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Abstract

Pneumatic systems often comprise a tank and a valve, which are connected via a long
tube. Their high-performance and efficient operation requires fast and accurate pressure
changes in the tank, which are to be achieved by manipulating the mass flow rate through
the valve. However, the significant tube length complicates this objective since the tube
notably delays the system response and alters the airflow characteristics. This thesis
presents model-based controller designs, which explicitly consider the dynamics of the
airflow in the tube. For that, a plant model, describing the air in the system, is derived
by the conservation laws of mass, momentum, and energy, resulting in quasilinear hyper-
bolic partial differential equations for the tube, nonlinear ordinary differential equations
for the tank, and static relations for the valve. The validity of the model is verified by
experimental studies performed at a test bench. By making use of this rather elaborate
system description, models of successively decreasing complexity are derived by introduc-
ing additional assumptions. The models are thoroughly discussed and three of them are
selected for the subsequent controller design. Based on a linear distributed-parameter
model, using a collocated pressure measurement downstream of the valve, output feed-
back controllers are derived, which comprise a state feedback and a state observer. The
first design makes use of a novel backstepping approach for hyperbolic partial differential
equations. The resulting output feedback controller is augmented by a flatness-based
feedforward controller and implemented at the test bench, providing the first-ever exper-
imental validation of the newly developed backstepping method. In addition, by nature
of its infinite-dimensional character, such a control law is very rare for pneumatic sys-
tems. The backstepping-based controller is compared to another late-lumping and to two
state-of-the-art early-lumping controllers. The infinite-dimensional state feedback and
observer are derived from a flatness-based parametrization of the system quantities. For
the design of the early-lumping controllers, the linear distributed-parameter model of the
test bench is approximated by a lumped-parameter one. Classical methods using pole
placement and optimality are applied to derive the two finite-dimensional output feed-
back tracking controllers. The performance of all output feedback tracking controllers
is assessed at the test bench. Experimental data confirms that the controllers track
fast pressure changes in the tank nearly perfectly. In particular, the evaluation of these
results as well as a comparison in terms of design and implementation aspects underline
the excellent performance and practicability of the backstepping-based controller.
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Chapter 1

Introduction

Pneumatic applications, such as pneumatic actuators, are extensively used in the indus-
try since they have low investment costs and a high power density, e.g., [Bea07; Pfe18].
Their operation requires a compressed medium, with air commonly used for its both safe
and simple production and handling. In turn, generating compressed air usually requires
electricity, whereby the generation accounts for approximately 10 % of the overall indus-
trial electricity consumption in developed countries, e.g, [Rad01; MKK14]. However,
according to [SRH10], only 19 % of the energy needed for the production of compressed
air is usable, rendering the operational costs of pneumatic systems relatively high. One
way to alleviate these costs is to increase the efficiency in order to reduce the amount of
compressed air consumed. This can be achieved, e.g., by deriving a suitable mathemati-
cal description of the respective pneumatic process for its analysis and optimization. In
addition, the development of a sophisticated control strategy can increase the efficiency
even further.

1.1 Motivation

Typically, pneumatic actuators are essential components of pneumatic systems, e.g.,
[JK03]. They are driven by compressed air that is provided via valves. Such a set-up
is depicted in Fig. 1.1. Therein, the actuator is a double-acting cylinder, consisting of
two chambers and a piston. The valves are fed by a large storage tank, which is in turn
connected to the air supply. By adjusting the mass flow rate through the valve, the
corresponding chamber pressure in the cylinder is regulated and accordingly the motion
and position of the piston.
However, often it is desirable or even inevitable to adjust the set-up in Fig. 1.1 by
installing long tubes between the valves and the actuator, depicted in Fig. 1.2. As stated
in [Yan+11; KS13; RNM16], such a setting can be more cost effective since less electrical
wiring is needed and the compressed air storage tank, providing a more constant supply
pressure to the valve, might not be necessary. Because of the shorter cables, wire breaks
and signal disturbances can be reduced, resulting in a more reliable system. As the
long tubes allow to install the actuator and the valves at different positions, it might be
easier to comply with constructive restrictions. For example, when multiple actuators
are utilized, the valves can be centrally clustered. Furthermore, in some applications,
the environmental conditions limit the use of electrical devices and/or metallic materials,

1
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Figure 1.1: A typical pneumatic set-up with short tubes connecting the valves and the
actuator
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Figure 1.2: A typical pneumatic set-up with long tubes connecting the valves and the
actuator

rendering long tubes unavoidable. An example is the strong magnetic field in a magnetic
resonance imaging scanner. Further possible limitations are extreme temperatures or
environments with an explosive atmosphere.
Apart from the above mentioned benefits, the use of the long tubes can cause drawbacks
as they affect the system response from the input, i.e. the mass flow rate through the
valve, to the output, i.e. the chamber pressure. In general, signals in pneumatic systems
propagate only with the speed of sound, approximately. Thus, the long tubes introduce a
delay, depending on their length. In addition, they significantly alter the characteristics
of the flow, for example, the pressure drops because of friction, e.g., [RH00a]. These
effects increase the complexity of the system and may render a controller design relatively
involved, e.g., [TU18].
To investigate this problem, the author of this thesis laid out and built the test bench
depicted Fig. 1.3, which is inspired by the set-up in [KS13] and [RNM15]. It basically
consists of a long tube, connecting a proportional directional control 5/3-way1 valve
and a tank. Its components are listed in Appx. A. Therefore, the test bench essentially
comprises the three main components in Fig. 1.2, where the tank stands in place of one of
the cylinder chambers. Since the control objective in Fig. 1.2 is the respective chamber
pressure, the controlled variable of the test bench in Fig. 1.3 is the tank pressure. While
the regulation of the latter is an important issue on its own, e.g., [AF16; RNM16], it is
also a crucial step towards the control of pneumatic actuators.

1As one working port of the valve is blocked and both exhaust ports discharge to the ambient pressure
via silencers, the valve is treated as a 3/3-way valve in the following.
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Figure 1.3: A photo of the essential components of the test bench

Naturally, a controller, which achieves a desired tank pressure by manipulating the mass
flow rate through the valve, can be designed based on a mathematical description of
the set-up, e.g., [Bea07]. For that, its components are modeled by making use of the
corresponding laws of physics. Subsequently, the models are interconnected. Often,
the valve is described by a static relation since its dynamics is negligible compared to
the remaining plant dynamics, e.g., [Bru+99]. While the tank is modeled by ordinary
differential equations (ODEs), e.g., [RNM15], hyperbolic partial differential equations
(PDEs) might be necessary to adequately capture the spatially distributed character of
the tube, depending on, e.g., its length.
If the tube between the valve and the tank is sufficiently short, its dynamics, i.e. the
dynamics of the airflow through the tube, can be neglected, rendering the resulting
model for the controller design finite-dimensional. Still, a satisfying control performance
can be achieved, e.g., [LB88]. In contrast to that, if the tube length is significant as in
Fig. 1.3, where a tube of five meters is installed, it might be necessary to consider its
dynamics, e.g., [RH00b]. From the combination of the tube model with the models of
the valve and the tank, a PDE-ODE system is obtained. The design of controllers and
observers based on such an infinite-dimensional model is the scope of this thesis.

1.2 State of the Art

In the literature, there exists a variety of approaches on how to deal with long tubes.
Often, to avoid additional complexity in the controller design, their dynamics is simply
neglected, e.g., [RNM16]. One example is [Yu+08], where the set-up consists of two
valves, connected to a cylinder via tubes with a length of 5 m. Although the authors
incorporate the additional tube volume in the model, they neglect the tube dynamics.
Based on this system description, two first-order controllers, regulating the corresponding
pressure in the cylinder chambers, are designed and validated in experiments. A very
similar set-up can be found in [Yan+11]. Therein, the tubes with a length of 9 m are
described by PDEs and the effects thereby induced discussed. Still, these dynamics
are not taken into account in the subsequently designed finite-dimensional sliding mode



4 Chapter 1. Introduction

controller, which is validated in experiments. The authors justify their approach by
defining rather slow dynamics of the closed-loop system.
In contrast to that, some researchers consider the dynamics of the tube in their controller
design. An early example is from 1972 and can be found in [Föl72] (in German). Therein,
the set-up consists of a long tube, connecting a valve and a pneumatic resistance, where
the pressure at the unactuated end is controlled. For that, the system is modeled and the
tube described by PDEs, where friction is neglected, reducing the complexity. Based on
the resulting infinite-dimensional model, finite-dimensional controllers up to the order
three are derived by the frequency response method and investigated in simulations.
Another relatively early example is [PKS91], where the chamber pressures in a cylinder
are regulated by a valve via tubes. The latter have a length of approximately 0.2 m and
0.3 m, respectively. The effects, caused by the tubes, are discussed and described by an
infinite-dimensional model. However, while some system components can be adequately
modeled by physical laws, the authors state that such an approach is not suitable to
obtain a holistic model caused by the system’s complexity. Instead, a simplified first-
order transfer function is derived by measuring the frequency response. Based on that,
P as well as PD controllers are designed and validated in experiments.
One of the first contributions which systematically investigated controller designs ne-
glecting and considering the tubes in terms of the resulting performance is [RH00a]. In
their previous work [RH00b], a model was derived from a set-up, consisting of a valve
and a cylinder, connected via tubes with a length of 0.5 m and 2 m, respectively. First,
the tubes are modeled by PDEs. These are simplified in order to avoid distributed
delays and subsequently solved. The solution is included in the mathematical descrip-
tion of the entire system, rendering it a model comprising delay differential equations.
Based on that, [RH00b] presents the design of two sliding mode controllers: The first
one is derived from this infinite-dimensional model, rendering the resulting control law
infinite-dimensional, too. The second controller is designed based upon a simplified sys-
tem description. For that, the valve dynamics and the delays induced by the tubes are
neglected. Hence, caused by the latter simplification, the resulting control law is finite-
dimensional. The controllers are tested in simulations and experiments. It was shown
that the first controller, incorporating the tube model, performed significantly better for
actuator frequencies above 20 Hz and/or in configurations with the tubes of 2 m.
A common method to consider the tube dynamics in the controller design is the so-
called early-lumping approach: First, the tubes are modeled by PDEs. The resulting
infinite-dimensional model is approximated by a finite-dimensional one, comprised of
ODEs. The controller is derived based on this reduced model. Such an approach can
be found in, e.g., [TRB01]. Therein, a controller is designed for a hydraulic aircraft
brake system2, consisting of a valve, a tube of considerable length, and a brake cavity,
approximated by a constant volume. The model of the set-up takes the distributed
dynamics of the tubes as well as the nonlinearities of the valve into account. For the
design of the controller, regulating the pressure in the cavity, this model is simplified: The
nonlinearities are eliminated and the infinite-dimensional tube dynamics is reduced to a
second-order model by making use of a modal approximation. Utilizing H∞ methods, a
finite-dimensional robust controller is obtained and validated in simulations.

2Although the working fluid is oil, the approach in [TRB01] can also be applied in the context of
pneumatic systems as the compressibility of the medium is taken into account.
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It can be summarized that all so far existing3 controller designs for pneumatic systems
involving long tubes are not directly based on PDEs and/or the resulting control law is
finite-dimensional.
This fact might be surprising, given that the control of hyperbolic PDEs attracted the
attention of researchers relatively early because this class of systems typically emerges if
conservation laws are employed, e.g., [Rus73] from 1973. Thereby, physical phenomena,
such as the flow of fluids through channels or pipelines, the transport of electricity in
transmission lines, and the flow of traffic, can be modeled, e.g., [BC16]. However, the
existing controller designs for hyperbolic PDEs, so-called late-lumping approaches since
they are derived from an infinite-dimensional system description, may not be applicable
to pneumatic systems for multiple reasons: For example, the design might require a
distributed input along the tube, e.g., [Chr01], which is a rather unusual set-up. Even
most of the methods developed for hyperbolic systems with boundary control, e.g.,
[PWB08], cannot be applied directly. The reason for this is caused by the fact that
models for pneumatic systems involving long tubes usually consist not only of PDEs but
of ODEs, too, necessitating new design approaches which are applicable in practice.
Remark 1.1. Since this thesis covers modeling as well as late-lumping and early-lumping
controller design, a more comprehensive state of the art of each topic can be found at
the beginning of the corresponding chapter. M

1.3 Subject and Outline of the Thesis

This thesis bridges the aforementioned gap and presents a late-lumping controller de-
sign based on a distributed-parameter model of the set-up in Fig. 1.3. The resulting
infinite-dimensional output feedback tracking controller, i.e. a state feedback based on
an observer and augmented by a feedforward controller, is validated in experiments and
compared to existing approaches.
First, an infinite-dimensional model of the test bench is derived in Chap. 2 by applying
conservation laws to the components in Fig. 1.3. This so-called plant model is comprised
of quasilinear hyperbolic PDEs, describing the tube, bidirectionally coupled to nonlinear
ODEs, modeling the tank. The valve is characterized by static relations. To obtain a
system description amenable for the subsequent controller design, the plant model is
successively simplified by making use of suitable assumptions. Each step is discussed re-
garding its physical meaning and validity. Thereby, four additional models are obtained.
Simulation data of all five models is compared to each other and to measurement data.
Three of these models are essential in the following: the plant model for simulations, the
isothermal model for the design of the feedforward controller, and the linear model for
the design of the state feedback and observer.
Chap. 3 presents the derivation of the feedforward controller, allowing for a defined
transition between desired constant pressure levels in the tank. It is based on the
flatness-based approach in [Knü15] (in German). While it achieves an almost excel-
lent performance in simulations, the results in an experimental study are rather poor,
emphasizing the necessity of a state feedback.

3Further contributions dealing with the control of pneumatic systems involving long tubes will be
discussed in Chap. 6.
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Motivated by that, an output feedback controller is designed in Chap. 4 by making use
of the backstepping approaches in [DGK17] and [DGK18]. The resulting control law,
i.e. the state feedback combined with the observer, is augmented by the feedforward
controller. This output feedback tracking controller is validated in simulations and
experiments.
In addition to the backstepping approach, a flatness-based state feedback and a state
observer are designed in Chap. 5. These are based on the methods in [Woi13a] as well
as [Woi13b] and investigated in simulations.
To compare these late-lumping approaches to the state-of-the-art early-lumping ap-
proach, Chap. 6 presents the design of finite-dimensional output feedback tracking con-
trollers. For that, the linear model of the test bench is approximated by two selected
methods: the finite-volume method in [KS13] and the modal approximation in [RNM15].
Based on the resulting lumped-parameter models, output feedback tracking controllers
are derived by making use of well-known design methods for finite-dimensional systems.
The controllers are tested in simulations and experiments.
Finally, in Chap. 7, the design approaches are discussed in terms of a comparative
analysis and the results summarized. The chapter is concluded by an outlook for possible
further research in this context.



Chapter 2

Modeling of the Test Bench

There exists a large variety of mathematical models, describing the dynamics of com-
pressible fluids in tubes. Usually, they are based on PDEs and range from relatively
simple linear one-dimensional models, e.g., [SB59], to very sophisticated nonlinear three-
dimensional ones, e.g., [Nik94]. Although complex models can be a more accurate de-
scription, they might be difficult to analyze, computationally inefficient, and render a
controller design very involved. Since easy-to-use models can be essential in order to
increase the efficiency of a pneumatic system, suitable simplifications are required. For
that, additional assumptions are introduced, depending on the intended use. If these are
based on physical reasoning, the effect of each assumption regarding the validity range
of the model is generally more transparent.
While [SD86a] presents an overview of models with varying complexity and their under-
lying assumptions, it may not always be obvious which physical effects are taken into
account and which are neglected. Furthermore, authors, studying differently complex
models for compressible flow, usually substantiate their results with numerical simu-
lations but without experimental data, e.g., [HMS09]. On the other hand, those who
validate their model based on experiments, may not consider other modeling approaches,
e.g., [RNM15]. To alleviate the choice of a proper model, for example, in the context of
an industrial application, it might be beneficial to discuss the underlying assumptions
and compare the model with other models as well as its simulation data to experimental
data. Such a comparison can be found in [SD86b] for an almost incompressible fluid
with laminar flow. However, air is a highly compressible fluid and the flow in pneu-
matic systems is often turbulent. These aspects are considered in [KS13], where existing
modeling approaches for an airflow in a long tube are discussed and the corresponding
simulation data is compared with measurement data.
In this chapter, the plant model, describing the test bench in Fig. 1.3, is presented. It
is obtained from applying the conservation laws of mass, momentum, and energy to the
airflow through the system. First, a mathematical description of the tube is derived,
which considers friction and heat transfer. Thereby, a system of quasilinear hyperbolic1
first-order PDEs results, generally represented by

∂

∂t
x(z, t) + ∂

∂z
g(x(z, t)) = c(x(z, t)), (2.1)

1The PDEs (2.1) are termed hyperbolic if the eigenvalues of the Jacobian ∂g
∂x

(x) are real and if ∂g
∂x

(x)
is diagonalizable, cf. [Tan92].

7
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pin
psup

p0 0

Vvol pvol

Lz

ν

ṁin

Figure 2.1: A schematic of the test bench

where the state x(z, t) = [x1(z, t), . . . , xk(z, t)]T ∈ Rk comprises k quantities, depending
on the spatial coordinate z ∈ [0, L] in the axial direction of the tube and time t > 0.
The initial condition is denoted by x(z, 0). The function g(x(z, t)) ∈ Rk represents the
flux and c(x(z, t)) ∈ Rk sources and sinks. Subsequently, the valve at z = 0 and the
tank at z = L are modeled, giving rise to the boundary conditions of (2.1). For that,
the valve is considered to be static and the tank is described by nonlinear ODEs.
While the plant model is a very accurate description of the test bench, it might be too
complex for a controller design. Thus, it is successively simplified, resulting in a linear
model of the test bench. Thereby, four additional models with decreasing complexity
result. All involved assumptions are clearly stated. Simulation data of each of the five
models is compared with one another and to experimental data of the test bench. The
effects of the assumptions and the resulting model uncertainties are discussed. Finally,
three models, relevant for the following controller designs, are chosen.
This chapter is based on [Ker17], a contribution by the author of this thesis, which is
enhanced with new results. These are, e.g., the valve model and further experimental
studies to validate the models.

2.1 Preliminary Considerations

Fig. 2.1 depicts a schematic representation of the photo in Fig. 1.3. Therein, the tube
with the length L, connecting the valve at z = 0 and the tank with the fixed volume
Vvol at z = L, can be seen. The pressure sensors measure the supply pressure psup(t)
upstream and the working pressure pin(t) downstream of the valve, as well as the pressure
pvol(t) in the tank. The constant ambient pressure is denoted by p0 and the mass flow
rate through the valve by ṁin(t). The supplied voltage ν(t) specifies the position of the
spool inside of the valve.
To model the flow of air through the system, the medium is characterized by the density
ρ, the specific total energy e, the velocity v in the axial direction, and the specific internal
energy u. These quantities are related by the state equation

ρe = 1
2ρv

2 + ρu. (2.2)

It decomposes the total energy density ρe into the kinetic and the internal energy density,
ρv2/2 and ρu, respectively, e.g., [LeV92]. For air at or near standard conditions, the ideal
gas law

p = ρRsT (2.3)
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with the specific gas constant Rs and the temperature T is valid2, e.g., [And11]. In
addition, the air can be treated as a calorically perfect gas3. Thereby, the specific
internal energy becomes proportional to the temperature, i.e. u = cV T holds, where
cV = cp−Rs denotes the specific heat capacity at constant volume and cp is the specific
heat capacity at constant pressure, e.g., [Mun13]. As a consequence, the state equation
(2.2) reads

ρe = 1
2ρv

2 + 1
γ − 1p, (2.4)

where γ = cp/cV is the ratio of specific heats. For air, γ = 1.4 holds, e.g., [And11].

2.2 An Infinite-Dimensional Model of the Tube

To model the flow of a compressible fluid in a duct with a constant geometry along the
axis, often, the following assumptions are made:

i) The flow is inviscid. Therefore, no friction, thermal conduction or diffusion occurs,
e.g., [And11].

ii) The system is adiabatic. Hence, the transfer of heat and matter between the
system and its surroundings is negligible, e.g., [And11].

iii) The spatial gradients of the flow quantities normal to the streamline direction are
insignificant compared to the ones parallel to the streamlines. Therefore, the flow
is considered to be one-dimensional, e.g., [And03].

iv) The flow quantities are averaged over the cross section of the duct and thus depend
only on the axial coordinate z (and time), e.g., [Dan76].

v) The flow is assumed to be perpendicular to the direction of the gravitational ac-
celeration. Hence, gravity is neglected, e.g., [And11].

By that, the one-dimensional Euler equations in conservative form can be employed to
describe the dynamics of the flow. These read

∂

∂t
ρ+ ∂

∂z
(ρv) = 0 (2.5a)

∂

∂t
(ρv) + ∂

∂z

(
ρv2 + p

)
= 0 (2.5b)

∂

∂t
(ρe) + ∂

∂z

(
v(ρe+ p)

)
= 0, (2.5c)

where the arguments z and t are neglected. Therein, the density ρ, the momentum
density ρv, and the total energy density ρe are conserved.

2The compressibility factor Z of air, defined as Z = p/(ρRsT ), modifies the ideal gas law to account
for the real gas behavior. For pressures and temperatures usually occurring in a pneumatic system,
i.e. p ∈ [1 bar, 10 bar] and T ∈ [250 K, 350 K], it is essentially equal to one, i.e. Z ∈ [0.9992, 1.0004]
[RHC98].

3A calorically perfect gas is an ideal gas, where the specific heat capacity is assumed to be constant.
This is a valid approximation for air at moderate temperatures as its specific heat capacity at constant
pressure reads cp ∈

[
1.0044 · 103 J/kg·K, 1.0104 · 103 J/kg·K

]
for T ∈ [250 K, 350 K] [RHC98].
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z z + ∆z

ṁz+∆z
A

ṁz

∆z

Fz+∆zFz

Ffric

Q̇

Figure 2.2: Finite tube volume with mass transfer, forces, and heat transfer

If the medium air flows through a tube as in Fig. 2.1, where the diameter compared
with the tube’s length is relatively small, the accuracy of the Euler equations (2.5) is
substantially improved by taking friction effects, arising from the viscosity of the medium
air, as well as the heat transfer between the fluid and the inner tube wall into account,
cf. [Dan76; Tho99]. In the following, such a model is derived by applying the conservation
laws to the finite tube volume in Fig. 2.2, where the width of the volume is denoted by
∆z and fz+∆z = f(t, z + ∆z) holds.
Remark 2.1. The subsequent derivation is based on straight tubes, where the geometry
along z is constant. Still, the resulting model is valid for slightly elastic tubes with a
relatively large bending radius as in Fig. 1.3, cf. [Bea07]. Thus, assumption iii) holds,
which can be verified by experiments. M

2.2.1 Conservation of Mass

The change of mass in the finite volume equals its net mass flow rate:

A

∫ z+∆z

z

d
dtρ(ζ, t) dζ = ṁ(z, t)− ṁ(z + ∆z, t),

where A = πD2/4 is the cross section area of the tube and D the inner tube diameter.
By making use of the definition of the mass flow rate ṁ = Aρv and the mean value
theorems,

A∆z ∂
∂t
ρ(z + θ1∆z, t) = −A∆z ∂

∂z
(ρv)(z + θ2∆z, t), θ1,2 ∈ (0, 1)

follows. Dividing by A∆z and letting ∆z → 0 results in

∂

∂t
ρ+ ∂

∂z
(ρv) = 0. (2.6)

2.2.2 Conservation of Momentum

To account for the pressure drop caused by friction, arising from the viscosity of the
fluid and the no slip condition at the inner tube wall, assumption i) is eased. Thus, the
conservation law of momentum for the finite volume in Fig. 2.2 reads

A

∫ z+∆z

z

d
dt(ρv)(ζ, t) dζ = (ṁv)(z, t)− (ṁv)(z + ∆z, t)

+ F (z, t)− F (z + ∆z, t)− Ffric(z,∆z, t), (2.7)



2.2. An Infinite-Dimensional Model of the Tube 11

where ṁv is the momentum transported with the flow and F = pA is the pressure force
acting on the corresponding boundary of the finite volume. The friction force caused by
shear stress is defined by Ffric = A∆p, where ∆p is the pressure drop over the length ∆z
induced by friction. According to [Ide94], ∆p can be calculated by the Darcy-Weisbach
equation

∆p = fc
∆z
D

ρv|v|
2 (2.8)

for fully-developed steady-state compressible flow. Therein, fc is the compressible fric-
tion factor, which depends on ρ, v, and e. By applying a similar procedure as in Sec. 2.2.1
to (2.7),

∂

∂t
(ρv) + ∂

∂z
(ρv2 + p) = −fc

ρv|v|
2D (2.9)

is obtained.
The relationship between the friction factor fc for compressible flow and the friction
factor f for incompressible flow is stated in [Ide94] as

fc = f

(
1 + γ − 1

2 Ma2
)−0.47

, (2.10)

where Ma = v/a is the Mach number in the flow and a =
√
γp/ρ the speed of sound in

a calorically perfect gas, e.g., [And11]. The friction factor f depends on the flow regime
and is characterized by the Reynolds number

Re = Dρ|v|
µ

,

where µ is the temperature dependent dynamic viscosity. For laminar flow, where Re <
Recrit,min, f is defined by

f = 64
Re , (2.11)

e.g., [Ide94]. For Re > Recrit,max, the flow is turbulent and several empirical correlations
can be used to determine f . In this thesis, the Haaland equation

1√
f

= −1.8 log



(
ε/D

3.7

)1.11

+ 6.9
Re


 (2.12)

is chosen since it is explicit and valid for the entire turbulent regime, e.g., [Mun13].
Therein, ε is the average height of the roughness elements at the inner tube wall. Values
of ε for different materials can be found, for example, in [VDI10]. In the transition
regime, where Recrit,min < Re < Recrit,max, the friction factor f is determined by a spline
interpolation between (2.11) and (2.12). The critical values of the Reynolds number
Recrit,min and Recrit,max differ in the literature. This thesis makes use of the formulas

Recrit,min =





754 e(
0.0065
0.007 ), ε/D ≤ 0.007

754 e
(

0.0065
ε/D

)
, ε/D > 0.007

(2.13a)

Recrit,max = 2090
(

1
ε/D

)0.0635

(2.13b)

in [Ide94].
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2.2.3 Conservation of Energy

For the derivation of the augmented energy equation, assumption ii) is alleviated, allow-
ing for heat transfer between the fluid and the inner tube wall. In addition, the energy
loss caused by friction is taken into account. The change of energy inside the finite
volume in Fig. 2.2 reads

A

∫ z+∆z

z

d
dt(ρe)(ζ, t) dζ = (ṁe)(z, t)− (ṁe)(z + ∆z, t) + (Fv)(z, t)

− (Fv)(z + ∆z, t) + Q̇(z,∆z, t)− (Ffricv) (z,∆z, t),

where ṁe is the energy transported with the flow and Fv is the mechanical power,
resulting from the forces acting on the moving particles, e.g., [And03]. The heat flow
from the fluid to the tube wall over the length ∆z is denoted by Q̇ and Ffricv accounts
for the energy loss caused by friction, cf. [ETO03]. The steady-state heat flux from the
fluid to the tube wall is defined by

Q̇ = 1
R

(Tw − T ), (2.14)

where Tw is the inner wall temperature and R the thermal resistance, e.g., [VDI10].
For pneumatic applications, the heat capacity Cw of the tube wall is usually much
greater4 than the heat capacity C of the fluid air. Hence, Tw is assumed to be constant
and equal to the ambient temperature T0. As a result, the thermal resistance reads
R = 1/(αDπ∆z), e.g., [VDI10], where α is the heat transfer coefficient, which depends
on ρ, v, and e. Thereby, Q̇ = απD∆z(T0 − T ) follows from (2.14). Finally, by a similar
procedure as for the conservation of mass and momentum,

∂

∂t
(ρe) + ∂

∂z
(v(ρe+ p)) = 4

D
α(T0 − T )− fc

ρv2|v|
2D (2.15)

is derived.
In order to compute the heat transfer coefficient α between the fluid and the inner tube
wall, the Nusselt number

Nu = αD/λ, (2.16)

where λ is the temperature dependent thermal conductivity of the fluid, has to be
determined. For laminar flow and a constant wall temperature, the Nusselt number
reads Nu = 3.6568, e.g., [VDI10]. In the transient and turbulent regime, the correlation
by Gnielinski in [RHC98] is chosen to compute the Nusselt number since it is valid for a
large range of the Reynolds number and the Prandtl number Pr = cpµ/λ, i.e. Recrit,min ≤
Re ≤ 5·105 and 0.5 ≤ Pr ≤ 2000. The correlation is slightly adjusted by using fc instead
of f to be consistent with the friction model for compressible flow, resulting in

Nu =
fc
8 (Re − 1000)Pr

1 + 12.7
(
fc
8

) 1
2
(
Pr

2
3 − 1

) .

Thereby, α in (2.15) follows from (2.16).
4A tube of polyurethane as used in this thesis has an inner radius of ri = 2.85 mm, an outer radius

of ro = 4 mm, a density of ρw = 1200 kg/m3, and a specific heat capacity of cw = 1800 J/kg·K. Air at
T = 300 K and p = 6 bar has a density of ρ = 6.97 kg/m3 and a specific heat capacity of cV = 719.38 J/kg·K
[VDI10]. The resulting heat capacities are Cw = cwρwπ

(
r2

o − r2
i
)

= 53.46 J/m·K and C = cV ρπr
2
i =

0.25 J/m·K.
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Figure 2.3: Detailed schematic of the valve with optional measurements in gray

2.3 A Static Model of the Valve

At z = 0, the tube is attached to the valve, which in turn is connected to the compressed
air supply with an almost constant pressure of psup(t) ≈ 9 bar. A schematic is depicted
in Fig. 2.3, where the valve’s control mechanism is displayed in detail. Therein, the
symbols are in accordance with [Int12]. While the supply pressure psup(t) and the
working pressure pin(t) are measured in all experiments, additional sensors are considered
in this section, measuring the mass flow rate ṁin(t) at z = 0 downstream of valve and
the corresponding flow temperature Tin(t). Both, ṁin(t) and Tin(t), mainly depend on
pin(t) and psup(t) as well as on the size of the valve orifice area, which is defined by the
position of the spool.
In the following, it is assumed that static relations5 are sufficient to model the pneumatic
behavior of the valve adequately, cf. [Bru+99]. As depicted in Fig. 2.3, the valve in
this thesis is a proportional directional control valve, where the position of the spool
is proportional to the supplied voltage ν(t), e.g., [Bea07]. Hence, the electrical and
mechanical parts of the valve can be neglected in the model. As ν(t) ∈ [0, 10 V], the
mass flow rate is bounded by ṁin(t) ∈ [ṁmin

in (t), ṁmax
in (t)]. The minimal mass flow rate

ṁmin
in (t), discharging the test bench, results for ν(t) = 0 and the maximal mass flow rate

ṁmax
in (t), charging the test bench, corresponds to ν(t) = 10 V. While ṁmin

in (t) is primarily
defined by pin(t), ṁmax

in (t) depends additionally on psup(t). The valve is designed such
that

ṁmin
in (t) ≤ ṁin(t) < 0 for 0 ≤ ν(t) < 5 V (2.17a)

ṁin(t) = 0 for ν(t) = 5 V (2.17b)
0 < ṁin(t) ≤ ṁmax

in (t) for 5 V < ν(t) ≤ 10 V (2.17c)

hold at a specific operating point (cf. [Fes18]). However, to operate the valve under
varying conditions, the voltage corresponding to ṁin(t) = 0, which depends on pin(t) as
well as psup(t), has to be determined experimentally.

Modeling of the Mass Flow Rate Since the voltage ν(t) ∈ [0, 10 V] can be contin-
uously specified, the mass flow rate through the valve can be manipulated by adjusting
the voltage. To achieve a desired ṁin(t) in terms of ν(t), a relation between ṁin(t) and

5Dynamic valve models are stated in, e.g., [RH00a; XW04].
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the voltage ν(t), depending on the pressures pin(t) and psup(t), is needed. For that, the
function

ṁin(t) = fṁ
(
r(t), ν(t)

)
(2.18)

is derived based on steady-state measurements, where it is assumed that ṁin(t) can be
defined by the pressure ratio r(t) = pin(t)/psup(t) and the voltage ν(t). Inverting (2.18)
w.r.t. ν(t) yields the inverse mass flow rate model of the valve:

ν(t) = fν
(
r(t), ṁin(t)

)
. (2.19)

Therefore, if r(t) and a desired mass flow rate ṁin(t) are known, ν(t) results from (2.19)
and can be fed to the valve, providing the desired mass flow rate.
Existing approaches in the literature, modeling the mass flow rate by assuming a static
relation, can be roughly classified into two categories, depending if the approach is based
on the ISO 6358 in [Int13] or not. Therein, a description of the mass flow rate through
a valve is derived based on a nozzle model, containing two unknown functions: the sonic
conductance and the critical pressure, both depending on the spool displacement. These
functions have to be identified through experiments, e.g., [Ola+05; FG11]. However,
some authors argue that this model is not accurate enough and propose other approaches,
for example, based on a curve fitting without a physical model, e.g., [BM98; WRB09].
In the context of this thesis, several of the aforementioned approaches were tested and
the most suitable model, a direct lookup table, was chosen to describe the pneumatic
behavior of the valve. To obtain the lookup table, the test bench set-up in Fig. 2.1 is
modified: As depicted in Fig. 2.3, a mass flow sensor is installed at z = 0 downstream
of the valve. Furthermore, the long tube and the tank are replaced by a proportional
pressure regulator valve, serving as a throttle to discharge the system to p0. Next,
steady-state experiments are performed, where the voltage ν(t) and the pressure ratio
r(t) are successively varied. From each variation, the corresponding mass flow rate ṁin(t)
is obtained. The measured values of ν(t), r(t), and ṁin(t) are stored.
Prior to the derivation of the functions fṁ

(
r(t), ν(t)

)
and fν

(
r(t), ṁin(t)

)
in (2.18) and

(2.19), respectively, the following aspect needs to be considered: For the unique existence
of its inverse fν

(
r(t), ṁin(t)

)
, fṁ

(
r(t), ν(t)

)
needs to be strictly monotonic in ν(t). This

is guaranteed if the following condition is imposed on the measured data: For any but
fixed r0 and for all ν1 < ν2, fṁ (r0, ν1) < fṁ (r0, ν2) holds. In addition, it is required
that for all r1 < r2 and for any but fixed ν0, fṁ (r1, ν0) > fṁ (r2, ν0) holds. Although
these criteria are reasonable from a physical perspective, they are violated by some of the
data points caused by measurement noise and/or hysteresis effects of the valve. These
points are discarded and the remaining measured data is depicted in the left-hand plot
of Fig. 2.4. By a linear interpolation, the function fṁ

(
r(t), ν(t)

)
is derived and shown in

the right-hand plot of Fig. 2.4. From that, the inverse function fν
(
r(t), ν(t)

)
is directly

obtained since any pair (r(t), ṁin(t)) uniquely defines ν(t).
Remark 2.2. As it is shown in Sec. 3.4, the prediction of the voltage ν(t) by the inverse
mass flow rate model (2.19) of the valve, i.e. the function fν

(
r(t), ṁin(t)

)
, is relatively

inaccurate, caused by model uncertainties. These result from measurement noise, hys-
teresis effects, and the limited accuracy of the sensors. Especially for ṁin(t) = 0, the
predicted ν(t) is prone to errors since the precision of the mass flow rate sensor further
diminishes for small mass flow rates. In addition, the gradients of ν(t) w.r.t. ṁin(t) are
the steepest around ṁin(t) = 0. Still, as shown later on, the model seems to be adequate
for the purpose intended in this thesis. M
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Figure 2.4: The mass flow rate ṁin(t) (in kg/s) depending on the voltage ν(t) (in V) and
the pressure ratio r(t) (dimensionless): The blue dots show the measured data and the
function fṁ

(
r(t), ν(t)

)
on the right-hand side results from interpolating between these

data points

Modeling the Flow Temperature The air transported by the mass flow rate ṁin(t)
through the valve is characterized in terms of the quantities pin(t), ρin(t), and Tin(t),
related by the ideal gas law (2.3). In this thesis, pin(t) results from measurements,
necessitating a model for ρin(t) or Tin(t). Since Tin(t) is easier to measure compared
with ρin(t), the function

Tin(t) = fT
(
pin(t), ṁin(t)

)
(2.20)

is derived in the following. By making use of (2.20), the temperature can be calcu-
lated from the quantities pin(t) and ṁin(t), resulting from, e.g., measurements and/or
simulation data. Still, transient temperature measurements are often inaccurate, e.g.,
[Gio+08]. Therefore, fT

(
pin(t), ṁin(t)

)
is obtained from steady-state experiments, where

the effect of small variations in psup(t) are neglected and a constant flow temperature
upstream of the valve is assumed.
The function fT

(
pin(t), ṁin(t)

)
is derived in a similar manner as fṁ

(
r(t), ν(t)

)
in (2.18).

Likewise, the long tube and the tank are replaced by a mass flow rate sensor and a
pressure regulator valve. In addition, a Pt1000 temperature sensor is installed at z = 0
downstream of the valve (cf. Fig. 2.3), measuring the relative temperature ∆T (t) =
Tin(t)−T0. From that, since the ambient temperature is assumed to be constant, Tin(t) =
∆T (t) + T0 follows. Next, steady-state experiments are performed for varying pressures
pin(t) and positive6 mass flow rates ṁin(t). For ṁin(t) = 0, the condition Tin(t) = T0 is
imposed, derived from physical reasoning. The results are depicted in the left-hand plot
of Fig. 2.5. By linearly interpolating between these measured data points, the surface
in the right-hand plot of Fig. 2.5 is obtained. From that, the function fT

(
pin(t), ṁin(t)

)

in (2.20) follows since Tin(t) = ∆T (t) + T0 holds.

