Technische Universitiat Miinchen
Fakultit fiir Elektrotechnik und Informationstechnik

Lehrstuhl fiir Kommunikationsnetze

Towards Data-driven Dependability Assurance for Softwarized

Industrial Networks

Petra Vizarreta Paz, M.Sc.

Vollstandiger Abdruck der von der Fakultét fiir Elektrotechnik und Informationstechnik der Technischen
Universitdt Miinchen zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs (Dr.-Ing.)

genehmigten Dissertation.

Vorsitzende: Prof. Dr.-Ing. Antonia Wachter-Zeh
Priifer der Dissertation: 1. Priv.-Doz. Dr.-Ing. habil. Carmen Mas Machuca
2. Prof. Kishor S. Trivedi

Die Dissertation wurde am 18.06.2019 bei der Technischen Universitit Miinchen eingereicht und durch
die Fakultit fiir Elektrotechnik und Informationstechnik am 09.09.2019 angenommen.

Towards Data-driven Dependability Assurance for Softwarized

Industrial Networks

Petra Vizarreta Paz, M.Sc.

09.09.2019

iii

Abstract

The recent trend of Industry 4.0 promotes the concepts of "industrial internet and digital factory",
requiring the enhancement of legacy industrial networks, which currently rely on closed and propri-
etary protocol stacks to ensure industrial grade of service. Softwarized network architectures, i.e.,
Software Defined Networking (SDN) and Network Function Virtualization (NFV), can aid this transi-
tion by providing a fine-grained network traffic control and high degree of programmability, with open
standards and protocols. The feasibility of achieving the industrial grade of service with SDN/NFV-
based networks has already been demonstrated in the test environment. However, the dependability,
which is a key requirement for the commercial adoption of softwarized networks in the mission critical
applications, has been widely overlooked in state-of-the-art literature. The work presented in this thesis
aims to close this gap, by providing contributions in the following four areas.

First, the analysis of the technical and economical incentives for softwarization of industrial
communication networks was conducted and evaluated, in a wind park case study. The baseline of
the case study was SDN/NFV-based industrial network solution tested in the operational wind park
within the VirtuWind project. SDN and NFV were introduced to facilitate the tighter integration of
wind parks into future Smart Grids. The capital and operational expenditures have been modelled in
order to quantitatively evaluate the benefits of SDN and NFV. The case study has demonstrated that
significant savings can be achieved through network softwarization, making it a promising solution to
facilitate its seamless integration into the Smart Grids and further reduce the cost of wind energy.

Second, the framework for dependability assessment and forecasting based on Software Reliability
Growth Models (SRGM) was developed. The framework provides guidelines for network operators to
decide when a controller software is mature enough to be deployed in operational environment, based
on the reliability requirements of network applications. Consequently, the operators can quantify the
marginal benefits of the prolonged testing phase on the software quality. The accuracy of software
reliability prediction in the early phase of the software lifecycle was improved by extrapolating the
behaviour of previous controller software releases. Novel software maturity metric has been proposed,
that can help operators discriminate between the competing SDN controller designs. The framework
was validated in the case study on the two largest open source SDN controller platforms, Open
Network Operating Systems (ONOS) and OpenDaylight (ODL), whose code and bug repositories are
publicly available. Such SDN controllers are realized as distributed platforms, for scalability and high-
availability reasons. Hence, the third contribution consists in analysis and modelling of the defects in
such distributed control plane architectures.

The proposed framework for dependability assessment for distributed SDN controller implementa-
tions was based on Stochastic Reward Nets (SRN). The framework provides a platform for characteri-

\%

zation of failure dynamics and user-perceived service availability in distributed SDN implementations.
The preliminary analysis of the nature of software defects in ONOS and ODL bug repositories showed
that the bugs in distributed implementations contribute to a significant number of the recent controller
outages, which challenges the efficiency of redundancy as the primary fault tolerance mechanism. The
taxonomy of software defects was provided, localizing dependability bottlenecks and contributions of
each defect category. The modelling abstractions of the imperfect SDN control plane and its interaction
with the service plane were provided in the formalism of SRN, which capture the relationship between
the system state and dependability metrics of interest.

Fourth, a particular class of defects in distributed SDN control plane implementation, namely
software ageing, was analyzed. Software ageing refers to the gradual performance degradation and
resource leaks, which manifest only after the long hours of the operation. The effects of software
ageing are typically mitigated by software rejuvenation, i.e., planned restarts, cleaning the internal
system state before the performance or available resources fall below critical threshold. A framework
for management of ageing in softwarized networks, has been developed and validated in the case study
on open source SDN controllers. The results showed that software ageing is a systematic problem that
cannot be neglected, since it stems not only from bugs, but also design trade-off in distributed network

operating systems.

The dependability assurance frameworks proposed in this dissertation are the bases towards the
robust, data-driven, quality assurance for softwarized industrial networks.

Kurzfassung

Der jiingste Trend von Industrie 4.0 fordert neue Konzepte zu industriellem Internet und digita-
ler Fabrikiind zielt dabei insbesondere auf die Verbesserung der Servicequalitiit in Industrienetzen
(Industrial Grade of Service) ab. Derzeit beruhen Industrienetze noch auf geschlossenen und pro-
prietidren Protokollen. Softwarebasierte Netzarchitekturen, Software Defined Networking (SDN) und
Network Function Virtualization (NFV), konnen diesen Prozess unterstiitzen, indem sie eine fein ab-
gestimmte Netzverkehrskontrolle und ein hohes Mafl an Programmierbarkeit mit offenen Standards
und Protokollen bereitstellen. Die Machbarkeit der Erreichung des Industrial Grade of Service mit
SDN/NFV-basierten Netzen wurde bereits in einer Testumgebung demonstriert. Der Zuverlissigkeit,
die eine wichtige Voraussetzung fiir die kommerzielle Einfilhrung von softwarebasierten Netzen in
unternehmenskritischen Anwendungen ist, wurde jedoch bisher zu wenig Aufmerksamkeit geschenkt.
Diese Arbeit soll hierzu Beitrige liefern.

Zuerst wurden in einer Windpark-Fallstudie die technischen und wirtschaftlichen Anreize fiir soft-
warebasierte industrielle Kommunikationsnetze analysiert und ausgewertet. Der Fallstudie lag ein auf
SDN/NFV basierendes industrielles Kommunikationsnetz zugrunde, das im Rahmen des von der EU
geforderten Projektes ,,.VirtuWind* in einem Windpark getestet wurde. SDN und NFV wurden ein-
gefiihrt, um die engere Integration von Windparks in zukiinftige Smart Grids zu ermdglichen. Die
Kapital- und Betriebsausgaben wurden modelliert, um die Vorteile von SDN und NFV quantitativ
zu bewerten. Die Fallstudie hat gezeigt, dass durch softwarebasierte Kommunikationsnetze erhebli-
che Einsparungen erzielt werden konnen. Dies ist ein vielversprechender Ansatz, um eine nahtlose
Integration in Smart Grids zu erleichtern und damit die Kosten fiir Windenergie weiter zu senken.

Weiterhin wurde das Framework fiir die Bewertung und Prognose der Zuverléssigkeit auf der
Grundlage von Software Reliability Growth Models (SRGM) entwickelt. Das Framework enthilt
Richtlinien, anhand derer Netzebetreiber entscheiden konnen, wann eine Controller-Software ausge-
reift genug ist, um in einer Betriebsumgebung eingesetzt zu werden. Zuverlédssigkeitsanforderungen
von Netzeanwendungen bilden hierzu die Entscheidungsbasis. Damit konnen die Betreiber den Mehr-
wert ldngerer Testphasen fiir die Softwarequalitit quantifizieren. Die Genauigkeit der Vorhersage
der Softwarezuverléssigkeit in der frilhen Phase des Software-Lebenszyklus‘ wurde durch Extra-
polation des Verhaltens friitherer Controller-Software-Releases verbessert. Es wurde eine neuartige
Software-Reifegrad-Metrik vorgeschlagen, mit deren Hilfe Betreiber zwischen den konkurrierenden
SDN-Controller-Designs unterscheiden konnen. Das Framework wurde in der Fallstudie anhand der
beiden groBiten Open-Source-SDN-Controller-Plattformen, Open Network Operating System (ONOS)
und OpenDaylight (ODL), validiert, deren Code- und Bug-Repositories offentlich verfiigbar sind.
SDN-Controller werden aus Griinden der Skalierbarkeit und Hochverfiigbarkeit als verteilte Plattfor-

vii

men realisiert. Daher befasst sich ein weiterer Beitrag mit der Analyse und der Modellierung der
Fehlerquellen in verteilten Steuerebenenarchitekturen.

Das vorgeschlagene Framework fiir die Zuverladssigkeitsbewertung fiir verteilte SDN-Controller-
Implementierungen basiert auf Stochastic Reward Nets (SRN). Es bietet eine Plattform zur Charakteri-
sierung der Fehlerdynamik und der vom Benutzer wahrgenommenen Dienstverfiigbarkeit in verteilten
SDN-Implementierungen. Eine vorlidufige Analyse der Art von Softwarefehlern in ONOS- und ODL-
Bug-Repositories ergab, dass Fehler in verteilten Implementierungen zu einer erheblichen Anzahl von
Controller-Ausfillen in den letzten Jahren beigetragen haben. Damit wird die Effizienz der Redundanz
als primirer Fehlertoleranzmechanismus in Frage gestellt. Eine Taxonomie von Softwarefehlern wurde
erstellt, wodurch Zuverlissigkeitsengpédsse und Anteile jeder Fehlerkategorie lokalisiert werden konn-
ten. Die Modellierungsabstraktionen der unvollstindigen SDN-Steuerebene und ihre Interaktion mit
der Serviceebene wurden im Formalismus von SRN bereitgestellt, der die Beziehung zwischen dem
Systemstatus und den interessierenden Zuverlidssigkeitsmetriken erfasst.

Abschlieend wurde das Altern von Software als eine bestimmte Klasse von Fehlern bei der
Implementierung einer verteilten SDN-Steuerebene analysiert. Software-Alterung bezieht sich auf den
allméhlichen Leistungsabfall und Ressourcenlecks, die sich erst nach vielen Betriebsstunden bemerkbar
machen. Die Auswirkungen der Softwarealterung werden in der Regel durch Softwareverjiingung, d.h.
durch geplante Neustarts, verringert. Dabei wird der interne Systemstatus bereinigt, bevor die Leistung
oder die verfiigbaren Ressourcen unter den kritischen Schwellenwert fallen. In der Fallstudie zu Open-
Source-SDN-Controllern wurde ein als ARES bezeichnetes Framework fiir das Alterungsmanagement
in softwarebasierten Netzen entwickelt und validiert. Die Ergebnisse zeigten, dass das Altern von
Software ein systematisches Problem ist, das nicht vernachlissigt werden kann, da es nicht nur auf
Fehlern beruht, sondern auch durch einen Kompromiss im Design bei verteilten Netzbetriebssystemen
verursacht sein kann.

Die in dieser Dissertation vorgeschlagenen Rahmenbedingungen fiir die Zuverlissigkeitssicherung
bilden die Grundlage fiir eine solide Qualitétssicherung fiir softwarebasierte industrielle Netze

Contents

Acronyms

1 Introduction

2

3

1.1 Research Challenges
1.2 Main Contributions L e
1.3 ThesisOutline e
Background
2.1 Softwarized Network Architectures
2.1.1 Software Defined Networking (SDN)
2.1.2 Network Function Virtualization (NFV)
2.1.3 TheRoleof SDNinNFV
2.2 Open Source Network Orchestration Platforms
2.2.1 OpenDaylight (ODL) o s
2.2.2 Open Network Operating System (ONOS)
2.2.3 Comparison of ODLand ONOS
2.3 Dependability Assurance in Softwarized Networks
2.3.1 Related Work on Dependability of Softwarized Networks
2.3.2 Data-driven Software Dependability Assessment and Assurance
Incentives for Softwarization of Industrial Networks

3.1
3.2

33

34

Introduction
Legacy Industrial Networks: A Wind Park Case Study
3.2.1 Wind Turbine Generator (WTG)
3.2.2 Supervisory Control and Data Acquisition (SCADA)
3.2.3 Wind Park Communication Network
Softwarization of Industrial Networks
3.3.1 SDN: Replacing Industrial Ethernet with Programmable OpenFlow Switches
3.3.2 NFV: Virtualization of Security Network Functions
3.3.3 Automated Network Orchestration and Management
3.3.4 Industrial Network Prototype Deployed in Operational Wind Park
Incentives for Softwarization of Industrial Networks
34.1 CostFactors. e

O O N =

11
11
11
13
14
15
15
17
18
19
19
22

ii

Contents

342 CaseStudy
3.5 ConcludingRemarks
351 Summary e e e e
35.2 Discussion e

Assessing the Software Maturity with Reliability Growth Models

4.1 Introduction L
4.1.1 Motivation, Problem Scope and Research Challenges
4.1.2 Methodology: Software Reliability Growth Models (SRGMs)
4.1.3 Key Contributions
42 Related Work
4.2.1 Stochastic Models for Software Reliability in SDN
4.2.2 Reliability Modelling, Evaluation and Forecasting with SRGM
4.3 Software Reliability Growth Models
4.3.1 BugDetection ProcessasNHPP
4.3.2 Bug Resolution Process as Bi-variate NHPP
4.3.3 Fitting of the model parameters
4.4 Data Collection and Preprocessing
441 ONOSDataset it
442 ODLDatasett
4.5 BestModel Selection L L
4.5.1 BugDetection Process L oL
4.5.2 BugResolution Process,
4.6 Software Maturity Assessment e e
4.6.1 Optimal Software Release and Software Adoption Time
4.6.2 Early Prediction of Software Reliability
4.6.3 Software Maturity Metrics: Comparison of ONOS and ODL
47 Concluding Remarks
4771 Summary e e e e e e e e e
4772 Discussion e

Dependability Assessment Framework for Distributed SDN Implementations

5.1 Introduction L
5.1.1 Motivation, Problem Scope and Research Challenges
5.1.2 Methodology: Data-driven Stochastic Reward Nets (SRN)
5.1.3 Key Contributions L oL
5.2 Related Work e
5.2.1 High-availability in Distributed SDN Implementations
5.2.2 Model-based Studies on SDN Control Plane Dependability
5.3 Overview of Distributed SDN Implementations with ONOS and ODL.
5.3.1 A Primer on Distributed Control Planein SDN
5.3.2 ONOS Implementation
5.3.3 ODL Implementation

Contents iii
5.4 Localizing Dependability Bottlenecks in Distributed SDN Implementations 76
5.4.1 BugRepository 76

5.4.2 Defects in the Implementation of Distributed Protocols (DP) 77

5.4.3 Scalability and Performance (SP) Issues 78

5.4.4 High Availability (HA) Issues 80

5.4.5 Operational (OP)Issues 81

5.4.6 Prevalent Failure Modes 81

5.5 Modelling Abstractions for Imperfect Distributed SDN Implementations 82
5.5.1 Modelling Abstraction for Imperfect SDN Cluster 84

5.5.2 Reference Stand-alone Model 85

5.5.3 Modelling Abstraction for Control Plane Services 85

5.5.4 Preventive Maintenance Policies 85

5.5.5 Dependability Metrics of Interest 86

5.6 Characterization of SSA, Failure Dynamics and User-Perceived Service Availability . 87
5.6.1 Control plane availability oL 87

5.6.2 Failure Dynamics 88

5.6.3 User-perceived Service Availability 89

5.6.4 Comparison of Different Deployment Scenarios 90

5.6.5 Optimization of the Preventive Maintenance Policies 90

5.7 Concluding Remarks 91
571 Summary L e e e 91

5.7.2 Discussion e 92
Software Ageing and Rejuvenation in SDN Orchestration Platforms 95
6.1 Introduction L e 95
6.1.1 Motivation, Problem Scope and Research Challenges 95

6.1.2 Methodology: ARES Framework 96
6.1.3 Key Contributions 96

6.2 Related Work e 97
6.2.1 Reliability and Performance Issues in SDN Controllers 97

6.2.2 Empirical Studies on Software Ageing 98

6.3 ARES: A Framework for Management of Software Ageing and Rejuvenation 100
6.3.1 Detection of Software Ageing 101

6.3.2 Profiling of Software Ageing 101

6.3.3 Prevention of Software Ageing oL 102

6.4 Ageing Detection: Mining ONOS and ODL Software Repositories 103
6.4.1 Methodology for Mining of the Software Repositories 104

6.4.2 Analysis of Ageing-related Defects 104

6.5 Measurement-based Characterization of Network Ageing 108
6.5.1 Design of Experiments (DoE) 108

6.5.2 Testbed Setup and Implementation 110

6.5.3 Characterization of Software Ageing 112

6.6 Design of Rejuvenation Policies 113

iv Contents

6.6.1 Proof-of-Concept Implementation 113

6.6.2 Discussion: Rejuvenation Policy Design Trade-oft 114

6.7 Concluding Remarks 115

6. 7.1 Summary e e e e e 115

6.7.2 Discussion 115

7 Conclusions and Outlook 117
7.1 Summary and Discussion Lo L 117

7.2 Outlook for the Future Work L o 119
Appendices 121
A Mapping of Software Defects 123
A.1 Defects in Distributed SDN Implementations 123
A.2 Defects Related to Software Ageing in SDN Controllers 126
Bibliography 127
List of Figures 143

List of Tables 147

Acronyms

AD-SAL API-Driven SAL 15

ANN Artificial Neural Networks 64, 119

CHO Continuous Hours of Operation 103, 104, 106

CPS Cyber Physical Systems 1

CTMC Continuous Time Markov Chain 21, 71, 82

DC Docker container 85, 90

DoE Design of Experiments 98, 108

FCAPS fault, configuration, accounting, performance, security 14
FT Fault Tree 21

FW firewall 3

GoF Goodness of Fit 48, 52

HSZ Heap Size 111, 112, 113

HUS Heap Usage 111, 112,113

IDS Intrusion Detection System 3

IED Intelligent Electronic Device 29, 30, 31

IETF Internet Engineering Task Force 118, 119

IoT Internet of Things 1, 40

ITS Intelligent Transportation Systems 1

KPI Key Performance Indicators 42, 68, 97, 109, 111, 112, 113
LOC Lines of Code 18, 19

LSE Least Square Estimation 45, 48, 100

vi Acronyms

M2M Machine-To-Machine 114

MANO Management and Orchestration 14, 19, 35
MD-SAL MD-Driven SAL 15, 16

MLE Maximum Likelihood Estimation 45, 100
MoM Method of Moments 45

MPTCP Multi Path TCP 93

MSE Mean Square Error 48, 51, 54

NBI North Bound Interface 13

NFV Network Function Virtualization 1, 2, 3, 5,6, 7, 8, 11, 13, 14, 15, 19, 20, 21, 28, 31, 33, 34, 35,
36, 39, 40, 42, 118

NFVI NFV Infrastructure 13, 14

NH-CTMC Non-Homogeneous Continuous Time Markov Chain 44
NHPP Non-Homogeneous Poisson Process 44, 45, 46, 47, 52, 53
NLP Natural Language Processing 64, 65, 101, 119

NTP Network Time Protocol 73

ODL OpenDaylight 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 33, 34, 35, 41, 43, 44, 48, 49, 50, 51, 52,
55,57, 61, 63, 64, 67, 68, 69, 70, 71, 72, 75, 76, 78, 80, 81, 92, 95, 96, 97, 98, 101, 102, 103,
105, 106, 107, 108, 109, 110, 112, 113, 114, 115, 117, 143, 144, 147

ONF Open Networking Foundation 33, 70, 118, 119

ONOS Open Networking Operating System 13, 15, 17, 18, 19, 20, 22, 23, 41, 43, 44, 48, 49, 50, 51,
52, 54, 55, 56, 57, 58, 61, 62, 63, 64, 67, 68, 69, 70, 72, 75, 76, 78, 80, 81, 92, 95, 96, 97, 98,
102, 103, 105, 106, 107, 108, 109, 110, 112, 113, 114, 115, 117, 143, 144, 147

OOM Out Of Memory 112

OPNFYV Open Platform for NFV 14

OSM Open Source MANO 14, 35

PCA Piecewise Constant Approximation 47
PNF Physical Network Function 14

QoS Quality of Service 1, 5, 6, 28, 30, 33, 34, 40

RAM Random Access Memory 111

Acronyms vii

RBD Reliability Block Diagram 21

RNN Recurrent Neural Networks 64

RPC Remote Procedure Call 75

RSS Resident Set Size 111, 113

RTU Remote Terminal Unit 29, 30, 31

SAL Service Abstraction Layers 15

SBI South Bound Interface 13, 18

SCADA Supervisory Control and Data Acquisition 29, 30, 31, 33, 36, 37

SDN Software-Defined Networking 1, 2, 3, 5,6, 7, 8,9, 11, 12, 13, 14, 15, 18, 20, 21, 23, 28, 31, 33,
34, 35, 36, 39, 40,41, 42,43, 58, 61, 67, 68, 69, 71, 92, 95, 117, 118, 119

SFC Service Function Chaining 14, 16, 21, 22, 34

SLA Service Level Agreement 40

SoA state-of-the-art literature 4, 5, 6, 7, 8, 19, 20, 21, 28, 96, 97, 101, 117
SRE Software Reliability Engineering 119

SRGM Software Reliability Growth Models 6, 9, 23, 24, 42, 43, 44, 45, 47, 49, 51, 54, 55, 57, 58,
61, 62,63, 64,118,119

SRN Stochastic Reward Nets 7, 9, 24, 68, 69, 71, 82, 84,91, 118
SSA Steady State Availability 86, 87

TS Theil’s statistics 48

TTE Time to (resource) Exhaustion 98, 99, 114, 115
TTF Time to Fail 48, 49, 51

TTR Time to Repair 48, 49, 51

VIM Virtual Infrastructure Management 14

VM virtual machine 85, 90

VNF Virtual Network Function 3, 6, 13, 14, 21, 35
VNFM VNF Manager 14

VSZ Virtual Memory Size 111

VTN Virtual Tenant Network 16, 34

viii Acronyms

WAN Wide Area Network 5, 40, 67
WSN Wireless Sensor Networks 40, 92, 119

WTG Wind Turbine Generator 29, 30, 31, 36, 37

Chapter 1

Introduction

Industrial networks have undergone significant changes in the past few decades. Started as closed
systems, whose network protocols were developed independently and tailored to suit individual use
cases, industrial networks have been evolving towards more interconnected systems. The need for
exchange of information, as well as efficient coordination of the diverse systems is growing!, as new
integrated industrial systems have emerged, e.g., Smart Grids, or Intelligent Transportation Systems
(ITS). The recent trends of Industry 4.02, including Cyber Physical Systems (CPS) and Internet of
Things (IoT), require high degree of automation of industrial systems, their tighter coupling and an
efficient coordination; more specifically:

Industry 4.0: current trend of automation and data exchange in manufacturing technologies, including
CPS, 10T, cloud computing and cognitive computing

CPS: mechanism controlled or monitored by computer-based algorithms, tightly integrated with the
internet and its users

IoT: network of physical devices embedded with electronics, software, sensors, actuators, and network
connectivity which enable these objects to collect and exchange data

Industrial communication networks rely on the proprietary protocol stacks, and are nowadays not
prepared for a seamless integration, due to the the lack of mechanisms for automated and secure
exchange of information. Existing industrial networks have high configuration and management
complexity, due to the diversity of network protocols and devices. Service provisioning in today’s
industrial networks is still a rather slow process and has to be performed by highly specialized network
administrators. Upgrades and updates of the network are error prone and time consuming as they
require many hours of testing. Mission critical systems, such as power plants, need to be taken out of
service during the maintenance operations, which leads to a loss of revenue.

The recent concepts of network softwarization, Software-Defined Networking (SDN) and Network
Function Virtualization (NFV), enable a fine grained per-flow Quality of Service (QoS) control and

high degree of programmability with open and extendible protocol stack, as illustrated in Fig. 1.1.

ISource: German Federal Ministry for Economic Affairs and Energy (BMWI): Industrie 4.0
2Source: Forbes "Why Everyone Must Get Ready For The 4th Industrial Revolution?"

https://www.bmwi.de/Redaktion/EN/Dossier/industrie-40.html
https://www.forbes.com/sites/bernardmarr/2016/04/05/why-everyone-must-get-ready-for-4th-industrial-revolutio

2 Chapter 1. Introduction

(%]
%5 /N o of
g9 L] ' L
g < [— i o
29 —
ES
z & NETWORK TRAFFIC BANDWIDTH
< MONITORING ENGINEERING ON DEMAND
“A \ 4 el

CLUSTER OF CONTROLLERS

Il
Il

o

SDN CONTROL
PLANE

FORWARDING
DEVICES

(a) With SDN, the distributed control plane logic of forwarding devices, i.e., switches and routers, is moved to a software
entity called SDN controller, effectively decoupling the control plane (e.g., path computation) from data plane functions (i.e.,
switching).

CHAINS

SERVICE FUNCTION

VIRTUAL NETWORK
FUNCTIONS

PHYSICAL
INFRASTRUCTURE

(b) In NFV, higher layer network functions, such as firewalls or intrusion detection systems, which are traditionally
implemented in a specialized hardware, are replaced with modular software components running on commodity hardware.
Service is composed by steering the traffic through these modular software functions.

Figure 1.1: Softwarized network architectures.

SDN: With SDN, the distributed control plane logic of forwarding devices, i.e., switches and routers,
is moved to a software entity called SDN controller, effectively decoupling the control plane
(e.g., path computation and traffic engineering) from data plane functions (i.e., switching), as
illustrated in Fig. 1.1a. The SDN controller acts as a broker between the network applications
and the physical network infrastructure, providing an integrated interface towards diverse set
of forwarding devices. This approach significantly simplifies the network management and
augments the network programmability with standardized and open interfaces.

NFV: In NFV, higher layer network functions, such as firewall (FW) or Intrusion Detection System
(IDS), which are traditionally implemented in a specialized hardware, are replaced with mod-
ular software components running on commodity hardware, as illustrated in Fig. 1.1b. These
modular software components are sharing the physical resources using standard virtualization
frameworks, are hence called Virtual Network Functions (VNFs). Such modular network func-
tions can be further chained to provide composite services, offering much greater flexibility and
lower cost of the service deployment for the network operators. Service orchestration, lifecycle
management of VNFs and control of the physical network infrastructure are provided by open
and standardized network interfaces3.

First field trials have shown the feasibility of SDN/NFV-based networks in operational industrial
environment [110], empirically proving the anticipated benefits in terms of lower cost and network
management automation, through a logically centralized control. The next challenge that industrial
network operators need to address is to guarantee the same or better level of performance in softwarized
networks, as in highly-optimized special-purpose legacy industrial networks. The contemporary
performance evaluations typically focus on the throughput and response times, while the dependability,
which is the key requirement for the wide spread adoption in industrial domains is overlooked or
oversimplified.

The dependability is an umbrella term for the trustworthiness of the computing system. Depend-
ability of the system is defined in three broad aspects, attributes, threats and means, as illustrated in
Fig. 1.2.

The formal definition of the dependability terms, used throughout this thesis, is adapted from IFIP
Working Group 10.4 Dependable Computing and Fault Tolerance*:

Attributes: describe the metrics to quantify system dependability, such as availability?, reliability®,
and maintenability?; Note that sometimes security attributes, such as confidentiality and integrity,
are also included in dependability attributes. Since safety and security are not addressed in the
scope of the thesis, their definition is omitted.

Threats: describe the factors that affect system dependability. Although the terms fault, error and
failure are often used interchangeably in everyday speech, they have different meaning in the

3ETSI Network Functions Virtualisation (NFV) https://www.etsi.org/technologies-clusters/technologies/nfv

4IFIP Working Group 10.4 Dependable Computing and Fault Tolerance https://www.dependability.org/wg 10.4/

3 Availabilit y: the probability that a repairable system or system element is operational at a given point in time under a given
set of environmental conditions.

SReliability: defined as the probability of a system or system element performing its intended function under stated conditions
without failure for a given period of time

TMaintenability: defined as the probability that a system or system element can be repaired in a defined environment within
a specified period of time

https://www.etsi.org/technologies-clusters/technologies/nfv
https://www.dependability.org/wg10.4/

4 Chapter 1. Introduction

context of dependable systems. Fault is a system defect, e.g., a software bug, the initial root cause
of the failure. Error is an abnormal behaviour, e.g., a system state that activates a bug. Without
appropriate and timely activation of fault tolerance mechanisms, an error, i.e., an incorrect
system behaviour, will be perceived by a user as a failure.

Means: describe the ways to improve system dependability, such as fault prevention, fault removal,
fault tolerance and fault forecasting.

Availability
ATTRIBUTES Reliability
Metrics to quantify Safety and security
dependability (not considered)
Maintenability
DEPENDABILITY THREATS Fault
Trustworthiness of Factors affecting Error
computing system dependability Failure
Fault prevention
Means Fault removal
Ways to improve
Sy Fault tolerance

Fault forecasting

Figure 1.2: Three dimensions of dependability (adapted from IFIP Working Group 10.4).

The key limitations of the related work on dependability of softwarized networks can be summarized
along these three dimensions:

Attributes: Generic dependability attributes, such as operational probability, are not sufficient to
precisely describe software behaviour. The effects of long term reliability growth due to the
software maturity and short-term reliability degradation due to resource leaks are not precisely
captured in generic reliability metric.

Threats: The existing work has focused on network hardware failures, such as random link and switch
failures, while software failures have been neglected or oversimplified so far. Given that many
of the major network platforms, ranging from packet I/O to management and orchestration, are
open sourced?, a detailed analysis of dependability threats can be carried out by mining valuable
data provided by public software repositories.

Means: The measures to improve dependability of softwarized networks in the state-of-the-art lit-
erature (SoA) have focused mainly on fault tolerance and structural protection, i.e., simple
redundancy. While simple component replication may be an efficient in case of independent
hardware failures, it is not as efficient in the case of software failures. This happens due to shared
software defects, state synchronization overhead between the replicas, as well as faulty failure
contention procedures, which might introduce new failure modes. Moreover, fault forecasting,
prevention and removal have been widely overlooked in the context of softwarized networks.

The limitations of the related work on dependability of softwarized networks are further discussed in
Sec. 2.3.1.

8The Linux Foundation: Open Source Networking

https://www.linuxfoundation.org/projects/networking/

1.1. Research Challenges 5

1.1 Research Challenges

Network softwarization is the necessary step in the evolution towards the next generation industrial
networks, and dependability is the key feature for the industrial applications. Hence, it is of the
utmost importance to develop the frameworks to accurately estimate the dependability of all of layers
in softwarized networks. The main goal of this thesis is to advance the SoA understanding of
dependability of softwarized networks for industrial applications.

RQ1: Feasibility analysis of softwarized industrial networks

The first objective of the thesis is to assess the techno-economic feasibility of softwarized
industrial networks, which has not been addressed so far in the SoA. While the benefits of
SDN/NFV-based networks, such network programmability and fine-grained QoS control are
widely addressed in the context of data centers and service providers, very few studies have
addressed the actual incentives for softwarization of industrial networks. The techno-economic
analysis aims to provide a qualitative and quantitative feasibility study on: i) technological
incentives: assessing whether an industrial grade of performance be achieved with SDN/NFV-
based network solutions, and ii) economic incentives: providing cost models to translate the
benefits of SDN/NFV-based networks to tangible savings for industrial network operators.

RQ2: Characterization of failure dynamics in softwarized networks

The reliability of the hardware follows a well-known bathtub curve. However, the software
failure dynamics, which has an entirely different pattern, is far less studied. In the long term, the
reliability of the software (release) grows with time, due to the removal of defects and software
maturity. In the short term, the reliability of the software (instance) degrades, due to the resource
leaks, as well as the natural increase in the memory consumption, which is an effect known as
software ageing. Providing high-fidelity stochastic models for the interplay between these two
factors is crucial for an accurate failure forecasting.

RQ3: The efficiency of fault tolerance in softwarized networks

A simple replication is not always efficient in case of software failures, as it can only provide the
environmental diversity counteracting some of the transient failures, while deterministic failures,
such as an error in the path computation module, are shared between the replicas [48]. Moreover,
many of the network functions are stateful, introducing an additional overhead of synchronization
of the replicas. For an example, in SDN, network programmability is enabled through a logically
centralized control plane. Production networks deploy multiple physically distributed SDN
controllers for scalability and reliability reasons, which in turn rely on distributed consensus
protocols to operate in logically centralized manner. Bugs in a distributed control plane system
can have disastrous effects on the data plane traffic, such as loosing the traffic by installing paths
containing blackholes or loops. Practical experience reports on large-scale SDN deployments®,
show that high-availability issues prevail, which is an effect that has been widely neglected in
the SoA.

9Based on the practical experience report [63] on B4 [86], Google’s internal Wide Area Network (WAN), carrying the traffic
between data center clusters, which is arguably the biggest live SDN network. Report showed that control plane software failures
prevail, maintaining globally consistent network state is a difficult, and the cascade of control-plane element failures is a common
culprit of critical customer impacting failures.

6 Chapter 1. Introduction

RQ4: User-perceived service availability in softwarized networks

In softwarized network architectures, such as SDN and NFV, the entire control plane intelligence
is concentrated in network orchestration platforms. However, control plane services are not
needed continuously, but just while the service requests are being processed. Depending on the
service, the control plane availability will be sampled at different times, i.e., at request arrival
time, and for a different duration, i.e., during request serving time. The relationship between
control plane failure dynamics, i.e., downtime distribution times, and service characteristics will
have a crucial impact on the user-perceived service availability, which is not described precisely
by general availability and reliability metrics.

1.2 Main Contributions

The key contributions of this dissertation are summarized in this section. The author’s relevant
publications have been indicated in the brackets, as well as the mapping to the research questions.

C1: Techno-economic analysis of softwarized industrial networks [8, 18, 19, 7] (RQ1)

The analysis of technological and economic incentives for softwarization of industrial networks
has been analysed in the case study of a wind park. An SDN/NFV-based industrial network
prototype deployed in an operational wind park within the European project VirtuWind [110],
has provided an insight into operational details of production industrial networks, enabling a
realistic assessment of feasibility of softwarized industrial networks. The analysis has shown that
the main benefits are achieved by providing the protocol openness and fine-grained QoS control
in three domains: i) replacing proprietary Industrial Ethernet switches with commodity SDN-
enabled forwarding devices'© and ii) replacing the proprietary monolithic security appliances,
with modular open-source VNFs [8], and iii) automated service provisioning and network
management open source network orchestration platforms. A case study of a typical wind park
showed that the reduction of the cost of the access switches in the wind turbine contributes most
to the CAPEX savings, the highest cost reduction is OPEX due to the shorter interruptions of
the power production [19, 7].

C2: Assessing the Software Maturity with Reliability Growth Models [5, 17] (RQ2a)
A framework to assess and forecast the maturity of software releases, based on the Software
Reliability Growth Models (SRGM), has been proposed. The framework addresses the effect of
reliability growth in network control software, i.e., SDN orchestration platforms, which has been
neglected in the SoA. SRGMs model the stochastic behaviour of bug manifestation and correction
processes, which facilitates analysis of the long term variations in controllers’ reliability. The
empirical data is gathered from open source bug repositories, and the best SRGM to describe its
stochastic behaviour is selected and parametrized. Having an accurate stochastic model enables
the evaluation and forecasting of software reliability metrics, such as residual bug content and
failure intensity, facilitating the network management decisions, such as optimal software release
and adoption time. The early predictive power of SRGMs is improved by leveraging the transfer

10The properties of deterministic Ethernet, i.e., hard delay guarantees, are achieved through logically centralized queue-level
flow management using the solution proposed by Guck and Van Bemten [65]

1.2. Main Contributions 7

learning, i.e., learning from the behaviour of similar controller software releases. Furthermore,
a novel software maturity metric is proposed, serving as a fair comparison criteria between
competing software releases, when the reliability is the main concern.

C3: Dependability Assessment Framework for Distributed SDN [14, 6] (R3,4)

A framework to assess and forecast the maturity of software releases, named DASON, based
on the data-driven Stochastic Reward Nets (SRN), is proposed. The framework includes the
analysis of prevalent failure modes in practical distributed SDN implementations, as well as
the modelling abstractions to assess the efficiency of redundancy in the context of softwarized
networks. The assumption about perfect failover between identical software replicas and fault-
free implementation of distributed protocols, often made in the SoA, is challenged. The first
part provides a comprehensive analysis based on open code and bug repositories of production
grade distributed SDN platforms. The analysis shows the variety of failure modes that have
been overlooked in the related work, e.g., resource leaks and failure contention. In the second
part, the modelling abstractions for the identified failure modes are provided. Dependability
models, in the formalism of SRN, are used to characterize the control plane failure dynamics,
as well as the impact on the user-perceived service availability. Furthermore, an application of
data-driven SRN for the network management is demonstrated, e.g., as a tool for the operators
and network architects to compare different deployment scenarios and optimize preventive
maintenance policies.

C4: Management of Software Ageing and Rejuvenation in SDN [4] (RQ2b)
A framework for management of software ageing and rejuvenation in SDN, named ARES, is
proposed. The framework addresses the problem of a short term reliability degradation due to
the effects of software ageing, i.e., gradual performance loss and cumulative effects of resource
leaks, which has been overlooked so far in the SoA on performance and dependability assessment
of SDN platforms. The ageing defects and their common manifestation patterns have been
identified based on the open bug repositories, and empirically proven in a measurement based
study. Modelling of a workload-ageing relationship enables network architects and operators to
predict which applications, i.e., service mix and load levels, will be affected by the effects of
software ageing and up to which degree. Preventive software rejuvenation policies for mitigation
of the effects of software ageing in an operational environment have been designed and discussed.

Other author’s publications are only briefly mentioned in the thesis (Chapter 2). The first studies
on interplay between software and network dependability in softwarized networks have been presented
in[2, 15] and in [13]. Different design strategies for performant SDN-based satellite network have been
proposed and benchmarked in [3, 10], while QoS-aware resource management and service composition
algorithms in NFV have been addressed in [1 1]. A magnitude and importance of software failures has
been presented in a short survey on disaster-resilient SDN [9]. The failure dynamics in network control
software is addressed in more detail in a book chapter "Resilient Communication Services Protecting
End-user Applications from Disaster-based Failures (RECODIS)" [1].

8 Chapter 1. Introduction

1.3 Thesis Outline

The overview of the dissertation is illustrated in Fig. 1.3, outlining the structure and mapping the main

contributions of the thesis to the corresponding chapters.

CH1:
OVERVIEW OF DEPENDABILITY ASSURANCE FRAMEWORK FOR SOFTWARIZED INDUSTRIAL NETWORKS
¥
CH2:
SOFTWARIZED NETWORK ARCHITECTURES, DEPENDABILITY ASSURANCE CHALLENGES AND METHODOLOGIES
Overview of softwarized network architectures [13, 15]
Overview of open source orchestration platforms for softwarized networks [16]
Overview of dependability assurance challenges and methodologies [9, 1
CH3:
TECHNO-ECONOMIC ANALYSIS OF SOFTWARIZED INDUSTRIAL NETWORKS
Incentives for a softwarization of industrial communication networks [18, 12, 7]
CH4: CHS: CHe:
ASSESSING SOFTWARE MATURITY DEPENDABILITY ASSURANCE FOR MANAGEMENT OF SOFTWARE
W. RELIABILITY GROWTH MODELS DisTRIBUTED SDN PLATFORMS AGEING AND REJUVENATION
[5, 17] [14, 6] (4]

Limitations of previous work: Limitations of previous work: Limitations of previous work:
Assuming static failure rates, Assuming perfect failover and fault-free Assuming static failure rates,
neglecting the effects of relibility growth implementation of distributed neglecting the effects of relibility degra-
due to software maturity protocols dation due to software ageing
Methodology: Methodology: Methodology:
Dependability assessment with Software Mining software repositories, data-driven Measurement-based study for characteri-
Reliability Growth Models (SRGM) Stochastic Reward Nets (SRN) zation of ageing profiles
Contributions: Contributions: Contributions:
i) Evaluation and forcasting of i) Localization of dependability bottle- i) Identifying ageing defects and mani-
software reliability metrics necks in distributed HA platforms festation patterns in SDN
ii) Improving predictive power of relia- ii) SRN modelling abstractions for im- ii) Measuring memory leak profiles in
bility growth models perfect clustering open source SDN platforms
iii) Proposal of software maturity met- iii) Failure dynamics and user-perceived iii) Design and implenmentation of opti-
rics for fine-grained benchmark service availability mal rejuvenation policies

CH7:

CoNcLUDING REMARKS AND FUTURE WORK

Figure 1.3: Outline of the thesis: main contributions are mapped to the corresponding chapters

Chapter 1 introduces the dissertation topic, presenting the motivation and defining the problem
scope and research challenges in dependability assurance for softwarized industrial networks, followed
by an overview of the key contributions.

Chapter 2 gives a background on softwarized network architectures, i.e., SDN and NFV, and
provides an overview of the design and implementation of today’s network orchestration platforms.
The dependability assurance challenges critical for industrial communication networks are identified,
followed by an overview of the SoA dependability assurance frameworks.

1.3. Thesis Outline 9

Chapter 3 presents a techno-economic study on softwarized industrial networks. Incentives for
softwarization of industrial networks, i.e., the practical technological benefits and the magnitude of
cost savings, are illustrated in a case study on the wind park communication networks.

Chapter 4 presents a framework for the assessment of software maturity with SRGM, providing
a tool to model and forecast long term variations of reliability at the level of software release. The
applications of the framework on the management of softwarized networks are illustrated in the case
study of two largest open source SDN orchestration platforms.

Chapter 5 addresses the efficiency of redundancy in the context of softwarized networks, by
studying the dependability of real-life distributed SDN control plane implementations. Dependability
bottlenecks in distributed SDN architectures are identified by mining open software repositories, and
modelled using SRN. The proposed models are then used to characterize the failure dynamics and

evaluate user-perceived service availability.

Chapter 6 presents a measurement-based study on the effects of software ageing, i.e., short term
degradation of software reliability due to the resource leaks, in SDN orchestration platforms. First, the
sources of software ageing and their manifestation patterns in SDN are analyzed. The control stress
tests are then designed and conducted to empirically prove that the software ageing effects have a non-
negligible impact on the network performance. Finally, the preventive software rejuvenation policies
are then introduced as an efficient way to mitigate the ageing effects in a production environment.

Chapter 7 concludes the dissertation with the summary and discussion of the results, providing a
broader overview of the expected impact of the findings presented in this thesis, as well as the remaining

open questions and outlook for future work.

Chapter 2

Background

This chapter presents an overview of softwarized network architectures (Sec. 2.1), production grade
orchestration platforms for softwarized networks focusing on their dependability issues (Sec. 2.2) and

dependability assurance in softwarized networks (Sec. 2.3).

2.1 Softwarized Network Architectures

The recent trend of network softwarization with SDN and NFV suggests a radical shift in the imple-
mentation traditional network intelligence, decoupling the network functionality from the hardware.
This section presents an overview of architectural concepts, functional split, as well as several open
source implementations of the network orchestration platforms.

2.1.1 Software Defined Networking (SDN)

With SDN, the control plane logic of forwarding devices, i.e., switches and routers, is extracted and
moved to an entity called SDN controller, which acts as a broker between the network applications and
physical network infrastructure. The functional split between data, control and application plane in
SDN is illustrated in Fig. 2.1.

2.1.1.1 Data Plane

In SDN, distributed control plane logic of forwarding devices, e.g., path computation, is implemented
in a logically centralized control plane, i.e., SDN controllers. The SDN forwarding devices are simple
programmable devices, whose forwarding tables are populated by an SDN controller. OpenFlow has
become de facto language to program the forwarding tables in SDN.

The forwarding tables consist of rules, actions and statistics. In OpenFlow 1.0, the rules represent
a 12-tuple matching field using packet header data, such as MAC address or TCP port, as illustrated
in Fig. 2.1. The matching fields can be populated with wildcards and ordered by priorities, facilitating
the realization of more complex traffic steering functions than legacy IP-destination based routing.
After the matching rule has been found, the actions describe the packet treatment, e.g., forwarding to
a particular set of ports or packet header modification. Statistics enable simple network sensing and
monitoring.

11

12 Chapter 2. Background

NETWORK ORCHESTRATION PLATFORMS

FUNCTIONAL SPLIT IN SDN /
w (SDN Controller + Embedded network applications

111 NETWORK APPLICATIONS E
« Load balancing . ODEN

Network virtualization [an I gn [an]—
Open Network Operating System

« Access control North Bound Interface
(NBI)

SDN CONTROLLERS

CONTROL PLANE E r/f %%
Network abstraction layer = 5//’[% O
) | o= o AOX

Flow path provisioning _Ryu Flood Ig ht

Network sensing

PROGRAMMARBLE FLOW TABLES

South Bound Interface [
(SBI) | RULE | ACTION I STATISTICS
| | DATAPLANE
. OpenFiow
« Fast packet switching
. 1. Forward packet to zero or more ports
Programmable flow tables 2. Encapsulateand forward to controller
3. Modify packet header fields
4. Drop packets.
T Ether VIAN 3 TCP/UDP
ol IO I IO o

Figure 2.1: Functional split in SDN: decoupling control and data plane of L2-L4 forwarding devices.

Providing such standardized and open interfaces towards the network components, allows the
network operator to avoid the vendor lock-in, and hence, to achieve lower prices of the network
components thanks to the increase of the market competitiveness. SDN forwarding devices are simple
programmable devices, implementing fast packet processing switching, and are cheaper than the

equivalent legacy devices.

2.1.1.2 Control Plane

In SDN, basic control plane tasks, such as network abstraction, flow path provisioning, and network

sensing are outsourced to an SDN controller.

Network abstraction. The SDN controller assumes the role of network operating system, providing
an integrated interface towards a diverse set of forwarding devices, offering an abstract view of
the network to the network applications, which can install policies without minding the low level

implementation details.

Flow path provisioning. The SDN controller computes the path on the abstracted network topology
graph. Most controller implementations support different kinds of unicast and multicast routing
algorithms (e.g., Dijkstra, k-shortest paths) and policies (e.g., least cost, delay constrained). Once the
abstract flow path is computed, it is compiled to a set of the flow rules and is programmed into the

forwarding tables of the devices.

Network sensing. Another task of the SDN control plane is network sensing and monitoring. The
statistics are collected per switch port level, as well as at the level of the individual forwarding rules.
The network sensory data can be used to monitor the health of the network, triggering self-healing
actions, e.g., flow re-routing upon a link failure, as well as an input for different traffic engineering

policies.

2.1. Softwarized Network Architectures 13

Since the inception of SDN, a multitude of the controllers have emerged. The basic functionalities
of an SDN controller are implemented in several open source controllers, e.g., Ryu, Nox, Floodlight.
The production grade platforms, such as OpenDaylight (ODL) and Open Networking Operating Sys-
tem (ONOS) also provide a multitude of embedded network applications, necessary for the control,
management and orchestration of the operational networks.

2.1.1.3 Application Plane

Network applications consume the data provided by SDN control plane, providing more complex ser-
vices such as load balancing, management of security policies (e.g., access control), traffic engineering
(e.g., bandwidth calendaring), as well as network virtualization and slicing.

