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Abstract—We discuss vectorization of normal and transverse
Riemann solvers for the single- and multi-layer shallow water
equations. Our approach is simple and portable, as it is based
on auto-vectorization by the compiler, aided by OpenMP 4.0
directives. Despite the high complexity of the solver routines,
the Intel Fortran Compiler proved itself able to successfully
vectorize loops containing calls to these solvers, after only a few
small changes in their code. We evaluate the performance of
the vectorized Riemann solvers within the context of GeoClaw,
a software designed for simulation of geophysical flows with
finite volume methods. Our performance studies consider two
platforms with different sets of SIMD instructions: a dual-socket
Haswell system with the AVX2 instruction set (256-bit) and an
Intel Xeon Phi (Knights Landing) with AVX-512 instructions
(512-bit). The experimental results indicate performance im-
provements of up to 2.1x on the former platform and up to 6.5x on
the latter (with double-precision arithmetic). We also show that
these speedups can easily compensate for the overhead introduced
by the rearrangement of the simulation data structures, which
might be necessary to achieve efficient vectorization.

Index Terms—parallel processing, vectorization, Riemann
solvers, shallow water equations

I. INTRODUCTION

The width of SIMD instructions supported by modern high
performance architectures has increased remarkably over the
past few years. While a decade ago processors would typically
provide 128-bit vector instructions, nowadays 256-bit instruc-
tions are widely supported, and even 512-bit instructions
are available on the latest architectures, like Intel’s Many
Integrated Core (MIC) and some Skylake Xeon models. Since
these processors are able to operate on 16 single-precision
(or 8 double-precision) values with a single instruction, the
benefits of vectorization can no longer be ignored for high
performance applications.

In this paper, we evaluate the benefits of vectorization on
the numerical routines of GeoClaw, a software designed for
simulation of depth-averaged geophysical flows. Specifically,
we focus on vectorization of normal and transverse Riemann
solvers for the single- and multi-layer variations of the shallow
water equations. Since the solution for Riemann problems can
be directly applied in finite volume or discontinuous Galerkin
methods, the solver routines are essential for computational

simulations using these equations. Also, they are usually
responsible for the majority of the computational costs in
such applications, which makes it especially important to have
highly efficient solvers.

Our implementations rely on auto-vectorization by the com-
piler, aided by the !$OMP SIMD compiler directive provided
by the OpenMP standard 4.0 and later versions. As such,
our codes are portable across various platforms with different
SIMD instruction sets. Considering that, we performed exper-
iments on two different architectures: a dual-socket Haswell
system with the AVX2 instruction set (256-bit) and an Intel
Xeon Phi processor (Knights Landing), which supports the
AVX-512 instruction set (512-bit). On the former, we expe-
rienced performance improvements in our double-precision
solvers ranging from 1.3× to 2.1×, while on the latter the
observed improvements range from 2.4× to 6.5×.

We discuss some related work in Section II and describe our
numerical model and finite volumes approach in Sections III
and IV. In Section V, we describe the GeoClaw framework
and the changes in the code necessary to achieve vectorization
of its Riemann solvers. Finally, we present the results of
our performance experiments in Section VI and conclude in
Section VII by summarizing our findings.

II. RELATED WORK

Vectorization has been successfully applied to Riemann
solvers for the single-layer shallow water equations in previous
work. For instance, Bader et. al. [1] present vectorized imple-
mentations for the f -Wave [2] and augmented Riemann [3]
solvers. Although auto-vectorization was possible for their
f -Wave solver, intrinsics functions were necessary to achieve
vectorization of the augmented Riemann solver, because the
compiler was not able to auto-vectorize the loop annotated
with #pragma simd.

Another example is the work described in [4], where the
authors present an auto-vectorized implementation for both
solvers. However, their approach is based on obtaining mul-
tiple instructions in the solver vectorized independently from
each other instead of using a single vectorized loop that solves
multiple instances of Riemann problems. The disadvantage of
their approach is that each vectorized loop introduces some
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overhead, limiting the performance improvement. Thus, it is
desired to have as few loops as possible.

