random variable 𝑆𝑗 in the generic DBN model, is here not possible since 

the number of realizations of the system deterioration state 𝐃𝑗  is too large to enable pre-computa-

tion of the conditional PMF 𝑝(𝑠𝑗 |𝐝𝑗). To overcome this problem, probabilistic inference is here 

performed using likelihood weighting, which is a simple sampling-based inference algorithm. The 
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algorithm is applied to generate weighted samples of 𝐃𝑗  based on the DBN model. Subsequently, 

these samples are applied to approximate the posterior distribution of 𝐃𝑗  and the posterior proba-

bility of the interval failure event 𝐹𝑗
∗ = {𝑆𝑗 = 1}. The latter step includes the computation of the 

conditional interval failure probability Pr(𝐹𝑗
∗|𝐃𝑗 = 𝐝𝑗) for each generated sample of 𝐃𝑗 . This ap-

proach is computationally robust but inefficient for two reasons: (a) likelihood weighting is inef-

ficient in simulating rare events and (b) its performance degrades considerably with increasing 

number of observations (Russell and Norvig 2010). 

As an alternative18, probabilistic inference can be performed using Gibbs sampling, which is a 

MCMC method that exploits the independence assumptions encoded in a BN (Russell and Norvig 

2010). Nevertheless, MCMC methods are also sampling-based and their efficiency is a function 

of the number of observations included in the analysis as well as the value of the event probabilities 

of interest. In addition, MCMC algorithms do not necessarily converge, and the convergence of 

the results must always be carefully checked. In contrast, exact inference in discrete DBN does 

not suffer from these limitations, and, consequently, it is a promising strategy for performing prob-

abilistic inference in BN. Motivated by this, Luque and Straub (2016) developed an exact inference 

algorithm tailored to evaluating the hierarchical DBN of deteriorating structural systems presented 

in Section 6.3. They show that the proposed exact inference algorithm is orders of magnitude faster 

in evaluating the system deterioration model than standard MCMC algorithms. Most importantly, 

its performance does not depend on the number of observations included in the analysis. However, 

Luque and Straub (2016) found that the evaluation of the posterior distribution of the system state 

𝑆𝑗 quickly becomes intractable as the number of elements grows. They discuss three options to 

overcome this problem: (a) in some applications, a more efficient representation of the relationship 

between system and element conditions than the converging connection at node 𝑆𝑗 can be identified 

(see also Bensi et al. 2013). (b) Approximate system models may be applied that require as input 

only the marginal effect of element failure on the system failure probability (Straub and Der 

Kiureghian 2011). (c) The exact inference algorithm may be combined with sampling-based algo-

rithms. In this case, the posterior distribution of the element deterioration states may be determined 

using the exact inference algorithm. Subsequently, samples of the correlated element deterioration 

states may be generated from their posterior distribution to estimate the system failure probability. 

This is an area of future research. 

While discrete DBN with exact inference algorithms can be powerful, their implementation is ra-

ther demanding. Firstly, the identification and implementation of an efficient discretization scheme 

increases the pre-processing effort (see, for example, Neil et al. 2007; Zwirglmaier and Straub 

2016). Secondly, the number of random variables that can be included in the model is limited when 

considering exact inference (Luque and Straub 2016). However, it is generally possible to reduce 

the number of random variables by a-priori identifying the most influential variables, but this pro-

cess also increases the pre-processing effort. As noted by Luque and Straub (2016), the increased 

pre-processing effort is justified if the model is applied to perform repetitive computations to solve 

optimization problems such as planning of inspections, monitoring and maintenance activities 

 
18 Note that Zwirglmaier et al. (2017) recently introduced a subset simulation strategy for BN to enhance sampling-

based inference of rare event probabilities in BN. 
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within the framework of pre-posterior analysis from classical Bayesian decision theory (see also 

Luque and Straub 2019).  

Stochastic dependence among element deterioration is included in the DBN model by applying a 

hierarchical approach. While the hierarchical structure of the DBN model enables the development 

of efficient exact inference algorithms (see Luque and Straub 2016), it imposes restrictions on the 

dependence structure. This represents a limitation, which is not critical, because dependence 

among element deterioration is, in most applications, caused by common influencing factors, 

which can be represented by hierarchical models (see also Sections 5.2.2 and 6.3.2). 

An important outcome of the numerical example is a software prototype implementing the model 

of the deteriorating box girder presented in Section 6.5.1. The prototype consists of a graphical 

user interface (front end) and a computational engine (back end), and can be applied to assess the 

reliability of the box girder and update it with outcomes of half-cell potential measurements. The 

prototype is computationally robust since it does not require input from an expert in structural 

reliability analysis to perform reliability updating of the aging box girder. It is, thus, a first step 

towards developing a software tool that can be used by engineering practitioners to perform relia-

bility assessments of deteriorating concrete bridges and update their reliability with inspection and 

monitoring results. 