Unlike OpenFlow at the South Bound Interface (SBI), there is a variety of North Bound Interface
(NBI) protocols and interfaces, e.g., REST, RESTCONF, NETCONF, AMPQ.

2.1.2 Network Function Virtualization (NFV)

In NFV, higher layer network functions (e.g., firewall, DPI) are realized as software modules running on
commodity hardware. These modular functions can be provisioned and chained on-demand, enabling
fast instantiation of new services, as well as the resource pooling. The functional split between packet
processing functions handling user traffic and infrastructure orchestration and management in NFV is
illustrated in Fig. 2.2.

FUNCTIONAL SPLIT IN NFV ’/ NFV MANO \
)) ’] Open Source e OPEN
I. | Packet processing functions handling user traffic
+ NFVI, VNFs, SFCs M A N 0 +
n L]

I1. Infrastructure orchestration and management

NFV Management and Orchestration (MANO) 3 N OPan St

_ openstack.

Open interfaces to business applications NFV Management
d Orchestrati
SERVICE FUNCTION (0SS/BSS) and Orchestration NFV ORCHESTRATOR

CHAINS (SFC) (MANO) Manages lifecycle of end-to-end

. - services
Chaining of VNFs providing a .
h h NFV + Resource orchestration across
composite service | 0SS/BSS I) €
s - Orchestrator multiple domains

Y

VIRTUAL NETWORK VNF MANAGER (VNFM)
FUNCTIONS (VNF) | EM1 | | EM 2 || EM3 | « Manages lifecycle of VNFs
Modylar software components VNF « Faultand performance
running on virtual infrastructure M monitoring
Element Managers (EM) | VNF 1 | | VNF 2 | | VNF 3 | anager(s) « Scaling of the resources
responsible for FCAPS
NFV INFRASTRUCTURE (NFVI1) \'\’A'E&é'é; ’(\‘VFIF::;STRUCTURE
Physical compute, storage and i i
net}\//v ork resoSrces 9 NEVI VIM(s) « Manages lifecycle of virtual
resources in an NFVI domain

(compute, network, storage)

Figure 2.2: Functional split in NFV: virtualization of L4-L7 packet processing functions.

2.1.2.1 Packet Processing Network Functions Handling User Traffic

The modular Virtual Network Functions (VNFs), handling the user traffic, require supporting NFV
Infrastructure (NFVI), i.e., physical compute, storage and networking resources, enable an efficient

14 Chapter 2. Background

resource pooling. The user traffic is steered through the ordered set of VINFs, called Service Function

Chaining (SFC), offering a flexible service provisioning.

2.1.2.2 Infrastructure Orchestration and Management

NEV Management and Orchestration (MANO) is responsible for the infrastructure orchestration and
management. Virtual Infrastructure Management (VIM) handles the lifecycle of virtual resources in
a single NFVI domain, while VNF Manager (VNFM) manages the lifecycle of the packet processing
functions, as well as fault, configuration, accounting, performance, security (FCAPS) management.
NFV orchestrator manages the lifecycle of end-to-end services, i.e., SFC, across multiple domains.

Open Source MANO (OSM) and Open Platform for NFV (OPNFV) are the open source reference
MANO implementations, while some basic functionalities can be realized with network orchestration
platforms (ODL) and cloud management software (OpenStack).

2.1.3 The Role of SDN in NFV

The two described softwarized architecture concepts, SDN and NFV, are often deployed together.
Different SDN/NFV-based architectures are possible, as described by ETSI NFV! and SDN IEEE?2.

For instance, a report on ETSI NFV architectural framework discusses several SDN controller
positions: i) at VIM, ii) as managed VINF, iii) as a part of NFVI, or OSS/BSS, or v) at a separate Physical
Network Function (PNF). The industrial controller prototype, deployed in operational wind park
VirtuWind [110, 162], discussed in Chapter 3, is SDN-centric. The interfaces between SDN and NFV
in SDN-centric architecture are illustrated in Fig. 2.3, adapted from ETSI NFV. The implementation
of these interfaces in VirtuWind controller is discussed in more detail in Sec. 3.3.3.

SDN APPLICATIONS

Application Control
interface
Controller-Controlle| Orchestration NFV MANO
interface interface (MANAGEMENT
SDN CONTROLLER SDN CONTROLLER EUNCTIONS)
Resource Control
interface
SDN RESOURCE
(NETWORK RESOURCE)

Figure 2.3: SDN-NFV interfaces proposed by ETSI NFV (adapted from report on "SDN in NFV Architectural
Framework" by ETSI NFV).

IReport on SDN Usage in NFV Architectural Framework (ETSI NFV)
2SDN in NFV Architectural Framework (SDN IEEE)

https://www.etsi.org/deliver/etsi_gs/NFV-EVE/001_099/005/01.01.01_60/gs_NFV-EVE005v010101p.pdf
https://sdn.ieee.org/newsletter/may-2016/sdn-in-nfv-architectural-framework

2.2. Open Source Network Orchestration Platforms 15

2.2 Open Source Network Orchestration Platforms

Next, the overview of the two largest open source network orchestration platforms, ODL and ONOS,
is presented. These two production grade network orchestration platforms implement not only the
functionalities of the SDN controllers, but additionally provide support to legacy network protocols
and hybrid devices, advanced security features, automated bootstrapping, as well as interworking with
NFEV orchestration platforms and cloud management systems. Their code internals and bug repository
are publicly available, providing a rich data set for an in-depth dependability assessment. The relevance
of ODL and ONOS platforms is even higher, given that they provide the code base of many commercial
controllers, such as Cisco, Brocade, Huawei and Ericsson3.

The overview of ODL architecture is adapted from authors work published in [16].

2.2.1 OpenDaylight (ODL)

The ODL controller platform is a collaborative "community-led and industry-supported framework",
foreseen from the beginning to be the Linux of the networks [119]. The majority of the ODL key
partners are vendors, and the initial focus was on the applications in data centers and the coexistence
with network virtualization technologies. The controller size has reached 3,920,556 lines of code, with
1,210 developers from industry and research contributing to its code base, mainly written in Java. Nine
releases, each one with several stability releases (SR), have been distributed between February 2013
and May 2019.

The complex code base is organized in 95 projects. Due to the space limitations, only the 55 most
relevant projects covering more than 98% of the bug content are presented. In order to grasp easily the
code organization, the projects are grouped into 5 categories. Descriptions of the projects are adapted
from the ODL documentation#, ranging from core controller project to advanced embedded controller
applications, as illustrated in Fig. 2.4.

2.2.1.1 Core Controller Functions

This category consists in core Controller project, and two related projects, topology processing
(topoproc) and L2-switch. As the controller project is the largest and the most important of ODL plat-
form, its sub-components are also presented. The role of Service Abstraction Layers (SAL) is
to decouple network application interfaces from south-bound protocol plug-ins, e.g., OpenFlow. The
initial solution was API-Driven SAL (AD-SAL), aiming to provide a collection of direct applica-
tion interface adaptations, which evolved to a more generic MD-Driven SAL (MD-SAL)S.MD-SAL is
providing the supporting functions for other projects. As part of the controller module, the MD-SAL
is connecting the protocol plug-ins to the Network Function Modules®, such as Flow Rule Manager
(FRM), Topology Manager, Switch Manager, etc. Controller clustering enables the load sharing
between a group of the controllers, as well as the fault tolerance. The config subsystem provides a
uniform way to express configuration and requirements on other services. NETCONF is an XML-based

3Cisco Open SDN Controller, Brocade Vyatta Controller, Ericsson Cloud SDN, Huawei Agile Controller
4OpenDaylight project list https://goo.gl/8SfCcY

50OpenDaylight MD-SAL https://200.gl/RfCXd9

Brocade Vyatta Controller https://goo.gl/itMBX7

https://goo.gl/hwoFco
https://goo.gl/YGE2xS
https://goo.gl/B8b36W
https://goo.gl/k1cUqf/
https://goo.gl/8SfCc9
https://goo.gl/RfCXd9
https://goo.gl/itMBX7

16 Chapter 2. Background

POLICY/INTENT (363) SUPPORTING (1615)
GBP (275) < NEMO (8) * NIC(35) » FaaS (33) * ALTO (12) : : Network representation
""""""""""""""""""""""""""""""""""""" © and modelling tools (828) -
GRRE C(OlglF;?OLLER EMBEDDED CONTROLLER APPLICATIONS (2015) p © MD-SAL (219)

* YANG Tools (609)

5 —p_|_(_l o —_— i M|sce|lane0us 164) || :
ontroller pri. (1485) | \ﬁrtuallzatlon support (1765) Monitoring and analytics (86) (T +. Deployment related (483) !

MD-SAL (462) |+ NetVirt (1148) « Cardinal (7) GENIUS (125) . (152)
AD-SAL (218) '+ DOVE (15) « Centinel (30) + EMAN (4) i ‘In“te“ ‘ration 27)
- Cclustering (319) 1. \/pN service (83) - TSDR (49) * Honeycomb (22) ! 9
« config (118) i i« OdlParent (105)
NETCONF(160) VTN (156)) « BIER(5) 't . Relkng (55
RESTCONF(146) | * SEC (207) SR [DEET (A * Atrium (3) % De n%)
otherctrl. (62) . * Neutron (146) + Controller Shield -« Armoury (5) 3 ocs (44)
e topoproc (85) 11+ NetlDE (10) B’Q‘Z:ppl'cm'o" Ysul (123)
L2 switch (86) : !] DLUX (121)
”” NEXT (2)

e e ot T ot Aty i Other supporting (181)

SDN native (1382) Interworklng with legacy networks (1333) Wireless, cable, loT (104)
- OpenFlow (882) + OpenFlowJava (64) « BGP/PCEP (571) = LACP (20) i« CapWAP (9)
OVSDB* (405) + OpFlex (1) ‘1 « NETCONF*(439) « LISP (165) + OCP(11)
OF-Config (8) * SNMP4SDN (22) '« SNMP (10) + SXP(128) '+ PCMMI/COPS(19)
k Ifisioisimimizisisisizizisimizimisismizisiisisisisn 10T-DM (65)
i Security related (33) * SNBI (27) * USC(6) i

,,

Figure 2.4: Contributions of different functional blocks and individual projects to the total bug content of the
ODL platform [16] (©2019 IEEE).

protocol used for configuration and monitoring devices in the network. ODL supports the NETCONF
protocol as a northbound server as well as a southbound plugin. RESTCONF allows access to MD-SAL
data store in the controller.

2.2.1.2 Embedded Controller Applications

The ODL platform provides a multitude of embedded applications related to the original virtualization
use case, as well as applications related to production environment requirements, such as monitoring,
analytics and security.

Virtualization support: The NetVirt is a network virtualization solution that includes the support
for software and hardware switches, L3VPN (BGPVPN), NAT and Floating IPs, IPv6, Security
Groups, MAC and IP learning, etc. The Distributed Overlay Virtual Ethernet (DOVE) and VPN
service projects have been deprecated and split into different projects, mainly NetVirt. The Virtual
Tenant Network (VTN) is an application that provides multi-tenant virtual network on an SDN controller.
The SFC provides ability to define and connect ("chain") an ordered set of network functions realizing
a composite service; while the Neutron enables the integration with OpenStack Neutron networking
service. The NetIDE provides the virtualization of SDN networks where users can bring their own
controllers.

Monitoring and analytics: The Cardinal enables monitoring of ODL and underlying network
as a service; while the Centinel provides a framework to collect, aggregate and sink streaming data,
leveraging the Time Series Data Repository (TSDR).

Security: The issues related to the security applications, such as Controller Shield, NAT application
and Unified Secure Channel (USCH), are not reported in the ODL bug repository.

2.2. Open Source Network Orchestration Platforms 17

Miscellaneous: The Generic Network Interface, Utilities and Services (GENIUS), allows the
interference-free co-existence with different applications, while the Energy Management (EMAN)
implements energy measurement and control features. Other representative embedded applications
are the Honeycomb Virtual Bridge Domain (VBD) vector packet processing, the Bit Indexed Explicit
Replication (BIER) architecture for the forwarding of multicast data packets, the Atrium open source
BGP Peering Router and the Armoury framework to request network function from workload managers.

2.2.1.3 Network Abstractions (Policy/Intent)

Network abstractions are provided to users and applications, which can specify high level policies
(intents) without minding the low level hardware-specific implementation details. The Group Based
Policy (GBP) projects allow users to express the network configuration in a declarative versus imperative
way. The Network Modelling (NEMO) project aims to simplify the usage of network by providing a new
intent northbound interface (NBI), enabling network users/applications to describe their demands for
network resources, services and logical operations in an intuitive way. The Network Intent Composition
(NIC) project enables the controller to manage and direct network services and network resources based
on describing the intent for network behaviours and network policies. The Fabric as a Service (FaasS)
project aims to create a common abstraction layer on top of a physical network, so northbound API
or services can be easier to be mapped onto the physical network as concrete device configuration.
The Application Layer Traffic Optimization (ALTO) is an IETF protocol RFC 7285, which provides
simplified network views and services, e.g., cost maps, to applications.

2.2.1.4 South Bound Interface (SBI) Plugins

ODL supports a variety of southbound protocols, or plugins, adapting to the different types of networks.
These plugins represent the drivers for the controller to communicate with the network devices, and
represent the largest part of the code base. The SBI plug-ins are classified into: i) native to SDN
OpenFlow, ii) interworking with legacy network protocols to ensure the support for hybrid networks,
iii) and domain specific, such as support for wireless access points, remote radio heads, packet cable
and IoT data manager, and iv) security related, such as Secure Network Bootstrapping Infrastructure
(SNBI) and Unified Secure Channel (USC).

2.2.1.5 Supporting functions

This category comprises the projects that are implicitly related to all previous categories, such as
network representation and modelling tools (MD-SAL and YANG tools); deployment related functions
including the standard Authentication, Authorization and Accounting (AAA), release management and
integration, as well as documentation; and Graphical User Interface (GUI) DLUX and NEXT. The
remaining 40 projects contribute to approximately to 2% of the bug content, and are grouped together
as other supporting functions.

2.2.2 Open Network Operating System (ONOS)

The focus of ONOS since its inception has been on providing scalability, high availability and carrier-
grade performance fulfilling the requirements of large operator networks [28]. The project is supported

18 Chapter 2. Background

by the key telecom and data center operators, as well as network equipment vendors, such as AT&T,
Google, Ericsson, Cisco, just to name the few. Overall, more than 300 developers from more than 60
organizations have contributed to its code base. The code has been written mostly in Java and contains
852,570 lines of code. New ONOS releases are distributed every quarter, which provides a steady
feature development through incremental upgrades of the code base.

The architecture of ONOS is illustrated in Fig. 2.57. ONOS architecture consists of functional
tiers®, which are aligned with the SDN layers:

* Distributed core: Since the initial scope of ONOS was developing a scalable and performant
controller for service providers, the distributed core has been a part of its design since the first
release. ONOS core offers a rich set of distributed primitives for representation of network
state, e.g., flow statistics, optimized for their specific access patterns. A support for distributed
operation in ODL started only in the later releases (see Sec. 5.3 for a comparison of the two
distributed implementations);

* Providers: The providers implement interfaces between protocol-agnostic core and protocol-
specific SBI API towards network elements. The protocol-aware providers are responsible
for interaction with the environment, implementing different SBI control and configuration
protocols, and collecting device specific sensory data;

* Applications: ONOS application ecosystem is smaller compared to the set of embedded ODL
applications, since the scope was initially much more narrow. The applications, such as SDN
IP/BGP, IP RAN support for packet/optical networks, have been developed for the needs of the
service providers. Recently, the two controllers are converging, and ONOS started to offer a
support for virtualization of data center networks and interworking with cloud management plat-
forms, such as OpenStack, with the SONA project. Arguably the largest ONOS application was
the Central Office Re-architected as a Datacenter (CORD), which has evolved into independent
open source project. Other notable applications are the Virtual Private LAN Service (VPLS) and
the Carrier Ethernet.

2.2.3 Comparison of ODL and ONOS

The comparison of ODL and ONOS platforms in terms of project maturity, development activity, size
(i.e., Lines of Code (LOC)), number of defects and fault density is presented in Table 2.1. The fault
density is expressed as the cumulative number of bugs per thousand lines of code. Note that fault
density can be expressed accounting only for the bugs reported against the particular software release.

The issues associated to both controllers gathered from the publicly available Jira tracking system,
which contain detailed bug reports from the live deployments in both lab and operational environments.
The number of detected bugs reported over time are shown in Fig. 2.6. It can be observed that, although
the ODL controller has 4.5 times higher bug content than ONOS, the relative bug content, i.e., the fault
density, is approximately the same for the two network orchestration platforms.

7Adapted from the tutorial presented at the "ONOS Developer Workshop"
8 Adapted from ONOS documentation: Architecture and Internals Guide - System Components https://wiki.onosproject.org/
display/ONOS/System+Components

https://wiki.onosproject.org/display/ONOS/System+Components
https://wiki.onosproject.org/display/ONOS/System+Components

2.3. Dependability Assurance in Softwarized Networks 19

NETWORK APPLICATIONS
SDN-IP, IP RAN, Packet-Optical Convergence, SONA, CORD, VPLS, Carrier Ethernet, etc.

STATE
MANAGEMENT

N

Synchronization
and persistance

DISTRIBUTED CORE
Device, Host, Link, Topology, Network,
Path, Flow, Intent, etc.

DISTRIBUTED CORE
Device, Host, Link, Topology, Network,
Path, Flow, Intent, etc.

PROVIDERS
Protocol specific libraries
Device, Host, Link, Flow

PROVIDERS
Protocol specific libraries
Device, Host, Link, Flow

NETWORK ELEMENTS NETWORK ELEMENTS

Figure 2.5: Tiers of functionality in ONOS architecture (adapted from "ONOS Developer Workshop").

Table 2.1: Comparison of ODL and ONOS (September 3, 2018).

Platform ODL | OoNOS |
Project start February 2013 | December 2014
Active release Fluorine (rel.9) Quail (rel.17)
Commits 98k 13k
LOC 3,920,556 852,570
Bugs 9,060 2,072
Fault density [1a-] 231 2.43

2.3 Dependability Assurance in Softwarized Networks

In this section, the SoA on dependability of softwarized networks is presented. The limitations of
the previous work are identified (Sec. 2.3.1), followed by an overview of data-driven approaches for
software dependability assessment and assurance (Sec. 2.3.2).

2.3.1 Related Work on Dependability of Softwarized Networks

In softwarized networks, the complex network control and management functions are implemented in
software, increasing the impact of the software dependability on network performance. The control and
management functions, i.e., SDN controller and NFV MANO, are particularly critical for the network
dependability, since the failure could disable the services depending of them, e.g., security policy
update or provisioning of the new flow paths. Arguably, the most important service is the monitoring
of the network infrastructure. E.g., in case of the failure of the SDN controller, both automatic and
manual reaction to the network data plane congestion or data plane failures will be disabled, since the
operator would not be able to detect and correct them in a timely manner. The characteristics of these
failure modes, e.g., triggering events, failure manifestation and failure recovery procedures, have to be
carefully studied in order to fully comprehend the impact on the network performance.

20 Chapter 2. Background

500

5 400 :
£ :
) :
g :
2 300 :
2 ey o £ Z - o Z o
g g, & = 4 g £E 2
2 S e = = S s 2 «Q
5 200 3 E g i = s B
2 s B =
— J
S :
100 :
&
0 Al n © [[=<]
= o - o -
o o o o o
o o o~ o (o
(a) ODL
120 - - - - — - - -
= 100 o : ' : : : :
=] H H H . H H H H H
g F : H : : : :
o 80 N : : T : : : :
3 HE 3 : E =+ I : : : :
2 ® i : 0 :; : ol : iz
@ > oM 8B 2 = pol :
s 60l EiaE F @SR s S EE E @
4 s B EE 8 B B! £ 55 E B
el = ® I = 12 ‘E— = 0 :‘S :
2 40 o : @ E) : B
8 2 1 R 3 : :
2 : 2 : :
< 20 -
0 g
0 © ™~ ©
Ik - - -
o (=} (=] (=}
(] o (9] o

(b) ONOS

Figure 2.6: The number of software defects related to distributed implementations reported over time for ODL
and ONOS. The dates of major releases for both distributed controller platforms are indicated in the figure.

Nevertheless, a disproportionate body of work on dependability of softwarized networks was
focusing on the hardware failures, in particular link failures, while software failures have been either
neglected or oversimplified.

An overview of the representative studies on dependability assurance in SDN and NFV is presented
in Table 2.2. The detailed discussion on the SoA is discussed in Chapters 4, 5, and 6. This section
summarizes the limitations on dependability assessment and assurance, emphasizing in particular the
assumptions made by the related work that are not met by the production grade controllers discussed

in the previous section.

Table 2.2: Overview of representative work on dependability assurance in softwarized networks.

Focus ‘ Representative studies ‘

Resilient network design | Design strategies for robust SDN control plane [72, , , , 15],

and optimization QoS-aware resource management problems in NFV [46, , 13]
Modelling SDN control plane availability [60, s , s 1,

Dependability modelling distributed consensus protocols in SDN (Raft, Paxos) [161, 1,
NFV-based virtualized core [61]

Distributed SDN architectures [28, , , , , 1,
operational issues in SDN controllers [68, 69,) —-161, 1,
performance and scalability assessment [29, 44, , ,]

Network software design
and evaluation

2.3. Dependability Assurance in Softwarized Networks 21

Resilient network design and optimization: The strategies proposed for provisioning of the re-
silience in SDN data plane, such as resilient routing or critical node detection, are not limited to SDN,

and hence, they are omitted from the overview, which focuses on the control plane.

In SDN, the inherently distributed control plane logic of forwarding devices, is extracted and
moved to SDN controller. The forwarding devices need a reliable connection to the controller(s), in
order for the network to work properly. The first work on the reliable control plane design focused on
providing the robust connection to one or more controller replicas, which are placed in the network
based on different criteria, e.g., minimizing control plane latency. Different variations of this problem,
known as resilient or robust control placement problem have been proposed. On another side, the
work on the design of reliable NFV networks focused mainly on the provisioning of resilient SFC,
which is a problem know as reliable function placement problem. The placement of virtual network
functions in NFV is very flexible thanks to the fact that software instances can be installed at any
general purpose hardware with enough available spare capacity. The function placement has a critical
impact on the performance guarantees that operators can provide to their customers, as well as on the
cost of the service provisioning. Different failure patterns have been modelled in both cases, from
single and double link and/or node failures, to disaster scenarios anticipating multiple geographically
correlated failures, such as epidemic failure propagation and centrality based attacks. However, the
synchronization overhead of SDN controller replicas and stateful VNFs were not considered.

QoS-aware network design and optimization problems in SDN and NFV based networks have been
recognized as important research challenges. The difficulty comes from the fact that they combine
several NP-hard problems, such as facility location problem, minimum-cost flow problem, generalized
assignment problem, knapsack, etc. Different approaches based on standard techniques for solving
such combinatorial optimization problems have been proposed, such as Integer Linear Programming
relaxation and rounding, greedy heuristic, meta-heuristic (e.g., Pareto Simulated Annealing, Genetic
Algorithms), game theoretic approaches, and more recently machine learning and neural networks. A
good overview and a summary of different approaches can be found in [73, 98, 9, , 122]. The main
drawback of the SoA approaches to QoS-aware design of SDN and NFV networks is that they either
ignore completely or offer a very limited support for service availability differentiation. A dedicated
protection can guarantee uninterrupted services in case of single link or node failures, but it does not
provide explicit guarantees for service availability or downtime distribution, necessary for the proper
operation of industrial control networks.

Dependability modelling in softwarized networks: First studies on the reliable network design and
optimization consider only control path failures and/or reduce the controller to a single failure mode.
More complex failure scenarios including both hardware and software failures, have used different
modelling formalisms, from combinatorial (non-state space) reliability models (e.g., Reliability Block
Diagrams (RBDs) and Fault Trees (FTs)), to state-space models (e.g., Continuous Time Markov Chains
(CTMCs) and Stochastic Reward Nets (SRN)).

An important limitation of the proposed models in SDN is the assumption about the perfect
failover between identical controller replicas. The preliminary bug classification presented in Fig. 2.4
shows that the clustering module, responsible for the synchronization of the SDN controller replicas is
defective. Moreover, the simple controller replication is ineffective, because of i) shared failures, e.g.,
semantic bug in path computation, ii) faulty error handling mechanisms, which may lead to a erroneous

22 Chapter 2. Background

failover and cause a cascade of controller failures and iii) failures specific to distributed control plane
implementations, such as a software bug in distributed consensus protocols. In system dependability,
these inefficiencies are modelled as a common mode failure (i), and a coverage factor (ii), while the
failures specific to distributed systems (iii) are typically neglected. Another important limitation of
the proposed models is the assumption about software failure rates, which are assumed to be static,
following a negative exponential distribution (Poisson assumption) or Weibull distribution. The bug
manifestation rate presented in Fig. 2.6 shows that this assumption does not reflect the stochastic
behaviour of real life controllers. Moreover, another limitation of the proposed models is that the
interaction with the service and control plane is not considered. Namely, the control plane services
are not needed all the time, but only at the times when the new service request arrives (e.g., new flow,
policy update, new SFC), for the duration of the request. Consequently, different services will perceive
different service availabilities, which must be accurately estimated in case of mission critical scenarios,
such as industrial networks.

Network software design and evaluation: The third class of the relevant related work on dependabil-
ity assessment and assurance in softwarized networks, addresses the implementation and operational
issues. One research direction focused on the design of efficient distributed SDN control plane archi-
tectures. However, most of the proposed distributed control plane designs remained just as research
prototypes, whereas the commercial ones, such as Google’s B4 controller, are closed for the research
community. ONOS and ODL are the two distributed open source controllers which have been widely

deployed in the operational SDN networks. Hence, the focus of this thesis is precisely on them.

The other research direction focused on performance benchmarks; in particular on the performance
and scalability assessment, uncovering some unexpected issues, which have not been detected in the
testing phase of the software. However, some identified issues, such as the effects of software
ageing, have been observed, but not thoroughly investigated. The goal of this thesis is to propose a
more systematic dependability assessment frameworks that can be applied for the network software
certification for the mission critical systems, such as industrial networks.

2.3.2 Data-driven Software Dependability Assessment and Assurance

This section presents an overview of the relevant studies on qualitative and quantitative analysis of
software dependability. While qualitative analysis is used to identify the prevalent failure modes and
localize vulnerable software components, the quantitative analysis leverages the empirical data, using
statistical inference techniques and stochastic reliability models, to evaluate and forecast the software
dependability attributes.

2.3.2.1 Qualitative Analysis

Qualitative analysis focuses on the nature of the historical failure reports. The documentation on
historical bugs and post-mortem reports from the operational environments gives insights into real-life
issues, helps identifying prevalent failure modes and localizing the most vulnerable system components.

Large empirical studies on Google [63] and Microsoft operational networks [149] reported that

software issues caused more than 30% of customer impacting incidents. Google study [63] further
debates that network control plane issues prevail, providing an in-depth analysis of the most critical

2.3. Dependability Assurance in Softwarized Networks 23

control plane defects. Similarly, the analysis of IP Backbone [111] and data center networks [56,

] provided valuable data to industry and researchers, exposing network vulnerabilities and sug-
gesting preventive measures. First insight into OpenStack bugs were presented in [49]. However, a
comprehensive study on network control software in SDN is still missing.

Analysis of the experience reports on similar systems also provides a valuable insight into poten-
tial vulnerabilities and reference failure patterns. Relevant empirical studies that inspired the work
addressed in this dissertation, analyze the nature of defects in popular open source software [103] and
cloud control systems [66], prevalence of resource leaks [53, 54], concurrency issues [107], efficiency
of redundancy [48] and testing [198], as well as data center components, both virtual and physical [30,

I

For instance, Yuan et al. [198] demonstrated how the simple testing of error handling code, can
significantly improve the reliability of distributed data-intensive systems, such as Cassandra and Redis.
Rahmani et al. [154] found the pattern of bug content evolution in popular open source software,
enabling an accurate forecasting of the software reliability, which is further explored in Chapter 4. The
efficiency of redundancy in distributed storage systems, discussed in [48], demonstrated that simple
component replication does not imply fault tolerance, triggering the study presented in Chapter 5.
Ageing related issues in Java-based applications and operating systems [37, 40] inspired the analysis
in Chapter 6.

Moreover, such qualitative empirical studies provide a valuable source of information to derive
the statistical distributions and parametrize the presented quantitative models. The data source are the
public software repositories, code versioning, tracking and documentation systems (e.g., Git, Gerrit,
JavaDoc), as well as the public issue trackers (e.g., Jira, Bugzilla). In the case of open source network
control software, such as ONOS [137] and ODL [104], the issue trackers contain 10k+ reports about the
incidents from test and production environments. These reports include valuable data for data-driven
dependability analysis, such as brief bug description, the triggering events and environment in which
the bugs manifest, ii) reporting and resolution time, the severity of the issues, indicating an impact
the issue had on the system, ranging from minor failures that do not have a significant impact on the
system performance to blocker issues.

2.3.2.2 Quantitative Analysis

Next, the data-driven models used for quantitative dependability assessment are presented. These
models are using statistical inference techniques and stochastic reliability models, to evaluate and
forecast the software dependability attributes, as illustrated in Fig. 2.7.

Software Reliability Growth Models

Software Reliability Growth Models (SRGM) describe the long term improvement in software
reliability due to increase of software maturity, through bug removal process. SRGM is a statistical
framework, which is often used to estimate the reliability of the software components in their operational
phase, based on their fault reports from the testing phase. During the testing and early operational
phase of the software lifecycle the faults are detected and removed, which eventually leads to reliability
growth (hence the name). A good overview of different classes of SRGMs, their inherent assumptions
and input data requirements, can be found in [108,]. The SRGMs can be used to predict the

24 Chapter 2. Background

SOFTWARE RELIABILITY ANALYTICAL MEASUREMENT
GROWTH MODELS MODELS BASED MODELS

l | |

- measuring performance and error handling
in operational software prototype

- stochastic models derived from code

- statistical framework for evaluation documentation (UML diagrams, flow charts)

and forecasting of software reliability

v residual bug content - state space models, e.g., Stochastic Reward
v expected failure rate Nets, model dependability KPIs by assigning
v interval software reliability rewards to states of interest ONOs-4212: ECMap growth -

Response time increase

@
=]

53
o

'S
o

Response time

| \“" ‘.‘1‘.’
Lt &‘“"Q”.Il |
y iy |‘il # HiHy ”"* 1

N
=]

Data
detected ~—— detected

ISS-ISS

Cumulative number of bugs
w
o

—
o

K # resolved —— resolved
£ X — Intentinstall
00 2000 4000 6000 8000 —_Intentwithdrawal
Time [h] Experiment time
(a) Chapter 4 [5] (b) Chapter 5 [6] (c) Chapter 6 [4]

Figure 2.7: The models for data-driven software dependability assessment and assurance used in this dissertation.

number of residual bug content, expected failure rates, and software reliability. Knowing the statistical
distributions of the software failure rates, management KPIs, such as optimal software release and
adoption time can be determined [78, 95, 99]. Dependability evaluation and forecasting with SRGMs
is further elaborated in Chapter 4.

Analytical models

Architecture based models, belonging to the class of analytical white-box models, are derived from
the system or the code behaviour specifications, such as flowcharts, UML or sequence diagrams, and are
typically specified in the formalism of Reliability Block Diagrams (RBD), Continuous Time Markov
Chains (CTMC) and Stochastic Reward Nets (SRN). In the domain of software reliability, three classes
of approaches exist: state based, path based and additive models. A good overview and relationship
between different architectural models is given by Goseva et al. [62]. Architecture based models model
the interactions between different software units, i.e., functions, classes, models and projects. These
models are useful in early phase of the software life cycle when the software code architecture can still
be modified. This modelling approach can be particularly useful in the case of open source software
where the interactions and APIs between different software projects and modules are publicly exposed.
SRNs modelling formalism is used in Chapter 5, to model the interaction between SDN controller
replicas in distributed implementations, as well as the interactions between control and service planes.

Measurement based approach

Measurement based models focus on empirical evaluation performance and dependability, as well
detecting anomalies in operational software. While these models are the most faithful to the real-
life system behaviour, they require an operational software prototype to be ready and available for

2.3. Dependability Assurance in Softwarized Networks 25

testing. Measurement based evaluation is also time intensive, many repetitions are required to obtain
statistically significant results.

The changes in software reliability due to the effects of software ageing, i.e. gradual degra-
dation of system performance due to the increased resource consumption (e.g. memory bloating
and fragmentation, unreleased thread locks), have often been proven and measured empirically. The
measurement-based approach is used in Chapter 6 to characterize workload-ageing relationship for
critical workload patterns.

Chapter 3

Incentives for Softwarization of Industrial
Networks: A Wind Park Case Study

3.1 Introduction

The analysis of technological and economic incentives for softwarization of industrial networks has
been analysed in the case study of a wind park. An SDN/NFV-based industrial network prototype
deployed in an operational wind park within European project, VirtuWind [110], has provided an
insight into operational details of production industrial networks, enabling a realistic assessment of
feasibility of softwarized industrial networks.

Wind energy is one of the most affordable and fastest growing sources of renewable energy, with
more than 500 GW of installed capacity worldwide in the past 20 years. Incentives from national
governments, as well as the ones proposed through the Renewable Energy Directive by European
Commission targeting at covering 20% of energy needs with renewables by 2020, further promote
the widespread adoption of green power plants. As the number of installed wind parks is rapidly
increasing, there is a need for their tighter coupling and the efficient coordination of energy production
schedules [187]. Smart Grids, which are considered as a promising solution for the integration of a
diverse set of energy production and distribution systems, require deep penetration of ICT technologies
in all of its subsystems. However, current wind parks are not yet prepared for a seamless integration
into the Smart Grids, mainly due to the lack of mechanisms for automated and secure exchange of
information [110].

Industrial communication networks, such as the one in wind parks, which in the past have been
developed as closed systems, rely on closed proprietary protocol stacks, that have been tailored and
optimized for their particular requirements. Different Industrial Ethernet protocols were developed to
accommodate the stringent industrial-grade requirements for latency, jitter and reliability, necessary to
provide the stable operation of power control networks. The lack of compatibility between different
Industrial Ethernet protocols leads to vendor lock-in, since wind park owners must deploy components
from the same manufacturer to ensure their interoperability. Furthermore, the existing wind park com-
munication networks suffer from high configuration and management complexity. Network upgrades
and updates are error prone and time consuming as they require customized scripting tools and many
hours of testing performed by highly specialized network engineers. Also, network maintenance and

27

28 Chapter 3. Incentives for Softwarization of Industrial Networks

failure reparation are costly and incur a loss of revenues due to reduction of power production, as
wind turbine generators need to be taken out of service during the maintenance operations. Moreover,
security breaches, such as Ukraine’s power plant hack in 2015, are not uncommon, despite the deploy-
ment of sophisticated network security appliances. The exposure to cyber-attacks is only expected to
increase, in the context of Smart Grids [81].

The 5G concepts of network softwarization, i.e., SDN and NFV, have shown to be a promising
solution to solve several practical issues regarding the protocol openness and the fine grained security
control, as well as the full automation of network configuration and management [110]. With SDN,
the distributed control plane logic of forwarding devices, i.e., switches and routers, is moved to a
software entity called SDN controller. The SDN controller provides an integrated interface towards the
forwarding devices, which significantly simplifies the network management and augments the network
programmability. Providing standardized and open interfaces towards the network components, helps
the network operators to avoid the vendor lock-in, and hence to obtain lower prices through the increase
of the market competitiveness. In NFV higher layer network devices, such as firewalls or intrusion
detection systems, which are traditionally implemented in a specialized hardware, are replaced with
modular software components deployed on commodity hardware. Such modular network functions
can be further chained to provide fine grained traffic control, offering much greater flexibility and
lower cost of the service deployment for wind park network owners and industrial network operators

in general.

First studies on software-defined industrial networks have shown that it is possible to achieve
deterministic delay [65], high availability and low recovery times [161, 5], and guarantee high security
standards [8] with commodity SDN switches and general purpose hardware. The feasibility of achieving
industrial grade quality of service with open and extensible protocol suite provided by the SoA SDN
and NFV solutions, has been already demonstrated in an operational wind park environment as a part
of the VirtuWind project [110]. The goal of this chapter is to discuss and explore the technological
and economic incentives for the wind park owners and operators to softwarize their networks. Due
to the limited size of the test wind park, which was not representative of commercial wind parks, the
presented case study considered a typical off-shore wind parks in Northwestern Europe.

The results presented in this chapter have been published in [8, 18, 19, 12, 7]. The architecture and
limitations of legacy wind park communication network have been presented in [19], while the traffic
classes and their corresponding QoS requirements have been included in the IETF draft on Deterministic
Networking (DetNet) Use Cases [18]. An SDN/NFV-based solution for virtualization and orchestration
of security functions for operational wind parks has been presented in [8]. The general framework
challenges of design and optimization of dependable softwarized networks for industrial applications
are presented in [12], while the techno-economic framework and cost models are elaborated in [19].
The quantitative study on the incentives for softwarization of industrial networks is presented in [7].
The main contributions are the analysis of the requirements of the wind park communication networks,
cost models for the analysis of networks’ CAPEX and OPEX, as well as the practical case study on the
economic incentives for network softwarization. The architecture of the industrial controller prototype
is not the part of the author’s contributions, and is provided in Fig. 3.4 (Sec. 3.3) only as a reference.

The remainder of the chapter is organized as following. Sec. 3.2 presents an analysis of legacy
wind park communication networks. Design and implementation of an industrial network orches-

3.2. Legacy Industrial Networks: A Wind Park Case Study 29

tration prototype is presented in Sec. 3.3. Sec. 3.4 discusses the techno-economic incentives of the
communication network softwarization. The chapter concludes with a summary and discussion of the

results, in Sec. 3.5.

3.2 Legacy Industrial Networks: A Wind Park Case Study

This section analyses the architecture and the limitations of the typical closed industrial networks. First,
the traffic classes in the wind park communication networks are discussed, as well as the requirements
imposed on the underlying network, in terms of data rate, latency, reliability and packet loss. Next, the
design and limitations of the existing wind park communication networks are presented.

The principal communication actors in the wind park are located in Wind Turbine Generator
(WTG) and Supervisory Control and Data Acquisition (SCADA) system, as illustrated in Fig. 3.1.

ANALOGUE STATUS
MEASUREMENTS INFORMATION

P> NACELLE

o< SWITCH

o [

SINGLE MODE

ANCILLARY PROTECTION FIBRE

R

Connection to
SERVICES Aﬁipf’éggfﬁa SUBSYSTEM Sower erd AGGREGATION SWITCH 1GBS
=T
[suRveILLANCE | MMXY
o WTG CONTROLLER
=) (e<)
WTUR
WTG CONTROL Gateway to
TRAFFIC external
networks
XMET Q =
‘ | DATA POLLING oA @
m
SCADA i M ROUTER INTERNET
SERVERS CFE_RTS AS CONNECTION
WIND TURBINE GENERATOR (WTG) SUPERVISORY CONTROL AND DATA ACQUISISTION (SCADA)

Figure 3.1: Inside the wind park communication network [7] (©2019 IEEE).

3.2.1 Wind Turbine Generator (WTG)

The wind turbine generators represent a complex system of Intelligent Electronic Device (IED) and
Remote Terminal Unit (RTU) that consist of sensors, actuators and an internal controller.

According to the international standard IEC 61400-25 "Communications for monitoring and control
of wind power plants” [82], which provides a framework for the information exchange within a wind
park, IEDs and RTUs in WTGs are grouped into logical nodes based on their function, as shown in
Fig. 3.1. Every logical node supports three classes of traffic status information, analogue measurements
and control information. For instance, a wind turbine rotor (WROT) sends status information
regarding the rotor and the blades, analogue measurements of the rotor speed and the temperature,
and receives the control information to set the pitch angle for the blades or set the rotor to a blocked

position.

30 Chapter 3. Incentives for Softwarization of Industrial Networks

As a part of the substation automation, each WTG must be equipped multiple [EDs or RTUs,
such as measurement merging unit and circuit breaker, providing the protection switching control
against overcurrent and overvoltage. The role of the reporting and logging system is to provide full
traceability of sequence of events in case of a failure. It provides information derived from the original
measurements and status messages. Reports are provided on demand, while log files are transmitted
periodically to the SCADA. Video surveillance is used for security, to detect the ships or vehicles that
are approaching the wind park, as well as to monitor the state of the turbines and the environment.
Video can be streamed continuously or requested on demand.

3.2.2 Supervisory Control and Data Acquisition (SCADA)

A typical SCADA system, consists of several application servers, as shown in Fig. 3.1. The Communi-
cation Front End (CFE) server is used for data acquisition from field devices (RTUs and [EDs), and can
also perform protocol conversion and temporary storage of measurements and status data for real-time
data trending. The Real Time Servers (RTS) are in charge of data processing, real-time operational
process control and short-term data trending, while the Archive Servers (AS) are used for long term
data storage. The system also has a Human Machine Interface (HMI) to facilitate user interaction with
the network and to allow engineers to access and modify the operational data, and display alarms and
power plant status information. The Web Server (WWW) provides an interface to the SCADA for the
users that access the system via their personal computer over the Internet.

The traffic from the SCADA towards the wind turbines consist of two components, constant control
traffic and periodic data polling. Internet access and interfaces to third party systems are also provided.
This includes internal interfaces to meteorological mast and video surveillance, as well as external
ones to the Internet, national grid and other control centers, according to IEC 60870[82] and IEEE
C37.1-2007[1 74].

The traffic classes and their QoS requirements are summarized in Table 3.1. The consolidated QoS

requirements are based on the relevant industry standards [36, 82,] and the previous case studies
on wind park [21, ,] and SCADA [145] architectures.
Table 3.1: Traffic classes and services present in the wind park: based on the relevant industry standards [36,
,] and previous case studies on wind park [21, ,] and SCADA [145] architectures (©2019 IEEE).
’ Service ‘ Priority ‘ Data rate ‘ Latency ‘ Reliability ‘ Packet loss ‘
Protection traffic 1 58 Bytes/second 16 ms 99.999% <107
Analogue measurements 2 225,544 Bytes/second 16 ms 99.99% <107
Status information 2 76,816 Bytes/second 4 ms 99.99% <107
Reporting and logging 3 15 KB every 10 min Is 99.99% <107
Video surveillance 4 250 Kbps — 1.5 Mbps Is 99% N/A
Data polling 1 100 Bytes/ 2 ms and 2 KB/sec 16 ms 99.99% <1077
Control traffic 2 20 kbps per turbine 16 ms 99.999% <107
Internet connection 3 1 GB every two months 60 min 99% N/A

3.3. Softwarization of Industrial Networks 31

3.2.3 Wind Park Communication Network

The communication system in the wind park is designed to guarantee the industrial-grade requirements
of the services specified in Table 3.1, required for a reliable flow of control and monitoring traffic
between the SCADA and WTGs. WTGs are typically grouped in rings and radials to maximize the
energy production. The topology of the communication system is constrained to the layout of the power
collection system, since optical fibres that interconnect turbines and the SCADA are embedded in the
power line cables. A typical power cable has up to four optical fibres, which support 1:1 protection, and
also offer huge capacity to support bandwidth hungry applications, such as video surveillance. The links
within a turbine are either optical fibres or twisted pairs. As depicted in Fig. 3.1, there are typically two
access switches in each wind turbine: one at the top which is distributing the traffic between sensors
and actuators of IEDs and RTUs, wind turbine controller and other ancillary functions and one at
the bottom which is handling the traffic between turbines and the SCADA. Core switches aggregate
the traffic coming from different radials. Unfortunately, standard Ethernet switches do not provide
guaranteed latency since the queuing delay is not bounded. Hence, special switches, implementing
Industrial Ethernet protocols, are required to ensure deterministic delay. The ecosystem of switches
capable of supporting wind park requirements is rather small. Ensuring the inter-compatibility forces
the wind park operators to deploy all network components from the same vendor, such as Connected
Grid and Industrial Ethernet switches by Cisco, or complete network solutions provided major wind
turbine vendors.

The router and the gateway in the SCADA enable the communication with external networks.
Typical wind park routers, such as Cisco 2000 Connected Grid Router, support VLANs with IPSec,
which are deployed to isolate different traffic classes and to limit the access to sensitive control traffic
only to the authorized users.

Security is of the paramount importance in industrial networks. Advanced security appliances,
such as the ones provided by Cisco ASA 5000 Series, comprise of firewall, intrusion detection and
prevention system and deep packet inspection functions. Security appliances in legacy wind parks
are deployed as software bundles running on the specialized proprietary hardware, which is a setup
typically optimized for high volume traffic in data centers and enterprise networks. This approach incurs
unnecessarily high cost for the wind park operators. Security breaches are not uncommon, despite the
sophisticated mechanisms deployed in the power plants, calling for the design of new security solutions
that are tuned better for industrial purposes, such as the one presented in the following section.

3.3 Softwarization of Industrial Networks

Next, the architecture of a softwarized wind park is introduced, discussing how SDN and NFV can be
used to solve the practical issues regarding the protocol openness (Sec. 3.3.1), the fine grained security
control (Sec. 3.3.2) and highly automated network management (Sec. 3.3.3), as well as an overview of
the required network components (Sec. 3.3.4). The architecture of the industrial controller prototype
is not the part of the author’s contributions, and is provided in Fig. 3.4 (Sec. 3.3) only as a reference.

32 Chapter 3. Incentives for Softwarization of Industrial Networks

LEGACY WIND PARK NETWORK

LEGACY SECURITY APPLIANCES

J ‘ APPLIANCIES

NET\JVUKK

ADMINISTRATOR

SOFTWARIZATION OF INDUSTRIAL NETWORKS:
1. SDN: Replacing Industrial Ethernet with programmable OpenFlow switches

2. NFV: Replacing monolithic security appliances, with modular virtual network
functions for a fine-grained security control

SOFTWARE-DEFINED WIND PARK NETWORK SECURITY NETWORK FUNCTIONS
IDS | INTRUSION DETECTION
7@1 SYSTEM
DPl | DEEP PACKET
INSPECTION
FW
FIREWALL

VIRTUALIZED SECURITY
APPLIANCIES

C OpenFlow
OPEN
. i
E!q]-
SECURITY
© E APPLIANCIES GENERAL PURPOSE HW
— || openstack ‘

Figure 3.2: Softwarization of industrial networks (adapted from [7]).

3.3. Softwarization of Industrial Networks 33

3.3.1 SDN: Replacing Industrial Ethernet with Programmable OpenFlow Switches

In legacy wind parks, the industrial grade of service (e.g., deterministic latency) is guaranteed with
closed protocol suite based on Industrial Ethernet, since standard Ethernet switches cannot provide
bounded queuing delays. In SDN, the switch control plane logic is outsourced to the SDN controller,
as illustrated in Fig. 3.2. The controller has a global overview of the network state, and can provide
delay guarantees through logically centralized queue-level flow management, proposed by Guck et
al. [65].