6It will be discussed in Sec. 2.5 that the temperature model is only required for positive mass flow
rates.
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Figure 2.5: The relative temperature ∆T (t) = Tin(t) − T0 (in K) depending on the
mass flow rate ṁin(t) (in kg/s) and the pressure pin(t) (in bar): The blue dots show the
measured data and the surface on the right-hand side results from interpolating between
these data points

2.4 A Finite-Dimensional Model of the Tank

The model of the tank at z = L (cf. Fig. 2.1) follows from the conservation of mass and
energy7. Assuming the air in the tank to be perfectly mixed, the ODEs

Vvol
d
dtρvol(t) = ṁ(L, t) (2.21a)

Vvol
d
dt(ρe)vol(t) = (ṁe)(L, t) + (Fv)(L, t) + Q̇vol(t) (2.21b)

are obtained, where the heat flux Q̇vol is defined as in (2.14) with the constant8 thermal
resistance Rvol. By making use of (2.4) and taking vvol = 0 as well as pvol(t) = p(L, t)
into account, the tank model

d
dtρvol(t) = A

Vvol
(ρv)(L, t) (2.22a)

d
dtpvol(t) = A

γ − 1
Vvol


1
2(ρv3)(L, t) + γ

γ − 1pvol(t)v(L, t) + 1
ARvol

(
T0 −

pvol(t)
Rsρvol(t)

)


(2.22b)

follows from (2.21).
Remark 2.3. In general, the cross-section Avol of the tank’s pneumatic connection is
greater than or equal to the cross-section A of the tube. Hence, ṁ = Aρv holds in
(2.21). Otherwise, ṁ = Avolρv has to be utilized. M

7The kinetic energy is omitted since the position of the tank is fixed.
8In order to reduce complexity, Rvol is assumed to be constant for a specific tank and is identified

experimentally.
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2.5 Plant Model

The so-called augmented Euler equations, describing the dynamics of the airflow in the
tube, read

∂

∂t
ρ+ ∂

∂z
(ρv) = 0 (2.23a)

∂

∂t
(ρv) + ∂

∂z
(ρv2 + p) = −fc

ρv|v|
2D (2.23b)

∂

∂t
(ρe) + ∂

∂z
(v(ρe+ p)) = 4

D
α(T0 − T )− fc

ρv2|v|
2D (2.23c)

and follow from the combination of (2.6), (2.9), and (2.15). By interconnecting this tube
model with the models of the valve and the tank in terms of the boundary conditions of
(2.23), the plant model is obtained.
Since (2.23) constitutes a system of quasilinear hyperbolic PDEs, these boundary con-
ditions have to be chosen according to the direction and the velocity of the flow. For
the test bench set-up in Fig. 2.1, the flow is subsonic, where Ma < 1 holds. Thus, two
boundary conditions at an inlet, where air flows into the tube, and one at an outlet,
where air flows out of the tube, are needed. The boundary conditions can be imposed
by the conservative variables ρ, ρv, ρe, and, in addition, in form of the so-called primitive
variables ρ, p, v, e.g., [Hir90].
First, the boundary conditions resulting from the valve at z = 0 are introduced: If air
flows into the tube, i.e. (ρv)(0, t) ≥ 0, the test bench is charged and the valve is an inlet.
Therefore, two boundary conditions are needed. In this thesis, one of the following two
pairs, depending on the intended purpose of the plant model, are imposed. The first
pair reads

ρ(0, t) = ρin(t) (2.24a)

(ρe)(0, t) = 1
2ρin(t)v2(0, t) + 1

γ − 1pin(t) (2.24b)

while the second is defined as

ρ(0, t) = ρin(t) (2.25a)

(ρv)(0, t) = 1
A
ṁin(t). (2.25b)

If air flows out of the tube, i.e. (ρv)(0, t) < 0, the test bench is discharged and the valve
is an outlet. Hence, only one boundary condition is needed at z = 0. In this case, the
first pair reduces to

(ρe)(0, t) = 1
2(ρv)2(0, t) + 1

γ − 1pin(t) (2.26)

and the second pair to

(ρv)(0, t) = 1
A
ṁin(t). (2.27)

In this thesis, the pair (2.24) is imposed if simulation data from the plant model is
compared to measured data from the test bench. For that, pin(t) serves as an input to
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the simulation. By making use of temperature model (2.20), where ṁin(t) = A(ρv)(0, t)
follows from the numerical solution of (2.23), Tin(t) is obtained. As pin(t) and Tin(t) are
known, ρin(t) in (2.24) results from the ideal gas law (2.3). In contrast to that, the pair
(2.25) is utilized in the context of controller design since ṁin(t) is usually the control
input if the valve is considered to be static, e.g., [RNM16].
Remark 2.4. The choice of the pair (2.24) arises from the fact that a measurement of the
pressure is generally easier to obtain compared with the measurement of the transient
mass flow rate. In general, mass flow rate sensors are expensive, the measurements are
prone to errors, and/or the measurement equipment disturbs the flow, e.g., [RNM15]. M

Next, the coupling between the tube and the tank at z = L is discussed. If (ρv)(L, t) ≤ 0,
the tank is an inlet to the tube. In this case, (ρv)(L, t) is an input to the tank model
(2.22) while pvol(t) and ρvol(t) are outputs of the tank. Thus, the two necessary boundary
conditions read

ρ(L, t) = ρvol(t) (2.28a)

(ρe)(L, t) = 1
2ρvol(t)v

2(L, t) + 1
γ − 1pvol(t), (2.28b)

where it is assumed that the density in the tube at z = L equals the density in the
tank. For (ρv)(L, t) > 0, the tank represents an outlet of the tube. Thus, ρ(L, t) as well
as (ρv)(L, t) are inputs to the tank model (2.22) while pvol(t) is an output of the tank.
Thereby, the boundary condition

(ρe)(L, t) = 1
2(ρv2)(L, t) + 1

γ − 1pvol(t) (2.29)

follows from (2.28b). As a consequence of the boundary conditions (2.28) and (2.29),
connecting the quasilinear PDE subsystem (2.23) with the nonlinear ODE subsystem
(2.22), the plant model is a bidirectionally coupled hyperbolic PDE-ODE system.

2.6 Simplified Models of the Test Bench

In this section, the plant model is successively simplified. For that, additional assump-
tions are imposed on the model (2.23) of the tube dynamics, eventually resulting in a
linear system description. Thereby, the temperature model of the valve becomes super-
fluous and the tank model and the boundary conditions simplify. The stated assumptions
and the corresponding names of the five resulting models are listed in Tab. 2.1. Their
derivation is discussed in the following.

2.6.1 Isothermal Model

To obtain the isothermal model, it is assumed that the flow temperature is constant at
T = T0, a simplification common in the literature, cf. [OC01; AC08; Cha10]. It is valid
if the pressure variations are sufficiently slow and, compared to that, the air in the tube
is almost immediately in thermal equilibrium with its surroundings.
The derivation of the isothermal model, presented in the following, is based on the
assumption that the entropy

S = cV ln
(
p

ργ

)
+ k (2.30)
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Table 2.1: Models and their corresponding additional assumptions

model flow
isothermal

flux
linear

flow
laminar

term
linear friction

plant
isothermal ×
semilinear × ×
laminar × × ×
linear × × × ×

remains constant along the particle path, where k ∈ R. Hence, to derive the isothermal
model, friction and heat transfer in the augmented Euler equations (2.23) are initially
neglected. Consequently, since the flow is assumed to be subsonic, i.e. it is smooth and
no shocks occur, S is constant, resulting in isentropic flow, e.g., [LeV92]. Rearranging
(2.30) yields

p = fp(ρ) = e
(
S−k
cV

)
ργ , (2.31)

where the pressure p is a function of density only. Expanding fp(ρ) by a Taylor series
around the ambient density ρ0 and making use of (2.30) yields

fp(ρ) = fp(ρ0) + γ

ρ0
fp(ρ0)(ρ− ρ0) + γ2 − γ

ρ2
0

fp(ρ0)(ρ− ρ0)2 + · · · . (2.32)

By assuming relatively small changes in the pressure, the variations in the density are
small, too. Thereby, the higher order terms in (2.32) can be neglected. Considering
isothermal flow and by making use of the ideal gas law (2.3), the function fp(ρ) can be
approximated by

fp(ρ) = fp(ρ0) + γRsT0(ρ− ρ0).

Hence, the Euler equations in (2.23) without friction and heat transfer simplify to
∂

∂t
ρ+ ∂

∂z
(ρv) = 0 (2.33a)

∂

∂t
(ρv) + ∂

∂z
(ρv2 + a2

isoρ) = 0, (2.33b)

where the constant aiso =
√
γRsT0 denotes the isothermal speed of sound. The energy

equation (2.23c) is neglected since it becomes redundant as the continuum equation
(2.33a) as well as the momentum equation (2.33b) can be solved independently of (2.23c),
e.g., [LeV92]. Finally, (2.33b) is augmented by the friction term in (2.23b). Thereby,
the quasilinear system of two PDEs

∂

∂t
ρ+ (ρv)z = 0 (2.34a)

∂

∂t
(ρv) + ∂

∂z
(ρv2 + a2

isoρ) = −fc
ρv|v|
2D (2.34b)

is obtained.
Remark 2.5. Usually, in the context of isothermal flow, γ = 1 holds, e.g., [LeV92].
However, this value does no longer represent the ratio of specific heats and would decrease
the accuracy of the model (2.34). Thus, the derivation of the isothermal model in this
thesis, where γ = 1.4 in aiso holds, differ from the literature. M
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2.6.2 Semilinear Model

According to, e.g., [MPE00; HMS09], the nonlinear term ρv2 in the flux of the momentum
equation (2.34b) is often negligible in the context of pneumatic tubes. This assumption
is motivated by the fact that the velocity of the medium air in the tube is generally much
smaller than the speed of sound, resulting in Mach numbers of Ma < 0.3. Hence, a2

isoρ�
ρv2 follows and the term ρv2 can be dropped, rendering the flux linear. Furthermore,
f ≈ fc holds, where an error of less than 1 % for Ma < 0.3 results from (2.10). Thus,
the effect of compressibility on the friction factor is neglected. Based on (2.34), these
additional assumptions yield the following semilinear system of two PDEs:

∂

∂t
ρ+ ∂

∂z
(ρv) = 0 (2.35a)

∂

∂t
(ρv) + a2

iso
∂

∂z
ρ = −f ρv|v|2D . (2.35b)

2.6.3 Laminar Model

Assuming laminar flow, where f is defined as in (2.11), the friction term in (2.35b) reads

f
ρv|v|
2D = 32µ0

D2 v

with the constant dynamic viscosity µ0 at ambient conditions. To improve the accuracy
of the model in case of turbulent flow, the constant friction amplification

kfric
32µ0
D2 v with kfric ≥ 1

is introduced, compensating underestimated friction effects. Thereby, the semilinear
system

∂

∂t
ρ+ ∂

∂z
(ρv) = 0 (2.36a)

∂

∂t
(ρv) + a2

iso
∂

∂z
ρ = −kfric

32µ0
D2 v (2.36b)

is obtained from (2.35).

2.6.4 Linear Model

For relatively slow fluid velocities, the changes of the density along the tube are small
and the flow can be seen as almost incompressible, e.g., [And11]. According to [SB59],
this assumption is valid for pneumatic tubes. Hence, the friction term

kfric
32µ0
D2 v = kfric

32µ0
D2

ρv

ρ

in (2.36b) can be simplified by assuming v = (ρv)/ρ0, where ρ0 is the constant density
at ambient conditions. By that, (2.36) results in the linear system

∂

∂t
ρ+ ∂

∂z
(ρv) = 0 (2.37a)

∂

∂t
(ρv) + a2

iso
∂

∂z
ρ = −kfric

32µ0
D2

1
ρ0
ρv. (2.37b)
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2.6.5 Boundary Conditions of the Simplified Models

Since all simplified models consist of two PDEs, caused by the assumption of isothermal
flow, only one boundary condition at each end of the tube is needed, independent of the
flow direction.
The boundary condition arising from the valve at z = 0 for the simplified models reads

ρ(0, t) = ρin(t), (2.38)

which follows from (2.24), if pin(t) = ρin(t)RsT0 is the imposed variable and

(ρv)(0, t) = 1
A
ṁin(t), (2.39)

resulting from (2.25), if ṁin(t) is chosen. Furthermore, because of the assumption of
isothermal flow, the temperature model (2.20) of the valve becomes superfluous as
Tin(t) = T0.
The boundary condition following from the tank at z = L results from (2.28) and reads

ρ(L, t) = ρvol(t). (2.40)

As only the lumped state ρvol(t) is needed, the energy equation (2.22b) of the tank model
is dropped. Hence, the simplified tank model reads

d
dtρvol(t) = A

Vvol
(ρv)(L, t). (2.41)

2.7 Simulation Studies and Measurement Results

In this section, the simulation data of the different models is compared with each other
as well as to measurements of the test bench and the underlying assumptions as well
as their effects on the accuracy of the models are discussed. To cover a wide range of
possible applications, the tube length and diameter as well as the tank volume are varied.
The chosen configurations, i.e. long, thin tube and a large tank as well as short, thick
tube and small tank, render the different experiments as distinct as possible. Both, the
charging and discharging process is investigated. In addition to the standard test bench
set-up depicted in Fig. 2.1, another one is utilized. For that, the tank at z = L is removed
and the air flows into the ambience. Thus, the tube models can be investigated without
the interference of the tank model. The results are stated in terms of a qualitative and
quantitative assessment.
At the beginning of each experiment, the air in the system is at rest and in equilibrium
with its surroundings, i.e. v = 0, p = p0, and T = T0. Next, the test bench is charged
by feeding a voltage of ν(t) = 10 V to the hitherto closed valve. Thereby, the excitation
resembles a step input9, limited by the capacities of the valve. After the charged system
has reached steady-state conditions at the constant pressure level10 p = psup, the test
bench is discharged to the ambient pressure p0 by supplying a voltage of ν(t) = 0 to

9Sinusoidal inputs with a frequency of approximately 16 Hz can be found in [Ker17].
10To shorten the duration of the experiments, the supply pressure is reduced to psup(t) ≈ 7 bar in this

section.
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Table 2.2: Fixed parameters of the test bench

p0 ambient pressure 1.01 bar
T0 ambient temperature 293.15 K
Rs specific gas constant of air 287.05 J/kg·K [IG81]
γ ratio of specific heats of air 1.4 [And11]
ε height of roughness elements 1.5 · 10−6 m [VDI10]
Rvol thermal resistance 4 · 10−3 K/W

the valve. During the experiment, two pressures11 are measured: the working pressure
pin(t) downstream of the valve as well as a reference pressure, for example, the tank
pressure pvol(t) in case of the standard test bench set-up. As stated subsequently, these
measurements are utilized to assess the models.
Next, the models are simulated. For that, the measured pressure pin(t) serves as input
to the simulation. Hence, the boundary conditions at z = 0 are (2.24) as well as (2.26)
for the plant model and (2.38) for the simplified models. The initial conditions read
ρ(z, 0) = ρ0, (ρv)(z, 0) = 0, (ρe)(z, 0) = (ρe)0, ρvol(0) = ρ0, and pvol(0) = p0.
The computed pressures are compared with each other and to the measured reference
pressure. A quantitative assessment is given in form of two criteria: The first one is the
L1-norm of the relative errors12, generally defined as

L1
r,err = 100 %

tf

∫ tf

0

∣∣∣∣∣
pr(t)− p(t)

pr(t)

∣∣∣∣∣ dt, (2.42)

where pr(t) = pmeas(t) is the measured reference pressure and p(t) = psim(t) the corre-
sponding simulated pressure. The considered period of time is defined by the interval
[0, tf]. The second criterion is the L∞-norm of the error, defined as

L∞err = sup
t∈[0,tf]

∣∣pr(t)− p(t)
∣∣ . (2.43)

Tab. 2.2 lists the parameters which are constant throughout this thesis and utilized in
the simulations unless mentioned otherwise. The temperature dependent quantities η,
λ, cp, and cV are approximated by the polynomials in T , which are stated in [RHC98].
Furthermore, the discretization schemes, necessary for the numerical implementation of
the models, as well as the chosen time and spatial step size ∆t and ∆z, respectively,
are stated in Appx. B.1. A detailed description of the test bench’s software framework,
implemented in Simulink Real-Time, is given in [MK19].
Remark 2.6. The match of the simulation data with the experimental data might be
slightly enhanced by using other correlations for friction and heat transfer. Furthermore,
numerical optimizations could be performed to identify the parameters which cannot be
directly measured, e.g., Rvol, ε, and kfric. While such an approach can improve the
accuracy of the models for a specific set-up, a new optimization might be necessary if,
e.g., the tube is replaced by another one with a different diameter. Therefore, in order to
keep the models general and straightforward, an optimization approach is not pursued in

11Naturally, apart from pressure measurements, measurements of the mass flow rate could be used
to validate the models, too. However, as discussed in Rem. 2.4, a measurement of the pressure is often
preferable.

12Hence, the measure resembles the mean absolute percentage error, e.g., [HK06].
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Figure 2.6: Flow into the tank: Measurement and simulation data for L = 20 m, D =
4 mm and Vvol = 0.64 · 10−3 m3

Table 2.3: Flow into the tank: Deviations of the measurement and simulation data for
L = 20 m, D = 4 mm, and Vvol = 0.64 · 10−3 m3

model plant isothermal semilinear laminar linear
(kfric = 14) (kfric = 3)

L1
r,err 3.951 % 8.887 % 9.240 % 13.273 % 16.859 %
L∞err 0.298 bar 0.629 bar 0.629 bar 1.287 bar 1.291 bar

this thesis. Still, for each test bench configuration, the value of kfric is roughly adjusted
by trial and error to facilitate the discussion of the laminar and the linear model. M

2.7.1 Standard Set-Up: Flow into the Tank

Test bench configuration with a long, thin tube and a large tank For this
experiment, a test bench configuration with L = 20 m, D = 4 mm, and Vvol = 0.64 ·
10−3 m3 is utilized. In both plots of Fig. 2.6, the measured pressure pin(t) downstream
of the valve as well as the reference pressure, i.e. the measured tank pressure pvol(t),
are displayed. Furthermore, in the upper plot, the tank pressures, resulting from the
simulation of the plant model (2.23), the isothermal model (2.34), and the semilinear
model (2.35) are shown. The lower plot additionally depicts the laminar model (2.36)
with kfric = 1 as well as kfric = 14 and the linear model (2.37) with kfric = 1 as well as
kfric = 3. The corresponding errors L1

r,err and L∞err in (2.42) and (2.43), respectively, are
stated in Tab. 2.3.
Based on Fig. 2.6, it can be concluded that the simulation data of the plant model in the
upper plot shows the best match with the experimental data from the test bench. For
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the charging process, the fit is almost perfect. During the discharge process, only a slight
mismatch between the simulated and measured pressure curves occurs. The increased
deviations of the isothermal and the semilinear model are caused by the assumption of no
heat transfer. Thereby, the transient tank pressure is overestimated during charging and
underestimated during discharging. As the results of the isothermal and the semilinear
model are essentially the same, it can be deduced that the neglect of the nonlinear flux
term ρv2 in the momentum equation (2.35b) of the semilinear model has virtually no
effect in this experiment.
The lower plot of Fig. 2.6 illustrates the effect of the assumptions of laminar and linear
flow, only valid for Re ≤ Recrit,min. With kfric = 1, both, the laminar and the linear
model, underestimate the increased influence of friction induced by the turbulent flow.
Since Recrit,min = 1.9 · 103 in (2.13a) is much smaller as the maximum Reynolds number
Remax = 2.2·105 occurring in this experiment, the assumption of laminar flow is violated.
As the flow velocity v in the friction term in the momentum equation (2.36b) of the
laminar model is defined in terms of the conserved quantities ρ and ρv, i.e. v = ρv/ρ,
the effect of friction decreases at higher densities ρ. In contrast to that, the friction
term in the momentum equation (2.37b) of the linear model is proportional to ρv since
v = ρv/ρ0 is utilized therein. As a consequence, the reflections of weakly damped waves
become visible in the simulation data of the laminar model. By adjusting the respective
friction factor kfric, the accuracy of both models is improved.

Test bench configuration with a short, thick tube and a small tank Fig. 2.7
displays the results for a test bench configuration with L = 5 m, D = 8 mm, and
Vvol = 0.10 · 10−3 m3. Because the pneumatic connection of the tank has a smaller
diameter than the tube, ṁ(L, t) = Avol(ρv)(L, t) with Avol = 1.26 · 10−5 m2 is used in
(2.21) (cf. Rem. 2.3). In addition, caused by the reduced inner tank surface, the thermal
resistance is decreased. Its value Rvol = 1 · 10−1 K/W is identified by trial and error,
i.e. by comparing experimental data from the test bench to the simulation data of the
plant model. The simulation data of the laminar model with kfric = 1 is not depicted
in Fig. 2.7 because of severe oscillations but is shown separately in Fig. 2.8. These
are mainly caused by non-physical negative densities which occur during the discharge
process. Thereby, the friction term in (2.36b) excites the system as its induced force
acts in the direction of the flow velocity since the signs of v and ρv differ in this case.
Caused by the increased flow velocities compared to the prior experiment, the neglect
of the nonlinear flux term ρv2 in the momentum equation (2.35b) of the semilinear
model has a larger effect. Consequently, the semilinear model is less accurate than the
isothermal model, which is especially apparent during the discharge process in the upper
plot of Fig. 2.7. Apart from that, the results are relatively similar to these shown in
Fig. 2.6. While the simulation data of the plant model matches the measured data
best, each simplification induces deviations. The corresponding errors13 are quantified
in Tab. 2.4.

13Since the value of kfric is chosen by trial and error, the errors measures of the linear model with
kfric = 12 are slightly smaller compared to the ones of the laminar model with kfric = 50.
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Figure 2.7: Flow into the tank: Measurement and simulation data for L = 5 m, D =
8 mm and Vvol = 0.10 · 10−3 m3

0 0.25 0.5 0.75 1

0

3

6

9

t in s

p
in

ba
r

pin
pvol

p
kfric=1
vol , (2.36)

Figure 2.8: Oscillations of the laminar model (2.36) induced by negative densities

Table 2.4: Flow into the tank: Errors between the measurement and simulation data for
L = 5 m, D = 8 mm and Vvol = 0.10 · 10−3 m3

model plant isothermal semilinear laminar linear
(kfric = 50) (kfric = 12)

L1
r,err 1.626 % 3.066 % 3.717 % 4.819 % 3.850 %
L∞err 0.240 bar 0.370 bar 0.601 bar 0.732 bar 0.611 bar
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2.7.2 Alternative Set-Up: Flow into the Ambience

For the following experiments, the test bench set-up in Fig. 2.1 is modified by removing
the tank at z = L. Thus, the air flows from the tube into the ambience. From that,
the boundary condition p(L, t) = p0 at z = L follows, replacing the tank dynamics
(2.22). Furthermore, an additional sensor is installed, measuring the pressure pL/2(t) =
p(L/2, t) at z = L/2, i.e. in the middle of the tube. The models are simulated, where the
measured pressure pin(t) serves as input. Subsequently, the computed pressures pL/2(t)
are compared to the measured reference pressure pL/2(t).

Test bench configuration with a long, thin tube Fig. 2.9 displays the results for
a test bench configuration with L = 20 m, D = 4 mm. In the upper plot, it can be seen
that the simulation data of the plant model has the best fit with the measurement data
while the isothermal and semilinear model are still relatively accurate. Fig. 2.10 depicts
the increase of the pressure during the charging process in detail for these three models.
Therein, their different propagation speeds and the neglect of heat transfer become
apparent. The pressure waves of the plant and the isothermal model are propagated in
the positive z direction with a maximum speed14 of v + a and v + aiso, respectively. In
contrast to that, the maximum propagation speed of the semilinear model is aiso since
the nonlinear term ρv2 is not included in its momentum equation (2.35b). Therefore, the
increase of the pressure is delayed. Shortly after the initial rise, the pressure gradients
(w.r.t. time) of the isothermal and the semilinear model are steeper than the one of
the plant model: While the plant model dissipates energy because of friction and heat
transfer, the isothermal and the semilinear model dissipate energy because of friction
only. As a consequence, the increase of pressure is overestimated by the latter models.
The lower plot of Fig. 2.9 shows the simulation data of the remaining models. However,
the laminar model with kfric = 1 is not depicted because of severe oscillations. While the
simulated pressure pL/2(t) of the laminar model with kfric = 25 matches the measured
pressure under steady-state conditions, the simulated pressure of the linear model does
not, independently of the chosen friction amplification factor. The reason for this is the
fact that the friction term of the laminar model is proportional to v while the one of the
linear model is proportional to ρv. Since ρv = const. holds under steady-state conditions,
∂
∂zρ = const. follows from the momentum equation (2.37b) of the linear model. Hence,
the pressure gradient of the linear model is constant over the spatial variable z, depicted
in Fig. 2.11, where the distributed pressure p(z, t) at t = 0.79 s over the spatial variable
z for the plant model, the laminar model, and the linear model is shown. Consequently,
since the density at z = 0 and z = L is defined by the boundary conditions, the steady-
state deviation between the measured and simulated pressure pL/2(t), occurring for the
linear model, cannot be reduced by tuning kfric.
The corresponding errors in this experiment are stated in Tab. 2.5. By comparing the
measures of this experiments with the ones in Tab. 2.3, where the tank is attached to the
tube, it can be concluded that the tank model does not significantly alter the tendency
of the results.

14The maximum propagation speed is defined by the maximum absolute eigenvalue of the matrix
B(x), defined in (2.49), e.g., [LeV92].
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Figure 2.9: Flow into the ambience: Measurement and simulation data for L = 20 m
and D = 4 mm
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Figure 2.10: Detailed depiction of the measured pressure pL/2(t) compared to the simu-
lated pressure pL/2(t), resulting from the plant model (2.23), the isothermal model (2.34)
and the semilinear model (2.35)

Table 2.5: Flow into the ambience: Errors between the measurement and simulation
data for L = 20 m and D = 4 mm

model plant isothermal semilinear laminar linear
(kfric = 25) (kfric = 7)

L1
r,err 1.980 % 5.808 % 6.275 % 13.310 % 12.680 %
L∞err 0.177 bar 0.543 bar 0.576 bar 1.063 bar 1.011 bar
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Figure 2.11: Comparison of the distributed pressure p(z, t) at t = 0.79 s of the plant
model (2.23), the laminar model (2.36) with kfric = 25, and the linear model (2.37) with
kfric = 7

Table 2.6: Flow into the ambience: Errors between the measurement and simulation
data for L = 5 m and D = 8 mm

model plant isothermal semilinear laminar linear
(kfric = 90) (kfric = 40)

L1
r,err 1.589 % 2.053 % 3.455 % 4.023 % 10.339 %
L∞err 0.376 bar 0.507 bar 0.493 bar 0.427 bar 0.671 bar

Test bench configuration with a short, thick tube Fig. 2.12 shows the exper-
imental results, where a short, thick tube with L = 5 m and D = 8 mm is installed
at the test bench. Again, the laminar model with kfric = 1 is not depicted. Caused
by this test bench configuration, and since the tube is unconnected at z = L, the flow
velocities and accelerations are relatively high in this experiment. While the maximum
Mach number, obtained from the simulation data of the plant model, reads Ma ≈ 0.64
for the experiment where a long, thin tube and a large tank are installed (cf. Fig. 2.6),
here, its value is Ma ≈ 0.87. Therefore, more turbulences occur, rendering the pressure
measurements in Fig. 2.12 noisy. The measured working pressure pin(t) is even noisier
compared to the measured pressure pL/2(t) since the flow downstream of the valve is
not fully developed. As a consequence of the noisy measurements, the simulation data
is noisy, too, and the numerical errors are increased. The latter induce the oscillations
visible for the linear model with kfric = 1 in the lower plot of Fig. 2.12. Furthermore,
induced by the higher flow velocity and acceleration, the entrance length, i.e. the length
the flow travels before it becomes fully developed, is increased.
In the upper plot of Fig. 2.12, it can be seen that the simulation and the measurement
data considerably deviate during the charging process. This mismatch most probably
results from the fact that the assumption of fully developed flow conditions in the Darcy-
Weisbach equation (2.8), modeling the pressure drop caused by friction, is violated.
Furthermore, the computed pressures in Fig. 2.12, resulting from the simulation of the
models which neglect the nonlinear flux term ρv2, deviate from the measured pressure
in steady state. The mismatch arises from the incorrect assumption of a small Mach
number, rendering the models without the nonlinear flux term less accurate in this
experiment. The resulting errors are given in Tab. 2.6.
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Figure 2.12: Flow into the ambience: Measurement and simulation data for L = 5 m
and D = 8 mm

Remark 2.7. Naturally, the accuracy of the models, e.g., expressed in terms of the er-
ror measures L1

r,err and L∞err in (2.42) and (2.43), respectively, depends on the chosen
excitation. A highly dynamic input will increase the deviations between the measured
data and the simulation data because, for example, the assumption of fully developed
flow is significantly violated and the temperature of the tube wall cannot be considered
constant anymore. M

2.8 Summary of the Relevant Models

In the following chapters, several controller designs are presented which enable fast
changes between desired pressure levels in the tank by manipulating the mass flow rate
through the valve. In the context of these designs, three models are essential: the
plant model, the isothermal model, and the linear model. They are briefly restated in a
compact form, taking into account the controlled input and the measured output.
The plant model is the most accurate mathematical description of the test bench, verified
by the experimental data. Thus, if simulations are performed instead of actual experi-
ments at the test bench, e.g, to validate controllers in the absence of actuator and sensor
errors, these simulations are based on the plant model. While the linear model is less
precise, it is suited for the late-lumping state feedback and observer design approaches,
presented in Chap. 4 and Chap. 5. Furthermore, the linear model is used in the context
of the early-lumping controller design in Chap. 6 as this approach is based on a finite-
dimensional approximation of the linear model. Since the flatness-based feedforward
controller design in Chap. 3 can be applied to quasilinear systems15, the feedforward

15Obviously, the plant model is quasilinear, too. However, as discussed in Sec. 3.5, it is not suited for
the approach used in Chap. 3.
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controller is derived from the isothermal model as it is more accurate compared with,
e.g., the semilinear model.
Prior to the statement of the models, the controlled input is defined. While the actual
input to the test bench is the voltage ν(t), defining the position of the spool, the static
inverse mass flow rate model (2.19) of the valve allows to choose the mass flow rate
ṁin(t) as the controlled input U(t). Hence,

U(t) = ṁin(t) (2.44)

is defined, where the corresponding voltage ν(t), fed to the test bench, is obtained
from the desired ṁin(t) and the measured pressure ratio r(t) by making use of (2.19).
Consequently, the inverse mass flow rate model can be neglected in the controller design.
By inserting (2.44) in the boundary conditions at z = 0,

ρ(0, t) =




ρin(t), (ρv)(0, t) > 0
ρ(0, t), (ρv)(0, t) ≤ 0

(2.45a)

(ρv)(0, t) = 1
A
U(t) (2.45b)

results from (2.25) for the plant model and

(ρv)(0, t) = 1
A
U(t) (2.46)

from (2.39) for the simplified models.
With regard to an industrial application, it might be preferable to avoid a pressure sensor
in the tank. Thereby, for example, less electrical wiring is needed (cf. Sec. 1.1). Hence,
the measured output Y (t) is the collocated measurement of the working pressure pin(t)
downstream of the valve at z = L:

Y (t) = pin(t). (2.47)

The pressure sensor in the tank, measuring pvol(t), serves for validation only.
Finally, for the sake of simplicity, the scaled spatial variable

z̄ = L− z
L

with z̄ ∈ [0, 1] is introduced. To ease the notation, the scaled spatial variable is denoted
by z ∈ [0, 1] in the following. Furthermore, the quantities defined on z ∈ [0, 1] are denoted
by their original symbol, e.g., the left-hand side of ρ̄(z̄, t) = ρ(z, t) is subsequently
denoted by ρ(z, t).
The compact form of the plant model, consisting of the augmented Euler equations
(2.23), the tank dynamics (2.22), the temperature model (2.20) of the valve, the bound-
ary conditions (2.28), (2.29) at z = 0 as well as (2.45) at z = 1, and the measurement
(2.47), reads

∂

∂t
ρ = 1

L

∂

∂z
(ρv) (2.48a)

∂

∂t
(ρv) = 1

L

∂

∂z
(ρv2 + p)− fc

ρv|v|
2D (2.48b)
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∂

∂t
(ρe) = 1

L

∂

∂z
(v(ρe+ p)) + 4

D
α(T0 − T )− fc

ρv2|v|
2D (2.48c)

ρ(0, t) =




ρvol(t), (ρv)(0, t) ≤ 0
ρ(0, t), (ρv)(0, t) > 0

(2.48d)

(ρe)(0, t) =





1
2ρvol(t)v2(0, t) + 1

γ−1pvol(t), (ρv)(0, t) ≤ 0
1
2(ρv2)(0, t) + 1

γ−1pvol(t), (ρv)(0, t) > 0
(2.48e)

ρ(1, t) =




ρin(t), (ρv)(1, t) ≥ 0
ρ(1, t), (ρv)(1, t) < 0

(2.48f)

(ρv)(1, t) = 1
A
U(t) (2.48g)

d
dtρvol(t) = A

Vvol
(ρv)(0, t) (2.48h)

d
dtpvol(t) = A

γ − 1
Vvol


1
2(ρv3)(0, t) + γ

γ − 1pvol(t)v(0, t) + 1
ARvol

(
T0 −

pvol(t)
Rsρvol(t)

)


(2.48i)
Y (t) = p(1, t). (2.48j)

Therein, pin(t) = p(1, t) is utilized in (2.48j) and ρin(t) in (2.48f) follows from the temper-
ature model of the valve. The PDEs (2.48a)–(2.48c) are defined on (z, t) ∈ (0, 1)× R+,
the boundary conditions (2.48d)–(2.48g) and the ODEs (2.48h), (2.48i) for t > 0, and
the measurement (2.48j) for t ≥ 0.
For the calculations in the subsequent chapters, it is convenient to rewrite the isothermal
and the linear model in terms of the distributed state x(z, t) = [x1(z, t), x2(z, t)]T =
[ρ(z, t), (ρv)(z, t)]T and the lumped state ξ(t) = ρvol(t). In addition, the PDEs are
stated in the quasilinear form

∂

∂t
x(z, t) = B(x(z, t)) ∂

∂z
x(z, t) + c(x(z, t)), (2.49)

where the matrix B(x) = − ∂g
∂x(x) is the negative Jacobian of g(x(z, t)) in (2.1).

Thereby, the isothermal model follows from (2.34), (2.40), (2.41), (2.46), (2.47) and reads

∂

∂t
x =


 0 1

L

− 1
L
x2

2
x2

1
+ a2

iso
L

2
L
x2
x1




︸ ︷︷ ︸
=B(x)

∂

∂z
x+




0

−fc(x)
x2

∣∣∣x2
x1

∣∣∣
2D




︸ ︷︷ ︸
= c(x)

(2.50a)

x1(0, t) = ξ(t) (2.50b)

x2(1, t) = 1
A
U(t) (2.50c)

d
dtξ(t) = A

Vvol
x2(0, t) (2.50d)

Y (t) = RsT0x1(1, t). (2.50e)
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The linear model, consisting of (2.37), (2.40), (2.41), (2.46), (2.47), is stated as

∂

∂t
x =


 0 1

L
a2

iso
L 0




︸ ︷︷ ︸
=B

∂

∂z
x+

[
0 0
0 −kfric 32µ0

D2
1
ρ0

]

︸ ︷︷ ︸
=C

x (2.51a)

x1(0, t) = ξ(t) (2.51b)

x2(1, t) = 1
A
U(t) (2.51c)

d
dtξ(t) = A

Vvol
x2(0, t) (2.51d)

Y (t) = RsT0x1(1, t). (2.51e)

The equations (2.50a), (2.51a) are defined on (z, t) ∈ (0, 1) × R+, (2.50b)–(2.50d),
(2.51b)–(2.51d) for t > 0, and (2.50e), (2.51e) for t ≥ 0. The measurement Y (t) in
(2.50e), (2.51e) results from pin(t) = RsT0ρ(1, t).

2.9 Chapter Highlights

In this chapter, a model of the test bench in Fig. 1.3 was derived based on conservation
laws. Thereby, all assumptions were clearly stated and substantiated by literature refer-
ences. The resulting plant model comprises quasilinear hyperbolic PDEs and nonlinear
ODEs. The model was successively simplified by considering additional assumptions,
resulting in a linear model. Representative quantities, obtained from the numerical
solution of the models, have been compared with each other as well as to those from ex-
periments. Thereby, it was shown that the plant model is a very accurate mathematical
description of the test bench. Furthermore, the deviations resulting from the additional
assumptions were quantified and discussed with respect to their physical effects.
The transparency of the proposed modeling allows to easily choose a suitable model,
depending on its intended use, its mathematical complexity, its necessary accuracy,
and/or the application. For each model, the corresponding assumptions and their effects
are made clear. Such a systematic modeling approach is rather rare in the context of
pneumatic systems.
In connection with this chapter, the journal paper [Ker17] was published. In addition,
the talks [Ker15; Ker16] were given. The supervised student theses [Sei15; Gün16;
Zah16; Ngu17; Gra18] have contributed to the development of the chapter’s results.



Chapter 3

Feedforward Controller Design
Using Flatness

In the following, a flatness-based feedforward controller is designed. Such a design is
motivated by the possibly insufficient performance of feedback controllers without a
feedforward part, e.g., when applied to pneumatic systems in industrial applications.
While a feedback controller stabilizes a desired equilibrium, its ability to allow for spec-
ified transitions between desired pressure levels in the tank is limited. Furthermore, the
resulting control input might violate the test bench’s physical capacities, e.g., [KG17].
Consequently, this chapter presents the design of a feedforward controller, enabling spec-
ified transitions and allowing to comply with physical limitations.
The subsequent feedforward controller design makes use of a flat output, parametriz-
ing all quantities of the system. In contrast to flatness-based designs for lumped-
parameter models, such a feedforward controller for hyperbolic distributed-parameter
models usually involves lumped as well as distributed delays and predictions in addi-
tion to derivatives of the flat output, e.g., [PR01]. Still, flatness-based methods for
distributed-parameter models have been successfully applied to a variety of systems,
ranging from quasilinear parabolic PDEs, e.g., [Rud03], to linear hyperbolic PDEs, e.g.,
[PR01].
Although the ideas presented in [PR01; Rud03] can be applied to the linear model (2.51)
of the test bench, this thesis makes use of the more recent method introduced in [Knü15]
(in German, see [KW15] for a reference in English). Therein, a flatness-based feedforward
controller design is presented by generalizing the results in the aforementioned references
to quasilinear hyperbolic PDEs coupled to nonlinear ODEs at the boundary. Hence, it
allows a design based on the more accurate isothermal model1 (2.50).
To derive such a feedforward controller, first, all lumped and distributed quantities of the
unactuated, differentially flat boundary system at z = 0 are parametrized in terms of a
desired reference trajectory of the flat output. The resulting Cauchy problem, consisting
of the PDEs defined on z ∈ (0, 1) and subject to the parametrized quantities at z = 0,
is solved by the method of characteristics. A coordinate transformation is introduced,
which turns the PDEs into ODEs along the so-called characteristic curves. For that, the
PDEs are rewritten as ODEs which are evaluated along the characteristic curves. The

1Although the plant model (2.48) is quasilinear, too, it does not apply in this context, discussed in
Sec. 3.5.