7.4 Numerical results 

As expected, the numerical results in this thesis confirm that deterioration reduces the reliability 

of structural systems. The results additionally demonstrate the importance of considering the de-

pendence among deterioration effects at different locations in the structure when evaluating the 

reliability of redundant structures. The effect of dependence is stronger as the system redundancy 

increases (from the box girder to the Daniels system). Neglecting dependence among element ca-

pacities can thus result in a (substantial) underestimation of the failure probability of redundant 

structural systems and, consequently, of the risk associated with operating such systems (see also 

Gollwitzer and Rackwitz 1990). The numerical example considering the box girder also shows 

that the correlation among element deterioration is a function of time. As expected, this  correlation 

strongly depends on the degree of correlation among the parameters influencing the condition of 

the structural elements. 

The numerical examples considering the Zayas frame and the box girder show that dependence 

among element deterioration enables learning of the condition of all system elements from inspect-

ing a subset of the elements (i.e. the condition of non-inspected elements can be inferred from 

samples taken at selected locations). The largest learning effect is achieved if elements with large 

uncertainty in their condition and thus high probability of deterioration failure are inspected 

(Straub and Faber 2005). In addition, the example considering the Zayas frame shows that an in-

spection of an element with a large single element importance measure has a larger impact on the 

system reliability than an inspection of an element with a small single element importance meas-

ure. Based on this, Bismut et al. (2017) propose a prioritization index as a function of the proba-

bility of element deterioration failure and the single element importance measure to select elements 
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for inspection. In principle, elements can be selected for inspection according to the value of in-

formation (VoI) of the inspections. The VoI of an inspection quantifies its benefit prior to perform-

ing it (Raiffa and Schlaifer 1961; Straub and Faber 2005). Exact computation of the VoI of an 

inspection is challenging. Therefore, proxies that provide a similar ranking as the VoI such as the 

prioritization index introduced by Bismut et al. (2017) are applied in a recently proposed heuristic 

approach to optimizing inspections at the structural system level (Luque and Straub 2019). 

The numerical example considering the (highly redundant) Daniels system demonstrates – at least 

conceptually – how information on the system condition obtained from a global damage detection 

system can be integrated into a system reliability analysis. The example applies a hypothetical 

probability of indication model to describe the monitoring system’s ability to detect structural 

damage. The results clearly show that the monitoring information has only a small effect on the 

reliability estimates for the Daniels system with low dependence among element deterioration. In 

this situation, there is little benefit in applying such a monitoring system. Again, the value of in-

formation analysis from classical Bayesian decision theory can be utilized to quantify the benefit 

of a monitoring system prior to installing it (Pozzi and Der Kiureghian 2011; Thöns and Faber 

2013; Straub et al. 2017; Thöns 2018). 
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8 Concluding remarks and outlook 

8.1 Concluding remarks 

Structural reliability analysis is a consistent approach to assess deteriorating structures. In struc-

tural reliability, a physics-based engineering model consisting of deterioration and structural mod-

els is combined with a probabilistic model of the input parameters to account for the relevant 

uncertainties. Based on the probabilistic engineering model, an initial prediction of the structural 

condition and reliability is made. On many structures, inspection and monitoring are employed to 

reduce the uncertainty on the structural condition. In a probabilistic setting, the information con-

tained in the inspection and monitoring data can be consistently integrated in the prediction of the 

system’s condition and reliability using Bayesian analysis. 

The reliability of deteriorating structures should be analyzed at the structural system level to ac-

count for (a) the effect of deterioration at different structural elements on the system reliability, 

and (b) the influence of inspection and monitoring data on the system reliability. The correlation 

among the deterioration states of different structural elements must be properly modeled since it 

reduces the reliability of redundant structural systems and has an effect on what can be learned 

from inspecting and monitoring individual elements.  

The reliability analysis of deteriorating structural systems requires the solution of time-variant 

reliability problems. Solving such problems is challenging. However, as discussed in Section 4.3, 

the time-variant reliability problem can be approximated through a series of time-invariant relia-

bility problems if the deteriorating structural system can be described by a stochastic model with 

separable demand and capacity parameters. In most applications, this assumption holds at least 

approximately. The reliability analysis based on the simplified formulation of the problem is still  

computationally demanding since the reliability has to be computed at multiple points in time. In 

addition, the analysis has to be repeated from the beginning of the structure’s service life each time 

new information on the structural system becomes available.  