SDN-enabled switches are simpler, and hence, cheaper than Industrial Ethernet Switches, and
the price gap is expected to increase as the technology matures. Already today, there is a myriad of
high-end commercial switches already deployed in enterprise and data center networks, from white
box solutions (e.g., EdgeCore AS4610 with Pica8) to big networking hardware vendors (e.g., HPE
FlexFabric 5930 and Aruba 3800), offered at a competitive price. Moreover, commodity SDN-enabled
switches support standard Ethernet, facilitating the seamless integration of different energy production
systems, without the need for the protocol converters.

The SDN controller provides high-level network abstraction and vendor agnostic management.
This allows the users and applications to specify high level intents, such as opening of a new TCP port
at the set of firewalls or the setup of a connection between two hosts with a specified QoS, without
minding the low level forwarding rules that need to be configured in the switches. The SDN controller
can program the forwarding plane with OpenFlow, an open and standardized protocol managed by the
Open Networking Foundation (ONF). Moreover, open source SDN controllers, such as ODL, already
provide the support for most of commercial switches.

3.3.2 NFYV: Virtualization of Security Network Functions

The most complex network components in wind parks are security appliances, embedding the func-
tionality of firewall, intrusion detection and prevention system and deep packet inspection. Due to
the small size of the market for industrial security solutions, wind park operators typically deploy the
solutions developed and optimized for enterprise and data center networks. With NFV, the specific
security functions can be realized as modular software components running on general purpose hard-
ware, replacing the monolithic security appliances implemented in specialized proprietary hardware,
as illustrated in Fig. 3.2. Such setup offers resource pooling, as well as high degree of flexibility when
choosing the preferred vendor for the particular security module.

A prototype of an NFV-based solution for industrial networks, based on open source firewall
(pfSense) [141], IDS (Snort) [156], deep packet inspection (nDPI) [43] and customized honeypots
(HoneyD) [33,] has been presented in [8], . These modular software components, which are often
packaged as virtual machines, can be further chained to provide a fine grained security control. For
instance, unknown traffic flows are first processed and classified by DPI, while trusted SCADA traffic
can bypass it to avoid the unnecessary delays. Malicious traffic is redirected to honeypots that emulate
wind park network, in order to distract the attackers and allow the operator to collect valuable data
about the ongoing attack.

34 Chapter 3. Incentives for Softwarization of Industrial Networks

FireWall DPI SCADA IDS
=N 7z o
I] | :~ @
|] I .
-’ R
Classifier 7 N Classifier
—— Malicious
—— SCADA
—— Legitimate
Q ----- Uknown
Client

HoneyNet

Figure 3.3: Industrial network prototype: virtualized security appliances, from Fysarakis et al. [8] (©2017
IEEE).

3.3.3 Automated Network Orchestration and Management

The recent trend of network softwarization suggest the majority of control and management functions
to be implemented in centralized orchestration platforms, i.e., SDN controller and NFV MANO. A
VirtuWind prototype of SODN/NFV-based industrial network control platform presented in [162], is
illustrated in Fig. 3.4

INDUSTRIAL APPLICATIONS

DASHBOARD

SCADA

ALARM

MONITORING

DATA
ANALYTICS

VIDEO
SURVEILLANCE

Applicatior

Interface

S ORCHESTRATI NFVMANO
QOS ORCHESTRATION SDN CONTROLLER
g]
ORCHESTRATIGE.] Qos £ SECURITE] REFERENGZ] src €] NFV
o1 poRTAL NEGOTIATOR MANAGER MONITOR MANAGER [| 2 ORCHESTRATOR
Orchestration
/O Interface Q J\
SECURITY £] PATH £] BOOTSTRAPE] PATH £J viN €] UIE o ?
MANAGER MANAGER MODULE MANAGER MANAGER wi o
MANAGER
RESOURCE] RESOURCE] CLUSTERINE] l
MANAGER MONITOR MANAGER ?
Southbound /L =
Interface VIM
[PHYSICAL AND VIRTUAL INFRASTRUCTURE }

Figure 3.4: Industrial network prototype: control plane architecture, adapted from Sakic et al. [162].

In VirtuWind industrial network platform, the majority of control and management functions are
implemented in the SDN controller extending the ODL code base with i) deterministic QoS path
provisioning and resource management module [65], ii) adaptive clustering manager [159—-161], iii)
automated bootstrapping manager, iv) adaptation of ODL’s security, VTN and SFC modules, and v)
open interfaces for cross-domain QoS orchestration, industrial applications, as well as the management

3.4. Incentives for Softwarization of Industrial Networks 35

of physical and virtual infrastructure. NFV MANO utilizes the OpenStack modules for the provisioning
and run-time management of modular security VNFs. This approach offers several benefits for the
industrial network operator.

SDN: A centrally managed programmable forwarding plane significantly simplifies the setup of
new services, since the configuration scripts do not have to be customized for a specific network
equipment vendor. Vendor agnostic network control and management are expected to reduce the need
for a specialized team of technicians. The automation of network configuration is also expected to
reduce the incidence of human errors.

NFV: In legacy networks the customized configuration scripting tools and highly specialized net-
work engineers are required for operation and maintenance of security appliances. On the other hand,
NEV offers complete automation of MANO of network functions. The reference architectural frame-
work and MANO interfaces are specified by the ETSI NFV group. Several open source solutions, such
as OSM, already provide the solutions for the management of shared physical network infrastructure,
virtualization layer and service function chaining.

3.3.4 Industrial Network Prototype Deployed in Operational Wind Park

The overview of the architectural changes introduced by SDN and NFV are illustrated in Fig. 3.2.
With SDN Industrial Ethernet switches are replaced by OpenFlow enabled switches, while with NFV
monolithic security appliances are replaced by software modules running on general purpose hardware.

Table 3.2: Comparison of the network components in legacy wind park and SDN/NFV-based network: the
reference values are the median of the available commercial products from different vendors (©2019 IEEE).

Component Network components in legacy wind parks | SDN/NFV v.s. legacy network components
Price [€] | Power [W] | MTBF [h] Price [%] | Power [%] | MTBF~! [%]
Access sw. 3,330 40 263,285 78% 75% 65 %
Aggregation sw. 2,324 100 203,812 87% 95% 65 %o
Router and gw. 2,490 210 289,056 85% 67% 90 Y%
Security app. 3,674 90 299,588 88% 133% 90 %

The comparison of commercial network components in legacy and SDIN/NFV-based wind parks
is presented in Table 3.2. The network functions implemented in software require additional general
purpose servers. The cost of the servers can be divided between all the software components pro-
portionally to their utilization of the physical resources (CPU, RAM, storage). The licensing of the
software depends on the business model of the particular vendor in the case of commercial network
solutions, while for open source solutions software development and maintenance are provided by the
community. Open source network control and management platforms, such as ODL supported by the
Linux Foundation, have already shown stable performance in commercial network deployments.

3.4 Incentives for Softwarization of Industrial Networks

In this section, the economic incentives for wind park softwarization are discussed. First, the cost
models for capital and operational expenditures are presented, with the goal to quantify the savings
that can be achieved by the softwarization of a wind park communication network.The magnitude of
savings is demonstrated in the case study of a typical offshore wind park in a Northwestern Europe.

36 Chapter 3. Incentives for Softwarization of Industrial Networks

3.4.1 Cost Factors

First, the cost models for CAPEX and OPEX of an industrial communication networks are presented,
followed by a case study on industrial communication networks.

3.4.1.1 Capital Expenditures (CAPEX)

CAPEX include all the costs related to the network equipment, including supporting infrastructure
and installation cost. Since the goal of the analysis is to evaluate the cost differences between legacy
and SDN/NFV-based communication network, this study considers the cost of (i) access switches in
WTGs, (ii) aggregation switches, (iii) router and gateway and (iv) security appliances. The cost of the
additional blade servers have to be installed in order to support software based network components is
also considered.

CAPEX =) N;- Price; 3.1)
ieComp

The number of network components (N;) that need to be purchased during the lifetime of the
wind park depends on several parameters used by network planning such as the component’s capacity,
the desired redundancy level, and estimated lifetime and vendor warranty period. The traffic volume
in wind parks is relatively low (Table 3.1), and active redundancy is typically deployed only in the
SCADA. An expected wind park lifetime (7, p¢,) is 20 to 30 years, while the typical lifetime of network

components is five to 10 years.

3.4.1.2 Operational Expenditures (OPEX)

Operational expenditures include all the costs related to operation and maintenance of a wind park
incurred during the operation and the maintenance of the network. Here, the configuration cost
(Configcost), power consumption (Power,s;), preventive maintenance (M aint.,s;), corrective main-
tenance or failure reparation (FailRep.,s;) and cost of energy not supplied (CENS) are considered.
All OPEX cost factors are expressed per year, allowing for the comparison of different wind park and
industrial networks in general.

OPEX = Configcos: + Maint.os + Powercos; + FailRepcoss + CENS (3.2)

Configuration cost: Any adjustment of the network, such as the opening of a TCP port or the
addition of a new sensor to the wind park network, requires the reconfiguration of network components
that has to be performed during the maintenance window, which occurs N, ri¢ times per year. A team
of highly specialized network engineers needs 7¢.,,ri; man-hours to write and test the configuration
scripts. It has been demonstrated that configuration time is significantly reduced in SDN/NFV-based
networks, thanks to the high degree of automation and vendor agnostic management provided by the
SDN controller and NFV MANO. The hourly cost of the network engineers is wy,,,.

Configcost = Nconfig : Toper) Tconfig " Waw (3.3)

3.4. Incentives for Softwarization of Industrial Networks 37

Preventive maintenance: Network equipment needs regular maintenance to guarantee acceptable
operational conditions as a part of proactive failure management. Inspection of the network equipment
is performed N,,in; times a year and it requires a team of technicians for 7},,;, man-hours. The
hourly cost of the technicians is w;..;. Maintenance activities, such as switch firmware upgrades, are
expected to be faster and simplified in softwarized networks since they can be mostly done remotely. In
softwarized networks, the network functions implemented in software also require regular maintenance,
in terms of feature upgrades and security updates. Primarily the control and management functions,
that is, the SDN controller and NFV MANO, need to be updated regularly. Note that described
network solution relies on open source components maintained by the community. Even in the case of
commercial solutions, the cost of software development, testing and debugging can be shared between
all deployed wind parks. Hence, the maintenance cost can be expressed as:

Maintcost = Toper : Nmaint : Tmain * Wtech (34)

Since the changes in the network configuration are typically executed during the maintenance
window, in the remainder of this chapter Neonfig = Npains is assumed.

Power consumption: Given a power cost PC[€/kWh], the power consumption cost can be
computed as the sum of the power consumption of all active network components (P;).

Powercosi = Toper -8.76- PC- > P; (3.5)

ieComp
where a factor of 8.76 accounts for adjustment between units (thousands of hours per year).

It can be seen in Table 3.1 that, while the power consumption of SDN switches and routers is
slightly lower than the power consumption of their legacy counterparts, the power consumption of
virtualized security appliances running on commodity hardware is actually higher.

Failure reparation The expected number of failures of a network component during its operational
lifecycle can be derived from MTBF values provided by the vendors. The repair cost of a single failure
depends on the hourly cost of the technicians (w;..,) and the time required to repair the failure MTTR,
as well as the cost of their transportation to the site, either SCADA (Travy.) or WTG (Trav,,;). Note
that in the case of offshore wind parks, the time to reach the wind turbine (7},) is a dominating the actual
repair time, and 7,,, > MTTR;, since a boat or a helicopter may be required for the transportation of
technicians.

FReosi = Toper +8.76 > MTTF; - repaireoy, (3.6)

ieComp

repaircosti = (MTTRi +2- Tsc/wt) *Wrech t Travsc/wt

Previous case studies have shown that most network outages in legacy wind parks are related to
switch port failures. Most of the failures are caused by human error, which is not accounted for
in the MTBF values shown in Table 3.2. Since the operation of SDN switches involves minimum
human intervention, the reduction of the failure rates, and consequently the cost of failure reparation,
is expected to be even higher.

38 Chapter 3. Incentives for Softwarization of Industrial Networks

Cost of Energy Not Supplied (CENS): Wind turbine generators need to be taken out of operation
during failure reparation. During the interruptions, wind park operators not only lose money that they
could have earned by selling the harvested energy, but would also have to pay penalties to the grid
operator for not supplying the promised quantity of energy. Given a power penalty PP per interrupted
MWh (PP [€/MWh)), expected interruption time /7, a wind turbine power rating (production capacity)
WTy [MW] and its capacity factor (efficiency of power production) of CF [%], the expected CENS can
be evaluated.The interruption time (/7) is larger than the failure reparation time IT > MTTR; + T,,;
since it also includes failure detection, diagnosis, procurement of the equipment and team preparation.

> o

ieComponents

CENS =W1y-CF - PP - 3.7

3.4.2 Case Study

The total cost of the ownership of a wind park depends on a number of factors such as the type of
project (e.g., number and location of turbines), country specific parameters (e.g., cost of technicians
and engineers) and network design parameters (e.g., aggregation factor). In order to illustrate the
magnitude of savings due to network softwarization, the case study of the typical offshore wind park in

Northwestern Europe is presented. The relevant case study parameters are summarized in Table 3.3.

Table 3.3: Case study: typical offshore wind park in Northwestern Europe (©2019 IEEE).

Country specific parameters [Network specific parameters ‘

Wind park parameters [

Oper. time Toper = 20yr Power consum. Toper = 0.28% Maint. freq. Npain =4
Size Nyr =80 Technician cost Wiech = 58% Config. (old) Teons = 8h
Power rating W1y = 4 MW Nw. eng. cost Wnw = 52% Config. (new) | T ;= 15min
Capacity fact. CF = 40% Travel (SCADA) Travse = 100€ Maint. (old) Tiain = 8h
Travel time Tyw: = 24h Travel (WTG) Travy; = 1000€ | Maint. (new) T;;ml.n = 30min
Interrupt. time IT = 120h Power penalty PP = ISOMiWh Aggregation AG =8

The contribution of the individual CAPEX and OPEX cost factors is presented in Fig. 3. Significant
savings can be observed in both CAPEX and OPEX. More than 442,000€, that is, 19.85 %, of savings
can be achieved in CAPEX thanks to the lower cost of softwarized network components. OPEX
reduction is expected to be even higher, around 34 percent, accounting for more than 1,380,000€
accumulated savings during the lifetime of the wind park. The reduction of the cost of the access
switches in the wind turbine contributes most to the CAPEX savings. The highest cost reduction in
OPEX is expected from CENS, due to the shorter interruptions of power production. The second
biggest contribution to the OPEX savings comes from failure reparation, due to the significantly lower
failure rates.

Provided that some of the baseline scenario parameters have high uncertainty, as well as the
fluctuations due to the regional differences, the local sensitivity analysis has been conducted to estimate
the impact of individual factors on the total savings. As expected, the number of turbines and the
lifetime of the wind park have the highest impact, since it influences all cost components. The factors
driving CENS (CF, PP, IT,WT)) and failure reparation (Wsecpn, Travy,,) also have a significant impact.

The impact of the wind park size on the expected savings has been investigated. In large wind parks
with more than 300 wind turbines (e.g., the Hornsea in the U.K. has 342 turbines), the total savings

3.5. Concluding Remarks 39

5,000,000
CAPEX OPEX
[0 Access switches [CENS
[Agg. switches [0 Failure repair.
4,000,000 [Router(s) @ Maintenance
[Security appliances [Power consumption
[Servers [Configuration
3,000,000
2,000,000
1,000,000
0 Legacy SDN/NFV Legacy SDN/NFV

Figure 3.5: Analysis of economic incentives for softwarization of the wind park: 19% of the savings in CAPEX
and 34% in OPEX can be expected (©2019 IEEE).

are estimated to be more than 7 Mil. €. The relative savings, however, do not change significantly with
respect the wind park size, and it converges to 20 percent of CAPEX and 35 % of OPEX savings in
communication network cost.

3.5 Concluding Remarks

3.5.1 Summary

In this chapter, a study of the techno-economic feasibility of the softwarization of wind park commu-
nication networks has been presented. SDN and NFV are introduced to solve the limitations of legacy
wind parks by providing the protocol openness and the fine grained security control, necessary for the
tighter integration of wind parks into future Smart Grids. The capital and operational expenditures
have been modelled in order to quantitatively evaluate the benefits of SDN and NFV. A case study of a
typical wind park in North-western Europe has demonstrated that significant savings can be achieved
through network softwarization, making it a promising solution to facilitate its seamless integration
into the Smart Grids. The advantages of network softwarization in wind parks trigger new open
questions for the operators such as the identification of seamless migration paths while guaranteeing
simultaneous park operation.

3.5.2 Discussion

Threats to validity. The main threat to validity of the presented analysis for the incentives for
softwarization of industrial networks is the uncertainty regarding the input cost structure parameters.
While technological benefits have been verified and confirmed by VirtuWind industrial partners, the
exact cost of the network infrastructure, operation and maintenance operations is not available, due to
the privacy reasons. Nevertheless, the estimated cost structure is based on the reasonable assumptions

40 Chapter 3. Incentives for Softwarization of Industrial Networks

derived from the public studies and public vendor equipment data, and hence represents a realistic
estimation of the magnitude of savings that can be expected by industrial network operators.

Generalization of the results. The industrial SDN/NFV-based network prototype, enabling
the deterministic Ethernet, fine-grained security control and automated network management and
orchestration has an application in diverse industry verticals. Furthermore, the analysis of incentives
for softwarization of industrial networks presented in this chapter can be extended to other local
industrial networks, with static communication actors, such as sensors and actuators in the wind parks.
Although the actual cost structure can very in different use cases, the framework to assess the expected
CAPEX and OPEX savings, similar to the one proposed in this chapter can be applied.

Future work. As a part of the future work, the analysis of the incentives for softwarization of
industrial communication networks be extended to support more complex scenarios, such as enabling
of massive machine type communication in Wireless Sensor Networks (WSN), and QoS orchestration
of geo-distributed industrial networks, e.g., Smart Grids.

Enabling massive machine-to-machine communications in software-defined WSN. The scale and
mobility of the actors in wireless sensor networks introduce a new set of challenges for end-to-end
dependability assurance. Interference between the actors competing for the limited wireless channel
resources and end-to-end dependability assurance in hybrid wired-wireless setups have been studied
in [67, ,]. While softwarization of legacy WSNs can alleviate the interference coordination, it
increases the complexity end-to-end dependability assurance, especially in setup where control plane
traffic relies on the noisy wireless links, which needs to be carefully studied.

QoS-aware orchestration geo-distributed industrial network slices. The communication between
geo-distributed industrial sites, such as Smart Grids and IoT edge clouds [51], typically operates
over the commercial WANs. The network operators provide probabilistic guarantees on minimum
guaranteed bit rate, maximum delay and connection availability, formalized in terms of Service Level
Agreements (SLAs). The existing work focused on bit rate and delay, while service availability in the
context of wide area networks received little attention. An interesting research direction is design of
adaptive service availability-aware resource management strategies for the fair coexistence of industrial
and human-centric traffic [11-13].

Chapter 4

Assessing the Software Maturity with
Reliability Growth Models

4.1 Introduction

4.1.1 Motivation, Problem Scope and Research Challenges

The recent trend of network softwarization suggests a radical shift in the implementation traditional
network intelligence, decoupling network component functionality from underlying hardware. For
instance, in SDN, all critical control plane functions are outsourced to an SDN controller. The
SDN controller assumes the role of the network operating system, providing an integrated interface
towards the forwarding devices, i.e., switches and routers, which significantly simplifies the network
management and augments its programmability [86]. The controller monitors the state of the network
by gathering the statistics from forwarding devices, makes the global routing decisions, and reacts on
the events, such as link congestion or switch failure. In order to fulfil the long list of tasks, today’s
production-grade controllers, such as ONOS [137] and ODL [104], have become complex pieces
of software, consisting of more than a million lines of code. Such a large and complex' software
inevitably contains bugs, that may disrupt the network operation and corrupt its performance. A study
on the hazards in Google’s network infrastructure [63], which is partially based on SDN, reported that
software bugs contributed to more than 33% of the high impact failures documented in post-mortem
reports. Another large-scale study by Microsoft [105] on root causes of customer-impacting incidents
in their production networks reports similar results, and shows that software bugs contributed to 36%
of critical outages, more than hardware failures and human errors.

Despite the magnitude and ubiquity of software failures, there is a lack of tools to quantify software
maturity, and predict the risk of the software related outages in SDN. The performance reports and
benchmarks on SDN controllers are still limited to scalability and latency related metrics, such as flow
burst install throughput or flow reroute latency. The reliability of the controller software, which is still
a big concern and a major obstacle for the wide spread adoption of SDN in commercial telecom and
industrial networks [183], is addressed only by a limited number of studies [161, 14, 17].

L As a reference, the latest Linux kernel has around 20 million lines of code.

41

42 Chapter 4. Assessing the Software Maturity with Reliability Growth Models

4.1.2 Methodology: Software Reliability Growth Models (SRGMs)

SRGM is a statistical framework, used to estimate the reliability of software components in their
operational phase, based on the bug manifestation reports from the testing phase. During the testing
and early operational phase of the software lifecycle, faults are detected and removed, which eventually
leads to the reliability growth. The core idea behind SRGM is to describe the fault detection and fault
resolution as stochastic processes, whose parameters can be estimated from the empirical data, i.e., the
history of the previous bug manifestations. Once the best stochastic model is found and parametrized,
it can be used to estimate reliability metrics, such as residual bug content, failure intensity? or expected
time until the next failure, and conditional software reliability. Moreover, SRGMs enable operators
to estimate how the reliability metrics change over time, as the software matures. Such software
reliability metrics capture the relationship between the testing effort and the software quality, which is
highly relevant for the software developers of SDN controllers. With SRGM, the risk of the software
outages in a given period of time can be predicted with high accuracy, providing the guidelines for the
operators of SDN-based networks to take the calculated risk and estimate the best software adoption
time, according to the reliability requirements of their network applications. The practical value of
SRGM was recognized by the NFV community, which has already included it in the guidelines for the

assessment of end-to-end reliability [45].

4.1.3 Key Contributions

The main goal of the proposed framework for assessment of the software maturity is to provide
means to evaluate and forecast the reliability of network control software, for both developers and
network operators. The workflow steps: data collection, model selection, evaluation of reliability and
management Key Performance Indicatorss (KPIs), are illustrated in Fig. 4.1, highlighting our main
contributions:

i. Data collection: The empirical data, i.e., the cumulative number of detected and resolved bugs, is
gathered from the public issue trackers. High-level descriptive dataset statistics, e.g., distributions
of time between failures and time to resolve bugs, is also presented.

ii. Model selection: The best SRGM to describe the stochastic behaviour of the bug detection and
the bug resolution processes in SDN controllers is selected and parametrized. The analysis has
shown that the bug detection process can be accurately modelled with the class of 3-parameter
S-shaped SRGMs. A new class of SRGMs for fault correction process is proposed, as well as their

corresponding fitting technique.

iii. Evaluation of reliability and management KPIs: Several applications of SRGM for the management
of the quality of network control software evolution over time are presented, e.g., the guidelines
for the optimal software release and adoption time. Furthermore, two novel applications relevant
for the SDN community are proposed: i) early prediction of software reliability using transfer
learning, i.e., extrapolation of the stochastic behaviour of the previous releases and ii) the software
maturity metrics as a comparison criteria between alternative software solutions.

2The terms bug (manifestation) and failure are used interchangeably in the context of software dependability.

4.2. Related Work 43

DATA COLLECTION —> MODEL SELECTION —>| RELIABILITY KPIS —> MANAGEMENT KPIs

| (a) Bug detection:

! compare the most widely
i used NHPP models

|

(a) Optimal software

(a) Residual bug content adoption and release time

Analysis of empirical data
gathered from public bug

S G b) Expected failure
repositories:

I
I
I
:
|
|) : (b) Early prediction
| intensity

:

|

|

I

I

I

|

I
1 (b) B lution:
' (b) Bug resolution: new of software reliability*

1
1
1
1
1
:
1
i class of bi-variate NHPP |
| models* !
1
1
1
1
1

(a) detected bugs

b lved b (c) Maturity comparison
(0) resolved bugs : of alternative software

i solutions*

(c) Conditional software
reliability

|
|
i (c) Parameter fitting:
\ regularized LSE*

__

Figure 4.1: Assessment of software maturity with Software Reliability Growth Models (SRGM) consists of
four steps: (i) data collection, (ii) model selection, (iii) evaluation of reliability KPIs and (iv) management KPIs.
The workflow enhancements proposed in the thesis are marked (*).

The results presented in this chapter have been published in the peer-reviewed conference [17] and
journal [5]. The first results [17] focused on applicability of SRGM to ONOS open source controller.
In [5] the results were extended to ODL controller platform, exploring different applications of the
proposed framework for an efficient management of SDN-based networks.

The rest of the chapter is organized as following. In Sec. 4.2 the limitations of the related work are
discussed, while in Sec. 4.3 a theoretical background on SRGM is presented. The case study on open
source SDN controller platforms is presented in the following sections, empirical dataset collection
(Sec. 4.4), model selection (Sec. 4.5) and network management applications (Sec. 4.6). Summary and
discussion of the results are presented in Sec. 4.7.

4.2 Related Work

4.2.1 Stochastic Models for Software Reliability in SDN

In this section, the limitations of the related work on stochastic models for software reliability in
SDN are discussed, highlighting the assumptions that possibly contradict the behaviour of the real
production grade controllers.

The first studies on the reliability of SDN control plane considered the controller as perfectly
reliable, assuming only control path link failures [72]. More recent studies made different assumptions
about the controller reliability [60, , , s , , 15]. Some assumptions were over-
simplifying the nature of failures, as they were necessary to obtain analytically tractable results, rather
than reflecting controller behaviour from real life deployments or testbed measurements. The authors
in [15] modelled controller reliability as deterministic variable. Several other studies [127, ,]
assumed that the controller failure to be a Poisson process, which was necessary to obtain analytical
solutions of the proposed Markov models. Ros et al. [157] assumed that the operational probabilities
of network elements, including the controllers, follow different i.i.d. Weibull distributions. Longo et
al. [106] discussed the limitations of Markovian models, and assumed the reliability of the controller
to follow phase-type distribution (generalized hypoexponential distribution), which captures better the
changes in operational conditions. In the author’s preliminary work [14] the instantaneous availability

44 Chapter 4. Assessing the Software Maturity with Reliability Growth Models

of the controller software was modelled by hyperexponential distribution, which models different failure
types (i.e., transient, hang and crash). The model also included temporal fluctuations of controller
software failure rates, which change due to maturity release and state of the controller software instance.
This work focuses on the long term variations of software reliability, i.e., the software maturity, based
on data from real life production grade open source controllers, ONOS and ODL, demonstrating that
the stochastic behaviour of bug manifestation and removal processes can be described with SRGMs.

4.2.2 Reliability Modelling, Evaluation and Forecasting with SRGM

SRGMs have been widely used to estimate and predict the reliability of the software, and in the past,
many different models have been proposed, out of which the Non-Homogeneous Poisson Process
(NHPP) class has received the most attention. A comprehensive overview of different classes of
reliability growth models, their inherent assumptions and input data requirements, can be found in [108].
In this section, the most relevant models, methods and tools for the fitting of model parameters, as well
as the applications of the software reliability assessment are discussed.

Models for bug detection: The applicability of SRGMs for the modelling, analysis and evaluation
of software reliability of open source products was demonstrated in several case studies. Zhou et
al. [201] showed that the Weibull distribution can describe well the bug manifestation process for eight
unnamed software projects. Rahmani et al. [154] confirmed this result by analyzing the bug reports
for several popular big open source projects, such as Apache HTTP server, Eclipse IDE and Mozilla
Firefox. Rossietal. [158] studied failure occurrence pattern across different releases of Mozilla Firefox,
OpenSuse and OpenOffice.org. All studied releases showed the learning curve pattern, where the fault
detection rate is slow at the beginning until the community gets familiar with the product, then it
increases rapidly until only very few faults, whose discovery is difficult, remain in the code. This effect
is captured well with S-shaped models. Syed et al. [175] and Ullah et al. [180] studied the difference
between closed and open source software with inconclusive results. In this chapter, eight most widely
used SRGMs for the fault detection process [57, 59, 79, , , s ,] are compared in
terms of their ability to describe the empirical data of open source network control software.

Models for bug removal: The majority of the SRGMs assume that once a bug is detected, it is
corrected immediately, that the debugging as always successful and it does not introduce new bugs. A
number of studies have modelled different aspects of imperfect debugging [58, 77, 91, , , 1.
Wu et al. [189] described the fault resolution as a delayed fault detection process; Pham et al. modelled
the introduction of the new faults [146], while Huang et al. [77] also include the changes in debugging
effort. Kapur et al. [91] proposed a unified approach to model the fault resolution process, when
both fault detection and fault removal are NHPP. Gokhale et al. [58] applied the Non-Homogeneous
Continuous Time Markov Chain (NH-CTMC) to model the impact of arbitrary debugging policy,
while the study by Okamura and Dohi [135] modelled the time dependency between the bug detection
and removal processes as a correlation. These models have a large number of parameters that have
to be estimated, while the number of data samples in the historical reports is often very limited (as in
the case with ONOS SDN controller), which increases the risk of overfitting the data, as well as the
sensitivity of parameter fitting to the noise in the data. In order to balance between the model accuracy
and generalizability, a simpler class of models, based on the framework presented in [91] is proposed.

4.3. Software Reliability Growth Models 45

Model parameter fitting: The statistical inference techniques to estimate the parameters of SRGM
are Maximum Likelihood Estimation (MLE) and Least Square Estimation (LSE), while historically
Method of Moments (MoM), graphical and simulation based approaches have been used [108]. While
MLE is convenient for estimating the confidence intervals, L.SE is faster and easier to apply to the
regularized models described in the following section. Fitting of the model parameters to the empirical
data is done either with proprietary general purpose statistical packages, such as SPSS, or specialized
tools, such as CASRE [109], SREPT [178] and CARATS [35], just to name the few. In order to account
for the newly proposed models, and enhancements in the parameter fitting procedure, a custom tool
has been developed based on the libraries provided by the Python scientific package [89].

Applications of software reliability assessment: Software reliability metrics derived from
SRGMs, such as expected residual bug content, can be used to balance the trade-off between the
cost of software testing and the software maintenance phase, which is known as the optimal software
release problem. Since the first study by Okumoto and Goel [136], many researches have analyzed
the optimal software release problem under different constraints [78, 90, 95, 96, 99, R]. Koch
et al. [96] provided a cost-benefit analysis for releasing the software after the scheduled deadline,
while Yamada et al. [194] proposed optimal software release policies minimizing the total expected
cost, under minimum reliability requirements. The authors in [195] considered the optimization of
the test-effort allocation to different software modules under the constrained budget for the testing
expenditures, while Huang et al. [78] analyzed the impact of different test effort allocation strategies.
Kimura et al. [95] considered different software maintenance models, i.e. warranty policies. Lai et
al. [99] extended the cost model to capture the additional effort of documentation and distribution of
the software patches. In this chapter, two novel applications of SRGMs for the management of software
quality are proposed, namely i) early prediction of software reliability based on the transfer learning,
i.e., extrapolation of the stochastic behaviour of previous releases and ii) software maturity metrics as
a comparison criteria between the alternative software solutions.

4.3 Software Reliability Growth Models

In this section, a theoretical background on SRGM is presented, with the focus on a particular class of
models that describe the bug detection and resolution process as NHPP, that have been very successful
in modelling the behaviour of large open source projects. The models for the bug detection process,
presented in Sec. 4.3.1, are well known models in software reliability community. The composite
models for the bug removal process described in Sec. 4.3.2 are novel and extend the existing SRGM
literature.

4.3.1 Bug Detection Process as NHPP

Assume that the initial bug content, i.e., the number of bugs present in the software before the start of
the testing phase, is a random variable Ny following the Poisson PMF with the mean a:

n

P(Ny =n) = %e_“ 4.1)

The probability of detecting a single bug by the time ¢ follows an arbitrary distribution Fy(t).
Assuming that the bug detection times are independent and identically distributed random variables,

46 Chapter 4. Assessing the Software Maturity with Reliability Growth Models

the conditional PMF of number of detected bugs N by the time ¢ is:
n -
HM@=H%=@=@PMNU—&mwk 4.2)

The unconditional probability of observing exactly k£ bugs by the time ¢ is then described by the
equation:

P(Na(t) = k) = > P(Na(t) = kINo = n)P(No =)
n=k 4.3)
_ [aFa(0))* o—aFa()
k!

The process is fully described by the mean value function m(¢), which represents the expected
number of detected faults by the time #:

E[Na(1)] = m(t) = aFa(1) (4.4)

From the mean value function of the bug detection process, several reliability metrics of the
software can be estimated. The instantaneous bug manifestation, i.e., bug detection rate is:
dmf(t)
A1) = ——— =a fa(t) 4.5)
d?
Assuming a finite number of initially introduced bugs lim;_,«, m(f) = a, the expected number of
the undetected faults in the software, i.e., the residual bug content, is defined as:

r(t) = E[a— Ny(t)] = a — m(t) 4.6)

The conditional software reliability is defined as the probability of not detecting a new bug in the
time interval (z,1 + x]:
R(x|t) = o LT A dx _ min)-mix+) 4.7)

The expected cost of the software consists of the cost of testing ¢;(¢) in the pre-release phase, and
the cost of removing the fault ¢, (¢) in the operational phase during the warranty period 7,, of the
software lifecycle.

Assuming that the software is released after T time units of testing, the total cost of software
maintenance is:

an:/qqmm+/ﬁmqmm@m (48)

=0 =T

The eight most widely used NHPP models for modelling of the fault detection process are: Musa-
Logarithmic, Goel-Okumoto Exponential, Generalized Goel-Okumoto, Inflection S-shaped, Delayed
S-Shaped, Yamada-Exponential, Gompertz and Logistic. Their mean value function m(¢) and failure
intensity A(¢) are given in the Table 4.1. The shortlisted NHPP models in Table 4.1 represent well
the space of the possible software reliability growth patterns: containing a) three concave and five
S-shaped models, as well as b) seven finite failure models and one infinite failure model.

4.3. Software Reliability Growth Models 47

Table 4.1: Fault detection process as Non-Homogeneous Poisson Process (NHPP)

Model ‘ Abbreviation ‘ Shape ‘ m(t) ‘ A(t) ‘
Musa-Okumoto logarithmic [126] | MUSA(Log) | Concave aln(l + br) %’;t
Goel-Okumoto exponential [57] GO(Exp) Concave a(l —e7bt) abe™b?
Generalized Goel-Okumoto [108] GGO S-shaped a(l — e b1%) abet€~le=b1"

, . . _,Db — 1
Ohba’s inflection S-shaped [133] ISS S-shaped allJr;TP:f abeb? (1+¢:—i¢b’)2
Yamada delayed S-shaped [192] DSS S-shaped | a(1 — (1 + br)e~?) ab*te~b1

Yamada exponential [193] YEX Concave | a(l — e‘r(l_"_bt)) abre=bte~r(1=¢7"")
Gompertz [134] GOMP S-shaped ak® alnblnk b’ k'
L. -bt
Logistic[79, ,] LOGIST S-shaped m (1"_:’,(]‘8—6_,),)2

4.3.2 Bug Resolution Process as Bi-variate NHPP

The bug resolution process consists of two phases, fault detection and correction. Assuming two
processes in these two phases are independent, the density function of resulting fault resolution time
can be expressed as [189]:

0= [t =00 = L+ 210 @9)

where f;(¢) and f.(¢) represent the densities of the fault detection and fault correction process, respec-
tively. The mean value function of the resulting fault resolution process is then defined as:
t
m0)=ak=a [ax fA0dr (@.10)
7=0
Eq. (4.10) can be used to generate different SRGMs from arbitrary distributions for the fault
resolution process. However, the proposed models so far have been limited to the combinations for

which this integral has a closed form solution, e.g., when both fault detection and correction are
Goel-Okumoto processes [91,].

ble—bzt _ bze_blt

8078%(1) = a |1
g = a p——

4.11)

By replacing the integral in Eq. (4.10) with its Piecewise Constant Approximation (PCA), a
numerical approximation for an arbitrary combination of NHPP models can be obtained, which then
can be used for the fitting of the fault report data.

n=t/Ax

()= lim > [fax fo)(Ax)Ax (4.12)

In this thesis, the four combinations of Generalized Goel-Okumoto and Inflection S-shaped models
for fault resolution process are compared, which were preselected due to their performance. The
combined Goel-Okumoto Eq.(4.11) from [91] is used as a reference.

48 Chapter 4. Assessing the Software Maturity with Reliability Growth Models

4.3.3 Fitting of the model parameters

The LSE method, which minimizes the squared distance between the observed and expected data, is
used for the fitting of the model parameters. Unconstrained problems in the model selection phase
(Sec. 4.5), are solved using the [evenberg-Marquardt (LM) algorithm. Sec. 4.6.2 provides the bounds
on the model parameters, based on the observed parameter trends in the previous releases. The
regularized model is solved using the Trusted Region Reflective (TRF) algorithm. Implementation of
both methods is provided by Python scientific computing package SciPy [89].

Three Goodness of Fit (GoF) metrics are used to evaluate the suitability of the models: Mean
Square Error (MSE), Theil’s statistics (TS) and coefficient of determination (R?), defined as following:

k
MSE = 1) (m(t) = mess) 4.13)

i=1

k N)2
TS = J Rt (W) = etV g (4.14)

Zi'(:l m(l‘i)2

_ Zi‘c:] (m(ti) - mest(ti))z
i (m(t;) - m)

where m(t;) represents the observed data, and m,(f;) the data estimated by the model, at time instance

t; of the i-th bug report, and m = % Zle m(t;).

R?=1 (4.15)

MSE is used to select the best model for individual releases, while TS is more suitable to compare
the GoF across different software releases. R’ is used to measure which portion of variance in data

can be explained by the model.

4.4 Data Collection and Preprocessing

The analysis of the software reliability described in the previous section requires complete and uncen-
sored bug reports, which are publicly available only for the open source controllers. At present, there
are only two production-grade open source SDN controller platforms, ONOS [137] and ODL [104].
The overview of the architecture of these controller platforms has been presented in Sec. 2.2. In this
section, the release and bug management system of the two controllers are presented and compared.
The data set preparation, i.e., data gathering and filtering, is described, as well as the preliminary data
set analysis, providing the first insight of its statistical behaviour. Descriptive statistics metrics are
presented, such as the monthly bug report rates, and distribution of their equivalent Time to Fail (TTF)
and Time to Repair (TTR). The data set analyzed in presented throughout this chapter was retrieved
on February 1, 2018 from Jira issue trackers of ONOS and ODL..

4.4.1 ONOS Dataset

ONOS is a carrier-grade controller, aiming to fulfil design requirements of large operator networks.
New releases are distributed every quarter, ensuring a steady feature development through incremental
upgrades of the code base. The three-month release lifecycle starts with a release planning meeting,

4.4. Data Collection and Preprocessing 49

followed by three months of code development and integration on the master branch. The feature
integration is stopped two weeks before the official release date, and only bug fixes are allowed. The
support, including security patches and fix for the critical defects, is provided for the six months after
the official release date. Thirteen releases have been distributed between December 2014, when ONOS
code was first opened to the public, up to data set collection (February 2018). The releases are named
by the bird species, in alphabetical order.

The issues associated to every release are reported in the publicly available Jira tracking system.
The issues labelled as "Bugs", rather than new feature requests or enhancements, are filtered out.
The bug repositories contain the detailed fault reports from the live deployments in both lab and
operational environments. The bug reports contain the information details such as affected versions,
bug description and short summary, priority, and report creation and resolution dates.

The cumulative number of detected and resolved faults reported over time are shown in Fig. 4.2a.
It can be observed from the figure that there is a steady increase in the number of bugs, with the trend
changes being noticeable around the official release dates.

The SRGMs presented in the previous section, assume that the only changes in the code are due to
the bug fixes, and hence, the bugs reports are separated based on the "affected release version" field.
The number of the bugs reported for every release, grouped by the priority, are presented in Fig. 4.2c.
Note that, due to the time overlap between the support periods some of the bug reports may affect more
than one release. In the analysis of software maturity in Sec. 4.5, "minor" and "trivial" bugs (e.g.,
loading of the GUI too slow) were ignored, as they do not have an impact on the critical controller
operations and often remain unresolved.

The most recent release at the time of the data set gathering, Magpie (ONOS v.1.12) did not have
enough samples, i.e., bug reports, for the statistical analysis. Hence, the focus was on Kingsfisher
(ONOS v.1.10), the most recent release whose support cycle had ended, and Loon (ONOS v.1.11),
referred to as the two latest stable releases.

The distributions of the TTF and the TTR for Kingsfisher and Loon with the previous ONOS
releases are compared in Fig. 4.2e. The median TTF was approximately 48 h, and was consistent for
all three data sets. However, the median TTR showed higher variation, between 168 h to 180 h, or
around a week. Both TTF and TTR show the characteristics of long tail distributions, which makes
it difficult for the software management team to estimate, e.g., the effect of extended testing effort on
the improvement of the software quality. The SRGMs presented in the previous section, add the time
dimension to these distributions, enabling more accurate forecasting of dependability attributes, such
as the expected number of bugs to be detected in a given time period.

4.4.2 ODL Dataset

ODL has a much larger and complex code base, since its use case was initially much broader. ODL
aim to provide the support for virtually all legacy networks, in contrast to ONOS which was primarily
developed for service providers (see Sec. 2.2). The release management cycles of the two controllers
are also different: while ONOS distributes the code in the regular three-month cycles, the lifecycle of
ODL releases is irregular, between three and nine months, as illustrated in Fig.4.2b. Seven releases
have been distributed from April 2013 to February 2018. The releases are named by elements in the

50 Chapter 4. Assessing the Software Maturity with Reliability Growth Models
900 ————————— - - 1600 : : - —
—— Detected bugs : H —— Detected bugs : : 7
800 Resolved bugs 1400 | —— Resolved bugs
[t i 1200 %
& 600 : : 2 : : ol
2 : : 2 1000 : : A
2 500 H : 2 : : Py
H H b B 0 =
2 el : 2 800 ; : -
£ 400 2 = B 2 : 7 g 8
E 28 e £ 600 E / =
Z 300 z s E z : : : Do
Mol N H ‘] H H
200 A 400 : : s s
100 2000 f -
5 QRO R S s :b‘ g S :6 :6 4 —
R R
s &Q\ o o (,LQ\ SN (LQ\ oY A . SRS %Q‘Q\ Y %,LQ\ M . SO
O b8 ST el gt oS Tt T gt S o R R A R
(a) Bug reports over time (ONOS) (b) Bug reports over time (ODL)
140 [Blocker [Minor 500 | |HEE Blocker [J Minor
I Critical [Trivial B Critical Trivial
2 120 [EE Major 200 S Major 3 Unknown
2 100 & B Normal
g]
© 80 5 300
[
g 60 %
z E 200
Z 40 E]
z
20
100
8 ® T ¢ 3 £ 9 ®wW 49 9 kB £ 9
ciEf:E 222235
258 &£ 82 S5 2 £ g £ g g g
£ o S E 2 = 2 2 5 2 2
= O E)) =) @ 5] 2
g T 3 5 o E
= m
(c) Bug severity per release (ONOS) (d) Bug severity per release (ODL)
— TIF — TIR — TIF — TIR
800 —— z 3500 800 —— i 3500
+ + +
_ 700 + + 3000 _ 700 0 3000 _
= E: + + =) = * I T 5
o 600 + 2 = 600 1 ! 2
2 2500 & 2 2500 &
E soo| ¥ ;% * E E 500 i ! | : E
) T + + [2000 B & T o + 1 2000 F
2 400 1 . + 2 2 400 1 : + . 2
8 ! - 1500 g 8 ! 1500 S
£300| E | |] 2 300 ! ¥]
@ J— @ +
a ! S Q S
S 200 I | T w002 % 200 . + 1000 £
E ! — ! ! £ E E
. _ - . == - .
Previous Kingsfisher Loon Previous Carbon Nitrogen
releases (ONOS v1.10) (ONOS v1.11) releases (ODL v0.6) (ODL v0.7)

(e) TTF and TTR distributions (ONOS) (f) TTF and TTR distributions (ODL)

Figure 4.2: A first look at ONOS and ODL data sets: descriptive statistics of issues reported in the period
between December 2014 and February 1, 2018.

periodic table. The bug reports for the first release, Hydrogen (distributed in February, 2014) are not
included in the statistics, because only few bugs were reported at the beginning of ODL project.

The two controller platforms had a different approach to their issue tracking systems. While ONOS
has been using Jira since its inception for the documentation and management of its bug repository,
ODL relied at the very beginning on the internal mailing list and excel sheets, then used Bugzilla issue
tracker in the first 6 releases, and migrated to Jira in October, 2017. Although both issue tracking
systems offer the same reporting capabilities, ONOS bug reports provide higher level of detail and
less ambiguity. An example is the classification schemes for bug severity. While ONOS has five well

4.5. Best Model Selection 51

defined categories, ODL. has six, with majority of the bugs (68%) belonging to the default "normal"
category. Some bug entries in ODL issue tracker are even left unclassified, as it can be seen in Fig.
4.2d.

The distributions of TTF and TTR in ODL releases are presented in Fig. 4.2f. The distribution of
TTF is comparable to ONOS, while the distribution of TTR shows much larger variance.

Two particular releases, ONOS v.1.10 (Kingsfisher) and ODL v.0.6 (Carbon), are compared in
Table 4.2. The releases were distributed approximately at the same time (June 5, 2017 and May 25,
2017, respectively) and sufficient time had elapsed for both controllers to reach the stable phase. The
observed fault density per release, i.e the number of the bugs detected during the software lifecycle per

bugs

lines of code reported for a particular release, of the two controllers is close to 0.1 [7551, with ONOS

having slightly lower fault density.

Table 4.2: Comparison of ONOS v.1.10 (Kingsfisher) vs. ODL v.0.6 (Carbon) releases

| Controller | oNos | obL |
Release ONOS v.1.10 ODL v.0.6
Started June 5, 2017 | May 25, 2017
Lines of Code (LOC) 743,531 3,860,347
Reported bugs 76 493
Fault density [.| 0.128 0.102

Note that the release fault density per release (Table 4.2) is different than fault density per software
lifecycle (Table 2.1), since the latter accounts for the bugs reported during the entire software lifecycle,
not just the particular release.

4.5 Best Model Selection

Once the data has been collected and preprocessed, the best fitting SRGM to describe the stochastic
behaviour of the data set has to be found. The best SRGMs for the bug detection and bug resolution

processes are discussed in Sec. 4.5.1 and Sec. 4.5.2, respectively.

4.5.1 Bug Detection Process

The eight most widely used SRGMs for the bug detection process presented in the Table 4.1 are
shortlisted as candidate models. The empirical data, i.e. the cumulative number of detected bugs, and
the estimations of the two best fitting models for two stable releases of ONOS and ODL are presented in
Fig. 4.3. The models are ranked based on the MSE, as it was the optimization criteria of the parameter
fitting procedure (see Sec. 4.3.3), which is also indicated in the figure. Time-axis indicates the relative
time since the beginning of the first reported bug for a release.