33
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characteristic curves propagate the solution from the parametrized boundary at z = 0 to
the actuated boundary at z = 1 in finite time, defined by the propagation speed of the
hyperbolic system. By integrating along the characteristic curves (forward and backward
in time), the distributed state of the PDE subsystem on z ∈ (0, 1) as well as the input at
z = 1 are parametrized in terms of the flat output. Thereby, the feedforward controller
is obtained.
In the following, first, it is shown that the tank density is a flat output of the boundary
system at z = 0 of the isothermal model, i.e. the tank model and the corresponding
boundary conditions. Subsequently, the isothermal model is transformed into diagonal
form, a convenient representation in order to apply the method of characteristics. By
specifying a suitable reference trajectory of the flat output, the transition between two
constant pressure levels is defined. Finally, from the solution of the Cauchy Problem,
the feedforward controller results, which is investigated in simulations and experiments.
This chapter is based on the results in [KG17], a contribution by N. Gehring and the
author of this thesis. In contrast to that, here, the design of the feedforward controller
is presented in more mathematical detail. In addition to simulations, the resulting
feedforward controller is implemented at the test bench and experiments are performed.
Furthermore, it is shown that the plant model is unsuited for the design approach.
Remark 3.1. While other feedforward controller design methods for hyperbolic systems
have been tested, e.g., [KS08b], this thesis makes use of the flatness-based approach in
[Knü15] as it allows a straightforward design based on the relatively accurate quasilinear
model. M

3.1 Preliminary Considerations

Since the flat output y(t) = ξ(t), where ξ(t) is the tank density, differentially parametrizes
all quantities of the unactuated boundary system (2.50b), (2.50d) at z = 0, i.e.

ξ(t) = y(t), x1(0, t) = y(t), x2(0, t) = Vvol
A

d
dty(t), (3.1)

the boundary system is differentially flat in the sense of [Fli+95]. As pvol(t) = ξ(t)RsT0
holds, resulting from the ideal gas law (2.3), the flat output y(t) is proportional to the
tank pressure, i.e. the controlled output.
Next, to facilitate the application of the method of characteristics, the PDE subsystem
(2.50a) of the isothermal model is transformed into the diagonal form

∂

∂t
w̄(z, t) =

[
λ̄1(w̄(z, t)) 0

0 λ̄2(w̄(z, t))

]

︸ ︷︷ ︸
= Λ̄(w̄(z,t))

∂

∂z
w̄(z, t) + c̄(w̄(z, t)), (3.2)

where w̄(z, t) =
[
w̄1(z, t), w̄2(z, t)

]T ∈ R2 and c̄(w̄(z, t)) =
[
c̄1(w̄(z, t)), c̄2(w̄(z, t))

]T ∈
R2. For the derivation of the coordinate transformation

w̄ = s(x), (3.3)

mapping (2.50a) into the diagonal form (3.2), the eigenvalue problem lTi (x)B(x) =
λil

T
i (x), i = 1, 2, is solved. Thereby, the matrices in LT (x)B(x) = Λ(x)LT (x) are ob-

tained, where Λ(x) = diag(λ1(x), λ2(x)) is a diagonal matrix containing the eigenvalues
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of B(x), defined in (2.50a), and L(x) =
[
l1(x), l2(x)

]
is composed of the associated left

eigenvectors:

Λ(x) =



x2−aisox1

Lx1
0

0 x2+aisox1
Lx1


 , LT (x) = 1

2




x2
2

aisox2
1
− aiso − x2

aisox1
+ 1

− x2
2

aisox2
1

+ aiso
x2

aisox1
+ 1


 .

Subsequently, B(x) = L−T (x)Λ(x)LT (x) is substituted in (2.50a) and the equation is
multiplied with W (x)LT (x) from the left, resulting in

W (x)LT (x) ∂
∂t
x = W (x)Λ(x)LT (x) ∂

∂z
x+W (x)LT (x)c(x), (3.4)

where W (x) is an invertible diagonal matrix which commutes with Λ(x). By that,
the degree of freedom in the scaling of the eigenvectors l1(x) and l2(x) is taken into
account2. The transformation s(x) has to satisfy the condition

∂s

∂x
(x) = W (x)LT (x), (3.5)

following from inserting the new coordinates (3.3) into (3.2) and comparing the resulting
coefficients to those in (3.4). To allow for a solution of (3.5), an adequate choice is

W (x) =




1
aisox1−x2

0
0 1

aisox1+x2


 .

Hence, the new coordinates (3.3) and the inverse transformation x = s−1(w̄) read

s(x) = 1
2




1
aiso

x2
x1
− ln(x1)

1
aiso

x2
x1

+ ln(x1)


 and s−1(w̄) =

[
ew̄2−w̄1

aisoew̄2−w̄1(w̄1 + w̄2)

]
, (3.6)

respectively. Therein, x1 > 0 is ensured as the density x1 = ρ is always positive.
Applying the transformation s(x) to the PDE subsystem (2.50a) of the isothermal model
results in the diagonal form (3.2), where

λ̄1(w̄) = aiso(w̄1 + w̄2 − 1)
L

, λ̄2(w̄) = aiso(w̄1 + w̄2 + 1)
L

(3.7a)

c̄1(w̄) = c̄2(w̄) = −f̄c(w̄)aiso|w̄1 + w̄2| (w̄1 + w̄2)
4D (3.7b)

with f̄c(w̄) = fc(x) holds.

3.2 Design of the Feedforward Controller

Steady-State Regimes The feedforward controller steers the system from the steady-
state regime w̄b(z) at the initial constant pressure level pb to the steady-state regime
w̄e(z) at pe at the desired constant pressure level pe. In general, a steady-state regime is

2More precisely,W (x) consists of integrating factors which ensure the existence of the transformation
(3.3), e.g., [Tan92].
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defined by a solution x∗(z) = x(z, t), ξ∗ = ξ(t), which is constant w.r.t. time. Inserting
x∗(z), ξ∗ into the isothermal model (2.50) yields

0 =


 0 1

L

− 1
L

(x∗2)2

(x∗1)2 + a2
iso
L

2
L
x∗2
x∗1


 ∂

∂z
x∗ +




0

−fc(x∗)
x∗2

∣∣∣x
∗
2
x∗1

∣∣∣
2D


 (3.8a)

x∗1(0) = ξ∗ (3.8b)

x∗2(1) = 1
A
U∗ (3.8c)

0 = A

Vvol
x∗2(0). (3.8d)

By taking (3.8d) as well as the first row of (3.8a) into account, x∗2(z) = 0 follows.
Hence, caused by (3.8c), U∗ = 0 holds. From the second row of (3.8a) as well as
(3.8b), x∗1(z) = ξ∗ is obtained. Thus, a steady-state regime of the system is defined
by its constant density only as the velocity of the flow is zero. Therefore, w̄(z, t) in
steady-state reads

w̄∗(z) = 1
2

[
− ln(y∗)
ln(y∗)

]
, (3.9)

where y∗ = ξ∗ follows from the definition of the flat output. Finally, the steady-state
regimes w̄b(z) and w̄e(z) result from (3.9), where

yb = 1/(RsT0)pb and ye = 1/(RsT0)pe (3.10)

are inserted in place of y∗.

Trajectory Planning Next, the desired reference trajectory yr(t) of the flat output,
characterizing the transition from the steady-state regime w̄b(z) to w̄e(z) is defined.
Since y(t) = 1/(RsT0)pvol(t) holds, the choice of yr(t) implies the specification of a
trajectory prvol(t) of tank pressure and vice versa.
As the tank model (2.50d) is a first-order ODE, the required smoothness of the function
t 7→ yr(t) is yr ∈ C1([0,∞)) in order for x(0, ·) ∈ C([0,∞)), resulting from (3.1). Here,
the piecewise defined third-order polynomial

yr(t̄) =





yb, t̄ ≤ 0
yb − (yb − ye)t̄2(3− 2t̄), 0 < t̄ < 1
ye, t̄ ≥ 1

(3.11)

is chosen, where the shortened notation t̄ = (t− t′b)/(t′e− t′b) is utilized. Therein, t′b and
t′e, which have to be specified, denote the begin and the end of the pressure change in
the tank. Depending on the initial and desired pressure level, the duration t′e − t′b > 0
has to be long enough to respect the physical capabilities of the test bench, e.g., the
limited input U(t) and Ma < 1.
Remark 3.2. Several consecutive pressure changes are achieved by successively combining
yrj(t) in (3.11), where the index j denotes the j-th transition and ye,j = yb,j+1 as well as
te,j ≤ tb,j+1 hold. In the following, for convenience, a reference trajectory with multiple
pressure changes is denoted by yr(t), too. M
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Minimum Transition Time Since any (bounded3) signal in a hyperbolic system is
propagated with finite speed, the transition from w̄b(z) to w̄e(z) cannot be arbitrarily
fast. While the duration t′e− t′b of the pressure change in the tank is a design parameter
of (3.11), the minimum duration ∆Tb + ∆Te of the transition follows from

∆Tb =
∫ 1

0

1
λ̄2(w̄b(ζ))

dζ

∆Te = −
∫ 1

0

1
λ̄1(w̄e(ζ))

dζ.

By making use of (3.7a) and (3.9), ∆Tb = ∆Te = L/aiso is obtained. Hence, the
transition time reads ∆Tb + ∆Te + t′e − t′b.

Solution of the Cauchy Problem To derive the feedforward controller U r(t), i.e. the
input parametrized in terms of a desired reference trajectory yr(t) of the flat output, a
Cauchy problem (w.r.t. space) has to be solved. The initial data of the Cauchy prob-
lem is given by the parametrization (3.1) at z = 0. As a consequence, the distributed
state w̄(z, t), satisfying the PDE subsystem (3.2) and subject to the initial data, is
parametrized in terms of y(t), too. Thus, for a chosen yr(t), the reference state w̄r(z, t)
results from the solution of the Cauchy problem. By making use of the boundary con-
dition (2.50c), the feedforward controller U r(t) is obtained.
A convenient tool to solve the Cauchy problem is the method of characteristics. For
that, (3.2) is split into

∂

∂t
w̄i(z, t) = λ̄i(w̄(z, t)) ∂

∂z
w̄i(z, t) + c̄i(w̄(z, t)) (3.12)

with i = 1, 2. Next, w̆i(s) = w̄i(ζi(s), τi(s)) is introduced, where s ∈ R is the independent
variable. By taking the total derivative of w̆i(s) with respect to s and comparing the
resulting coefficients to those in (3.12), the ODEs

d
dsζi(s) = −λ̄i(w̆(s)) (3.13a)
d
dsτi(s) = 1 (3.13b)
d
dsw̆i(s) = c̄i(w̆(s)), (3.13c)

subject to the initial data at z = 0, are obtained, e.g., [Deb12]. Hence, the characteristic
curves of (3.2) satisfy (3.13). By solving (3.13) for a given reference trajectory yr(t),
e.g., numerically, the reference state w̄r

i(ζi(s), τi(s)) = w̆r
i(s) and, thus, the feedforward

controller

U r(t) = A
(
aisoew̄

r
2(1,t)−w̄r

1(1,t)(w̄r
1(1, t) + w̄r

2(1, t))
)

(3.14)

in diagonal coordinates result. Fig. 3.1 illustrates the approach. Therein, a few se-
lected characteristic curves of (3.2) are depicted. These propagate the solution from the
boundary at z = 0, parametrized in terms of yr(t), to the actuated boundary at z = 1,
forward and backward in time. As a consequence of the finite propagation speed, U r(t)
is non-zero for t ∈ (tb, te) while yr(t) is non-constant for t ∈ (t′b, t′e), where tb = t′b−∆Tb
and te = t′e + ∆Te.

3Unbounded signals in quasilinear systems may propagate with infinite speed.
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U r
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t′b

t′e
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Figure 3.1: Illustration of the solution of the Cauchy problem: The blue and cyan
areas define the steady-state regimes w̄b(z) and w̄e(z), respectively, the white area the
transition regime, and the black lines are the characteristic curves of (3.2)

Table 3.1: Test bench parameters of the standard configuration

tube length L = 5 m
tube diameter D = 5.7 mm
tank volume Vvol = 0.64 · 10−3 m3

3.3 Simulation Studies

The feedforward controller U r(t) is verified in a simulation based on the plant model
(2.48) before it is tested in experiments. The parameters of test bench configuration
are stated in Tab. 3.1. For the design of the desired tank pressure reference trajectory
prvol(t), three transitions are specified, each defined separately by (3.11). Thereby, the
tank is charged from p0 to 5 bar, discharged to 3 bar, and finally charged to 6 bar. Here,
a maximum tank pressure of 6 bar is chosen since the supply pressure psup(t) ≈ 9 bar
sometimes slightly drops, e.g., if there is a peak demand in the pneumatic network.
The rates of change during the transitions read 2.5 bar/s and −2.5 bar/s for the charging
and discharging process, respectively. By that choice, fast pressure changes in the tank
are performed while the limited capabilities of the test bench are respected. Based on
the resulting trajectory prvol(t), (3.13) is solved numerically by using the explicit Euler
method, where the implementation is stated in Appx. B.2. From that, the flatness-based
feedforward controller U r(t) is obtained.
The feedforward controller U r(t) and the tank pressure pvol(t), resulting from the simu-
lation of the plant model (2.48) with U(t) = U r(t), are depicted in Fig. 3.2. In addition,
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ṁ
in

kg
/s

Ur(t), (3.14)

Figure 3.2: Application of the feedforward controller (3.14) to the plant model (2.48):
Reference pressure prvol(t) and tank pressure pvol(t) as well as corresponding control input
U r(t)
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Figure 3.3: Deviations between the reference pressure prvol(t) and the tank pressure
pvol(t) in Fig. 3.2

the reference pressure prvol(t) is shown. Since the match between pvol(t) and prvol(t) is vir-
tually perfect, the latter cannot be seen. The minor deviations ∆p(t) = prvol(t)− pvol(t)
are depicted in Fig. 3.3.
The effect of the assumption of isothermal flow becomes visible in Fig. 3.3: Although the
feedforward controller guarantees that the isothermal model is immediately in a steady
state if U r(t) = 0, the plant model is not since ∆p(t) is non-constant for U r(t) = 0.
However, as indicated in Fig. 3.3 and easily verified by simulations, ∆p(t) converges to
zero if U r(t) = 0. It can be concluded that the deviations ∆p(t) during the transitions
will increase if the assumption of isothermal flow has a more significant effect on the
dynamics of the isothermal model compared to the plant model, e.g., if the tube length
is increased and/or faster transitions are specified. Still, as soon as the plant model has
reached a steady state, ∆p(t) = 0 results.

Remark 3.3. If not stated otherwise, the test bench configuration in Tab. 3.1 as well as
the reference trajectory prvol(t) in Fig. 3.2 are utilized for the simulations and experiments
in the subsequent chapters. These choices arise from the fact that similar configurations
and trajectories are widely used in applications, cf. [AF16; RNM16; TU18]. M
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Figure 3.4: Application of the feedforward controller (3.14) to the test bench: Reference
pressure prvol(t) and measured tank pressure pvol(t)
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Figure 3.5: Deviations between the reference pressure prvol(t) and the measured tank
pressure pvol(t) in Fig. 3.4

3.4 Experimental Results

Motivated by the perfect simulation results, the same feedforward controller U r(t) as in
Fig. 3.2 is applied to the test bench. The measured tank pressure pvol(t) is depicted in
Fig. 3.4 and the deviations ∆p(t) in Fig. 3.5.
Obviously, the tank pressure starts to deviate from the reference pressure prvol(t), result-
ing in a relatively severe mismatch. Furthermore, for U r(t) = 0, ∆p(t) does not converge
to zero. From the latter observation, as there is no leak in the tube or the tank, it can be
concluded that the mass flow rate ṁin(t) through the valve is non-zero and the definition
ṁin(t) = U(t) is violated. This error results from the slightly inaccurate inverse mass
flow rate model (2.19) of the valve since it only allows for ṁin(t) ≈ U(t) (cf. Rem. 2.2).
Since the inverse mass flow rate model is based on measurements, it could be marginally
improved by more accurate and therefore more expensive sensors. However, it is shown
in the next chapter that the closed-loop control of the test bench will basically guarantee
steady-state accuracy.

3.5 Non-Flatness of the Plant Model

Compared to the isothermal model (2.50), the plant model (2.48) is a slightly more
accurate description of the test bench. Thus, it seems natural to design the feedforward
controller based on the plant model. While the boundary system at z = 0, describing
the tank and its coupling with the tube, is differentially flat for (ρv)(0, t) > 0, i.e. when



3.5. Non-Flatness of the Plant Model 41

the tank is charged, this is no longer the case if the tank is discharged and (ρv)(0, t) ≤ 0
holds. Then, the boundary system, arising from (2.48d), (2.48e), (2.48h), (2.48i), reads

ρ(0, t) = ρvol(t) (3.15a)

(ρe)(0, t) = 1
2ρvol(t)v

2(0, t) + 1
γ − 1pvol(t) (3.15b)

d
dtρvol(t) = A

Vvol
(ρv)(0, t) (3.15c)

d
dtpvol(t) = A

γ − 1
Vvol


1
2(ρv3)(0, t) + γ

γ − 1pvol(t)v(0, t) + 1
ARvol

(
T0 −

pvol(t)
Rsρvol(t)

)
 .

(3.15d)

In the following, it is shown that (3.15) does not fulfill the ruled manifold criterion, a
necessary condition for flatness, e.g., [Fli+95; SA04]. For that, its dynamics is reduced to
a single equation, which is required since the representation (3.15) fulfills this necessary
condition. First, the definition (3.15b) is neglected as (ρe)(0, t) does not effect the
remaining equations. By making use of (3.15a), ρ(0, t) is replaced by ρvol(t) in (3.15c)
and (3.15d). From that, the ODE system
d
dtρvol(t) = A

Vvol
ρvol(t)v(0, t) (3.16a)

d
dtpvol(t) = A

γ − 1
Vvol


1
2ρvol(t)v

3(0, t) + γ

γ − 1pvol(t)v(0, t) + 1
ARvol

(
T0 −

pvol(t)
Rsρvol(t)

)


(3.16b)
results. Finally, solving (3.16a) for v(0, t) and substituting the result in (3.16b) yields

1
2

(
Vvol
A

)2

v̇3
1 + γ

γ − 1 v̇1v1v2 −
1

γ − 1v
2
1 v̇2 + T0

VvolRvol
v2

1 −
1

VvolRvolRs
v1v2 = 0, (3.17)

where v1 = ρvol, v̇1 = d
dtρvol, v2 = pvol, v̇2 = d

dtpvol are introduced. This ODE, describing
the dynamics of the boundary system at z = 0, is defined by the scalar equation

S(v, v̇) = 0, (3.18)
where v = [v1, v2]T , v̇ = [v̇1, v̇2]T . By evaluating the function S in terms of the inde-
pendent variables ξ0 = [ξ0,1, ξ0,2]T and ξ1 = [ξ1,1, ξ1,2]T , (3.18) results in the algebraic
equation

S(ξ0, ξ1) = 0. (3.19)
According to [Fli+95], for the existence of a flat output, it is necessary that

S(ξ0, ξ1 + κa) = 0 (3.20)
holds for arbitrary κ ∈ R, where a = [a1, a2]T 6= 0. By making use of (3.17) and (3.19),

1
2

(
Vvol
A

)2

a3
1κ

3 + 3
2

(
Vvol
A

)2

ξ1,1a
2
1κ

2

+


3

2

(
Vvol
A

)2

ξ2
1,1a1 + γ

γ − 1a1ξ0,1ξ0,2 −
1

γ − 1ξ
2
0,1a2


κ = 0 (3.21)

results from (3.20). Obviously, (3.21) holds for arbitrary κ only if a = 0. Therefore, the
necessary condition (3.20) is not fulfilled and the boundary system (3.15) not flat.
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3.6 Chapter Highlights

In this chapter, the flatness-based approach in [Knü15] was applied to the isothermal
model of the test bench. Based on a desired tank pressure trajectory, a feedforward
controller was derived. While its performance in simulations was virtually perfect, the
experiment emphasized the necessity of a state feedback controller.
Since previous feedforward controller designs for pneumatic systems were based on finite-
dimensional models, the novelty of this chapter is the design of a feedforward controller
based on an infinite-dimensional model.
The supervised student thesis [Sch17] has contributed to the development of this chap-
ter’s results.



Chapter 4

Output Feedback Controller
Design Using Backstepping

Well-known for lumped-parameter systems, e.g., [Kha02], the backstepping method for
distributed-parameter systems1 has become a powerful tool since its first introduction
in [BK01; BKL01; BK02]. Over the last years, the backstepping-based controller design
for PDE-ODE systems attracted increasing research interest. Its effectiveness was first
recognized by [KS08a; Krs09b; Krs09a]. Therein, the stabilization of ODE subsystems
is considered, where PDEs describe the dynamics of the actuation or sensing path.
Subsequently, the results for these PDE-ODE cascades with a unidirectional coupling
between the PDE and the ODE were extended in [TX11] and [ZT12] to systems with
a bidirectional coupling, where the PDE is represented by a heat equation and a wave
equation, respectively.
However, the aforementioned methods cannot be applied to the linear model (2.51) of
the test bench. Almost simultaneously, in [Di +18] and [DGK17], two research groups
suggested slightly different backstepping-based state feedback designs for this class of
systems, i.e. linear heterodirectional 2×2 hyperbolic PDE-ODE systems, where the cou-
pling between the PDE and the ODE is bidirectional. While [Di +18] takes an arbitrary
number of transport equations into account and guarantees stability in the L2-sense,
[DGK17], a contribution by J. Deutscher, N. Gehring, and the author of this thesis,
covers spatially-varying propagation speeds and utilizes a so-called two-step approach.
More precisely, the two-step approach splits the transformation between the original
and the target system with the desired dynamics into two separate transformations: the
backstepping transformation and the decoupling transformation. The first transforma-
tion removes the in-domain coupling of the PDE and only requires the solution of a set
of well-known kernel equations, e.g., [Cor+13]. By the second transformation and the
choice of the control law, the system is decoupled into a stable PDE-ODE cascade. The
transformation kernel essentially follows from the solution of a simple Volterra integral
equation of second kind. Furthermore, the choice of the target system ensures the expo-
nential stability of the closed-loop system with a prescribed convergence rate. Based on
the results in [DGK17], the two-step approach was extended by the same researchers to
derive a state feedback for systems with an arbitrary number of transport equations in
[DGK19] and, subsequently, for general bidirectionally coupled ODE-PDE-ODE systems
in [DGK18].

1In the following, only linear distributed-parameter systems are discussed.

43
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The implementation of the state feedback at the test bench necessitates a state observer.
The backstepping-based design of an observer which makes use of a collocated measure-
ment of the distributed state at the actuated boundary is presented in [Aam13] for
heterodirectional 2 × 2 hyperbolic PDE-ODE systems. However, the coupling between
the PDE and the ODE is unidirectional, whereas the PDE-ODE system described by the
linear model (2.51) is bidirectionally coupled. In [DGK19], an observer design based on
an anti-collocated measurement is presented, which takes a bidirectional coupling into
account. Still, the design cannot be applied to the linear model since the measurement
is collocated at the actuated boundary. Recently, in [DGK18], the researchers presented
the design of an observer which is based on such a collocated measurement. Although
it considers an additional ODE subsystem at the actuated boundary, the approach can
be applied to the linear model, necessitating only minor modifications.
The following section comprises a brief introduction to the concept of backstepping for
hyperbolic systems. Subsequently, the standard backstepping form for the considered
class of systems is introduced and the linear model is stated in this form. Based on
this slightly generalized system description, a state feedback and a state observer are
designed. For that, the state feedback2 and observer design in [DGK17] and [DGK18],
respectively, is presented specifically for the considered class of systems. The theoretical
part is concluded by the stability analysis of the closed-loop system, controlled by the
output feedback controller, i.e. the combined state feedback and observer. Finally, the
controller is validated in simulations and experiments. Thereby, its excellent performance
is demonstrated.
This chapter is based loosely on [KG17] as well as [Ker+18a], where the former is a
contribution of N. Gehring and the author of this thesis and the latter of N. Gehring,
J. Deutscher, M. Meißner, and the author of this thesis. Compared to these contribu-
tions, the following derivations of the state feedback and observer are based on a more
general system description and presented in more mathematical detail. The aspects of
stability are discussed thoroughly. In addition, the controller is extensively tested in
simulations and experiments.

4.1 The Basic Idea of Backstepping

The idea of backstepping is illustrated in Fig. 4.1. Therein, the original system is a
heterodirectional 2 × 2 hyperbolic system. It can be seen that the system in original
coordinates has an in-domain coupling, which is a potential source3 of instability.
To design a control law, defining the input, the invertible Volterra-type integral transfor-
mation T with the bounded inverse T −1 is applied to the system in original coordinates.
By that, it is mapped into the target system with the desired properties. In order
to determine the integral kernel, defining the transformation, the corresponding kernel
equations have to be derived. In general, to obtain this set of PDEs, the state of the tar-
get system is replaced by the transformed original state. From that, the kernel equations
follow and are solved subsequently. Naturally, the transformation alone cannot eliminate

2Making use of the more general approaches in [DGK19] or [DGK18] would result in the same state
feedback.

3For PDE-ODE systems, sources of instability might arise from an unstable PDE and/or an unstable
ODE subsystem. Even if each subsystem is stable on its own, a bidirectional coupling between the PDE
and the ODE can cause instability.



4.2. Transformation into Standard Backstepping Form 45

stable PDE

T −1T

PDE

target system

original system

input

Figure 4.1: Transformations between two equivalent systems descriptions

undesired destabilizing terms but its application to the original system imposes condi-
tions at the actuated boundary of the target system. Thereby, the stabilizing control
law, compensating the destabilizing terms, is derived.
Usually, the stability of the target system can be easily shown. From that, the stability
of the closed-loop system in original coordinates follows since its dynamics is equivalent
to the target system.

4.2 Transformation into Standard Backstepping Form

The controller design in this chapter is based on a general description for 2×2 hyperbolic
systems with constant propagation speeds, which are coupled to a first-order ODE, and
have a collocated measurement available. This system class in the so-called standard
backstepping form reads

∂

∂t
w(z, t) = Λ ∂

∂z
w(z, t) +A(z)w(z, t) (4.1a)

w1(0, t) = qw2(0, t) + cη(t), t > 0 (4.1b)
w2(1, t) = u(t), t > 0 (4.1c)
d
dtη(t) = aη(t) + bw2(0, t), t > 0 (4.1d)

y(t) = w1(1, t), t ≥ 0. (4.1e)

It is chosen as similar representations are widely used in this context, e.g., [Cor+13;
Aam13]. The system consists of the two PDEs (4.1a) with the distributed state w(z, t) =[
w1(z, t), w2(z, t)

]T ∈ R2, where w is defined on (z, t) ∈ (0, 1) × R+, the ODE (4.1d)
with the lumped state η(t) ∈ R, the input u(t) ∈ R and the collocated measurement
y(t) ∈ R. The structure of (4.1) is depicted in Fig. 4.2. The matrix Λ is diagonal and
A(z) is anti-diagonal, i.e.

Λ =
[
−ε1 0

0 ε2

]
, A(z) =

[
0 a1(z)

a2(z) 0

]
,
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Figure 4.2: Structure of the PDE-ODE system (4.1)

where εi > 0, i = 1, 2, and

a1(z) = c2e
−
(
c1
ε1

+ c4
ε2

)
z
, a2(z) = c3e

(
c1
ε1

+ c4
ε2

)
z

with cj ∈ R, j = 1, . . . , 4. The values of ε1 and ε2 are the constant propagation speeds
in the positive and negative direction z, respectively. Thus, the system (4.1a)–(4.1c)
consists of two coupled heterodirectional transport equations. The function a1(z) defines
the coupling from w2(z, t) to w1(z, t) and a2(z) vice versa. The ODE subsystem is
characterized by a ∈ R and b ∈ R. The pairs (a, b) and (a, c) have to satisfy the
following conditions:

(A1) (a, b) is controllable and

(A2) (a, c) is observable.

Furthermore, q ∈ R\{0} holds in (4.1b). The initial conditions are w(z, 0) = w0(z) ∈ R2

and η(0) = η0 ∈ R, where w0(z) is assumed to be piecewise continuous.
Remark 4.1. It would be sufficient if (a, b) is stabilizable and (a, c) is detectable. Fur-
thermore, q = 0 could be covered by minor adaptations of the following target systems
(cf. [DGK18; DGK19]). M

To render the linear model (2.51) amenable to a straightforward application of the
following state feedback and observer design, the former is mapped into the form (4.1).
For that, first, the eigenvalue problem lTi B = λil

T
i , i = 1, 2, is solved, where li are

the left eigenvectors, associated with the eigenvalues λi of the matrix B, defined in
(2.51a). Thereby, LTB = ΛLT with L = [l1, l2] and Λ = diag(λ1, λ2) is obtained. By
a procedure similar to the one discussed in Sec. 3.1, the change of coordinates

w̄(z, t) =
[
w̄1(z, t)
w̄2(z, t)

]
= LTx(z, t) =

[
−aiso

2
1
2

aiso
2

1
2

]
x(z, t) (4.2)

results. In addition,

η(t) = aisoξ(t) (4.3)

is introduced. Applying (4.2), (4.3) to the linear model (2.51) and defining λ1 = −ε1,
λ2 = ε2 yield

∂

∂t
w̄(z, t) =

[
−ε1 0

0 ε2

]

︸ ︷︷ ︸
= Λ

∂

∂z
w̄(z, t) +

[
−α −α
−α −α

]

︸ ︷︷ ︸
=LTCL−T

w̄(z, t) (4.4a)
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w̄1(0, t) = qw̄2(0, t) + cη(t) (4.4b)

w̄2(1, t) = 1
A
U(t)− w̄1(1, t) (4.4c)

d
dtη(t) = aη(t) + bw̄2(0, t) (4.4d)

Y (t) = RsT0
aiso

( 1
A
U(t)− 2w̄1(1, t)

)
, (4.4e)

where

εi = aiso
L
, α = kfric

16µ0
D2

1
ρ0
, a = −aiso

A

Vvol
, b = 2aiso

A

Vvol
, c = −1, q = 1.

The second transformation

w(z, t) = diag
(
eατ0z, e−ατ0z

)
w̄(z, t), (4.5)

where τ0 = L/aiso, maps (4.4) into a system with an anti-diagonal coupling matrix A(z)
and, hence, into the desired form (4.1), e.g., [VK14]. Thereby, (4.4) results in

∂

∂t
w(z, t) = Λ ∂

∂z
w(z, t) +A(z)w(z, t) (4.6a)

w1(0, t) = qw2(0, t) + cη(t) (4.6b)

w2(1, t) = e−ατ0

A
U(t)− e−2ατ0w1(1, t) (4.6c)

d
dtη(t) = aη(t) + bw2(0, t) (4.6d)

Y (t) = RsT0
aiso

( 1
A
U(t)− 2e−ατ0w1(1, t)

)
, (4.6e)

where the non-zero elements a1(z) = −αe2ατ0z and a2(z) = −αe−2ατ0z of A(z) follow
from εi = 1/τ0, i = 1, 2, and cj = −α, j = 1, . . . , 4. Finally, inserting the transformed
input and measurement

u(t) = e−ατ0

( 1
A
U(t)− e−ατ0w1(1, t)

)
(4.7a)

y(t) = 1
2e

ατ0

( 1
A
U(t)− aiso

RsT0
Y (t)

)
, (4.7b)

respectively, in (4.6), the linear model (2.51) is stated in the form (4.1).

4.3 Design of the State Feedback

In the following, a state feedback

u(t) = −kηη(t)−
∫ 1

0
kTw(z)w(z, t) dz = K

[
η(t),w(·, t)

]
(4.8)



48 Chapter 4. Output Feedback Controller Design Using Backstepping

w̃2(z, t)

η(t)

w̃1(z, t)

K
[
η(t),w(·, t)

]

z0 1

Figure 4.3: Structure of the PDE-ODE system (4.11)

with the formal feedback operator K is derived. By inserting (4.8) into the system (4.1)
in standard backstepping form, the closed-loop system

∂

∂t
w(z, t) = Λ ∂

∂z
w(z, t) +A(z)w(z, t) (4.9a)

w1(0, t) = qw2(0, t) + cη(t) (4.9b)
w2(1, t) = K

[
η(t),w(·, t)

]
(4.9c)

d
dtη(t) = aη(t) + bw2(0, t) (4.9d)

follows. The measurement y(t) is neglected as it is not relevant in the context of the
state feedback design.

4.3.1 Backstepping Transformation

In the first step, the invertible Volterra integral transformation

w̃(z, t) = w(z, t)−
∫ z

0
K(z, ζ)w(ζ, t) dζ = T1

[
w(·, t)

]
(z), (4.10)

where w̃(z, t) = [w̃1(z, t), w̃2(z, t)]T ∈ R2 and K(z, ζ) ∈ R2×2, i, j = 1, 2, is applied to
(4.9). It maps the system into the intermediate target system in backstepping coordi-
nates:

∂

∂t
w̃(z, t) = Λ ∂

∂z
w̃(z, t) + g(z)η(t) (4.11a)

w̃1(0, t) = qw̃2(0, t) + cη(t) (4.11b)

w̃2(1, t) = K[η(t),w(·, t)]−
∫ 1

0
eT2K(1, ζ)w(ζ, t) dζ (4.11c)

d
dtη(t) = aη(t) + bw̃2(0, t), (4.11d)

where ei ∈ R2 denotes the i-th unit vector and g(z) ∈ R2. Thereby, the in-domain
coupling between the distributed states is removed. The structure of (4.11) is depicted
in Fig. 4.3.

Derivation of the Kernel Equations To derive the kernel equations of K(z, ζ),
the distributed state w̃(z, t) in (4.11a) is replaced by the transformation (4.10). For
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that, first, (4.10) is differentiated w.r.t. time. By inserting (4.9a) and making use of an
integration by parts as well as of (4.9b),

∂

∂t
w̃(z, t) = Λ ∂

∂z
w(z, t) +

(
A(z)−K(z, z)Λ

)
w(z, t)

+
∫ z

0

(
∂

∂ζ
K(z, ζ)Λ−K(z, ζ)A(ζ)

)
w(ζ, t) dζ

+K(z, 0)Λ(qe1 + e2)w2(0, t) + cK(z, 0)Λe1η(t) (4.12)

is obtained. The spatial derivative of (4.10) reads

∂

∂z
w̃(z, t) = ∂

∂z
w(z, t)−K(z, z)w(z, t)−

∫ z

0

∂

∂z
K(z, ζ)w(ζ, t) dζ, (4.13)

where the Leibniz integral rule is used. The condition

0 =
∫ z

0

(
Λ ∂

∂z
K(z, ζ) + ∂

∂ζ
K(z, ζ)Λ−K(z, ζ)A(ζ)

)
w(ζ, t) dζ

+
(
ΛK(z, z)−K(z, z)Λ +A(z)

)
w(z, t) +K(z, 0)Λ(qe1 + e2)w2(0, t)

+
(
cK(z, 0)Λe1 − g(z)

)
η(t) (4.14)

follows from replacing w̃(z, t) and its derivatives in (4.11a) with (4.10), (4.12), and
(4.13). Since (4.14) holds for arbitrary w(z, t), η(t), the kernel equations

Λ ∂

∂z
K(z, ζ) + ∂

∂ζ
K(z, ζ)Λ = K(z, ζ)A(ζ), 0 < ζ < z < 1 (4.15a)

K(z, 0)Λ(qe1 + e2) = 0 (4.15b)
K(z, z)Λ−ΛK(z, z) = A(z), (4.15c)

which are well known in the context of backstepping for hyperbolic systems, and g(z) =
cK(z, 0)Λe1 result. Hence, ifK(z, ζ) satisfies the boundary value problem (BVP) (4.15),
the transformation (4.10) maps the system (4.9) into the intermediate target system
(4.11). By restating (4.15) in terms of the elements ofK(z, ζ) = [Kij(z, ζ)], two separate
sets of equations follow, one for K11(z, ζ), K12(z, ζ) and the other one for K21(z, ζ),
K22(z, ζ). Each set is a BVP on its own and represents a so-called generalized Goursat
problem, e.g., [Cor+13].

Solution of the Kernel Equations In [VK14], an explicit solution of K21(z, ζ),
K22(z, ζ) is derived. For that, the expressions in the corresponding BVP are expanded
by a power series. This leads to an infinite number of Goursat problems, which are
transformed into explicitly solvable integral equations. From that, the solutions

K21(z, ζ) = −1
q(ε1 + ε2)exp

[(
c1
ε1

+ c4
ε2

)
ε1z + ε2ζ

ε1 + ε2

]

c2ε2
qε1

I0


2√c2c3
ε1 + ε2

√
(z − ζ)

(
ε1
ε2
z + ζ

)


+
√
c2c3

z − ζ
ε1
ε2
z + ζ

I1


2√c2c3
ε1 + ε2

√
(z − ζ)

(
ε1
ε2
z + ζ

)


+c3q2ε1 − c2ε2
qε1

Π
[
qε1c3
ε2

z − ζ
ε1 + ε2

,
c2
qε1

ε1z + ε2ζ

ε1 + ε2

]
 (4.16)
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and

K22(z, ζ) = −1
ε1 + ε2

exp
[(
c1
ε1

+ c4
ε2

)
ε1z − ε2ζ

ε1 + ε2

]

c2
q
I0


2√c2c3
ε1 + ε2

√
(z − ζ)

(
ε1
ε2
z + ζ

)


+
√
c2c3

ε1
ε2
z + ζ

z − ζ
I1


2√c2c3
ε1 + ε2

√
(z − ζ)

(
ε1
ε2
z + ζ

)


+c3q2ε1 − c2ε2
qε2

Π
[
qε1c3
ε2

z − ζ
ε1 + ε2

,
c2
qε1

ε1z + ε2ζ

ε1 + ε2

]
 (4.17)

are obtained. Therein, Ik(z), k = 0, 1, is the modified Bessel function of the first kind
of k-th order and Π(x, y) = ex+yQ1(2

√
x, 2√y) holds, where

Q1
(
2
√
x, 2√y

)
= 1− ye−x

∫ 1

0
e−σyI0

(
2√σxy

)
dσ

denotes the generalized Marcum Q-function of first order, e.g., [VK14]. Because of the
similar structure of the two sets for the elements of K(z, ζ), the solution K11(z, ζ),
K12(z, ζ) can be derived from the solution

K21(z, ζ) = K21(z, ζ; ε1, ε2, c1, c2, c3, c4, q) (4.18a)
K22(z, ζ) = K22(z, ζ; ε1, ε2, c1, c2, c3, c4, q) (4.18b)

in (4.16) and (4.17), respectively, by making use of

K11(z, ζ) = K22(z, ζ; ε2, ε1,−c4,−c3,−c2,−c1, 1/q)
K12(z, ζ) = K21(z, ζ; ε2, ε1,−c4,−c3,−c2,−c1, 1/q).