This thesis explores two novel solution strategies for computing the time-variant reliability of de-

teriorating structural systems conditional on inspection and monitoring data. Both strategies are 

based on the transformation of the time-variant reliability problem into a series of time-invariant 

reliability problems. Firstly, the problem is formulated as a nested reliability problem in which the 

computation of the system condition is separated from the computation of the system reliability 

conditional on the system condition. This approach is termed nested reliability analysis (NRA) 

approach. Secondly, hierarchical dynamic Bayesian networks (DBN) are employed to probabilis-

tically represent deteriorating structural systems. The DBN can be evaluated with inference algo-

rithms that exploit the conditional independence assumptions encoded in the DBN. This approach 

is termed DBN approach. 
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Both approaches describe deterioration at the structural element level and thus enable the imple-

mentation of state-of-the-art deterioration models. Stochastic dependence among deterioration 

states of different elements is modeled by introducing correlations among the parameters of the 

deterioration models. To account for the relation between deterioration of structural elements and 

the structural system reliability, the model describing the condition of the structure is coupled with 

a stochastic structural model, which describes the system performance by the conditional proba-

bility of structural system failure given the condition of the structure. Based on the coupled dete-

rioration and structural model, the time-variant reliability of deteriorating structural systems is 

estimated. Information on the structural condition provided by inspection and monitoring is in-

cluded in the reliability analysis through Bayesian updating of the element deterioration models. 

Any type of information on the structural condition can be included if the corresponding likelihood 

function is available. 

The NRA approach has the advantage that it can be implemented with established structural relia-

bility methods (SRM) that work in high dimensions. In this thesis, it is implemented with subset 

simulation, which is a robust and efficient sampling-based SRM. The NRA approach with subset 

simulation does not restrict the number of random variables that can be included in the analysis 

and enables an implementation of a variety of correlation models to represent their spatial and 

temporal dependence. Nevertheless, it is still sampling-based. Its efficiency is hence a function of 

the number of inspection and monitoring outcomes, as well as the value of the simulated event 

probabilities. 

Representing deteriorating structural systems with DBN has the advantage that problem can be 

visualized and communicated to stakeholders who are not experts in structural reliability analysis. 

In addition, a DBN enables the application of exact and approximate inference algorithms to per-

form Bayesian analysis of deteriorating structural systems. In this thesis, probabilistic inference is 

performed with likelihood weighting, which is a simple sampling-based inference algorithm. The 

DBN approach with likelihood weighting is computationally robust, and – as a proof of concept – 

it is implemented in a software prototype that can be used by engineers who are not experts in 

structural reliability analysis to assess the reliability of a corroding concrete box girder conditional 

on half-cell potential measurements. Nonetheless, likelihood weighting is inefficient as its perfor-

mance rapidly degrades with increasing number of observations and/or decreasing value of the 

event probabilities of interest. In future applications, the exact inference algorithm proposed by 

Luque and Straub (2016) may be applied to evaluate the DBN of deteriorating structures. This 

algorithm exploits the hierarchical structure of the DBN and is computationally efficient and ro-

bust. Its performance does neither depend on the number of observations included in the analysis 

nor on the magnitude of the event probabilities to be calculated. Nevertheless, the algorithm im-

poses restrictions on the dependence structure and the number of random variables that can be 

included in the model. An additional limitation of the exact inference algorithm is the increased 

pre-processing effort since an efficient discretization scheme must be identified and implemented 

before the algorithm can be applied. The increased modeling effort is, however, justified when the 

model is applied to perform repetitive computations to solve optimization problems such as plan-

ning of inspections, monitoring and maintenance. 
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8.2 Outlook 

8.2.1 Modeling and computational challenges  

Some challenges associated with the computation the time-variant reliability of deteriorating struc-

tural systems conditional on information provided by inspection and monitoring data are addressed 

in this thesis. However, numerous open issues remain. In the following, some potential areas for 

future research are presented. 

Dependence among deterioration processes at different locations in structural systems has a sig-

nificant influence on the reliability of redundant structural systems and is relevant when determin-

ing the required inspection and monitoring coverage and times. Such dependencies exist due var-

iability and common influencing factors. Hierarchical and random field models are available to 

represent spatial dependence among these influencing parameters (see Section 5.2.2). The effect 

of different model choices should be systematically studied. In addition, further research should 

be conducted to learn the parameters of such dependence models from experiments and in-service 

data. Finally, recommendations for engineering practice should be derived. 

More and more deteriorating structures are equipped with monitoring systems that continuously 

capture static and dynamic response data. Methods of Bayesian system identification are a foun-

dation to determine the probability of the measured data conditional on the structural condition 

(e.g. Zhang and Au 2016; Huang et al. 2017), i.e. the likelihood function of the monitoring data. 

This likelihood function describes the performance of the monitoring system and is required to 

include the data in the system reliability analysis (see also Section 5.7.2). One challenge is to 

consider the effect of varying operational and environmental conditions in the modeling of the 

performance of such monitoring systems (e.g. Behmanesh and Moaveni 2016; Simon et al. 2020; 

Simon et al. 2021). This is an area of future research. 