The analysis shows that all 3-parameter S-shaped models, Generalized Goel-Okumoto, Inflection
S-Shaped, Gompertz and Logistic, fit the data well. Since the difference in MSE between these
models is rather small, the estimated number of bugs for the two best fitting models is shown. The
concave models, i.e. Musa-Logaritmic, Goel-Okumoto Exponential and Yamada Exponential, could
not explain the data, except for the few releases (Avocet, Falcon, Loon and Beryllium) that experience
more concave pattern.

52 Chapter 4. Assessing the Software Maturity with Reliability Growth Models

(<2}
o

50
50
40
40

30
30

20

Cumulative number of bugs
Cumulative number of bugs

X Data 20 X Data
10 —— LOGIST (3.65) 10| ¥ —— GGO (3.79)
—— 1SS (4.12) —— 1SS (3.93)
0 ok
0 2000 4000 6000 0 2000 4000 6000
Time [h] Time [h]
(a) ONOS v1.10 (Kingsfisher) (b) ONOS v1.11 (Loon)
w0 w0
2 400 2
a2 2 150
o o
g 300 g
g g 100
2 200 =
[} [0}
2 2
E X Data E 50 X Data
2 100 —— LOGIST (41.05) 2 — LOGIST (21.84)
3 —— GOMP (48.58) = —— 1SS (22.41)
© 0 © 0
0 5000 10000 0 2000 4000 6000
Time [h] Time [h]
(c) ODL v0.6 (Carbon) (d) ODL v0.7 (Nitrogen)

Figure 4.3: The best fitting models for bug detection process for stable ONOS and ODL releases.

The GoF metrics for all the models and the releases are compared in Fig. 4.4. All GoF indicators
show consistent results: the best model to describe the number of detected faults across all releases
are 3-parameter S-shaped models, showing very good scores in each metric. The best fitting models in
the most of the cases are Logistic and Gompertz, followed by Generalized Goel-Okumoto. Inflection
S-shaped model also shows very good GoF results, being the second best fit for most of the releases (for
12 out of 18 releases). Delay S-shaped shows slightly worse results, compared to the other S-shaped
models. This effect is due to the fact that this model has only two parameters to tune, one less than the
other S-shaped models.

4.5.2 Bug Resolution Process

An arbitrary combination of NHPP models can be used for fitting of the cumulative number of
resolved bugs applying the Eq.(4.10). Here, the four combinations of S-shaped models are presented:
Generalized Goel-Okumoto (GGO) and Inflection S-shaped (ISS). The models are abbreviated as a
combination of the initials of detection and correction NHPP processes. For the sake of comparison
we also include the reference model from [91] where both fault detection and resolution are modelled
as Goel-Okumoto processes, which is the most widely used model due to the analytical tractability of
the distributions for the combined process.

4.5. Best Model Selection 53

E
o & 5
T o > 2 <
s 82, =3t & N P
£288 .82 s % g Ei5883
<} 5 ® S 2 E g 3 24 2 2 28 5
>.‘_‘°ms«EmO¢5"5§-‘=o o L g 8 & =
< MoAmdmcom &8 2 9 3 - 20 TSedadsz oo
1SS
10 10
DSS
YEX
GOMP GOMP
LOGIST LOGIST
0 0
(a) TS (ONOS) (b) TS (ODL)

Carbon
Nitrogen

z
E
=
fo3
m

Boron

o
=
Q
=)
b=
g
g
El
ooy

2
8
=

Blackbird
Cardinal
Goldeneye
Kingsfisher

g =
=
£ 5

Drake
Emu
Falcon

[—]
o =
© (=]
o

@
S 8
154 =i
< =

Loon

MUSA
GO
GGO

1SS

1SS
DSS

DSs

YEX YEX

GOMP GOMP

LOGIST LOGIST

<0.9 <0.9

(c) R? (ONOS) (d) R? (ODL)

Figure 4.4: GoF metrics: Theil’s Statistics (7'S) and Coefficient of Determination (R?) for all ONOS and
OpenDaylight releases.

The best fitting model for four representative releases, Avocet, Blackbird, Junco and Loon, are
shown in Fig. 4.5. It can be seen that although the proposed models for the fault resolution process
could describe the data for some of the releases, the actual data shows higher deviation from the fitted
model, than in the previous case. In the first two cases (Fig. 4.5a and Fig. 4.5b) the models fit better
the data. The best fitting models are ISS-ISS and GGO-ISS.

The two other releases, Junco and Loon, have experienced sudden trend changes around the official
release date. In the case of Junco (Fig. 4.5c) two sudden increases can be detected: the fist one happens
around its official release and the second one shortly before the distribution of the subsequent release.
Similar behaviour can be observed in several other releases (Goldeneye, Hummingbird, Ibis). Such
sudden trend changes due to external signals cannot be captured by a simple combination of NHPP
models. The trend shifts due to the changes in a debugging effort shortly before the new upcoming
release, can be modelled by introducing the time change points in the underlying NHPP models, as
described in [76]. This approach requires the time change points to be provided either manually or
defined as additional unknown parameters of the model. In the first approach, the generalizability of
the model is poor, while in the second approach the estimation of the parameters in the small data

54 Chapter 4. Assessing the Software Maturity with Reliability Growth Models

2 60 2 60
2 S 2
« 50 = 50
o o
3 3 40
o 40 X Q
g g
2 30 2 30
E E
5 20 Data ISS-ISS 5 20 GGO-ISS
E 10 detected —— detected g 10 —— detected
=) resolved —— resolved = %X —— resolved
o 0 X @] 0
0 2000 4000 6000 8000 0 2000 4000 6000 8000
Time [h] Time [h]
(a) ONOS v1.0 (Avocet) (b) ONOS v1.2 (Background)
60
2] %)
2 50 x X 2
k) < 50
Gy Gy
o S)
o 40 b
) o 40
E £
30
= 2 30
£ 20 2 20
= ISS-ISS = Data GGO-ISS
g 10 detected = —— detected g 10 | # detected = —— detected
5 resolved —— resolved 5 S resolved —— resolved
0 0
0 2000 4000 6000 0 2000 4000 6000
Time [h] Time [h]
(c) ONOS v1.9 (Junco) (d) ONOS v1.11 (Loon)

Figure 4.5: Comparison of the best fitting models for fault resolution process for four representative releases.

sets might be noisy (e.g., fitting the model with five or more parameters to dataset with less than 30
samples).

In the case of Loon (Fig. 4.5d), the trend after the official release is changed, indicating the change
in the debugging strategy. Similar behaviour can be observed in Cardinal, Drake, Emu, and Falcon.
It has to be noted that in open source software, such as ONOS, all the users are at the same time the
testers, as anybody can report bugs in the public issue tracker. However, only a limited group of people
will work on actually fixing the bugs. When this discrepancy between the "test" and "debug" team is
too large, or when there is a sudden change in the size of debugging effort, the time scales have to be
adjusted accordingly. The models, such as [147], can capture the changes in the test effort, but have
the same problem of the accuracy of the parameter fitting on comparatively small data sets.

The same pattern can be observed also in the Fig. 4.6, where the MISE metrics of the five proposed
models for all releases are compared. It can be observed that GGO-ISS and ISS-ISS outperformed the
reference GO-GO model, for all the releases, where fitting was possible.

4.6 Software Maturity Assessment

This section presents the applications of SRGMs for the software maturity assessment, illustrating
its practical value in three software management problems. The first problem addresses the optimal
software release and software adoption times, based on the reliability and cost criteria, which is a

4.6. Software Maturity Assessment 55

.
o 8 5}
[=)
5 22 N
=} o
8%’)%&):8%2 S % g
S &S EETS 2L s E 8
< MmO AMmmOT s 2 & 3 - 50
GO-GO I
GGO-GGO
GGO-ISS I 25
ISS-ISS
1SS-GGO
0

Figure 4.6: Comparison of MSE of SRGMs for the bug resolution process.

typical use case of SRGM found in the literature [78, 90, 95, 96, 99, 194, 195]. Next, two novel use
cases are presented, relevant for the SDN community, showing how analysis of SRGM parameters can
be used for (i) an early estimation of software reliability, and (ii) as criteria to discriminate between
alternative controller platforms, e.g., ONOS and ODL, when reliability has the highest priority.

4.6.1 Optimal Software Release and Software Adoption Time

SDN controllers comprise all the functionalities of the network operating system, and require constant
updates to keep up with the evolution of the user requirements [63]. Rapidly changing complex
software systems are prone to bugs, which can be detected and removed only through extensive testing.
Hence, it is of the utmost importance to provide tools to quantify the maturity of the software and
determine when it is ready to be released and integrated into production networks. This section
discusses how SRGMs can be used to to estimate the quality of controller software, and determine the

optimal software release and adoption time, based on the software reliability and the cost criteria.

4.6.1.1 Software Reliability Criteria

Software reliability, defined in the literature as the probability of failure-free software operation for a
specified period of time in a specified environment, is an important indicator of software quality. Once
the best model to describe the fault report data is selected and the parameters are estimated, it can be
used to predict software reliability metrics: expected failure rate, residual bug content and conditional
software reliability, as defined in Sec. 4.3.1 by Eq.(4.6), Eq.(4.5) and Eq.(4.7) respectively.

The software reliability metrics for the Kingsfisher release are presented in Fig. 4.7. Kingsfisher
is the most recent ONOS release whose support cycle has ended at the moment of data set collection.
The best fitting model is Logistic, as illustrated in Fig. 4.3a. The official release date f is indicated
with the vertical line in the figure, and the time is expressed as the relative time since the start of the
testing. Note that only severe bugs (bugs with major, critical and blocker priority) are considered.

Residual bug content represents the number of undetected faults remaining in the software. It
can be seen in Fig. 4.7a that the residual bug content was relatively high, as 14 severe bugs were still

56 Chapter 4. Assessing the Software Maturity with Reliability Growth Models

B ()= 14.0] B A(t)=0.0175
0.025 i
0.020
0.015
0.010
0.005
0 : 0.000 L
0 2000 4000 6000 8000 0 2000 4000 6000 8000
Time [h] Time [h]
(a) Residual bug content r(¢) (b) Failure intensity A(r)

1.0 ‘; At=4.07 mon
0.8 .
0.6 .
0.4 .
; R(z[ty+ At)=0.90
0.2 . B t=2616h
' r =3 mon
0.0

0 1000 2000 3000 4000 5000 6000 7000 8000
Time [h]

(c) Software reliability R(x]|r)

Figure 4.7: An example of the optimal software adoption and release time based on the reliability criteria.
Vertical lines indicate the date of the official Kingsfisher release time ().

remaining in the software on the day of its official release. Three months after the official release, the
number of remaining bugs is expected to drop to zero.

Instantaneous failure intensity, or alternately expected time until the next software failure, can be
derived from the parameters of the mean value function. The expected failure intensity, illustrated in
Fig4.7b, on the day of Kingsfisher’s release was at the level of 0.0175 '%, or equivalent to approximately
2.38 days between detection of successive severe bugs. The fault intensity is highly relevant for the
software developers, as it can indicate when the software is ready for the release. This metric could
help the developers estimating the efficiency of investing the additional testing effort.

Conditional software reliability represents the probability of not encountering any software failure
in the time interval [, + x). The time interval of interest starts with the software adoption time ¢,
with a duration of x time units, specified by the user’s desired warranty period. It can be observed
that in order to achieve reliability of R(x|f) = 0.90, during maintenance interval of x = 3 months,
the user should defer the software adoption more than A > 4 months after its official release 7y, as
illustrated in Fig. 4.7c. Note that the recommended adoption deferral period of 4 months is larger than

the 3-month gap between two consecutive ONOS releases. Nevertheless, it is a common practice in

4.6. Software Maturity Assessment 57

telco and enterprise domains not to use the most recent, but the lagged version, due to the stability
issue. Hence, ONOS provides the support for the latest two releases, implying the support window of
6 months after the official release date.

4.6.1.2 Software Cost Criteria

Software management needs to balance the effort spent on the testing in the pre-release phase, and
effort spent on the bug removal of the software in the operational phase. Open source SDN controllers,
such as ONOS and ODL, offer no guarantees on either performance or reliability. However, many
commercial solutions provided by network vendors, such as Ericsson and Huawei, are built on top of
these controllers.

The software cost model, defined by Eq.(4.8), generalizes most of the cost models proposed in
literature. The testing cost ¢,(f) function accounts for the cost of the software testing team, the cost of
the bug removal, the setup and the maintenance of the testing environment, the code documentation, etc.
The cost during the warranty period c,,(¢) includes the penalty paid for every severe outage encountered
during the normal operation, the cost of network service interruption, the cost of the bug removal and
the support team and sometimes also a discounted value of money for the long support periods. These
cost factors must be determined per use case basis. The cost functions ¢;(¢) = C; and ¢,,(t) = C,, are
assumed to be constant, i.e., independent of the bug complexity, which is common assumption in the
literature [136,]. The constant factors represent the average cost of bug removal in test (C;) and
operational (C,,) phases. The software cost function from Eq.(4.8) then can be expressed as:

C(T) = C,T + Cpo[m(T + Tyy) — m(T)] (4.16)

where m(¢) is a mean value function of the best fitting model, discussed in the previous section. The
optimal software release time 7 is obtained by finding the minimum of expected cost function. For

the simpler models, e.g., Goel-Okumoto, the optimal solution, i.e. the minimum of the cost function
dC(T)
daT

= 0, can be found analytically, while for other models the minimum has to be found numerically.

CU
bug |

while the warranty period of 7, is assumed to be 3 months in the baseline scenario. The impact of

The relative cost (in unnamed cost units CU) of C; and C,, is assumed to be 1[%] : 100[

different C; : C,, and T,, on the software cost is illustrated in Fig. 4.8. In some scenarios the cost
function has no clear minimum. In the cases when the total cost of bug removal in the oprational
phase is expected to be low, either due to low removal cost C,, (Fig. 4.8a) or the very short warranty
period T7,, (Fig. 4.8b), the optimal software release policy is to distribute the software immediately.
In the baseline scenario, a clear minimum for the software release time 7 can be observed, which is
approximately 40 days after the official software release date (fp = 26164h), highlighting the benefits of
the extended testing period.

4.6.2 Early Prediction of Software Reliability

In order to estimate the SRGM parameters, a large number of samples, i.e. bug reports, has to be
provided. In case of ONOS, the standard parameter fitting techniques cannot accurately predict the
model parameters before 90% of all bug reports are available, which happens approximately after six
months of testing when it is already too late for software developers (as the software is already released)

58 Chapter 4. Assessing the Software Maturity with Reliability Growth Models

16000 — &)
: T, =3 mon — (,:C,=1:100
14000 - - C:C,=1:25 --- Cy:C,=1:200
— 12000 ----- Cp:Cp=1:50 ----- C;:C,=1:400
) N -
© 10000 | :
2 .
‘2 8000 T Tl
= .
% 6000 .
o
© 4000
2000

0 1000 2000 3000 4000 5000 6000 7000
Software release time T [h]

(a) Impact of the relative cost of code testing (Cy) and bug removal (Cy,,) during
release warranty period

C

8000 (D
7000

_, 6000

D e - e

© 5000]..~"

2 L

‘2 4000

-]

+ 3000

o) -

© 2000 Cy:C,=1:100 — T,=3 mon
1000 ----- T,=12mon ----- T, =2 mon

o -.- T,=6mon -.- T,=1mon

0
0 1000 2000 3000 4000 5000 6000 7000
Software release time T [h]

(b) Impact of the duration of warranty period (T,)

Figure 4.8: An example of optimal software adoption and release time based on the cost criteria, illustrated in
the example of Kingsfisher release.

and the SDN operators (since new release is already available). Estimating the SRGM parameters when
only few data samples are available, is especially difficult for S-shaped models, since they change the
concavity around three months after the start of the integration testing (Fig. 4.3). However, it can
be observed that the SRGM parameters show very small variation across the releases, thanks to the
incremental development strategy of ONOS, as it can be seen in the case of the Gompertz model in
Fig. 4.9. This knowledge can be used to guide the parameter fitting procedure, and regularize the
model which improves the prediction accuracy in the early phase. The regularization of the model is
implemented by restricting the parameter search space, as described in Sec. 4.3.3.

The trend observed in Fig. 4.9 shows several interesting points how the regularization of the search
space can be done. The scale parameter a and the shape parameter b show comparatively small
variations between the consecutive releases. The parameter a varies between 54 and 85; parameter b is
in the range (0.99879, 0.99935). The parameter k for the releases with S-shape bug detection trend is

4.6. Software Maturity Assessment 59

in the range (0,0.02). The releases with concave trend (Avocet, Falcon and Loon) show higher values
of parameter k, in the range of (0.5,0.85).

GOMP
100
5 "y
60 @ - ." ~'...~-." Q@ ® 0 @
40
0.9995
0.9990 | A-.. O Ao, A
A A A A
0.9985
B =
0.08| B kK
0.04
0.02 : g B
==t Im=] .. |
F QO DS S e Qe O S
?éoo c\,’:”@ {,&QQ{O Q}@ Q&Q 5‘?)&% .Q&Q\ & é,ogQ\/o
& S &
o & ©

Figure 4.9: Estimated parameters of Gompertz model for bug detection process for all ONOS releases.

Several parameter regularization strategies have been explored. The first proposed strategy is based
on the extreme values, where the search space of every parameter & is bounded to [0.9 &1, 1.1 Enaxl,
which represents the range of previously observed parameters extended by 10%. The second strategy
based on the mean m, and the variance o2, where the parameter search space is bounded to mg + 207.
The third proposed strategy is based on the parameter trend, considering an exponentially weighted
moving average, which is defined as:

e

—wé+(1- cu)m?1 (4.17)

where the average value of the parameter & after i releases m’§ is computed as a weighted sum of
the estimated parameter for the i-th release £ and the previous average value mé_fl. Here, a value of
w = 0.5, is assumed, and the parameter search space is bounded to m’§ + 20¢. Note that in cases
where the lower bound is negative, the values are capped to zero, due to the nature of the model. The
parameter search space bounds with different preparation strategies are compared in Table 4.3.

Table 4.3: Gompertz model regularization with parameter prediction strategies, based on: i) extreme parameter
values, ii) mean and variance and iii) moving average.

[& [[[09&min. L1émax] | [mg+20¢] [Im} £20¢] |
a [50.74, 85.15] [41.62, 80.65] [34.21, 73.64]
b [0.9888, 1.0092] [0.9987, 0.9992] | [0.9982, 0.9987]
k [8.2 e-7, 0.0933] [0.0, 0.0936] [0.0, 0.0629]

All prediction strategies narrow down the parameter search space: while the first strategy covers

extreme values, the range for the other two are more narrow. Overall, all prediction strategies showed

60 Chapter 4. Assessing the Software Maturity with Reliability Growth Models

improvement over the standard fitting techniques, demonstrating the positive impact of the prior
knowledge on the parameter fitting accuracy. The prediction strategy based on the trend shows the
unstable performance when parameter experienced the sudden trend changes, as in case of parameter
k for Loon release, illustrated in Fig. 4.9. It might be possible to use a different regularization strategy
for each parameter. As a part of the future work such hybrid strategies will be considered, which might
have better performance after more software releases are available and behavioural patterns of each
parameter can be estimated more precisely.

Early prediction of my,,(t)

60 |
: | X
50 : I <X .
: - R T
§ : %/ I
40 : /}%
2 : g 1
B ></>€gg |
= & 1
2 30)
g | e b
E] 1
Z 20 : 1
;& X empirical data
101 & |- standard (50%) — — standard (90%)
----- regularized (50%) — — regularized (90%)
0 I
0 1000 2000 3000 4000 5000 6000
Time [h]

(a) Early prediction of mean value function mgemp (1), when limited
number of samples are available.

Number of detected bugs

16 23 34 37 46 48 48
25
~+— standard
L <— regularized
20
15
[s4]
wn
z
10

1000 1500 2000 2500 3000 3500
Time [h]

(b) Evolution of Root Mean Square Error (RMSE) with the number
of training samples.

Figure 4.10: Early prediction of software reliability, when only few samples, i.e. bug reports, are available for
the fitting of SRGM parameters. Benefits of regularization can be seen in the evolution of mean value function
and RMSE, as illustrated for Loon release and Gompertz model.

The benefits of regularization on the early prediction of software reliability, can be quantified by
observing the estimated mean value function mg,,,,(f) and the evolution of Root Mean Square Error
(RMSE), when the limited number of the samples, i.e. bug reports are fed to the parameter fitting
function. The results for the prediction strategy based on the observed mean and variance are shown
in Fig. 4.10. The impact of the error in parameter estimation is illustrated in Fig. 4.10a. The error of

4.6. Software Maturity Assessment 61

the estimation with 50% of the available samples with standard fitting techniques is much larger due
to the local variations of early samples. It can be observed in Fig. 4.10b that the regularized model is
able to estimate the parameters with higher accuracy much earlier, with 30% fewer samples. While the
standard fitting technique requires 32 samples for RMSE to drop below 3, the regularized technique
only needs 21 samples.

The results in the figure are presented for the Gompertz model, which has the best performance
across all releases, being the best fit for five releases, and showing very good results for the other
seven. Moreover, the parameters of Gompertz model have shown the smallest coefficient of variation
(variance/mean). However, the general conclusions hold for the other three 3-parameter S-shaped
models, as well. While studying the impact of the model selection, it is observed that, in general,
the regularization improves the predictive capabilities of SRGM in the early phase of the software
lifecycle for all 3-parameter S-shaped models, but the magnitude of the improvement depends on the
data set. For Junco release, none of the combinations of the models and prediction strategies show
significant improvements with 50% of the samples. This is probably due to the timing of the burstiness
of bug reports at the beginning of testing (see Fig. 4.3). Further improvements could be achieved with
smoothing techniques and grouping of the data, e.g, by reducing the time resolution of the bug reports
from hours to days or weeks. The limitations of SRGM are further discussed in Sec. 4.7.

4.6.3 Software Maturity Metrics: Comparison of ONOS and ODL

As SDN is gaining the popularity a multitude of commercial and open source SDN controllers have been
developed. While most of the early open source solutions have remained in the research community at
prototype level, two projects have reached production grade readiness: ONOS and ODL. In this section,
the controller selection problem is addressed, relevant for a network operator choosing the optimal
commercial SDN controller platform for its network, or alternatively, an open source platform as a
code base to build his customized controller upon, when code maturity is the major concern. Although
the difference in the support of some of the advanced networking features is still present (e.g., the ODL
support for the wireless networking), the two controller platforms are converging and it is not clear for
network operators, which solution to choose based only on the supported functionality. For instance,
the commercial SDN controller platform by Ericsson is based on ODL, while Huawei Agile controller
solution is based on ONOS, and AT&T deploys both platforms in its production networks.

The release fault density presented in Table 4.2 is a static measure of the code quality, which can be
reliably computed only after the software lifecycle is over and the support has ended. Several methods
have been proposed for an early estimation of fault density, based on the complexity, used programming
language and other software features, which might not always be available to the public. On the other
hand, the SRGM framework treats the software component as a black box, and provides the estimation
of the software reliability without requiring the information about the code internals. The challenge of
direct comparison based on the empirical data between the two releases is illustrated in Fig. 4.11a3. It
can be observed that the direct comparison of the empirical data is not straightforward (assuming that
the bug detection is a realization of the stochastic process), and that on June 1, 2017, both controllers

3In software maturity analysis bugs of all priorities reported during entire lifecycle are included in the analysis, as illustrated
in Fig. 4.11 and 4.12, while in Fig. 4.3 only severe bugs (ONOS) and bugs reported after the start of the integration testing (ODL)
are included.

62 Chapter 4. Assessing the Software Maturity with Reliability Growth Models

had detected around half of the number of bugs. Instead, it is much more precise to compare the fitted
curves of the two controllers in order to project the expected number of bugs in the future.

Kingsfisher (data) A— Carbon (data)

—— Kingsfisher (LOGIST) —— Carbon (LOGIST)

» 1.0

o

2

2 0.8

o

o

206

g

5

= 0.4

(]

2

T 0.2)

Q i

~ o

0.066’\"\’\‘\’\(\
>

oY (LQ\ (LQ\ (LQ\ (LQ\ ,.LQ'\ ,LQ\ %Q\ (LQX

OF " 9ef g gt T 0T o ¢ g

(a) Emprical and fitted data for the two controllers.

1.0 1.0
o T o ; ;
20.9 A SUUTTT 209 : :
2 . 2 !
Gy G ' 0
o o o
2 0.8 5 0.8 : 5
k) i< : :
: : vy
= 0.7 g 0.7 . '
2 2
b= —— Kingsfisher b= —— Carbon
E 0.6 v 6, = 0.3693 g 0.6 : v 6, =0.3029
A 0, =0.0398 ' A 0, =0.1983
RN NIRRT
N N N N N N N\ N N N N N N\ N
W e © 9 ge? T ot W = 9 ee® ot o
(b) Software maturity of Kingsfisher: one (c) Software maturity of Carbon: one (6;)
(61) and three months (6,) after the software and three months (6;) after the software re-
release. lease.

Figure 4.11: Software maturity evolution over time for Kingsfisher (ONOS v1.10) and Carbon (ODL v0.6).

In order to compare the reliability and code stability of the two SDN controllers, this work
proposes the software maturity metric. The software maturity metric is derived from the respective
SRGM as a scaled gradient of the cumulative number of bugs, i.e., A(f)/m;uqax, Which provides a
measure on how far is the software from the stable region (i.e. how close to horizontal line) at
any given moment. The practical value of the proposed software maturity metric is illustrated in
Fig. 4.11b and Fig. 4.11c, where the software maturity after one (6;) and three months (6;) after
the official software release is indicated. The units are expressed as the percentage of detected
bugs per day, where zero indicates the stable software. It can be observed that the maturity of
Kingsfisher improves much faster 6, = 0.3693[(%] — 6, = 0.0398[(%], compared to the Carbon
0, = 0.3029[(%] — 0 = 0.1983[(%]), thanks to the shorter release lifecycle of ONOS.

The software maturity metric can be further used to profile the behaviour of the controller, and
quantify the improvement of the software quality over different software lifecycle phases, as illustrated
in Fig. 4.12. The comparison of the maturity evolution over time across different releases can be used

4.7. Concluding Remarks 63

to track the progress of the software development process and the efficiency of the testing effort on the
improvement of software quality.

Final Early Late Support Final Early First Second

tests adoption adoption end 100 Early tests tests adopt. patch patch 100

Mature
' ' ' software
................... e 80%

Mature
software

Med. bug
content

Med. bug
content

..................... . B . 50% e WIS 50%

High bug
content

High bug
content

. . g ; L ;
FR Loon Magpie M5 FR SRI1 SR2

(a) Kingsfisher lifecycle: the date of the formal release (FR), (b) Carbon lifecycle: the start of integration testing (Milestone
subsequent release (Loon) and the end of support (after Mag- MS5), the date of the formal release (FR), and the release of
pie release) are indicated in the figure. software patches (SR1 and SR2) are indicated in the figure.

Figure 4.12: Software maturity in different phases of the controller lifecycle.

The challenging part of this process is the early estimation of m,,,x, which have to be estimated
before the software lifecycle is over. The approach for an early estimation of SRGM presented in
Sec. 4.6.2 can be used to evaluate m,,,,. Note that in this particular case, at least 50% of the bug
reports were available before the official software release dates for both controllers, in which case our
approach for an early prediction can estimate the SRGM parameters with the reasonable accuracy.

4.7 Concluding Remarks

4.7.1 Summary

This chapter presents a framework to assess and to predict the maturity of SDN controllers, extending
the classical SRGMs. Using real data on software failures of the SDN controllers ONOS and ODL,
SRGMs describe the stochastic behaviour of bug manifestation and correction processes, which makes it
possible to analyze the reliability of controllers’ software releases. The investigated software reliability
metrics derived with SRGM can be used to guide software developers and network operators to help
making important operational decisions: e.g., deciding on when a software controller is mature enough
to be released and deployed. The model regularization techniques for the early prediction of software
reliability based on transfer learning, i.e., the observed trend of the model parameters of previous
software releases have been proposed. Moreover, novel software maturity metric has been defined,
which can be used as a selection criteria for controller software candidates.

4.7.2 Discussion

Threats to validity. The presented framework imposes few limitations on the prospective use
cases. The first limitation comes from the fault reports, as the results are only as good as the accuracy
of the data sets. SRGMs require the complete and uncensored fault reports, in order to accurately
estimate the parameters in the model. Since neither the accuracy nor the completeness of the reported

64 Chapter 4. Assessing the Software Maturity with Reliability Growth Models

data in the public issue trackers can be guaranteed, the focus is shifted from the quantitative analysis
to the general approach to quantify and forecast the software reliability. The second limitation stems
from inherent assumptions of SRGMs. The models assume independent times between the consecutive
fault reports, as well as that every undetected fault contributes the same to the fault manifestation rate,
which is not entirely met in practice. Although there is no guarantee that any network software can
be modelled as mixture of simple SRGMs, previous studies have shown that described models can
be successfully applied to many large open source software products, such as Apache Web Server,
Mozilla Firefox, and Eclipse IDE (Sec. 4.2). In order to benefit from early prediction method, there are
several important dependencies: first, a relatively large number of regular releases has to be available;
second, the behaviour of the releases has to be similar enough, which has been the case only for ONOS
so far. However, as the number of releases increases for other SDN controllers, the regularity of the
release distributions is expected to stabilize (observed in other open source projects, e.g., Linux OS).
Consequently, the early prediction approach might find more valuable applications for further SDN
controllers in near future.

Generalization of the results. The main practical value of the proposed approach lies in the
applicability of the framework for the assessment of the software maturity of network control software.
As demonstrated for two open source SDN controllers, ONOS and ODL, the analysis can be applied to
other open source products or even the commercial products of major vendors (e.g., Huawei or Cisco)
which build up on ONOS and ODL code base. Moreover, bug reporting systems of the controllers’
collaborative software projects provide a valuable source of data that can be used by our framework.
For instance, developers can report bugs either directly via code version control systems like Git or in
separate issue trackers, e.g, the open source Bugzilla or the commercial Jira tracker. Furthermore, the
described workflow can be easily integrated into existing AGILE software development techniques,
such as SCRUM; hence, enabling the developers even receive continuous feedback on the quality of

their code and efficiency during development process.

Future work. Although the SRGMs have shown to be a powerful tool for forecasting of the
software defects in network control software, they suffer from two main drawbacks. First, the early
prediction is often inaccurate and large number of samples need to be collected before a reliable model
parameter estimation can be made; second, the categorical data used for the identification of critical
defects is often subjective. Further enhancements can be achieved by improving the predictive power of
reliability growth models with Artificial Neural Networkss (ANNs), and automating the classification
and analysis of the large corpus of software bugs with Natural Language Processing (NLP).

Improving predictive power of reliability growth models with ANN. Estimating SRGM parameters
in early operational phase, may lead to inaccurate estimations when standard statistical inference
techniques are used. ANN architectures, such as Recurrent Neural Networks (RNN) can be used to
improve predictive accuracy of SRGM in two ways. First, RNNs are better in separating long term
trends from short term variations, which was a challenge for traditional SRGM models. Second, RNNs
are expected to benefit more from the transfer learning, and can be trained on the similar projects with
larger data sets.

Improving accuracy of software defect prediction and defect removal with NLP. The accuracy of

fault forecasting with SRGM depends on the accuracy of the empirical dataset, i.e., the reports on the
history of previous failures. The historical failure reports are often subjective opinions and hence,

4.7. Concluding Remarks 65

often contain inaccurate information [1 18]. NLP can be used to reduce the noisiness of the subjective
categories, such as defect severity, by automatic classification the bug reports based on the free-text
input, and other categorical attributes. Another application of NLP is automatic knowledge extraction
from large corpus of free-text descriptions in bug reports and error logs, which can guide the developers
towards faster defect localization and removal [150].

Chapter 5

Dependability Assessment Framework for
Distributed SDN Implementations
(DASON)

5.1 Introduction

5.1.1 Motivation, Problem Scope and Research Challenges

In SDN, network programmability is enabled through logically centralized control plane. Production
networks deploy multiple controllers to ensure scalability, high availability and high performance.
In distributed control plane architectures, the benefits of logically centralized network control are
preserved by means of distributed protocols, such as Gossip and Raft [139]. However, correct and stable
implementation of distributed network control plane is not trivial, as confirmed by Google’s report on
critical network outages [63], which showed that control plane issues prevail in their B4 WAN!. Their
analysis showed that under control plane software failures, maintaining globally consistent network
state is difficult, and the cascade of control-plane element failures is a common culprit of critical

customer impacting failures.

Defects in the implementation of distributed network control plane are particularly critical, given
that such architecture is supposed to provide high availability, a key enabler for mission critical
applications. Nevertheless, the state of the art literature is still missing a comprehensive study on the
prevalence of failures in imperfect distributed SDN orchestration platforms. The goal of this study is to
close this gap by systematically studying the nature of such failures and providing high fidelity models
that can reproduce the stochastic behaviour of real-life distributed SDN platforms. Such models are
needed in order to identify dependability bottlenecks, and reliably assess whether SDN solutions are
ready to be deployed in a particular use-case scenario, such as industrial networks [7]. The controllers
in this study are ONOS [28] and ODL [119], two of the largest distributed production-grade open
source SDN orchestration platforms, whose code internals and bug repository are publicly available,
allowing us to perform an in-depth dependability assessment.

B4 [86] Google’s internal WAN, carrying the traffic between data center clusters, is arguably the biggest live SDN network,
both in geographical scale and the volume of traffic it serves.

67

68 Chapter 5. Dependability Assessment Framework for Distributed SDN Implementations

5.1.2 Methodology: Data-driven Stochastic Reward Nets (SRN)

Dependability assessment framework for distributed SDN implementations, named DASON, is pro-
posed in this chapter. The goal of DASON is a holistic assessment of system dependability, both in
the control plane and service plane level. DASON is data-driven dependability assessment framework
based on Stochastic Reward Nets (SRN), as illustrated in Fig. 5.1. The framework implements a general
analyse-model-evaluate meta-workflow for dependability assessment, and it is applied to the use-cases
of open-source distributed SDN orchestration platforms.

DASON: DATA-DRIVEN DEPENDABILITY ASSESSMENT FRAMEWORK
FOR DISTRIBUTED SDN PLATFORMS

(@ Empirical data collection and analysis
- Analysis of open-source distributed SDN orchestration platforms,

MINING SW based on public code repositories and issue trackers
REPOSITORIES . . .
System - Localizing dependability bottlenecks and failure modes
architecture,
sw. defects & @ System modelling with SRN
failure modes . i L
MODELLING - Stochastic models for imperfect distributed SDN control plane,
. ABSTRACTIONS incl. the failure modes identified in the previous step
Modelling
dependencies - Rewards associated with KPIs: e.g. service interruption time
between sw.
components ® Quantitative dependability evaluation
DI IRIBAT LI - Characterization of failure dynamics in distributed SDN control
ANALYSIS . h -
plane and user-perceived service availability

- Control plane design trade-off(s): e.g. cluster deployment scenario

Figure 5.1: An overview of DASON: Data-driven dependability assurance framework based on Stochastic
Reward Nets (SRN).

1. Mining software repositories. In the analysis step, the system architecture and failure modes
can be extracted by mining software repositories of two distributed SDN platforms, ONOS and ODL,
whose code repositories and issue trackers are open to the public, facilitating the in-depth analysis of
system vulnerabilities.

2. Modelling abstractions. The modelling abstractions are defined in the formalism of SRN [75].
SRNs can be directly mapped to Markov chains, and are widely used in modelling complex systems
consisting of large number of dependent components. The modelling abstractions for single controller
nodes, their interaction using distributed system protocols, as well as the services that run in such
architectures are provided. Dependability KPIs of interest, e.g., downtime distribution and outage
frequency, are computed by assigning reward rates at the SRN. Model parameters are based on real-life
controllers and systems of a similar function and complexity.

3. Quantitative dependability evaluation. Once the stochastic models are parametrized, they
can be used to characterize the failure dynamics in a distributed SDN control plane, as well as their
impact on user-perceived service availability. Different control plane designs, e.g., cluster size and
deployment scenarios, can be compared easily, by modifying the parameters of the stochastic models.

5.2. Related Work 69

5.1.3 Key Contributions

The contributions of the work presented in this chapter can be summarized as following:

i. A comprehensive analysis of real-life distributed SDN implementations is conducted, with the

goal of localization of software defects and prevalent failure modes.

ii. The modelling abstractions for an imperfect distributed control plane, and its interaction with the
service plane are proposed, as well as the reference models of a stand-alone controller deployments
and preventive maintenance policies.

iii. The parametrized models are used to characterize the failure dynamics in realistic scenarios,
including not only pure control plane dependability metrics, but also user-perceived service

availability.

The results presented in this chapter have been published in peer-reviewed journal [6], and con-
ferences [14, 16]. The first SRN model of an SDN controller was proposed in [14]. However, this
first model did not address the interactions between distributed controller replicas, a leading cause of
the recent controller failures, as shown in [16]. Hence, in [6] more accurate modelling abstractions
for imperfect distributed SDN implementations are provided. Moreover, the previous study [16] is
extended with taxonomy and systematic analysis of the distributed control plane defects.

The remainder of this chapter is organized as following. Sec. 5.2 provides an overview of the
limitations of related work on distributed SDN controller frameworks, and relevant model-based
studies. Sec. 5.3 presents an overview of distributed SDN control planes, while Sec. 5.4 discusses
defects of real life distributed SDN implementations. In Sec. 5.5 modelling abstractions based on
SRN for imperfect distributed SDN plane are presented, and are used for the quantitative analysis of
control plane and service availability in Sec. 5.6. Sec. 5.7 concludes the chapter with a summary and
discussion of the results.

5.2 Related Work

5.2.1 High-availability in Distributed SDN Implementations

This section presents an overview of the studies on distributed SDN platforms, identified issues in
distributed control plane implementations, measurements-based benchmarks and evaluations of such
implementations, as well as the large empirical studies that motivated the work presented in this chapter.

Distributed SDN platforms. A good overview of distributed SDN control platforms is presented
in [26]. The survey compared different architectural designs and their approaches to address scalability
and high-availability issues. However, most of the considered controllers have not made it into
production environments, such as Onyx, HypeFlow, DISCO and Kandoo [70, 97, ,], or are
closed proprietary solutions, such as Google’s B4 [86] and Espresso [197]. Hence, the focus of this
chapter is on ONOS [28] and ODL [119], two production-grade open source controllers, which form the
code-basis for many other commercial vendor products. The software maturity of these two distributed
platforms, in terms of the reliability growth, has been compared in [5], as presented in the previous

70 Chapter 5. Dependability Assessment Framework for Distributed SDN Implementations

chapter. The further mining of ODL software repositories [16] identified the clustering module, i.e.,
distributed control plane implementation, as the most vulnerable in terms of the number of software
defects, but it did not investigate further the nature of such issues.

The issues in distributed SDN implementations. The issues in distributed SDN implementa-
tions have been addressed by several studies. Stability under high load of distributed control plane
implementations with ONOS was analyzed in [68]. The authors have shown that consensus protocols,
such as Raft, misbehave in overload conditions, due to increases in the delay of heartbeat messages and
time-threshold based failure detectors. Such behaviour triggers frequent leader re-elections, leading
to a crash of the entire control plane. The same effect of performance degradation under high load
causing a node flapping, repeated leader elections, and a cascade of control plane failures was also
observed in [44], which noted that the problem was already reported in the bug repository. Sakic et
al. proposed ODL control plane enhancements, such as adaptive consistency [160,] addressing
the issue of chattyness of consensus protocols, and Byzantine Fault Tolerance (BFT) protocols [159]
addressing the security and reliability issues of misbehaving controllers. The mining of ONOS and
ODL bug repositories, discussed in Sec. 5.4, exposes many more issues of practical distributed control
plane implementations.

Measurement-based studies on distributed implementations. Two informal measurement stan-
dards on SDN control plane benchmarking, by IETF [29] and ONF [138], specify cluster performance
and stability tests. The performance of ODL clustering, in terms of synchronization overhead, failure
detection and failover time, was analyzed in [170], while ONOS inter-controller traffic in different sce-
narios was measured and modelled in [125]. An ONOS report on SDN control plane performance [140]
discusses distributed design solutions considered by developers, as well as the final implementation,
and demonstrates the improvements compared to an older release. These standard performance and
cluster stability tests have already been incorporated in the ODL and ONOS test suites.

Despite the extensive testing many of the bugs go unnoticed and manifest only in the production
environment. One of the reasons why many bugs escape the testing phase is non-determinism, such as
racing and concurrency issues, which makes them extremely hard to reproduce, since triggering them
requires precise timing between input events and internal procedures [107]. In [69,] the authors
showed a huge number of concurrency violations in SDN controller applications. In the follow-up
work [117], the concurrency violations were clustered and filtered, facilitating fault localization of
the root causes analysis for the developers, demonstrating its efficiency on the Floodlight controller.
Indeed, the analysis of production-grade controllers presented in this chapter shows that concurrency
issues are the root cause in many of the reported bugs in implementation of distributed protocols.

Empirical studies on distributed systems. Google’s report on critical network outages [63],
showed that control plane issues prevail in their SDN-based B4 WAN. Their analysis showed that
maintaining globally consistent network state is a challenge, due to the control plane convergence
delays, inconsistency between control plane elements, as well as synchronization between data and
control plane. A number of partial and complete failures of control plane elements and the control
plane network, including the cascade of control-plane element failures were observed. Noteworthy are
also the operational issues due to the buggy control plane software update push.

Another empirical study on defects in well-known distributed systems, such as Cassandra and
HDEFS [198], showed that faulty error handling was the cause of 95% of catastrophic failures. In most

5.2. Related Work 71

of the cases the error handling code was either empty or incomplete, ignoring the local failure which
then propagated to entire system, or was overreacting, allowing a minor failure to crash the entire
system. The authors also noticed resource leaks and incorrect performance issues, which have not
been analyzed before in the context of SDN.

New vulnerabilities, due to cyclic dependencies between the control and data planes in distributed
SDN, are discussed in [199]. The authors demonstrate how control plane network failures may render
the cluster down, even in the absence of partitions. Illustrative examples of the problems of oscillating
leaders and lost leadership were also presented.

Large scale empirical studies on real-life incidents in Google [63] and Microsoft networks [149],
IP Backbone [111] and data center networks [56, 66] provide valuable data to the industry and
to researchers, exposing network vulnerabilities and suggesting preventive measures. However, a
comprehensive study on network control software in SDN is still missing. To fill this gap, this
chapter systematically analyzes two of the largest open source repositories (10k+ bugs) to locate the
vulnerabilities in production-grade distributed controller platforms.

5.2.2 Model-based Studies on SDN Control Plane Dependability

The first dependability studies on the SDN control plane consider the controller as perfectly reliable,
assuming only control path link failures [72], and distributing the controllers only for latency reasons.
More recent studies [106, , 15] also accounted for the software failures. Despite the diversity and
complexity of SDN control plane failures, most of the studies on SDN control plane dependability
reduce the controller to a single failure mode, i.e., assuming it is either operational or non-operational.

More complex dependencies and interactions between the elements of a complex systems use
the SRN. The models described using SRN modelling formalism can be directly translated to large
CTMC. The SRN models for the interaction between SDN control and data plane have been proposed
in [60, , , s]. Overall, an important limitation of the previous models is the assumption
about the perfect failover between identical controller replicas. However, the analysis presented in
this chapter shows that simple controller replication is ineffective, because of i) shared failures, e.g.,
semantic bug in path computation, ii) faulty error handling mechanisms, which may lead to a erroneous
failover and cause a cascade of controller failures and iii) failures specific to distributed control plane
implementations, such as a software bug in distributed consensus protocols. These inefliciencies are
modelled as a common mode failure (i), and the coverage factor (ii) in system dependability literature,
while the failures specific to distributed systems (iii) are typically neglected.

Indeed, the complexity of interaction between SDN controller replicas has been widely overlooked
in the literature. The failure correlation due to control plane misconfiguration was discussed in [128],
while Mendiratta et al. [121] also discussed the imperfect failover. The study by Gonzalez et al.[60]
modelled the synchronization process between controller replicas, with the focus on the trade-off
between consistency and performance. Sakic et al. [161] provided a realistic response time model of
the Raft consensus algorithm under different failure rates, complementing it with the measurements
from an ODL testbed. The SRN models proposed in this paper, aim to combine all failure modes of

distributed SDN implementations, for a holistic assessment of system dependability.

72 Chapter 5. Dependability Assessment Framework for Distributed SDN Implementations

Model-based dependability assurance based on SRN has been successfully applied to various
communication systems, such as software defined backbone network [128], NFV-based virtualized
core [61], VoIP system [186], [aaS cloud [55], as well as distributed consensus protocols, such
Raft [161], Paxos BFT [171], and their application in permissioned block chain systems [173]. This
chapter follows a similar approach to provide high fidelity models that account for all failure modes
encountered in the issue repositories of distributed SDN platforms.

5.3 Opverview of Distributed SDN Implementations with ONOS and
ODL

In this section the basic concepts of distributed systems are presented, with the focus on distributed
SDN control plane, and in particular, on ONOS and ODL controller implementations. The analysis
is based primarily on the official code documentation, supported by the presentations by ONOS? and
ODL3 distributed system engineering teams.

5.3.1 A Primer on Distributed Control Plane in SDN

In practice, a cluster of multiple SDN controllers is deployed in order to provide high performance,
scalability and high availability. The logically centralized control plane operation is possible due
to distributed protocols, which take care of the coordination, knowledge dissemination and seamless
failover between different controller replicas. Services provided by the SDN control plane should
be unaware of the distributed control plane implementation. Fig. 5.2a illustrates how the separation
of concerns and location transparency are implemented. In order to manage large-scale networks,
network state is partitioned into smaller chunks, called shards. Provisioning of a fault-tolerant system
requires data shards to be replicated on several nodes. The service requests affecting the particular
shard are routed to the controller node, which is responsible for that shard. In the example in Fig. 5.2a,
the request consists of updating a flow rule on a particular device. After the flow rule has been updated,
the response is propagated to a network application requesting an update, as well as the shard replicas.
The exact order between theses steps depends on the style of the replication.

Distributed systems may use different replication styles, illustrated in Fig. 5.2b, depending on
the application requirements, and data access patterns. Shard replicas can be updated in a strongly
consistent or eventually consistent manner. i) Consensus based protocols like Raft [139] provide
strong consistency, requiring the majority of the replicas to acknowledge the update before it can be
committed by the leader, and used to create the response to the client. ii) Gossip protocols provide
eventual consistency, using the epidemic style of propagation, where random pairs of neighbours
compare their version of the data, known as anti-entropy, and agree on an appropriate final state if
concurrent updates have occurred, which is known as reconciliation. iii) Another style of replication
is primary-backup. Primary-backup replication can be done in a synchronous manner, where replicas
are updated before the response, or in asynchronous, where the data change is first persisted locally

2Thomas Vachushka: and Jordan Halterman:

3Colin Dixon: , Robert Varga, Jan Medved: s
Moiz Raja, Tom Pantelis:

https://goo.gl/N8bToQ
https://goo.gl/fL5q6W
https://goo.gl/fL5q6W
https://goo.gl/KQoisv
https://goo.gl/1Z7783
https://goo.gl/vUPDvR

5.3. Overview of Distributed SDN Implementations with ONOS and ODL 73

and replicated after the response. The performance-consistency trade-off is balanced by choosing the
number of replicas and replication flavour.