4.3.2 Decoupling Transformation

From (4.11a) and (4.11b), it is apparent that the lumped state η(t) acts on the PDE.
Since the ODE (4.11d) depends on w̃2(0, t), the system (4.11) is still a bidirectionally
coupled PDE-ODE system. Next, the coupling from the ODE to the PDE is removed
by a second transformation and the choice of the control law. For that, the decoupling
coordinates

ew(z, t) = T2
[
w̃(·, t)

]
(z)− n(z)η(t), (4.19)

with ew(z, t) = [ew1(z, t), ew2(z, t)]T ∈ R2, n(z) =∈ R2, and

T2
[
w̃(·, t)

]
(z) = w̃(z, t)−

∫ z

0
P (z, ζ)w̃(ζ, t) dζ, (4.20)

where P (z, ζ) ∈ R2×2, are introduced. The transformation (4.19) maps the intermediate
target system (4.11) into the PDE-ODE cascade

∂

∂t
ew(z, t) = Λ ∂

∂z
ew(z, t) (4.21a)

ew1(0, t) = qew2(0, t) (4.21b)
ew2(1, t) = 0 (4.21c)

d
dtη(t) = (a− bk) η(t) + bew2(0, t). (4.21d)
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ew2(z, t)

η(t)

ew1(z, t)

z0 1

Figure 4.4: Structure of the PDE-ODE cascade (4.21)

Therein, the parameter k ∈ R is a degree of freedom in the controller design and chosen
such that a − bk < 0 holds. As the distributed state ew(z, t) is decoupled from the
lumped state η(t), the coupling in the system (4.21) is only unidirectional. Therefore,
(4.21) is a PDE-ODE cascade, illustrated in Fig. 4.4.

Derivation of the Decoupling Equations The conditions fulfilled by P (z, ζ) and
n(z) are derived in a similar manner as discussed in Sec. 4.3.1. By replacing ew(z, t) in
(4.21a) with (4.19),

0 =
∫ z

0

(
Λ ∂

∂z
P (z, ζ) + ∂

∂ζ
P (z, ζ)Λ

)
w̃(ζ, t) dζ

+
(
ΛP (z, z)− P (z, z)Λ

)
w̃(z, t) +

(
P (z, 0)Λ(qe1 + e2)− bn(z)

)
w̃2(0, t)

+
(

Λ d
dzn(z)− an(z) + T2 [g] (z) + cP (z, 0)Λe1

)
η(t) (4.22)

is obtained, where (4.11a), (4.11b), and (4.11d) are utilized. Furthermore, the boundary
conditions of the PDE-ODE cascade are evaluated in terms of the transformation (4.19).
By taking (4.11b) and (4.11c) into account,

cη(t)− eT1 n(0)η(t) = −qeT2 n(0)η(t) (4.23)

follows from (4.21b) and

K[η(t),w(·, t)]−
∫ 1

0
eT2
(
K(1, z)w(z, t) + P (1, z)T1

[
w(t)

]
(z)
)
dz − eT2 n(1)η(t) = 0

(4.24)

from (4.21c). Finally, (4.19) is inserted into the ODE (4.21d), resulting in

0 = −bkη(t)− beT2 n(0)η(t), (4.25)

where (4.11d) is utilized. From (4.22), the BVP

Λ ∂

∂z
P (z, ζ) + ∂

∂ζ
P (z, ζ)Λ = 0, 0 < ζ < z < 1 (4.26a)

P (z, 0)Λ(qe1 + e2) = bn(z) (4.26b)
P (z, z)Λ−ΛP (z, z) = 0, (4.26c)
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satisfied by P (z, ζ), follows. Combining the remaining condition in (4.22) with (4.23)
and (4.25) results in the initial value problem (IVP)

Λ d
dzn(z) = an(z)− T2 [g] (z)− cP (z, 0)Λe1, z ∈ (0, 1] (4.27a)

(
eT1 − qeT2

)
n(0) = c (4.27b)

eT2 n(0) = −k, (4.27c)

satisfied by n(z). Obviously, caused by (4.26b) and (4.27a), the BVP (4.26) and the
IVP (4.27) are coupled. The feedback law

K[η(t),w(·, t)] = −kηη(t)−
∫ 1

0
kTw(z)w(z, t) dz

with the feedback gains

kη = −eT2 n(1) (4.28a)

kTw(z) = −eT2

(
K(1, ζ) + P (1, ζ)−

∫ 1

z
P (1, ζ)K(ζ, z) dζ

)
(4.28b)

follows from solving (4.24) for K[η(t),w(t)] and a subsequent change of the order of
integration.

Solution of the Decoupling Equations The solutions P (z, ζ) and n(z) are basically
obtained by tracing the decoupling equations (4.26) and (4.27) back to a Volterra integral
equation. For that, first, the solution P (z, ζ) is derived. As a consequence of (4.26a)
and (4.26c), the diagonal structure P (z, ζ) = diag

(
P1(z, ζ), P2(z, ζ)

)
follows. Thereby,

∂

∂z
Pi(z, ζ) + ∂

∂ζ
Pi(z, ζ) = 0 (4.29)

with i = 1, 2 results from (4.26a). Hence, the general solution of (4.29) reads P (z, ζ) =
diag(p1(z − ζ), p2(z − ζ)), where pi(z) are piecewise continuous functions that can be
determined by, e.g., applying the method of characteristics. By evaluating the boundary
condition (4.26b) in terms of this result,

P (z, 0) = bΛ−1 diag
(

1
q
eT1 n(z), eT2 n(z)

)

is obtained. From that, the explicit solution

P (z, ζ) = bΛ−1 diag
(

1
q
eT1 n(z − ζ), eT2 n(z − ζ)

)
(4.30)

results. Next, the solution n(z) of the IVP (4.27) is derived. Since the IVP is linear,
the solution follows by means of the matrix exponential:

n(z) = eaΛ−1z

[
c− qk
−k

]
+
∫ z

0
eaΛ−1(z−ζ)

(
−Λ−1T2 [g] (ζ)− cP (ζ, 0)e1

)
dζ. (4.31)
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Inserting (4.20) and (4.30) in (4.31), substituting the integration variable, and changing
the order of integration yields

n(z) = f(z) +
∫ z

0
P (ζ, 0)

(
−ceaΛ−1(z−ζ)e1 +

∫ z

ζ
eaΛ−1(z−σ)Λ−1g(ζ − σ) dσ

)
dζ,

(4.32)

where

f(z) = eaΛ−1zn(0)−
∫ z

0
eaΛ−1(z−ζ)Λ−1g(ζ) dζ.

By combining the solutions P (z, ζ) and n(z), i.e. inserting (4.30) into (4.32), the Volterra
integral equation

n(z) = f(z) +
∫ z

0
Q(z − ζ)n(ζ) dζ (4.33)

of the second kind with the convolution kernel

Q(z − ζ) = bΛ−1eaΛ−1(z−ζ)
(
−c1

q
e1e

T
1

+
∫ z−ζ

0
e−aΛ−1σΛ−1 diag

(
1
q
eT1 g(−σ), eT2 g(−σ)

)
dσ




is obtained. Since f(z) and Q(z) are continuous, there exists a unique and continuous
solution n(z) of (4.33), e.g., [Lin85]. Hence, P (z, ζ) is unique and continuous, too. The
Volterra integral equation (4.33) can be solved by, e.g., applying the method of successive
approximations. This method can be numerically implemented in a straightforward
manner by utilizing a truncated fixed-point iteration.

4.3.3 Stability Analysis

Next, the stability of the PDE-ODE cascade (4.21) is shown. Thereby, the stability
of the closed-loop system (4.9) follows since both system descriptions are equivalent.
The latter property holds true as the inverse transformations T −1

1 and T −1
2 of (4.10)

and (4.19), respectively, exist and are bounded. The existence and boundedness of the
inverse T −1

1 of the first transformation T1 is shown in [Cor+13] by proving that T −1
1 is

also a Volterra integral transformation with a unique and continuous kernel, implying
its boundedness. Since the kernel P (z, ζ) of the second transformation T2 is unique and
continuous, likewise, the kernel of T −1

2 is unique and continuous, e.g., [DGK19].
The stability of the PDE-ODE cascade (4.21) can be shown by making use of the solution

ew1(z, t) = ew1,0 (−ε1t+ z)h
(
z

ε1
− t
)

+ qew2,0

(
ε2t−

ε2
ε1
z

)[
h

(
t− z

ε1

)
− h

(
t− 1

ε2
− z

ε1

)]
(4.34a)

ew2(z, t) = ew2,0 (ε2t+ z)h
(1− z

ε2
− t
)

(4.34b)
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of the PDE subsystem (4.21a)–(4.21c), where ewi,0(z) are the initial values in the decou-
pled coordinates, resulting from ew,0(z) = T2T1[w0](z)− n(z)η0, and

h(t) =





0 : t < 0
1 : t ≥ 0

(4.35)

denotes the Heaviside step function. The solution (4.34) can obtained by, e.g., the
method of characteristics. Evaluating (4.34b) for t > 1/ε2 yields ew2(z, t) = 0. As
a consequence, the asymptotically stable ODE (4.21d) becomes autonomous and its
solution reads

η(t) = e
(a−bk)

(
t− 1

ε2

)
η
(

1
ε2

)
, t >

1
ε2
.

Since the initial conditions w0(z) are assumed to be piecewise continuous, η(1/ε2) is
bounded. Therefore, η(t) decays exponentially, specified by the assigned eigenvalue
a− bk. By evaluating (4.34) for t > tc, where

tc = 1
ε1

+ 1
ε2
, (4.36)

ew(z, t) = 0 follows, rendering the PDE subsystem (4.21a) finite-time stable. Thereby,
the stability of the PDE-ODE cascade (4.21) is shown. By making use of these results,
for t > tc, the closed-loop solution of the system (4.9) reads

w(z, t) = T −1
1 T

−1
2 [n](z)η(t) (4.37a)

η(t) = e
(a−bk)

(
t− 1

ε2

)
η
(

1
ε2

)
, (4.37b)

where (4.37a) results from the application of the inverse transformations T −1
1 and T −1

2
to ew(z, t) = 0. Thus, the closed-loop system (4.9) is exponentially stable pointwise in
space, i.e., for t > tc, the convergence of

∥∥w(·, t)
∥∥
∞ = sup

z∈[0,1]

∥∥w(z, t)
∥∥
R2

is exponential with a prescribed convergence rate, defined by k.

4.4 Design of the State Observer

The implementation of the state feedback (4.8) at the test bench necessitates an observer.
For that, a Luenberger-type observer based on a collocated measurement y(t) is used. It
follows from a copy of the system (4.1) with an additional injection of the output error:

∂

∂t
ŵ(z, t) = Λ ∂

∂z
ŵ(z, t) +A(z)ŵ(z, t) + l(z)

(
y(t)− ŵ1(1, t)

)
(4.38a)

ŵ1(0, t) = qŵ2(0, t) + cη̂(t) (4.38b)
ŵ2(1, t) = u(t) (4.38c)
d
dt η̂(t) = aη̂(t) + bŵ2(0, t) + lη

(
y(t)− ŵ1(1, t)

)
, (4.38d)
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εη(t)

ε1(z, t)

ε2(z, t)

ε1(1, t)

z0 1

Figure 4.5: Structure of the PDE-ODE system (4.40)

where ŵ(z, t) = [ŵ1(z, t), ŵ2(z, t)]T ∈ R2 and η̂(t) ∈ R. The observer gains are l ∈
L2(0, 1)2 and lη ∈ R. The initial conditions of the observer read ŵ(z, 0) = ŵ0(z) ∈ R2,
assumed to be piecewise continuous, and η̂(0) = η̂0 ∈ R.
By defining the deviation between the actual states of (4.1) and the estimated states of
(4.38) in terms of the error states

ε(z, t) = w(z, t)− ŵ(z, t), εη(t) = η(t)− η̂(t), (4.39)

the dynamics of the observer error reads

∂

∂t
ε(z, t) = Λ ∂

∂z
ε(z, t) +A(z)ε(z, t)− l(z)ε1(1, t) (4.40a)

ε1(0, t) = qε2(0, t) + cεη(t) (4.40b)
ε2(1, t) = 0 (4.40c)
d
dtεη(t) = aεη(t) + bε2(0, t)− lηε1(1, t), (4.40d)

where ε(z, t) = [ε1(z, t), ε2(z, t)]T ∈ R2 and εη(t) ∈ R. A schematic of the system (4.40)
can be seen in Fig. 4.5. In the following, the gains l(z) and lη are derived, rendering the
system (4.40) asymptotically stable.

Remark 4.2. Although y(t) in (4.40) does not equal the measurement at the test bench,
it is a linear combination of the physical input U(t) and the physical measurement Y (t),
both input signals to the observer (4.38). Therefore, y(t) represents a transformation of
the observer inputs. M

4.4.1 First Backstepping Transformation

In the first step, the in-domain coupling of the distributed states in (4.40a) is removed.
For that, the invertible Volterra integral transformation

ε(z, t) = ε̄(z, t)−
∫ 1

z
JI(z, ζ)ε̄(ζ, t) dζ = T −1

3
[
ε̄(·, t)

]
(z) (4.41)
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εη(t)

ε̄1(z, t)

ε̄2(z, t)

ε̄1(1, t)

z0 1

Figure 4.6: Structure of the PDE-ODE system (4.42)

with ε̄(z, t) = [ε̄1(z, t), ε̄2(z, t)]T ∈ R2 and the integral kernel JI(z, ζ) ∈ R2×2, i, j = 1, 2,
is introduced. Its inverse T3, likewise a Volterra integral transformation with the kernel4
J(z, ζ) ∈ R2×2, maps the system (4.40) into the intermediate target system

∂

∂t
ε̄(z, t) = Λ ∂

∂z
ε̄(z, t)− l̄(z)ε̄1(1, t) (4.42a)

ε̄1(0, t) = qε̄2(0, t) + cεη(t) (4.42b)
ε̄2(1, t) = 0 (4.42c)
d
dtεη(t) = aεη(t) + bε̄2(0, t)− lη ε̄1(1, t)−

∫ 1

0
beT2 JI(0, z)ε̄(z, t) dz (4.42d)

with l̄(z) ∈ R2. Fig. 4.6 illustrates the structure of (4.42).

Derivation of the Kernel Equations The kernel equations of JI(z, ζ) are derived
in a similar manner as in Sec. 4.3.1. However, as (4.41) is an inverse transformation, the
error state ε(z, t) in (4.40) is replaced by the coordinate transformation (4.41). Making
use of (4.42a) and (4.42c) results in

0 =
∫ 1

z

(
Λ ∂

∂z
JI(z, ζ) + ∂

∂ζ
JI(z, ζ)Λ +A(z)JI(z, ζ)

)
ε̄(ζ, t) dζ

+
(
JI(z, z)Λ−ΛJI(z, z)−A(z)

)
ε̄(z, t)

+
(
−l̄(z) +

∫ 1

z
JI(z, ζ )̄l(ζ) dζ + l(z)− JI(z, 1)Λe1

)
ε̄1(1, t). (4.43)

By evaluating the boundary condition (4.40b) in terms of (4.41) and inserting (4.42b),

−
∫ 1

0
eT1 JI(0, ζ)ε̄(ζ, t) dζ = −q

∫ 1

0
eT2 JI(0, ζ)ε̄(ζ, t) dζ (4.44)

follows. Combining (4.43) and (4.44) yields the BVP

Λ ∂

∂z
JI(z, ζ) + ∂

∂ζ
JI(z, ζ)Λ = −A(z)JI(z, ζ), 0 < z < ζ < 1 (4.45a)

(
eT1 − qeT2

)
JI(0, ζ) = 0T (4.45b)

JI(z, z)Λ−ΛJI(z, z) = A(z), (4.45c)

satisfied by JI(z, ζ), and the definition

l̄(z) = T3[l](z)− T3[JI(·, 1)](z)Λe1. (4.46)
4If JI(z, ζ) is a unique and continuous solution, the likewise unique and continuous solution J(z, ζ)

can by obtained from JI(z, ζ), e.g., [DGK19].
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Solution of the Kernel Equations The kernel equations (4.45) can be traced back
to the kernel equations (4.15). For that, the relations

K̆(z, ζ) = P 2ΛJTI (ζ, z)Λ−1P 2, Λ̆ = −P 2ΛP 2

Ă(z) = P 2ΛAT (z)Λ−1P 2, q̆ = −q

with the permutation matrix

P 2 =
[
0 1
1 0

]

are applied, which leads to a BVP with the same structure as in (4.15). Thereby, the
solution K̆(z, ζ) = [K̆ij(z, ζ)] follows from (4.18) since

K̆11(z, ζ) = K22(z, ζ; ε1, ε2,−c1, c3ε1/ε2, c2ε2/ε1,−c4,−1/q) (4.47a)
K̆12(z, ζ) = K21(z, ζ; ε1, ε2,−c1, c3ε1/ε2, c2ε2/ε1,−c4,−1/q) (4.47b)
K̆21(z, ζ) = K21(z, ζ; ε2, ε1, c4,−c2ε2/ε1,−c3ε1/ε2,−c1,−q) (4.47c)
K̆22(z, ζ) = K22(z, ζ; ε2, ε1, c4,−c2ε2/ε1,−c3ε1/ε2,−c1,−q). (4.47d)

From that, JI(z, ζ) = ΛP 2K̆
T (ζ, z)P 2Λ−1 is obtained.

4.4.2 Decoupling Transformation

The PDE subsystem (4.42a)–(4.42c) is still bidirectionally coupled to the ODE subsys-
tem (4.42d). To render the ODE independent of the PDE, the decoupling transformation

ε̄η(t) = εη(t)−
∫ 1

0
rT (z)ε̄(z, t) dz (4.48)

with ε̄η(t) ∈ R and rT (z) ∈ R1×2 is introduced. It maps the system (4.42) into the
unidirectional coupled ODE-PDE cascade

∂

∂t
ε̄(z, t) = Λ ∂

∂z
ε̄(z, t)− l̄(z)ε̄1(1, t) (4.49a)

ε̄1(0, t) = qε̄2(0, t) + cε̄η(t) +
∫ 1

0
crT (z)ε̄(z, t) dz (4.49b)

ε̄2(1, t) = 0 (4.49c)
d
dt ε̄η(t) = (a− `c) ε̄η(t). (4.49d)

Therein, the design parameter ` ∈ R is chosen such that a − `c < 0 holds. Hence, the
ODE subsystem (4.49d) is asymptotically stable. Fig. 4.7 depicts the structure of (4.49).
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ε̄η(t)

ε̄1(z, t)

ε̄2(z, t)

ε̄1(1, t)

z0 1

Figure 4.7: Structure of the ODE-PDE cascade (4.49)

Derivation of the Kernel Equations The conditions that have to be fulfilled by
rT (z) are derived by replacing the lumped state ε̄η(t) in (4.49d) by the transformation
(4.48). Thereby,

0 =
∫ 1

0

(
d
dzr

T (z)Λ + (a− `c) rT (z)− beT2 JI(0, z)
)
ε̄(z, t) dz

+
(
rT (0)Λ (e1q + e2) + b

)
ε̄2(0, t) +

(
rT (0)Λe1 + `

)
cεη(t)

+
(∫ 1

0
rT (z)̄l(z) dz − rT (1)Λe1 − lη

)
ε̄1(1, t)

is obtained, where (4.42) and an integration by parts are used. From that, the IVP
d
dzr

T (z)Λ = − (a− `c) rT (z) + beT2 JI(0, z), z ∈ (0, 1] (4.50a)

rT (0)Λ (e1q + e2) = −b (4.50b)
rT (0)Λe1 = −` (4.50c)

and the definition

lη =
∫ 1

0
rT (z)̄l(z) dz − rT (1)Λe1 (4.51)

follow.

Solution of the Kernel Equations Since the IVP (4.50) is linear, its solution in
terms of the matrix exponential reads

rT (z) = rT (0)e(`c−a)Λ−1z +
∫ z

0
beT2 JI(0, ζ)Λ−1e(`c−a)Λ−1(z−ζ) dζ (4.52)

with the initial condition

rT (0) =
[

1
ε1
` 1

ε2
(`q − b)

]
.

Therefore, as JI(0, ζ) is continuous, rT (z) is likewise continuous.

4.4.3 Second Backstepping Transformation

Next, the PDE subsystem (4.49a)–(4.49c) is stabilized by mapping the system (4.49)
into a ODE-PDE cascade, where the transport equations of the PDE subsystem are
cascaded, too. For that, the inverse transformation

ε̄(z, t) = ε̃(z, t)−
∫ 1

z
ΩI(z, ζ)ε̃(ζ, t) dζ = T −1

4
[
ε̃(·, t)

]
(z) (4.53)
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ε̄η(t)

ε̃1(z, t)

ε̃2(z, t)

z0 1

Figure 4.8: Structure of the ODE-PDE cascade (4.54)

with ε̃(z, t) = [ε̃1(z, t), ε̃2(z, t)]T ∈ R2 and the kernel ΩI(z, ζ) ∈ R2×2 is introduced. Its
inverse T4 with the kernel5 Ω(z, ζ) ∈ R2×2 maps the system (4.49) into

∂

∂t
ε̃(z, t) = Λ ∂

∂z
ε̃(z, t) (4.54a)

ε̃1(0, t) = qε̃2(0, t) + cε̄η(t) +
∫ 1

0
sT (z)ε̃(z, t) dz (4.54b)

ε̃2(1, t) = 0 (4.54c)
d
dt ε̄η(t) = (a− `c) ε̄η(t), (4.54d)

where the vector

sT (z) =
[
0 s(z)

]
∈ R1×2 (4.55)

ensures the cascaded PDE subsystem. A schematic of (4.54) is shown in Fig. 4.8.

Derivation of the Kernel Equations By replacing ε̄(z, t) in (4.49a) by the trans-
formation (4.53),

0 =
∫ 1

z

(
Λ ∂

∂z
ΩI(z, ζ) + ∂

∂ζ
ΩI(z, ζ)Λ

)
ε̃(ζ, t) dζ

+
(
ΩI(z, z)Λ−ΛΩI(z, z)

)
ε̃(z, t) +

(
l̄(z)−ΩI(z, 1)Λe1

)
ε̃1(1, t)

is obtained, where (4.54a) as well as (4.54c) are utilized. The boundary condition (4.49b)
is evaluated in terms of (4.53) by making use of (4.54b), resulting in

∫ 1

0

(
sT (ζ)− eT1 ΩI(0, ζ)

)
ε̃(ζ, t) dζ =

∫ 1

0

(
crT (z)− qeT2 ΩI(0, ζ)

)
ε̃(ζ, t) dζ

−
∫ 1

0
crT (ζ)

∫ 1

ζ
ΩI(ζ, ζ ′)ε̃(ζ ′, t) dζ ′ dζ. (4.56)

From the condition (4.56), the BVP

Λ ∂

∂z
ΩI(z, ζ) + ∂

∂ζ
ΩI(z, ζ)Λ = 0 (4.57a)

(
eT1 − qeT2

)
ΩI(0, ζ) = sT (ζ)− crT (ζ) +

∫ ζ

0
crT (ζ ′)ΩI(ζ ′, ζ) dζ ′ (4.57b)

ΩI(z, z)Λ−ΛΩI(z, z) = 0, (4.57c)
5The unique and continuous solution Ω(z, ζ) follows from the unique and continuous solution

ΩI(z, ζ), e.g., [DGK19].
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where (4.57a) is defined on 0 < z < ζ < 1, and the definition

l̄(z) = ΩI(z, 1)Λe1 (4.58)

follow.

Solution of the Kernel Equations From (4.57a) and (4.57c), the structure ΩI(z, ζ) =
diag(ΩI,1(z, ζ),ΩI,2(z, ζ)) follows, resulting in the general solution ΩI(z, ζ) = diag(ω1(ζ−
z), ω2(ζ − z)), where ωi(z) are arbitrary piecewise continuous functions. By choosing

s(z) =
(
crT (z)−

∫ z

0
crT (ζ)ΩI(ζ, z) dζ

)
e2,

ΩI,2(0, ζ) = 0 follows from (4.55) and (4.57b). Hence, ΩI,2(z, ζ) = ω2(ζ − z) = 0 holds,
which in turn results in s(z) = crT (z)e2 and simplifies (4.57b) to

ΩI,1(0, ζ) = ω1(ζ) = −crT (ζ)e1 +
∫ ζ

0
crT (ζ ′)e1ΩI,1(ζ ′, ζ) dζ ′.

A substitution of the integration variable yields a Volterra integral equation of the second
kind:

ω1(z) = −crT (z)e1 +
∫ z

0
crT (z − ζ)e1ω1(ζ) dζ. (4.59)

Since rT (z) is continuous, the solution ω1(z) of (4.59) is unique and continuous, e.g.,
[Lin85]. This solution can be obtained, e.g., with the method of successive approxima-
tions, allowing for a straightforward numerical implementation.

4.4.4 Stability Analysis

In the following, it is shown that the observer error dynamics (4.40) with the observer
gains

lη =
∫ 1

0
rT (z)ΩI(z, 1)Λe1 dz − rT (1)Λe1 (4.60a)

l(z) = T −1
3

[
ΩI(·, 1)

]
(z)Λe1 + JI(z, 1)Λe1, (4.60b)

resulting from (4.46), (4.51), and (4.58), is asymptotically stable. To facilitate the proof
of stability, the transformation

ε̂(z, t) = ε̃(z, t)− γ(z)ε̄η(t) (4.61)

with ε̂(z, t) = [ε̂1(z, t), ε̂2(z, t)]T ∈ R2 and γ(z) ∈ R2 is introduced. It removes the
coupling from the ODE subsystem (4.54d) to the PDE subsystem (4.54a)–(4.54c) by
mapping the system (4.54) into two separate subsystems:

∂

∂t
ε̂(z, t) = Λ ∂

∂z
ε̂(z, t) (4.62a)

ε̂1(0, t) = qε̂2(0, t) +
∫ 1

0
sT (z)ε̂(z, t) dz (4.62b)

ε̂2(1, t) = 0 (4.62c)
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ε̄η(t)

ε̂1(z, t)

ε̂2(z, t)

z0 1

Figure 4.9: Structure of the two separate subsystems (4.62)

and
d
dt ε̄η(t) = (a− `c) ε̄η(t). (4.62d)

The resulting structure of (4.62) is shown in Fig. 4.9.
To derive the conditions that have to be satisfied by γ(z), the state ε̂(z, t) in (4.62a)
is replaced by (4.61). In addition, the boundary conditions (4.62b) and (4.62c) are
evaluated in terms of (4.61). From that, the BVP

Λ d
dzγ(z) = (a− `c)γ(z), z ∈ (0, 1)

(
eT1 − qeT2

)
γ(0) =

∫ 1

0
sT (z)γ(z) dz + c

eT2 γ(1) = 0

is obtained, where (4.54) is taken into account. Its explicit solution reads

γ(z) =


ce
− 1
ε1

(a−`c)z

0


 .

The stability of (4.62) is shown in a similar manner as in Sec. 4.3.3. For t > to, where
to = 1/ε1 + 1/ε2, the solution of the PDE subsystem (4.62a)–(4.62c) reads ε̂(z, t) = 0,
rendering the PDE subsystem finite-time stable. As a consequence, for t > to, the
dynamics of the observer error (4.40) is defined by

ε̄η(t) = e(a−`c)tε̄η(0). (4.63)

Since the initial conditions w0(z) and ŵ0(z) are piecewise continuous, ε̄η(0) is bounded.
Thus, ε̄η(t) decays exponentially, defined by the assigned eigenvalue a−`c. Since ε̂(z, t) =
0 holds, for t > to, the solution

ε(z, t) = T −1
3 T

−1
4 [γ] (z)ε̄η(t) (4.64a)

εη(t) =
(

1 +
∫ 1

0
rT (z)T −1

4 [γ] (z) dz
)
ε̄η(t) (4.64b)

of (4.40), where (4.41), (4.48), (4.53), and (4.61) are utilized, is obtained. Therefore, the
system (4.40) is exponentially stable pointwise in space, i.e. for t > to, the convergence
of

∥∥ε(·, t)
∥∥
∞ = sup

z∈[0,1]

∥∥ε(z, t)
∥∥
R2

is exponential with a prescribed convergence rate, defined by `.
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4.5 Stability of the Closed-Loop System

From the combination of the state feedback (4.8) with the state observer (4.38), the
output feedback controller

∂

∂t
ŵ(z, t) = Λ ∂

∂z
ŵ(z, t) +A(z)ŵ(z, t) + l(z)

(
y(t)− ŵ1(1, t)

)
(4.65a)

ŵ1(0, t) = qŵ2(0, t) + cη̂(t) (4.65b)
ŵ2(1, t) = u(t) (4.65c)
d
dt η̂(t) = aη̂(t) + bŵ2(0, t) + lη

(
y(t)− ŵ1(1, t)

)
(4.65d)

u(t) = K
[
η̂(t), ŵ(·, t)

]
(4.65e)

is obtained. By inserting (4.65e) into (4.1),

∂

∂t
w(z, t) = Λ ∂

∂z
w(z, t) +A(z)w(z, t) (4.66a)

w1(0, t) = qw2(0, t) + cη(t) (4.66b)
w2(1, t) = K

[
η̂(t), ŵ(·, t)

]
(4.66c)

d
dtη(t) = aη(t) + bw2(0, t) (4.66d)

results. In the following, the stability of (4.66) is shown. For that, it is beneficial to
apply the transformations (4.10) and (4.19) to the state w(z, t) in (4.66), resulting in

∂

∂t
ew(z, t) = Λ ∂

∂z
ew(z, t) (4.67a)

ew1(0, t) = qew2(0, t) (4.67b)
ew2(1, t) = K

[
η̂(t), ŵ(·, t)

]
−K

[
η(t),w(·, t)

]
(4.67c)

d
dtη(t) = (a− bk) η(t) + bew2(0, t). (4.67d)

Since the feedback operator K is linear, the boundary condition (4.67c) can be expressed
in terms of the errors states (4.39):

ew2(1, t) = −K
[
εη(t), ε(·, t)

]
. (4.68)

By applying the transformations (4.41), (4.48), (4.53), and (4.61), the boundary condi-
tion (4.68) reads

ew2(1, t) =
[
kη +

∫ 1

0

(
kηr

T (z)T −1
4 [γ] (z) + kTw(z)T −1

3 T
−1

4 [γ] (z)
)
dz
]
ε̄η(t)

+
∫ 1

0

(
kηr

T (z)T −1
4

[
ε̂(t)

]
(z) + kTw(z)T −1

3 T
−1

4
[
ε̂(t)

]
(z)
)
dz, (4.69)

where the definition (4.8) of the feedback operator is used. Next, the coupling from the
ODE to the PDE in the system (4.67) is removed by eliminating ε̄η(t) in the boundary
condition (4.69). For that, the transformation

ēw(z, t) = ew(z, t)− β(z)ε̄η(t) (4.70)
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with ēw(z, t) = [ēw1(z, t), ēw2(z, t)]T ∈ R2 and β(z) ∈ R2 is introduced, mapping the
system (4.67) into

∂

∂t
ēw(z, t) = Λ ∂

∂z
ēw(z, t) (4.71a)

ēw1(0, t) = qēw2(0, t) (4.71b)

ēw2(1, t) =
∫ 1

0

(
kηr

T (z)T −1
4

[
ε̂(t)

]
(z) + kTw(z)T −1

3 T
−1

4
[
ε̂(t)

]
(z)
)
dz (4.71c)

d
dtη(t) = (a− bk) η(t) + bēw2(0, t) + beT2 β(0)ε̄η(t). (4.71d)

To derive the conditions that have to be satisfied by β(z), the state ew(z, t) in (4.67a)
is replaced with (4.70), using (4.62d) and (4.71a). Furthermore, (4.67b) and (4.69) are
evaluated in terms of (4.70), utilizing (4.71b) and (4.71c). From that, the BVP

Λ d
dzβ(z) = (a− `c)β(z) (4.72a)

(
eT1 − qeT2

)
β(0) = 0 (4.72b)

eT2 β(1) = kη +
∫ 1

0

(
kηr

T (z)T −1
4 [γ] (z) + kTw(z)T −1

3 T
−1

4 [γ] (z)
)
dz

︸ ︷︷ ︸
=eT2 β1

, (4.72c)

where (4.72a) is defined on z ∈ (0, 1), is obtained. Its explicit solution reads

β(z) =


e
−(a−`c)

(
1
ε1
z+ 1

ε2

)
qeT2 β1

e
1
ε2

(a−`c)(z−1)
eT2 β1


 .

To show the stability of (4.71), first, t > to is considered. Hence, as discussed in
Sec. 4.4.4, ε̂(z, t) = 0 holds and the boundary condition (4.71c) reads ēw2(1, t) = 0.
Thus, for t > to + tc, the solution ēw(z, t) = 0 of (4.71a)–(4.71c) results, rendering the
PDE subsystem finite-time stable. As a consequence, for t > to + tc, the dynamics of
(4.71) is defined by the ODEs (4.62d) and (4.71d):

d
dt

[
ε̄η(t)
η(t)

]
=
[
a− `c 0
beT2 β(0) a− bk

] [
ε̄η(t)
η(t)

]
. (4.73)

Since the eigenvalues of (4.73) are a − `c < 0 and a − bk < 0, the combined systems
(4.65) and (4.66) are exponentially stable pointwise in space for t > to + tc.
Remark 4.3. As the matrix in (4.73) has a lower triangular structure, its eigenvalues can
be specified independently of each other. Therefore, the separation principle holds. M

4.6 Simulation Studies

In the following, first, the backstepping controller, designed in Sec. 4.3, is evaluated in
simulations. For that, the feedback law (4.8) is applied to the linear model (2.51) of the
test bench, stabilizing a desired constant pressure level. Subsequently, the state feedback
is combined with the state observer, resulting in the output feedback controller, and
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augmented by the feedforward controller, designed in Chap. 3. From that, the output
feedback tracking controller is obtained. Its performance is validated in simulations
by means of the linear model and the plant model (2.48). The parameters of the test
bench configuration are stated in Tab. 3.1. For the implementation of the controller, the
integral in (4.8) is discretized w.r.t. space by the trapezoidal rule and the observer by
the methods stated in Appx. B.1.

State Feedback Controller To allow for the application of the feedback law (4.8) to
the test bench, it is rewritten as

U(t) = A
(
e−ατ0w1(1, t) + eατ0K[η(t),w(·, t)]

)
, (4.74)

resulting from (4.7a). While it guarantees the asymptotic stabilization of the equilibrium
x(z, t) = 0, ξ(t) = 0, a pressure of zero is not desirable. In order to stabilize a non-zero
constant tank pressure prvol, the error states

w̃(z, t) = w(z, t)−




−eατ0z

2aiso
e−ατ0z

2aiso


 ye, η̃(t) = η(t)− aisoye,

where ye = prvol/(RsT0), are substituted into (4.74), resulting in

U c(t) = A
(
e−ατ0w̃1(1, t) + eατ0K[η̃(t), w̃(·, t)]

)
. (4.75)

The design parameter k is chosen such that the eigenvalue a ≈ −13.61 in the ODE (4.1d)
of the linear model in standard backstepping form is shifted to a−bk = −20 in the ODE
(4.21d) of the closed-loop system. This choice is motivated by a trade-off between a
sufficiently smooth input signal and a adequately fast dynamic behavior. Since the state
feedback is initially applied to the linear model (2.51) in a simulation, an adjustment of
the friction amplification factor kfric in (2.51a), which can be regarded as an additional
freedom of choice in the controller design, is unnecessary. Therefore, it is set to kfric = 1
in the simulation as well as in the design of the feedback gains kη, kTw(z) in (4.28).
Fig. 4.10 shows the application of the state feedback U c(t) with prvol = 3 bar to the
linear model. Initially, the system is at rest and in equilibrium with its surroundings,
i.e. x1(z, 0) = ξ(0) = ρ0, x2(z, 0) = 0. The feedback controller is activated at ton = 0.05 s.
In the upper plot of Fig. 4.10, for t > t1 = 1/ε2 + ton ≈ 0.07 s, it can be seen that the
tank pressure pvol(t) exponential converges to the desired value prvol. The lower plot
depicts the input U c(t), which converges to zero for t > t2 = tc + ton ≈ 0.08 s, where tc
is defined in (4.36). The high frequency oscillations, occurring shortly after ton and t2,
are induced by discontinuities in the solution, resulting in numerical errors.
To demonstrate that the input U c(t) in Fig. 4.10 guarantees the desired closed-loop dy-
namics (4.21), the distributed error state w̃(z, t) of the closed-loop system is transformed
into ẽw(z, t) by making use of the transformations (4.10) and (4.19). The resulting error
state ẽw(z, t) is depicted in Fig. 4.11. Therein, it can be seen that, besides numeri-
cal inaccuracies, ẽw(z, t) satisfies the dynamics of the PDE subsystem (4.21a)–(4.21c):
For t > ton, ew,2(1, t) = 0 holds. This value propagates along a characteristic curve
from z = 1 to z = 0 in 1/ε2 ≈ 0.015 s, resulting in ew,2(z, t) = 0 and ew,1(0, t) = 0.
Consequently, after 1/ε1 ≈ 0.015 s, ew,1(z, t) = 0 is obtained. Therefore, for t > t2,
ẽw(z, t) = 0 holds.
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Fig. 4.12 shows the exponential convergence of the L∞-norm of the error state w̃(z, t) to
zero. While the solid blue line follows from the simulation of the controlled linear model,
the dash-dotted yellow line is calculated for t > t2 based on the analytical solution (4.37).
It can be seen that the numerical solution matches the analytical one almost perfectly
while the minor deviations shortly after t2 are caused by numerical errors in w̃(z, t).