The exact inference algorithm for evaluating the DBN model of deteriorating structures proposed 

by Luque and Straub (2016) is efficient and robust. In most applications, direct modeling of the 

structural system state is, however, not possible, because the number of different system configu-

rations is typically too large (see also Section 6.4.2). Recently, Zwirglmaier et al. (2017) have 

proposed a novel sampling-based inference algorithm suitable for estimating rare event probabili-

ties with BN. The algorithm employs a subset simulation strategy. Future research could explore 

the possibility of coupling this algorithm with the exact inference algorithm proposed by Luque 

and Straub (2016) to update the structural system condition. 

8.2.2 Risk-based planning of operation and maintenance 

Apart from addressing the remaining modeling and computational challenges related to the relia-

bility analysis of deteriorating structural systems, future research should also continue to develop 

methods for optimizing operation and maintenance strategies for deteriorating structural systems.  

Over the past 40 years, substantial efforts were made towards developing risk-based methods for 

optimizing inspection and repair strategies for deteriorating structural systems (e.g. Thoft-

Christensen and Sørensen 1987; Madsen et al. 1989; Sørensen and Faber 1991; Straub and Faber 

2005). Risk-based inspection planning identifies the inspection and repair strategy that minimizes 
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the expected total service life cost consisting of (a) the expected service life cost of inspections 

and repairs and (b) the service life cost associate with structural failure (risk). In risk-based inspec-

tion planning, structural reliability analysis is mainly applied to compute the probability of struc-

tural failure over the service life conditional on potential inspection outcomes, which is required 

in the estimation of the service life risk (see also Section 4.1). 

The inspection planning problem is a special instance of a sequential decision problem under un-

certainty, because decisions on inspections and repairs are made at multiple points in time, at which 

different amounts of information are available (Raiffa and Schlaifer 1961; Russell and Norvig 

2010; Kochenderfer 2015). Each decision on performing new inspections and repairs must con-

sider all past and all potential future observations and decisions. The complexity of the problem 

grows exponentially with the number of decision times and the number of system elements . In the 

past, a heuristic approach has been successfully applied to derive practical solutions to the problem 

at the structural element level (Faber et al. 2000; Straub 2004; Nielsen and Sørensen 2011). In this 

approach, inspections are planned, and repairs are performed based on parameterized decision 

rules. As an example, an element is inspected at fixed intervals and repaired when the measured 

size of an indicated defect exceeds a threshold. In this case, the optimization reduces to finding the 

combination of the inspection interval and repair threshold that minimizes the expected total ser-

vice life cost.  

Recently, Luque and Straub (2019), Bismut et al. (2017), Bismut and Straub (2018) and Schneider 

et al. (2018) have extended the heuristic approach to optimize inspection and repair strategies at 

the structural system level. They also define strategies at the system level in terms of parameterized 

decision rules which deterministically prescribe when, what and how to inspect and repair condi-

tional on all available information at the different decision times. In this way, the search space of 

possible strategies is reduced. For each defined strategy, the expected total service life cost is com-

puted using Monte Carlo simulation based on sampled inspection and repair histories. The strategy 

that minimizes the expected total service life cost is the optimal one in the set of pre-selected 

strategies. 

Within the Monte Carlo simulation, the probability of system failure over the service life must be 

computed many times for different potential inspection and repair histories. This is a challenging 

problem as discussed in this thesis. Luque and Straub (2019), Bismut et al. (2017) and Bismut and 

Straub (2018) apply the DBN approach with the exact inference algorithm described in (Luque 

and Straub 2016) for this task. Schneider et al. (2018) and Schneider (2019) perform these com-

putations using the NRA approach with subset simulation described in Section 5. 

The proposed methodology is a pragmatic and efficient solution to risk-based planning of inspec-

tion and repair at the structural system level and has significant potential to enhance the manage-

ment of deteriorating structures. It accounts for the dependence among all system elements, the 

relation between element deterioration and system failure, and the effect of partial inspections on 

the system reliability. It is relatively easy to communicate this approach to stakeholders who are 

not experts in risk-based planning of operation and maintenance. The heuristics can incorporate 

various operational constraints. In this way, impractical strategies can be excluded from the set of 
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possible strategies. Note that the strategy identified with this method is not necessarily the global 

optimum, but it can be easily compared to any other strategy proposed as an alternative.  

To demonstrate the benefit of risk-based planning of operation and maintenance at the structural 

system level, future research should focus on applying the proposed methodology to real structural 

systems. The heuristics can be adapted to include the experience and preferences of asset owners 

and operators. Furthermore, it would be highly valuable to consider applications involving global 

damage detection systems. Such an application requires explicit modeling of the performance of 

such monitoring systems and rules that guide decisions based on the potential monitoring out-

comes. This would ultimately facilitate an evaluation of the value of information (VoI) of global 

damage detection systems, in which the expected total service life cost with and without monitor-

ing system are compared (Pozzi and Der Kiureghian 2011; Thöns and Faber 2013; Straub et al. 