Timestamps and vector clocks are often used for ordering of the updates. Distributed systems
are inherently asynchronous, execute independently and typically there is no global clock. Local
clocks skew and drift, and even the Network Time Protocol (NTP) can provide an accuracy of tens
of milliseconds. Ordering functions are necessary to enforce causal relationships between the events
(e.g., port flapping). Hence, the vector clocks, also called version vectors, are often used instead. With
Raft, the leader is responsible for the correct ordering of the updates.

Cluster membership and role management with Raft is illustrated in Fig. 5.2¢c, based on [139]. The
controller (re-)joining the cluster starts as the follower. If the leader heartbeat is not received within
a given threshold, it becomes a candidate, increases the election term, votes for itself and requests
the votes from other members. Three outcomes are possible: if the candidate receives the majority
of the votes before the election timeout it becomes the leader; if it discovers a candidate with higher
term or a current leader it becomes the follower; otherwise, it increases the term count and starts the
new election round. If a leader discovers a node with a higher term, it gives up the leadership. Raft
uses randomized election timeout to reduce the probability of split votes. The leader election service
can be used without using Raft’s strongly consistent data replication, e.g., for the assignment of the
primary-backup roles.

After leader failure, the follower with the largest term and the longest log will win the election. The
leader proves its liveliness by sending periodic heartbeats to its followers. However, the independent
controller nodes communicate over an unreliable network, which typically does not provide bounded
delay guarantees, and it is practically impossible to distinguish between network and controller node
failures. The messages can be delayed (network congestion or high load on the controller node), or
lost (partitioned network or node crash), which can result in temporary inconsistencies between the
network state seen by replicas. Failure detection is based on time thresholds, which have to be carefully
tuned balancing the trade-off between stability and failure detection efficiency. The p-accrual failure
detector [71], is widely used in distributed systems, including in the SDN controllers implementations
addressed here. The detector accounts for a suspicion level, ® = —log,,(1-F(¢)), where F(¢) represents
a distribution of previous heartbeat inter-arrival times, implicitly assuming a normal distribution. Raft
requires the majority of the controllers to be available, hence, it requires 2f+/ controllers to tolerate f
failures. In the case when network partitioning split the cluster into two parts that cannot communicate,
either both partitions continue operating independently (favouring availability) or one of the partition
freezes (favouring consistency), as consequence of the CAP theorem [144].

After a crash, a node re-joining the cluster has to catch-up with the rest of the cluster. All the
changes to the data store are kept in a journal, or a log. Log compaction, or state compression, is the
process of removing the entries from the log that no longer affect the current state. It is performed
periodically to prevent the uncontrollable growth of the log. The shard replicas may request copies of
a log entry from another replica in order to fill in missing transactions. Occasionally, a snapshot of
data store state is saved, serving as a checkpoint in case the node crashes. Journals and snapshots are
stored on disk for persistence.

The implementation of distributed systems is non-trivial and requires fine-tuning of configuration
parameters, as well as other operational issues that must be considered before the deployment. The

74 Chapter 5. Dependability Assessment Framework for Distributed SDN Implementations

1. Send request Strong consistency (Raft)
2. Forward to leader (P)
3. Configure flow table
4. Device response

5. Synch. replicas (B)

6. Forward response
@ |® 7. Send respose to client

Eventual consistlency (Gossip)
c2 J@

b C3
= =
3a
3b.

2a,
2b.
<]

Primary-backup replication

(a) Location transparency (b) Data replication flavours

starts up

FOLLOWER

discover node
with higher term
discover leader
or node with
higher term
a
>
Z
=
=
=
Z
= | uonoope ers
Jno sawr)
U010 MU
N0 sawn

Kyuofew woiy
SAJOA SIATIIAX

4@

(c) Leader election with Raft [139]

Figure 5.2: A primer on distributed SDN implementations

controller nodes have finite resources, such as CPU and memory, which can easily exhaust if not
planned and managed properly. The nodes may slow down during high load or computationally
expensive operations, such serialization of large messages, or on persisting large chunks of data.
Distributed implementations rely on 3rd-party libraries (e.g., Netty for low-level messaging and Kryo
for serialization), which may introduce new vulnerabilities and interoperability issues, and have to be
carefully tested. Moreover, the controllers are often deployed with virtualization platforms, whose
configuration and dimensioning may affect the performance.

5.3. Overview of Distributed SDN Implementations with ONOS and ODL 75

5.3.2 ONOS Implementation

The focus of ONOS has been on providing scalability, high availability and carrier-grade performance
fulfilling the requirements of large operator networks. Hence, the distributed core was introduced from
the beginning, and has evolved together with the application ecosystem.

ONOS provides low level distributed primitives, such as eventually consistent (ECMap) and strongly
consistent (ConsistentMap), offering different consistency models and replication styles. Distributed
primitives provide interfaces similar to standard Java classes, implementing the data structures and
synchronization operations upon which data stores are built. Developer guidelines suggest that control
plane data, such as resource reservation and other network configuration data, should use strong
consistency. Data originating from the environment, such as network topology (read-intensive), should
use eventual consistency to provide faster reaction to the network events. A primary-backup replication
is used for the partitioned FlowRuleStore, while device mastership uses LeadershipService
provided by Raft implementation.

The complexity of distributed protocols is encapsulated in Atomix [85], an event-driven Java
framework for coordination of distributed systems, implementing a variety of different distributed pro-
tocols. It provides services such as cluster management, asynchronous messaging, leader election, data
partitioning and replication. For scalable consistency, it introduces the concept of group partitioning,
i.e., multiple Atomix clusters. Moreover, it offers a dynamic cluster membership, enabling the Atomix
cluster to scale in or out based on the current demand.

5.3.3 ODL Implementation

ODL is a much larger and older project than ONOS, foreseen from the beginning to be "the Linux
of the networks", supporting a variety of southbound protocols to ensure the smooth transition from
legacy networks. The majority of ODL key partners are vendors, and the focus at the beginning was
on the applications in data centers and coexistence with network virtualization technologies. The
development of the major clustering project features started only after the fifth release (Boron).

ODL provides essentially two data stores, configurational to store a desired state, e.g. configuration
of the flows, and operational store, storing the actual network state. All data is stored in a data tree,
which is broken into shards. There are module-based shards, e.g., inventory, topology, while the rest
of data goes to the default shard. The shards are replicated for high availability. Data replication uses
the Raft consensus protocol, providing only a strong consistency model for all network primitives. The
EntityOwnership service takes care of the leader election (shown in Fig. 5.2¢), handles failover, and
co-locates tasks and data. Data change notifications and Remote Procedure Calls (RPCs) operating
on a given shard are directed to the entity owner, i.e., the leader. The nodes use RPC registry for
localization of the entity owners. Gossip is used for the replication of RPC registry across the nodes.

In ODL, the Akka [84] framework encapsulates the complexity of the distributed protocols. Akka
actors encapsulate the data tree shards, so interacting with the remote data shard is done by sending
the messages to actors. Akka clustering implements Raft, and is responsible for the discovery of the
nodes, their IP address, as well as the liveliness and reachability of the member. Cluster messaging
relies on Akka remoting, while Akka persistence is responsible for durability.

76 Chapter 5. Dependability Assessment Framework for Distributed SDN Implementations

5.4 Localizing Dependability Bottlenecks in Distributed SDN

Implementations

Next, the insights into defects reported in different functional areas of distributed control plane are
provided, illustrated with a rich set of examples. The goal of has been to localize the most vulnerable
components, and identify prevalent failure modes and their manifestation patterns.

5.4.1 Bug Repository

The problems in ONOS and ODL controllers are reported in their public Jira issue trackers#. Such bug
repositories are a valuable source of information, as they contain the detailed fault reports from test and
production environments. Only the issues labelled as “Bugs” are considered in this study, rather than
new feature requests or enhancements. The issues related to defects in distributed implementations are
extracted; in the case of ODL the issues tagged as part of the clustering project are selected, while in
the case of ONOS manual inspection was used.

The number of bugs over time for both controllers is presented in Fig. 5.3. The monthly failure rate
for ONOS peaks right before Blackbird (2" release), while in the case of ODL the number of defects
peaks before Carbon (6™ release), which is consistent with these controllers’ evolution.

| opL
g —ao| i :
£ | : Z 0| :
20 H H :
i : : £ :
2 FL gl i L
Y < £ solE = oz B o bz b o
ElE 24 g s |5 E e 2 g5 B8 2 F
= i 5) 5 £ & £ = 2 g 8 S
£10| ¥ E 5 8 Z 0| 2 8 g i 7 s B2
= : : °© = :
E : : 2 :
S 5| i ; &
= : S 10
0 H .
- = - = = = = = -
e 5 3 5 3 5 3 5 = 0
n n © © ~ ~ @ @ (=] o 0 © ©~ © =2
g g = = = = = = g = = = = = =
g g g g g g g g g g g g g g g
(a) Open Networking Systems (ONOS) (b) OpenDaylight (ODL)

Figure 5.3: The number of software defects related to distributed implementations reported over time for ONOS
and ODL. The dates of major releases for both distributed controller platforms are indicated in the figure.

In total 500+ issues related to the distributed implementation have been reported. These issues are
classified into the following four categories: i) defects in the implementation of distributed protocols
(DP), ii) scalability and performance (SP), iii) high availability (HA), and iv) operational (OP) issues,
as Illustrated in Fig. 5.4. Other issues are mainly requests for performance enhancements and code
refactoring. Note that the categories are not mutually exclusive. In the case of ambiguity, the bug
is assigned to the primary trigger. For example, when the topology state cannot converge after the
node restart, is is assigned it to the HA category. As another example, when the slow controller node
triggers false positives in the failure detector, the bug is assigned to the SP category. The references to

the representative issues in each category are provided in the following sections.

4Data retrieved on March 3, 2019 from ONOS and ODL bug repositories

https://jira.onosproject.org
https://jira.opendaylight.org

5.4. Localizing Dependability Bottlenecks in Distributed SDN Implementations

Tl

TAXONOMY OF DEFECTS IN DISTRIBUTED SDN IMPLEMENTATIONS

Issues related to implementation of
distributed protocols, i.e., Raft and
Gossip

— State inconsistency
— Leader election

— Cluster messaging

Issues in implementation of high
availability procedures

— Failure detection

— Failure mitigation

SCALABILITY AND
PERFORMANCE

Scalability issues and performance
loss in distributed implementations

— Scalability issues
—Delayed heartbeats
—Unacceptable response time
— Performance loss
—Synchronization overhead

—Resource leaks

Issues related to operational
environment

— Documentation and testing

— Configuration and bootstrap.

— Failure contention — Deployment and orchestration

—Graceful failure handling — Upgrades and updates

—Recovery after failure

Figure 5.4: Taxonomy of defects in distributed SDN control plane implementations.

5.4.2 Defects in the Implementation of Distributed Protocols (DP)

In a multi-controller architecture, all controllers must have a consistent view of the network state
in order to provide correct logically centralized operation, which is ensured by means of distributed
protocols, such as Raft and Gossip. In total, 216 (40%) issues have been identified in this category,
related to state inconsistency, leader election process, and cluster messaging implementations.

5.4.2.1 State Inconsistency

State inconsistency between control plane and data plane elements has already been identified as one
of the leading causes of critical outages in operational SDN networks [63]. The analysis affirms this
finding, discovering that 52(10%) of defects have been reported in this category.

Reported issues include different cases, such as when only the master of devices sees correct flow
count [dpl], or when the links disappear after load balancing [dp2].

One reason of the state inconsistency is the missing data change notifications. For example, some
DEVICE_ADDED events were not replicated to all instances in the cluster [dp3], which led to a large
increase in switch-up discovery, since without synchronous replication, the instances need to wait
for Gossip to synchronize on forwarding device events. As another example, it was noted that some
ConsistentMap operations, such as put and replace, do not publish data change notifications [dp4].
Sometimes the notifications are missing only in certain conditions, e.g., some links disappear when a

https://jira.onosproject.org/browse/ONOS-7705
https://jira.onosproject.org/browse/ONOS-7726
https://jira.onosproject.org/browse/ONOS-7623
https://jira.onosproject.org/browse/ONOS-2121

78 Chapter 5. Dependability Assessment Framework for Distributed SDN Implementations

forwarding device changes master [dp5]. After restarting, ONOS nodes learn about the topology via
Gossip, but it happened that the hosts sometimes have missing IP [dp6].

The second root cause of the state inconstancy are cluster synchronization issues. It was noted
that in the relaxed consistency mode (strong consistency where reads are performed from a local cache
instead from the leader), it is possible to be out-of-sync indefinitely [dp7], while [dp&] reports that the
node re-joining as follower could not synchronize, and the lagging follower had to be forced by the
leader to install a snapshot.

Several bugs regarding the event ordering issues were also reported. One issue exposes the problem
withRaftActor, as the last applied index moves backwards, leading to violation of transaction ordering
[dp9]. Another example of potential order violation is reported in [], when time moves backwards
due to the Daylight Saving Time, suggesting that instead of calendar, the vector time should be used
for versioning.

5.4.2.2 Leader Election Issues

Leadership assignment and hand-off are essential for load balancing, scale-in/out and failure mitigation
operations. Our findings show that a stable leader/master is hard to implement, given that 58(10%)
issues were reported in this category.

Misbehaviours, such as EntityOwnership least load policy not working as expected [], and
not balancing the load properly after the nodes are restarted or isolated from the network several times
[], have been reported. Sometimes, the controller role change messages are not being delivered
[,]. In another representative example, the devices intermittently loose their master, caused

possibly by Atomix AppendRequest timeout failure [].

5.4.2.3 Cluster Messaging System

Another challenge lies in the implementation of the reliable cluster messaging system, which relies
on 3rd-party data serialization (Kryo) and messaging (Netty) libraries. Serialization is an expensive
operation which can significantly slow down the controller, degrading the performance and eventually
leading to the crash of other operations. A BGP router crashing during Kryo serialization was reported
in[], whilein [] the processing of a large message triggered incorrectly UnreachablelMember.
The default failure-detector (ODL) triggers if there are no heartbeats within 5.5s in Akka cluster, and
if the serialization time exceeded this time threshold, a false alarm would occur.

5.4.3 Scalability and Performance (SP) Issues

Increasing the scalability of the control plane should not affect the system performance [140], which
should remain stable over the long hours of operation. However, 91 (17%) issues belonging to this
category have been identified.

5.4.3.1 Scalability Issues

Providing a performant SDN control plane is non-trivial for large service provider networks, which
induces high load on the controllers, both, in terms of topology size and volume of network events they
must handle.

https://jira.onosproject.org/browse/ONOS-1883
https://jira.onosproject.org/browse/ONOS-436
https://jira.onosproject.org/browse/ONOS-4423
https://jira.opendaylight.org/browse/CONTROLLER-1630
https://jira.opendaylight.org/browse/CONTROLLER-1755
https://jira.opendaylight.org/browse/CONTROLLER-1580
https://jira.opendaylight.org/browse/CONTROLLER-1735
https://jira.opendaylight.org/browse/CONTROLLER-1735
https://jira.opendaylight.org/browse/CONTROLLER-1717
https://jira.onosproject.org/browse/ONOS-4515
https://jira.onosproject.org/browse/ONOS-4529
https://jira.onosproject.org/browse/ONOS-1400
https://jira.opendaylight.org/browse/CONTROLLER-1572

5.4. Localizing Dependability Bottlenecks in Distributed SDN Implementations 79

A recurring issue in both controllers is seen when processing a large number of events, which slows
down a node, delaying the heartbeats. Several issues related to the unexpected UnreachableMember
when the cluster is under load have been reported, under un umbrella bug [sp1]. This happens when
cluster members have multiple (or big) messages to process, and they are late to read heartbeats from
peers. Delayed heartbeats have severe consequences on the cluster operation, leading to frequent leader
re-election, control plane instability and eventual crash, as discussed in [68] and [44]. Indeed, Raft
requirements for the correct leader election and stable operation requires the following constraints to
be satisfied [139]:

BroadcastTime <« electionTimeout < MTBF

where BroadcastTime represents the time to send to and receive responses from all the cluster nodes
in parallel (including network propagation delay and node processing time), MTBF is the mean
time between failures of a single server, and electionTimeout is a timeout triggering re-elections,
illustrated in Fig. 5.2c.

Slow controller under load can also cause other operations to timeout, such as the installation of
a large number of intents, which exceed the hard coded timeout of 5 s for processing and installation
[sp2]. Other operations were reported to misbehave under load, as well. For instance, balancing of
the masters not working properly with a 625-switch network [sp3], and a large Chordal topology with
300 links not converging until the node restart [sp4]. Furthermore, potential data loss during scale-out
operation [sp5] was also reported.

5.4.3.2 Performance Regression

Maintaining the same performance at scale is presumably an even harder challenge, due to the overhead
introduced by distributed protocols (e.g., leader election, consensus-based replication), as well as the
resource leaks, which can degrade the performance over time.

Several issues related to performance overhead and regression in multi-node setup have been
reported, e.g., maximum number of installed intents being lower in the cluster than in the stand-alone
mode [sp6]. Unsatisfactory performance is also frequently reported, such as the resource reservation
taking too long in multi-node cluster [sp7], resulting in an unacceptable reaction time to network
topology events. The performance overhead in a cluster setup when using strongly consistent Raft
replication style was discussed in [161], and in [1 60] the authors proposed adaptive consistency models
to balance response time and reliability.

Resource leaks, such as unclosed transactions and memory leaks, can cause the performance to
degrade over time and the controller crash, due to the resource exhaustion. A bug in the Atomix
log compaction timer [sp8] caused the nodes to eventually run out of disk space, by being filled up
with Raft commit logs. As another example, the resource store opened a new Raft session on each
transaction [sp9], due to a change in session management after the Atomix upgrade. Moreover, a
number of memory leaks have been reported, related to flow rule [], distributed meter store [1,
Netty messaging manager [], and Kryo serialization []. Note that the increase in resource
consumption does not happen only due to the bugs, but also as a design choice. For instance, expired
flows (i.e., flows with idle timeouts) remain in the ODL configurational data store [], while in

https://jira.opendaylight.org/browse/CONTROLLER-1703
https://jira.onosproject.org/browse/ONOS-356
https://jira.onosproject.org/browse/ONOS-2106
https://jira.onosproject.org/browse/ONOS-581
https://jira.onosproject.org/browse/ONOS-4785
https://jira.onosproject.org/browse/ONOS-4567
https://jira.onosproject.org/browse/ONOS-5279
https://jira.onosproject.org/browse/ONOS-7024
https://jira.onosproject.org/browse/ONOS-6859
https://jira.onosproject.org/browse/ONOS-7382
https://jira.onosproject.org/browse/ONOS-6205
https://jira.onosproject.org/browse/ONOS-7412
https://jira.onosproject.org/browse/ONOS-1631
https://jira.opendaylight.org/browse/OPNFLWPLUG-962

80 Chapter 5. Dependability Assessment Framework for Distributed SDN Implementations

ONOS EventuallyConsistentMap naturally grows due to the usage of tombstones replacing dead
objects [].

5.4.4 High Availability (HA) Issues

HA is a key enabler for mission critical operations, and in many use cases the main reason to adopt a
distributed SDN design. The principles to ensure HA are reliable failure detection, failure contention,
and fast recovery. Nevertheless, the analysis exposed 118(21%) defects in HA subsystem.

5.4.4.1 Failure Detection

Failure detection in ONOS and ODL is based on the ¢-accrual failure detector [71], which detects when
the heartbeat intervals have exceeded a given suspicion level. The parameters of the failure detector
should be carefully tuned to avoid false positives, and subsequent cluster destabilization, which may
trigger unnecessary leader re-elections. The heartbeatInterval and phiFailureThreshold could
not be configured in the first releases [hal]. In addition to false positives caused by slow-performing
nodes, which delay heartbeats, some other events can trigger false alarms. For instance, when the
controller node is being added to a cluster [ha2], or when the configuration change is applied to the
data store [ha3], unnecessary state changes occurred.

5.4.4.2 Failure Mitigation

When actual failures do happen, it is important that nodes fail gracefully, without destabilizing the
cluster, and reload quickly, recovering the state and catching up with the rest of the cluster.

Failure contention is not trivial, due to a tight interaction and interleaving of the cluster members.
Failure contention mechanisms, that should be in place to avoid that a failure of one instance brings
down the entire cluster, can be buggy themselves [ha4, ,]. An example of such cascade of
failures caused by the false positives in failure detector triggering frequent leader re-election has been
already mentioned in the previous section. Another representative example of a mishandled failure
contention is a positive loop, reported in [ha7]. In the case of a high-load scenario, a Raft client
continually retried a failed operation as long as it could maintain its session, increasing CPU/memory
usage in already overloaded partitions, causing the cluster to spiral out of control.

Failing fast and gracefully is another desirable property of highly-available systems. Reports
showed that when ONOS gets an exception such as out of memory, it hangs in a non-recoverable
state, instead of crashing hard [ha8]. In another example, a fast fail feature was requested when
DatabaseManager does not start cleanly, given that many other subsystems have transitive dependency
to this module [ha9]. If a leader of a given shard/partition, the leadership handover should happen
quickly [,] and without a data loss [s].

An efficient recovery after failures: Snapshots of data stores and transaction journals are occasion-
ally persisted for durability, to ensure quick recovery after failures. The state persistence is not perfect,
as reported in [,], for flow and intent stores in ONOS. Nevertheless, the most prevalent issue
is faulty recovery, with 53(10%) reported bugs. Typical issues are a node failing to join and sync with
the rest of the cluster [,], and a data loss upon restoration [,], leading to the state
inconsistency between controller replicas.

https://jira.onosproject.org/browse/ONOS-4212
https://jira.onosproject.org/browse/ONOS-6149
https://jira.onosproject.org/browse/ONOS-7754
https://jira.onosproject.org/browse/ONOS-7755
https://jira.onosproject.org/browse/ONOS-6682
https://jira.onosproject.org/browse/ONOS-5992
https://jira.onosproject.org/browse/ONOS-5347
https://jira.onosproject.org/browse/ONOS-7528
https://jira.onosproject.org/browse/ONOS-3423
https://jira.onosproject.org/browse/ONOS-1673
https://jira.onosproject.org/browse/ONOS-7586
https://jira.opendaylight.org/browse/CONTROLLER-1693
https://jira.onosproject.org/browse/ONOS-1883
https://jira.opendaylight.org/browse/CONTROLLER-1491
https://jira.onosproject.org/browse/ONOS-6042
https://jira.onosproject.org/browse/ONOS-5690
https://jira.opendaylight.org/browse/CONTROLLER-1794
https://jira.opendaylight.org/browse/CONTROLLER-1630
https://jira.onosproject.org/browse/ONOS-1965
https://jira.onosproject.org/browse/ONOS-2015

5.4. Localizing Dependability Bottlenecks in Distributed SDN Implementations 81

5.4.5 Operational (OP) Issues

Operational issues include supporting functions, not necessarily related to the buggy controller code,
but rather to practical deployment scenarios. This category includes 76(14%) issues, related to
documentation and test automation/coverage, cluster configuration and bootstrapping, interworking
with virtualization platforms, upgrades and updates of the 3rd-party libraries.

5.4.5.1 Documentation and Testing

An adequate documentation should be provided to facilitate correct usage and configuration of the
multi-node cluster [op1]. The execution of the test suites should be automated [op2], and occasionally
extended with the new test cases [op3,0p4], covering new failure modes, which were previously
unaccounted for.

5.4.5.2 Cluster Configuration and Bootstrapping

The controllers in a cluster have to be correctly setup and able to automatically discover the peers.
Before joining the cluster, the controller software has to be correctly loaded and configured. Both
controllers use Apache Karaf, an open source implementation of OSGi framework, to automatically
load and manage individual controller bundles (i.e. modular services, built-in applications). The
issues, such as serialization of cluster configuration change [op5] and Karaf issues causing some
bundles not to load in 3-node cluster [op6], are typically discovered before the deployment.

5.4.5.3 Deployment & Orchestration Issues

The controller software requires a host operating system, and the multi-instance setup is often deployed
in virtualization environment, with dockers or virtual machines. The interactions with virtualization
layers, and corresponding orchestration tools, e.g., Kubernetes, have to be carefully tested [op7,

,0p9].

5.4.5.4 Upgrades and Updates

The operation of ONOS and ODL relies on many 3rd-party libraries, such as Kryo and Netty, which
are separately developed and maintained. The regression tests must be in place to efficiently detect
3rd-party vulnerabilities and compatibility issues. The same is valid for internal modules, which are
not immune to performance regression and backward compatibility issues. For instance, a throughput
regression was reported after an upgrade to Atomix 3 [1.

5.4.6 Prevalent Failure Modes

The percentages of bugs of each presented categories have been summarized in Tab. 5.1. The most
vulnerable category is the buggy implementation of the distributed protocols (40%), in particular
maintaining of the consistent state and stable leader/mastership election. The second source of defects
lies in the implementation of HA mechanism (21%), mainly due to failure contention and imperfect
recovery. Performance and scalability issues are the third most prevalent (17%) root cause of the bugs,
primarily due to the hard coded timeouts and resource leaks.

https://jira.opendaylight.org/browse/CONTROLLER-1385
https://jira.opendaylight.org/browse/CONTROLLER-1581
https://jira.opendaylight.org/browse/CONTROLLER-1420
https://jira.opendaylight.org/browse/CONTROLLER-779
https://jira.onosproject.org/browse/ONOS-7213
https://jira.onosproject.org/browse/ONOS-3453
https://jira.onosproject.org/browse/ONOS-6647
https://jira.onosproject.org/browse/ONOS-7219
https://jira.onosproject.org/browse/ONOS-6401
https://jira.onosproject.org/browse/ONOS-7769

82 Chapter 5. Dependability Assessment Framework for Distributed SDN Implementations

Table 5.1: Distribution of software defects by category: distributed protocols (DP), scalability and performance
(SP), high-availability (HA) and operational (OP) issues.

Category ONOS ODL Total
DP 97 (44%) 119 (36%) | 216 (40%)
SP 39 (18%) | 52(16%) | 91 (17%)
HA 42 (19%) | 76 (23%) | 118 (21%)
OP 30 (14%) 46 (14%) 76 (14%)

Other 13 (6%) 42 (13%) 55 (9%)
Total 221 (40%) | 335 (60%) 556

The presented categories of defects significantly differ in their impact on the network services. Bugs
in the implementation of distributed protocols, leading to the state inconsistency between control and
data plane, may not interrupt the control plane operation, but are nevertheless critical for the network.
Having a stale network topology view may lead to an installation of paths with loops (congestion),
blackholes (packet loss), or even forbidden paths (violation of security policy) [63]. Performance
degradation over time, due to memory leaks, can slow down the controller node [125], leading to a
delay of the heartbeats, which consequently may trigger a fatal cascade of control plane failures [44,

]. On another hand, operational issues, although critical, will typically not be perceived by a user,

once the network is successfully deployed in the production environment.

5.5 Modelling Abstractions for Imperfect Distributed SDN
Implementations

Next, the comprehensive models for imperfect distributed control plane are provided, accounting for
different failure modes and their manifestation patterns, characterized in the previous section. The
modelling abstractions for imperfect distributed SDN implementations are provided in the formalism
of SRN, a stochastic extension of Petri Nets [179]. The key SRN modelling ideas are shown in the
examples of cluster (Fig. 5.5), service request (Fig. 5.6) and preventive maintenance (Fig. 5.7) models.

In the SRN framework, the combination of markings in the places (circles) represents model
states. The system state may change upon firing of the activities, which can be instantaneous transition
(inconsistent_state — sw_ok), or follow a deterministic (sw_prone — planned_restart), or
an n.e.d distribution. An SRN model can be automatically translated to equivalent CTMC. The states
and activities are associated with the corresponding rewards, which allows straightforward evaluation
of system performance metrics, such as the expected number of operational controllers.

Similar to guard functions of the SRN framework, Stochastic Activity Networks (SAN), have
the concept of gates, allowing for compact model representations. Input gates (red triangles) define
enabling predicates, i.e., a necessary precondition for triggering of the activity. For instance, in Fig. 5.6,
a request can be served only if the majority of the controllers are operational. Output gates (black
triangles) define more complex state change upon the activity firing, e.g., after cluster recovery all the

controller are reset to sw_ok state.

Closed form solution can be obtained for simpler small size problems with exponential and in-
stantaneous transitions. For large problem instances with general transition time distributions, either

5.5. Modelling Abstractions for Imperfect Distributed SDN Implementations 83
PERFORMANCE ISSUES SCALABILITY ISSUES DISTRIBUTED PROTOCOLS
(RESOURCE LEAKS) (TIMEOUTS) (STATE INCONSISTENCY)
\ /
’ﬂnt_fan r\
retry
Sw_ok sw_faN
>(SCALABILITY ISSUES inconsi‘-t_state cont
(RESOURCE DEPLATION)
leak /
il \
Sw&qe swrai 1] | @ J‘/
ctrl_crash ':\
restart
HA ISSUES
(FAILURE CONTENTION)
os_fail
os_failed b4
o:f'ail N clusteft crash cluster_rc\;eset_:luster
hw_fail
w_failed hw._repait
OPERATIONAL
hw_fail 1 ISSUES
Figure 5.5: Modelling abstraction for imperfect SDN cluster.
A .
g | O
service req_served
requests arrival
< ' -@
serv_unavil maj_unavail cp unavail req_interrupt
Figure 5.6: SRN for service request dynamics.
| >
y k
end_cleanup SW_o
planned} restart leak
[
.4 N @
maj_ok start cleanup Sw_prone
Figure 5.7: SRN extension for preventive maintenance, i.e., software rejuvenation.
numerical solution or discrete event simulation is used. Solvers, such as Mobius [42], SPNP [75] and

SHARPE [74] can be used for this purpose.

84 Chapter 5. Dependability Assessment Framework for Distributed SDN Implementations

5.5.1 Modelling Abstraction for Imperfect SDN Cluster

The failure modes, i.e., defects in distributed protocol implementations, scalability and performance,
high-availability, and operational issues, discussed in Sec. 5.4, are incorporated in the proposed SRN
model in Fig. 5.5.

5.5.1.1 Resource Leaks

When the controller is initiated or reloaded after a crash, it starts from the clean state sw_ok. The
baseline software failure rate in this state is Ag. During the continuous operation, the resource leaks
are accumulated and the controller performance starts to degrade. A common way to model this
effect is to assume that the risk of failure significantly increases after a certain utilization threshold is
exceeded [80], as seen in practice []. For instance, [44] note that the controller throughput and
response time degrade significantly when available memory is below 4 GB. This effect is modelled by
introducing the state sw_prone. The time to reach this utilization threshold depends on the controller
load and the type of network applications serves. The randomness in the resource leak process is
accounted for by modelling it as Poisson process with the rate Az qk.

5.5.1.2 Soft and Hard Software Failures

The analysis in Sec. 5.4 showed two distinct types of failure effects: soft failures, resolved by a simple
retry of the operation (intermittent_fail); and hard failures: leading to a controller crash, requiring
arestart (ctrl_crash). Soft failures are short interruptions in the controller operation, due to failed or
timed-out transactions, concurrency and data race issues, leader movement and load balancing. They
are typically resolved by retrying the operation, which occurs at the rate p,¢sry. Hard failures, i.e.,
software crash, can happen when the controller node runs out of resources, e.g., with out-of-memory
error. The controller restart time (rate) i, .srqr¢ accounts not only for the application restart, but also
for the loading time of all dependent bundles, as well as the time to reconnect with peers, and discover
the leaders of data store shards.

5.5.1.3 Transient State Inconsistencies and Cluster Crash

A qualitative analysis in the previous section showed that software failures can either be either: i)
successfully recovered from, or ii) can result in transient state inconsistencies, or iii) cluster-wide
failure. Transient state inconsistencies (inconsist_state) occur with probability ps;qre, due to
missing notifications, wrong event ordering, lagging followers, data loss in journals and snapshots,
which are used upon recovery. Cluster failures (cluster_crash) reflect the cases when the failure
contention fails (with probability p.,4sn) and crash of a single controller brings down the entire control
plane. The cluster repair rate ., srer is longer than the restart of a single controller node.

The distribution between successful repairs (po«), transient state inconsistencies (ps;qre) and cluster
crash (pcrasn) is hard to estimate from the bug reports. Hence, we make a reasonable assumption, and
conduct the sensitivity analysis to evaluate the impact of uncertainty regarding its value.

https://jira.onosproject.org/browse/ONOS-4212

5.5. Modelling Abstractions for Imperfect Distributed SDN Implementations 85

5.5.1.4 Operational Failures

From all operational issues discussed in Sec. 5.4.5, the interaction with the environment, e.g., host
operating system (os_failed) and computing hardware (hw_failed) will have the highest impact on
the services in the production environment. The operating system, including the virtualization layer,
fails with the rate A,;, and is rebooted with the rate u,;. Similarly, computing hardware fails with the
rate Ay, and is repaired with the rate uy,,. Bugs in the failure contention mechanism may lead to a

os and ph

N . w
complete system crash, which happens in P ash erash

of the cases, respectively.

A common failure mode is introduced, in order to account for different deployment scenarios. In
cases when controller replicas are deployed as virtual machine (VM) on the same server, the crash of
a server will render all the replicas down. Similarly, in case when the replicas run in Docker container
(DC), the host operating system is shared as well, and its failure will lead to a cluster-wide failure. This
effect is modelled by adding reset_cluster output gate following the transitions {os,hw}_fail;
(not included in Fig. 5.5).

5.5.2 Reference Stand-alone Model

A controller operating in a stand-alone mode is used as a reference model, to evaluate the gains in
terms of control plane dependability in a distributed setup. In the stand-alone mode, many of the
failure modes will be shared, since the controller uses the same data structures as in the cluster mode.
State inconsistencies between control and data plane can still occur, due to the slow node failing to
process the network events on time, or faulty journal recovery upon restart. Resource leaks, especially
those related to the natural increase in memory usage, do occur as well in the stand-alone operation.
Hence, the model in Fig. 5.5 is modified, by removing cluster_crash place, and all the transitions
associated with it (pcrasn — 0).

5.5.3 Modelling Abstraction for Control Plane Services

SDN controllers provide services, such as the management of the forwarding devices through the south-
bound interface, and the implementation of high level policies through the north-bound interface. The
generic modelling abstractions for control plane services is illustrated in Fig.5.6. A given number of
requests Nsr;?t arrives with a given rate 4,4, and are served at the rate y,.,. In cases when the majority

of the controllers is down, new requests cannot be processed (Nzigvaﬂ.), and the ongoing requests will

be interrupted (I\Iirf:irmpth). Areq and py.4 depend on a particular service, as well as the performance of
the particular control plane configuration. The serving rate can be tied to the number of operational
controllers and current simulation time, accounting for a degraded performance due to resource leaks.
For the simplicity, u,.q is kept constant throughout the study, leaving it to the future work to study

more complex parameter relationships.

5.5.4 Preventive Maintenance Policies

The failure rate after long hours of operation (sw_prone) is higher due to the lower amount of available
resources, caused by resource leaks, i.e., software ageing [80]. An operator can decide to preventively
restart the controller, cleaning up the internal data structures, dead objects, zombie processes, and
unclosed connections. Such preventive measure can be implemented by starting a timer (deterministic
action with rate Ag), once the certain utilization threshold is reached. Duration of the planned outage

86 Chapter 5. Dependability Assessment Framework for Distributed SDN Implementations

(1/ug), also called software rejuvenation, of the controller depends on the level of rejuvenation, e.g.,
process or application restart. We assume rejuvenation is triggered only when majority of controllers

is available.

5.5.5 Dependability Metrics of Interest

Dependability metrics are defined by assigning rewards. The metrics of interest are: i) the Steady State
Availability (SSA), ii) failure dynamics, and iii) user-perceived service availability.

5.5.5.1 Steady State Availability (SSA)

The SSA is evaluated as the probability of being in the operational states: sw_ok and sw_prone. Note

that the place related to state inconsistency (sw_state) is a transient state, since it is followed by an

instantaneous transition (cont), and hence the state is used to count occurrences of state inconsistencies.

Depending on the replication style, the control plane will need the majority of the nodes participating

in the cluster to be available (Raft), at least two operational controllers for primary-backup replication,

or at least one operational replica for Gossip style replication. The model does not differentiate leader

and followers, since different nodes may be leaders for different data shards. We define availability
metrics as:

Amaj. = P{Noperational > Lg“’ (Raft)
Aj = AN = P{Noperational = 2} (P-B) (5.1)

AyNn=P {Noperational e 1} (GOSSip)

where the number of operational controllers is defined as:

Noperationat = Tokens (sw_ok) + Tokens (sw_prone)

5.5.5.2 Failure Dynamics

The time spent in individual failure states (rate reward) indicates the contribution of different failure
modes to control plane outages, as well as the frequency (impulse rewards) of different controller and

system failures.
5.5.5.3 User-perceived Service Availability

Depending on the service, the control plane availability will be sampled at different times, i.e., at
request arrival, and for a different duration, i.e., request serving. Since the network operator is
interested primarily in the user-perceived service availability, the control plane availability is sampled
only when the service is active. The following metrics of interest are defined as Service Availability
(SA), Service Continuity (SC) and Request Completion Success Probability (SR):

req req
SA = Nreceived _ Nreceived (5 2)
- N4 - N4 4+ NServ. ’
sent received unavail.
req req
SC = served _ served (5 3)
- Nreq - Nreq + Nreq .
received served interrupt.
req req
SR=—med = ___seved = gAx SC (5.4)
N + Nserv-

sent received unavail.

5.6. Characterization of SSA, Failure Dynamics and User-Perceived Service Availability 87

5.6 Characterization of SSA, Failure Dynamics and User-Perceived
Service Availability

Next, the case study on realistic SDN controller platforms is presented. The proposed models are
used to quantify control plane dependability metrics. Moreover, the practical applications for network
operators are shown, by analysing different deployment scenarios and preventive maintenance policies.

Model parameters are based on empirical data presented in Sec. 5.4, and on the studies of software
components of a similar complexity. Parameters related to the software failure rates [127, 1,
resource leaks [

], and recovery procedures [120, 1, as well as the parameters related to the

availability of operating system and computing hardware [94,], are presented in Tab. 5.2.

Table 5.2: SRN model parameters [34, , , ,]
Parameter | Description ‘ Baseline value ‘
/151 Baseline failure rate (sw_ok) 7 days
/lz]l.g h High failure rate (sw_prone) 3 days
A, (fa x Resource leak rate 1 day
wl,, v Retry operation upon timeout 5 sec
[T SO Application process restart 3 min
,u;}uster Restarting cluster nodes 10 min
pok » Proportion of soft failures (sw_ok) 0.75
f ;;t"e Prop. of soft failures (sw_prone) 0.25
ZZ r’i; gh Prop. of hard failures 1- p;)sj’,lt”gh
Pok Probability of successful recovery 1-pst. — Per.
Pstate Prob. of transient state inconsistency 0.40
Perash Prob. of cluster-wide crash 0.05
zl Mean time between OS failures 60 days
sk OS reboot time 30 min
/l;Llw Mean time between HW failures 6 months
/‘le HW replace time 2 hours

5.6.1 Control plane availability
5.6.1.1 SSA

The SSA for different cluster configurations is presented in Tab. 5.3. Since the the availability for larger
clusters are rather small, the Steady State Unavailability (SSU) is presented instead, in order to illustrate
the magnitude of difference between various cluster configurations. We observe that unavailability
of stand-alone controller is an order of magnitude higher than in distributed setup (N>1), because of
better fault tolerance to the failures of single controller instance. However, as the number of controllers
in the cluster increases, the unavailability of the cluster actually slightly decreases. This effect is in
part due to specific, cluster-induced, failures, such as the ones due to faulty failure contention. Other
reason why the unavailability of strongly consistent application is lower in larger clusters, is due to the
fact that larger number of the cluster members (i.e., majority) is required to be operational.

88 Chapter 5. Dependability Assessment Framework for Distributed SDN Implementations

Table 5.3: Steady State Unavailability (1 — SSA)

Unavailability N=1 N=3 [N5 [N7 |
AN 12176e-03 | 3.1460e-04 | 5.1909¢-04 | 7.197700e-04
1-Asn 1.0 3.1899e-04 | 5.1909e-04 | 7.197700e-04
1-Amyj. - 3.1899e-04 | 5.1911e-04 | 7.197701e-04

5.6.1.2 Sensitivity Analysis

The sensitivity analysis for Ay/3 is conducted to study the impact model parameters uncertainty.

It can be observed in Fig. 5.8 that cluster recovery failures f.;,5re, and failure contention success
probability 1 — p.,4sn have the largest impact on availability of strongly consistent services Ay/3. The
qualitative analysis in the previous section exposed many defects in failure contention mechanism.
The results of the sensitivity analysis only emphasize the need to prioritize the hardening of failure

contention mechanism.

The following parameters, by the impact of their uncertainty of the strongly consistent services are
failure rate in failure-prone state Aj;q;, and resource leak rate Ajeqx. Unfortunately, these parameters
depend on many factors, such as workload, service request type, hardware configuration, available
resources (CPU, RAM, etc.), and hence, have to be measured for a particular distributed setup and use

case.

The uncertainty of software Ay, operating system A,; and hardware Ay, failure rates has slightly
lower impact. Fortunately, these parameters are well reported in the past empirical and model-based

studies.

Ao

Hecluster
Pcrash
Ahigh
/‘Isak
Ao

Aos
Ahw
Hrestart
Hos
Hhw
uretry
psoftfok
Psoft_nigh 1 -30%
Pstate B+ 30%

0.99955 0.99960 0.99965 0.99970 0.99975 0.99980

Figure 5.8: Sensitivity analysis for Ay/3.

5.6.2 Failure Dynamics

The failure modes differ significantly in terms of their frequency and control plane outage, which we
define here as an event in which the majority of the controllers were unavailable.

5.6. Characterization of SSA, Failure Dynamics and User-Perceived Service Availability 89

The expected control plane outages within one year of operation of 3-node cluster is 10.25, with
a cumulative duration of 2.8 hours. In 96% of the cases the control plane failure is caused by
unsuccessful failure contention. Moreover, the state inconsistency between control and data plane
elements is expected to occur on average 73.91 times within one year. Although transient state
inconsistencies are resolved quickly, not affecting the control plane availability, they can have adverse
effect on data plane operation. State inconsistency can cause traffic loss by installing the paths with
blackholes, or overload the links by installing the paths with loops, and install flow rules implementing
conflicting policies. Practical experience reports on operational SDN networks demonstrate that state
consistency issues cannot be neglected [63].

1.0 0.010
P(DT < =29.5 min) = 0.9 /'

0.008

e
©

0.006

e
)

P(DT < =9.5 min) =0.5

PDF

0.004

ECDF: P(DT < = tp)
o
=

0.002

<
N

100 10! 102 0.000

tp[min]

Figure 5.9: Downtime (DT) distribution.

The downtime distribution (ECDF) is presented in Fig. 5.9. As a reference, PDF is also presented
(shaded grey area). We observe that the median of system outage in a reference setup of 3-node cluster
duration is below 10 min, while 90%-tile is below 30 min, with many short-term interruptions due
software failures. Such failure dynamics of the control plane failures has a detrimental impact on

which services get affected by the system outages.

5.6.3 User-perceived Service Availability

User-perceived availability depends on the service dynamics, i.e., request arrival (4,¢4) and serving
rates (Ureq). The impact of 4,04 and p,-.4 oOn service availability metrics, SA, SC and SR, is presented
in Tab. 5.4 and Fig. 5.10. In Tab. 5.4 several typical services are presented. Request serving rate ranges
from 500 ms for an installation of large batch of flows, up to 15 min for in-service software upgrades
(ISSU). Request arrival rate varies between 1 min to 1 hour, representing different control plane traffic
patterns, e.g., PACKET_IN or network statistics poll. It can be observed that SR = SA X SC is mainly
affected by SA, service unavailability at the moment of request arrival, more than service continuity

SC, which is an order of magnitude higher in a given setup.

Fig. 5.10, illustrating unsuccessful service request completion rate (1 — SR), demonstrates how
the longer serving rate can increase the service unavailability up to an order of magnitude. Similarly,
higher request arrival rate, resulting in frequent sampling of the control plane availability, results in

90 Chapter 5. Dependability Assessment Framework for Distributed SDN Implementations

1071
Arrival rate [~
[1/Areg= 5 min
1/Areq= 15 min
1/Areq=1h
o 1072
@
X 0
3
: a
1073
)
B oo N @
500 ms 5s 1 min 5 min 15 min

Serving rate 1/Ureq

Figure 5.10: Request Completion Failure Rate (1-SR).

Table 5.4: Service request and serving rates

‘ Service ‘ Service A | Service B | Service C ‘ Service D ‘

Areg 5 min 5 min 1h 1h

Hregq 500 ms 5 sec 5 sec 5 min

SA 99.9790% | 99.9807% | 99.9802% | 99.9814%
SC 99.9999% | 99.9998% | 99.9999% | 99.9890%
SR 99.9790% | 99.9805% | 99.9801% | 99.9704%

lower user-perceived service availability, as it is more likely to be affected by short, but frequent
software failures.

5.6.4 Comparison of Different Deployment Scenarios

In small resource-constrained networks, such as industrial networks [7], the network operator may
choose to run the cluster of controller nodes on shared physical machines. Deploying the controllers in
separate VM provides better isolation between software instances, but introduces additional overhead,
since every instance runs its own operating system. DCs provide a lightweight virtualization, but imply
an additional common mode failure, since a crash of the operating system will render all instances
unavailable.

Control plane availability A,y for different deployment scenarios is illustrated in Fig. 5.11. It
can be observed that in the case of VMs running on the same physical machine, i.e., shared hardware
failures, the availability is only slightly lower. In the case of DC, the availability loss is much higher,
being an order of magnitude lower than in the first two deployment scenarios.

5.6.5 Optimization of the Preventive Maintenance Policies

The impact of different rejuvenation policies, i.e., rejuvenation scheduling Ag, for different rejuvenation
duration is illustrated in Fig. 5.12. It can be observed that early rejuvenation is beneficial in all studied
scenarios, and should be done in the optimal case as soon as the sw_prone state is entered (1g — ©0).
The operator and/or controller software developers should determine the precise threshold when this
state is reached, by measuring the resource leak rates (A;.4x) for a given configuration setup and

5.7. Concluding Remarks 91

1.000

0.999

inl
z z z
LLl

0.998
0.997

S 0.996

Lo
0.995
0.994

0.993

0.992

DC

)
>

PHY

Figure 5.11: A,y in different deployment scenarios: separate physical machines (PHY), virtual machines
(VM) and docker container (DC) sharing the same physical hardware.

operational workload profiles. An exhaustive measurement campaign for real-life distributed SDN
controller platforms is conducted is discussed in the following chapter.