In contrast to these work, this paper presents a simpler auto-
vectorized implementation of the augmented Riemann solver
based on a single loop annotated with the !$OMP SIMD direc-
tive (available in the OpenMP 4.0 standard and later versions).
With this directive, which was still quite recent when [1] was
published, the Intel Compiler is able to successfully auto-
vectorize a loop that solves multiple Riemann problems using
the augmented Riemann solver, despite its complexity.

In addition to these differences in the vectorization ap-
proach, in this paper we also propose and evaluate novel
vectorized implementations of normal and transverse Riemann
solvers for the multi-layer shallow water equations (based on
the original implementations proposed in [5]). Although other
authors [6] have worked on a GPGPU implementation for the
multi-layer shallow water equations, this is, to the best of our
knowledge, the first paper reporting successful vectorization
of Riemann solvers for these equations.

III. THE SHALLOW WATER EQUATIONS

The shallow water equations (SWEs) are depth-averaged
equations that are suitable for modeling incompressible fluids
in problems where the horizontal scales (x and y dimensions)
are much larger than the vertical scale (z dimension) and the
vertical acceleration is negligible. Simulations are often based
on the single-layer SWEs. They take the form
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where h(x, y, t) is the fluid depth; u(x, y, t) and v(x, y, t) are
the vertically averaged fluid velocities in the x and y direc-
tions, respectively; g is the gravitational constant; and b(x, y)
is the bottom surface elevation. In oceanic applications, b is
usually relative to mean sea level and corresponds to subma-
rine bathymetry where b < 0 and to terrain topography where
b > 0. Here, the source term ψ(x, y, t) = [0,−ghbx,−ghby]T

models the effect of the varying topography but it can be
modified to include other terms, such as drag and Coriolis
forces.

These equations are appropriate for modelling various wave
propagation phenomena such as tsunamis and dam breaks.
However, they lack accuracy for problems where significant
vertical variations in the water column can be observed.
Consider for instance storm surge simulations [7] where wind
stress plays a crucial role and affects more the top of the water
column than the bottom. The single-layer SWEs are not able to
properly model this effect as the water momentum is averaged
along the vertical dimension.

Such vertical variations can be properly modeled using the
multi-layer SWEs, which provide more realistic representations
while keeping the computational costs relatively low. In the
case of the mentioned storm surge simulations, one can obtain
a more accurate representation of the wind effects by modeling

the sea with two layers: a shallow top layer over a deeper
bottom layer. This can be accomplished with the two-layer
SWEs, which have the form shown in (2) on the following
page. In these equations, h1(x, y, t) is the water depth of the
first (top) layer, h2(x, y, t) is the depth of the second (bottom)
layer, and so on; also, ρ1 and ρ2 are the densities of the fluid
contained in each layer.

Although the multi-layer equations can be generalized for
an arbitrary number of vertical layers, this paper focuses only
on the single-layer and two-layer SWEs discussed above.

IV. NUMERICAL SCHEME

For our simulations, we use GeoClaw [8], a software pack-
age that implements finite volume methods for depth-averaged
equations, allowing the simulation of various geophysical flow
phenomena. GeoClaw is based on the more general package
Clawpack [9], which provides a framework for solving systems
of hyperbolic conservation laws with the general form (in two
dimensions):

qt + f(q)x + g(q)y = ψ(q, x, y), (3)

where q(x, y, t) is the vector of unknowns. This framework
allows the implementation of Godunov-type methods, which
are based on the solution of so-called Riemann problems. This
numerical approach has been thoroughly covered in [10], [11]
and will be briefly described here.