2017; Thöns 2018). 
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A Markov chain Monte Carlo sampling for subset 

simulation 

A.1 Markov chains 

Consider a sequence of random vectors 𝐔1, 𝐔2, … , 𝐔𝑇 of arbitrary length 𝑇. Such a sequence forms 

a Markov chain if its joint PDF 𝑝(𝐮1, 𝐮2, … , 𝐮𝑇) can be written in the following factorized form: 

𝑝(𝐮1, 𝐮2, … , 𝐮𝑇) = 𝑝(𝐮1)𝑝(𝐮2|𝐮1)…  𝑝(𝐮𝑇|𝐮𝑇−1) = 𝑝(𝐮1)∏𝑝(𝐮𝑡|𝐮𝑡−1)

𝑇

𝑡=2

 (A.1) 

Equation (A.1) implies the Markov assumption according to which 𝐔𝑡 is conditionally independent 

of all other predecessors 𝐔1, … , 𝐔𝑡−2 given its direct predecessor 𝐔𝑡−1 . The marginal PDF of 𝐔𝑡 

can be written as: 

𝑝(𝐮𝑡) =  ∫ 𝑝(𝐮𝑡|𝐮𝑡−1) 𝑝(𝐮𝑡−1) d𝐮𝑡−1
𝐔𝑡−1

  (A.2) 

where 𝑝(𝐮𝑡−1) is the marginal PDF of 𝐔𝑡−1. The conditional PDF 𝑝(𝐮𝑡|𝐮𝑡−1) is the transition 

PDF of the Markov chain representing the probability of moving from 𝐮𝑡−1 to any state in the state 

space of 𝐔𝑡. A Markov chain is homogeneous if the transition PDF 𝑝(𝐮𝑡|𝐮𝑡−1) is independent of 

𝑡, i.e. 𝑝(𝐮𝑡+1|𝐮𝑡) = 𝑝(𝐮𝑡|𝐮𝑡−1) for all 𝑡 = 2, … ,𝑇 − 1. Provided that a homogenous Markov 

chain is irreducible and aperiodic, the marginal PDF of 𝐔𝑡 will asymptotically converge to a unique 

stationary PDF, denoted by 𝜋(𝐮), as 𝑡 → ∞ (see, for example, Tierney 1994), which satisfies: 

𝜋(𝐮𝑡) =  ∫ 𝑝(𝐮𝑡|𝐮𝑡−1) 𝜋(𝐮𝑡−1) d𝐮𝑡−1
𝐔𝑡−1

  (A.3) 

Irreducibility and aperiodicity are relatively general regularity conditions. Irreducibility is fulfilled 

if, for any initial state 𝐮1, there is a non-zero probability of reaching any set of the chain’s state 

space in a finite number of steps, and aperiodicity is satisfied if there is a non-zero probability that 

the chain will remain at the same state (see, for example, Tierney 1994). A Markov chain that has 

a unique stationary PDF is called ergodic. 

A.2 MCMC sampling for subset simulation 

Markov chain Monte Carlo (MCMC) sampling algorithms simulate states of an ergodic Markov 

chain, which has the target distribution, from which samples are desired, as its unique stationary 

distribution. The simulation process is generally started at an arbitrary vector 𝐮1. New samples are 

then generated by successively simulating the transition of the Markov chain from its current state 
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𝐮𝑡  to its next state 𝐮𝑡+1. The number of iterations that are required until the marginal distribution 

of the constructed Markov chain is sufficiently close to its unique stationary distribution is called 

the burn-in period. The samples generated following the burn-in period are identically distributed 

according to the desired target distribution. They are, however, correlated since each sample de-

pends directly on its predecessor. 

As described in Section 2.2.3, subset simulation applies MCMC sampling at subset levels 𝑖 =

2, … ,𝑀 to generate samples from 𝜑𝑛(𝐮|𝐸𝑖−1) by simulating states of Markov chains starting from 

the samples conditional on the event 𝐸𝑖−2 for which 𝐺(𝐮) ≤ 𝑏𝑖−1. Therefore, the starting vectors 

or seeds of the Markov chains are already distributed according to the desired target distribution 

𝜑𝑛(𝐮|𝐸𝑖−1) and in the context of subset simulation the Markov chains do not require a burn-in 

period to reach their stationary state (see also Au et al. 2012). 