1.00000 —
-
0.99975
0.99950
0.99925
7
€ 0.99900
<
0.99875 Rejuvenation duration
¢ 1/u=1min
0.99850 ® 1/u=73min
0.99825 1/u/= 5 min
—— without rejuv.
0.99800

0 20 40 60 80 100 120 140
Rejuvenation frequency A, [h]

Figure 5.12: Software rejuvenation policies.

5.7 Concluding Remarks

5.7.1 Summary

This chapter presents a comprehensive analysis of defects and vulnerabilities in real-life SDN controller
platforms, as well as the modelling abstractions of imperfect distributed controller plane. The analysis
in the first part has demonstrated that, although some particular defects have been already studied,
e.g., stability under overload and overhead of Raft-based synchronization, there are still more critical
defects that have been overlooked, e.g., resource leaks and failure contention. In the second part, the
modelling abstractions accounting for all the failure modes identified in the qualitative analysis step are
provided. Dependability models, in the formalism of SRIN, are used to evaluate different dependability
metrics, such as steady state availability, failure dynamics, as well as the impact on the user-perceived
service availability. Moreover, the applications of proposed SRN models are presented, demonstrating

92 Chapter 5. Dependability Assessment Framework for Distributed SDN Implementations

how the operators and network architects can leverage such models to compare different deployment
scenarios and optimize preventive controller software maintenance policies.

5.7.2 Discussion

Threats to validity. The main threat to validity in the presented study is the accuracy of model
parameters. While majority of the model parameters are based on the empirical data, and reported
values in similar studies, few parameters are based on reasonable assumptions. Hence, the focus is
shifted on the methodology and model structure, rather than numerical results. Nevertheless, the
quantitative analysis presented in this chapter gives a reasonable estimation of the order of magnitude
of the impact of different failure modes. The second threat to validity of the results is the level of
abstraction of the proposed models. While the study on Raft response time [1 61] models the information
flow during replication and handover procedures for a single request, the focus of DASON framework
is on a wholistic assessment of distributed control plane dependability for a variety of services,
replication styles, and on the longer time scale. The chosen level of abstraction represents a compromise
between accuracy and generalization power. Modelling of the fine-granularity dependencies, such as
relationship between the resource leaks and the serving rate, is left as a part of the future work. Another
threat to validity to the presented framework is that the failure manifestation, and consequently the
perceived service availability will depend greatly on the use case, e.g. high volume traffic in data
center services, traffic engineering in the carrier grade networks or small enterprise networks, will all
result in different service mix.

Generalization of the results. The results presented in this chapter can be generalized to many
commercial controllers, whose code base contains ONOS and ODL artefacts, such as Ericsson, Huawei
and Cisco. Moreover, distributed cores of both controllers, i.e., Atomix [85] and Akka [84], are
available as stand-alone open source projects, and could find an application in other distributed
systems, beyond network control software. The proposed modelling abstractions for imperfections in
distributed SDN control plane and the services running on top of it also have wider application, and
can be extended to other distributed systems.

Hopefully, the proposed DASON framework is only the first step towards robust, data-driven,
model-based certification of softwarized networks.

Future work. Dependability assurance framework for distributed HA platforms in SDN, presented
in this chapter, analyzed defects in the implementation of distributed consensus protocols and control
plane recovery procedures. The framework could be extended to support cross-layer optimization,
in scenarios where physical network failures cannot be neglected. Another enhancement is a design
of sophisticated test-suites that would effectively prevent of the repetitions of the previous errors in
implementation of distributed control plane.

Cross-layer optimization of east-west interface in distributed SDN control plane. In the scenarios
with dominant network failures, such as unreliable wireless links in WSN or fibre cuts in large geo-
distributed Smart Grid systems, the control plane should be designed to be robust to both software and
physical failures. Robustness against physical link failures is achieved by installing several disjoint or
partially-disjoint paths. In such scenarios, a joint optimization of physical and software fault tolerance

5.7. Concluding Remarks 93

configuration is required, e.g., controller placement, and configuration of Multi Path TCP (MPTCP)
[47] and ¢-accrual detector [71].

Development of sophisticated testing frameworks for distributed fault tolerance. The significant
improvements in failure prevention in distributed systems can be achieved by design of sophisticated
test-suits. General test frameworks for distributed environments already exist, such as Jepsen [155] and
Chaos Monkey [129]. However, an open research questions is how efficient these tests are in detection
of already reported defects against distributed SDN control platforms.

Chapter 6

Software Ageing and Rejuvenation in
SDN Orchestration Platforms (ARES)

6.1 Introduction

6.1.1 Motivation, Problem Scope and Research Challenges

The recent trend of network softwarization suggests a radical shift in the implementation of traditional
network intelligence. Softwarized network components are expected to provide uninterrupted service
during long periods of time, which makes them prone to the effects of software ageing, i.e., gradual
degradation of the system performance due to an increase of resource consumption, such as memory
leaks and unreleased thread locks. The effects of software ageing have been empirically proven in
many commercial software solutions, such as modern operating systems, Linux [40] and Android [37],
cloud orchestration platforms [25,], Apache web server [64, ,], Java Virtual Machine [41,
] and complex, data-intensive Java-based software, e.g., Hadoop and Cassandra [52, 54].

Ageing related issues have been observed in operational SDN-based networks using ONOS and
ODL. Current tests are not efficient in detection of ageing-related performance issues, since they typi-
cally require a long time to manifest (order of weeks and months), whereas the continuous integration
tests are typically much shorter (order of minutes). Hence, the majority of the ageing-related defects
manifest only in the production environment, incurring higher reparation cost and user-perceived sys-
tem failures. The effects of software ageing can be disastrous for the network; consider the following
examples that were reported for SDN controllers:

* Hard crash due to resource exhaustion, e.g. out-of-memory error [44][]

* Controller becomes unresponsive over time, caused by unreleased references to device reply

messages []

* Gradually degrading performance, e.g., intent throughput decreasing monotonically in ONOS

cluster over time [200][]

* Cascade of control plane failures, caused by false positives of time-based failure detectors,
which wrongly assume that the slow controller node is unavailable [44, 68]

95

https://jira.onosproject.org/browse/ONOS-4212
https://jira.onosproject.org/browse/ONOS-7918
https://jira.onosproject.org/browse/ONOS-1339

96 Chapter 6. Software Ageing and Rejuvenation in SDN Orchestration Platforms

* Transient state inconsistencies between SDN controller replicas and data plane, which can result
in loss in data plane performance, e.g., loss of data plane traffic by installing the paths with
blackholes [63]

* DDoS attacks by enforcing ageing-triggering workloads [Designlssue-2]

Such ageing-related defects have been overlooked in the SoA on dependability of softwarized
networks. The main goal of the study presented in this chapter is to provide the first insight into the
effects of software ageing in SDN controllers, and evaluate their impact on data plane performance.

6.1.2 Methodology: ARES Framework

This chapter presents ARES, the proposed framework to assess and prevent the effects of ageing in
softwarized networks, with the focus on SDN controllers, as illustrated in Fig. 6.1.

ARES WORKFLOW STEPS Case study: SDN controllers
(Sec. 6.3) E ONOS and ODL
— Mining bug repositories (Sec. 6.4)
AGEING Regression testing and differential
DETECTION code performance analysis
I den%in g ‘— Code analysis and instrumentation

critical workl.
& ageing KPIs

— Controlled stress test (Sec. 6.5)

AGEING .
PROFILING Modelling of data collected from
@ ~ field during regular operation
Estimation
or resource
exhaution time Proactive: longevity and perfor-
AGEING mance regression testing
PREVENTION Reactive: rejuvenation (Sec. 6.6)

Figure 6.1: ARES: a framework for the management of software ageing consists of three steps: i) detection and
localization, ii) profiling the effects of the ageing and iii) prevention. Each step is applied to the particular case
study on SDN controllers.

The proposed framework consists of three steps: i) detection of ageing-related issues and identi-
fication of critical workload patterns, ii) profiling of software ageing in a measurement-based study
and iii) design and implementation of preventive software rejuvenation policies. First, an overview of
the ARES framework and the alternatives in each step are discussed in Sec. 6.3. Next, the framework
steps have been implemented and evaluated in a case study on open source SDN controllers: ONOS
and ODL.

6.1.3 Key Contributions

The contributions of the work presented in this chapter can be summarized as follows:

i. The identification of software ageing patterns and localization of ageing prone software com-
ponents is performed by mining of code repositories and issue trackers of the two open source

https://jira.opendaylight.org/browse/OPNFLWPLUG-962

6.2. Related Work 97

controllers, ONOS and ODL.. The analysis has shown that, while many of the ageing related issues
stem from bugs (e.g., dead object not being disposed of correctly), two critical ageing related
issues are result of deliberate design choices in the implementation of distributed network control
plane.

ii. The impact of software ageing on data plane performance is evaluated in a measurement-based
study, providing an empirical evidence about non-negligible effects on the network performance
and SDN control plane performance and availability.

iii. The design of different preventive rejuvenation policies demonstrates how identified ageing effects
can be effectively mitigated in a production environment.

The results presented in this chapter have been submitted to a peer-reviewed journal [4].

The remainder of the chapter is organized as follows. An overview of the related work on
software ageing, as well as the limitation of the existing studies on SDN reliability and performance
benchmarks are presented in Sec. 6.2. The overview of ARES framework is presented in Sec. 6.3,
while individual steps are presented in the following sections: localization of software ageing issues
(Sec. 6.4), measurement based study (Sec. 6.5) and implementation of software rejuvenation policies
(Sec. 6.6). The chapter concludes with the summary and discussion of the results in Sec. 6.7.

6.2 Related Work

6.2.1 Reliability and Performance Issues in SDN Controllers

Software ageing in reliability modelling of SDN controllers. The majority of studies on
reliability in SDN assume either a perfect controller that never fails, or reduce the software to binary
states "operational" or "failed". The reliability of SDN controllers has been addressed only by a limited
number of studies [22, s , 14,16, 5, 17]. Only the two of them [22, 14] have recognized the
problem of software ageing. Vizarreta et al. (author’s preliminary work) [14] modelled the impact of
software ageing on controller, and demonstrates for which workload intensity it has a non-negligible
effect on the controller reliability. Alencar et al. [22] provided the first measurements of the memory
consumption and CPU utilization of the research prototype controllers, Floodlight and Beacon, under
high load.

Software ageing in measurement-based studies on SDN controllers. The test suites of produc-
tion grade controllers, Test-ON in ONOS and CSIT in ODL, provide a limited support for detection of
ageing defects, which are further discussed in Sec. 6.5. The SDN controller benchmarks tools proposed
in SoA, such as CBench [132], OFCbench [87], perfbench[3 1], MT-CBench [83], and OFCProbe [88,

] focused on operational KPIs, e.g., maximum throughput or average response time, rather that
performance over long hours of operation, which could expose the effects of software ageing.

From a number of studies on performance benchmarks of SDN controllers [23, 27, 44, 68, 92,

, , , , , R] only the three [44, ,] have reported the issues of software
ageing. The first one to encounter the effects of ageing in SDN controller was [168], which showed
that while MuLL and Maestro started dropping some control plane messages after several minutes,

98 Chapter 6. Software Ageing and Rejuvenation in SDN Orchestration Platforms

the other five controllers in the study did not exhibit such performance issues during 24h-test. The
testing and benchmarking in realistic telco-cloud setup was elaborated in [44]. The authors tested
the performance and scalability of ONOS intent framework, as well as the relationship between the
performance and hardware configuration. During one of the experiments, the authors reported an
issue of increased heap memory usage (30% of heap used in 5 minutes), under a constant number of
active intent requests, but it was not investigated further. The performance degradation under high
load led to the instability of control plane in a distributed setup. The slow node was falsely declared as
unavailable, due to the time-out based threshold detection!. A study by Zhao et al. [200] also reported
the unpredictable performance and memory leaks when ONOS and ODL were run over long periods
of time. However, the authors do not investigate the issue further and exclude them from performance
benchmarks, focusing on simpler controller architectures.

6.2.2 Empirical Studies on Software Ageing

Since the first models of software ageing and rejuvenation by Huang et al. [80] and Garg et al. [50],
a multitude of studies on detection and prevention of software ageing effects have emerged. A
comprehensive survey of ageing-related studies is presented by Cortaneo et al. [39], while a systematic
mapping of the relevant research in the period between 1995-2014 is presented by Valentim et al. [182].
The most relevant empirical studies are summarized in Table 6.1.

Systems under study. The ageing-related issues have been empirically shown to exist in many
commercial software solutions: modern operating systems, Linux [40] and Android [37], Unix cluster
[181], cloud controllers, both proprietary [172] and open source solutions [25], Apache web server [64,

,] and SOAP server [169], Air-Traffic-Control middleware (CARDAMOM) [32], Java Virtual
Machine [41,], as well as several large open source Java applications, such as Hadoop and
Cassandra [53, 54].

Methodology. The methodologies to prove and characterize the effects of software ageing include:
i) controlled stress tests, ii) modelling of ageing based on operational measurements, iii) regression
testing and differential performance analysis, iii) an empirical analysis of software ageing defects, and
iv) code level inspection and instrumentation.

i) Most of the studies used controlled stress-tests to statistically prove the effects of ageing, and
model the workload-ageing relationship. The main challenge in the feasibility of such studies is how
to cover all possible factors (e.g., request types, frequency, environment configuration) that might be
encountered in an operational environment, as well as the duration of the experiments required for the
ageing effects to manifest. In order to isolate the impact of different factors, and accelerate the ageing
by focusing on the most critical ones, the complex Design of Experiments (DoE) plans were proposed.
Two phase tests were often used, e.g., first pilot tests were conducted to detect factors to accelerate
ageing, as in [37,]. In [114] the relationship between resource consumption (e.g., memory)
and stress levels (e.g., workload intensity) was used to estimate the Time to (resource) Exhaustion
(TTE). The study on the Android operating system [37] covered low- and high-end devices, native,
vendor-specific and 3rd party applications and different user-behaviour with only 27 experiments.

1A similar problem of stability of distributed control plane under load was reported independently in [68].

6.2. Related Work 99
Table 6.1: Overview of related work on software ageing.
System Methodology Ageing-related KPIs Remarks
Data, collected from campus net- Workload-ageing relationship

Unix cluster

(50, 181]

Linux oS
[40]

Android OS
[37]

Apache web
server [14]

IBM Pure
cloud plat-
form [172]

Eucalyptus
cloud plat-
form [24]
Air-Traffic-
Control
middleware

[32]

JVM [41]

5 Java
projects [52]

10 Java
projects [54]

3 C/C++
projects [152]

work, is clustered based on system
workload descriptors (sysCall,
pageln/Out, cpuContextSwitch)

Controlled stress test: process-,
memory-, file-, networking- and
device drivers management

Controlled stress test: covering
different HW, applications and
workload volume and type

Accelerated stress tests: combi-
nation of (http) request rate, page
size and type

Predictive modelling of resource
consumption, learned on live data

Controlled stress test: manage-
ment of elastic storage and VM
lifecycle

Two-phase tests: pilot tests iden-
tify most critical factors; exhaus-
tive stress tests to profile ageing
for critical workloads

Empirical system analysis to lo-
calize root cause, controlled ex-
periments to establish workload-
ageing relationship

Regression testing, differential
analysis for detection and root
cause analysis

Empirical analysis mining public
bug repositories (450+ issues)

Cross-project transfer learning is
used to isolate ageing-prone mod-
ules

Free memory and used swap
space

Memory consumption and
system call latency

Storage and memory usage
(system and per process),
application launch time

Workload (stress factors) -
ageing (memory depletion)
relationship was used to es-
timate failure times

Memory (swap and real),
disk usage, no. of threads
and open files, mean re-
sponse time

Memory (resident set size,
virtual memory, swap
space), CPU utilization

Memory used by system and
per process (real and vir-
tual)

Throughput loss and mem-
ory depletion (slow drift due
to just-in-time compiler fast
drift due to GC)

Memory usage statistics,
object allocation and de-
allocation count

Memory leaks, mismanage-
ment of Java file handlers,
unclosed threads, database
and network connections

Training the model on simi-
lar projects with larger data
set for improved predictive
accuracy

modelled as semi-Markov reward
process; TTE is obtained by
solving a model

Impact of different workload pa-
rameters separated by PCA.

Relevant indicators were per pro-
cess memory consumption and
GC metrics, while storage usage
did not show strong correlation

Achieved acceleration of the tests
by factor ~ x100

Ageing patterns are inferred from
bug repositories: storage frag-
mentation, thread leakage, and de-
graded response time

Non-negligible memory leak rate
was reported

Estimated TTE of 4 GB of mem-
ory was ~ 2.5 days in the worst
case

Estimated TTE for slow deple-
tion was 3 mon.-1 year, for fast
depletion 2 days-2 weeks, while
throughput halved after a week

Faster and more robust than trend-
based approaches, able to localize
root cause, integration with unit
tests possible

48% of reported defects are
memory-leaks; causes in 80% are
non-closed resources, unreleased
references and exception handling

Transfer learning showed much
better performance that in-project
prediction for in all cases

100 Chapter 6. Software Ageing and Rejuvenation in SDN Orchestration Platforms

All presented studies are trend-based, that is, once the experiment space is designed the ageing trend
(e.g., memory depletion) is confirmed using statistical hypothesis testing, e.g., Mann-Kendall and its
variations. If a trend is detected, it is quantified using statistical inference techniques. Typical models
used in such analysis are linear, quadratic, piece-wise linear, growth curve, ARIMA, queuing models,
fractal theory. Model parameters were fit using LSE/MLE or more robust Sen’s slope estimator.

ii) The studies modelling the ageing on data collected from the operational environment "in the
wild" deal with more representative workload. The study on IBM cloud platform collected the data
from multiple customer premises [172], while the UNIX study [181] gathers data from several campus
machines. Data points are then clustered around system load parameters (e.g., cpuload) to describe

representative operational points.

iii) Regression testing and differential performance analysis is an alternative approach for detection
and localization of ageing-related problems [52, , ,]. Ageing is detected by comparing
memory usage distribution, byte level allocations, signal divergence charts between baseline and buggy
version of the software. The differential analysis in [101] was performed comparing runtime results of
memory consumption in fault-free and buggy versions of cloud platform, while the study in [102] used
fault injection to demonstrate the efficiency of differential unit tests, by monitoring the heap allocation.
A similar approach was validated on 7 real-life leak-bugs reported in 5 Java projects [52]. Furthermore,
the study in [1 13] used signal divergence charts for anomaly detection, i.e., a critical level of deviation
between target and baseline version.

iv) An empirical analysis of software ageing defects are conducted with a goal to analyse the
patterns, improve testing tools, and prevent occurrence of the same issues in future releases. The
largest empirical study on ageing in 10 open source Java projects was presented in [54] (ext. of [53]).
The patterns in ageing manifestation, root causes and repair strategies were observed by manual
inspection of 450+ bugs. An empirical analysis using cross-project transfer learning was proposed
in [152], with the goal of isolation of ageing-prone modules. Another example of cross-project learning
was [38] using the software complexity to predict ageing-related defects.

v) The effects of software ageing manifesting as memory-leaks can be detected with code level
inspection and instrumentation. LeakBot [124] and LeakChaser [191] were proposed for automated
leak-detection, while memory-leak detection based static code analysis with LeakChecker was dis-
cussed in [196]. This approach can efficiently localize the root causes much faster than trend-based

tests in controlled environment.

6.3 ARES: A Framework for Management of Software Ageing and
Rejuvenation

The effects of software ageing have been analysed and experimentally proven in well-known applica-
tions, similar to SDN controllers in terms of complexity (i.e., code base size), functional characteristics
(e.g., distributed stores and operating systems), and usage patterns (e.g., data intensive long running
systems). The ARES framework presents a systematic way for the management of software ageing,
by combining the three steps, i.e., ageing detection, profiling and prevention, which have not been

6.3. ARES: A Framework for Management of Software Ageing and Rejuvenation 101

previously applied together in the SoA. The alternative approaches in each step (illustrated in Fig. 6.1)
are discussed, comparing their advantages and limitations.

6.3.1 Detection of Software Ageing

A timely detection of software ageing defects is challenging. The ageing defects take long time to
manifest, as they represent the cumulative effect of comparatively small resource leaks, which are
sometimes triggered only after a particular sequence of events, e.g., an unsuccessful object removal
under exceptions. The methods for detection and localizations of ageing related defects are: i) empirical
analysis of previous defects, ii) regression testing and differential code analysis, and ii) code inspection
and instrumentation.

The bug repositories contain large corpus of data on the incidents from test and operational
environments, providing a valuable insight into manifestation patterns, root causes and reparation
strategies [54]. In the era of network softwarization many of the commercial network components at
all layers of the networking are based on open source solutions2. These open source network projects
maintain public issue trackers, reporting the software failures detected in both test and operational phase.
Typical ageing-related issues and the critical workloads are identified by mining such repositories. The
keyword based search was used to filter the potential software ageing issues from large bug repositories.
After the filtering, the manual inspection is employed to identify the real ageing defects. It is left for
the future work to automate this step by using NLP.

The regression based tests are rendered inefficient for large changes in code base, due to new
features and changes in data structures (e.g., a change in ODL data store abstractions AD-SAL —
MD-SAL). The methods for fault localization based on code instrumentation induce performance issues,
require sophisticated statistical analysis, involvement of the developer or are proprietary (e.g., LeakBot
IBM). Moreover, the regression testing and static code analysis are not likely to detect the bugs that
are triggered only after a specific sequence of events. On the other hand, the main drawbacks that of
the empirical analysis is that it only addresses known issues, not being able to anticipate new classes
of bugs. Hence, it is left for the future work to explore the efficiency of alternative approaches for
localization of software ageing issues.

6.3.2 Profiling of Software Ageing

Ageing profiling is done through an exhaustive measurement campaign, modelling the relationship
between workload parameters and the effects of software ageing, as illustrated in Fig. 6.2. The method-
ology for characterization of software ageing proposed in the literature uses either: i) stress based tests
in a controlled environment, or ii) modelling of data collected from an operational environment.

In controlled stress tests the performance and resource consumption under constant workload are
monitored for a long period of time. The majority of such tests uses sophisticated statistical methods
to detect trends, e.g., memory consumption to detect memory leaks. The main drawback of trend-
based ageing profiling is duration of such tests, especially as large number of repetitions are needed
to obtain statistically relevant data for different operational points. Moreover, the increased resource

2The Linux Foundation:

https://www.linuxfoundation.org/projects/networking/

102 Chapter 6. Software Ageing and Rejuvenation in SDN Orchestration Platforms

consumption does not necessarily stems from ageing, e.g., data structures like cache can keep memory
for legitimate reasons [52]. An alternative approach is modelling of data collected from an operational
environment. However, the network operators are not willing to provide an access or publish sensitive
data, as Google’s B4 [63].

ageing = f(workload)

| l

Workload parameters Sw. ageing indicators
SERVICE
Applciation level: Application level:

— Request rate — Slow response time
— Request size — Reduced throughput
— Request type L J

System level: SUT System level:
— sysCall — memory leaks
— cpuUtilization — unreleased threads,
— cpuContextSwitch DB/NW connections,
— pagelnOut ENVIRONMENT file handles

Figure 6.2: Profiling: modelling the workload-ageing relationship for Software Under Test (SUT)

6.3.3 Prevention of Software Ageing

The prevention and mitigation of the adverse effects of software ageing can be done either proactively,
before the software is released to the customers, or reactively, after the software has been deployed in
an operational environment.

The detection of ageing-related problems with standard performance unit/integration test has been
shown to be unsuccessful. The ageing effects take long time to manifest as significant performance
degradation, while most systems using continuous integration require much shorter time for the tests
to pass. Dedicated tests, such as longevity tests used in production SDN platforms, such as ONOS
and ODL, test the system for several hours at the time. However, existing tests are focused mainly on
stability, i.e., whether a system is working correctly, rather then on effects of the software ageing. The
longevity tests in ONOS consists of several steps; one of them is occasional crash of the controller
nodes, aiming to assess the control plane stability and correctness, while the system recovers. However,
this test sequence reinitializes controller, and unintentionally prevents the manifestation of software
ageing effects, such as memory leaks.

The reactive approach implements rejuvenation policies, i.e., occasionally stopping the software,
reinitializing internal data structures, network connections and/or restarting the system. The design
of software rejuvenation policies consists in optimization of rejuvenation schedule and rejuvenation
level, as illustrated in Fig. 6.3. The schedule refers to the rejuvenation timing, and can be time- or
threshold-based. Time-based rejuvenation can be triggered periodically in regular time intervals, after
a certain number of operations have been executed (e.g., network intent compilation and installation),
or at the times when it has the least impact on the services. Threshold-based rejuvenation is triggered

before the resource utilization (real or projected one) reaches the critical level. The rejuvenation can be

6.4. Ageing Detection: Mining ONOS and ODL Software Repositories 103

implemented in different levels, application level (e.g., purging of the data stores) or system level (e.g.,
VM restart). Application level restarts helps mitigation of a particular ageing effect (e.g., memory
leak in the data store), while system level rejuvenation helps in prevention of most ageing effects, both
known and unknown. The system level rejuvenation should be avoided, as it leads to significantly
longer service interruption times.

DESIGN OF SOFTWARE REJUVENATION POLICIES

REJUVENATION REJUVENATION
SCHEDULE LEVEL
| |
[[[[

TIME-BASED THRESHOLD-BASED APPLICATION LEVEL SYSTEM LEVEL
Rejuvenation carried out Executed before given Application-level rejuvena- Rejuvenation of system
periodically: resource utilization or tion, mittigating a particular environment:
— After given time since Perform?f}ce degradation class of ageing effects: — Application reload
the last rejuvenation reach critical threshold: — Reinitialization of data —s Restart of VMs or
— After given number of — Hard threshold structures, e.g., data store docker contatiners
operations is executed — Projected utilization — Restarting network _y Hardware reboot
— At the lowest workload and/or database connections

Figure 6.3: Designing of software rejuvenation policies, i.e., optimization of rejuvenation schedule and level.

The following sections discuss implementation of the framework in SDN controllers’ case study.

6.4 Ageing Detection: Mining ONOS and ODL Software Repositories

The network components in this study are open source SDN controllers, ONOS and ODL, whose bug
and code repositories are publicly available. The bug repositories contain data on the reported issues
in test and operational environments, which makes it the primary source for discovery of the ageing
patterns. The public code repositories have been used to analyze and explain the nature of ageing root
causes, in particular, in cases when the description in the bug repositories were not sufficient.

A large number of the ageing related issues are caught already in the testing phase. Both controllers
implement test suites to detect the performance regression and resource leaks as a part of CI process.
ONOS longevity tests, called Continuous Hours of Operation (CHO) tests, are implemented as a part
of its testing framework, called TestON. The CHO tests use ChaosMonkey, which exercises random
control plane inputs, such as adding and removal of the flows, topology events (e.g., port, link or
device down), and cluster instance down, aimed to run several weeks at the time. Its counterpart, ODL
recommends the implementation of longevity tests at the individual project level. However, these tests
focus mainly on stability and correctness, and therefore overlook some of critical ageing-related issues,
which still manifest in production environment.

Performance studies on ODL.3 and ONOS#, as well as several measurement-based studies [44, ,
] have already reported effects of software ageing in the operational setting, but did not investigate
these issues further.

30penDaylight: How Performance Testing Improved the Nitrogen Release (October 24, 2017).
40NOS: Security and Performance Analysis (September 19, 2017).

https://goo.gl/7B7Pyd
https://goo.gl/UihVYJ

104 Chapter 6. Software Ageing and Rejuvenation in SDN Orchestration Platforms

The following section describes the methodology to systematically analyze the nature and mani-
festation patterns of software ageing in such open source SDN controllers.

6.4.1 Methodology for Mining of the Software Repositories

Public issue trackers contain more than 10k+ bugs reported in two repositories over five years (2013-
2019). Since the amount of data in these public repositories is rather large, the manual inspection is
infeasible. Hence, the filtering of the ageing related issues was implemented using the keyword based
search presented in Fig. 6.4. Note, that some keywords are use case specific, e.g., ONOS CHO tests or
Java garbage collection>.

SOFTWARE AGEING DESCRIPTORS
I

PERFORMANCE ISSUES RESOURCE LEAKS MEMORY LEAKS OTHER ISSUES
. Resource leaks, e.g. ; .
Gradual response time unreleased file ’loc]%s’ thread Memory leaks leading to Other ageing sympthoms,
degradation and throughput ’ out-of-memory crash during e.g., data corruption,
. leakage, runtime .

regression N d storage fragmentation
— keywords: "Za/fz’wgr rs;u” Vex- — keywords: — keywords:
“performance degradation”, hamt*”’ ”Sr,un oL;t” ot ”OutOfMemory”, ”OOM > ”continuous hours of opera-
“regression”, throughput rem;Jvez}/releaved/c’loved” STUCkQVEKﬂUW , "garbage tion”, "CHO”, "’longevity
decrease”, response time . ' ’ collection”, "GC”, "heap tests”, “corruption”,

“too much/many”, “unre-

increase”, slow*” e
sponsive

“fragmentation”

Figure 6.4: Mining software repositories for ageing defects using keyword-based search in filtering step.

After the keyword-based filtering step, the bug repository was reduced to 500 bugs representing
the potential software ageing defects. In the following step, the manual inspection was deployed to
identify the real ageing defects.

6.4.2 Analysis of Ageing-related Defects

This section provides the first insight into ageing dynamics and recurring patterns of critical issues in
SDN controllers. The most representative examples in each one of the categories illustrated in Fig. 6.4
are discussed in the following section.

6.4.2.1 Performance Issues

Gradual performance degradation, reflected in throughput decrease or response time increase, is the
most obvious consequence of software ageing, perceived directly by the user. An example is [PerfReg-
/], reporting that the overall intent throughput starts decreasing monotonically 5 minutes after the
start of the throughput test in cluster mode. The issue does not happen when only single instance is
deployed. However, such reports are rare, as most of the ageing-related defects have been reported in
the form of resource leaks.

5A comprehensive taxonomy of ageing-related defects was provided by [54], and was partially used to design a keyword
search space used in the filtering step.

https://jira.onosproject.org/browse/ONOS-1339
https://jira.onosproject.org/browse/ONOS-1339

6.4. Ageing Detection: Mining ONOS and ODL Software Repositories 105

6.4.2.2 Resource Leaks (Other than Memory)

A typical example of the storage leak is reported in ONOS [1. The controller nodes could
eventually run out of disk space, due to a bug in the log compaction. The log compaction removes
entries which do not contribute to current state (see Sec. 5.3), and the bug prevented compaction from
being rescheduled after completion. In another example [], the controller node becomes
unresponsive with StorageException, when the connected network device state changes repeatedly.

This was observed only after running the test for several days.

Some leaks happen only under exceptional conditions. E.g., in [] it was observed
that some errors during start the NETCONF session, cause SshClient not to free the sockets or file
descriptors, that were made by that client. It led to the exhaustion of file descriptors, preventing the
creation of new network connections. A similar issue was reported in []. In case of the
NETCONF password error, the device would not be connected. The attempted device registration creates

new ProxySession without releasing the earlier one.

Leaks introduced after an upgrade can be detected with performance regression tests. In [
] a data store was opening a new session on each transaction, after upgrade of ONOS distributed core
(Atomix).

6.4.2.3 Memory Leaks

Memory leaks represent the largest category of the ageing-related defects, and are hence, analyzed

separately from other resource leaks.
Datastore transaction leaks in ODL

A large number of memory leak issues related to unclosed transactions to data store was reported
in ODL. An umbrella issue [] groups all suspected transaction leaks, in an effort to identify
the root cause and mitigation techniques. A detailed analysis of transaction leaks and a corresponding
debugging tool to trace their source, was provided by RedHat®. Their analysis showed that embedded
applications, such OpenFlowPlugin, open a large number of transactions, but never close them, filling
up an internal data structure, and leading to the crash with an OutOfMemoryError (OOM).

A failure of the existing test frameworks to detect ageing-related bugs was discussed in [1,
which reported an O0M due to a large hash map in ShardDataTree, suspected that the DataBroker
was not closing the transactions correctly. It was speculated that CSIT longevity test either does not
run long enough, or does not stress the data store at the critical levels.

An OOM [] caused by a large number of closed transactions was reported in history’s
of closed transactions. The transactions were created by the ask-based (pull) protocol, and were
closed, but not purged from the hash map. On another hand, tell-based (push) protocol issues
explicit purges from the frontend, while for ask-based protocol this has to be done on the backend
(for functional split between frontend and backend in ODL data store, see Fig.6.5).

Transaction leaks do not always result in hard failures due to OOM. Silent failures, such as [
] are much more dangerous, as they can go unnoticed by standard failure detectors. During some
longevity tests in a clustered ODL setup, the controllers were up, with ports listening but not being
functional.

%Michael Vorburger (RedHat)

https://jira.onosproject.org/browse/ONOS-7024
https://jira.onosproject.org/browse/ONOS-5179
https://jira.onosproject.org/browse/ONOS-7833
https://jira.onosproject.org/browse/ONOS-7889
https://jira.onosproject.org/browse/ONOS-6859
https://jira.onosproject.org/browse/ONOS-6859
https://jira.opendaylight.org/browse/NETVIRT-883
https://jira.opendaylight.org/browse/CONTROLLER-1756
https://jira.opendaylight.org/browse/CONTROLLER-1746
https://jira.opendaylight.org/browse/CONTROLLER-1762
https://jira.opendaylight.org/browse/CONTROLLER-1762
http://blog2.vorburger.ch/2017/09/how-to-find-transaction-related-memory.html

106 Chapter 6. Software Ageing and Rejuvenation in SDN Orchestration Platforms

Dead objects not being disposed of correctly

A large empirical study on ageing-related defects in Java-based applications [53, 54] showed that
dead objects not being disposed of correctly, contribute to 20% ageing bugs. Object disposal may be
unsuccessful for several reasons: due to a omission failure, a bug (e.g., unreleased reference), or under
exceptional conditions.

A typical example is [], which reports the NETCONF protocol handler not releasing
the references to replies, leading to memory leaks which caused ONOS to become unresponsive over
time. In some cases, the failed removals happen intermittently, as in []. This report
describes a failure of intent removal in the CHO test, when a large number of the network intents
are installed. Reproducing this issue was hard, as it manifested in "less than 1/10000" cases, and it
remained unresolved.

Sometimes, the ageing effects are observed in functional tests. A test case called "chasing the
leader", aiming to establish whether a service operates correctly when faced with rapid mastership
transitions, uncovered several ageing-related issues. For instance, [] reported that chasing
the leader exhausts heap space in 19 hours. Performance issues, such as "karaf.log files show Un-
reachableMember", corresponding to GC pauses of more than five seconds, started happening earlier,
3.5 hours after the test start.

Failed object removals under exceptional conditions are extremely hard to reproduce in the test
environment, because their triggering require the precise timing between the internal and external events
in the control plane. Memory leak in DistributedMeterStore was reported in [1,
observing that the CompletableFuture (i.e., asynchronous calls) were not removed when the futures
were completed exceptionally. Another example is [1, which reports the controller
failing to remove flows from DistributedFlowRuleStore for disconnected device, and keeps re-
adding the flows when device reconnects. Similarly, [] reports a failure to remove
flows installed in multiple times in several instances.

Ageing-related issues induced by the distributed core design

All presented ageing-related issues until this point are clear bugs, an undesired behaviour of the
controller software that should be corrected. However, the analysis exposed two highly critical ageing-
related issues that are caused by the particular design of distributed core in ONOS and ODL. These
two issues lead to a deliberate increase in the memory footprint of data stores, which degrades the
controller response time, and eventually leads to a crash with an OOM.

The design issue in ONOS [] was introduced to ensure the stability of distributed
primitives using EventuallyConsistentMap, which rely on Gossip protocol for synchronization
(as described in Sec. 5.3). The entries removed from such maps are replaced with rombstones, i.e.,
placeholders, to ensure that the entries do not reappear later when anti-entropy runs (i.e., random pairs
of neighbours comparing their version of the data). Adding and removing a large number of unique
entries, e.g., flows, lead to an accumulation of tombstones, resulting in memory leaks. The mapping
of the network state to ONOS distributed primitives is presented in Table 6.2.

The design issue in ODL [] stems from the functional role distribution between its
data stores, illustrated in Fig. 6.5. Essentially, there are two conceptually different data stores, the
ConfigurationalDS, which contains the desired network configuration, as specified by the user, and

https://jira.onosproject.org/browse/ONOS-7918
https://jira.onosproject.org/browse/ONOS-5172
https://jira.opendaylight.org/browse/CONTROLLER-1757
https://jira.onosproject.org/browse/ONOS-6205
https://jira.onosproject.org/browse/ONOS-1441
https://jira.onosproject.org/browse/ONOS-3531
https://jira.onosproject.org/browse/ONOS-4212
https://jira.opendaylight.org/browse/OPNFLWPLUG-962

6.4. Ageing Detection: Mining ONOS and ODL Software Repositories 107

Table 6.2: The use of distributed primitives in ONOS (adapted from "ONOS Distributed Core" presentation by
Thomas Vachsuka)

’ Network state

Consistency level

Properties

Network topology

Eventually consistent

low latency access

Flow rules, flow statistics

Eventually consistent

shardable, soft state

Switch-controller mapping

Strongly consistent

slow changing

Application intents

Strongly consistent

durable, immutable

the OperationalDS, which contains the actual state of the network. A user can request the installation
of flow rules with hard and idle timeouts, which would appear in both data stores after a successful
installation. When the flows "expire", i.e., timeout, they are removed from the OperationalDS (and
the network), but they remain in the ConfigurationalDS. The issue was identified as a potential
security vulnerability, making the controller prone to overflow attacks. The controller overflow attacks
have much larger impact than DDoS attacks in data plane, e.g., flow-table-flooding attack. The report
contains an elaborated discussion about the design trade-off(s), arguing that the rate limiters for the
addition of the "expiring" flows should be implemented outside the data stores, or preferably outside
the controller.

AKKA

NODE 1 CLUSTERING
s NODE 2
DISTRIBUTED ShardManager
DATA STORE CONEIG SHARD 1

CONCURRENT J CONFIG \
APP |—| DATA

BROKER
DISTRIBUTED
DATA STORE

OPERATIONAL \

ShardManager

SHARD 2

OPERATIONAL

superwise

ODE
|
SHARD 1

SHARD 2
L

FRONTEND «——i——— BACKEND

Figure 6.5: ODL data store architecture (adapted from "Clustering in OpenDaylight" presentation by Jan
Medved and Robert Varga).

Unlike the previous issues that were rectified, ageing-related design issues (ONOS [Designlssue-1]
and ODL [Designlssue-2]) are present in operational controller software, and will inevitably have an
effect on the network performance. The goal of the following section is to evaluate whether these
issues have a non-negligible impact on the network performance, referred to in this chapter as network

ageing.

https://jira.onosproject.org/browse/ONOS-4212
https://jira.opendaylight.org/browse/OPNFLWPLUG-962

108 Chapter 6. Software Ageing and Rejuvenation in SDN Orchestration Platforms

6.5 Measurement-based Characterization of Network Ageing

This section presents the measurement-based characterization of the effects of network ageing. The
focus of the study are the ageing defects stemming from the design issues in distributed control plane
implementations of ONOS and ODL. First, a design of experiments is presented (Sec. 6.5.1), followed
by an overview of the testbed implementation (Sec. 6.5.2). The evaluation of the network ageing effects
for the critical workloads is finally presented in Sec. 6.5.3.

6.5.1 Design of Experiments (DoE)

DoE, or experimental design, aims to uncover the relationship between relevant factors (e.g., request
type: intent or expiring flow), stress levels (e.g., batch size or arrival rate) and measurable response
(e.g., memory depletion and response time).

The critical workloads identified in the previous section, stemming from two design issues in
distributed control plane implementations of ONOS and ODL, aim to enforce the memory leaks in
the controllers’ data stores. The corresponding DoE design and implementations are elaborated in the
following sections.

6.5.1.1 Experiment Design for (ONOS-4212)

Adding and removing unique flow entries in ONOS, trigger the accumulation of the tombstones, instead
of fully deleting the flow entries, ensuring the stability of Gossip protocol. In order to further stress
the memory depletion and observe the controller response time, the intents, i.e., a higher layer flow
abstraction in ONOS7, are used instead. The experiment design and response time measurement of
ONOS intent installation/withdrawal times are illustrated in Fig. 6.6.

Measurement points for the intent installation (Tipsan) and withdrawal (Tyithdraw) times are illus-
trated in Fig. 6.6a. After the intent installation is requested by an application, it is processed and
compiled to the low level flow rules. In case of unsuccessful compilation, the intent can be recompiled
several times, and eventually fail. The application can also request a removal of the intent, after which
it is withdrawn from the network and evicted from data store.

The interaction between the test application, requesting the installation and withdrawal, is illustrated
in Fig. 6.6b. A test application requests a batch of Np,p intents to be installed, waits for ONOS to
install the intents, and subsequently requests a removal of the batch of the intents. The observed
response time (RTjng)) includes not only the real processing time (e.g., Npatch X Tinstall), but also
the system overhead and the propagation delay between test application and ONOS, which reside on
different machines (see Sec. 6.5.2). Hence, the batch size has to be carefully tuned, in order to analyze
the trend in intent installation and withdrawal response times.

The ONOS built-in test application push-test-intents, which is a part of TestON plan, was
modified to keep sending the intent installation and withdrawal request, omitting the warm-up phase
and restarts between batch requests. The reference topology consists of seven stub switches (called
Null Providers). Different classes of intents, e.g., point-to-point, host-to-host, are implemented in

7 : allows applications to specify higher layer policies, in terms of resources, constraints and

instructions, which are translated to lower level flow rules via intent compilation.

https://jira.onosproject.org/browse/ONOS-4212
https://wiki.onosproject.org/display/ONOS/Intent+Framework

6.5. Measurement-based Characterization of Network Ageing 109

Application sends
A intent request : et ONOS
1 application

Intent
install request

Compiling intent
Installing intent

Sending a batch of Ny,
intent install requests

Tins!all

Intent request
failed
Recompiling

Processing batch
of intent requsts

Response
Npaten X T,

time
RT,

install

Sending a batch of Ny, |
intent withdraw requests |

Intent
withdrawing
Twnhdraw Intent Response
withdrawn time
RT, ith

. Intent evicted from |

Processing batch
of intent requsts
Nbaten X Twithdraw

data store

(a) Response time per intent (b) Response time per batch of intents

Figure 6.6: Measurement points for response time evaluation for ONOS intent installation (Tipg) and with-
drawal (Tywithdraw) times. Intent state transition diagram was adapter from ONOS documentation.

ONOS. The experiment considered a batch of point-to-point intents installed between the first and the
last switch in the linear topology. The experiments are run in a throughput mode, i.e., a new batch of
requests is sent as soon as the old batch is processed. The stress level can be adjusted by changing the
intent batch size.

6.5.1.2 [Experiment Design for Designlssue-2 (OPNFLWPLUG-962)

The second set of experiments tests whether the installation of the flows with hard timeout triggers
the memory growth of the ConfigurationalDS in ODL. The overview of the experiment design is
illustrated in Fig. 6.7.

The test application sends a batch of Nyych expiring flows with hard timeout Tijpeout. The flows
are recorded in the ConfigurationalDS, which is the only data store that the user can modify. After
the flows have been pushed and installed in the network, they are added to the OperationalDS and
their state is updated. After the hard timeout Tiimeout, the flows are removed from the network and the
OperationalDS, and their state is updated. However, the ConfigurationalDS retains the expired
flows, unless the user or the application explicitly request their removal.

The requests are sent in regular time internals Tyait > Ttimeout, €nsuring that the flows have
expired, before adding a new batch and causing an overload. The observable response KPIs is the
memory consumption, whose growth is expected due to the accumulation of the expired flows in the
ConfigurationalDS. The stress level is controlled by changing the flow batch size and flow arrival
rate (1/Tyait). The data plane was emulated using Mininet8.

8Mininet creates a realistic virtual network, running real kernel, switch and application code, on a single machine (VM,
cloud or native): http://mininet.org/

https://jira.opendaylight.org/browse/OPNFLWPLUG-962

110 Chapter 6. Software Ageing and Rejuvenation in SDN Orchestration Platforms

ODL Data Stores

TESt . ConfigurationalDS OperationalDS Data
application i plane

Send batch of Ny, \
bt of Ny

Wait time

Tt update flow

status

j -
Send batch of Ny, i -
expiring flows i [«

update flow
status ____----1

Figure 6.7: Experiment design for ODL issue: a batch of Ny expiring flows with hard timeout Timeout iS
added to the network in regular time internals Tyy;.

Since the addition of the expiring flows with the hard timeout at the constant rate is expected
to keep the controller memory consumption constant, it is convenient for testing of the presence of
memory leaks. Hence, the similar experiment was exercised for ONOS controller. The hypothesis that
expired flows would lead to the increase in memory consumption of the FlowStore, due to the similar
mechanism as in Designlssue-1.

Another variable factor in both experiments is the controller software version. The exhaustive
analysis could not be conducted for all software releases, due to the duration of the experiments. For
instance, a 24-hour experiment with 10 repetitions for the last six controller versions would take two
months to complete.

6.5.2 Testbed Setup and Implementation

The testbed consists of three workstations, as illustrated in Fig. 6.8. Management PC sets up the
environment (docker images of controllers under test, workload generator, and tools for stats collection
and logging). Workload PC emulates SDN Control Plane (CP) traffic using different benchmark tools
and scripts. SUT PC contains the controller under test, i.e., different versions of ONOS and ODL..
Experiment statistics and logs are collected using telegraph®/influxDB'° and fluentd'!, and visualised
with Grafana'?.

The Management and the Workload PCs have Intel(R) i5-3470 CPU @3.40GHz processors, while
the Controller PC has i7-3770 CPU @3.40GHz. The isolation between the applications is ensured

9Tclcgml‘ is the agent for collecting and reporting metrics and data
10hflux DB is purpose-built time-series DB

WHuentd is an open source data collector for unified logging layer
12Grafana is an open platform for analytics and monitoring

https://jira.onosproject.org/browse/ONOS-4212
https://www.influxdata.com/time-series-platform/telegraf/
https://www.influxdata.com/time-series-platform/influxdb/
https://www.fluentd.org/
https://grafana.com/

6.5. Measurement-based Characterization of Network Ageing 111

@ setup environment, configure
test sequences and run experiment(s)

{ Monitored KPIs [Management PC: SUT PC: Workload PC:
i. CPU utilization Setup and logging SDN Controller(s) CP traffic generator
ii. storage I/O
iii. network 1/0 SDN CTRL Emulated SDN CP
iv. memory usage Testbed setup \proc] ONOS. L Mininet
- RAM , | | OpenDaylight || TestON
- RSS and VSZ | [1
- Heap size ! ! !
- Heap usage system docker stdout/ \proc --- system
metrics stats stderr P metrics
Live Visualize DB \ | | 1
Browser grafana influxdb I I I !
N A& & ! A 2 Y N4
‘ ' ' '] sTATS LOG STATS
I s o telegraf fluentd telegraf

@ CP workload for given topology,
@® Collect statistics and logs request type (e.g. PACKET_IN) and
arrival distribution rate

Figure 6.8: Testbed consists of three workstations: i) management PC responsible for environment setup,
configuration of test sequences and post-experiment stats collection, ii) workload PC generating SDN CP traffic
and iii) SUT PC running the containers for SDN controller under test and statistics collection.

by dedicated core mapping. Within SUT PC, the container with the controller under test is using
cores 1-7, while telegraf and fluentd are mapped to the core 0. All workstations have 16 GB Random
Access Memory (RAM) and use Ubuntu-18.04 operating system; a desktop version is installed on the

Management PC, and server on other two machines.