We use a finite volume discretization that represents the sim-
ulation domain as logically rectangular grids (usually latitude-
longitude or Cartesian) where the solution variables q are
averaged within each cell. With this discretization, Riemann
problems appear naturally at the interfaces between cells (i.e.,
edges). A Riemann problem is an initial-value problem with
piecewise constant data and a single discontinuity at some
point x = x̄:

q(x) =

{
q` if x < x̄

qr if x > x̄
(4)

The solutions for these problems are sets of shock and
rarefaction waves that propagate at constant speeds over the
solution domain and are used to compute the numerical fluxes
between neighbor cells and to update the solution for the
following time step.

In addition to the normal Riemann problems described
above, our numerical scheme also solves an extra set of
transverse Riemann problems. In two-dimensional problems,
“transverse” waves (waves that do not move perpendicularly
to the edge) actually affect cells other than the two ones
adjacent to the crossed edge, but this effect is not properly
captured by the normal problems alone. By introducing this
additional step, such waves are properly handled and the
method’s accuracy is improved, as the true two-dimensional
problem is being solved. This approach is based on the corner-
transport upwind method and is described in Chapters 20–21
of [11]. Also, second-order correction and limiters are applied
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to the solutions in order to improve the method’s accuracy.
This is covered in Section 4.1 of [10] and Section 6.2 of [11].

While it is possible to compute the exact solution for the
Riemann problems, in most cases this is too expensive and
not worth the effort for the accuracy, as these exact solutions
are used in an inexact discrete numerical model. Instead, our
simulations use so-called “approximate Riemann solvers” that
deliver faster, yet reliable solutions. For the single-layer SWEs
GeoClaw implements the Augmented Riemann solver [3]
and for the two-layer SWEs the solver proposed in [5] is
used. Although these approximate solvers are considerably
fast, they are still usually responsible for the majority of the
computational costs in the simulations and are, thus, the focus
of our optimization efforts in this paper.

V. IMPLEMENTATION DETAILS

GeoClaw provides an efficient framework for implementing
the Godunov-type finite volume methods described in the pre-
vious section, including shared-memory parallelism (OpenMP)
and adaptive mesh refinement (AMR). In this section, we
discuss how these strategies and the numerical approach are
implemented in GeoClaw. More detailed descriptions can be
found in [8], [10]. Here we also describe the changes that were
necessary to successfully vectorize the Riemann solvers.

A. Adaptive mesh refinement

AMR is essential for large-scale simulations where high
resolution is necessary at specific regions, but not over the
entire domain – oceanic simulations are a a typical example.
Dynamically adaptive meshes are able to considerably reduce
the simulation’s computational costs (with respect to both time
and space) while maintaining its accuracy [10].

GeoClaw implements a hierarchical patch-based strategy
for AMR. The entire simulation domain is comprised of a
coarse Level 1 grid, whose cells may be flagged for refinement
depending on various user-defined criteria. Every few time
steps, a regridding procedure is performed, identifying clusters
of spatially-close flagged cells and defining rectangular grid
patches that contain these clusters. These patches are then
refined according to refinement ratios that are also user-
defined, producing a set of Level 2 grids. This process can
be recursively repeated up to an arbitrary number of levels,
where the refinement ratios of each level can be defined
independently. As an example, consider the simulation with
three AMR layers illustrated in Fig. 3. More details regarding
the AMR algorithms in GeoClaw can be found in [10], [12].

B. Shared-memory parallelism

Parallelism in GeoClaw is also based on the concept of
patches – each patch can be processed almost independently,
needing only to exchange boundary data with its neighbor
patches via an additional ghost layer. The data used for the
ghost layer comes either from neighbor patches in the same
AMR level or from the coarser grid that contains the patch (in
this case, interpolation methods are usually necessary). After
exchanging boundary data, patches in the same AMR level
can then be trivially processed in parallel.

An important detail in GeoClaw’s implementation is that
we impose a limit in the dimensions of each patch, such
that multiple patches are applied where a single patch might
otherwise be enough. In the current implementation, each
patch is limited to 60×60 cells. This does not only lead to
more parallel work (due to the larger number of patches), but
also improves spatial locality by producing smaller patches
that are more likely to fit in the cache.