The main component of MCMC sampling algorithms is the transition of the Markov chain from 

its current state 𝐮𝑡  to its next state 𝐮𝑡+1. A standard implementation of this transition is the Me-

tropolis-Hastings algorithm (Metropolis et al. 1953; Hastings 1970). To sample from 𝜑𝑛(𝐮|𝐸𝑖−1), 

this algorithm performs the transition in two steps. If the current state of the Markov chain is 𝐮𝑡 , 

a candidate state 𝐮′ is sampled from an arbitrary proposal distribution 𝑞(𝐮′|𝐮𝑡), which is an 𝑛-

dimensional PDF dependent on 𝐮𝑡 . This candidate is accepted with a certain acceptance probabil-

ity 𝑎(𝐮𝑡 , 𝐮′) and the chain moves to 𝐮𝑡+1 = 𝐮′. If the candidate state 𝐮′ is rejected, the chain 

remains at 𝐮𝑡+1 = 𝐮𝑡 . The acceptance probability 𝑎(𝐮𝑡, 𝐮′) is defined as: 

𝑎(𝐮𝑡 , 𝐮′) = min{1,
𝜑𝑛(𝐮′|𝐸𝑖−1)

𝜑𝑛(𝐮𝑡|𝐸𝑖−1) 
 
𝑞(𝐮𝑡|𝐮′)

𝑞(𝐮′|𝐮𝑡)
} (A.4) 

Hastings (1970) and Tierney (1994) show that this transition procedure leaves the target distribu-

tion 𝜑𝑛(𝐮|𝐸𝑖−1) invariant independent of the choice of the proposal distribution, i.e. if 𝐮𝑡  is dis-

tributed according to 𝜑𝑛(𝐮|𝐸𝑖−1) then 𝐮𝑡+1 is distributed according to 𝜑𝑛(𝐮|𝐸𝑖−1). This property 

of the Metropolis-Hastings algorithm ensures that 𝜑𝑛(𝐮|𝐸𝑖−1) is the unique stationary PDF of the 

simulated Markov chain. Inserting Equation (2.18) into Equation (A.4) gives: 

𝑎(𝐮𝑡 , 𝐮′) = min{1,
𝜑𝑛(𝐮′) 𝕀[𝐺(𝐮′) ≤ 𝑏𝑖−1]

𝜑𝑛(𝐮𝑡) 𝕀[𝐺(𝐮𝑡) ≤ 𝑏𝑖−1]
 
𝑞(𝐮𝑡|𝐮′)

𝑞(𝐮′|𝐮𝑡)
} (A.5) 

As mentioned above, in the context of subset simulation, the current state of the Markov chain 𝐮𝑡  

is always distributed according to 𝜑𝑛(𝐮|𝐸𝑖−1). Therefore, 𝕀[𝐺(𝐮𝑡) ≤ 𝑏𝑖−1] = 1 and Equation 

(A.5) simplifies as follows (Papaioannou et al. 2015): 

𝑎(𝐮𝑡 , 𝐮′) = min{1,
𝜑𝑛(𝐮′)

𝜑𝑛(𝐮𝑡)
 
𝑞(𝐮𝑡|𝐮′)

𝑞(𝐮′|𝐮𝑡)
 𝕀[𝐺(𝐮′) ≤ 𝑏𝑖−1]} 

= min{1,
𝜑𝑛(𝐮′)

𝜑𝑛(𝐮𝑡)
 
𝑞(𝐮𝑡|𝐮′)

𝑞(𝐮′|𝐮𝑡)
 } 𝕀[𝐺(𝐮′) ≤ 𝑏𝑖−1] 

= 𝑎̃(𝐮𝑡 , 𝐮′) 𝕀[𝐺(𝐮′) ≤ 𝑏𝑖−1] 

(A.6) 
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It follows that a Metropolis-Hastings-type transition for sampling from 𝜑𝑛(𝐮|𝐸𝑖−1) can be per-

formed in two steps. First, a normal Metropolis-Hastings transition with stationary distribution 

𝜑𝑛(𝐮) is carried out with acceptance probability 𝑎̃(𝐮𝑡 , 𝐮′), which is a function of the proposal 

PDF 𝑞(𝐮𝑡+1|𝐮𝑡). This transition generates a sample 𝐮′ from 𝜑𝑛(𝐮). Subsequently, the sample 𝐮′ 

is accepted if it lies in the domain describing the event 𝐸𝑖−1, i.e. if 𝐺(𝐮′) ≤ 𝑏𝑖−1, otherwise the 

sample 𝐮′ is rejected and the chain remains in its current state. The Metropolis-Hastings transition 

for sampling from 𝜑𝑛(𝐮|𝐸𝑖−1) at subset level 𝑖 of the subset simulation is summarized in Algo-

rithm A.1. 