During the experiments, the logs and the metrics on the system and application levels are collected.
The KPIs collected from SUT PC (CPU usage, number of threads and open files, disk utilization and
most importantly used memory) and workload PC (response time), are reported to the management PC.
Since the focus of the presented study is on the memory consumption, due to the nature of the ageing-
related defects, memory-related KPIs are monitored with higher granularity. A brief comparison

between memory-related KPIs is provided below:

1. RAM: the main system memory is too noisy to monitor the memory leak trends, as SUT
process(es) only use a fraction of it.

2. Resident Set Size (RSS): the working set size of a monitored process, considering text, data,
stack and heap loaded in main memory.

3. Virtual Memory Size (VSZ): VSZ represents the total amount of the memory, including in-
memory and on-disk pages.

4. Heap Size (HSZ) and Heap Usage (HUS) total amount of allocated and used heap, are less noisy
than the previous three metrics [113].

The system wide metrics are collected from the operating system and docker containers, while the details
of memory consumption are obtained through Garbage Collection (GC) logs!3. The workstations are
setup to use Concurrent Mark and Sweep (CMS) Incremental Mode. The maximum heap size was
14GB, which was the amount of allocated RAM for a docker container running the controller.

B3For details see: What Is a Garbage Collection Log and How Can You Enable and Analyze 1t?

https://goo.gl/NfmTnh

112 Chapter 6. Software Ageing and Rejuvenation in SDN Orchestration Platforms

6.5.3 Characterization of Software Ageing

Next, the impact of the controller software ageing issues on the network performance is presented.

6.5.3.1 Evaluation of ONOS Design Issue

The design issue in ONOS (Designlssue-1) stems from a deliberate choice to replace dead objects
in ECMap, for the sake of stability of Gossip protocol. Addition and removal of the unique flows or
intents lead to the growth of the memory consumption, and consequently response time degradation,
as illustrated in Fig. 6.9. The results in the figure are reported for ONOS v1.10.4 (Kingfisher) and
batch size of Np,cn = 1000 intents.

15.0
__125| — HSz — HUS
0O 10.0
. 7.5
£
o 5.0
> 2.5
0’00 2 4 6 8 10 12 o 2 4 6 8 10 12
Experiment time [h] Experiment time [h]
(a) Memory depletion: allocated heap size (HSZ) and (b) Response time degradation: installation and
heap usage (HUS) withdrawal of intents

Figure 6.9: Network ageing in case of Design/ssue-1 (ONOS-4212)

The memory consumption over a 12h experiment time is illustrated in Fig. 6.9a. The memory

consumption piecewise linear behaviour and a long term growth trend can be observed in all reported

g GB

memory KPIs. The memory depletion rate in this experiment is 0.78%, which is equivalent to 1 day”

at the effective rate of 300“‘an‘5.

The response time in terms of intent installation and intent withdrawal rate is presented in Fig. 6.9b.
Similarly, a long term growth trend can be observed. The response time degradation time is non-
negligible, estimated to increase of 50%/day for the intent installation time after 24 h of operation.

In order to confirm whether the estimated memory depletion trend is stable and it does not saturate
under high memory utilization, the experiment was left to run until the Out Of Memory (OOM) crash.
The memory depletion trend remained linear until the crash, which happened after the predicted 18 h.
However, the response time increase slowed down around 14 h after the experiment start.

6.5.3.2 Evaluation of ODL Design Issue

The design issue in ODL (Designissue-2) has a provenance to keep a desired flow configuration
provided in ConfigurationalDS, regardless of the operational flow state. This causes a constant
growth in the memory consumption in case of addition of expiring flow rules, i.e., the flow rules with
hard or idle timeout. The effects of this issue on the memory consumption are illustrated in Fig. 6.10.
The results reported in the figure are for ODL v0.7 (Nitrogen), the flow batch size of Ny, = 1000

and experiment duration of 12 h. The effective flow arrival rate was 100 @

https://jira.onosproject.org/browse/ONOS-4212
https://jira.onosproject.org/browse/ONOS-4212
https://jira.opendaylight.org/browse/OPNFLWPLUG-962

6.6. Design of Rejuvenation Policies 113

It can be observed that all memory KPIs show piecewise linear behaviour, with a long term growth

trend. The observed memory depletion rate in this experiment was 18 %, similar to the previous case.

15.0
—12.5| — HSZ

10.0 HUS

7.5
5.0
2.5
0.0

Mem. [GB

0 2 4 6 8 10 12
Experiment time [h]

Figure 6.10: Network ageing in case of Designlssue-2 (OPNFLWPLUG-962)

Note, that the underlying root causes of software ageing in case of expiring flows in ONOS and
ODL are different. Both experiments can be easily integrated into ONOS and ODL test suites. In
particular, while the presented design issues remain in the controller software, the network operators
would benefit from knowing the expected memory leak rates, as well as the response degradation, and

design their systems and preventive measures accordingly.

The exhaustive search of the software ageing in different operational points is left for future work.

6.6 Design of Rejuvenation Policies

Next, the proof-of-concept implementation and the trade-off between efficiency and service interruption
time for different rejuvenation policies are presented.

6.6.1 Proof-of-Concept Implementation

As a proof of concept, a simple threshold-based policy is implemented, triggering the system level
rejuvenation after a memory reaches a certain level of utilization. A restart of the docker container,
in which the controller is running, is triggered after the RSS reaches 4 GB. The efficiency of this
rejuvenation policy in case of ONOS Designissue-1 is illustrated in Fig. 6.11a and Fig. 6.11b.

— HSZ —— HUS
=) 6
=4
.4
5
S 2
0 1.00
0 2 4 6 8 10 12 0 2 4 6 8 10 12
Experiment time [h] Experiment time [h]
(a) Memory depletion: allocated heap size (HSZ) and (b) Response time degradation: installation and
heap usage (HUS) withdrawal of intents

Figure 6.11: Network rejuvenation in case of Designlssue-1 (ONOS-4212)

https://jira.opendaylight.org/browse/OPNFLWPLUG-962
https://jira.onosproject.org/browse/ONOS-4212
https://jira.onosproject.org/browse/ONOS-4212

114 Chapter 6. Software Ageing and Rejuvenation in SDN Orchestration Platforms

In this setting, the rejuvenation was triggered every 4 h, leading to a service interruption times of
30 seconds. Note that in the examples of ONOS (Fig. 6.9) and ODL (Fig. 6.10) design issues, the
estimated TTE= 18 h, which is the longest period that the software rejuvenation should be postponed,
leading to a controller service unavailability of 0.05%. During these short interruption times, the
network is left without control plane services, which can be mitigated by a simple handover to an
identical (albeit younger) controller replica. Design and implementation of the protocol for a seamless
handover of differently aged controller replicas is left for the future work.

6.6.2 Discussion: Rejuvenation Policy Design Trade-off

Next, the trade-off between efficiency and service interruption time for different rejuvenation policies
(Fig. 6.3), in a given scenario are compared.

Rejuvenation schedule. The rejuvenation schedules differ in the triggering event, which has an
impact on the implementation complexity and the intrusiveness of the monitoring processes.

In case of time-based policies, the rejuvenation timing is an important design parameter, which is
highly dependent on the system workload. The time-based rejuvenation executed in regular intervals,
is the easiest to implement, as it can be triggered externally, without the need to monitor the internal
system state. In the examples of ONOS and ODL design issues, presented in Fig. 6.9 and Fig. 6.10,
the respective memory leak rate is constant, as long as the arrival of critical (i.e., ageing triggering)
requests is constant. Is such scenario simple time-based rejuvenation would suffice. However, such
periodic rejuvenation is efficient only in the case of the constant ageing rates, which holds only for a
Machine-To-Machine (M2M) communication, such as in industrial networks. In systems with variable
workload, and consequently variable ageing rate, the inspection-based rejuvenation policy must be
implemented instead.

Rejuvenation level. The rejuvenation levels differ in terms of service interruption times, as well

as their efficiency to mitigate different types of ageing, e.g., storage v.s. memory leak.

The application level rejuvenation in case of the presented SDN controllers can be done at
the data store level (e.g., explicit purging of the expired flows), the application bundle level (e.g.,
OpenFlowPlugin) or at the controller level. The rejuvenation of the data store level is the fastest,
leading to negligible service interruption times, but can only deal with the effect of memory leaks,
such as and . Rejuvenation at the application bundle level can additionally
mitigate the effect of resource leaks caused by the misbehaving controller applications, such as those
reported in [, ,]. The complete controller restart is even more efficient,
but leads to significantly longer interruption times [161]. System level rejuvenation can additionally
mitigate the ageing effects, such as storage leaks and fragmentation []. The service interrup-
tion time is an order of magnitude longer than the application level restart, resulting in the outages of
several minutes [127].

Hybrid rejuvenation policies. In operational environments, where the exact network ageing
rates and its manifestation patterns are unknown, the optimal strategy would be to implement hybrid
rejuvenation policies. For instance, short data store clean-ups can be performed frequently to mitigate
the known effects of data store leaks, the controller can be restarted periodically preventing the other
resource leaks, while the entire system can be reloaded at the times of low workload periods.

https://jira.onosproject.org/browse/ONOS-4212
https://jira.opendaylight.org/browse/OPNFLWPLUG-962
https://jira.onosproject.org/browse/ONOS-7833
https://jira.onosproject.org/browse/ONOS-7889
https://jira.opendaylight.org/browse/NETVIRT-883
https://jira.onosproject.org/browse/ONOS-7024

6.7. Concluding Remarks 115

6.7 Concluding Remarks

6.7.1 Summary

This chapter presents ARES, the first framework for management of software ageing and rejuvenation
for SDN controller platforms. First, the lessons learned from the previous work on software ageing
and rejuvenation were discussed, and a comprehensive overview of the possible alternatives in a design
of such framework were presented. Next, the empirical data reported in public issue repositories was
analyzed, localizing the common sources of software ageing, as well as their impact on the system
performance, and repair strategies. Then, an experimental setup, including the testbed designed to
measure the memory-leak profiles was presented. Finally, a design and optimization of software

rejuvenation policies was discussed.

This is the first work addressing the issues of software ageing and rejuvenation in the network

software, such as SDN orchestration platforms.

6.7.2 Discussion

Threats to validity. The main threats to the validity of the analysis presented in this chapter is
the representativeness of the systems under study. Most of the empirical studies on software ageing
are conducted for software written in memory-managed languages, such as Java (also Python and
C#), in which garbage collection takes care of the memory disposal. In such programming languages,
the memory-leaks occur because Garbage Collector is unable to remove unused objects, which are
referenced somewhere else in the code. However, in languages such as C/C++, the programmer is
responsible for memory de-allocation and explicit object disposal. A follow-up study will compare the
results obtained for Java-based ONOS and ODL with OpenContrail (recently renamed as Tungsten
Fabric), an open source production-grade SDN platform written mainly in C++, to study if an explicit
memory management makes it more resilient to the effects of software ageing.

Generalization of the results. The analysis presented in this chapter exposed the prevalence of
ageing related defects in the largest production grade controllers, ONOS and ODL, stemming not only
from bugs but also inherent trade-off(s) in the design of distributed systems. Consequently, the results
apply to all commercial solutions built on top of the code base of these two controllers. Moreover,
results also apply to other distributed systems using the same distributed backend implementations,
i.e., Atomix [85] and Akka [84].

Future work. The framework presented in this chapter is only a first step towards a better
understanding of the effects of ageing on softwarized networks. The framework has proposed a
memory-leak profiling for a network control system under controlled stress tests, while localization
of the memory-leak sources has been performed by manual inspection of the previous outages. The
framework can be further extended to account for the ageing profiles of network control systems "in
the wild", as well as the automated localization of ageing defects.

Automated ageing trend detection in systems with variable workload. The network control systems
in production environment may experience highly variable workload, both, in terms of intensity and
service mix. Even when the resource-leak profiles are known for every operational point, reliable TTE

116 Chapter 6. Software Ageing and Rejuvenation in SDN Orchestration Platforms

prediction is hard in such a setup. Different approaches to automated detection of resource leaks, based

on trend analysis and state-based performability models should be designed and evaluated.

Localization of ageing-related bugs with differential code analysis and regression tests. An efficient
localization of ageing defects in yet untested software releases is an active research area. Learning
from mistakes, i.e., previous ageing related bugs, can improve the current testing practices, so that such
bugs do not reoccur in new software releases. Localization of new ageing-related bugs can be done by

means of regression testing, and differential code analysis [52, 1.

Chapter 7

Conclusions and Outlook

This chapter concludes the dissertation, with the summary and discussion of the key findings, as well
as the outlook for future work and open research questions.

7.1 Summary and Discussion

Key findings. The main goal of this thesis was to advance the SoA understanding of the dependability
assurance in softwarized networks, focusing on the requirements of mission critical applications, such
as industrial networks. The following limitations of the related work on dependability assessment and
assurance, defined in Fig. 1.2, have been addressed:

Attributes: The temporal variations of network software reliability have been studied for two different
SDN orchestration platforms. Behavioural patterns, such as reliability growth due to the software
maturity (Chapter 4) and reliability degradation due to software ageing (Chapter 6), are not
precisely described in generic dependability metrics, such as availability and reliability. New
attributes, such as software maturity and network ageing, have been proposed. Furthermore,
user-perceived service availability has been analyzed (Chapter 5), to quantify the impact of
network control plane failures on services and applications relying on such networks.

Threats: The extensive analysis of the threats, i.e., faults, errors and failures, for the two largest open
source SDN orchestration platforms, ONOS and ODL, has been conducted, based on the software
defects reported in their public bug repositories. The core SDN controller functions have been
identified as the most critical ones, with the highest number of the recent defects belonging
to the clustering module, which supports the implementation of the distributed control plane.
A taxonomy and comprehensive analysis of the bugs in imperfect distributed SDN control
plane implementations has been provided, as well as the corresponding modelling abstractions
(Chapter 5). A particular class of defects related to scalability and performance issues in
distributed network control plane, namely software ageing failures, have been experimentally
validated (Chapter 6).

Means: The principal means of fault tolerance in legacy networks is the redundancy, which is often
inefficient against the software failures due to the high degree of correlation between software
failures, e.g., semantic software bugs. Moreover, the replication of stateful network functions
requires tight coordination and synchronization, realized with distributed protocols, which inher-
ently introduces new failure modes. The framework for assessment of dependability of real-life

117

118 Chapter 7. Conclusions and Outlook

distributed SDN implementations has been designed and evaluated in Chapter 5. The thesis
also proposes high-fidelity stochastic models, able to reproduce the behaviour of real-life SDN
orchestration platform, facilitating a reliable fault forecasting. A long term fault forecasting
framework based on SRGM at the level of software release has been discussed Chapter 4. The
forecasting of the failures at a shorter time scale and on the level of a single instance has been
proposed in Chapter 6, together with a corresponding fault prevention, i.e., software rejuvenation,
policies. The fault removal has not been explicitly addressed in the scope of this thesis. However,
the comprehensive analysis of defects in the implementation of distributed control plane and
software ageing defects, proposed in this work, can aid developers to gain deeper understanding
of software defect patterns, improving the efficiency of existing testing frameworks, resulting in
more efficient methods of fault removal.

Threats to validity. The main threats to validity of the proposed data-driven dependability
assessment and assurance frameworks, discussed in detail in the corresponding chapters, can be
summarized as follows:

* Dataset accuracy and completeness: the dependability analysis presented in this dissertation
makes an extensive use of public software repositories of open source network components.
However, the accuracy and completeness of open bug repositories cannot be guaranteed. Nev-
ertheless, such repositories provide a good insight into production-grade network software and
real-life incidents, facilitating a reasonable estimation of dependability bottlenecks.

* Abstraction level: the modelling abstractions used in this thesis, i.e., SRGM (Chapter 4), SRN
(Chapter 5) and workload-ageing function (Chapter 6), come with inherent assumptions,
representing a simplified view of the real-life software components. The chosen modelling
formalism and level of abstraction represent a reasonable trade-off between the approximation
loss and generalization power.

* Representativeness of studied network components and use case scenarios: Due to the time
limitation, not all network components in softwarized network architectures could be studied.
The focus was on SDN orchestration platforms, which have a central role in coordination of
SDN and NFV control functions, and data plane management.

Generalization of the results. The analysis of the incentives for softwarization of industrial
networks, although focused on the particular case study of wind park communication networks, can be
extrapolated to other industrial applications. In particular, a framework to translate the technological
benefits (i.e., achieving the industrial grade of service with open and standardized softwarized network
solutions), to tangible savings can be applied to industrial networks with a different cost structure.
Furthermore, the frameworks for dependability assessment proposed in this dissertation are not limited
to network control software, and could find broader application for the assessment of other complex
systems, with dynamic release cycles or distributed implementations.

The expected impact. The key results presented in this thesis have been disseminated to the wider
audience, including standardization bodies (Internet Engineering Task Force (IETF) [18]), open source
networking community (ONF [20]), and academia (book chapter in [1]), with the goal to extend the
impact of key findings to network practitioners and relevant stakeholders.

7.2. Outlook for the Future Work 119

IETF report [18]: E. Grossman et al. Deterministic Networking Use Cases. Internet-Draft
draft-ietf-detnetuse-cases-20. Work in Progress. Internet Engineering Task Force, Dec. 2018.

ONF report [20]: S. Secci. Security and Performance Comparison of ONOS and ODL controllers.
Informational report. 2019.

Book chapter [1]: B. Helvik, P. Vizarreta, C. Mas Machuca, P. Heegaard, and K. Trivedi.
“Dependability of Network Control Software.” In: Resilient communication services protecting end-
user applications from disaster-based failures (RECODIS). Ed. by J. Rack and D. Hutchison . Springer,
2019.

The proposed frameworks for dependability assessment of softwarized networks, presented in this
thesis are only the first step towards a robust certification of softwarized networks. The open research
questions and outlook for future work are discussed in the following section.

7.2 Outlook for the Future Work

The main research directions for the future (illustrated in Fig. 7.1), which have been discussed in detail
in the previous chapters, are summarized here:

i. A techno-economic study on the incentives for softwarization of industrial networks presented
in this thesis focused on local industrial networks. This work can be extended to support more
complex scenarios, such as massive machine type communication in WSN, and QoS-aware or-
chestration of geo-distributed industrial network slices, such as Smart Grids.

ii. The SRGM-based framework for forecasting of the software defects in network control software can
be further enhanced by improving the predictive power of reliability growth models using ANN.
Moreover, an automated classification and analysis of the large corpus of software bugs with a
network domain specific vocabulary, using NLP techniques, is another foreseen enhancement of
the framework proposed in this work.

iii. The dependability assurance framework for distributed SDN platforms can be extended to sup-
port cross-layer optimization, in scenarios where physical network failures cannot be neglected.
Moreover, the enhancements of test-suites that would effectively prevent the reoccurring failure
patterns in implementation of distributed control plane, in particular ageing-related defects, are
required.

iv. The framework for detection, characterization and prevention of the software ageing bugs can be
further extended to account for the ageing profiles of network control systems "in the wild", as
well as the automated localization of ageing defects.

The general trend in the presented future research directions can be observed: the ever-increasing
role of machine learning in Software Reliability Engineering (SRE). The machine learning techniques,
such as ANN and NLP, have been identified as helpful tools to improve the efficiency and accuracy of
the classical SRE methods for failure forecasting, anomaly detection, automated defect classification,

problem inference and knowledge extraction.

120

Chapter 7. Conclusions and Outlook

CH3:

DEPENDABILITY ASSURANCE FRAMEWORK FOR SOFTWARIZED INDUSTRIAL NETWORKS

i) Enabling Massive Machine-to-Machine Communcations in software-defined WSNs
ii) QoS-aware orchestration of geo-distributed industrial network slices

/

i

—~

CH4:
ASSESSING SOFTWARE MATURITY
w. RELIABILITY GROWTH MODELS

CHS:
DEPENDABILITY ASSURANCE FOR
DisTRIBUTED SDN PLATFORMS

CHe6:
MANAGEMENT OF SOFTWARE
AGEING AND REJUVENATION

v

¥

¥

Future work:

i) Improving predictive power of
reliability growth models with ANN

ii) Improving accuracy of software defect
prediction and defect removal with NLP

Future work:

i) Cross-layer optimization of east-west
interface in distributed SDN control
plane

ii) Development of efficient testing
frameworks for distributed fault tolerance

Future work:

i) Automated ageing trend detection in
systems with variable workload

ii) Localization of software ageing bugs
via differential code analysis and regres-
sion testing

Figure 7.1: Outlook for the future work and open research questions in the area of dependability assurance for

softwarized industrial networks.

Appendices

121

Appendix A

Mapping of Software Defects

A.1 Defects in Distributed SDN Implementations

This section contains the defects in distributed SDN implementations (Chapter 5), grouped into four
classes: defects in implementation of distributed protocols (Tab. A.1), scalability and performance

(Tab. A.2), high availability (Tab. A.3) and operational issues (Tab. A.4).

Table A.1: Defects in the implementation of distributed protocols (DP).

’ Alias ‘ Bug key ‘ Short description from bug repository
ONOS-7705 Only master of a device sees correct flow count
ONOS-7726 Links disappear after balancing masters
ONOS-7623 Device events are not replicated to other instances
ONOS-2121 Some ConsistentMap update operations do not publish events
ONOS-1883 Links disappear when devices change master
ONOS-436 Hosts learned via Gossip sometimes are missing ips
ONOS-4423 In releaxedConsistencyMode it is possible for a ConsistentMap instance

to be out of sync indefinitely

CONTROLLER-1630

Follower not sync’ing up after rejoining cluster

CONTROLLER-1755

RaftActor lastApplied index moves backwards

CONTROLLER-1580

sal-remoterpc-connector: do not use calendar time for Bucket versions

CONTROLLER-1735

Entityownership leastload policy doesn’t work normally

CONTROLLER-1717

RequestTimeoutException due to "Failed to transfer leadership” after
become-prefix-leader with RoleChangeNotification not delivered

ONOS-4515 Cluster Device Role States out of Sync
ONOS-4529 intermittently OVS1.3 device lost mastership
ONOS-1400 BGPRouter crashes while kryo serialization due to recent change of

distributed group store

CONTROLLER-1572

ReadDataReply Message was too large can result in "Received Unreach-
ableMember" in cluster

123

https://jira.onosproject.org/browse/ONOS-7705
https://jira.onosproject.org/browse/ONOS-7726
https://jira.onosproject.org/browse/ONOS-7623
https://jira.onosproject.org/browse/ONOS-2121
https://jira.onosproject.org/browse/ONOS-1883
https://jira.onosproject.org/browse/ONOS-436
https://jira.onosproject.org/browse/ONOS-4423
https://jira.opendaylight.org/browse/CONTROLLER-1630
https://jira.opendaylight.org/browse/CONTROLLER-1755
https://jira.opendaylight.org/browse/CONTROLLER-1580
https://jira.opendaylight.org/browse/CONTROLLER-1735
https://jira.opendaylight.org/browse/CONTROLLER-1717
https://jira.onosproject.org/browse/ONOS-4515
https://jira.onosproject.org/browse/ONOS-4529
https://jira.onosproject.org/browse/ONOS-1400
https://jira.opendaylight.org/browse/CONTROLLER-1572

124 Appendix A. Mapping of Software Defects

Table A.2: Defects related to scalability and performance issues (SP).

’ Alias ‘ Bug key Short description from bug repository
CONTROLLER-1703 Twe.al.< Akka gnd Java tin}eouts to a reasonable compromise between
stability and failure detection
ONOS-356 Timeout in OpenFlowProvider when Intstalling large number of Intents
ONOS-2106 with a 625-sw topo, balance master does not balance well
ONOS-581 Chordal ring topology does not converge on ONOS until ONOS restart
ONOS-4785 Potential data loss during cluster scaling
ONOS-4567 Max number of intents install is less with cluster than standalone
ONOS-5279 Resource reservation takes too long in multi node cluster
ONOS-7024 Atomix 2.x timeouts
ONOS-6859 ResourceStore opens new Raft session on each transaction
ONOS-7382 Memory leak in ECFlowRuleStore
ONOS-6205 Memory leaks in DistributedMeterStore
ONOS-7412 Memory leaks in NettyMessagingManager
ONOS-3531 GossipApplicationStore throws StackOverflowError
OPNFLWPLUG-962 Mu'ltiple "expired" flows take up the memory resource of CONFIG DS
which leads to Controller shutdown.
ONOS-4212 Memory leak problem when running CHO test

Table A.3: Defects related to high availability (HA).

’ Alias ‘ Bug key Short description from bug repository

ONOS-6149 NO.t a‘t_)le t(? C(.)nﬁgure heartbeatInterval and phiFailureThreshold prop-
erties in DistributedClusterStore

ONOS-7754 Configuration change causes false positives in failure detectors

ONOS-7755 Fals.e positives in failure detection when applying initial cluster config-
uration

ONOS-6682 Cluster becomes unavailable after a node becomes unavailable

ONOS-5992 ONOS HA cluster failure

ONOS-5347 ONOS cluster not able to recover after killing one of cluster member

ONOS-7528 Limit memory/CPU usage when Raft partitions are overloaded

ONOS-3423 When. ONOS gets an out of memory exception it essentially becomes a
zombie

ONOS-1673 Fail fast when DatabaseManager does not start up cleanly

ONOS-7586 ONOS leadership change does not occurs sometimes.

UnreachableMember during remove-shard-replica prevents new leader

CONTROLLER-1693
to get elected

ONOS-1883 Links disappear when devices change master
CONTROLLER-1491 | Entity Ownership Service: support graceful state handoff
Flows are not getting persisted after enabling the "persistenceEnabled"
flag
ONOS-5690 Intent Persistence can’t be enabled in ONOS
CONTROLLER-1794 | Controller fails to join cluster
CONTROLLER-1630 | Follower not sync’ing up after rejoining cluster

Deadlock can occur when a old candidate restarts and does not re-enter
ledership race

ONOS-2015 Some devices have no ports after ONOS cluster restart

ONOS-6042

ONOS-1965

https://jira.opendaylight.org/browse/CONTROLLER-1703
https://jira.onosproject.org/browse/ONOS-356
https://jira.onosproject.org/browse/ONOS-2106
https://jira.onosproject.org/browse/ONOS-581
https://jira.onosproject.org/browse/ONOS-4785
https://jira.onosproject.org/browse/ONOS-4567
https://jira.onosproject.org/browse/ONOS-5279
https://jira.onosproject.org/browse/ONOS-7024
https://jira.onosproject.org/browse/ONOS-6859
https://jira.onosproject.org/browse/ONOS-7382
https://jira.onosproject.org/browse/ONOS-6205
https://jira.onosproject.org/browse/ONOS-7412
https://jira.onosproject.org/browse/ONOS-3531
https://jira.opendaylight.org/browse/OPNFLWPLUG-962
https://jira.onosproject.org/browse/ONOS-4212
https://jira.onosproject.org/browse/ONOS-6149
https://jira.onosproject.org/browse/ONOS-7754
https://jira.onosproject.org/browse/ONOS-7755
https://jira.onosproject.org/browse/ONOS-6682
https://jira.onosproject.org/browse/ONOS-5992
https://jira.onosproject.org/browse/ONOS-5347
https://jira.onosproject.org/browse/ONOS-7528
https://jira.onosproject.org/browse/ONOS-3423
https://jira.onosproject.org/browse/ONOS-1673
https://jira.onosproject.org/browse/ONOS-7586
https://jira.opendaylight.org/browse/CONTROLLER-1693
https://jira.onosproject.org/browse/ONOS-1883
https://jira.opendaylight.org/browse/CONTROLLER-1491
https://jira.onosproject.org/browse/ONOS-6042
https://jira.onosproject.org/browse/ONOS-5690
https://jira.opendaylight.org/browse/CONTROLLER-1794
https://jira.opendaylight.org/browse/CONTROLLER-1630
https://jira.onosproject.org/browse/ONOS-1965
https://jira.onosproject.org/browse/ONOS-2015

A.1. Defects in Distributed SDN Implementations

125

Table A.4: Defects related to operational issues (OP).

’ Alias ‘

Bug key

Short description from bug repository

CONTROLLER-1385

Make manual-down the default for akka-cluster

CONTROLLER-1581

Clustering: Maintain a script to generate default akka configuration for
multinode CSIT tests.

CONTROLLER-1420

Clustering: Add a count field to stress-test RPC in car yang model

CONTROLLER-779 | Add test-case to check Install Snapshot functionality is handled correctly

ONOS-7213 New cluster configuration cannot be serialized to JSON on configuration
change

ONOS-3453 Bundles not loaded in all nodes in a cluster

ONOS-6647 Cluster formation using docker + kubernetes

ONOS-7219 Single node ONOS from Docker image can’t read cluster metadata

ONOS-6401 ONOS nodes timeout when trying to connect to the cluster in vm test
cluster

ONOS-7436 Port latency and switch latency up/down went up dramatically after

atomix 2.0.14

https://jira.opendaylight.org/browse/CONTROLLER-1385
https://jira.opendaylight.org/browse/CONTROLLER-1581
https://jira.opendaylight.org/browse/CONTROLLER-1420
https://jira.opendaylight.org/browse/CONTROLLER-779
https://jira.onosproject.org/browse/ONOS-7213
https://jira.onosproject.org/browse/ONOS-3453
https://jira.onosproject.org/browse/ONOS-6647
https://jira.onosproject.org/browse/ONOS-7219
https://jira.onosproject.org/browse/ONOS-6401
https://jira.onosproject.org/browse/ONOS-7436

126 Appendix A. Mapping of Software Defects

A.2 Defects Related to Software Ageing in SDN Controllers

This section presents the mapping of aliases for software defects (used in Chapter 6) to their respective
keys used in Jira repositories are presented in (Tab. A.5).

Table A.5: Defects related to software ageing in SDN controllers.

’ Alias ‘ Bug key ‘ Short description from bug repository
ONOS-1339 IntentPerfInstaller overall rate decreases during Smin TP test, when in
cluster mode
ONOS-7024 Atomix 2.x timeouts
ONOS-5179 StorageException when bringing up/down devices in CHO test
ONOS-7778 "Too many open files" when handling large Mininet topology
ONOS-7889 Memory Leak in election leader
ONOS-6859 ResourceStore opens new Raft session on each transaction
NETVIRT-883 Umbrella parent issue for grouping all suspected transaction leaks

CONTROLLER-1756 | OOM due to huge Map in ShardDataTree
CONTROLLER-1746 | OOM with large number of closed transactions
CONTROLLER-1762 | ODL is up and ports are listening but not functional

ONOS-7918 Netconf protocol handler doesn’t release reference to replies

ONOS-5172 ONOS intermittently failed to remove intent in CHO test
CONTROLLER-1757 | Singleton leader chasing exhausts heap space in few hours

BGPCEP-631 Memory holdup in CachinglmportPolicy

ONOS-6205 Memory leaks in DistributedMeterStore

ONOS-1441 \]/)iicsézibutedFlowRuleStore doesn’t remove flows for disconnected de-

ONOS-3531 GossipApplicationStore throws StackOverflowError

ONOS-6266 *garbageCollect’ is not working for groups after ONOS restart

ONOS-4212 Memory leak problem when running CHO test

Multiple "expired" flows take up the memory resource of CONFIG DS

OPNFLWPLUG-962 which leads to Controller shutdown.

https://jira.onosproject.org/browse/ONOS-1339
https://jira.onosproject.org/browse/ONOS-7024
https://jira.onosproject.org/browse/ONOS-5179
https://jira.onosproject.org/browse/ONOS-7778
https://jira.onosproject.org/browse/ONOS-7889
https://jira.onosproject.org/browse/ONOS-6859
https://jira.opendaylight.org/browse/NETVIRT-883
https://jira.opendaylight.org/browse/CONTROLLER-1756
https://jira.opendaylight.org/browse/CONTROLLER-1746
https://jira.opendaylight.org/browse/CONTROLLER-1762
https://jira.onosproject.org/browse/ONOS-7918
https://jira.onosproject.org/browse/ONOS-5172
https://jira.opendaylight.org/browse/CONTROLLER-1757
https://jira.opendaylight.org/browse/BGPCEP-631
https://jira.onosproject.org/browse/ONOS-6205
https://jira.onosproject.org/browse/ONOS-1441
https://jira.onosproject.org/browse/ONOS-3531
https://jira.onosproject.org/browse/ONOS-6266
https://jira.onosproject.org/browse/ONOS-4212
https://jira.opendaylight.org/browse/OPNFLWPLUG-962

Bibliography

Publications by the author

Book chapter

[1]

B. Helvik, P. Vizarreta, C. Mas Machuca, P. Heegaard, and K. Trivedi. “Dependability of
Network Control Software.” In: Resilient Communication Services Protecting End-user Ap-
plications from Disaster-based Failuresl. Ed. by J. Rack and D. Hutchison. Springer: under
preparation, 2019.

C. Mas Machuca, F. Musumeci, P. Vizarreta, D. Pezaros, S. Jouet, M. Tornatore, et al. “De-
signing Reliable SDN Solutions.” In: Resilient Communication Services Protecting End-user
Applications from Disaster-based Failuresl. Ed. by J. Rack and D. Hutchison. Springer: under
preparation, 2019.

Journal publications

(3]

A. Papa, T. de Cola, P. Vizarreta, M. He, C. Mas Machuca, and W. Kellerer. “Design and
Evaluation of Reconfigurable SDN LEO Constellations.” In: IEEE Transactions on Network

and Service Management: under review (2019).

P. Vizarreta, C. Sieber, A. Van Bemten, A. Blenk, V. Ramachandra, W. Kellerer, C. Mas
Machuca, and K. Trivedi. “ARES: A Framework for Management of Software Ageing and
Rejuvenation in SDN.” In: IEEE Transactions on Network and Service Management: under
review (2019).

P. Vizarreta, K. Trivedi, B. Helvik, P. Heegaard, A. Blenk, W. Kellerer, and C. Mas Machuca.
“Assessing the Maturity of SDN Controllers with Software Reliability Growth Models.” In:
IEEFE Transactions on Network and Service Management 15.3 (2018), pp. 1090-1104.

P. Vizarreta, K. Trivedi, V. Mendiratta, W. Kellerer, and C. Mas Machuca. “DASON: Depend-
ability Assessment Framework for Imperfect Distributed SDN Implementations.” In: IEEE
Transactions on Network and Service Management: under review (2019).

P. Vizarreta, A. Van Bemten, E. Sakic, N. Petropolis, K. Abassi, W. Kellerer, and C. Mas
Machuca. “Incentives for a Softwarization of Wind Park Communication Networks.” In: IEEE

Communications Magazine (2019), pp. 138-144.

127

128

Bibliography

Conference publications

[8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

K. Fysarakis, N. E. Petroulakis, A. Roos, K. Abbasi, P. Vizarreta, G. Petropoulos, E. Sakic, G.
Spanoudakis, and I. Askoxylakis. “A Reactive Security Framework for Operational Wind Parks
Using Service Function Chaining.” In: IEEE Symposium on Computers and Communications.
IEEE. 2017, pp. 663—-668.

C. Mas Machuca, S. Secci, P. Vizarreta, F. Kuipers, A. Gouglidis, D. Hutchison, S. Jouet, D.
Pezaros, A. Elmokashfi, P. Heegaard, et al. “Technology-related disasters: A survey towards
disaster-resilient software defined networks.” In: IEEE International Workshop on Resilient
Networks Design and Modeling. IEEE. 2016, pp. 35-42.

A. Papa, T. de Cola, P. Vizarreta, M. He, C. Mas Machuca, and W. Kellerer. “Dynamic SDN
Controller Placement in a LEO Constellation Satellite Network.” In: IEEE Global Communi-
cations Conference. IEEE. 2018.

A. Van Bemten, J. W. Guck, P. Vizarreta, C. Mas Machuca, and W. Kellerer. “LARAC-SN and
Mole in the Hole: Enabling Routing through Service Function Chains.” In: (2018), pp. 1-5.

P. Vizarreta. “Modelling, Design and Optimization of Dependable Softwarized Networks for
Industrial Applications.” In: IEEE International Symposium on Software Reliability Engineer-
ing Workshops. IEEE. 2018, pp. 170-173.

P. Vizarreta, M. Condoluci, M. C. Machuca, T. Mahmoodi, and W. Kellerer. “QoS-driven
Function Placement Reducing Expenditures in NFV Deployments.” In: IEEE International
Conference on Communications. IEEE. 2017, pp. 1-7.

P. Vizarreta, P. Heegaard, B. Helvik, W. Kellerer, and C. Mas Machuca. “Characterization of
Failure Dynamics in SDN Controllers.” In: IEEE International Workshop on Resilient Networks
Design and Modeling. IEEE. 2017, pp. 1-7.

P. Vizarreta, C. Mas Machuca, and W. Kellerer. “Controller Placement Strategies for a Resilient
SDN Control Plane.” In: IEEE International Workshop on Resilient Networks Design and
Modeling. IEEE. 2016, pp. 1-7.

P. Vizarreta, E. Sakic, W. Kellerer, and C. Mas Machuca. “Mining Software Repositories for
Predictive Modelling of Software Defects in SDN Controllers.” In: IFIP/IEEE International
Symposium on Integrated Network Management. IEEE. 2019, pp. 80-88.

P. Vizarreta, K. Trivedi, B. Helvik, P. Heegaard, W. Kellerer, and C. Mas Machuca. “An Em-
pirical Study of Software Reliability in SDN Controllers.” In: IEEE International Conference
on Network and Service Management. IEEE. 2017, pp. 1-9.

Technical reports

The full list of contributors is omitted due to the space limitations; only the principal editor is mentioned.

[18]

E. Grossman. Deterministic Networking Use Cases. Internet-Draft draft-ietf-detnet-use-cases-
20. Work in Progress. Internet Engineering Task Force, Dec. 2018. 88 pp. URL:

https://datatracker.ietf.org/doc/html/draft-ietf-detnet-use-cases-20
https://datatracker.ietf.org/doc/html/draft-ietf-detnet-use-cases-20

129

[19]

[20]

C. M. Machuca and P. Vizarreta. Techno-economic Framework and Cost Models. VirtuWind
project deliverable D2.4. 2016. URrL:

S. Secci. Security and Performance Comparison of ONOS and ODL controllers. Informational
report — 2019. URrL:

General publications

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

M. A. Ahmed and Y.-C. Kim. “Network Modeling and Simulation of Wind Power Farm with
Switched Gigabit Ethernet.” In: International Symposium on Communications and Information
Technologies. IEEE. 2012, pp. 1009-1014.

F. Alencar, M. Santos, M. Santana, and S. Fernandes. “How Software Aging Affects SDN: A
View on the Controllers.” In: Global Information Infrastructure and Networking Symposium
(GIIS), 2014. IEEE. 2014, pp. 1-6.

L. Andrade, M. Borba, A. Ishimori, F. Farias, E. Cerqueira, and A. Abelém. “On the Bench-
marking Mainstream Open Software-defined Networking Controllers.” In: ACM Latin America
Networking Conference. ACM. 2016, pp. 9—-12.

J. Araujo, R. Matos, V. Alves, P. Maciel, F. Souza, K. S. Trivedi, et al. “Software Aging in
the Eucalyptus Cloud Computing Infrastructure: Characterization and Rejuvenation.” In: ACM

Journal on Emerging Technologies in Computing Systems 10.1 (2014), p. 11.

J. Araujo, R. Matos, P. Maciel, R. Matias, and I. Beicker. “Experimental Evaluation of Software
Aging Effects on the Eucalyptus Cloud Computing Infrastructure.” In: ACM Middleware
Industry Track Workshop. ACM. 2011, p. 4.

F. Bannour, S. Souihi, and A. Mellouk. “Distributed SDN Control: Survey, Taxonomy, and
Challenges.” In: Communications Surveys & Tutorials 20.1 (2017), pp. 333-354.

K. Basu, M. Younas, A. W. W. Tow, and F. Ball. “Performance Comparison of a SDN Network
between Cloud-Based and Locally Hosted SDN Controllers.” In: International Conference on
Big Data Computing Service and Applications. IEEE. 2018, pp. 49-55.

P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide, B. Lantz, B. O’Connor,
P. Radoslavov, W. Snow, et al. “ONOS: Towards an Open, Distributed SDN OS.” In: ACM
Workshop on Hot topics in Software Defined Networking. ACM. 2014, pp. 1-6.

V. Bhuvaneswaran, A. Basil, M. Tassinari, V. Manral, and S. Banks. Benchmarking Method-
ology for Software-Defined Networking (SDN) Controller Performance. Tech. rep. RFC-8456.
Internet Engineering Task Force, Oct. 2018. URL:

R. Birke, I. Giurgiu, L. Y. Chen, D. Wiesmann, and T. Engbersen. “Failure Analysis of Virtual
and Physical Machines: Patterns, Causes and Characteristics.” In: International Conference on
Dependable Systems and Networks. IEEE. 2014, pp. 1-12.

http://www.virtuwind.eu/
https://www.opennetworking.org/wp-content/uploads/2019/09/ONOSvsODL-report-4.pdf
https://www.opennetworking.org/wp-content/uploads/2019/09/ONOSvsODL-report-4.pdf
http://www.rfc-editor.org/pdfrfc/rfc8456.txt.pdf
http://www.rfc-editor.org/pdfrfc/rfc8456.txt.pdf

130

Bibliography

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

A. Blenk, A. Basta, L. Henkel, J. Zerwas, W. Kellerer, and S. Schmid. “perfbench: A tool for
Predictability Analysis in Multi-tenant Software-Defined Networks.” In: SIGCOMM Posters
and Demos. ACM. 2018, pp. 66—68.

G. Carrozza, D. Cotroneo, R. Natella, A. Pecchia, and S. Russo. “Memory Leak Analysis of
Mission-critical Middleware.” In: Journal of Systems and Software 83.9 (2010), pp. 1556—
1567.

CERIAS - CISCO Ceritical Infrastructure Assurance Group (CIAG). SCADA honeynet project.
Oct. 18, 2017. URL:

S. Chandra and P. M. Chen. “Whither Generic Recovery From Application Faults? A Fault
Study Using Open-source Software.” In: IEEE International Conference on Dependable Sys-
tems and Networks. IEEE. 2000, pp. 97-106.

C.-C. Chen, C.-T. Lin, H.-H. Huang, S.-W. Huang, and C.-Y. Huang. “CARATS: A Computer-
aided Reliability Assessment Tool for Software Based on Object Oriented Design.” In: IEEE
Region 10 Conference TENCON. IEEE. 2006, pp. 1-4.

Communication Delivery Time Performance Requirements for Electric Power Substation Au-
tomation. Tech. rep. IEEE Standard 1646-2004. 2004.

D. Cotroneo, F. Fucci, A. K. Iannillo, R. Natella, and R. Pietrantuono. “Software Aging Analysis
of the Android Mobile OS.” In: International Symposium on Software Reliability Engineering.
IEEE. 2016, pp. 478—489.

D. Cotroneo, R. Natella, and R. Pietrantuono. “Predicting Aging-related Bugs Using Software
Complexity Metrics.” In: Performance Evaluation 70.3 (2013), pp. 163-178.

D. Cotroneo, R. Natella, R. Pietrantuono, and S. Russo. “A Survey of Software Aging and
Rejuvenation Studies.” In: ACM Journal on Emerging Technologies in Computing Systems
10.1 (2014), p. 8.

D. Cotroneo, R. Natella, R. Pietrantuono, and S. Russo. “Software Aging Analysis of the Linux
Operating System.” In: International Symposium on Software Reliability Engineering. IEEE.
2010, pp. 71-80.

D. Cotroneo, S. Orlando, R. Pietrantuono, and S. Russo. “A Measurement-based Ageing
Analysis of the JVM.” In: Software Testing, Verification and Reliability 23.3 (2013), pp. 199-
239.

D. Daly, D. D. Deavours, J. M. Doyle, P. G. Webster, and W. H. Sanders. “Mobius: An
Extensible Tool for Performance and Dependability Modeling.” In: International Conference
on Modelling Techniques and Tools for Computer Performance Evaluation. Springer. 2000,
pp- 332-336.

L. Deri, M. Martinelli, T. Bujlow, and A. Cardigliano. “nDPI: Open-source High-speed Deep
Packet Inspection.” In: International Wireless Communications and Mobile Computing Con-
ference. IEEE. 2014, pp. 617-622.

http://scadahoneynet.sourceforge.net/

131

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

C. Di Martino, U. Giordano, N. Mohanasamy, S. Russo, and M. Thottan. “In Production Per-
formance Testing of SDN Control Plane for Telecom Operators.” In: IEEE/IFIP International
Conference on Dependable Systems and Networks. IEEE. 2018, pp. 642—-653.

ETSI GS NFV-REL 003 V1.1.1 (2016-04). Network Functions Virtualisation (NFV); Reliabil-
ity; Report on Models and Features for End-to-End Reliability. 2016.

J. Fan, Z. Ye, C. Guan, X. Gao, K. Ren, and C. Qiao. “GREP: Guaranteeing Reliability with
Enhanced Protection in NFV.” In: ACM SIGCOMM Workshop on Hot Topics in Middleboxes
and Network Function Virtualization. ACM. 2015, pp. 13-18.

A. Ford, C. Raiciu, M. J. Handley, O. Bonaventure, and C. Paasch. TCP Extensions for
Multipath Operation with Multiple Addresses. Internet-Draft draft-ietf-mptcp-rfc6824bis-12.
Work in Progress. Internet Engineering Task Force, Oct. 2018. 80 pp. URL:

A. Ganesan, R. Alagappan, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau. “Redundancy
Does Not Imply Fault Tolerance: Analysis of Distributed Storage Reactions to Single Errors
and Corruptions.” In: USENIX Conference on File and Storage Technologies. 2017, pp. 149—
166.

W. Garcia and T. Benson. “A First Look at Bugs in OpenStack.” In: ACM Workshop on
Cloud-Assisted Networking. ACM. 2016, pp. 67-72.

S. Garg, A. Van Moorsel, K. Vaidyanathan, and K. S. Trivedi. “A Methodology for Detection
and Estimation of Software Aging.” In: International Symposium on Software Reliability
Engineering. IEEE. 1998, pp. 283-292.

D. Georgakopoulos, P. P. Jayaraman, M. Fazia, M. Villari, and R. Ranjan. “Internet of Things
and Edge Cloud Computing Roadmap for Manufacturing.” In: IEEE Cloud Computing 3.4
(2016), pp. 66-73.