C. Numerical time step

As described in Section IV, a simulation time step is
completed by solving the Riemann problems that appear at all
edges in the grid and using their solutions to update the cell
quantities accordingly. The Riemann problems are identified
and their input data are organized by two separate loops for the
vertical and horizontal edges, which process one-dimensional
“slices” of a patch, each direction at a time. For each slice, we
extract the data from two adjacent rows (or columns) of cells,
and organize them into temporary arrays that represent a list
of Riemann problems and are given as input to the Riemann
solvers. After solving the Riemann problems, their solution is
then used to compute (and accumulate) the numerical fluxes
going in and out of each cell, which are afterwards used to
update all cells, finalizing the time step.

The fact that our implementation organizes the Riemann
problems into lists (arrays) that are passed to the solvers is
very relevant when considering vectorization for the solvers’
routines. Since each solver already has to deal with multiple
problems that are independent from each other, no major
changes in these algorithms have been necessary to obtain
such a scheme, which is usually necessary for vectorization.

D. Changes in the data layout

The arrays used in GeoClaw and Clawpack’s default im-
plementation are organized in an Arrays of Structs (AoS)
fashion that is not suitable for vectorization. In other words,



all components of a cell’s data (e.g., h, hu and hv for the
single-layer model) are contiguous in memory while the same
component of neighbor cells are not. However, vectorization
requires unit stride access to the same component of different
cells because we loop through multiple Riemann problems
that have these components as input data. Thus, it would be
necessary to change the data layout to Structs of Arrays (SoA),
in order to sucessfully apply vectorization.

Unfortunately, modifying the data layout of the entire frame-
work was not practical, not only because of its complexity, but
also because GeoClaw is part of the Clawpack distribution,
which includes various other applications and concerns several
simultaneous projects that would also be affected by such
changes. Instead, we decided to use the appropriate data layout
only in the routines that compute the numerical fluxes (where
we wish to apply vectorization), leaving other parts of the code
unchanged.

In practice, the data in each patch are organized in two-
dimensional matrices with an AoS fashion but we rearrange
them on-the-fly when extracting one-dimensional slices of
data. After this step, the temporary arrays given as input to
the Riemann solvers have a SoA layout, and are thus suitable
for vectorization.

Although this additional data rearrangement introduces an
overhead in the algorithm due to strided accesses to the data,
it should also be noticed that strided accesses were already
performed previously, when extracting slices of data either in
the x or y direction. Also, the performance results presented
in Section VI show that the benefits from vectorization easily
outweigh this overhead.

E. Vectorization of the Riemann solvers

To make auto-vectorization possible, we organized the code
in the Riemann solvers’ subroutines and added compiler
directives to them. All computations necessary to solve a
single instance of a Riemann problem were encapsulated
into a separate subroutine, and the loop code was simplified
to the bare minimum – loading the problem data from the
arrays, calling the solver subroutine, and storing the computed
solutions into the appropriate arrays – see the example shown
in Fig. 1. Note that, while this example is based specifically on
the normal Riemann solver for the single-layer equations, the
same code structure was also used for the transverse solver,
as well as for the multi-layer solvers.

With respect to the SoA vs. AoS discussion in the previous
section, notice that the arrays containing the input data for
the Riemann problems are organized as SoA (see lines 5–
12), which results in unit stride accesses between the same
component for consecutive Riemann problems. In the original
implementation they were organized as AoS, which required
strided accesses and inhibited vectorization. The same can be
said about the output arrays (lines 19–20), whose dimensions
have been reordered such that now the left-most index is
used to identify the Riemann problems. Because Fortran uses
column-major ordering, this ordering also results in contiguous
acesses for the same output component of different Riemann

1 !$OMP SIMD PRIVATE(hL,hR,huL,huR,hvL,hvR,bL,bR,sw,fw)
2 DO i=1,num_problems ! iterate through all problems
3