Au and Beck (2001) found that the probability of rejecting the candidate in step 1 is close to one 

when the number of random variables 𝑛 is large. This leads to many repeated samples and, ulti-

mately, to an increased correlation among the generated samples, which reduces the efficiency and 

accuracy of subset simulation (see also Katafygiotis and Zuev 2008; Papaioannou et al. 2015). To 

overcome this problem, several modified variants of the original Metropolis-Hastings algorithm 

have been proposed. This includes the component-wise Metropolis-Hastings algorithm (Au and 

Beck 2001), the Metropolis-Hastings algorithm with repeated generation of pre-candidates 

(Santoso et al. 2011), component-wise Metropolis-Hastings algorithm with delayed rejection of 

the candidate state (Miao and Ghosn 2011) and a Metropolis-Hastings-type algorithm for sampling 

in standard normal space recently proposed by Papaioannou et al. (2015). The latter algorithm is 

simpler than existing algorithms but equally accurate and efficient. For these reasons, it has been 

implemented in this thesis. 

The algorithm proposed by Papaioannou et al. (2015) applies a proposal PDF 𝑞(𝐮′|𝐮𝑡) such that 

the acceptance probability of the candidate state 𝐮′ in step 1 of Algorithm A.1 is 𝑎̃(𝐮𝑡 , 𝐮′) = 1, i.e. 

Algorithm A.1: Metropolis-Hastings algorithm for generating 𝑁 samples from 𝜑𝑛(𝐮|𝐸𝑖−1) at subset level 𝑖 of the 

subset simulation 

Input: 𝐮1 (seed), 𝑁 (number of states to be simulated), 𝐺(𝐮) (limit state function) and 

𝑏𝑖−1 (threshold) 

For 𝑡 = 1,… ,𝑁: 

1. Generate a candidate 𝐮′ from 𝜑𝑛(∙): 

a. Generate a pre-candidate 𝐮′′ through sampling from 𝑞(∙ |𝐮𝑡). 

b. Accept or reject 𝐮′′ by setting 

𝐮′ = {
𝐮′′, with probability 𝑎̃(𝐮𝑡, 𝐮′′)

𝐮𝑡, with probability 1 − 𝑎̃(𝐮𝑡, 𝐮′′)
 

where 

𝑎̃(𝐮𝑡 , 𝐮′′) = min{1,
𝜑𝑛(𝐮′′)

𝜑𝑛(𝐮𝑡)
 
𝑞(𝐮𝑡|𝐮′′)

𝑞(𝐮′′|𝐮𝑡)
 } 

2. Accept or reject 𝐮′ by setting 

𝐮𝑡+1 = {
𝐮′, if 𝐺(𝐮′) ≤ 𝑏𝑖−1
𝐮𝑡 , otherwise
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the proposed candidate state 𝐮′ is always accepted. Let the random vectors 𝐔𝑡 = [𝑈𝑡,1, … , 𝑈𝑡,𝑛]
𝑇 

and 𝐔′ = [𝑈1
′ , … , 𝑈𝑛

′ ]𝑇  respectively represent the uncertain current and candidate state of the Mar-

kov chain. Both 𝐔𝑡 and 𝐔′ have the 𝑛-variate standard normal PDF 𝜑𝑛(∙) as marginal PDF. 

Papaioannou et al. (2015) impose that 𝐔𝑡 and 𝐔′ are jointly standard normal distributed with com-

ponent-wise cross-correlation coefficient 𝜌𝑘 . In addition, the algorithm assumes that each compo-

nent 𝑈𝑡 ,𝑘 is independent of the components 𝑈𝑙
′ for all 𝑘 ≠ 𝑙. It follows that the 2𝑛-dimensional 

standard normal random vector 𝐔 = [𝐔𝑡
𝑇 , 𝐔′𝑇]𝑇 has zero mean vector and covariance matrix 𝚺 ∈

ℝ2𝑛×2𝑛 given by: 

𝚺 = [
𝐈 𝐑
𝐑𝑇 𝐈

] (A.7) 

where 𝐈 is the unity matrix of size 𝑛 and 𝐑 ∈ ℝ𝑛×𝑛  is a diagonal matrix with the 𝑘th diagonal 

element equal to 𝜌𝑘 . It follows that (a) the joint PDF of 𝐔 is the 2𝑛-variate standard normal PDF 

𝜑2𝑛(𝐮;𝚺), (b) the marginal PDF of 𝐔𝑡 and 𝐔′ is the 𝑛-variate standard normal PDF 𝜑𝑛(∙), (c) the 

conditional PDF of 𝐔𝑡 given 𝐔′ = 𝐮′  is the 𝑛-variate standard normal PDF 𝜑𝑛(𝐮𝑡 −𝐑𝐮
′; 𝐈 −

𝐑𝐑𝑇), and (d) the conditional PDF of 𝐔′ given 𝐔𝑡 = 𝐮𝑡 is the 𝑛-variate standard normal PDF 