M. Ghanavati and A. Andrzejak. “Automated Memory Leak Diagnosis by Regression Testing.”
In: IEEE International Working Conference on Source Code Analysis and Manipulation. IEEE.
2015, pp. 191-200.

M. Ghanavati, A. Andrzejak, D. Costa, and J. Seboek. “Poster: Memory and resource leak
defects Java projects: An Empirical Study.” In: International Conference on Software Engi-
neering. IEEE. 2018.

M. Ghanavati, D. Costa, A. Andrzejak, and J. Seboek. “Memory and Resource Leak De-
fects in Java Projects: an Empirical Study.” In: ACM International Conference on Software
Engineering: Companion Proceeedings. ACM. 2018, pp. 410-411.

R. Ghosh, F. Longo, F. Frattini, S. Russo, and K. S. Trivedi. “Scalable analytics for IaaS cloud
availability.” In: Transactions on Cloud Computing 2.1 (2014), pp. 57-70.

P. Gill, N. Jain, and N. Nagappan. “Understanding Network Failures in Data Centers: Measure-
ment, Analysis, and Implications.” In: ACM SIGCOMM Computer Communication Review.
Vol. 41. 4. ACM. 2011, pp. 350-361.

https://datatracker.ietf.org/doc/html/draft-ietf-mptcp-rfc6824bis-12
https://datatracker.ietf.org/doc/html/draft-ietf-mptcp-rfc6824bis-12

132

Bibliography

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

A. Goel and K. Okumoto. “Time-dependent Error Detection Rate Model for Software and
Other Performance Measure.” In: IEEE Transactions on Software Engineering 11.12 (1985),
p. 285.

S. S. Gokhale, M. R. Lyu, and K. S. Trivedi. “Analysis of Software Fault Removal Policies
Using a Non-homogeneous Continuous Time Markov Chain.” In: Software Quality Journal
12.3 (2004), pp. 211-230.

S. S. Gokhale and K. S. Trivedi. “Log-logistic Software Reliability Growth Model.” In: IEEE
International High-Assurance Systems Engineering Symposium. IEEE. 1998, pp. 34-41.

A.J. Gonzalez, G. Nencioni, B. E. Helvik, and A. Kamisinski. “A Fault-Tolerant and Consistent
SDN Controller.” In: IEEE Global Communications Conference. IEEE. 2016, pp. 1-6.

A. Gonzalez, P. Gronsund, K. Mahmood, B. Helvik, P. Heegaard, and G. Nencioni. “Service
Availability in the NFV Virtualized Evolved Packet Core.” In: IEEE Global Communications
Conference. IEEE. 2015, pp. 1-6.

K. Goseva-Popstojanova, A. P. Mathur, and K. S. Trivedi. “Comparison of Architecture-
based Software Reliability Models.” In: International Symposium on Software Reliability
Engineering. IEEE. 2001, pp. 22-31.

R. Govindan, I. Minei, M. Kallahalla, B. Koley, and A. Vahdat. “Evolve or Die: High-availability
Design Principles Drawn from Google’s Network Infrastructure.” In: ACM SIGCOMM. ACM.
2016, pp. 58-72.

M. Grottke, L. Li, K. Vaidyanathan, and K. S. Trivedi. “Analysis of Software Aging in a Web
Server.” In: IEEE Transactions on reliability 55.3 (2006), pp. 411-420.

J. Guck, A. Van Bemten, and W. Kellerer. “DetServ: Network Models for Real-Time QoS
Provisioning in SDN-based Industrial Environments.” In: IEEE Transactions on Network and
Service Management 14.4 (2017), pp. 1003-1017.

H. S. Gunawi, M. Hao, T. Leesatapornwongsa, T. Patana-anake, T. Do, J. Adityatama, K. J.
Eliazar, A. Laksono, J. F. Lukman, V. Martin, et al. “What Bugs Live in the Cloud? A Study
of 3000+ Issues in Cloud Systems.” In: ACM Symposium on Cloud Computing. ACM. 2014,
pp. 1-14.

M. Giirsu, M. Vilgelm, E. Fazli, and W. Kellerer. “A Medium-access Approach to Wireless
Technologies for Reliable Communication in Aircraft.” In: Wireless Sensor Systems for Extreme
Environments: Space, Underwater, Underground and Industrial (2017), pp. 431-451.

R. Hanmer, L. Jagadeesan, V. Mendiratta, and H. Zhang. “Friend or Foe: Strong Consistency
vs. Overload in High-Availability Distributed Systems and SDN.” In: International Symposium
on Software Reliability Engineering. IEEE. 2018, pp. 1-6.

A. El-Hassany, J. Miserez, P. Bielik, L. Vanbever, and M. Vechev. “SDNRacer: Concurrency
Analysis for Software-Defined Networks.” In: ACM SIGPLAN Notices. Vol. 51. 6. ACM. 2016,
pp- 402-415.

S. Hassas Yeganeh and Y. Ganjali. “Kandoo: A Framework for Efficient and Scalable Offloading
of Control Applications.” In: ACM Workshop on Hot topics in SDN. ACM. 2012, pp. 19-24.

133

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]
[85]
[86]

N. Hayashibara, D. Xavier, R. Yared, T. Katayama, et al. “The ¢ Accrual Failure Detector.” In:
null. IEEE. 2004, pp. 66-78.

B. Heller, R. Sherwood, and N. McKeown. “The Controller Placement Problem.” In: ACM
Wworkshop on Hot topics in SDN. ACM. 2012, pp. 7-12.

J. G. Herrera and J. F. Botero. “Resource Allocation in NFV: A Comprehensive Survey.” In:
IEEE Transactions on Network and Service Management 13.3 (2016), pp. 518-532.

C. Hirel, R. Sahner, X. Zang, and K. Trivedi. “Reliability and performability modeling using
SHARPE 2000.” In: International Conference on Modelling Techniques and Tools for Computer
Performance Evaluation. Springer. 2000, pp. 345-349.

C. Hirel, B. Tuffin, and K. S. Trivedi. “Spnp: Stochastic petri nets. version 6.0.” In: Interna-
tional Conference on Modelling Techniques and Tools for Computer Performance Evaluation.
Springer. 2000, pp. 354-357.

C.-Y. Huang, T.-Y. Hung, and C.-J. Hsu. “Software Reliability Prediction and Analysis Using
Queueing Models with Multiple Change-Points.” In: IEEE International Conference on Secure
Software Integration and Reliability Improvement. IEEE. 2009, pp. 212-221.

C.-Y. Huang and M. R. Lyu. “Estimation and Analysis of Some Generalized Multiple Change-
point Software Reliability Models.” In: IEEE Transactions on Reliability 60.2 (2011), pp. 498—
514.

C.-Y. Huang and M. R. Lyu. “Optimal release time for software systems considering cost,
testing-effort, and test efficiency.” In: IEEE Transactions on Reliability 54.4 (2005), pp. 583—
591.

C.-Y. Huang, M. R. Lyu, and S.-Y. Kuo. “A Unified Scheme of Some Nonhomogenous Pois-
son Process Models for Software Reliability Estimation.” In: IEEE Transactions on Software
Engineering 29.3 (2003), pp. 261-269.

Y. Huang, C. Kintala, N. Kolettis, and N. D. Fulton. “Software Rejuvenation: Analysis, Module
and Applications.” In: International Symposium on Fault-Tolerant Computing. IEEE. 1995,
pp- 381-390.

ICS-CERT. Cyber-Attack Against Ukrainian Critical Infrastructure. 2015. URL:

International Standard 61400-25: Communications for Monitoring and Control of Wind Power
Plants. Tech. rep. IEC 61400-25. 2017.

Intracom Telecom. Multithreaded CBench (MT-CBench). URL:

J. Bonér (Lightbend). Akka. Version 2.5.21. Mar. 10, 2019. urL:
J. Halterman (ONF). Afomix. Version 3.0. Mar. 10, 2019. UrL:

S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S. Venkata, J. Wanderer, J.
Zhou, M. Zhu, et al. “B4: Experience with a globally-deployed software defined WAN.” In:
ACM SIGCOMM Computer Communication Review 43.4 (2013), pp. 3—-14.

https://ics-cert.us-cert.gov/alerts/IR-ALERT-H-16-056-01
https://ics-cert.us-cert.gov/alerts/IR-ALERT-H-16-056-01
https://github.com/intracom-telecom-sdn/mtcbench
https://github.com/intracom-telecom-sdn/mtcbench
https://akka.io/
https://atomix.io/

134

Bibliography

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

M. Jarschel, F. Lehrieder, Z. Magyari, and R. Pries. “A Flexible OpenFlow-controller Bench-
mark.” In: European Workshop on Software Defined Networking. IEEE. 2012, pp. 48-53.

M. Jarschel, C. Metter, T. Zinner, S. Gebert, and P. Tran-Gia. “OFCProbe: A platform-
independent Tool for OpenFlow Controller Analysis.” In: International Conference on Com-
munications and Electronics. IEEE. 2014, pp. 182—187.

E. Jones, T. Oliphant, P. Peterson, et al. SciPy: Open Source Scientific Tools for Python. 2001-.
URL!

P. Kapur and R. Garg. “Optimal Sofware Release Policies for Software Reliability Growth
Models under Imperfect Debugging.” In: RAIRO-Operations Research 24.3 (1990), pp. 295—
305.

P. Kapur, H. Pham, S. Anand, and K. Yadav. “A Unified Approach for Developing Software
Reliability Growth Models in the Presence of Imperfect Debugging and Error Generation.” In:
IEEFE Transactions on Reliability 60.1 (2011), pp. 331-340.

Z. K. Khattak, M. Awais, and A. Igbal. “Performance Evaluation of OpenDaylight SDN
Controller.” In: International Conference on Parallel and Distributed Systems. IEEE. 2014,
pp- 671-676.

R. Khondoker, A. Zaalouk, R. Marx, and K. Bayarou. “Feature-based Comparison and Selec-
tion of Software Defined Networking (SDN) Controllers.” In: World Congress on Computer
Applications and Information Systems. IEEE. 2014, pp. 1-7.

D. S. Kim, F. Machida, and K. S. Trivedi. “Availability Modeling and Analysis of a Virtualized
System.” In: IEEE Pacific Rim International Symposium on Dependable Computing. IEEE.
2009, pp. 365-371.

M. Kimura, T. Toyota, and S. Yamada. “Economic Analysis of Software Release Problems
with Warranty Cost and Reliability Requirement.” In: Reliability Engineering & System Safety
66.1 (1999), pp. 49-55.

H. S. Koch and P. Kubat. “Optimal Release Time of Computer Software.” In: IEEE Transactions
on Software Engineering 3 (1983), pp. 323-327.

T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu, R. Ramanathan, Y. Iwata,
H. Inoue, T. Hama, et al. “Onix: A Distributed Control Platform for Large-scale Production
Networks.” In: USENIX Symposium on Operating Systems Design and Implementation. Vol. 10.
2010, pp. 1-6.

D. Kreutz, F. M. Ramos, P. Verissimo, C. E. Rothenberg, S. Azodolmolky, and S. Uhlig.
“Software-defined Networking: A Comprehensive Survey.” In: Proceedings of the IEEE 103.1
(2015), pp. 14-76.

R. Lai, M. Garg, P. K. Kapur, and S. Liu. “A Study of When to Release a Software Product
from the Perspective of Software Reliability Models.” In: Journal of Software 6.4 (2011),
pp. 651-661.

http://www.scipy.org/

135

[100]

[101]

[102]

[103]

[104]
[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

S. Lange, S. Gebert, T. Zinner, P. Tran-Gia, D. Hock, M. Jarschel, and M. Hoffmann. “Heuristic
Approaches to the Controller Placement Problem in Large Scale SDN Networks.” In: /IEEE
Transactions on Network and Service Management 12.1 (2015), pp. 4-17.

F. Langner and A. Andrzejak. “Detecting Software Aging in a Cloud Computing Framework
by Comparing Development Versions.” In: IFIP/IEEE International Symposium on Integrated
Network Management. IEEE. 2013, pp. 896—899.

F. Langner and A. Andrzejak. “Detection and Root Cause Analysis of Memory-related Software
Aging Defects by Automated Tests.” In: International Symposium on Modeling, Analysis &
Simulation of Computer and Telecommunication Systems. IEEE. 2013, pp. 365-369.

Z. Li, L. Tan, X. Wang, S. Lu, Y. Zhou, and C. Zhai. “Have Things Changed Now?: An
Empirical Study of Bug Characteristics in Modern Open Source Software.” In: ACM workshop

on architectural and system support for improving software dependability. ACM. 2006, pp. 25—
33.

Linux Foundation. OpenDaylight. 2017. URL:

H. H. Liu, Y. Zhu, J. Padhye, J. Cao, S. Tallapragada, N. P. Lopes, A. Rybalchenko, G. Lu, and
L. Yuan. “Crystalnet: Faithfully Emulating Large Production Networks.” In: ACM Symposium
on Operating Systems Principles. ACM. 2017, pp. 599-613.

F. Longo, S. Distefano, D. Bruneo, and M. Scarpa. “Dependability Modeling of Software
Defined Networking.” In: Computer Networks 83 (2015), pp. 280-296.

S. Lu, S. Park, E. Seo, and Y. Zhou. “Learning from Mistakes: A Comprehensive Study on
Real World Concurrency Bug Characteristics.” In: ACM SIGOPS Operating Systems Review
42.2 (2008), pp. 329-339.

M. R. Lyu et al. Handbook of Software Reliability Engineering. IEEE computer society press
CA, 1996.

M. R. Lyu and A. Nikora. “CASRE: A Computer-aided Software Reliability Estimation Tool.”
In: IEEE International Workshop on Computer-Aided Software Engineering. IEEE. 1992,
pp. 264-275.

T. Mahmoodi, V. Kulkarni, W. Kellerer, P. Mangan, F. Zeiger, S. Spirou, I. Askoxylakis, X.
Vilajosana, H. J. Einsiedler, and J. Quittek. “VirtuWind: Virtual and Programmable Indus-
trial Network Prototype Deployed in Operational Wind Park.” In: Transactions on Emerging
Telecommunications Technologies 27.9 (2016), pp. 1281-1288.

A. Markopoulou, G. Iannaccone, S. Bhattacharyya, C.-N. Chuah, and C. Diot. “Characteriza-
tion of Failures in an IP Backbone.” In: INFOCOM. Vol. 4. IEEE. 2004, pp. 2307-2317.

C. Mas Machuca, P. Vizarreta, R. Durner, D. Santos, and A. de Sousa. “Design Problems
Towards Reliable SDN Networks.” In: Photonic Networks and Devices. Optical Society of
America. 2018, NeM2F-1.

R. Matias, A. Andrzejak, F. Machida, D. Elias, and K. Trivedi. “A Systematic Differential
Analysis for Fast and Robust Detection of Software Aging.” In: IEEE International Symposium
on Reliable Distributed Systems. IEEE. 2014, pp. 311-320.

https://www.opendaylight.org/

136

Bibliography

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

R. Matias, P. A. Barbetta, K. S. Trivedi, and P. J. Freitas Filho. “Accelerated Degradation Tests
Applied to Software Aging Experiments.” In: IEEE Transactions on reliability 59.1 (2010),
pp. 102-114.

R. Matias and J. Paulo Filho. “An Experimental Study on Software Aging and Rejuvenation
in Web Servers.” In: International Computer Software and Applications Conference. Vol. 1.
IEEE. 2006, pp. 189-196.

R. Matias, G. O. de Sena, A. Andrzejak, and K. S. Trivedi. “Software Aging Detection Based on
Differential Analysis: an Experimental Study.” In: IEEE International Symposium on Software
Reliability Engineering Workshops. IEEE. 2016, pp. 71-77.

R. May, A. El-Hassany, L. Vanbever, and M. Vechev. “BigBug: Practical Concurrency Analysis
for SDN.” In: ACM Symposium on SDN Research. ACM. 2017, pp. 88-94.

A. Medem, M.-1. Akodjenou, and R. Teixeira. “Troubleminer: Mining Network Trouble Tick-
ets.” In: IFIP/IEEE International Symposium on Integrated Network Management - Workshops.
IEEE. 2009, pp. 113-119.

J. Medved, R. Varga, A. Tkacik, and K. Gray. “Opendaylight: Towards a Model-driven SDN
Controller Architecture.” In: IEEE International Symposium on a World of Wireless, Mobile
and Multimedia Networks. IEEE. 2014, pp. 1-6.

V. B. Mendiratta. “Reliability Analysis of Clustered Computing Systems.” In: IEEE Interna-
tional Symposium on Software Reliability Engineering. IEEE. 1998, pp. 268-272.

V. B. Mendiratta, L. J. Jagadeesan, R. Hanmer, and M. R. Rahman. “How Reliable Is My
Software-Defined Network? Models and Failure Impacts.” In: International Symposium on
Software Reliability Engineering Workshops. IEEE. 2018, pp. 83-88.

R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. De Turck, and R. Boutaba. “Network
Function Virtualization: State-of-the-art and Research Challenges.” In: IEEE Communications
Surveys & Tutorials 18.1 (2016), pp. 236-262.

J. Miserez, P. Bielik, A. El-Hassany, L. Vanbever, and M. Vechev. “SDNRacer: Detecting
Concurrency Violations in Software-defined Networks.” In: ACM SIGCOMM Symposium on
Software Defined Networking Research. ACM. 2015, p. 22.

N. Mitchell and G. Sevitsky. “LeakBot: An Automated and Lightweight Tool for Diagnosing
Memory Leaks in Large Java Applications.” In: European Conference on Object-Oriented
Programming. Springer. 2003, pp. 351-377.

A. S. Mugaddas, P. Giaccone, A. Bianco, and G. Maier. “Inter-controller Traffic to Support
Consistency in ONOS Clusters.” In: Transactions on Network and Service Management 14.4
(2017), pp. 1018-1031.

J. D. Musa and K. Okumoto. “A Logarithmic Poisson Execution Time Model for Software
Reliability Measurement.” In: International conference on Software Engineering. IEEE Press.
1984, pp. 230-238.

137

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]
[142]

[143]

G. Nencioni, B. E. Helvik, A. J. Gonzalez, P. E. Heegaard, and A. Kamisinski. “Availability
Modelling of Software-Defined Backbone Networks.” In: IEEE/IFIP International Conference
on Dependable Systems and Networks - Workshop. IEEE. 2016, pp. 105-112.

G. Nencioni, B. E. Helvik, and P. E. Heegaard. “Including Failure Correlation in Availability
Modeling of a Software-Defined Backbone Network.” In: Transactions on Network and Service

Management 14.4 (2017), pp. 1032-1045.
Netflix. SimianArmy: Chaos Monkey. Apr. 24, 2019. urvL: https:// github . com / Netflix /

chaosmonkey.

A. Nguyen-Ngoc, S. Raffeck, S. Lange, S. Geissler, T. Zinner, and P. Tran-Gia. “Benchmarking
the ONOS Controller with OFCProbe.” In: International Conference on Communications and
Electronics. IEEE. 2018, pp. 367-372.

T. A. Nguyen, T. Eom, S. M. An, J. S. Park, J. B. Hong, and D. S. Kim. “Availability Modeling
and Analysis for Software Defined Networks.” In: IEEE Pacific Rim International Symposium
on Dependable Computing. IEEE. 2015, pp. 159-168.

OFLOPS. CBench: A Benchmarking Tool for Controllers. urL: https://github.com/mininet/

oflops/tree/master/cbench.

M. Ohba. “Software Reliability Analysis Models.” In: IBM Journal of research and Develop-
ment 28.4 (1984), pp. 428-443.

K. Ohishi, H. Okamura, and T. Dohi. “Gompertz Software Reliability Model: Estimation Al-
gorithm and Empirical Validation.” In: Journal of Systems and Software 82.3 (2009), pp. 535—
543.

H. Okamura and T. Dohi. “A Generalized Bivariate Modeling Framework of Fault Detection
and Correction Processes.” In: International Symposium on Software Reliability Engineering.
IEEE. 2017, pp. 35-45.

K. Okumoto and A. L. Goel. “Optimum Release Time for Software Systems Based on Relia-
bility and Cost Criteria.” In: Journal of Systems and Software 1.4 (1980), pp. 315-318.

ON.Lab. ONOS: Open Neetwork Operating System. 2017. urL: http://onosproject.org/.

ONF. OpenFlow Controller Benchmarking Methodologies. Tech. rep. ONF TR-539. Open
Networking Foundation, Nov. 2016. urL: https://www.opennetworking.org/wp - content/
uploads/2014/10/TR-539_OpenFlow_Controller_Benchmarking_Methodologies_v1.pdf.

D. Ongaro and J. K. Ousterhout. “In Search of an Understandable Consensus Algorithm.” In:
USENIX Annual Technical Conference. 2014, pp. 305-319.

ONOS. “SDN Control Plane Performance.” In: ONOS Project Whitepaper. July 2017, pp. 1-
23.

Open source security. pfSense. Oct. 18, 2017. urL: https://www.pfsense.org/.

S. Orlando. “Software Aging Analysis of Off-the-Shelf Software Items.” PhD thesis. Universita
degli Studi di Napoli Federico II, 2008.

S. Osaki. Stochastic Models in Reliability and Maintenance. Springer, 2002.

https://github.com/Netflix/chaosmonkey
https://github.com/Netflix/chaosmonkey
https://github.com/mininet/oflops/tree/master/cbench
https://github.com/mininet/oflops/tree/master/cbench
http://onosproject.org/
https://www.opennetworking.org/wp-content/uploads/2014/10/TR-539_OpenFlow_Controller_Benchmarking_Methodologies_v1.pdf
https://www.opennetworking.org/wp-content/uploads/2014/10/TR-539_OpenFlow_Controller_Benchmarking_Methodologies_v1.pdf
https://www.pfsense.org/

138

Bibliography

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]
[156]

[157]

[158]

[159]

[160]

A. Panda, C. Scott, A. Ghodsi, T. Koponen, and S. Shenker. “CAP for networks.” In: ACM
SIGCOMM workshop on Hot topics in Software Defined Networking. ACM. 2013, pp. 91-96.

A. Pettener. “SCADA and communication networks for large scale offshore wind power sys-
tems.” In: Renewable Power Generation (RPG 2011), IET Conference on. IET. 2011, pp. 1-
6.

H. Pham, L. Nordmann, and Z. Zhang. “A General Imperfect Software Debugging Model with
S-shaped Fault Detection Rate.” In: IEEE Transactions on Reliability 48.2 (1999), pp. 169-175.

H. Pham and X. Zhang. “NHPP Software Reliability and Cost Models with Testing Coverage.”
In: European Journal of Operational Research 145.2 (2003), pp. 443—-454.

K. Phemius, M. Bouet, and J. Leguay. “Disco: Distributed Multi-domain SDN Controllers.”
In: IEEE Network Operations and Management Symposium. IEEE. 2014, pp. 1-4.

R. Potharaju and N. Jain. “When the Network Crumbles: An Empirical Study of Cloud Network
Failures and Their Impact on Services.” In: Symposium on Cloud Computing. ACM. 2013, p. 15.

R. Potharaju, N. Jain, and C. Nita-Rotaru. “Juggling the Jigsaw: Towards Automated Problem
Inference from Network Trouble Tickets.” In: USENIX Symposium on Networked Systems
Design and Implementation. 2013, pp. 127-141.

N. Provos. “Honeyd - A Virtual Honeypot Daemon.” In: 10th DFN-CERT Workshop, Hamburg,
Germany. Vol. 2. 2003, p. 4.

F. Qin, Z. Zheng, Y. Qiao, and K. S. Trivedi. “Studying Aging-Related Bug Prediction Using
Cross-Project Models.” In: IEEE Transactions on Reliability 99 (2018), pp. 1-20.
L. Qu, C. Assi, K. Shaban, and M. J. Khabbaz. “A Reliability-aware Network Service Chain

Provisioning with Delay Guarantees in NFV-enabled Enterprise Datacenter Networks.” In:
IEEFE Transactions on Network and Service Management 14.3 (2017), pp. 554-568.

C. Rahmani, H. Siy, and A. Azadmanesh. “An Experimental Analysis of Open Source Software
Reliability.” In: Department of Defense/Air Force Office of Scientific Research (2009).

D. S. S. Research. Jepsen. Version 9. Apr. 24, 2019. urL:

M. Roesch et al. “Snort: Lightweight Intrusion Detection for Networks.” In: Lisa. Vol. 99. 1.
1999, pp. 229-238.

F.J.Ros and P. M. Ruiz. “Five Nines of Southbound Reliability in Software-Defined Networks.”
In: ACM Workshop on Hot topics in Software Defined Networking. ACM. 2014, pp. 31-36.

B. Rossi, B. Russo, and G. Succi. “Modelling Failures Occurrences of Open Source Software
with Reliability Growth.” In: IFIP International Conference on Open Source Systems. Springer.
2010, pp. 268-280.

E. Sakic, N. Deric, and W. Kellerer. “MORPH: An Adaptive Framework for Efficient and
Byzantine Fault-Tolerant SDN Control Plane.” In: Journal on Selected Areas in Communica-
tions (2018), pp. 1-13.

E. Sakic and W. Kellerer. “Impact of Adaptive Consistency on Distributed SDN Applications:
An Empirical Study.” In: Journal on Selected Areas in Communications (), pp. 1-13.

https://github.com/jepsen-io/

139

[161]

[162]

[163]

[164]

[165]

[166]

[167]

[168]

[169]

[170]

[171]

[172]

[173]

[174]

E. Sakic and W. Kellerer. “Response Time and Availability Study of RAFT Consensus in
Distributed SDN Control Plane.” In: IEEE Transactions on Network and Service Management
15.1 (2017), pp. 304-318.

E. Sakic, V. Kulkarni, V. Theodorou, A. Matsiuk, S. Kuenzer, N. E. Petroulakis, and K.
Fysarakis. “VirtuWind—An SDN-and NFV-based Architecture for Softwarized Industrial Net-
works.” In: International Conference on Measurement, Modelling and Evaluation of Computing
Systems. Springer. 2018, pp. 251-261.

D. Santos, A. de Sousa, and C. Mas Machuca. “Combined Control and Data Plane Robustness
of SDN Networks against Malicious Node Attacks.” In: IEEE International Conference on
Network and Service Management. IEEE. 2018, pp. 54-62.

T. Sato, S. Ata, I. Oka, and Y. Sato. “Abstract Model of SDN Architectures Enabling Com-
prehensive Performance Comparisons.” In: International Conference on Network and Service
Management. IEEE. 2015, pp. 99-107.

T. Sauter. “The Three Generations of Field-level Networks—Evolution and Compatibility
Issues.” In: IEEE Transactions on Industrial Electronics 57.11 (2010), pp. 3585-3595.

B. Schroeder and G. A. Gibson. “Disk failures in the real world: What does an mttf of 1, 000,
000 hours mean to you?” In: USENIX Conference on File and Storage Technologies. Vol. 7. 1.
2007, pp. 1-16.

S. A. Shah, J. Faiz, M. Farooq, A. Shafi, and S. A. Mehdi. “An Architectural Evaluation of SDN
Controllers.” In: International Conference on Communications. IEEE. 2013, pp. 3504-3508.

A. Shalimov, D. Zuikov, D. Zimarina, V. Pashkov, and R. Smeliansky. “Advanced Study of
SDN/OpenFlow Controllers.” In: Central & Eastern European Software Engineering Confer-
ence in Russia. ACM. 2013, p. 1.

L. Silva, H. Madeira, and J. G. Silva. “Software Aging and Rejuvenation in a SOAP-based
Server.” In: IEEE International Symposium on Network Computing and Applications. IEEE.
2006, pp. 56-65.

D. Suh, S. Jang, S. Han, S. Pack, T. Kim, and J. Kwak. “On Performance of OpenDaylight
Clustering.” In: NetSoft Conference and Workshops. IEEE. 2016, pp. 407-410.

H. Sukhwani, J. M. Martinez, X. Chang, K. S. Trivedi, and A. Rindos. “Performance Modeling
of PBFT Consensus Process for Permissioned Blockchain Network (Hyperledger Fabric).” In:
Symposium on Reliable Distributed Systems. IEEE. 2017, pp. 253-255.

H. Sukhwani, R. Matias Jr, K. S. Trivedi, and A. Rindos. “Monitoring and Mitigating Software
Aging on IBM Cloud Controller System.” In: IEEE International Symposium on Software
Reliability Engineering Workshops. IEEE. 2017, pp. 266-272.

H. Sukhwani, N. Wang, K. S. Trivedi, and A. Rindos. ‘“Performance Modeling of Hyper-
ledger Fabric (Permissioned Blockchain Network).” In: International Symposium on Network
Computing and Applications. IEEE. 2018, pp. 1-8.

Supervisory Control And Data Acquisition (SCADA) and Automation Systems. Tech. rep. IEEE
Standard C37.1-2007. 2007.

140

Bibliography

[175]

[176]

[177]

[178]

[179]

[180]

[181]

[182]

[183]

[184]

[185]

[186]

[187]

[188]

[189]

S. M. Syed-Mohamad and T. McBride. “Reliability Growth of Open Source Software Using
Defect Analysis.” In: International Conference on Computer Science and Software Engineer-
ing. Vol. 2. IEEE. 2008, pp. 662—667.

A. Tootoonchian and Y. Ganjali. “Hyperflow: A Distributed Control Plane for OpenFlow.” In:
Internet network management conference on Research on enterprise networking. 2010, pp. 3-3.

A. Tootoonchian, S. Gorbunov, Y. Ganjali, M. Casado, and R. Sherwood. “On Controller
Performance in Software-Defined Networks.” In: Hot-ICE 12 (2012), pp. 1-6.

K. S. Trivedi. “SREPT: A Tool for Software Reliability Estimation and Prediction.” In: Inter-
national Conference on Dependable Systems and Networks. IEEE. 2002, p. 546.

K. S. Trivedi and A. Bobbio. Reliability and Availability Engineering: Modeling, Analysis, and
Applications. Cambridge University Press, 2017.

N. Ullah, M. Morisio, and A. Vetro. “A Comparative Analysis of Software Reliability Growth
Models Using defects Data of Closed and Open Source Software.” In: IEEE Software Engi-
neering Workshop. IEEE. 2012, pp. 187-192.

K. Vaidyanathan and K. S. Trivedi. “A Comprehensive Model for Software Rejuvenation.” In:
IEEE Transactions on Dependable and Secure Computing 2.2 (2005), pp. 124-137.

N. A. Valentim, A. Macedo, and R. Matias. “A Systematic Mapping Review of the First 20
Years of Software Aging and Rejuvenation Research.” In: IEEE International Symposium on
Software Reliability Engineering Workshops. IEEE. 2016, pp. 57-63.

J. Vestin, A. Kassler, and J. Akerberg. “Resilient Software Defined Networking for Industrial
Control Networks.” In: International Conference on Information, Communications and Signal
Processing. IEEE. 2015, pp. 1-5.

M. Vilgelm, S. Schiessl, H. Al-Zubaidy, W. Kellerer, and J. Gross. “On the Reliability of LTE
Random Access: Performance Bounds for Machine-to-Machine Burst Resolution Time.” In:
IEEFE International Conference on Communications. IEEE. 2018, pp. 1-7.

S. A. Vilkomir, D. L. Parnas, V. B. Mendiratta, and E. Murphy. “Availability Evaluation
of Hardware/Software Systems with Several Recovery Procedures.” In: IEEE International
Computer Software and Applications Conference. Vol. 1. IEEE. 2005, pp. 473—-478.

D. Wang and K. S. Trivedi. “Modeling User-perceived Service Availability.” In: International
Service Availability Symposium. Springer. 2005, pp. 107-122.

K. Wang, H. Li, S. Maharjan, Y. Zhang, and S. Guo. “Green Energy Scheduling for Demand
Side Management in the Smart Grid.” In: IEEE Transactions on Green Communications and
Networking 2.2 (2018), pp. 596-611.

M. Wei and Z. Chen. “Study of LANs Access Technologies in Wind Power System.” In: IEEE
Power and Energy Society General Meeting. IEEE. 2010, pp. 1-6.

Y. Wu, Q. Hu, M. Xie, and S. H. Ng. “Modeling and Analysis of Software Fault Detection and
Correction Process by Considering Time Dependency.” In: ().

141

[190]

[191]

[192]

[193]

[194]

[195]

[196]

[197]

[198]

[199]

[200]

[201]

[202]

W. Xie, Y. Hong, and K. S. Trivedi. “Software Rejuvenation Policies for Cluster Systems
Under Varying Workload.” In: IEEE Pacific Rim International Symposium on Dependable
Computing. IEEE. 2004, pp. 122-129.

G. Xu, M. D. Bond, F. Qin, and A. Rountev. “LeakChaser: Helping Programmers Narrow Down
Causes of Memory Leaks.” In: ACM SIGPLAN Notices. Vol. 46. 6. ACM. 2011, pp. 270-282.

S. Yamada, M. Ohba, and S. Osaki. “S-shaped Reliability Growth Modeling for Software Error
Detection.” In: IEEE Transactions on Reliability 32.5 (1983), pp. 475—484.

S. Yamada, H. Ohtera, and H. Narihisa. “Software Reliability Growth Models with Testing-
effort.” In: IEEE Transactions on Reliability 35.1 (1986), pp. 19-23.

S. Yamada and S. Osaki. “Cost-reliability Optimal Release Policies for Software Systems.” In:
IEEFE Transactions on Reliability 34.5 (1985), pp. 422—424.

S. Yamada, T. Ichimori, and M. Nishiwaki. “Optimal Allocation Policies for Testing-resource
Based on a Software Reliability Growth Model.” In: Mathematical and Computer Modelling
22.10-12 (1995), pp. 295-301.

D. Yan, G. Xu, S. Yang, and A. Rountev. “LeakChecker: Practical Static Memory Leak Detec-
tion for Managed Languages.” In: IEEE/ACM International Symposium on Code Generation
and Optimization. ACM. 2014, p. 87.

K.-K. Yap, M. Motiwala, J. Rahe, S. Padgett, M. Holliman, G. Baldus, M. Hines, T. Kim,
A. Narayanan, A. Jain, et al. “Taking the Edge off with Espresso: Scale, Reliability and
Programmability for Global Internet Peering.” In: Conference of the ACM Special Interest
Group on Data Communication. ACM. 2017, pp. 432—445.

D. Yuan, Y. Luo, X. Zhuang, G. R. Rodrigues, X. Zhao, Y. Zhang, P. Jain, and M. Stumm.
“Simple Testing Can Prevent Most Critical Failures: An Analysis of Production Failures in
Distributed Data-Intensive Systems.” In: USENIX Symposium on Operating Systems Design
and Implementation. 2014, pp. 249-265.

Y. Zhang, E. Ramadan, H. Mekky, and Z.-L. Zhang. “When Raft Meets SDN: How to Elect
a Leader and Reach Consensus in an Unruly Network.” In: ACM Asia-Pacific Workshop on
Networking. ACM. 2017, pp. 1-7.

Y. Zhao, L. Iannone, and M. Riguidel. “On the Performance of SDN Controllers: A Real-
ity Check.” In: IEEE Conference on Network Function Virtualization and Software Defined
Network. IEEE. 2015, pp. 79-85.

Y. Zhou and J. Davis. “Open Source Software Reliability Model: an Empirical Approach.” In:
ACM SIGSOFT Software Engineering Notes. Vol. 30. 4. ACM. 2005, pp. 1-6.

S. Zoppi, A. Van Bemten, H. M. Giirsu, M. Vilgelm, J. Guck, and W. Kellerer. “Achieving
Hybrid Wired/Wireless Industrial Networks With WDetServ: Reliability-Based Scheduling for
Delay Guarantees.” In: IEEE Transactions on Industrial Informatics 14.5 (2018), pp. 2307-
2319.

List of Figures

1.1
1.2
1.3

2.1
22
23

24

2.5
2.6

2.7

3.1
3.2
33
34
3.5

4.1
4.2

43
4.4

4.5

4.6
4.7

Softwarized network architectures. oL oo
Three dimensions of dependability (adapted from IFIP Working Group 10.4).
Outline of the thesis: main contributions are mapped to the corresponding chapters . . .

Functional split in SDN: decoupling control and data plane of L2-L4 forwarding devices.
Functional split in NFV: virtualization of L4-L7 packet processing functions.
SDN-NFV interfaces proposed by ETSI NFV (adapted from report on "SDN in NFV
Architectural Framework" by ETSINFV).
Contributions of different functional blocks and individual projects to the total bug content
of the ODL platform [16] (©20191IEEE).

Tiers of functionality in ONOS architecture (adapted from "ONOS Developer Workshop").

The number of software defects related to distributed implementations reported over time
for ODL and ONOS. The dates of major releases for both distributed controller platforms
are indicated in the figure.
Data-driven software dependability assurance

Inside the wind park communication network [7] (©2019IEEE).
Softwarization of industrial networks.o oo o
Industrial network prototype: virtualized security appliances.
Industrial network prototype: control plane architecture.
Analysis of economic incentives for softwarization of the wind park: 19% of the savings
in CAPEX and 34% in OPEX can be expected (©2019IEEE).

Assessment of software maturity with SRGM 0oL,
A first look at ONOS and ODL data sets: descriptive statistics of issues reported in the
period between December 2014 and February 1,2018.
The best fitting models for bug detection process for stable ONOS and ODL releases. . .
GoF metrics: Theil’s Statistics (7'S) and Coeflicient of Determination (R?) for all ONOS
and OpenDaylight releases. e
Comparison of the best fitting models for fault resolution process for four representative
TEleases.
Comparison of MSE of SRGMs for the bug resolution process.
An example of the optimal software adoption and release time based on the reliability
criteria. Vertical lines indicate the date of the official Kingsfisher release time (zp).

143

12
13

14

16
19

20
24

29
32
34
34

39

43

50
52

53

54
55

56

144

List of Figures

4.8

4.9
4.10

4.11

4.12

5.1
52
53

54
5.5
5.6
5.7
5.8
59
5.10
5.11

5.12

6.1

6.2

6.3

6.4
6.5

6.6

6.7

An example of optimal software adoption and release time based on the cost criteria,
illustrated in the example of Kingsfisherrelease. 58
Estimated parameters of Gompertz model for bug detection process for all ONOS releases. 59
Early prediction of software reliability, when only few samples, i.e. bug reports, are
available for the fitting of SRGM parameters. Benefits of regularization can be seen in the
evolution of mean value function and RMSE, as illustrated for Loon release and Gompertz

model. . . . e 60
Software maturity evolution over time for Kingsfisher (ONOS v1.10) and Carbon (ODL

VO.0). . . 62
Software maturity in different phases of the controller lifecycle. 63
DASON: Data-driven dependability assurance framework basedon SRN 68
A primer on distributed SDN implementations 74

The number of software defects related to distributed implementations reported over time
for ONOS and ODL. The dates of major releases for both distributed controller platforms

are indicated in the figure. L 76
Taxonomy of defects in distributed SDN control plane implementations. 77
Modelling abstraction for imperfect SDN cluster. 83
SRN for service request dynamics. Lo 83
SRN extension for preventive maintenance, i.e., software rejuvenation. 83
Sensitivity analysis for Apj3.o Lo 88
Downtime (DT) distribution. e 89
Request Completion Failure Rate (1-SR). 90
Ay n in different deployment scenarios: separate physical machines (PHY), virtual ma-

chines (VM) and docker container (DC) sharing the same physical hardware. 91
Software rejuvenation policies. 91

ARES: a framework for the management of software ageing consists of three steps: i)
detection and localization, ii) profiling the effects of the ageing and iii) prevention. Each
step is applied to the particular case study on SDN controllers. 96
A Measurement-based study for characterization of software ageing 102
Designing of software rejuvenation policies, i.e., optimization of rejuvenation schedule
andlevel. 103
Mining software repositories for ageing defects using keyword-based search in filtering step. 104
ODL data store architecture (adapted from "Clustering in OpenDaylight" presentation by
Jan Medved and Robert Varga). 107
Measurement points for response time evaluation for ONOS intent installation (Tipgtan)
and withdrawal (Tyihgraw) times. Intent state transition diagram was adapter from ONOS
documentation. e e e e 109
Experiment design for ODL issue: a batch of Npycn expiring flows with hard timeout
Ttimeout 1S added to the network in regular time internals Tyqje. .« - o . . o 110

List of Figures 145
6.8 Testbed consists of three workstations: i) management PC responsible for environment
setup, configuration of test sequences and post-experiment stats collection, ii) workload
PC generating SDN CP traffic and iii) SUT PC running the containers for SDN controller
under test and statistics collection. Lo oL 111
6.9 Network ageing in case of Designissue-1 (ONOS-4212) 112
6.10 Network ageing in case of Designissue-2 (OPNFLWPLUG-962) 113
6.11 Network rejuvenation in case of Designissue-1 (ONOS-4212) 113

7.1 Outlook for the future work and open research questions in the area of dependability
assurance for softwarized industrial networks. oL

https://jira.onosproject.org/browse/ONOS-4212
https://jira.opendaylight.org/browse/OPNFLWPLUG-962
https://jira.onosproject.org/browse/ONOS-4212

List of Tables

2.1
22

3.1
32
33

4.1
4.2
4.3

5.1

5.2
53
54

6.1
6.2

A.l
A2
A3
A4
AS

Comparison of ODL and ONOS (September 3,2018). 19
Overview of representative work on dependability assurance in softwarized networks. . . 20
Traffic classes and services present in the wind park. 30
Comparison of the network components in legacy wind park and SDN/NFV-based network. 35
Case study: typical offshore wind park in Northwestern Europe (©2019 IEEE). 38
Fault detection process as Non-Homogeneous Poisson Process (NHPP) 47
Comparison of ONOS v.1.10 (Kingsfisher) vs. ODL v.0.6 (Carbon) releases 51
Gompertz model regularization with parameter prediction strategies, based on: i) extreme

parameter values, ii) mean and variance and iii) moving average. 59

Distribution of software defects by category: distributed protocols (DP), scalability and

performance (SP), high-availability (HA) and operational (OP) issues. 82
SRN model parameters [34, 120, 127, 185, 190]o . 87
Steady State Unavailability (1 =SSA) 88
Service request and serving rates e . e e e e 90
Overview of related work on software ageing. 99
The use of distributed primitives in ONOS (adapted from "ONOS Distributed Core"

presentation by Thomas Vachsuka) L oL, 107
Defects in the implementation of distributed protocols (DP). 123
Defects related to scalability and performance issues (SP). 124
Defects related to high availability (HA). 124
Defects related to operational issues (OP). 125
Defects related to software ageing in SDN controllers. 126

147

	Acronyms
	Introduction
	Research Challenges
	Main Contributions
	Thesis Outline

	Background
	Softwarized Network Architectures
	Software Defined Networking (SDN)
	Network Function Virtualization (NFV)
	The Role of SDN in NFV

	Open Source Network Orchestration Platforms
	OpenDaylight (ODL)
	Open Network Operating System (ONOS)
	Comparison of ODL and ONOS

	Dependability Assurance in Softwarized Networks
	Related Work on Dependability of Softwarized Networks
	Data-driven Software Dependability Assessment and Assurance

	Incentives for Softwarization of Industrial Networks
	Introduction
	Legacy Industrial Networks: A Wind Park Case Study
	Wind Turbine Generator (WTG)
	Supervisory Control and Data Acquisition (SCADA)
	Wind Park Communication Network

	Softwarization of Industrial Networks
	SDN: Replacing Industrial Ethernet with Programmable OpenFlow Switches
	NFV: Virtualization of Security Network Functions
	Automated Network Orchestration and Management
	Industrial Network Prototype Deployed in Operational Wind Park

	Incentives for Softwarization of Industrial Networks
	Cost Factors
	Case Study

	Concluding Remarks
	Summary
	Discussion

	Assessing the Software Maturity with Reliability Growth Models
	Introduction
	Motivation, Problem Scope and Research Challenges
	Methodology: Software Reliability Growth Models (SRGMs)
	Key Contributions

	Related Work
	Stochastic Models for Software Reliability in SDN
	Reliability Modelling, Evaluation and Forecasting with SRGM

	Software Reliability Growth Models
	Bug Detection Process as NHPP
	Bug Resolution Process as Bi-variate NHPP
	Fitting of the model parameters

	Data Collection and Preprocessing
	ONOS Dataset
	ODL Dataset

	Best Model Selection
	Bug Detection Process
	Bug Resolution Process

	Software Maturity Assessment
	Optimal Software Release and Software Adoption Time
	Early Prediction of Software Reliability
	Software Maturity Metrics: Comparison of ONOS and ODL

	Concluding Remarks
	Summary
	Discussion

	Dependability Assessment Framework for Distributed SDN Implementations
	Introduction
	Motivation, Problem Scope and Research Challenges
	Methodology: Data-driven Stochastic Reward Nets (SRN)
	Key Contributions

	Related Work
	High-availability in Distributed SDN Implementations
	Model-based Studies on SDN Control Plane Dependability

	Overview of Distributed SDN Implementations with ONOS and ODL
	A Primer on Distributed Control Plane in SDN
	ONOS Implementation
	ODL Implementation

	Localizing Dependability Bottlenecks in Distributed SDN Implementations
	Bug Repository
	Defects in the Implementation of Distributed Protocols (DP)
	Scalability and Performance (SP) Issues
	High Availability (HA) Issues
	Operational (OP) Issues
	Prevalent Failure Modes

	Modelling Abstractions for Imperfect Distributed SDN Implementations
	Modelling Abstraction for Imperfect SDN Cluster
	Reference Stand-alone Model
	Modelling Abstraction for Control Plane Services
	Preventive Maintenance Policies
	Dependability Metrics of Interest

	Characterization of SSA, Failure Dynamics and User-Perceived Service Availability
	Control plane availability
	Failure Dynamics
	User-perceived Service Availability
	Comparison of Different Deployment Scenarios
	Optimization of the Preventive Maintenance Policies

	Concluding Remarks
	Summary
	Discussion

	Software Ageing and Rejuvenation in SDN Orchestration Platforms
	Introduction
	Motivation, Problem Scope and Research Challenges
	Methodology: ARES Framework
	Key Contributions

	Related Work
	Reliability and Performance Issues in SDN Controllers
	Empirical Studies on Software Ageing

	ARES: A Framework for Management of Software Ageing and Rejuvenation
	Detection of Software Ageing
	Profiling of Software Ageing
	Prevention of Software Ageing

	Ageing Detection: Mining ONOS and ODL Software Repositories
	Methodology for Mining of the Software Repositories
	Analysis of Ageing-related Defects

	Measurement-based Characterization of Network Ageing
	Design of Experiments (DoE)
	Testbed Setup and Implementation
	Characterization of Software Ageing

	Design of Rejuvenation Policies
	Proof-of-Concept Implementation
	Discussion: Rejuvenation Policy Design Trade-off

	Concluding Remarks
	Summary
	Discussion

	Conclusions and Outlook
	Summary and Discussion
	Outlook for the Future Work

	Appendices
	Mapping of Software Defects
	Defects in Distributed SDN Implementations
	Defects Related to Software Ageing in SDN Controllers

	Bibliography
	List of Figures
	List of Tables