4 ! copy input parameters from input arrays:
5 hL = hL_list(i)
6 hR = hR_list(i)
7 huL = huL_list(i)
8 huR = huR_list(i)
9 hvL = hvL_list(i)

10 hvR = hvR_list(i)
11 bL = bL_list(i)
12 bR = bR_list(i)
13

14 !DIR$ FORCEINLINE
15 CALL solve_problem(hL,hR,huL,huR,hvL,hvR,bL,bR,&
16 sw,fw) ! output: sw(3) and fw(3,3)
17

18 ! store solution in output arrays:
19 sw_list(i,:) = sw(:)
20 fw_list(i,:,:) = fw(:,:)
21 END DO

Fig. 1. Example of how the main loop in the solvers’ subroutines has
been organized to allow auto-vectorization assisted by compiler directives.
This code snippet has been slightly modified from the actual implementation
to make it more comprehensible. This example was based on the normal
Riemann solver for the single-layer SWEs – the code same structure was also
used for the transverse solver, as well as for the multi-layer solvers.

problems – e.g., sw(i,1) is contiguous to sw(i+1,1).
Thus, this new ordering used on the output arrays is also
suitable for vectorization.

Also, notice that we use the OpenMP 4.0 directive
!$OMP SIMD, and not the alternative !DIR$ SIMD, since
the latter was unable to vectorize this loop. It was also
necessary to declare the iteration-local variables (used as input
and output parameters for the subroutine solve_problem)
as PRIVATE, otherwise the compiler would have refused to
vectorize the loop. This was one of the main motivations for
encapsulating the code into a subroutine, as this minimizes the
number of variables that need to be declared here.

We use !DIR$ FORCEINLINE to make sure that the
subroutine gets inlined into the loop and, thus, also vec-
torized. Instead of inlining, an alternative option would be
to declare it as “SIMD-enabled” with the compiler directive
!$OMP DECLARE SIMD. However, in our experiments this
approach resulted in considerably slower performance, thus
this alternative was discarded.

To make the solver subroutines auto-vectorizable as well,
a few minor changes in their code were also necessary. In
particular, it was necessary to remove early exits from the sub-
routine – consider the example in Fig. 2. In the original code,
Riemann problems identified as “trivial” (both cells completely
dry) were simply skipped, as their solution is always zero.
However, skipping iterations is not possible with vectorization,
as the SIMD model requires that the computation for sets of
contiguous arrays positions advance simultaneously. In our
implementation, these problems are replaced on-the-fly with
artificial problems that are then solved as usual. Afterwards,
the real solution for these problems (zero) is attributed to their
respective output variables. Because this approach uses simple
pre- and post-processing of the input and output variables,
it delivers better performance than introducing an extra if-



1 ! Identify completely dry problems
2 if (hL <= dry_tol .and. hR <= dry_tol) then
3 ! The original code would have returned here,
4 ! but that is not allowed in a vectorized code.
5 ! Instead, we solve an artificial problem:
6 hL = 0.0
7 hR = 0.0
8 endif
9

10 ! ...
11 ! Use the Riemann solver to compute the
12 ! solution arrays sw(3) and fw(3,3)
13 ! ...
14

15 ! For dry-dry problems, solution is always zero!
16 if (hL < dry_tol .and. hR < dry_tol) then
17 sw(:) = 0.0
18 fw(:,:) = 0.0
19 endif

Fig. 2. Changes in the solvers’ code necessary to remove early exits and allow
their vectorization. Previously, all “dry-dry” problems (where the column of
water is smaller than the threshold dry_tol in both cells) were skipped,
but that is not allowed when using vectorization. In the new vectorizable
code, we solve these problems normally, and their real solution (zero) is
attributed afterwards. Notice that this last step is necessary because the
solutions computed by the solvers are usually incorrect, because they assume
that h 6= 0 in both cells.

then-else branch that would force the compiler to use masked
operations and assignments.