Output Feedback Tracking Controller In view of the implementation of the con-
trol law at the test bench, next, the state feedback (4.74) is combined the observer (4.38),
resulting in the output feedback controller

U c(t) = A
(
e−ατ0ŵ1(1, t) + eατ0K[η̂(t), ŵ(·, t)]

)
, (4.76)

where ŵ(z, t), η̂(t) are the estimated states. The parameter ` in the observer design is
specified such that the eigenvalue of the ODE (4.49d) reads a− `c = −20, guaranteeing
sufficiently smooth estimates with respect to noise and a fast convergence of the observer
error. As discussed in Chap. 3, it is advisable to augment the output feedback controller
with a feedforward controller. Hence, U c(t) is superposed with the feedforward controller
U r(t), resulting in the output feedback tracking controller6

U(t) = U r(t) + U c(t). (4.77)

To allow for the stabilization of a desired tank pressure trajectory prvol(t), the feedback
part reads

U c(t) = A
(
e−ατ0w̃1(1, t) + eατ0K[η̃(t), w̃(·, t)]

)
. (4.78)

It follows from replacing the estimated states ŵ(z, t), η̂(t) in (4.76) by the error states

w̃(z, t) = ŵ(z, t)−wr(z, t), η̃(t) = η̂(t)− ηr(t),

where wr(z, t), ηr(t) are the reference states, parametrized by prvol(t). The trajectories
U r(t) and wr(z, t), ηr(t) are obtained by applying a flatness-based feedforward controller
design7 to the linear model since the latter is utilized in the subsequent simulation.
The desired tank pressure prvol(t) results from (3.11) and equals the standard reference
trajectory in Fig. 3.2.
The simulation results, following from the application of the output feedback tracking
controller (4.77) to the linear model (2.51), are depicted in Fig. 4.13. While the system
is in equilibrium with its surroundings at t = 0, the initial state of the observer is
x̂1(z, 0) = ξ̂(0) = 3ρ0, x̂2(z, 0) = 0. In the upper plot of Fig. 4.13, the reference tank
pressure prvol(t), the estimated tank pressure p̂vol(t), and the actual tank pressure pvol(t)
can be seen. The lower plot shows the control input U(t) with feedforward part U r(t)
and feedback part U c(t).
Fig. 4.14 depicts the deviations ∆p(t) of the pressure trajectories in Fig. 4.13, i.e. pvol(t)−
p̂vol(t), prvol(t)− p̂vol(t), and prvol(t)− pvol(t). At the beginning, the tank pressure starts
to deviate from the reference pressure caused by the initial observer error. Since the
estimated state converges to the actual state, the actual state converges to the reference

6More precisely, the output feedback tracking controller comprises (4.38) and (4.77).
7By making use of the results in Chap. 5, the trajectories follow from the flatness-based parametriza-

tion (5.15), based on (3.11).
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Figure 4.10: Application of the feedback controller (4.75) to the linear model (2.51):
Reference pressure prvol and tank pressure pvol(t) as well as corresponding control input
U c(t)

Figure 4.11: Transformed distributed error state ẽw(z, t), satisfying the dynamics
(4.21a)–(4.21c) for t > ton
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Figure 4.12: Resulting L∞-norm of the error state w̃(z, t), calculated based on the
simulation data of the closed-loop system and based on the analytical solution (4.37)
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Figure 4.13: Application of the output feedback tracking controller (4.77) to the linear
model (2.51): Reference pressure prvol(t), estimated pressure p̂vol(t), and tank pressure
pvol(t) as well as corresponding control input U(t) with feedforward part U r(t) and
feedback part U c(t)
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Figure 4.14: Deviations between the reference pressure prvol(t), the estimated pressure
p̂vol(t), and the tank pressure pvol(t) in Fig. 4.13

state. Consequently, for approximately t > 0.4 s, the feedback part U c(t) becomes
virtually zero and the system is steered by the feedforward controller U r(t) only, which
can be seen in the lower plot of Fig. 4.13.
Having validated the controller for the linear model, next, it is applied to the plant model
in a simulation. Thereby, the discussion of the experimental results in the subsequent
section is facilitated. While the other parameters remain unchanged, the friction am-
plification factor kfric in (2.51a), compensating underestimated friction effects, is tuned
by trial and error and set to kfric = 4 for the design of the gains kη, kTw(z) and lη,
l(z) in (4.28) and (4.60), respectively. Naturally, as described in Chap. 3, the design of
the flatness-based feedforward controller U r(t) in (3.14) is now based on the isothermal
model (2.50) since the plant model is used in the simulation. Both, the system and the
observer, are initialized at ambient conditions. The results are depicted in Fig. 4.15 and
the corresponding deviations8 in Fig. 4.16. In contrast to Fig. 4.13, it can be seen that
small deviations occur during the transitions. These arise from the fact that the state
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Figure 4.15: Application of the output feedback tracking controller (4.77) to the plant
model (2.48): Reference pressure prvol(t), estimated pressure p̂vol(t), and tank pressure
pvol(t) as well as corresponding control input U(t) with feedforward part U r(t) and
feedback part U c(t)
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Figure 4.16: Deviations between the reference pressure prvol(t), the estimated pressure
p̂vol(t), and the tank pressure pvol(t) in Fig. 4.15

feedback as well as the observer are designed based on the linear model but the thereby
resulting controller applied to the plant model.

Finally, it should be noted that the performance of the output feedback tracking con-
troller depends on the validity of the isothermal and the linear model and, hence, essen-
tially on four factors: the tube’s length as well as its diameter, the volume of the tank,
and the transition rate of the reference pressure trajectory (cf. Sec. 2.7). For a test bench
configuration with a short, thick tube as well as a small tank and slow transitions, the
deviations will be relatively small. Compared to that, the deviations will be increased if
a test bench configuration with a long, thin tube as well as a large tank is utilized and
fast transitions are specified.
Furthermore, it can be shown by simulations and experiments that the deviations ∆p(t)
are mainly caused by the observer and less by the feedforward or state feedback con-
troller. To achieve a satisfying control performance for a test bench configuration with,
e.g., a very long tube, a nonlinear state observer is designed in Appx. C by making use of

8The deviations of all essential simulation and experimental results are quantified in terms of the
error measures L1

r,err and L∞err in (2.42) and (2.43), respectively. They can be found in Chap. 7.
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Figure 4.17: A schematic of the implementation of the output feedback tracking con-
troller (4.77) at the test bench

the idea in [RNM16]. Since the nonlinear state observer significantly decreases the esti-
mation error, the tracking behavior is improved. However, as illustrated in Fig. 4.15, the
controller performance for the standard test bench configuration in Tab. 3.1 is entirely
satisfying. Thus, the nonlinear state observer is not focused on any further.

4.7 Experimental Results

To validate the output feedback tracking controller (4.77) in experiments, it is imple-
mented in Simulink and integrated in the software framework of the test bench. The
chosen space step size ∆z for the discretization and the sample time ∆t of the test bench
are given in Appx. B.1.1. A schematic of the implementation and the interface with the
test bench is depicted in Fig. 4.17.
Therein, it can be seen that the feedforward controller U r(t), designed based on the
isothermal model (2.50), and the corresponding reference states wr(z, t), ηr(t) are calcu-
lated offline. In addition, the controller gains kη, kTw(z) and the observer gains lη, l(z) are
computed prior to the experiment. While the experiment is conducted, the observer es-
timates the states ŵ(z, t), η̂(t) based on the pressure measurement Y (t) = pin(t). These
states as well as the reference states are fed to the feedback controller which calculates
U c(t). The input U(t), resulting from the summation of U c(t) and U r(t), is passed to the
inverse mass flow rate model (2.19) of the valve. Depending on the measured pressures9
psup(t) and pin(t), the voltage ν(t), corresponding to U(t), is fed to the valve. Thereby,

9The tank pressure pvol(t) is measured for validation purposes only.
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Figure 4.18: Application of the output feedback tracking controller (4.77) to the test
bench: Reference pressure prvol(t), estimated pressure p̂vol(t), and measured tank pressure
pvol(t) as well as corresponding control input U(t) with feedforward part U r(t) and
feedback part U c(t)
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Figure 4.19: Deviations between the reference pressure prvol(t), the estimated pressure
p̂vol(t), and the measured tank pressure pvol(t) in Fig. 4.18

the position of the spool is defined and, hence, the actual mass flow rate ṁin(t) at the
test bench results10. In addition to ν(t), the inverse mass flow rate model calculates the
bounded input

Uν(t) = min
{

max{ṁmin
in (t), U(t)}, ṁmax

in (t)
}

(4.79)

by making use of (2.17). Thus, the minimum and maximum mass flow rates ṁmin
in (t)

and ṁmax
in (t), attainable through the valve, are taken into account. The resulting Uν(t)

is passed to the observer since it resembles the actual input to the test bench.
Remark 4.4. To improve the visualization, some blocks of the Simulink model are not
depicted in Fig. 4.17, e.g., two low-pass filters, slightly smoothing the noisy measure-
ments pin(t) and psup(t). A more detailed description of the Simulink Real-Time software
framework of the test bench can be found in [MK19]. M

In the first experiment, the controller tracks the standard reference trajectory in Fig. 3.2.
The design parameters are chosen as in Sec. 4.6, i.e. a − bk = a − `c = −20 holds, and

10As mentioned in Rem. 2.2, the actual mass flow rate ṁin(t) matches the desired mass flow rate U(t)
only approximately, caused by model uncertainties.
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the friction amplification factor in (2.51a) is set to kfric = 4 for the design of the gains
kη, kTw(z) and lη, l(z) in (4.28) and (4.60), respectively. The results of the experiment
are depicted in Fig. 4.18. The corresponding pressure deviations are shown in Fig. 4.19.
Obviously, the results of the experiment in Fig. 4.18 and of the simulation in Fig. 4.15
are very similar. However, in the experiment, high frequency oscillations occur in the
feedback part U c(t). These arise from measurement noise in pin(t) and psup(t). Hence,
Uν(t) and Y (t), both fed to the observer, are noisy, too. In contrast to a lumped-
parameter observer, the hyperbolic observer (4.38) does not exhibit such a strong filtering
property. As a consequence, the measurement noise is quite significant in the estimates
ŵ(z, t), η̂(t), which leads to the high frequency oscillations in the feedback part U c(t).
Furthermore, in steady-state, prvol(t) − pvol(t) is not driven to zero entirely. The minor
deviations, apparent in Fig. 4.19, result from the fact that the inverse mass flow rate
model is less accurate for small mass flow rates. Still, the controller tracks the reference
trajectory with a high precision.
In the next experiment, a highly dynamic reference trajectory is chosen for prvol(t) while
the test bench configuration and the parameters remain unchanged. For that, two tran-
sitions of the tank pressure from 3 bar to 6 bar and back to 3 bar are carried out twice.
While the first two transitions have a rate of 7.5 bar/s, the rate of the latter is twice as
slow at 3.75 bar/s. The results are presented in Fig. 4.20, where the bounded input Uν(t)
in (4.79) is depicted instead of the desired input U(t) since the latter partially exceeds
the actuation capabilities of the valve. The corresponding pressure deviations are shown
in Fig. 4.21.
Compared to the slower transitions, the deviations in Fig. 4.21 during the fast transitions
are relatively large and the share of the feedback part U c(t) in Uν(t) is increased. Both
effects are caused by the highly dynamic reference trajectory, which induces high flow
velocities. Hence, the linear model, used for the state feedback and observer design,
is a less accurate description of the test bench (cf. Sec. 2.7). To illustrate the valve’s
physical capabilities, the voltage ν(t) is shown in Fig. 4.22. Therein, it can be seen that
the signal ν(t) = 0 is fed to the valve for t ∈ [2.00 s, 2.22 s]. Hence, the test bench is
discharged at its fastest rate and U(t) ≤ Uν(t) = ṁmin

in (t) holds, resulting from (4.79). In
contrast to the fast transitions, the slower transitions are tracked with a high precision.
Furthermore, as it can be seen in Fig. 4.22, ν(t) ∈ (0, 10 V) holds during the slower
transitions. Hence, the desired input equals the bounded input, i.e. U(t) = Uν(t), and
the valve is operated within its limits.

4.8 Chapter Highlights

This chapter presented the design of a backstepping-based state feedback and state
observer for 2×2 hyperbolic systems with constant propagation speeds, which are coupled
to a first-order ODE, and have a collocated measurement available. By making use of the
two-step approach, all but two integral kernels of the transformations were calculated
by explicit expressions. Each of the remaining two kernels followed from the numerical
solution of a simple Volterra integral equation. Based on the linear model of the test
bench, an output feedback controller was designed, i.e. the combined state feedback
and observer, which was augmented by the feedforward controller, derived in Chap. 3.
The resulting output feedback tracking controller was investigated in simulations and
experiments.
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Figure 4.20: Application of the output feedback tracking controller (4.77) to the test
bench with faster transitions: Reference pressure prvol(t), estimated pressure p̂vol(t), and
measured tank pressure pvol(t) as well corresponding bounded control input Uν(t) with
feedforward part U r(t) and feedback part U c(t)
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Figure 4.21: Deviations between the reference pressure prvol(t), the estimated pressure
p̂vol(t), and the measured tank pressure pvol(t) in Fig. 4.20
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Figure 4.22: The voltage ν(t), resulting from the inverse mass flow rate model (2.19)
and fed to the valve for the experiment in Fig. 4.20
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So far, controller designs for pneumatic systems involving tubes, found in the literature,
were not directly based on PDEs and/or the resulting control law was finite-dimensional.
In contrast to that, the presented infinite-dimensional state feedback and observer are
derived based on a PDE-ODE system, describing the test bench. The resulting con-
troller can be implemented in a straightforward manner and its tracking performance in
experiments is almost perfect.
In connection with this chapter, the journal papers [DGK18; DGK19] as well as the
conference papers [DGK17; KG17; Ker+18a] were published. Furthermore, the talks
[GK17; Ker+18b; Ker19] were given. The supervised student theses [Mey16; Mei18;
Rot18] have contributed to the development of the chapter’s results.
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Chapter 5

State Feedback and State
Observer Design Using Flatness

As mentioned in Chap. 3, the flatness-based approach has become a viable method for
the design of feedforward controllers in the context of distributed-parameter systems. It
is shown in [WM10] (in German) and [Woi11] that the parametrization of the system
quantities in terms of a flat output is also useful for the controllability analysis of systems
described by wave equations. In [Woi12] (in German) and [WR12], these results are
generalized to linear hyperbolic PDE systems, coupled to linear ODE systems. Moreover,
the hyperbolic controller form (HCF) is introduced, a special system representation,
which allows for a straightforward state feedback design.
The HCF essentially consists of a scalar transport equation, where the boundary input
acts on its inlet and a chain of integrators is attached at its outlet. The HCF is obtained
by making use of a flatness-based parametrization of the input, resulting in a functional
differential equation (FDE). This equation involves lumped and distributed delays as
well as predictions of the flat output and its time derivatives. If the system is in HCF,
it is relatively simple to design a state feedback, similar to the controller canonical form
of lumped-parameter systems, e.g., [Oga10]. For that, a desired dynamics of the flat
output, e.g., represented by an FDE, is specified. It is shown in [Woi13a] that the
explicit transformation of a system into HCF is not necessarily required for the flatness-
based state feedback design. Instead, the state feedback can be directly derived in terms
of the so-called flat coordinates with a desired dynamics of the flat output.
In [Woi12], the basic idea of the flatness-based state feedback design, where the system
quantities are parametrized in terms of the flat output, is adopted for the design of a state
observer. For that, the concept of duality is employed. Based on a flat parametrization of
the quantities of the dual system, the hyperbolic observer form (HOF) is defined. Similar
to the state feedback design, the design of the state observer is relatively straightforward
if the system is in the HOF. The convergence of the estimated state towards the actual
state is guaranteed by specifying the dynamics of the observation error. It is shown
in [Woi13b] that the HOF can also be derived from a specific input-output relation in
form of an FDE. This equation is an equivalent description of the system dynamics and
involves the input and the measured output as well as their delayed and predicted values
and time derivatives.

75
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The output feedback controller follows from the combination of the state feedback with
the state observer, e.g., as illustrated in [Woi12], where such a controller is designed
based on a wave equation. Since there are currently no general results on the required
transformation between the state used in the feedback controller and the one in the
HOF, such a combination is not always possible. This also holds true in the context of
the pneumatic system in this thesis.
Still, in the following, a state feedback and an observer are designed based on the linear
model (2.51) of the test bench by utilizing the flatness-based approaches in [Woi13a]
and [Woi13b]. The state feedback in flat coordinates is derived by parametrizing the
system quantities in terms of a flat output. The observer in the HOF follows from
the input-output relation between U(t) and Y (t). The resulting state feedback and
observer are separately validated in simulations since the combination to an output
feedback controller would require the aforementioned transformation, which is unknown.
Obviously, this prevents an experimental validation of the flatness-based approach, too.
The state feedback design in this chapter follows [GK18], a contribution of N. Gehring
and the author of this thesis, and the observer design is based on the unpublished notes
[Geh18]. Compared to these references, this chapter presents the state feedback design
in more detail. For that, the two-sided Laplace transform is utilized instead of the
one-sided. In addition, new theoretical aspects are introduced by discussing both the
stability of the closed-loop system and of the observer error dynamics. Furthermore, the
state observer investigated in simulations.

5.1 Design of the State Feedback

In the following, first, the system quantities are parametrized in terms of a flat output.
By prescribing a desired dynamics of the latter, the state feedback follows, guaranteeing
this dynamics and, hence, stabilizing the system. The HCF is not explicitly stated since
it is not required, e.g., [Woi13a].

5.1.1 Time-Domain Solution in Terms of a Flat Parametrization

The design of the state feedback is based on the time-domain solution of the linear model
(2.51) parametrized in terms of a flat output y(t). In this thesis, it is derived by making
use of the two-sided Laplace transform, defined in Appx. D. By transforming x(z, t) and
its derivatives1 into the operational domain, the PDE (2.51a) results in

d
dz x̂(z, s) =

[
0 k3+s

k2
s
k1

0

]

︸ ︷︷ ︸
A(s)

x̂(z, s) (5.1)

with x̂(z, s) = [x̂1(z, s), x̂2(z, s)]T ∈ C2, where x̂i(z, s) = LII [xi(z, ·)](s), i = 1, 2, is the
image of xi(z, t). Furthermore,

k1 = 1
L
, k2 = a2

iso
L
, k3 = kfric

32µ0
D2

1
ρ0

(5.2)

1It is assumed that x(z, t), ξ(t) and their derivatives fulfill the necessary conditions for the existence
of the following (inverse) Laplace transforms (cf. [vB55; Yos95]).
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are introduced for brevity. The explicit solution of the ODE (5.1) in terms of the initial
value x̂(0, s) reads

x̂(z, s) = eA(s)zx̂(0, s) with eA(s)z =


cosh(ω(s)z) k3+s

k2
sinh(ω(s)z)

ω(s)
s
k1

sinh(ω(s)z)
ω(s) cosh(ω(s)z)


 , (5.3)

the complex function

ω(s) = τ0
√

(s+ α)2 − β2, (5.4)

and the constants τ0 = 1/
√
k1k2 = L/aiso as well as α = β = k3/2 = 16kfricµ0/(D2ρ0).

Next, the initial value x̂(0, s) in (5.3) is expressed in terms of the flat output. Similar
to the isothermal model (2.50), discussed in Sec. 3.1,

y(t) = ξ(t)

is a flat output of the linear model (2.51). Thus, by making use of (2.51b) and (2.51d),
the boundary values at z = 0 are parametrized by

x̂1(0, s) = ŷ(s), x̂2(0, s) = s

k4
ŷ(s) with k4 = A/Vvol, (5.5)

where ξ̂(s) = LII [ξ](s) is replaced by ŷ(s) = LII [y](s). Finally, inserting (5.5) into (5.3)
yields the parametrization

x̂1(z, s) = s(k3 + s)
k2k4

ŷ(s)sinh(ω(s)z)
ω(s) + ŷ(s) cosh(ω(s)z) (5.6a)

x̂2(z, s) = s

k4
ŷ(s) cosh(ω(s)z) + s

k1
ŷ(s)sinh(ω(s)z)

ω(s) . (5.6b)

To transform the operational solution (5.6) back into the time domain, first, the term

T̂1(z, s) = ŷ(s)sinh(ω(s)z)
ω(s) (5.7)

is transformed. Although relatively similar calculations can be found in [Doe56;
Fod65; Rud03], those are based on the one-sided Laplace transform. Since this
thesis makes use of the two-sided Laplace transform, the derivation of the relation
T1(z, t) = L−1

II [T̂1(z, ·)](t) is presented in more detail. Based on this result, the relations
required to obtain the time-domain solution of (5.6) follow.
First, by making use of the identity sinh(z) = (ez − e−z)/2, the function T̂1(z, s) =
f̂1(z, s) + f̂2(z, s) is split, where

f̂i(z, s) = ± 1
2τ0

ŷ(s) 1√
(s+ α)2 − β2 e

±τ0z
√

(s+α)2−β2
.

After expanding this fraction with s(s+α), the properties in Tab. D.2 and the transfor-
mation in Tab. D.1 (cf. Appx. D) can be directly utilized. From that,

L−1
II

[
f̂i(z, ·)

]
(t) = ± 1

2τ0

∫ ∞

−∞
e−ατh(τ ± τ0z)J0

(
β
√

(τ0z)2 − τ2
)
y(t− τ) dτ
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results. Therein, the Bessel function J0(z) of the first kind of zeroth order follows from
J0(jz) = I0(z). Thus, the inverse transformation of (5.7) reads

L−1
II

[
T̂1(z, ·)

]
(t) = 1

2τ0

∫ τ0z

−τ0z
e−ατJ0

(
β
√

(τ0z)2 − τ2
)
y(t− τ) dτ. (5.8)

Finally, by substituting the integration variable and introducing

B(z, τ) = 1
2e
−ατ0τJ0

(
τ0β

√
z2 − τ2

)
,

the relation (5.8) can be stated as

L−1
II

[
T̂1(z, ·)

]
(t) =

∫ z

−z
B(z, τ)y(t− τ0τ) dτ. (5.9)

Next, by making use of (5.9), the relations for the terms in the operational solution (5.6)
are derived. For that, (5.6) is rewritten as

x̂1(z, s) = k3
k2k4

T̂2(z, s) + 1
k2k4

T̂3(z, s) + T̂4(z, s)

x̂2(z, s) = 1
k4
T̂5(z, s) + 1

k1
T̂2(z, s).

Therein, the terms T̂j(z, t), j = 2, . . . , 5 are defined by means of T̂1(z, s) in (5.7):

T̂2(z, s) = sT̂1(z, s) (5.10a)
T̂3(z, s) = sT̂2(z, s) (5.10b)

T̂4(z, s) = ŷ(s) cosh(ω(s)z) = d
dz T̂1(z, s) (5.10c)

T̂5(z, s) = sT̂4(z, s). (5.10d)

Consequently, the relations T̂j(z, t) can be obtained from (5.9). By making use of the
differentiation property in Tab. D.2 and an integration by parts,

L−1
II

[
T̂2(z, ·)

]
(t) = − 1

2τ0
e−ατ0zy(t− τ0z) + 1

2τ0
eατ0zy(t+ τ0z)

+
∫ z

−z

∂
∂τB(z, τ)

τ0
y(t− τ0τ) dτ (5.11)

follows. In a similar manner,

L−1
II

[
T̂3(z, ·)

]
(t) = − 1

2τ0
e−ατ0z d

dty(t− τ0z) + 1
2τ0

eατ0z d
dty(t+ τ0z)

− 1
4τ2

0
(β2τ2

0 z − 2ατ0)e−ατ0zy(t− τ0z)

− 1
4τ2

0
(β2τ2

0 z + 2ατ0)eατ0zy(t+ τ0z)

+
∫ z

−z

∂2

∂τ2B(z, τ)
τ2

0
y(t− τ0τ) dτ (5.12)
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is obtained. In order to derive T̂4(z, ·), (5.9) is differentiated with respect to space,
resulting in

L−1
II

[
T̂4(z, ·)

]
(t) = 1

2e
−ατ0zy(t− τ0z) + 1

2e
ατ0zy(t+ τ0z)

+
∫ z

−z

∂

∂z
B(z, τ)y(t− τ0τ) dτ, (5.13)

where the Leibniz integral rule is applied. The relation

L−1
II

[
T̂5(z, ·)

]
(t) = 1

2e
−ατ0z d

dty(t− τ0z) + 1
2e

ατ0z d
dty(t+ τ0z)

+ 1
4τ0

β2τ2
0 ze−ατ0zy(t− τ0z)−

1
4τ0

β2τ2
0 zeατ0zy(t+ τ0z)

+
∫ z

−z

∂2

∂τ∂zB(z, τ)
τ0

y(t− τ0τ) dτ (5.14)

follows from the differentiation property in Tab. D.2 and an integration by parts.
Thereby, the time-domain solution of (5.6), i.e. the solution of the linear model (2.51)
in terms of the flat output y(t), follows:

x1(z, t) = 1
2k2k4τ0

eατ0z d
dty(t+ τ0z)−

1
2k2k4τ0

e−ατ0z d
dty(t− τ0z)

+ f1(z; τ0)y(t+ τ0z) + f1(z;−τ0)y(t− τ0z) +
∫ z

−z
g1(z, τ)y(t− τ0τ) dτ

(5.15a)

x2(z, t) = 1
2k4

eατ0z d
dty(t+ τ0z) + 1

2k4
e−ατ0z d

dty(t− τ0z)

+ f2(z; τ0)y(t+ τ0z) + f2(z;−τ0)y(t− τ0z) +
∫ z

−z
g2(z, τ)y(t− τ0τ) dτ,

(5.15b)
where

f1(z; τ) = eατz
2

(
1 + k3 − β2τz

2k2k4τ

)
, g1(z, t) =

∂2

∂t2B(z, t) + cτ0
∂
∂tB(z, t)

k2k4τ2
0

+ ∂

∂z
B(z, t)

f2(z; τ) = eατz
2

(
1
k1τ
− β2τz

2k4

)
, g2(z, t) =

∂
∂tB(z, t)
aτ0

+
∂2

∂t∂zB(z, t)
k4τ0

.

5.1.2 State Transformation and Controller Design

To derive a state feedback as in [Woi13a], the input is expressed in terms of the flat
coordinate

ȳ(θ, t) = y(t+ θ) with ∂

∂θ
ȳ(θ, t) = ∂

∂t
ȳ(θ, t) (5.16)

and ȳ(θ, t) ∈ R, where θ ∈ [−τ0, τ0] holds since y(t̄) in (5.15) is evaluated on the interval
t̄ ∈ [t− τ0, t+ τ0]. By making use of (5.15b) at z = 1 as well as of (2.51c) and (5.16),

u[(t) = 1
2k4

eατ0 ∂

∂t
ȳ(τ0, t) + 1

2k4
e−ατ0 ∂

∂t
ȳ(−τ0, t)

+ f2(1; τ0)ȳ(τ0, t) + f2(1;−τ0)ȳ(−τ0, t) +
∫ 1

−1
g2(1, τ)ȳ(−τ0τ, t) dτ (5.17)



80 Chapter 5. State Feedback and State Observer Design Using Flatness

is obtained, where the scaled input u[(t) = U(t)/A is introduced for brevity. To asymp-
totically stabilize the linear model (2.51), a desired dynamics of the closed-loop system
is specified based on ȳ(θ, t). As (5.17) involves first-order time derivatives, the first-order
FDE

d
dtε(t) + κcε(t) = 0 with ε(t) = ȳ(τ0, t) + γcȳ(−τ0, t) (5.18)

is chosen, where κc > 0 and γc ∈ (−1, 1) ensure the convergence of ȳ(θ, t) to zero, e.g.,
[Woi13a]. Next, in order to obtain a state feedback, the derivatives in (5.17) have to
be replaced. For that, (5.15a) is evaluated at z = 1 and expressed in terms of ȳ(θ, t)
by making use of (5.16). The resulting equation and (5.18) are solved for ∂

∂t ȳ(τ0, t) and
∂
∂t ȳ(−τ0z, t), respectively. By substituting these derivatives into (5.17), the control law

u[(t) = k2τ0k0x1(1, t) + k+ȳ(τ0, t) + k−ȳ(−τ0, t) +
∫ 1

−1
k(τ)ȳ(−τ0τ, t) dτ (5.19)

with

k0 = γc − e−2ατ0

γc + e−2ατ0
, k1 = κc

2k4
(k0 − 1), k+ = f2(1; τ0)− bτ0k0f1(1; τ0) + k1eατ0

(5.20a)
k(τ) = g2(1, τ)− bτ0k0g1(1, τ), k− = f2(1;−τ0)− bτ0k0f1(1;−τ0) + γck1eατ0 (5.20b)

follows.
To express the state feedback (5.19) by means of the states x(z, t), ξ(t), a transformation
from x(z, t), ξ(t) to ȳ(θ, t) is needed. For that, first, (5.15) is rewritten in a vector-based
notation in terms of the flat coordinate ȳ by substituting (5.16) into (5.15). Thereby,

x(z, t) = D−1(z)




d
dz ȳ(τ0z, t)
d
dz ȳ(−τ0z, t)


+ F (z)

[
ȳ(τ0z, t)
ȳ(−τ0z, t)

]
+
∫ z

0
G(z, τ)

[
ȳ(τ0τ, t)
ȳ(−τ0τ, t)

]
dτ

(5.21)

with

D(z) =
[
e−ατ0z 0

0 eατ0z

] [
k2k4τ2

0 k4τ0
k2k4τ2

0 −k4τ0

]
(5.22)

and

F (z) =
[
f1(z; τ0) f1(z;−τ0)
f2(z; τ0) f2(z;−τ0)

]
, G(z, τ) =

[
g1(z,−τ) g1(z, τ)
g2(z,−τ) g2(z, τ)

]

are obtained. Solving (5.21) for the derivatives d
dz ȳ(τ0z, t), d

dz ȳ(−τ0z, t), integrating over
z, and changing the order of integration results in a Volterra integral equation of the
second kind for ȳ(θ, t):

[
ȳ(τ0z, t)
ȳ(−τ0z, t)

]
=
[
ξ(t)
ξ(t)

]
+
∫ z

0
D(τ)x(τ, t) dτ +

∫ z

0
H(z, τ)

[
ȳ(τ0τ, t)
ȳ(−τ0τ, t)

]
dτ, (5.23)

defined on z ∈ [0, 1] and where ȳ(0, t) = ξ(t) as well as

H(z, τ) = −D(τ)F (τ)−
∫ z

τ
D(τ̄)G(τ̄, τ) dτ̄ (5.24)

are utilized. It is shown in [Woi13a] that the solution ȳ(θ, t) of (5.23) uniquely exists. The
integral equation (5.24) can be solved by, e.g., the method of successive approximations.
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Remark 5.1. A choice of γc ∈ (−1, 1)\{0} in (5.18) leads to discontinuities in the solution
of ȳ(θ, t) and, hence, in the tank pressure pvol(t) since these quantities are proportional.
Consequently, in the following, the design parameter is set to γc = 0 as a non-smooth
tank pressure is not desirable. M

5.1.3 Stability Analysis

The closed-loop system results from inserting the state feedback (5.19) into the boundary
condition (2.51c) of the linear model (2.51). Since the controller acts on the boundary at
z = 1 for t ∈ (0,∞), the flat output y(t) = ȳ(0, t) at z = 0 satisfies the desired dynamics
(5.18) for t > τ0. The time τ0 is needed to propagate a signal from the actuated to the
unactuated boundary (and vice versa). Hence, for t > τ0, the explicit solution of (5.18)
in terms of y(t) reads

y(t) = e−κc(t−τ0)y(τ0) (5.25)

with γc = 0. Next, (5.25) is inserted into the time-domain solution (5.15) of x(z, t).
Caused by the lumped and distributed delays therein, the resulting solution holds for
t > 2τ0. Replacing y(t) by ξ(t) yields the closed-loop solution

x(z, t) =


D−1(z) d

dz

[
e−τ0κcz

eτ0κcz

]
+ F (z)

[
e−τ0κcz

eτ0κcz

]
+
∫ z

0
G(z, τ)

[
e−τ0κcτ

eτ0κcτ

]
dτ


 ξ(t)

(5.26a)
ξ(t) = e−κc(t−τ0)ξ(τ0) (5.26b)

for t > 2τ0. Thus, by assuming that ξ(τ0) = y(τ0) is bounded, for t > 2τ0 , the closed-
loop system is exponentially stable pointwise in space, where the convergence rate of

∥∥x(·, t)
∥∥
∞ = sup

z∈[0,1]

∥∥x(z, t)
∥∥
R2

is defined by the choice of the design parameter κc > 0.
Remark 5.2. If γc 6= 0 holds, still, a solution similar to (5.26) can be obtained explicitly,
e.g., based on the (infinitely many) roots of the corresponding characteristic equation.
Since these have negative real parts for κc > 0 and γc ∈ (−1, 1), the solution converges
to zero asymptotically, e.g., [BC63]. M

5.2 Design of the State Observer

In order to design the flatness-based state observer, first, the input-output equation
between U(t) and Y (t) is derived. By making use of this result, the linear model (2.51)
is expressed in the HOF. The observer in the HOF essentially follows from prescribing
a desired dynamics for the observation error.

5.2.1 Input-Output Equation in the Time Domain

The transformation of the linear model into the HOF is based on a specific system de-
scription, consisting of an FDE, relating the (scaled) input u[(t) to the (scaled) measured
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output y[(t) = Y (t)/(RsT0) of the linear model (2.51). Based on the general results in
[Woi13b], the input-output equation

0 = d
dty[(t+ τ0) + c1

d
dty[(t− τ0) + c2

d
dtu[(t+ τ0) + c3

d
dtu[(t− τ0) + c4y[(t− τ0)

+
∫ τ0

−τ0
c̄1(τ) ddty[(t+ τ) dτ +

∫ τ0

−τ0
c̄2(τ) ddtu[(t+ τ) dτ + c5u[(t− τ0) (5.27)

is derived in [Geh18] for 2×2 linear hyperbolic systems with constant propagation speeds,
which are coupled to a first-order ODE. To define the coefficients cj ∈ R, j = 1, . . . , 5,
and c̄i(τ) ∈ R, i = 1, 2, the ODE (5.1) is solved by making use of the initial value x̂(1, s)
at the actuated boundary with the measurement y[(t). From that,

x̂(z, s) =


cosh(ω(s)(1− z)) −k3+s

k2
sinh(ω(s)(1−z))

ω(s)
− s
k1

sinh(ω(s)(1−z))
ω(s) cosh(ω(s)(1− z))


 x̂(1, s)

results. Substituting x̂1(1, s) = ŷ[(s) = LII [y[](s) as well as x̂2(1, s) = û[(s) = LII [u[](s)
and applying the map z 7→ 1− z yields

x̂(1− z, s) =


 cosh(ω(s)(z)) −k3+s

k2
sinh(ω(s)(z))

ω(s)
− s
k1

sinh(ω(s)(z))
ω(s) cosh(ω(s)(z))



[
ŷ[(s)
û[(s)

]
, (5.28)

parametrizing x̂(z, s) in terms of û[(s) and ŷ[(s). The time-domain solution of (5.28) is
obtained by making use of the relations (5.9) and (5.11)–(5.14). From that,

x̄1(1− z, t) = 1
2e

ατ0zy[(t+ τ0z) + 1
2e
−ατ0zy[(t− τ0z) +

∫ τ0z

−τ0z

∂
∂z B̄(z, τ)

τ0
y[(t+ τ) dτ

−
∫ τ0z

−τ0z

B̄(z, τ)
k2τ0

d
dtu[(t+ τ) dτ −

∫ τ0z

−τ0z

k3B̄(z, τ)
k2τ0

u[(t+ τ) dτ (5.29a)

x̄2(1− z, t) = 1
2e

ατ0zu[(t+ τ0z) + 1
2e
−ατ0zu[(t− τ0z)

−
∫ τ0z

−τ0z

B̄(z, τ)
k1τ0

d
dty[(t+ τ) dτ +

∫ τ0z

−τ0z

∂
∂zB(z, τ)

τ0
u[(t+ τ) dτ, (5.29b)

where B̄(z, τ) = B(z,−τ/τ0), results after a substitution of the integration variable.
Next, (5.29) is evaluated at z = 1 and inserted into (2.51d) using (2.51b). Thereby,
a second-order time derivative of u[(t) occurs in an integral, which is eliminated by
applying an integration by parts in order to obtain the form in (5.27). Finally, by
making use of the relations

w(t+ τ0) = w(t− τ0) +
∫ τ0

−τ0

d
dtw(t+ τ) dτ (5.30a)

∫ τ0

−τ0
f(τ)w(t+ τ) dτ =

∫ τ0

−τ0
f(τ) dτw(t− τ0) +

∫ τ0

−τ0

∫ τ0

τ
f(σ) dσ d

dtw(t+ τ) dτ, (5.30b)



5.2. Design of the State Observer 83

the input-output equation

0 = 1
2e

ατ0 d
dty[(t+ τ0) + 1

2e
−ατ0 d

dty[(t− τ0)− 1
2k2τ0

eατ0 d
dtu[(t+ τ0)

+ 1
2k2τ0

e−ατ0 d
dtu[(t− τ0) +

∫ τ0

−τ0

k4B̄(1, τ) + k1
∂
∂z B̄(z, τ)|z=1

k1τ0

d
dty[(t+ τ) dτ

+
∫ τ0

−τ0




∂
∂τ B̄(1, τ)− k3B̄(1, τ)

k2τ0
− k4

2 eατ0 −
∫ τ0

τ

k4
∂
∂z B̄(z, σ)|z=1

τ0
dσ


 d
dtu[(t+ τ) dτ

− k4


cosh(ατ0) +

∫ τ0

−τ0

∂
∂z B̄(z, τ)|z=1

τ0
dτ


u[(t− τ0) (5.31)

is obtained, equivalent to the system dynamics of the linear model (2.51). A comparison
of (5.31) and (5.27) yields

c1 = e−2ατ0 , c2 = − 1
k2τ0

, c3 = 1
k2τ0

e−2ατ0 , c4 = 0 (5.32a)

c5 = −2k4e−ατ0


cosh(ατ0) +

∫ τ0

−τ0

∂
∂z B̄(z, τ)|z=1

τ0
dτ


 (5.32b)

c̄1(τ) = 2e−ατ0
k4B̄(1, τ) + k1

∂
∂z B̄(z, τ)|z=1

k1τ0
(5.32c)

c̄2(τ) = 2e−ατ0
∂
∂τ B̄(1, τ)− k3B̄(1, τ)

k2τ0
− k4 − 2k4e−ατ0

∫ τ0

τ

∂
∂z B̄(z, σ)|z=1

τ0
dσ. (5.32d)

5.2.2 Hyperbolic Observer Form

Derived from the general results in [Woi13b], the HOF in [Geh18], associated with the
input-output relation (5.31), reads

d
dtη1(t) = −c4y[(t)− c5u[(t) (5.33a)

∂

∂t
η2(θ, t) = − ∂

∂θ
η2(θ, t)− c̄1(θ)y[(t)− c̄2(θ)u[(t) (5.33b)

η2(−τ0, t) = η1(t)− c1y[(t)− c3u[(t) (5.33c)
y[(t) = η2(τ0, t)− c2u[(t). (5.33d)