𝜑𝑛(𝐮
′ −𝐑𝑇𝐮𝑡 ; 𝐈 − 𝐑

𝑇𝐑) (see, for example, Petersen and Pedersen 2012). The following identity 

holds: 

𝜑𝑛(𝐮
′ −𝐑𝑇𝐮𝑡 ; 𝐈 − 𝐑

𝑇𝐑) = 𝜑𝑛(𝐮
′ −𝐑𝐮𝑡 ; 𝐈 − 𝐑𝐑

𝑇) (A.8) 

since 𝐑 is symmetric (see also Au 2016). Therefore, the joint PDF of 𝐔 can be written as: 

𝜑2𝑛(𝐮;𝚺) = 𝜑𝑛(𝐮𝑡 −𝐑𝐮
′; 𝐈 − 𝐑𝐑𝑇)𝜑𝑛(𝐮

′) = 𝜑𝑛(𝐮
′ −𝐑𝐮𝑡; 𝐈 − 𝐑𝐑

𝑇)𝜑𝑛(𝐮𝑡) (A.9) 

It can now be shown that 𝑎̃(𝐮𝑡 , 𝐮′) = 1 when 𝑞(𝐮′|𝐮𝑡) = 𝜑𝑛(𝐮′ − 𝐑𝐮𝑡; 𝐈 − 𝐑𝐑
𝑇) is used as pro-

posal PDF: 

𝑎̃(𝐮𝑡 , 𝐮
′) = min{1,

𝜑𝑛(𝐮
′)

𝜑𝑛(𝐮𝑡)
 
𝑞(𝐮𝑡|𝐮

′)

𝑞(𝐮′|𝐮𝑡)
 } 

= min{1,
𝜑𝑛(𝐮

′)

𝜑𝑛(𝐮𝑡)
 
𝜑𝑛(𝐮𝑡 −𝐑𝐮

′; 𝐈 − 𝐑𝐑𝑇)

𝜑𝑛(𝐮′ −𝐑𝐮𝑡 ; 𝐈 − 𝐑𝐑𝑇)
 } 

= min{1,
𝜑2𝑛(𝐮;𝚺)

𝜑2𝑛(𝐮;𝚺)
 } 

= 1 

(A.10) 

It also follows that given 𝐔𝑡 each component 𝑘 of 𝐔′ is an independent normal random variable 

with mean value 𝜌𝑘𝑢𝑡,𝑘 and variance 1 − 𝜌𝑘
2 . The Metropolis-Hastings algorithm summarized in 

Algorithm A.1 can thus be rewritten as summarized Algorithm A.2. Papaioannou et al. (2015) 

proof that this updating scheme leaves the target distribution 𝜑𝑛(𝐮|𝐸𝑖−1) invariant (see also Au 

2016). 
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The stochastic dependence among successive states of the Markov chains is controlled by the 

choice of the correlation coefficient 𝜌𝑘 . On the one hand, a small 𝜌𝑘  will result in many rejected 

candidates in step 2 and it will thus lead to a high correlation among the generated samples. On 

the other hand, a large 𝜌𝑘  will increase the acceptance rate of the candidates in step 2 but it will 

also lead to a high correlation among the generated samples. A common choice of the correlation 

coefficient is 𝜌𝑘 = 0.8 (Papaioannou et al. 2015). The correlation coefficient 𝜌𝑘  can also be chosen 

adaptively during the simulation such that the acceptance rate in step 2 remains close to an optimal 

value (see Papaioannou et al. 2015 for more details). This approach ensures that the samples have 

low correlation and enhances the efficiency of subset simulation as the conditional probabilities 

Pr(𝐸𝑖 |𝐸𝑖−1) can be estimated with a smaller number of samples. 

Algorithm A.2: Conditional sampling in 𝐔-space for generating 𝑁 samples from 𝜑𝑛(𝐮|𝐸𝑖−1) at subset level 𝑖 of the 

subset simulation (Papaioannou et al. 2015) 

Input: 𝐮1 (seed), 𝑁 (number of states to be simulated), 𝐺(𝐮) (limit state function),  

𝑏𝑖−1 (threshold), 𝜌𝑘 , 𝑘 = 1,… , 𝑛 (correlation coefficients) 

For 𝑡 = 1,… ,𝑁: 

1. Generate a candidate 𝐮′ = [𝑢1
′ , … , 𝑢𝑛

′ ]𝑇 from 𝜑𝑛(∙): 

For 𝑘 = 1,… , 𝑛: 

Generate 𝑢𝑘
′  from the normal distribution with mean 𝜌𝑘𝑢𝑡,𝑘 and 

variance 1 − 𝜌𝑘
2 . 

2. Accept or reject 𝐮′ by setting 

𝐮𝑡+1 = {
𝐮′, if 𝐺(𝐮′) ≤ 𝑏𝑖−1
𝐮𝑡 , otherwise
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