F. Problems with the compiler

Unfortunately, the executable generated by the Intel Fortran
Compilers (versions 16, 17 and 18) for codes like the example
shown in Fig. 1 actually produced incorrect simulation results.
After some experiments, we noticed that the compilers were
not able to correctly handle the output arrays sw and fw,
because they are declared as PRIVATE for each loop iteration.
We also noticed that, when we replaced these arrays with
scalar variables (e.g., using three variables sw1, sw2, and
sw3 instead of the array sw(3)), the program would perform
correctly. Thus, we used this workaround in our implementa-
tions. Note that, for simplicity and clarity, we chose to show
the implementation with PRIVATE arrays in the example in
Fig. 1, instead of the implementation we actually used where
these are replaced with many scalar variables.

Another alternative to avoid these problems would have
been to use SIMD-enabled subroutines instead of inlining,
as discussed above. This approach was correctly handled by
the compiler but, again, it was discarded due to its lower
performance.

The issues described above have been investigated by In-
tel engineers, who reported that the problem was identified
and will be fixed in the next major compiler version (Intel
Compiler 2019).

VI. PERFORMANCE RESULTS

A. Experimental platforms

We conducted experiments on the CoolMUC2 and Cool-
MUC3 cluster systems hosted at the Leibniz Supercomputing
Center (LRZ). The former cluster contains nodes with dual-
socket Haswell systems, while the latter provides nodes with

TABLE I
SPECIFICATIONS OF THE EXPERIMENTAL PLATFORMS.

System overview Haswells Knights Landing

Architecture Intel® Xeon® Intel® Xeon Phi™
Model E5-2697v3 7210F
Cores 2x14 64
Clock rate 2.60 GHz 1.30 GHz
SIMD vector width 256-bit 512-bit
Memory 64 GB 96 GB
Peak bandwidth 136 GB/s 102 GB/s
Peak performance (DP) 582 GFlop/s 2 662 GFlops/s
Measured perform. (DP) 152 GFlop/s 699 GFlops/s

Xeon Phi “Knights Landing” (KNL) processors. An overview
of the system configuration of the nodes in each system is
presented in Table I. With respect to this paper, the most
important difference between these architectures is the width
of the SIMD vector instructions they provide: the Haswell
processors use the AVX2 instruction set (256-bit), while the
KNL processor uses the AVX-512 instruction set (512-bit). As
such, the benefits from vectorization are expected to be more
noticeable on the KNL machine.

In Table I, we also list both the theoretical peak perfor-
mance and the measured performance for double precision
operations in floating-point operations per second (Flop/s).
The former was calculated based on the specifications of each
system, while the latter was obtained with a simple benchmark
proposed in Chapter 2 of [13]. This benchmark measures
the Flop/s rate in a trivial loop that repeatedly computes
a[i] ← a[i] ∗ k + b[i] on all elements of small (cache-fitting)
arrays a and b. It was designed with the goal of obtaining
the highest attainable performance in architectures like the
ones we use in the paper (which support multi-threading,
vectorization and fused multiply-add operations, e.g.), and its
results serve as a good estimate for the maximum performance
that can be achieved in practice.

In all experiments reported here we used the Intel Fortran
compiler 17.0.4 and double precision arithmetic. On both
systems we use all available cores, i.e., 28 on the Haswells and
64 on the KNL. On the KNL we also experiment with different
number of threads per core (from 1 to 4). However, here we
only list the results with 4 threads per core (i.e., 256 in total),
because this configuration achieved the best performance in
most experiments.

B. Simulation scenarios

1) Chile 2010 scenario: To test our single-layer SWEs
implementation, we simulate a real tsunami event that took
place in the Pacific Ocean in February 2010 and reached the
coast of Chile and Peru – see Fig 3. We used topography
data obtained from the ETOPO2 data set available at [14]
together with initial water displacement based on simulations
performed with the Okada model [15] and USGS earthquake
data [16]. The interested reader is referred to [10] for more
details and numerical considerations regarding the simulation
of the Chile 2010 Tsunami.