The states, satisfying (5.33), are defined by

η1(t) = y[(t+ 2τ0) + c1y[(t) + c2u[(t+ 2τ0) + c3u[(t) (5.34a)

+
∫ τ0

−τ0
c̄1(τ)y[(t+ τ0 + τ) dτ +

∫ τ0

−τ0
c̄2(τ)u[(t+ τ0 + τ) dτ (5.34b)

η2(θ, t) = y[(t+ τ0 − θ) + c2u[(t+ τ0 − θ) +
∫ τ0

θ
c̄1(τ)y[(t− θ + τ) dτ (5.34c)

+
∫ τ0

θ
c̄2(τ)u[(t− θ + τ) dτ, (5.34d)

where θ ∈ [−τ0, τ0] holds since the measurement y[(t̄) in (5.27) is evaluated on the interval
t̄ ∈ [t−τ0, t+τ0]. Obviously, the HOF (5.33) consists of the ODE (5.33a), bidirectionally
coupled to the transport PDE (5.33b) with the boundary condition (5.33c) and the
output equation (5.33d).
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θ τ0

y[(t)

u[(t)

η2(τ0, t)

η2(θ, t)
η1(t)

−τ0

Figure 5.1: Structure of the system (5.33)

Remark 5.3. As the measured output y[(t) acts on (5.33a)–(5.33c), the system descrip-
tion (5.33) may not be considered as a classical state representation. Such a repre-
sentation could be achieved by substituting y[(t) in (5.33a)–(5.33c) by (5.33d). While
this step is unnecessary for the design of the state observer and therefore not explicitly
stated, the resulting structure is visualized in Fig. 5.1. M

5.2.3 Observer Error Dynamics and State Observer

The observer in the HOF provides the estimates η̂1(t), η̂2(θ, t) of the states η1(t), η2(θ, t).
It follows from (5.33) and a desired dynamics for the observation error ỹ[(t) = ŷ[(t) −
y[(t), where ŷ[(t) is the estimated measurement. The desired dynamics of the observation
error are defined by the FDE

d
dtε[(t) + κoε[(t) = 0 with ε[(t) = ỹ[(t+ τ0) + γoỹ[(t− τ0), (5.35)

where κo > 0 and γo ∈ (−1, 1) guarantee the convergence of ỹ[(t) to zero. To obtain the
error dynamics (5.35) in the HOF, (5.35) is rewritten as the input-output equation

0 = d
dt ỹ[(t+ τ0) + γo

d
dt ỹ[(t− τ0) + κo

∫ τ0

−τ0

d
dt ỹ[(t+ τ) dτ + κo(1 + γo)ỹ[(t− τ0),

where (5.30a) is utilized. Thereby, the HOF

d
dt η̃1(t) = −κo(1 + γo)ỹ[(t) (5.36a)

∂

∂t
η̃2(θ, t) = − ∂

∂θ
η̃2(θ, t)− κoỹ[(t) (5.36b)

η̃2(−τ0, t) = η̃1(t)− γoỹ[(t) (5.36c)
ỹ[(t) = η̃2(τ0, t) (5.36d)

of the observer error dynamics (5.35) with the error states

η̃1(t) = ỹ[(t+ 2τ0) + γoỹ[(t) + κo

∫ τ0

−τ0
ỹ[(t+ τ0 + τ) dτ (5.37a)

η̃2(θ, t) = ỹ[(t+ τ0 − θ) + κo

∫ τ0

θ
ỹ[(t− θ + τ) dτ, θ ∈ [−τ0, τ0] (5.37b)
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is obtained. By making use of the definitions η̃1(t) = η̂1(t) − η1(t), η̃2(θ, t) = η̂2(θ, t) −
η2(θ, t), the observer

d
dt η̂1(t) = −c4y[(t)− c5u[(t)− κo(1 + γo)ỹ[(t) (5.38a)

∂

∂t
η̂2(θ, t) = − ∂

∂θ
η̂2(θ, t)− c̄1(θ)y[(t)− c̄2(θ)u[(t)− κoỹ[(t) (5.38b)

η̂2(−τ0, t) = η̂1(t)− c1y[(t)− c3u[(t)− γoỹ[(t) (5.38c)
ŷ[(t) = η̂2(τ0, t)− c2u[(t) (5.38d)

in the HOF follows from (5.33) and (5.36).
Remark 5.4. A choice of γo ∈ (−1, 1)\{0} can lead to an increase of discontinuities in the
solution η̂2. If a state feedback is based on such a non-smooth estimate, oscillations in the
input may result. Therefore, the design parameter is set to γo = 0 in the following. M

5.2.4 Stability Analysis

The convergence of the observer errors η̃1(t), η̃2(θ, t) to zero can be shown in a manner
relatively similar to the stability analysis of the closed-loop system in Sec. 5.1.3. Obvi-
ously, (5.37) requires the measurement y[(t̄) on t̄ ∈ [t, t+ 2τ0]. To avoid these unknown
predictions, the time shift t 7→ t − 2τ0 is applied to (5.37). Thereby, the states η̃1(t),
η̃2(θ, t) are based on the measurement y[(t̄) evaluated on t̄ ∈ [t−2τ0, t]. Since y[(t) is not
available for t < 0, the states η̃1(t), η̃2(θ, t) of (5.36a)–(5.36c) are defined for t > 2τ0. As
(5.36d) defines ỹ[(t), the desired dynamics (5.35) is achieved for t > 2τ0. With γo = 0,
the explicit solution

ỹ[(t) = e−κo(t−2τ0)ỹ[(2τ0) (5.39)

results.
Inserting (5.39) into (5.37) yields the solution

η̃1(t) = ỹ[(t) (5.40a)
η̃2(θ, t) = ỹ[(t) (5.40b)

of the observer errors for t > 2τ0. Therefore, by assuming that ỹ[(2τ0) is bounded, the
convergence of η̃2(θ, t) is exponential pointwise in space, i.e. for t > 2τ0,

∥∥η̃2(·, t)
∥∥
∞ = sup

θ∈[−τ0,τ0]

∥∥η̃2(θ, t)
∥∥
R

converges exponentially with a desired convergence rate, specified by κo > 0.

5.3 Simulation Studies

In the following, the flatness-based state feedback

U c(t) = Au[(t), (5.41)
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where u[(t) is defined in (5.19), is investigated in simulations by applying (5.41) to the
linear model2 (2.51) of the test bench. The state ȳ(θ, t) in (5.19) results from the Volterra
integral equation (5.23), where x(z, t), ξ(t) are replaced by the error states

x̃(z, t) =
[
x1(z, t)
x2(z, t)

]
−
[ 1
RsT0

prvol
0

]

ξ̃(t) = ξ(t)− 1
RsT0

prvol,

allowing for the stabilization of a constant tank pressure prvol. The observer (5.38) is
discussed separately from the feedback by comparing the measurements Y (t), obtained
from the simulation of the linear model, to the estimated measurement

Ŷ (t) = RsT0ŷ[(t), (5.42)

resulting from (5.38d). For the numerical implementation, the integral in (5.19) is dis-
cretized w.r.t. space by the trapezoidal rule. Furthermore, for each time step, the solution
of the Volterra integral equation (5.23) is iteratively determined online by utilizing the
method of successive approximations. The result from this iteration is used as the ini-
tialization in the next time step. Thereby, the computational effort is kept within limits.
The state observer is discretized by the methods stated in Appx. B.1.
The application of the state feedback (5.41), stabilizing the desired pressure level prvol =
3 bar, to the linear model (2.51) is shown in Fig. 5.2. The test bench configuration
is stated in Tab. 3.1 and kfric = 1 in (2.51a) holds in the simulation as well as in
the computation of the control law (5.19) since the state feedback is applied to the
linear model. The design parameters in (5.18) are set to κc = 20 and γc = 0. This
choice facilitates the comparison between the flatness-based and backstepping-based3
state feedbacks in Sec. 7.1. Initially, the system is in equilibrium with its surroundings.
At ton = 0.05 s, the controller is activated. The exponential convergence of the tank
pressure pvol(t) to prvol for t > t1 = τ0 + ton ≈ 0.07 s, defined in (5.25), can be seen in
the upper plot of Fig. 5.2. The lower plot depicts the input U c(t) = Ax2(1, t), which
converges to zero for t > t2 = 2τ0+ton ≈ 0.08 s, resulting from the convergence of x2(1, t)
in (5.26a). The high frequency oscillations shortly after t = ton and t = t2 are induced
by numerical inaccuracies caused by discontinuities in the solution.
Fig. 5.3 shows the distributed state ȳ(θ, t), obtained from the numerical solution of the
Volterra integral equation (5.23). Since ȳ(θ, t) satisfies the transport equation in (5.16),
it can be seen that the boundary values at θ = τ0 are propagated along the characteristic
curves in the negative direction of θ to the boundary at θ = −τ0 with a relative velocity
of 1 1/s . In addition, for t > t1 − θ, the solution ȳ(θ, t) satisfies the desired dynamics
(5.18) and thus decays to zero.
The exponential convergence of the L∞-norm of x̃(z, t) to zero for t > t2 is depicted in
Fig. 5.4. The solid blue line results from the simulation of the closed-loop system and the
dash-dotted yellow line is calculated for t > t2 by making use of the analytical solution
(5.26). Besides minor deviations shortly after t = t2, induced by numerical oscillations,
both lines match perfectly.

2A simulation, where the flatness-based feedback controller is applied to the plant model (2.48), is
not explicitly stated since these results are very similar to the backstepping-based controller in Sec. 4.6.
Still, such simulation data can be found in [GK18].

3The design parameter k of the backstepping-based state feedback (4.74) was chosen such that
a− bk = −20 holds in the ODE (4.21d) (cf. Sec. 4.6).
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Figure 5.2: Application of the feedback controller (5.41) to the linear model (2.51):
Reference pressure prvol and tank pressure pvol(t) as well as corresponding control input
U c(t)

Figure 5.3: Convergence of the state ȳ(θ, t), satisfying the dynamics (5.18) for t > t1− θ
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Figure 5.4: Resulting L∞-norm of the state x̃(z, t), calculated based on the simulation
of the closed-loop system and based on the analytical solution (5.26)
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Figure 5.5: The input U(t), corresponding to the simulation depicted in Fig. 5.6

Having discussed the flatness-based state feedback, next, the state observer (5.38) is
validated in simulations. As already mentioned, the required transformation between
the estimated states η̂1(t), η̂2(θ, t) and the corresponding estimates of the states x(z, t),
ξ(t) is unknown. Still, the observer can be verified in terms of the observation error
Ỹ (t) = Ŷ (t) − Y (t), following from the measurement Y (t) and the estimation Ŷ (t) in
(5.42). The measurement Y (t), injected into the state observer (5.38), results from the
simulation of the linear model (2.51), which is excited by the input U(t), depicted in
Fig. 5.5. While the system is initially at rest and in equilibrium with its surroundings,
the initial state of the observer is set to η̂1(0) = η̂2(θ, 0) = 0, allowing to demonstrate
the convergence of Ỹ (t). Similar to the choice of the parameters κc and γc for the design
of the state feedback (5.41), the parameters in (5.35) are chosen as κo = 20 and γo = 0.
The friction amplification factor is set to kfric = 1 for both, the design of the state
observer and the simulation of the linear model.
Remark 5.5. By making use of (5.34), it would be possible to compare the states η1(t),
η2(θ, t) of the linear model or the plant model in the HOF to the estimated states
η̂1(t), η̂2(θ, t) of the observer. As shown in the student thesis [Fri18], this is possible for
experimental data, too, but does not grant further insights. M

The upper plot of Fig. 5.6 shows the measured pressure Y (t), resulting from the simu-
lation of the linear model, as well as the pressure4 Ŷ (t), estimated by the state observer
(5.38). The lower plot of Fig. 5.6 depicts the exponential convergence of the observation
error Ỹ (t) = Ŷ (t) − Y (t) to zero. Therein, the solid black line is obtained from the
simulation and the dash-dotted yellow line follows from the analytical solution (5.39) for
t > 2τ0. Apart from negligible deviations shortly after t = 2τ0, it can be seen that the
observation error converges with the prescribed convergence rate.
The simulation indicates that the estimates η̂1(t), η̂2(θ, t) of the observer are reasonable.
Still, an experimental validation, where the estimated pressure p̂vol(t) is compared to
the measured pressure pvol(t) necessitates the unknown transformation between the es-
timated states η̂1(t), η̂2(θ, t) and the corresponding estimates of the states x(z, t), ξ(t).
Recently, an approximation-based approach was suggested, circumventing5 the explicit
transformation and allowing for the design of a flatness-based output feedback con-
troller. Such an approximation of a state feedback, derived for hyperbolic and parabolic
systems, respectively, can be found in [WRE17] and of an observer for a parabolic sys-
tem in [RW18]. The design of an approximation-based output feedback controller for

4The negative estimated pressure in Fig. 5.6 is irrelevant for the validation of the observer in a
simulation. It can be attributed to the initialization of the observer.

5Thereby, the transformation (5.23) from x(z, t), ξ(t) to ȳ(θ, t) becomes unnecessary, too.
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Ỹ (t)
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Figure 5.6: Validation of the observer (5.38) with a measurement obtained from the
simulation of the linear model (2.51): Pressure Y (t) and estimated pressure Ŷ (t) as well
as corresponding observation error Ỹ (t), resulting from the simulation and calculated
based on the analytical solution (5.39), respectively

hyperbolic systems is currently being developed in cooperation with the author of this
thesis and implemented at the test bench.
Remark 5.6. It would be possible to validate the flatness-based state feedback at the test
bench by making use of the backstepping-based state observer in Sec. 4.4. In simulations,
the resulting controller performs similar to the backstepping-based output feedback con-
troller in Sec. 4.7. Since such a result is expected in experiments, too, this approach is
not further investigated. M

5.4 Chapter Highlights

In this chapter, a state feedback and observer were designed based on a parametrization
of the quantities of the linear model. The stability of the closed-loop system and of the
observer error dynamics were analyzed and the performance of the designs investigated
in simulations.
For the first time, the flatness-based state feedback and observer design was applied
to a non-academic example. Caused by the dissipation in the linear model of the test
bench, as mentioned before, the transformation required to derive the output feedback
controller is unknown. However, based on the approximation approach in [WRE17;
RW18], a method to circumvent this transformation is currently being developed.
In connection with this chapter, the conference paper [GK18] was published. The super-
vised student theses [Zof17; Fri18] have contributed to the development of the chapter’s
results.
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Chapter 6

Output Feedback Controller
Design Using Early-Lumping

Based on backstepping and flatness, the previous chapters presented novel late-lumping
controllers for pneumatic systems involving long tubes. In contrast to that, state-of-
the-art controller designs most frequently make use of the early-lumping approach. By
this method, in order to derive a control law for a system description involving PDEs,
the infinite-dimensional model is approximated by a finite-dimensional one, prior to
the controller design, e.g., [CM09]. For the approximation, among others, finite dif-
ference, element or volume methods as well as modal or spectral decomposition tech-
niques are employed. Since the resulting models comprise ODEs only, controller de-
signs well-known for lumped-parameter systems can be used. Furthermore, for complex
distributed-parameter systems described by, e.g., nonlinear PDEs, there are currently
only very few results for a late-lumping controller design, e.g., [Meu13]. In contrast to
that, the early-lumping approach might allow for the derivation of a stabilizing control
law based on nonlinear ODEs, arising from the approximation of the system dynamics.
Still, the early-lumping approach might have several drawbacks: For example, the ap-
propriate choice of the approximation order n, i.e. the order of the resulting finite-
dimensional model, has to be chosen carefully. Choosing a high order for the approxima-
tion can lead to problems inherent to the controller design for high-dimensional systems
and/or numerical issues, e.g., [Meu13]. On the other hand, controllers designed based
on a low-order and, hence, less accurate approximation may result1 in an unsatisfying
performance or even an unstable closed-loop system. This degradation of the perfor-
mance results from the effects caused by the neglect of dynamics in the early-lumping
controller design, the so-called spillover, e.g., [Bal78]. In addition, while one approxima-
tion method might work well for a specific class of PDEs, it is not necessarily suited for
other classes: For example, according to [CD98], modal decomposition techniques are
useful for parabolic PDEs but may be inadequate for hyperbolic systems.
In the context of pneumatic systems involving long tubes, there exists a variety of meth-
ods to approximate the infinite-dimensional tube dynamics, e.g., [WT88; Sou+05], and
the development of such approaches is still an ongoing research topic, e.g., [Kam17]. In
the following, finite-dimensional system descriptions of the test bench are obtained by

1Naturally, the approximation order of an infinite-dimensional control law, e.g., (4.77), required for
its implementation, also needs to be sufficiently large.
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making use of two selected methods, presented in [KS13] and [RNM15], respectively.
These relatively recent methods are chosen for two reasons: First, they are specifically
developed for pneumatic systems involving long tubes, which are similar to the test bench
set-up in Fig. 1.3. Second, state-of-the-art controller designs in this context, discussed
in the following, are often based on these approaches.
In [KS13], a tube model similar to the semilinear model (2.35) is considered. Based on
[KS11], a nonlinear lumped-parameter model is derived by applying the finite volume
method (FVM) to the distributed-parameter model. Thereby, the dynamics of the tube is
described by ODEs. The resulting finite-dimensional model with varying approximation
order n is validated by comparing simulation data with measurement data from a test
bench.
The second approximation approach utilized in this chapter follows [RNM15]. Therein,
low-order models are derived by applying modal approximation (MA) techniques to an
infinite-dimensional system description, similar to the linear model (2.51). One of the
resulting models with n = 3 is augmented by a nonlinear friction term, accounting for
turbulent friction effects. Simulation data of the finite-dimensional models is compared
with each other and to measurement data. It is concluded that the augmented model
with n = 3 properly describes the dynamics of the considered pneumatic system.
Early-lumping controller designs based on a model derived by the FVM in [KS13] can
be found in [TU17] and [TU18]. In both contributions, the set-up mainly consists of a
valve, a double-acting pneumatic cylinder, and two long tubes, which are described by
the nonlinear finite-dimensional model in [KS13]. By making use of the resulting system
description, in [TU17], a cascaded PI controller is designed. To predict the pressures in
the cylinder chambers as well as the corresponding mass flow rates, a model with n = 4
is utilized. Based on these results, [TU18] designs a control law by applying a multiple
sliding surface control method, where the approximated nonlinear dynamics of the tubes
are explicitly taken into account. In both references [TU17; TU18], the controllers are
validated in experiments.
In addition to the MA, [RNM15] presents a linear controller design by making use of this
approximation approach in order to regulate the tank pressure. For that, a feedforward
controller is derived, taking into account the approximated tube dynamics explicitly,
and combined with a P controller. The linear control law is validated in simulations.
These results are extended in [RNM16]. Therein, based on a finite-dimensional model
with n = 3, an output feedback tracking controller is designed using pole placement.
The excellent tracking performance of the controller is demonstrated in experiments.
A further early-lumping controller design based on a model derived by the MA in
[RNM15] is presented in [AF16]. The considered pneumatic system consists of two
valves, connected to a tank, which is in turn connected to a second tank via a long tube.
By making use of the MA, the tube dynamics are approximated by ODEs. Thereby,
a third-order model, describing the pneumatic system, results. The proposed explicit
model predictive controller, derived from this system description, allows to track a de-
sired reference pressure in the second tank. The very good performance of the controller
is validated in simulations.
The tube dynamics of the pneumatic system in [Fal17] (in German) is approximated
by the method in [RNM15], too. Based on the resulting model with n = 3, an output
feedback tracking controller is designed by pole placement. The performance of the
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controller is compared to other designs by making use of simulation and experimental
data.
In this chapter, two finite-dimensional output feedback tracking controllers are derived
by early-lumping. Thereby, the late-lumping approaches in the previous chapters can
be related to the aforementioned state-of-the-art controller designs. For that, the linear
model (2.51) of the test bench is approximated by the approaches in [KS13] and [RNM15].
Based on the resulting finite-dimensional models, the controllers are designed. The latter
are validated in simulations and experiments.

6.1 Two Approximations of the Linear Model

In the following, the FVM and the MA in [KS13] and [RNM15], respectively, are slightly
modified and applied to the linear model (2.51) of the test bench. The resulting finite-
dimensional models are written in the state-space representation

d
dtX(t) = AX(t) + bU(t) (6.1a)

y(t) = (cy)TX(t) + dyU(t), (6.1b)

whereX(t) ∈ Rn denotes the lumped state and A ∈ Rn×n, b ∈ Rn, (cy)T ∈ R1×n as well
as dy ∈ R hold. While the input U(t) is defined in (2.44), the output y(t) ∈ R depends
on the context and is specified subsequently. The finite-dimensional models, resulting
from the approximations, are compared with each other and with the linear model (2.51)
in the frequency and time domain, whereby the influence of the approximation order n
is investigated.

6.1.1 Finite Volume Method

In contrast to finite difference methods, the FVM is based on the integral formulation
of the system dynamics. Hence, a discretization of the spatial domain in terms of a
specified grid results in finite volumes. By averaging the distributed quantities over each
volume, the dynamics of the respective volume is approximated by ODEs, e.g., [LeV02].
The tube dynamics of the linear model (2.51) is stated in an integral formulation by
integrating (2.51a) over space. Subsequently, the spatial coordinate is divided into N 3
m ≥ 2 finite segments. Since a staggered grid can be advantageous for the numerical
simulation of fluid flows, the segments are separately defined for x1(z, t) and x2(z, t),
e.g., [Pat80]. From that, 2m volumes are obtained. These are centered at the positions
zji , where i = 1, 2 and j = 1, . . . ,m. By choosing zj1 = j∆z and zj2 = (j − 1/2)∆z,
where the constant step size ∆z = 1/(m + 1/2) defines the width of each volume, the
approximation scheme depicted in Fig. 6.1 results. Thereby, the ODEs

d
dtX̄

j
1(t) = 1

L

x2(zj+1
2 , t)− x2(zj2, t)

∆z
d
dtX̄

j
2(t) = a2

iso
L

x1(zj1, t)− x1(zj−1
1 , t)

∆z − kfric
32µ0
D2

1
ρ0
X̄j

2(t)
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Figure 6.1: Scheme of the FVM

are obtained from the integral formulation of (2.51a), where

X̄j
1(t) = 1

∆z

∫ zj+1
2

zj2

x1(z, t) dz, X̄j
2(t) = 1

∆z

∫ zj1

zj−1
1

x2(z, t) dz

defines the average of each quantity in the corresponding volume. Next, the approxima-
tion

X̄j
i (t) ≈ xi(zji , t) (6.2)

is introduced. Furthermore, the boundary values x2(0, t) and x1(1, t) are defined by
means of the first-order extrapolations2

3
2X̄

1
2 (t)− 1

2X̄
2
2 (t) ≈ x2(0, t), 3

2X̄
m
1 (t)− 1

2X̄
m−1
1 (t) ≈ x1(1, t). (6.3)

From that, the lumped-parameter system

d
dtX̄

j
1(t) = 1

L

X̄j+1
2 (t)− X̄j

2(t)
∆z , for j = 1, . . . ,m− 1 (6.4a)

d
dtX̄

j
2(t) = a2

iso
L

X̄j
1(t)− X̄j−1

1 (t)
∆z − kfric

32µ0
D2

1
ρ0
X̄j

2(t), for j = 2, . . . ,m (6.4b)

d
dtX̄

1
2 (t) = a2

iso
L

X̄1
1 (t)− ξ(t)

∆z − kfric
32µ0
D2

1
ρ0
X̄1

2 (t) (6.4c)

d
dtX̄

m
1 (t) = 1

L

1
AU(t)− X̄m

2 (t)
∆z (6.4d)

d
dtξ(t) = 3

2
A

Vvol
X̄1

2 (t)− 1
2
A

Vvol
X̄2

2 (t) (6.4e)

ȳ(t) = 3
2X̄

m
1 (t)− 1

2X̄
m−1
1 (t) (6.4f)

is derived, approximating the linear model (2.51). The scaled measurement ȳ(t) ≈
x1(1, t) = Y (t)/(RsT0) in (6.4f) follows from (2.51e) and (6.3).
By introducing the state

X̄(t) =
[
ξ(t) X̄1

2 (t) X̄1
1 (t) X̄2

2 (t) X̄2
1 (t) · · · X̄m

2 (t) X̄m
1 (t)

]T
∈ Rn (6.5)

2Although [KS13] utilizes zero-order instead of first-order extrapolations, the latter are chosen as
they render the model (6.4) a more accurate approximation, which can be verified by simulations.
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with n = 2m+ 1, the system (6.4) in the form (6.1) with dy = 0 is obtained:

d
dtX̄(t) = AFX̄(t) + bFU(t) (6.6a)

y(t) = (cyF)T X̄(t). (6.6b)

Therein, the matrices AF and bF read

AF =




0 3
2k4 0 −1

2k4 0 · · · · · · 0
−κ2 −k3 κ2 0 0 . . . . . . ...

0 −κ1 0 κ1
. . . . . . . . . ...

... . . . −κ2 −k3 κ2
. . . . . . ...

... . . . . . . −κ1 0 κ1
. . . ...

... . . . . . . . . . . . . . . . . . . 0

... . . . . . . . . . . . . −κ2 −k3 κ2
0 · · · · · · · · · · · · 0 −κ1 0




∈ Rn×n, bF =




0
...
0
κ1
A



∈ Rn,

where the abbreviations

κ1 = 1
L∆z , κ2 = a2

iso
L∆z , k3 = kfric

32µ0
D2

1
ρ0
, k4 = A

Vvol
(6.7)

are introduced for brevity. The matrix (cyF)T depends on the choice of the output y(t).
For the measurement ȳ(t), defined in (6.4f), the output equation (6.6b) reads

ȳ(t) = (cȳF)T X̄(t) with (cȳF)T =
[
0 · · · 0 −1

2 0 3
2

]
∈ R1×n. (6.8)

Remark 6.1. Obviously, (6.4) is undefined form = 1. Still, by making use of the proposed
approximation scheme, the matrices

AF =




0 3
2k4 0

−κ2 −k3 κ2
0 −κ1 0


 , bF =



−1

2
k4
A

0
κ1
A


 , (cȳF)T =

[
−1

2 0 3
2

]

are obtained, resulting in a lumped-parameter model of the order n = 3. M

6.1.2 Modal Approximation

According to [CM09], MA techniques in the context of linear single-input-single-output
distributed-parameter systems in one spatial dimension can be described as follows:
First, the infinite-dimensional model is mapped into the operational domain, e.g., by
applying the Laplace transform with the complex variable s. The solution of the resulting
ODEs w.r.t. z is obtained in a straightforward manner. From that, the transfer function
Gyu(s) = ŷ(s)/û(s) is derived, where û(s) is the input and ŷ(s) the output. Often,
the irrational functions in Gyu(s), arising from the spatial integration, can be expressed
in terms of infinite sums or products. These expansions are chosen and subsequently
truncated such that the finite-dimensional transfer function G̃yu(s), approximating Gyu(s),
reproduces the lower-order poles of Gyu(s) exactly.
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In the following, a state-space representation (6.1) is derived by means of the MA. First,
the state x̂(z, s) of the linear model (2.51) in the operational domain is parametrized in
terms of the scaled input u[(t) = U(t)/A . By making use of the results in Sec. 5.1.1, the
general solution (5.3) in the operational domain is evaluated in terms of the transformed
boundary conditions (2.51c) as well as (2.51d), i.e. sx̂1(0, s) = k4x̂2(0, s), x̂2(1, s) =
û[(s), resulting in the specific solution

x̂1(z, s) =
k1

[
(s2 + k3s)

sinh(ω(s)z)
ω(s) + k2k4 cosh

(
ω(s)z

)]

k2s

[
k4

sinh(ω(s))
ω(s) + k1 cosh

(
ω(s)

)] û[(s) (6.9a)

x̂2(z, s) =
k2s

[
k4

sinh(ω(s)z)
ω(s) + k1 cosh

(
ω(s)z

)]

k2s

[
k4

sinh(ω(s))
ω(s) + k1 cosh

(
ω(s)

)] û[(s), (6.9b)

where ω(s) is defined in (5.4) and the coefficients kj , j = 1, . . . , 4, in (5.2) and (5.5).
Remark 6.2. Usually, in the context of long tubes described by 2 × 2 linear hyperbolic
systems, the so-called two-port (or four-terminal) network, also known for electrical
transmission lines, e.g., [GK68], serves as starting point for the MA, e.g., [GL72]. It
maps x̂(1, s) to x̂(0, s) and is independent of the spatial coordinate z. However, this
thesis makes use of (6.9) as its dependency on z allows to derive a relation between the
distributed state and the lumped state of the approximation, presented in the following.

M

There exist multiple methods to approximate the numerators and denominators of (6.9)
by suitable rational expression. Two of them are presented in [RNM15], one using
truncated infinite products and the other truncated Taylor series. A truncated infinite
product of the numerator and denominator preserves the zeros and poles up to the
approximation order, e.g., [OG64]. In contrast to that, the truncated Taylor series
requires additional terms or coefficients to achieve a similar result, e.g., [Goo70; KS11].
To approximate the denominators of (6.9), this thesis makes use of

k4
sinh

(
ω(s)z

)

ω(s) + k1 cosh
(
ω(s)z

)
= (k4z + k1)

∞∏

k=1


1 +

(
ω(s)z

)2

p2
k




≈ (k4z + k1)
m∏

k=1


1 +

(
ω(s)z

)2

p2
k


 , (6.10)

preserving the low-order poles [Goo70], where pk > 0 are the positive real solutions
of tan(pk) = −pkk1/k4. While the numerator of (6.9b) is essentially approximated by
(6.10), too, the irrational terms in the numerator of (6.9a) are replaced by3

sinh
(
ω(s)z

)

ω(s) = z
∞∏

k=1


1 +

(
ω(s)z

)2

k2π2


 ≈ z

m−1∏

k=1


1 +

(
ω(s)z

)2

k2π2


 (6.11a)

cosh
(
ω(s)z

)
=
∞∏

k=1


1 + 4

(
ω(s)z

)2

(2k − 1)2π2


 ≈

m∏

k=1


1 + 4

(
ω(s)z

)2

(2k − 1)2π2


 , (6.11b)

3For m = 1, the approximation (6.11a) reads sinh
(
ω(s)z

)
/ω(s) ≈ z.
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e.g., [Goo70], as the author of this thesis is not aware of any infinite product expansion
for such an expression. Thereby, the approximation

x̂1(z, s) ≈

k1


(s2 + k3s)z

m−1∏

k=1


1 +

(
ω(s)z

)2

k2π2


+ k2k4

m∏

k=1


1 + 4

(
ω(s)z

)2

(2k − 1)2π2







k2s(k4 + k1)
m∏

k=1

(
1 + ω2(s)

p2
k

)

︸ ︷︷ ︸
=G̃1(z,s)

û[(s)

(6.12a)

x̂2(z, s) ≈

k2s


(k4z + k1)

m∏

k=1


1 +

(
ω(s)z

)2

p2
k







k2s(k4 + k1)
m∏

k=1

(
1 + ω2(s)

p2
k

)

︸ ︷︷ ︸
=G̃2(z,s)

û[(s). (6.12b)

of (6.9) results, where the numerators and denominators are polynomial in s since ω2(s)
is a rational expression.
While the poles of (6.12) and the zeros of (6.9b) are preserved in (6.12), the preservation
of the zeros of (6.9a) would require additional terms in the numerator of (6.12a). For
example, such a correction is used in [RNM15], where the approximation of a two-port
network follows from (6.11).
Finally, by making use of the approximation

ŷ(s) = G̃i(z̃, s)û[(s) ≈ x̂i(z̃, s), (6.13)

where i = 1, 2 and z̃ ∈ [0, 1] is arbitrary but fixed, a proper4 transfer function of the
form

ŷ(s)
û[(s)

= bns
n + bn−1sn−1 + · · ·+ b1s+ b0

sn + an−1sn−1 + · · ·+ a1s+ a0
= G̃yu(s) (6.14)

for a specified output ŷ(s) results. Therein, n = 2m+ 1 denotes the system order. From
that, a state-space representation

d
dtX̃(t) = AMX̃(t) + bMU(t) (6.15a)

y(t) = (cyM)T X̃(t) + dyMU(t) (6.15b)

with the state

X̃(t) =
[
X̃1(t) · · · X̃n(t)

]T
∈ Rn, (6.16)

4For ŷ(s) = G̃1(z̃, s)û[(s), the resulting transfer function is strictly proper. Thus, dx1
M = 0 holds in

(6.17d).
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where n ≥ 3, in controller form is obtained, e.g. [Oga10]. Thus,

AM =




0 1 0 · · · 0
... 0 . . . . . . ...
...

... . . . . . . 0
0 0 · · · 0 1
−a0 −a1 · · · −an−2 −an−1




∈ Rn×n (6.17a)

bM =
[
0 · · · 0 1

A

]T
∈ Rn (6.17b)

(cyM)T =
[
b0 − a0bn b1 − a1bn · · · bn−1 − an−1bn

]
∈ R1×n (6.17c)

dyM = 1
A
bn (6.17d)

holds, where u[(t) = U(t)/A is used. Naturally, the output vector (cyM)T and the
feedthrough dyM in (6.15b) result from the choice of the output y(t) in (6.13). In contrast
to that, the state X̃(t) as well as the matrices AM and bM are independent of this choice.
For ỹ(t) ≈ x1(1, t) = Y (t)/(RsT0), the scaled measurement

ỹ(t) = (cỹM)T X̃(t) (6.18)

is expressed in terms of X̃(t), where Y (t) is defined in (2.51e).
Remark 6.3. Numerical studies indicate that the numerator and the denominator of
G̃yu(s) in (6.14) are coprime for any z̃ and m. Therefore, in the following, (6.15) is
assumed to be a minimal realization. M

The approximation (6.13) can be utilized to derive an equation, relating the states
x(z, t), ξ(t) of the linear model (2.51) and the input U(t) to the state X̃(t) of the
finite-dimensional model (6.15). By evaluating (6.13) for, e.g., i = 1 and z̃ = zj1 = 2j∆z,
j = 0, . . . ,m, as well as i = 2 and z̃ = zj2 = (2j−1)∆z, j = 1, . . . ,m, where ∆z = 1/(2m),
the n linear equations

XM(t) = CMX̃(t) + dMU(t) (6.19)
with

XM(t) =
[
x0

1(t) x1
2(t) x1

1(t) x2
2(t) x2

1(t) · · · xm2 (t) xm1 (t)
]T

CM =
[
c
x0

1
M c

x1
2

M c
x1

1
M c

x2
2

M c
x2

1
M · · · cx

m
2

M c
xm1
M

]T

dM =
[
0 d

x1
2

M 0 d
x2

2
M 0 · · · d

xm2
M 0

]T

follow from (6.15b), where xji (t) ≈ xi(zji , t) is utilized. The state X̃(t) in (6.19) can be
obtained from the known quantities x(z, t), ξ(t), and U(t) by solving the problem

arg min
X̃(t)

∥∥∥XM(t)−CMX̃(t)− dMU(t)
∥∥∥
Rn
.

Thereby, for example, the lumped initial condition X̃(0) can be computed from x(z, 0),
ξ(0).
Remark 6.4. In [RNM15], the proposed model with the approximation order n = 3
has the physically interpretable state X̃(t) ≈ [ξ(t), x2(1, t), x1(1, t)]T , rendering (6.19)
superfluous. In addition, the physical interpretability of the state allows to include a
nonlinear friction term in the resulting model easily. However, a generalization to models
with n > 3 does not seem trivial. M
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Figure 6.2: Bode plots for a tube with L = 5 m as well as D = 5.7 mm

6.1.3 Comparison of the Lumped-Parameter Models

Next, the two lumped-parameter models (6.6) and (6.15), derived by the FVM and by
the MA5, respectively, are compared to the infinite-dimensional linear model (2.51) in
terms of their input-to-output behavior. The input is the mass flow rate U(t) through the
valve and the output is the tank pressure pvol(t). For that, first, the frequency responses
and subsequently the time responses are investigated. The friction amplification factor
is set to kfric = 1 for all three models.
Fig. 6.2 depicts the Bode plots of Gpvol

U (s), Ḡpvol
U (s), and G̃pvol

U (s), where the standard
test bench configuration in Tab. 3.1 is utilized. The transfer function Gpvol

U (s) of the
linear model follows from (6.9a) evaluated at z = 0, the transfer function Ḡpvol

U (s) of the
FVM is obtained by

Ḡpvol
U (s) = (cpvol

F )T (sI −AF)−1 bF,

and the transfer function G̃pvol
U (s) of the MA results from (6.12a) evaluated at z = 0. For

both approximation approaches, the frequency responses for the orders n = {3, 9, 15} are
shown. As depicted in the left-hand Bode plot of Fig. 6.2, the transfer function Ḡpvol

U (s)
does not preserve the first n poles of Gpvol

U (s). Still, |Ḡpvol
U (jω)| and |Gpvol

U (jω)| are of
similar order up to the cutoff frequency, which depends on n. In the right Bode plot
of Fig. 6.2, it can be seen that the poles of G̃pvol

U (s) match the first n poles of Gpvol
U (s),

resulting in an almost perfect fit of the phase up to the cutoff frequency. However,
the magnitude |G̃pvol

U (jω)| decreases faster than the magnitude |Gpvol
U (jω)|. For both

approaches, the corresponding mismatch is slightly improved by an increased order of
approximation.
In order to compare the time responses of the models, a typical but highly dynamical
input U(t) is specified, illustrating the differences more clearly. It follows from the

5In the following, the abbreviations FVM and MA are used both for the methods themselves and
the resulting models.
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Figure 6.3: Simulation results for a tube with L = 5 m as well as D = 5.7 mm
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Figure 6.4: Simulation results for a tube with L = 20 m as well as D = 4 mm
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Figure 6.5: Simulation results for a tube with L = 20 m as well as D = 8 mm

flatness-based parametrization (5.15b) at z = 1 by making use of the trajectory (3.11).
The input U(t) is fed to the linear model (2.51) as well as to the lumped-parameter
models (6.6) and (6.15) with n = {3, 9, 15}. Thereby, the systems are charged from p0
to approximately 8 bar in 0.1 s and back to p0 at the same rate.
The tank pressure trajectories pvol(t), resulting from the simulation of all models, are
depicted in Figs. 6.3–6.5. The black line corresponds to the linear model and the blue
lines to the approximated ones. As it can be seen in Fig. 6.3, both lumped-parameter
models with n = 3 match the tank pressure of the linear model already almost perfectly
for a tube with a length of L = 5 m and a diameter of D = 5.7 mm. This observation is
confirmed by quantifying the slight deviations in terms of the error measures in (2.42)
and (2.43), where the tank pressure of the linear model serves as reference. The resulting
error measures are stated in Tab. 6.1, where L1

r,err,F, L∞err,F refers to the FVM and L1
r,err,M,

L∞r,err,M to the MA.
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Table 6.1: Errors between the tank pressure of the linear model and of the approximated
models for a tube with L = 5 m as well as D = 5.7 mm

n 3 9 15
L1
r,err,F 0.886 % 0.123 % 0.050 %

L1
r,err,M 0.457 % 0.123 % 0.071 %
L∞err,F 0.122 bar 0.019 bar 0.008 bar
L∞r,err,M 0.078 bar 0.022 bar 0.012 bar

Table 6.2: Errors between the tank pressure of the linear model and of the approximated
models for a tube with L = 20 m as well as D = 4 mm

n 3 9 15
L1
r,err,F 11.880 % 1.611 % 0.607 %

L1
r,err,M 8.141 % 2.266 % 1.313 %
L∞err,F 1.290 bar 0.267 bar 0.110 bar
L∞r,err,M 1.259 bar 0.220 bar 0.224 bar

Table 6.3: Errors between the tank pressure of the linear model and of the approximated
models for a tube with L = 20 m as well as D = 8 mm

n 3 9 15
L1
r,err,F 14.025 % 2.036 % 0.768 %

L1
r,err,M 6.147 % 1.820 % 1.059 %
L∞err,F 0.901 bar 0.188 bar 0.086 bar
L∞r,err,M 0.774 bar 0.267 bar 0.163 bar

Fig. 6.4 and Fig. 6.5 display the simulation results for a tube with L = 20 m and
D = 4 mm as well as D = 8 mm, respectively. The corresponding errors are given in
Tab. 6.2 and Tab. 6.3. Interestingly, by comparing these results for the long tube in
terms of L1

r,err, it can be seen that the accuracy of the FVM is higher for the smaller
diameter of D = 4 mm compared to D = 8 mm, while the opposite is true for the MA.
Summarizing the results in Tabs. 6.1–6.3, the following can be concluded from the sim-
ulation scenarios: The MA yields a slightly more accurate approximation of the linear
model (2.51) compared to the FVM if an order of n = 3 is chosen. However, for larger
values of n, the errors of the FVM converge faster to zero, rendering it more accurate
for n = 15. Among other factors, the required order of approximation depends on the
tube length. While n = 3 seems adequate for both approaches if a tube with a length
of L = 5 m is utilized (cf. Fig. 6.3), a tube length of L = 20 m might require a higher
approximation order (cf. Fig. 6.4 and Fig. 6.5). Naturally, in addition to the approxima-
tion order and the tube length, the accuracy of the approximated models depends on,
e.g., the specified excitation. Regardless, the FVM may be beneficial for two reasons:
First, the elements of the state X̄(t) in (6.5) are a direct approximation of the conserved
quantities ρ, ρv, facilitating the physical interpretability of the model. In addition, the
approach can be applied directly to the semilinear model (2.35) and, after a straight-
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forward extension, even to the isothermal model (2.50). Thereby, a relatively accurate
finite-dimensional system description of the test bench could be obtained.