Fig. 3. Simulation of the Chile 2010 tsunami with GeoClaw. In this
simulation, we used a Level 1 grid with 15×15 cells and refinement factors
of 2×2 and 8×8 for the second and third levels, respectively. Note that the
internal edges of the third level grids are omitted for clarity.

Fig. 4. Cross-cut of the “bowl-radial” scenario at t = 0. The green line
depicts the bowl-shaped bathymetry and the cross and plus signs show the
elevation of the first and second layers of water, respectively. Note that the cell
concentration is much higher in the region close to the hump due to AMR.

For the performance results presented in the following we
used three levels of AMR: a Level 1 grid composed of
100×100 cells and refinement factors of 6×6 and 8×8 for
Levels 2 and 3 respectively. This gives a cell resolution of
1
80 degrees (roughly 1.4km) on the finest level. Our results
consider a simulation of the first six hours after the earthquake
that generated the tsunami. In each simulation, roughly 14.1
billion cell updates were computed.

2) Parabolic bowl-shaped ocean : For the experiments with
the multi-layer SWEs, we used an artificial 2D scenario where
waves generated by a circular hump of water propagate over
a parabolic bowl-shaped bathymetry. Consider Fig. 4, where
we show a vertical section of this scenario to illustrate its
initial conditions. In these simulations we also used three
levels of AMR, and approximately 4.1 billion cell updates
were computed.

C. Solver performance

Since our goal is to evaluate the effectiveness of vector-
ization, initially we consider only the performance of each
solver individually; the overall simulation performance will
be addressed later. Thus, in the following results we used
the execution times spent by each solver to compute their
performance – given as Riemann problems solved per second.

In Fig. 5 we present the performance of the normal and
transverse Riemann solvers used in our single- and multi-layer

TABLE II
PERFORMANCE OF THE VECTORIZED SOLVERS.

Equations Machine Solver Speedup GFlop/s

Single-layer
Haswells Normal 2.1× 66.6

Transverse 1.7× 53.4

KNL Normal 6.5× 150.7
Transverse 5.2× 121.0

Multi-layer
Haswells Normal 1.4× 33.9

Transverse 1.3× 36.4

KNL Normal 2.4× 31.2
Transverse 2.8× 46.4

implementations. The benefits from vectorization are clear,
especially on the KNL (as expected), where speedups ranging
from 2.3× to 6.5× were achieved. Although the Haswells also
experience considerable improvements (1.3× to 2.1×), now
they are outperformed by the KNL in three of the four solvers.

The speedups obtained are listed in Table II, where we
also list estimates of the floating-point operations per second
rate (GFlop/s) for each solver and each machine, obtained
after measuring the total number of operations performed by
the solvers in our simulations with the PAPI interface [17].
Comparing these values with the maximum performance mea-
sured in each machine (see Table I), we observe that the
single-layer solvers achieve roughly 35–44% of the attainable
performance on the Haswells and 17–22% on the KNL. Since
the solvers are much more complex than the benchmark
used (including if-then-else branches, division and square-root
operations, etc.), these numbers indicate good utilization of the
computational resources.

A similar analysis can be made for the multi-layer solvers,
which achieve 22–24% and 4–7% of the attainable perfor-
mance on the Haswells and the KNL, respectively. It is evident
that these solvers benefit less from vectorization than the
single-layer ones and perform considerably slower. This can
be attributed to the even higher complexity of the multi-layer
solvers (in comparison with the single-layer ones), where large
if-then-else branches are necessary to deal with the four times
higher number of dry/wet combinations (e.g., two-layer prob-
lems with one completely dry layer are actually handled by
single-layer solvers). Because such branches can diminish the
benefits from vectorization substantially, the smaller speedups
and worse performance obtained are not surprising. Also,
these results indicate that the vectorized multi-layer solvers
might be improved by minimizing the number and size of the
branches in their code. However, it is not clear whether such
modifications are possible and investigating this is left as a
suggestion for future work.

D. Simulation performance

Now, we consider the influence of vectorization to the
simulation as a whole. In Fig. 6 we plot the execution
(wall) times taken for the entire simulations using the serial
and the vectorized solvers. We divide the execution time
into four components: “Normal solver”, “Transverse solver”,
“Other numerical routines” and “Grid management”. The first
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Fig. 5. Performance of the single- and multi-layer Riemann solvers, before and after applying vectorization.
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Fig. 6. Wall time split into components for the entire simulations, before and after vectorization of the Riemann solvers.

two correspond to the Riemann solvers discussed previously.
“Other numerical routines” includes all execution time neces-
sary to update the solution values, except for the two Riemann
solvers. These routines are basically composed of the steps
that precede and succeed the Riemann solvers. Initially, they
are responsible for fetching the cell data and reorganizing
them as one-dimensional slices to be used as input for the
solvers. Afterwards, they apply second-order corrections and
limiters to the Riemann solutions and use them to update
the cell quantities. Lastly, “Grid management”, comprises the

operations necessary for AMR, such as refining/coarsening
cells, merging contiguous patches, etc.

The overall speedups are also much higher on the KNL
(2.3× and 1.8× for the single- and multi-layer equations,
respectively) than on the Haswells (1.6× and 1.2×). However,
the execution times for the vectorized codes are roughly the
same on both architectures, especially for the single-layer
equations. This happens despite the fact that the vectorized
single-layer solvers perform considerably faster on the KNL.
This is due to the other two components, which are executed



much faster on the Haswells than on the KNL. Particularly, the
“Other numerical routines” component now consumes most
of the execution time on the KNL. As described above, this
component is the one responsible for fetching the grid data
from the main memory. Compared to the Riemann solvers, the
number of floating-point operations performed in this step is
much smaller. This suggests that the simulation code has now
become memory-bound, as often happens after vectorizing the
most compute-intensive routines of an application.

It should be noted, however, that the execution times for
this component did not increase on the vectorized versions,
despite the overhead introduced by rearranging the arrays
from AoS to SoA during every time step (as discussed in
Section V-D). In fact, there is a small time reduction due to
the auto-vectorization of some instructions in this component
(made possible by the new data layout). This clearly shows that
the benefits of vectorization easily outweigh this overhead, es-
pecially when also considering the performance improvements
of the Riemann solvers. Nevertheless, it is still expected that
modifying the data layout for the entire application might be
beneficial for its performance.

Clearly, the “Grid management” component is also respon-
sible for a considerable fraction of the execution time on the
KNL. This happens mainly because this component does not
scale well on hundreds of threads, as is necessary for high
performance with the KNL. As such, future efforts on opti-
mizing these applications for the KNL (or MIC architectures
in general) should consider ways to improve scalability and
parallel efficiency for this component.

VII. CONCLUSIONS

In this paper, we proposed and evaluated vectorized imple-
mentations of normal and transverse Riemann solvers for the
single- and multi-layer shallow water equations. Compared to
previous related work, our approach is much simpler and more
portable, as it uses auto-vectorization guided by an OpenMP
compiler directive that proved itself able to successfully vec-
torize highly complex loops.

We experienced substantial speedups on the solver routines,
especially on the modern KNL processor, which provides a set
of 512-bit SIMD instructions. As expected, smaller but still
considerable improvements were also reported for the Haswell
architecture, able to perform 256-bit instructions. However,
although the solvers perform faster on the KNL, the overall
execution time is still comparable on both machines.

A component analysis of the execution times showed that
the benefits of vectorization clearly compensate for the over-
head introduced to make the simulation data structures suitable
for SIMD instructions. It also revealed that, while the compute-
intensive Riemann solvers used to be the most time-consuming
routines, now most of the time is spent on other more memory-
intensive components of the simulation code. These results
suggest that future optimizations attempts of GeoClaw should
focus on these components, instead of the Riemann solvers
that have already been addressed in our work.
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