6.2 Output Feedback Tracking Controller

In the following, by making use of the lumped-parameter models (6.6) with (6.8) and
(6.15) with (6.18), derived by the FVM and the MA, output feedback tracking controllers
are derived, stabilizing the transition between desired pressure levels in the tank. Each
controller comprises a flatness-based feedforward controller, a state feedback, and a state
observer. While the state feedback is provided by a linear-quadratic regulator, the state
observer is designed by pole placement.

6.2.1 Design of the Feedforward Controller

Finite Volume Method For the pair (AF, bF) in (6.6a), derived by the FVM, a flat
output is given by

yF(t) = 1
k4
ξ(t) + 1

2
1
κ1
X̄1

1 (t). (6.20)

This can be verified by differentiating (6.20) n times w.r.t. t and by making use of (6.6a).
From that,




yF(t)
ẏF(t)
...

y
(n)
F (t)




= M

[
X̄(t)
U(t)

]
with M =




1
k4

0 1
2

1
κ1

0 · · · 0

0 1 0 0 . . . ...
−κ2 −k3 κ2

. . . . . . 0
∗ ∗ ∗ m4

. . . 0
∗ ∗ ∗ ∗ . . . 0
∗ ∗ ∗ ∗ ∗ mn




is obtained. Therein, the elements mk, k = 4, . . . , n, are defined by

m2j = κj−2
1 κj−1

2

(
κ1 + k4

2

)
, m2(j+1) = κj−2

1 κj2

(
κ1 + k4

2

)

with j = 2, . . . ,m. Since

detM =
(
κ2
k4

+ 1
2
κ2
κ1

) n∏

k=4
mk > 0

holds for all physically reasonable parameters in (6.7), the matrixM is invertible. As a
result, the parametrization

[
X̄(t)
U(t)

]
= M−1




yF(t)
ẏF(t)
...

y
(n)
F (t)




(6.21)
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is obtained, and in particular

pvol(t) = RsT0ξ(t) = RsT0

(
2κ1k4

2κ1 + k4
yF(t)− k3k4

κ2(2κ1 + k4) ẏF(t)− k4
k2(2κ1 + k4) ÿF(t)

)
.

(6.22)

By choosing a reference trajectory yrF(t) for the flat output, the corresponding reference
state X̄r(t) as well as the feedforward controller U r

F(t) directly follow from (6.21). Instead
of yrF(t), it would be referable to specify the desired reference trajectory prvol(t) for the
tank pressure. However, pvol is proportional to yF in steady-state only (cf. (6.22)). Thus,
while the feedforward controller enables the transition from an initial constant pressure
level pb to a desired constant pressure level pe, the transition of pvol(t) cannot be easily
specified.

Modal Approximation Since the state-space representation (6.15), derived by the
MA, is in controller form, a flat output of the pair (AM, bM) is defined by

yM(t) = X̃1(t).
From that, the parametrization

[
X̃(t)
U(t)

]
=




yM(t)
...

y
(n−1)
M (t)

A

(
a0yM(t) + · · ·+ an−1y

(n−1)
M (t) + y

(n)
M (t)

)




(6.23)

follows.
By choosing a reference trajectory yrM(t) for the flat output, the reference state X̃r(t)
and the feedforward controller U r

M(t) follow from (6.23). Evaluating the approximation
(6.12a) at z = 0 yields bj = 0, j = 1, . . . , n, and

b0 = k1k4
(k4 + k1)τ2m

0

m∏

k=1
p2
k

in the resulting transfer function (6.14). Therefore, with X̃1(t) = pvol(t)/(RsT0), the
tank pressure

pvol(t) = b0RsT0yM(t) (6.24)
is proportional to the flat output. As a result, in contrast to (6.22), the feedforward
controller is directly designed based on a desired reference trajectory prvol(t) for the tank
pressure.

Trajectory Planning As a consequence of (6.21) and (6.23), in order for U r ∈
C([0,∞)), the reference trajectory yr has to be a Cn([0,∞)) function. Since higher-
degree polynomials can lead to numerical problems, the (smooth) Gevrey function

t̄ 7→ yr(t̄) =





yb, t̄ ≤ 0

yb − 1
2(yb − ye)

(
1 + tanh

(
2(2t̄−1)

(4t̄(1−t̄))µ

))
, 0 < t̄ < 1

ye, t̄ ≥ 1

(6.25)
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with µ ≥ 1 is chosen, e.g., [Rud03]. Therein, yb, ye, basically corresponding to the initial
and desired pressure level in the tank, and t̄ are defined in (3.11) and (3.10), respectively.

6.2.2 Design of the State Feedback

Since the parametrizations (6.21) and (6.23) in terms of the corresponding flat output
uniquely exists, the systems (6.6) and (6.15) are differentially flat. This implies the
controllability6 of the pairs (AF, bF) as well as (AM, bM) and facilitates the subsequent
controller design.
The state feedback7

U(t) = −kTX(t), (6.26)

where kT ∈ R1×n, is designed in order to minimize the cost function8

J(U) =
∫ ∞

0

[
qp2

vol(t) + U2(t)
]
dt, (6.27)

subject to (6.1a), with the design parameter q > 0. By solving the associated Riccati
equation

PbbTP − PA−ATP −Q = 0 (6.28)

for the positive definite solution P ∈ Rn×n, the gain

kT = bTP

of the linear–quadratic regulator results, e.g., [Kir04]. The definition of the matrix
Q ∈ Rn×n in (6.28) depends on whether the FVM or the MA is considered:

QF =




qF(RsT0)2 0 · · · 0
0 0 . . . ...
... . . . . . . 0
0 · · · 0 0



, QM =




qM(b0RsT0)2 0 · · · 0
0 0 . . . ...
... . . . . . . 0
0 · · · 0 0



,

where qF and qM, respectively, define q in (6.27). For the matrices QF and QM, based
on the pairs (AF, bF) and (AM, bM), the Riccati equation (6.28) has a corresponding
unique positive definite solution9 P .
In contrast to a design based on pole placement, where n pole locations need to be
specified, the proposed linear–quadratic regulator with the cost function (6.27) only
requires the choice of q. The value of q is determined by trial and error, depending on
the desired dynamical behavior of the tank pressure pvol(t), i.e. the controlled variable.
For the computation of kT , the choice of q might not be arbitrary as the pair (A, b) can
become numerically almost uncontrollable for high-order approximations, regardless of
whether the FVM or the MA is utilized.

6For (AM, bM), this property is guaranteed by (6.15) being a minimal realization (cf. Rem. 6.3).
7The following linear-quadratic regulator is designed based on both, the model derived by the FVM

and the MA.
8Therein, pvol(t) is in Pa and U(t) in kg/s.
9The model (6.15a), derived by the MA, is detectable via pvol(t) as the latter is proportional to the

flat output in (6.24), ensuring observability. In contrast, pvol(t) is not a flat output of the model (6.6a),
derived by the FVM (cf. (6.22)). However, based on the corresponding observability matrix w.r.t. pvol(t),
it can be shown that (6.6a) is observable via pvol(t) and, thus, detectable.
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Remark 6.5. Naturally, it is possible to scale the independent and dependent variables of
the linear model (2.51), improving the numerical calculation of kT to some extent. Since
it is not necessary for the subsequently chosen approximation order n, this approach is
not taken into account. M

6.2.3 Design of the State Observer

The implementation of the state feedback (6.26) at the test bench necessitates the knowl-
edge of the state X(t). To provide an estimate X̂(t) based on the measurement Y (t),
a state observer is designed in the following. For that, first, the observability of the
systems (6.6) with (6.8) and (6.15) with (6.18) is investigated. For the pair (AF, (cȳF)T ),
the determinant of the observability matrix reads

det




(cȳF)T
(cȳF)TAF

...
(cȳF)TAn−1

F




= a2
n+1κ

n−1
2 (n−1

2 +1)−2
1 κ

(n−1)2
4

2 (2κ1 + k4)2

2n+1 ,

where aj+1 = 4aj − aj−1, j = 1, . . . , n with a0 = 1, a1 = 1 [Slo]. Therefore, since
the determinant is non-zero, the system is observable. The observability of the pair
(AM, (cỹM)T ) follows from the fact that the system (6.15) is a minimal realization
(cf. Rem. 6.3).
Having discussed the observability of the systems, a Luenberger observer

d
dtX̂(t) = AX̂(t) + bU(t) + l

(
Y (t)− Ŷ (t)

)
(6.29a)

Ŷ (t) = cT X̂(t) (6.29b)

is designed, based on the systems (6.6) with (6.8) and (6.15) with (6.18), respectively.
The gain l ∈ Rn, rendering A − lcT a Hurwitz matrix, is derived by pole placement,
where the desired locations are specified by trial and error. For higher approximation
orders, both, the FVM and the MA, may generate a pair (A, cT ) which is numerically
almost unobservable. This can cause ill-conditioned computational problems. Hence,
some pole locations might not be feasible.
Remark 6.6. A state observer design dual to the state feedback design in Sec. 6.2.2,
i.e. the Kalman-Bucy filter, is not pursued since it would require the determination of
the process noise covariance, e.g., [WB06]. M

6.3 Simulation Studies

The controllers are discussed in simulations prior to their experimental validation. First,
the state feedbacks, designed by making use of the FVM and the MA, respectively,
are applied to the linear model (2.51) of the test bench. Next, each state feedback is
combined with the corresponding state observer and augmented with the feedforward
controller. The resulting two output feedback tracking controllers are applied to the
linear model as well as to the plant model (2.48), where the parameters of the test bench
configuration are stated in Tab. 3.1. The numerical solution of the finite-dimensional
state observers (6.29) is described in Appx. B.1.2. The gains kT and l are computed by
the MATLAB commands lqr() and place(), respectively.
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State Feedback Controller As it is desirable to stabilize a non-zero pressure level,
the feedback law

U c(t) = −kT
(
X(t)−Xr) (6.30)

is introduced. Therein, X(t) is computed in each time step based on the states x(z, t),
ξ(t), resulting from the simulation of the linear model (2.51). While the state X̄(t) of
the FVM directly follows from (6.2), the state X̃(t) of the MA is obtained from the
relation (6.19). These intermediate computations are only required in the context of
simulations, where the state feedback is not based on the estimate of the state observer.
The constant reference state Xr results from the desired pressure level prvol by making
use of (6.21), (6.22) and (6.23), (6.24), respectively. In order allow for a comparison
between the early-lumping approach and the backstepping-based late-lumping approach,
the design parameter q in (6.27) is chosen as follows: First, the settling time t5% = 0.19 s
of the backstepping-based state feedback in Fig. 4.10 is determined. This duration is
defined by the time needed for pvol(t) to reach and stay within a range of ±5 % of the
desired pressure level prvol = 3 bar, e.g., [Oga10]. Next, the design parameter q is tuned
in a simulation, where the early-lumping feedback controller (6.30) is applied to the
corresponding finite-dimensional model (6.1) with n = 7 states10, in order to achieve the
same settling time. Thereby, qF = 3.93 · 10−5 kg2/s2·Pa2 and qM = 3.96 · 10−5 kg2/s2·Pa2

are obtained. As the state feedback is initially applied to the linear model, the friction
amplification factor in (2.51a) is set to kfric = 1 in the simulations as well as for the
computation of the corresponding gain kT in (6.26).
Fig. 6.6 depicts the simulation results for the application of the state feedback U c

F(t),
designed based on the FVM, to the linear model. For t < ton = 0.05 s, the system is in
equilibrium with its surroundings, i.e. ρ(z, 0) = ρ0 and (ρv)(z, 0) = 0. At ton = 0.05 s,
the controller is activated, trying to stabilize the desired pressure level prvol = 3 bar. In
the upper plot of Fig. 6.6, it can be seen that the tank pressure starts to rise shortly
after ton, slightly oscillating. These lower frequency oscillations are superimposed with
higher frequencies, destabilizing the system. Similar effects can be observed in Fig. 6.7,
where the simulation data, resulting from the application of the state feedback U c

M(t)
designed based on the MA to the linear model, is depicted. It can be seen that the
higher frequency oscillations in the tank pressure are not as dominant as in Fig. 6.6.
Still, as shown in in Fig. 6.8, the distributed pressure p(z, t) along the tube oscillates
heavily. Thus, the system does not converge to a steady state, neither.
The lower frequency oscillations shortly after ton in Fig. 6.6 and Fig. 6.7 result from the
n−1 complex eigenvalues of the corresponding matrix A−bkT . In contrast to that, the
higher frequency oscillations can be attributed to the spillover effect, which prevents the
system from converging to the desired constant pressure level. The spillover is caused by
the fact that the approximation cannot fully capture the effects inherent to hyperbolic
systems, e.g., discontinuities in the solution as well as the propagation of waves with
finite speed. Thereby, such an inferior control performance as depicted in Fig. 6.6 and
Fig. 6.7 can result. The amplitude of the higher frequency oscillations mainly depends
on the chosen design parameter q and the approximation order11 n. A lower value of
the weight q and/or a larger value of n might decrease the higher frequency oscillations.
However, if the state feedback is combined with the state observer (6.29), an adjustment

10The choice of the approximation order is discussed in the following.
11Naturally, the choice of the discretization scheme, stated in Appx. B.1 and required for the numerical

simulation of the linear model (2.51), can effect the amplitude of the higher frequency oscillations, too.
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Figure 6.6: Application of the feedback controller (6.30), designed based on the FVM in
Sec. 6.1.1, to the linear model (2.51): Reference pressure prvol and tank pressure pvol(t)
as well as corresponding control input U c

F(t)
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Figure 6.7: Application of the feedback controller (6.30), designed based on the MA in
Sec. 6.1.2, to the linear model (2.51): Reference pressure prvol and tank pressure pvol(t)
as well as corresponding control input U c

M(t)
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Figure 6.8: Distributed pressure p(z, t) along the tube and the tank pressure pvol(t)
(orange line) in bar

of q or n is unnecessary as the use of the resulting output feedback controller significantly
reduces the oscillations. Such a scenario is investigated in the following.

Output Feedback Tracking Controller In the following, the output feedback track-
ing controller

U(t) = U r(t) + U c(t), (6.31)

where

U c(t) = −kT
(
X̂(t)−Xr(t)

)
, (6.32)

is applied to the linear model. It is obtained from combining the state feedback (6.30),
based on the estimate X̂(t) of the state observer (6.29), with the corresponding feedfor-
ward controller in Sec. 6.2.1, where µ in (6.25) is set to µ = 0.4. The desired pressure
levels and the rate of the transitions are equal to those of the standard reference trajec-
tory depicted in Fig. 3.2. Since yr(t) is based on the Gevrey function in (6.25) instead
of on the polynomial in (3.11), the resulting reference trajectory slightly differs from
the one depicted in Fig. 3.2. In addition, prvol(t) in (6.22) is not proportional to yrF(t)
during the transitions. However, since the deviations between ξ(t) and X̄1

1 (t) in (6.5) are
marginal for the chosen reference trajectory, the deviations between (2κ1 +k4)RsT0yrF(t)
and prvol(t) are small, too (cf. (6.20)).
The observer eigenvalues βi, i = 1, . . . , 7, of the matrix A − lcT are determined by an
approach comparable to the previously considered one for the determination of the gain
kT in (6.30): First, the backstepping-based state observer (4.38) is simulated, where
the parameters corresponding to Fig. 4.13 are utilized. The initial conditions of the
state observer read x̂1(z, 0) = 3ρ0, x̂2(z, 0) = 0. In contrast to that, the system is
in equilibrium with its surroundings for all t. Hence, the input U(t) is zero and the
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measurement Y (t) = ρ0RsT0, fed to the observer, is constant. From this simulation, the
settling time t5% = 0.20 s is obtained for the backstepping-based state observer, i.e. the
time needed for the estimated tank pressure p̂vol(t) to reach and stay within a ±5 %
range of the measurement Y (t). Subsequently, simulations of the corresponding finite-
dimensional state observer (6.29) are performed, where the real parts of the eigenvalues

βi = αRe(λmin) + jIm(λi) (6.33)

of A− lcT are varied by tuning α > 0 in order to achieve the settling time t5% = 0.20 s.
The minimum eigenvalue λmin is defined by

λmin = −arg max
λi

∣∣Re(λi)
∣∣ ,

where λi are the eigenvalues of the corresponding matrix A in (6.6) and (6.15), respec-
tively. From that, α = 2.53 is obtained for both approximation approaches, defining the
respective observer gain l in (6.29).
In Fig. 6.9 and Fig. 6.11, the simulation data for the application of U(t) in (6.31),
resulting from the FVM and the MA, respectively, to the linear model (2.51) is depicted.
While the system is initially in equilibrium with its surroundings, the state observers
(6.29) are initialized with

X̂(0) = 3X(0),

where X(0) follows from x(z, 0), ξ(0) by making use of the relations in (6.2) and (6.19),
respectively. In the upper plots of Fig. 6.9 and Fig. 6.11, it can be seen that the tank
pressures pvol(t) start to deviate from the reference pressures prvol(t), caused by the initial
mismatch between the respective observer state and the state of the linear model. For
approximately t > 0.4 s, as shown in Fig. 6.10 and Fig. 6.12, the deviations ∆p(t) between
the reference pressures prvol(t), the estimated pressures p̂vol(t), and the tank pressures
pvol(t) become virtually zero. Consequently, the systems are steered by the feedforward
controllers U r

F(t) and U r
M(t), respectively, only.

By comparing Fig. 6.10 and Fig. 6.12, it can be concluded that both early-lumping
controllers have a very similar performance. Furthermore, in contrast to the simulations
in Fig. 6.6 and Fig. 6.7, where the corresponding state feedback (6.30) is based on the
actual state x(z, t), ξ(t) of the system, the higher frequency oscillations are virtually
nonexistent in Fig. 6.10 and Fig. 6.12. The reason for this is the fact that the state
feedback (6.32) in the output feedback tracking controller (6.31) is based on the estimate
of the state observer (6.29), by which the higher frequency oscillations are significantly
reduced. The lower frequency oscillations still visible can be attributed to the complex
eigenvalues of the closed-loop system. An increase of the approximation order n would
basically result in the same performance of the output feedback tracking controller. This
is confirmed by [RNM16; AF16; Fal17; TU18], where n < 7 is verified to be sufficient.
Before each output feedback tracking controller is tested in experiments, it is applied
to the plant model (2.48). Both, the system and the state observer, are initially in
equilibrium with the surroundings. In order to compensate the turbulent friction effects,
the friction amplification factor in (2.51a) is set to kfric = 4 for the computation of the
feedback and observer gain kT and l in (6.26) and (6.29), respectively. Fig. 6.13 shows
the simulation data for the FVM and the corresponding errors12 can be seen in Fig. 6.14.

12As already mentioned, the deviations of all essential simulations are quantified in terms of the error
measures L1

r,err and L∞err in (2.42) and (2.43), respectively, and can be found in Chap. 7.
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ṁ
in

kg
/s

Ur
F(t), (6.21) Uc

F(t), (6.32) UF(t), (6.31)

Figure 6.9: Application of the output feedback tracking controller (6.31), designed based
on the FVM in Sec. 6.1.1, to the linear model (2.51): Reference pressure prvol(t), estimated
pressure p̂vol,F(t), and tank pressure pvol(t) as well as corresponding control input UF(t)
with feedforward part U r

F(t) and feedback part U c
F(t)

0 0.1 0.2 0.3 0.4 0.5
−2

−1

0

1

t in s

∆
p

in
ba

r

pvol(t) − p̂vol,F(t) pr
vol(t) − p̂vol,F(t) pr

vol(t) − pvol(t)

Figure 6.10: Deviations between the reference pressure prvol(t), the estimated pressure
p̂vol,F(t), and the tank pressure pvol(t) in Fig. 6.9
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Figure 6.11: Application of the output feedback tracking controller (6.31), designed
based on the MA in Sec. 6.1.2, to the linear model (2.51): Reference pressure prvol(t),
estimated pressure p̂vol,M(t), and tank pressure pvol(t) as well as corresponding control
input UM(t) with feedforward part U r
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Figure 6.12: Deviations between the reference pressure prvol(t), the estimated pressure
p̂vol,M(t), and the tank pressure pvol(t) in Fig. 6.11
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Figure 6.13: Application of the output feedback tracking controller (6.31), designed
based on the FVM in Sec. 6.1.1, to the plant model (2.48): Reference pressure prvol(t),
estimated pressure p̂vol,F(t), and tank pressure pvol(t) as well as corresponding control
input UF(t) with feedforward part U r
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Figure 6.14: Deviations between the reference pressure prvol(t), the estimated pressure
p̂vol,F(t), and the tank pressure pvol(t) in Fig. 6.13
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While there are deviations during the transitions, steady-state accuracy is achieved. As
the simulation data for the FVM and the MA are again very similar, the results for the
MA are not explicitly depicted.

6.4 Experimental Results

In order to implement the output feedback tracking controller (6.31) at the test bench
with the configuration in Tab. 3.1, the respective state-space representation (6.1) with
kfric = 4 is discretized13 w.r.t. t by means of the zero-order hold method. Based on this
discrete-time model with the sample time ∆t = 5 · 10−4 s of the test bench, the gains kTd
and ld are designed by making use of the MATLAB commands lqrd() and place().
The design parameters qF, qM and the dynamics of the discrete state observers with the
eigenvalues βd,i = eβi∆t are chosen as in the previous section. Subsequently, similar to
the implementation of the backstepping-based controller in Sec. 4.7, the resulting two
output feedback tracking controller are implemented in Simulink and integrated in the
software framework of the test bench.
Fig. 6.15 and Fig. 6.17 display the experimental data resulting from the application
of the output feedback tracking controllers, designed based on the FVM and the MA,
respectively, to the test bench. The corresponding pressure deviations are shown in
Fig. 6.16 and Fig. 6.18. It can be seen that the experimental data is relatively similar to
the simulation data in Fig. 6.13 and Fig. 6.14. However, measurement noise and higher
frequency oscillations are present in the experiment, even if the system should be in a
steady state. The oscillations depend on the pressure level and result from the slightly
inaccurate inverse mass flow rate model (2.19) of the valve. As these inaccuracies are
somewhat amplified by the output feedback tracking controllers, experiments confirm
that choosing a slower closed-loop dynamics will decrease the amplitude of the oscil-
lations. Furthermore, comparable to the previous simulation studies, both controllers
achieve a relatively similar performance in the experiments presented in Fig. 6.15 and
Fig. 6.17.
In the following scenario, a reference trajectory is chosen which partially exceeds the
test bench capabilities. For that, the pressure levels and the rate of the transitions are
defined as in Fig. 4.20. To avoid peaks in the reference input U r(t), resulting from the
involved higher-order time derivatives of the highly dynamic reference trajectory yr(t)
(cf. (6.23) and (6.21)), U r(t) is smoothed by a low-pass filter. Since the experimental
data for both approximation approaches is again relatively similar, only the results of
the FVM are shown in Fig. 6.19. Therein, the bounded input Uν(t) in (4.79) is depicted
instead of U(t). The corresponding pressure deviations are shown in Fig. 6.20.
It can be seen that the controller is not able to track the reference pressure satisfactorily
during the first transitions, where relatively large deviations occur. These mostly orig-
inate from the highly dynamic reference trajectory, which causes high flow velocities in
the tube. The latter violate the assumptions imposed on the linear model (2.51). As the
output feedback tracking controller is designed based on this model, the tracking perfor-

13In Sec. 6.3, the continuous-time formulation of the state-space representation is used for the design
of the feedback and observer gains kT and l in (6.26) and (6.29), respectively. The reason for this is
the fact that the (possibly non-constant) time step ∆tm ≈ 4.95 · 10−5 s is sufficiently small compared
to the bandwidth of the closed-loop system. Thus, the continuous-time formulation is appropriate
(cf. Appx. B.1 and [Oga95]).
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Figure 6.15: Application of the output feedback tracking controller (6.31), designed
based on the FVM in Sec. 6.1.1, to the test bench: Reference pressure prvol(t), estimated
pressure p̂vol,F(t), and measured tank pressure pvol(t) as well as corresponding control
input UF(t) with feedforward part U r
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Figure 6.16: Deviations between the reference pressure prvol(t), the estimated pressure
p̂vol,F(t), and the measured tank pressure pvol(t) in Fig. 6.15
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Figure 6.17: Application of the output feedback tracking controller (6.31), designed
based on the MA in Sec. 6.1.2, to the test bench: Reference pressure prvol(t), estimated
pressure p̂vol,M(t), and measured tank pressure pvol(t) as well as corresponding control
input UM(t) with feedforward part U r
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Figure 6.18: Deviations between the reference pressure prvol(t), the estimated pressure
p̂vol,M(t), and the measured tank pressure pvol(t) in Fig. 6.17
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ṁ
in

kg
/s

Ur
F(t), (6.21) Uc

F(t), (6.32) Uν(t), (4.79)

Figure 6.19: Application of the output feedback tracking controller (6.31), designed
based on the FVM in Sec. 6.1.1, to the test bench with faster transitions: Reference
pressure prvol(t), estimated pressure p̂vol,F(t), and measured tank pressure pvol(t) as well
as corresponding bounded control input Uν(t) with feedforward part U r
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Figure 6.20: Deviations between the reference pressure prvol(t), the estimated pressure
p̂vol(t), and the measured tank pressure pvol(t) in Fig. 6.19
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Figure 6.21: The voltage ν(t), resulting from the inverse mass flow rate model (2.19)
and fed to the valve for the experiment in Fig. 6.19
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mance is significantly degraded (cf. Sec. 2.7). Furthermore, the highly dynamic reference
trajectory partially exceeds the test bench capabilities during the first discharge process.
Fig. 6.21 shows the corresponding voltage, fed to the valve. Since ν(t) = 0 holds for
t ∈ [2.08 s, 2.23 s], the test bench is discharged at its fastest rate. In contrast to that,
the controller is able to track the latter transitions in Fig. 6.19 with a relatively high
precision and the desired pressure levels are reached without significant delays. The
capabilities of valve are respected since 0 < ν(t) < 10 V holds. However, especially for
Uν(t) = 0, oscillations are present in ν(t). These can be related to the oscillations in
pvol(t) in Fig. 6.19 and, as discussed in the context of Fig. 6.15 and Fig. 6.17, mostly
originate from the slightly inaccurate inverse mass flow rate model (2.19) of the valve.

6.5 Chapter Highlights

This chapter made use of the early-lumping method to design two output feedback
tracking controllers. For the approximation of the linear model, two approaches were
utilized: the FVM and the MA. While the presented FVM follows [KS13] relatively
closely, the MA in this thesis somewhat differs from [RNM15]. The input-to-output
behavior of the finite-dimensional models was compared and discussed with respect to
the infinite-dimensional linear model. Finally, output feedback tracking controllers were
designed and investigated in simulations and experiments.
The discussion of the approximation approaches might facilitate the choice of one of
them, depending on the intended application. In addition, the results in this chapter
allow to compare the novel late-lumping controllers in this thesis with state-of-the-art
early-lumping controller designs.
The supervised student theses [Her16; Mei17; Ame17] have contributed to the develop-
ment of this chapter’s results.
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Chapter 7

Conclusion

In this chapter, the late-lumping and early-lumping approaches are summarized and
discussed in terms of their theoretical and implementation aspects. Furthermore, their
performance is compared by evaluating the presented simulation and experimental data.
Finally, the highlights of this thesis are outlined and an outlook for potential further
research is given.

7.1 Comparative Analysis of the Design Approaches

General Aspects The flatness-based feedforward controller in Chap. 3 is designed
based on the isothermal model (2.50) of the test bench. Parametrizing the boundary
system at the unactuated boundary in terms of a flat output results in a Cauchy problem
w.r.t. space. Based on a desired reference trajectory of the flat output, the solution of
the Cauchy problem yields the reference states and, hence, the feedforward controller.
Both can be easily transformed into the conservative variables ρ(z, t), (ρv)(z, t).
The design of the backstepping-based state feedback and observer in Chap. 4 is based
on the linear model (2.51). For the derivation of the state feedback, the original system
is transformed into a target system with the desired dynamics. From that, the control
law is obtained. In a similar manner, the state observer is derived by transforming
the dynamics of the observer error into a desired target system. The state feedback
and observer are combined to the output feedback controller, which can be explicitly
expressed in terms of the conservative variables.
The flatness-based state feedback and observer in Chap. 5 are derived from the linear
model, too. For the design of the state feedback, the solution of the original system is
parametrized in terms of the flat coordinates by making use of a flat output. A Volterra
integral equation defines the transformation of the conservative variables into the flat
coordinates. The control law essentially follows by prescribing a desired dynamics for
the flat output. To design the observer, the system dynamics is written in terms of the
input and the measured output. Thereby, the system in HOF is obtained. Based on this
system description and a desired dynamics for the observation error, the state observer
results. Currently, the transformation between the original and the observer coordinates
is unknown, preventing the derivation of an output feedback controller.
For the early-lumping approach in Chap. 6, first, the infinite-dimensional linear model
(2.51) of the test bench is approximately described by ODEs, resulting in a finite-
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dimensional model. For that, two methods are applied, the FVM and the MA. The FVM
is a time-domain approach, where the lumped state of the finite-dimensional model is a
direct approximation of the distributed state. In contrast to that, the MA is carried out
in the operational domain and the resulting lumped state does not allow for a straight-
forward physical interpretation. The subsequently designed output feedback tracking
controllers each comprise a flatness-based feedforward controller, a linear-quadratic reg-
ulator, and a state observer, derived by pole placement.

Design Parameters The design of the flatness-based feedforward controller (3.14)
allows for the choice of a reference trajectory yr(t) of the flat output y(t). Since y(t)
is proportional to the tank pressure pvol(t), equivalently, a desired reference trajectory
prvol(t) can be chosen. As the tank is modeled by a first-order ODE, the reference
trajectory yr has to be a C1([0,∞)) function. The duration of the transition from the
initial to the desired pressure level is defined by the sum of the minimum transition time
and the duration of the pressure change in the tank. The latter is a design parameter,
which has to be selected carefully in order to respect the capabilities of the pneumatic
system.
To design the backstepping-based feedback gains kη, kTw(z) in (4.28), the parameter k
has to be chosen. Thereby, the desired convergence rate of the state of the closed-loop
system to zero is defined. The design parameter of the observer gains lη, l(z) in (4.60)
is given by `. Its choice specifies the convergence rate of the observer error.
The computation of the gains k0, k1, k+, k−, and k(τ) in the flatness-based state feedback
(5.19) requires the specification of the design parameters κc and γc, where γc = 0 is
chosen in this context (cf. Rem. 5.1). The choice of κc defines the convergence rate of
the flat output and, hence, of the state of the closed-loop system. For the flatness-based
state observer (5.38), the design parameters are given by κo and γo, where γo is set to
γo = 0. The convergence rate of the observation error is specified by κo.
If the early-lumping approach is applied, the approximation method and the desired
order n have to be chosen, depending on the desired accuracy of the approximation.
The feedback gain kT in (6.26) follows from the choice of the design parameter q in
the simplified cost function (6.27). Similarly, the n observer eigenvalues are defined by
the tuning parameter α in (6.33). From that, the observer gain l in (6.29) is obtained.
The flatness-based feedforward controllers in (6.21) and (6.23), respectively, follow from
a desired reference trajectory yr(t) for the flat output. While yr(t) is proportional to
prvol(t) if the MA is applied, this relation only holds in steady state if the FVM is utilized.
Based on the order n, the reference trajectory yr is chosen as a Cn([0,∞)) function.

Stability The stability of the system (4.9), i.e. the system (4.1) in standard backstep-
ping form controlled by the backstepping-based state feedback (4.8), follows from the
stability of the target system (4.21). For t > tc, the closed-loop solution is explicitly
given in (4.37). From that, the exponential convergence of the L∞-norm of the dis-
tributed state follows. The stability of the observer error dynamics (4.40) is shown in a
similar manner. For t > to, the explicit solution (4.63), (4.64) of the observer error is
obtained, where the convergence rate is exponential, too. By making use of these results,
for t > to + tc, the exponential stability of the closed-loop system (4.66), i.e. the system
(4.1) in standard backstepping form controlled by the output feedback controller (4.65),
follows from (4.73).
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The flatness-based1 state feedback (5.19) stabilizes the linear model (2.51) since it im-
poses the desired dynamics (5.18) of the flat output. For t > 2τ0, the explicit solution
of the closed-loop system is stated in (5.26). Thereby, it can be easily shown that the
convergence of the L∞-norm of the distributed state is exponential. Similar to that, the
observer error dynamics (5.36) are stable as, for t > 2τ0, the explicit solution (5.39),
(5.40) of the observer error in HOF converges exponentially to zero. Since tc = to = 2τ0
holds, the results for the stability of the closed-loop system and the observer error are
similar to those of the backstepping approach.
In the context of the early-lumping approach, the exponential stability of the closed-loop
system, i.e. the finite-dimensional system (6.1) controlled by the state feedback (6.26),
and the exponential stability of the observer error dynamics follow from A − bkT and
A− lcT being Hurwitz matrices.

Implementation The flatness-based feedforward controller (3.14) and the reference
states result from the offline solution of the Cauchy problem (3.1), (3.13), where the
initial data in (3.1) is parametrized in terms of yr(t) and ẏr(t). The Cauchy problem is
solved numerically by making use of the approximation scheme in Appx. B.2.
The gains kη and kTw(z) of the backstepping-based state feedback (4.74) necessitate the
calculation of eT2K(z, ζ), eT2 n(z), and eT2 P (z, ζ). While eT2K(z, ζ) is obtained explicitly
by (4.16) and (4.17), eT2 n(z) and eT2 P (z, ζ) result from the numerical solution of the
Volterra integral equation (4.33). This solution can be efficiently computed, e.g., by
making use of a truncated fixed-point iteration. The observer gains lη and l(z) result from
JI(z, ζ)e1, eT1 r(z), and ΩI(z, ζ)e1. While JI(z, ζ)e1 and eT1 r(z) are obtained explicitly
by (4.47) and (4.52), respectively, ΩI(z, ζ)e1 follows from the numerical solution of the
Volterra integral equation (4.59). To implement the output feedback controller (4.65),
the integral in the state feedback (4.74) is approximated by the trapezoidal rule and
the state observer (4.38) is discretized with respect to time and space by applying the
methods in Appx. B.1. During the run time, the resulting discretized output feedback
controller is computed in each time step.
The gains k0, k1, k+, k−, and k(τ) of the flatness-based state feedback (5.19) in flat
coordinates are defined explicitly in (5.20) and the coefficients of the state observer
(5.38) in HOF are given in (5.32). The integral in the state feedback is approximated by
the trapezoidal rule and the state observer is discretized by the methods in Appx. B.1.
Assuming that an estimate of the state in conservative variables were available, the
flatness-based state feedback (5.19) in flat coordinates could be applied to the test bench.
To evaluate such a control law, the Volterra integral equation (5.23) needs to be solved
online in each time step. Therein, the matrices D(τ) and H(z, τ) are computed offline.
By making use of a truncated fixed-point iteration, where the iteration in the actual time
step is initialized with the solution of the last time step, the required computational time
to solve the Volterra integral equation (5.23) is kept within limits.
To implement the early-lumping approach at the test bench, the respective state-space
representation is discretized w.r.t. t by means of the zero-order hold method. The gains
kTd and ld are obtained by making use of the MATLAB commands lqrd() and place().
For the computation of the feedforward controllers and the reference states, defined in
(6.21) and (6.23), respectively, yr(t) is differentiated n times. During the experiment,

1It is assumed that γc = γo = 0 holds (cf. Rem. 5.1 and Rem. 5.4).



122 Chapter 7. Conclusion

Table 7.1: Errors as well as control efforts: The state feedbacks are applied to the linear
model in a simulation

design Fig. L1
r,err L1

eff

backstepping 4.10 10.675 % 1.819 g
flatness-based 5.2 10.675 % 1.818 g

FVM 6.6 10.787 % 3.513 g
MA 6.7 10.098 % 1.870 g

the discretized output feedback controllers, following from (6.26) and (6.29), have to be
evaluated in each time step.

Simulation and Experiment The performance of the presented controllers is com-
pared in terms of the deviation between the reference pressure prvol(t) and the tank
pressure pvol(t), quantified by the error measures L1

r,err and L∞err in (2.42) and (2.43),
respectively. In addition to L1

r,err and L∞err, a further measure is introduced:

L1
eff =

∫ tf

0
max{0, Uν(t)}dt, (7.1)

where Uν(t) is defined in (4.79) and tf denotes the duration of the simulation or the
experiment. Thereby, the necessary control effort, i.e. the amount of compressed air
consumed, is quantified.
Remark 7.1. Naturally, the performance of the controllers depends on several factors
such as the test bench configuration, the reference pressure trajectory as well as the
chosen design parameters. It could be improved by, e.g., an optimization-based tuning
of the design parameters. M

The first comparison is based on the simulations, where the state feedbacks are applied
to the linear model (2.51). Tab. 7.1 lists the corresponding error measures2 L1

r,err, where
the lower limit of the integration in (2.42) is replaced by ton, and the control efforts
L1
eff. By comparing the simulation results of the backstepping- and flatness-based state

feedbacks in Fig. 4.10 and Fig. 5.2, respectively, it can be seen that both late-lumping
approaches virtually lead to the same closed-loop dynamics. The negligible deviations
between the two inputs U c(t) around ton and t2 most probably result from numerical
inaccuracies. The application of the early-lumping state feedbacks to the linear model,
depicted in Fig. 6.6 and Fig. 6.7, induces high frequency oscillations in the closed-loop
system. In contrast to the late-lumping approaches, where the tank pressure converges
to the desired pressure with the specified convergence rate, steady-state accuracy is not
achieved. As it can be seen in the lower plot of Fig. 4.10 and Fig. 5.2, the infinite-
dimensional control laws take the hyperbolic character of the system into account by
compensating the reflected pressure wave at t2. Since this is not the case for the early-
lumping controllers, the lower frequency oscillations depicted in Fig. 6.6 and Fig. 6.7
result. Furthermore, as stated in Tab. 7.1, the early-lumping controllers consume more
compressed air, especially if the design is based on the FVM.

2For all state feedbacks, L∞err = pr
vol − p0 = 1.987 bar results.
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Table 7.2: Errors as well as control efforts: The output feedback tracking controllers are
applied to the plant model in a simulation

design Fig. L1
r,err L∞err L1

eff

backstepping 4.15 1.021 % 0.155 bar 6.521 g
FVM 6.13 1.633 % 0.318 bar 6.516 g
MA not depicted 1.639 % 0.319 bar 6.518 g

Next, the simulations, where the output feedback tracking controllers are applied to the
plant model (2.48), are discussed3. It can be seen in Fig. 4.15 that the backstepping-
based output feedback controller, combined with the flatness-based feedforward con-
troller4, tracks the reference pressure trajectory almost perfectly. While still being ade-
quate, the performance of the early-lumping controller in Fig. 6.13, derived by the FVM,
is slightly inferior. The diminished performance of the early-lumping approach is also
apparent from the error measures in Tab. 7.2: Compared to the backstepping-based con-
troller, the measures L1

r,err, L∞err of the early-lumping controllers, derived by the FVM
and the MA, are increased by approximately 60 %, 105 % and 61 %, 106 %, respectively,
while almost the same amount of compressed air is consumed. It can be concluded
that the choice of the approximation method has no significant effect on the resulting
controller performance.
Remark 7.2. For a comparison, the backstepping-based output feedback controller (4.65)
is augmented by a feedforward controller based on the linear model by making use
of (5.15b) evaluated at z = 1. Thus, similar to the early-lumping approaches, the
feedforward and the feedback part are derived from the same system description. A
simulation similar to Fig. 4.15, where the resulting (linear) output feedback tracking
controller is applied to the plant model, yields the error measures L1

r,err = 1.275 % as
well as L∞err = 0.188 bar and the control effort L1

eff = 6.547 g. By comparing these values
with the ones of the early-lumping controllers in Tab. 7.2, it can be concluded that the
excellent performance of the backstepping-based controller is not solely caused by the
superior feedforward part. M

The experimental results depicted in Fig. 4.18, Fig. 6.15, and Fig. 6.17 support that the
backstepping-based controller may be advantageous in industrial applications: As stated
in Tab. 7.3, the errors L1

r,err, L∞err, resulting from the early-lumping controllers, are about
38 %, 85 % and 37 %, 86 %, respectively, larger than those of the backstepping-based
controller. At the same time, the early-lumping controllers consume more compressed
air. Again, both approximation approaches lead to a similar performance. Overall,
the experimental results confirm the validity of the simulation studies (cf. Tab. 7.2 and
Tab. 7.3).
The experimental data shown in Fig. 4.20 and Fig. 6.20, where fast pressure changes are
executed, also demonstrates the excellent performance of the backstepping-based con-
troller. By comparing the measures in Tab. 7.4, it can be seen that the errors L1

r,err, L∞err
of the early-lumping controllers are enlarged by 73 %, 106 % and 79 %, 107 %, respec-
tively, w.r.t. the errors of the backstepping-based controller. Hence, the latter appears
to be even more powerful if very fast transitions are intended.

3As mentioned before, no such controller exists for the flatness-based approach.
4In the following, it is called the backstepping-based controller for the sake of brevity.
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Table 7.3: Errors as well as control efforts: The output feedback tracking controllers are
applied to the test bench in an experiment

design Fig. L1
r,err L∞err L1

eff

backstepping 4.18 1.122 % 0.175 bar 6.658 g
FVM 6.15 1.543 % 0.324 bar 6.635 g
MA 6.17 1.541 % 0.326 bar 6.809 g

Table 7.4: Errors as well as control efforts: The output feedback tracking controllers are
applied to the test bench in an experiment with fast pressure changes

design Fig. L1
r,err L∞err L1

eff

backstepping 4.20 0.842 % 0.364 bar 5.718 g
FVM 6.19 1.456 % 0.750 bar 5.638 g
MA not depicted 1.503 % 0.752 bar 5.947 g

Remark 7.3. While this thesis focuses on the test bench configuration in Tab. 3.1, where
a tube with a length of L = 5 m is considered, the experimental validation of the
backstepping-based controller for a tube with L = 20 m can be found in [Ker19] as well
as in Appx. C. Furthermore, the student theses [Her16; Mei17; Mei18] experimentally
validate late-lumping and early-lumping controllers for tubes ranging between L = 5 m
and L = 20 m. M

7.2 Concluding Remarks and Outlook

This thesis presented the design and experimental validation of output feedback tracking
controllers for a pneumatic system with distributed parameters. The system basically
comprises a valve and a tank, connected via a long tube. The valve is characterized
by static relations and the tank is modeled by ODEs. In contrast to that, the tube is
described by PDEs. Thereby, the spatially distributed character of the tube dynamics
was explicitly considered in the model-based controller designs.
Five different test bench models with successively decreasing complexity were presented
in Chap. 2. They are described by PDE-ODE systems and range from the very accurate
plant model (2.48) to the simplified linear model (2.51). All assumptions involved in
the derivation of the models were clearly stated and the resulting system descriptions
compared to each other and with measurements. By that, the choice of a suitable model
is facilitated, whereby its use is not limited to the context of controller design: The
modular model structure allows to, e.g., utilize the tube dynamics of the semilinear
model (2.35) in a simulation of a large pneumatic network or of a heavy truck air brake
system. In addition, the tank model (2.22) can be easily extended to account for a
varying volume. Thereby, for example, the pressure chamber of a pneumatic cylinder can
be described. Further research could focus on the development of different dynamic valve
models with preferably decreasing complexity. The resulting mathematical description
of the test bench would thus belong to the class of ODE-PDE-ODE systems.
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To facilitate specified transitions between constant tank pressure levels in finite time, a
feedforward controller was designed in Chap. 3. It was demonstrated that the flatness-
based approach in [Knü15] can be applied to the isothermal model (2.50) of the test
bench in a straightforward manner.
The flatness-based feedforward controller was combined with the backstepping-based
state feedback and the state observer, designed in Chap. 4. By that, the infinite-
dimensional output feedback tracking controller was derived. As the state observer
is based on a collocated measurement, no sensor is required in the tank. Thereby, the
wiring costs are reduced and the tank can be installed in environments, where the use
of electrical devices and/or metallic materials is limited. The computation of the feed-
back and observer gains is relatively simple since the presented two-step approach eases
the necessary calculations and only two Volterra integral equations have to be solved
numerically. Beyond this thesis, the approach in [Aur+18] could be applied to the lin-
ear model (2.51) of the test bench. Thereby, a delay-robust backstepping-based state
feedback would be obtained, which may be advantageous in an industrial application.
In addition, if the valve is modeled by a linear ODE system in order to better capture
the valve dynamics, an output feedback tracking controller could be designed for the
resulting ODE-PDE-ODE model. Since the approaches in [Knü15] and [DGK18] are
suitable for this class of systems, assuming the prerequisites regarding the system prop-
erties therein are met, such a controller could be derived by extending the results of this
thesis. To improve the tracking performance even further, the following is suggested:
First, the isothermal model (2.50) of the test bench is linearized along a desired tra-
jectory, resulting in a linear time-variant PDE-ODE system. This model necessitates
the development of a new backstepping-based state feedback and observer design. For
that, the approach in [DJK16] might be helpful. Therein, a backstepping-based observer
design for a class of distributed-parameter systems, described by linear time-varying
hyperbolic partial integro-differential equations, is presented. Furthermore, regarding
the implementation of the backstepping-based (and the early-lumping) controller, the
minimum approximation order, stabilizing the closed-loop system, could be investigated.
For several distributed-parameter systems, such a discussion can be found in [AMD19].
Another late-lumping state feedback and observer design was presented in Chap. 5 by
making use of the notion of flatness. The stability analysis and the simulation results
indicated that the backstepping-based and the flatness-based designs are related. This
relation is an ongoing research topic in a more general context and should be investigated
further. Moreover, the unknown coordinate transformation, preventing the implemen-
tation of the controller at the test bench, requires additional studies. Meanwhile, the
approach in [WRE17; RW18], which is a combination of early- and late-lumping, sug-
gests that this transformation might not be necessary. An output feedback controller,
derived based on this method, is currently being investigated. First experimental results
for the pneumatic test bench in this thesis are already very promising.
In order to compare the proposed infinite-dimensional backstepping-based controller to
state-of-the-art controller designs by early-lumping, finite-dimensional output feedback
tracking controllers were designed in Chap. 6. For that, two established approximation
approaches were applied to the linear model. Future research could also consider a
nonlinear finite-dimensional model, which can be derived by, e.g., applying the FVM to
the semilinear model (2.35) of the test bench. Based on this approximation, nonlinear
finite-dimensional controllers could be designed and compared to the presented late-
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lumping controllers. First results for a nonlinear model predictive control design can be
found in the student theses [Mei17] and [Ame17].
The late-lumping and early-lumping controller designs were discussed in a compara-
tive analysis. Thereby, considering theoretical and implementation aspects, the differ-
ences and similarities of the approaches were pointed out. While the use of an infinite-
dimensional output feedback controller might be unusual for its perceived purely theo-
retical value, it was shown that such a controller can be obtained in a relatively straight-
forward manner by making use of the two-step backstepping approach. Furthermore,
based on the presented simulation and experimental data, it was demonstrated that the
backstepping-based output feedback controller, combined with the flatness-based feed-
forward controller, yields a high-performance control law. It accurately executes fast
pressure changes in the tank and, hence, in the system. At the same time, the control
effort is kept low, limiting the amount of compressed air consumed. Thus, a controller
was presented that allows for the efficient operation of pneumatic systems, where long
tubes are involved.



Appendix A

Components of the Test Bench

The main components of the test bench can be classified into five categories: the tubes
and tanks, the sensors, the actuators, the real-time system, and the auxiliary compo-
nents. Tab. A.1 lists the polyurethane tubes and high-alloy stainless steel tanks used in
the experiments in this thesis. The volume of each tank is determined by measuring the
mass of water that fits into the tank. The sensors are listed in Tab. A.2. While the SPTE
pressure sensor is less accurate compared to the SPTW pressure sensor, the former has
a shorter rise time, rendering it more suitable for the measurement of transient pres-
sure trajectories. Hence, the SPTW sensor, depicted in Fig. A.1, measures a reference
pressure in steady state which is used to calibrate the SPTE pressure sensors prior to
an experiment. Tab. A.3 summarizes the actuators at the test bench. If the test bench
is operated in the standard configuration in Fig. 2.1, the VPPM proportional pressure
regulator valve as well as the SFAB mass flow rate sensor and the Pt1000 temperature
sensor are not installed. These components are only used to obtain the inverse mass flow
rate and temperature model of the valve in (2.19) and (2.20), respectively (cf. Sec. 2.3).
The components of the real-time system are listed in Tab. A.4. During the experiments,
all computations are performed on the real-time target machine. It is connected to the
actuators and sensors via the IO116 module. The auxiliary components are stated in
Tab. A.5. As depicted in Fig. A.1, a filter regulator is installed between the compressed
air supply and an air reservoir. It filters the compressed air to avoid particles in the valve
and allows to reduce the supply pressure. The air reservoir, connected to the MPYE
proportional directional control valve, stores the compressed air, reducing fluctuations
in the supply pressure.

psup
LFR

VZS

SPTW

MPYE

Figure A.1: Auxiliary components between the compressed air supply and the MPYE
valve
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Table A.1: Polyurethane tubes and high-alloy stainless steel tanks

component manufacturer product properties
tube Festo PUN-6×1-SW D = 4 mm

tube Festo PUN-12×1.25-SW D = 5.7 mm

tube Festo PUN-12×2-SW D = 8 mm

tank Festo CRVZS-0.1 Vvol = 0.10 · 10−3 m3

tank Festo CRVZS-0.75 Vvol = 0.64 · 10−3 m3

Table A.2: Sensors

sensor manufacturer product accuracy

pressure Festo SPTE-P10R-S6-B-
2.5K ±0.3 bar

pressure Festo SPTW-P10R-G14-
A-M12 ±0.1 bar

mass flow rate Festo SFAB-1000U-HQ12-
2SA-M12-EX2 ±0.65 · 10−3 kg/s

temperature B+B Thermo-
Technik Pt1000 A ±

(
0.15 + 0.002|T |

)
°C

Table A.3: Actuators

actuator manufacturer product
proportional directional

control valve Festo MPYE MPYE-5-
1/8-LF-10-B

proportional pressure
regulator valve Festo VPPM-8F-L-1-

0L10H-V1P-S1

Table A.4: Components of the real-time system

component manufacturer product specifications

computer Speedgoat performance real-time
target machine

CPU: i7-6700K 4.0 GHz
RAM: 4096 MB

I/O module Speedgoat IO116 resolution: 16 bit model
sample rate
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Table A.5: Auxiliary components

component manufacturer product
filter regulator Festo LFR-1/4-D-5M-MIDI

air reservoir Festo VZS-20-B
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Appendix B

Numerical Approximation
Schemes

In the following, the numerical approximation schemes, used to solve the PDEs and
ODEs in this thesis, are stated. As for all other computations, these are implemented
in MATLAB R2018a.

B.1 Implementation of the Systems

The systems in this thesis are mostly composed of a PDE subsystem coupled to an ODE
subsystem. In order to solve these numerically, finite difference methods are chosen to
discretize the continuous system description, e.g., for simulations involving the test bench
models or for the experimental validation of the backstepping-based output feedback
tracking controller.

B.1.1 Approximation of PDEs

To numerically solve the hyperbolic PDE (2.1), first, the normalized spatial variable
z ∈ [0, 1] is discretized by choosing Nz points in space at the positions zn = (n −
1)∆z, n = 1, . . . , Nz, where the constant spatial step size reads ∆z = 1/(Nz − 1). The
discrete points in time t ∈ [0, tf], where tf denotes the duration of the simulation or the
experiment, are specified by tm = m∆tm, m = 0, . . . , Nt. If the PDE is quasilinear, the
time step size ∆tm is non-constant and, hence, the number of time steps Nt not known
a priori.
Next, in order to obtain an approximation Xn

m ≈ x(zn, tm) ∈ Rk of the state x(z, t) of
the PDE (2.1) at appropriate grid points (zn, tm), a suitable numerical scheme has to
be chosen. This thesis makes use of the two-step MacCormack method for hyperbolic
systems with a source term since it is easy to implement and often yields results with
perfectly sufficient accuracy, e.g., [Hir90; And95]. Applying this scheme to the PDE
(2.1) yields two algebraic equations:

Xn
∗ = Xn

m −
∆tm
∆z

[
g
(
Xn+1

m

)
− g (Xn

m)
]

+ ∆tmc (Xn
m) (B.1a)

Xn
m+1 = 1

2 [Xn
m +Xn

∗ ]−
∆tm
2∆z

[
g (Xn

∗ )− g
(
Xn−1
∗

)]
+ ∆tm

2 c (Xn
∗ ) , (B.1b)
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where (B.1a) is defined for n = 1, . . . , Nz−1 and (B.1b) for n = 2, . . . , Nz−1. First, the
predictor step (B.1a) is evaluated, resulting in Xn

∗ ∈ Rk. Subsequently, the approxima-
tion Xn

m+1 of the state x(zn, tm+1) in the new time step is obtained from the corrector
step (B.1b).
The values ofX1

m+1 at z = 0 andXNz
m+1 at z = 1 are undefined in (B.1b) but follow from

the boundary conditions of (2.1). Usually, there exist k physical boundary conditions,
necessitating k additional numerical boundary conditions, e.g., [Hir90]. In this thesis,
the numerical boundary conditions are determined by the first-order extrapolations

X1
m+1 = 2X2

m+1 −X3
m+1

XNz
m+1 = 2XNz−1

m+1 −X
Nz−2
m+1 ,

where X1
m+1 and XNz

m+1 are the quantities which are not specified by physical boundary
conditions.
The variable time step size ∆tm in (B.1) follows from

∆tm = CCFL∆z
λmax

with λmax = max
i,n

∣∣λi(Xn
m)
∣∣ , (B.2)

where i = 1, . . . , k, e.g., [Tor09]. Therein, λi(Xn
m) denotes the eigenvalues1 of B(Xn

m) ∈
Rk×k, where B(x) is defined in (2.49). To satisfy the so-called Courant–Friedrichs–Lewy
(CFL) condition, necessary for numerical stability, the coefficient CCFL has to be chosen
as 0 < CCFL ≤ 1, e.g., [Tor09]. Since this choice alters the dispersion and diffusion errors
of the approximation scheme, the numerical solution of (2.1) slightly depends on CCFL,
especially if discontinuities are present, e.g., [Hir07]. According to [Tor09], an adequate
choice is CCFL = 0.9, assuming that λmax can be predicted relatively accurately. If λmax
can only be roughly estimated, a smaller value of CCFL has to be chosen.
The approach is summarized in Alg. B.1. Therein, tf defines Nt based on the condition
tm < tf.
Throughout this thesis, Nz = 201 and CCFL = 0.7 are chosen for the simulations. In
contrast to that, in experiments, the number of points in space is set to Nz = 21 and
CCFL results from the time step ∆tm, which is in turn defined by the fixed sample time
∆tm = ∆t = 5 · 10−4 s of the test bench. The chosen value of Nz guarantees the on-time
execution of all necessary computations, such as the evaluation of the output feedback
tracking controller, on the real-time target machine, given in Tab. A.4. A refinement of
the grid, e.g., by increasing Nz, would not improve the respective results significantly.

B.1.2 Approximation of ODEs

In general, the ODEs in this thesis can be stated as

d
dtX(t) = f(X(t),U(t)). (B.3)

In simulations, the ODEs are solved by the MATLAB function ode45() if (B.3) is
nonlinear, the standard method for non-stiff ODEs, e.g., [WSV14]. If (B.3) is linear, the
MATLAB function lsim() is used, the standard method for linear ODEs, e.g., [Oga10].

1For semilinear and linear hyperbolic systems, B is constant. Hence, λmax is constant and known a
priori, rendering ∆tm constant, too.
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Algorithm B.1: Numerical solution of the PDE (2.1)
1 for n = 1 : 1 : Nz do
2 initialize Xn

0 = x(zn, 0);

3 m = 0;
4 while true do
5 evaluate (B.2) to calculate ∆tm;
6 if tm ≥ tf then
7 break;

8 for n = 1 : 1 : Nz − 1 do
9 evaluate (B.1a) to calculate Xn

∗ ;

10 for n = 2 : 1 : Nz − 1 do
11 evaluate (B.1b) to calculate Xn

m+1;

12 evaluate the physical and the numerical boundary conditions at z = 0 and z = 1;
13 m = m+ 1;

14 Nt = m;

To perform real-time experiments, C/C++ code is generated from the Simulink models.
In this case, the use of ode45() is limited and lsim() is not supported. Thus, the
explicit Euler method is utilized to solve (B.3), resulting in

Xm+1 = Xm + ∆tf(Xm,Um),

e.g., [Tor09]. Therein, Xm ≈ X(tm) as well as Um = U(tm) holds and ∆t is the fixed
sample time ∆t = 5 · 10−4 s of the test bench.

B.2 Numerical Application of the Method of Characteris-
tics

To calculate the feedforward controller U r(t) with the corresponding reference2 state
w̄r(z, t) ∈ R2 in the diagonal form (3.2) (cf. Chap. 3), the Cauchy problem, consisting
of the ODEs (3.13), subject to the initial data (3.1) at z = 0, is solved numerically.
For that, the spatial coordinate z as well as the time t are discretized. Thereby, a
grid with the points (zn, tm) results, defined as in Sec. B.1.1 but with a fixed time step
size ∆tm = ∆t. The value of ∆t, specified a priori, is constant in order to obtain the
approximation W̄ n

m = [W̄n
1,m, W̄

n
2,m]T ≈ w̄(n∆z,m∆t) on an uniformly spaced grid,

simplifying the implementation.
Remark B.1. The a priori defined step sizes ∆z and ∆t have to be chosen in order to
fulfill the CFL condition

CCFL = ∆t
∆z λ̄max ≤ 1 with λ̄max = max

i,n,m

∣∣∣λ̄i(W̄ n
m)
∣∣∣ ,

2In the following, the superscript r is neglected, simplifying the notation.
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∆sni,m−1

∆sni,m

zn
tm−1

tm

zn+1

τn+1
i,m+1

τn+1
i,m

tm+1

Figure B.1: Integration along the characteristic curves and subsequent interpolation

necessary for numerical stability, e.g., [Tor09]. Therein, λ̄i(W̄ n
m), i = 1, 2, is defined in

(3.7a). M

Next, the numerical scheme to compute the approximation W̆n
i,m ≈ w̆i(sni,m), i = 1, 2, at

ζni,m = ζi(sni,m) and τni,m = τi(sni,m), where w̆i(sni,m) = w̄i(ζi(sni,m), τi(sni,m)) and ζni,m = zn

hold, is presented. The quantities ζi(s), τi(s), and w̆i(s) are defined in (3.13) and sni,m
denotes the discrete value of s at ζni,m and τni,m. To discretize the ODEs (3.13), derived
by the method of characteristics, the explicit Euler method is applied. Thereby, the
solution

W̆n+1
i,m+1 = W̆n

i,m + ∆sni,mc̄(W̆ n
m) (B.4)

in the next step at (ζn+1
i,m+1, τ

n+1
i,m+1) results from (3.13c), where W̆ n

m = [W̆n
1,m, W̆

n
2,m]T .

The non-constant step size ∆sni,m = sn+1
i,m+1 − sni,m along a characteristic curve follows

from the discretization of (3.13a), i.e.

ζn+1
i,m+1 = ζni,m −∆sni,mλ̄(W̆ n

m). (B.5)

Solving (B.5) for ∆sni,m yields

∆sni,m = −
∆ζni,m
λ̄(W̆ n

m)
, (B.6)

where ∆ζni,m = ζn+1
i,m+1 − ζni,m = zn+1 − zn = ∆z is the fixed spatial step. From (3.13b),

the time

τn+1
i,m+1 = τni,m + ∆sni,m (B.7)

is obtained.
While ζn+1

i,m+1 = zn+1 holds, τn+1
i,m+1 6= tm+1 may result as the characteristic curves of quasi-

linear systems are not necessarily linear and/or if CCFL < 1 is considered (cf. Rem. B.1).
To obtain the quantities W̄n+1

i,m+1 at (zn+1, tm+1), a linear interpolation is performed be-
tween the values of W̆n+1

i,m and W̆n+1
i,m+1 at (zn+1, τn+1

i,m ) and (zn+1, τn+1
i,m+1), respectively.

Fig. B.1 exemplarily depicts this procedure for the calculation of W̄n+1
i,m+1: The values

for W̄n
i,m−1 and W̄n

i,m (black dots) are given at (zn, tm−1) and (zn, tm), respectively. In-
tegrating along the characteristic curves (blue lines) with the step sizes ∆sni,m−1 and
∆sni,m yields W̆n+1

i,m and W̆n+1
i,m+1 (blue dots) at (zn+1, τn+1

i,m ) and (zn+1, τn+1
i,m+1), respec-

tively. From an interpolation, W̄n+1
i,m+1 (red dot) at (zn+1, tm+1) results. Hence, to be

precise, W̆n
i,m in (B.4)–(B.6) needs to be replaced by W̄n

i,m
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Obviously, to solve (3.13) with the above stated scheme, the initial data W̄ 1
i,m at

(ζ1
i,m, τ

1
i,m) = (0, tm) needs to be specified first. By making use of the flatness-based

parametrization of w̄(0, tm) in (3.1), W̄ 1
i,m follows. Furthermore, since the flow is as-

sumed to be subsonic with Ma < 1 (cf. Sec. 2.5), λ̄1(W̄ n
m) < 0 and λ̄2(W̄ n

m) > 0 holds
in (B.5) and (B.6). Therefore, as ∆τn1,m > 0 and ∆τn2,m < 0, where ∆τni,m = τn+1

i,m+1− τni,m
results from (B.7), the integration along the characteristic curves to calculate W̆n+1

1,m+1
and W̆n+1

2,m+1 is forward and backward in time, respectively.
Remark B.2. For each next step at zn+1, 2Nt new characteristic curves enter the grid
from the boundaries at t = 0 as well as t = tf and have to be taken into account.
These are defined by the steady-states w̄b(z) and w̄e(z), respectively (cf. Sec. 3.2).
Simultaneously, the same number of characteristic curves is discarded since they exceed
one of these boundaries. M

Algorithm B.2 summarizes the numerical integration scheme.

Algorithm B.2: Numerical integration along the characteristic curves
1 initialize W̄ 1

i,m = w̄i(0, tm) for i = 1, 2;
2 for n = 1 : 1 : Nz − 1 do
3 for m = 1 : 1 : Nt do
4 integrate along the characteristic curves to calculate W̆n+1

i,m+1 at (ζn+1
i,m+1, τ

n+1
i,m+1);

5 calculate W̄n+1
i,m+1 at (zn+1, tm+1) by interpolating between W̆n+1

i,m and W̆n+1
i,m+1;

6 replace the characteristic curves at t = 0 and t = tf;
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Appendix C

Nonlinear State Observer

For some test bench configurations, e.g., with a very long tube and/or highly dynamic
pressure changes, the tracking performance of the backstepping-based output feedback
tracking controller in Chap. 4 may not be adequate. Such a scenario is considered in the
following. For that, the standard configuration in Tab. 3.1 is adapted and a very long
tube with L = 20 m as well as D = 5.7 mm installed at the test bench.
To motivate the design of the nonlinear state observer, the output feedback tracking
controller (4.77) with the linear state observer is applied to the plant model (2.48) with
the very long tube in a simulation. While the design parameters k and ` are chosen
as in Sec. 4.6, i.e. such that a − bk = −20 and a − `c = −20 hold in (4.21d) and
(4.49d), respectively, the increased tube length necessitates two adjustments: First, the
transitions of the standard reference pressure trajectory in Fig. 3.2 are reduced to a rate
of 2 bar/s in order to respect the physical limits of the valve. Second, for the design of the
state feedback and observer, the friction amplification factor is set to kfric = 1. Although
this choice underestimates friction effects in turbulent flow with high velocities, it is more
accurate for laminar flow with low velocities. Naturally, the tracking performance during
the transitions, where the flow is turbulent, will be degraded. However, a controller with
kfric = 1 achieves steady-state accuracy, where the flow is laminar and the velocity tends
to zero. In contrast to that, a design with kfric = 4 leads to undesired oscillations and
does not guarantee steady-state accuracy.
The results of this simulation are depicted in Fig. C.1 and the corresponding deviations
in Fig. C.2. It can be seen that the estimated tank pressure p̂vol(t) significantly deviates
from the actual tank pressure pvol(t) during the transitions. This mismatch occurs from
the relatively large observer error, caused by the increased length of the tube. As a
consequence, the transient tank pressure pvol(t) does not match the desired reference
pressure prvol(t).
An approach to tackle this unsatisfactory controller performance is presented in
[RNM16]. Therein, without proof of stability, a nonlinear finite-dimensional state
observer is designed for a pneumatic system similar to the test bench in Fig. 1.3. For
that, first, the observer gain is derived based on a linear lumped-parameter model.
Subsequently, this model is augmented by a nonlinear friction term. By injecting the
measurement error, multiplied by the gain previously designed, into a copy of the
augmented model, the nonlinear state observer follows. Its excellent performance is val-
idated in experiments. Similar results are also obtained in [Fal17] (in German), where
the design of this nonlinear state observer is slightly modified for a varying volume.
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Figure C.1: Application of the output feedback tracking controller (4.77) to the plant
model (2.48) with a tube of L = 20 m: Reference pressure prvol(t), estimated pressure
p̂vol(t), and tank pressure pvol(t) as well as corresponding control input U(t) with feed-
forward part U r(t) and feedback part U c(t)

0 2 4 6 8 10

−1

−0.5

0

0.5

t in s

∆
p

in
ba

r

pvol(t) − p̂vol(t) pr
vol(t) − p̂vol(t) pr

vol(t) − pvol(t)

Figure C.2: Deviations between the reference pressure prvol(t), the estimated pressure
p̂vol(t), and the tank pressure pvol(t) in Fig. C.1
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C.1 Design of the Nonlinear State Observer

Here, the idea in [RNM16] is utilized to design a nonlinear infinite-dimensional state
observer based on the plant model since it is the most accurate description of the test
bench. For that, first, the linear backstepping-based state observer (4.38), derived from
the standard backstepping form (4.1), is rewritten in conservative form by applying the
inverse transformations of (4.2) and (4.5). From that,

∂

∂t
x̂ = B

∂

∂z
x̂+Cx̂+ l̄

( 1
RsT0

Y − x̂1(1)
)

(C.1a)

x̂1(0, t) = ξ̂(t) (C.1b)

x̂2(1, t) = 1
A
U(t) + aiso

( 1
RsT0

Y (t)− x̂1(1, t)
)

(C.1c)

d
dt ξ̂(t) = A

Vvol
x̂2(0, t) + l̄ξ

( 1
RsT0

Y (t)− x̂1(1, t)
)

(C.1d)

is obtained. Therein, B and C are defined in (2.51). The observer gains

l̄(z) =
[

eατ0(1−z) −eατ0(1+z)

−aisoeατ0(1−z) −aisoeατ0(1+z)

]
l(z) (C.2a)

l̄ξ = −eατ0 lη (C.2b)

in conservative form, where l̄(z) = [l̄1(z), l̄2(z)]T ∈ R2, follow from the gains l(z), lη in
(4.60).
Next, based on the error injections in the state observer (C.1), the error Y (t)/(RsT0)−
ρ̂(1, t) with the corresponding gain is injected into a copy of the plant model (2.48). By
that, the nonlinear infinite-dimensional state observer1

∂

∂t
ρ̂ = 1

L

∂

∂z
(ρ̂v̂) + l̄1

( 1
RsT0

Y − ρ̂(1)
)

(C.3a)

∂

∂t
(ρ̂v̂) = 1

L

∂

∂z
(ρ̂v̂2 + p̂)− fc

ρ̂v̂|v̂|
2D + l̄2

( 1
RsT0

Y − ρ̂(1)
)

(C.3b)

∂

∂t
(ρ̂ê) = 1

L

∂

∂z
(v̂(ρ̂ê+ p̂)) + 4

D
α(T0 − T̂ )− fc

ρ̂v̂2|v̂|
2D (C.3c)

ρ̂(0, t) =




ρ̂vol(t), (ρ̂v̂)(0, t) ≤ 0
ρ̂(0, t), (ρ̂v̂)(0, t) > 0

(C.3d)

(ρ̂ê)(0, t) =





1
2 ρ̂vol(t)v̂2(0, t) + 1

γ−1 p̂vol(t), (ρ̂v̂)(0, t) ≤ 0
1
2(ρ̂v̂2)(0, t) + 1

γ−1 p̂vol(t), (ρ̂v̂)(0, t) > 0
(C.3e)

ρ̂(1, t) =




ρin(t), (ρ̂v̂)(1, t) ≥ 0
ρ̂(1, t), (ρ̂v̂)(1, t) < 0

(C.3f)

(ρ̂v̂)(1, t) = 1
A
U(t) + aiso

( 1
RsT0

Y (t)− ρ̂(1, t)
)

(C.3g)

d
dt ρ̂vol(t) = A

Vvol
(ρ̂v̂)(0, t) + l̄ρ

( 1
RsT0

Y (t)− ρ̂(1, t)
)

(C.3h)

1In fact, ρ̂v̂ and ρ̂ê should be replaced by ρ̂v and ρ̂e, respectively. This imprecision is accepted here
since it avoids expressions such as ρ̂v/ρ̂ instead of v̂, which increases the readability.
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d
dt p̂vol(t) = A

γ − 1
Vvol


1
2(ρ̂v̂3)(0, t) + γ

γ − 1 p̂vol(t)v̂(0, t) + 1
ARvol

(
T0 −

p̂vol(t)
Rsρ̂vol(t)

)


(C.3i)

is obtained.

C.2 Simulation Study

The output feedback tracking controller

U(t) = U r(t) + U c(t) (C.4)

follows from (4.77) by replacing the estimates in the error states w̃(z, t) = ŵ(z, t) −
wr(z, t), η̃(t) = η̂(t)− ηr(t) in the feedback part

U c(t) = A
(
e−ατ0w̃1(1, t) + eατ0K[η̃(t), w̃(t)]

)
, (C.5)

defined in (4.78), by the states ρ̂(z, t), (ρ̂v̂)(z, t), (ρ̂ê)(z, t), ρ̂vol(t), p̂vol(t) of the nonlinear
state observer (C.3).
To show the excellent performance of the output feedback tracking controller (C.4),
it is applied to the plant model (2.48) in a simulation. The results are depicted in
Fig. C.3 and the deviations in Fig. C.4. It can be seen that the controller tracks the
reference trajectory almost perfectly. Compared to the same scenario with the linear
state observer in Fig. C.1, the errors are significantly decreased. The improved tracking
behavior also becomes apparent by making use of the error measures in (2.42) and
(2.43), quantifying the deviations. From that, L1

r,err = 3.533 %, L∞err = 0.610 bar and
L1
r,err = 1.298 %, L∞err = 0.194 bar result from the simulation depicted in Fig. C.1 and

Fig. C.3, respectively.

C.3 Experimental Results

In addition to the previous simulation study, the controller (C.4) is validated experimen-
tally at the test bench with the very long tube. The results are depicted in Fig. C.5 and
the corresponding deviations in Fig. C.6. The errors are quantified by L1

r,err = 1.415 %
and L∞err = 0.241 bar. Obviously, the experimental data is almost identical to the sim-
ulation data in Fig. C.3 and Fig. C.4. The excellent tracking performance proves the
effectiveness of the nonlinear state observer.
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Figure C.3: Application of the output feedback tracking controller (4.77) to the plant
model (2.48) with a tube of L = 20 m: Reference pressure prvol(t), estimated pressure
p̂vol(t), and tank pressure pvol(t) as well as corresponding control input U(t) with feed-
forward part U r(t) and feedback part U c(t)
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Figure C.4: Deviations between the reference pressure prvol(t), the estimated pressure
p̂vol(t), and tank pressure pvol(t) in Fig. C.3
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Figure C.5: Application of the output feedback tracking controller (4.77) to the test
bench with a tube of L = 20 m: Reference pressure prvol(t), estimated pressure p̂vol(t),
and measured tank pressure pvol(t) as well as corresponding control input U(t) with
feedforward part U r(t) and feedback part U c(t)
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Figure C.6: Deviations between the reference pressure prvol(t), the estimated pressure
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Appendix D

Two-Sided Laplace Transform

Chap. 5 makes use of the two-sided Laplace transform to derive the solutions (5.15)
and (5.29). Following [vB55], the definition of the two-sided Laplace transform and a
transformation as well as some properties, required for the calculations in Chap. 5, are
restated.

Remark D.1. In this thesis, the two-sided Laplace transform is a tool of convenience.
Thus, it is not employed with strict mathematical rigor. Further information on, for
example, the strip of convergence can be found in [vB55]. M

D.1 Definition

The two-sided Laplace transform and its inverse are defined as

f̂(s) = LII [f ] (s) = s

∫ ∞

−∞
e−stf(t) dt (D.1a)

f(t) = L−1
II

[
f̂
]

(t) = 1
2πj

∫ c+j∞

c−j∞
est f̂(s)

s
ds, (D.1b)

respectively, where s ∈ C is a complex variable.

D.2 A Selected Transformation

This thesis makes use of the transformation in Tab. D.1. Therein, I0(z) is the modified
Bessel function of the first kind of zeroth order and h(z) the Heaviside step function,
defined in (4.35).

Table D.1: Selected transformation

time domain operational domain comment

h(t− σ)I0
(√

t2 − σ2
) s√

s2 − 1
e−σ
√
s2−1 σ ∈ R
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D.3 Selected Properties

Tab. D.2 summarizes selected properties of the two-sided Laplace transform.

Table D.2: Selected properties

property time domain operational domain comment

differentiation d
dtf(t) sf̂(s)

shift f(t+ σ) eσsf̂(s) σ ∈ R

similarity f(σt) f

(
s

σ

)
σ > 0

f(σt) −f
(
s

σ

)
σ < 0

attenuation e−σtf(t) s

s+ σ
f̂(s+ σ) σ ∈ C

convolution
∫ ∞

−∞
f1(τ)f2(t− τ) dτ 1

s
f̂1(s)f̂2(s)
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