
Combining the Combigrid method with the SG++
data-mining pipeline

Guided Research

Nikolaos Ioannis Bountos
Faculty of Informatics

Technische Universitaet Muenchen
Email: mpountos@outlook.com.gr

Abstract— In this guided research we attempt to extend the
data-mining pipeline of SG++ to support the estimation of
probability density functions using the combination technique.
The intuition behind this paper is to employ the combination
technique for the purpose of breaking down the main problem
into multiple smaller tasks aiming for computational speedups.
We expect this to majorly improve the performance of the
current probability density estimation in the SG++ project, as
well as create further opportunities for efficiency boosting via
parallelization. We observe quality approximation of the original
method and promising speed performance that creates a roadmap
for future improvements. We present the performance of the
method for grid levels 3 and 5 as well as for threads 1 and
4. We provide a comparison with the SG++ datadriven miner1.
From our experiments, we conclude that the proposed method
will provide the appropriate speed improvement when executed
in a large number of threads. This comes as a consequence of the
number of independent processes attempting to run on parallel
in comparison to the provided number of threads. To be more
specific, the maximum number of threads provided is 4 when
the number of parallel processes can reach a few hundreds. This
adds further overhead in the synchronization and does not utilize
the independence of the sub problems.

Index Terms— Probability Density Function, CombiGrid,
Sparse Grids, Combination Technique, SG++

I. INTRODUCTION

In this research project we attempt to utilize the combi-
nation technique, implemented in the combigrid module of
SG++ project, in order to solve probability density estimation
problems. In order to understand the combination technique
we have to examine the core idea behind it, the Sparse Grids.
The Sparse Grid [1] is a discretization method for multivariate
problems. The ultimate gain from the use of Sparse Grid tech-
niques is the computational speedup. This is a consequence of
the heavy reduction of grid points when compared to full-
grid techniques. To be more specific, Sparse Grids require
only O(N(logN)d−1) grid points, where d represents the
dimensions and N the number of grid points. Additionally,
despite this reduction in grid points, the accuracy is not
affected significantly in comparison to a full-grid approach.
[4]

1In this paper we will refer to the current PDF method of the SG++ project
as ” datadriven miner ”

A. Sparse Grid Construction

The main component for the creation of a sparse grid is the
multilevel basis. As the purpose of this paper is not to analyze
the sparse grids, we will only present the 2 dimension case.

The main basis function used for sparse grids is the hat

function f(x) =

{
1− |x|, if x ∈ [−1, 1],

0, else
.

Then we create a set of equidistant grids ωl ∈ [0, 1] of
level l and mesh width 2−l . The grid points are defined as :
xl,i = i ∗ hl, 0 ≤ i ≤ 2l . [4]

We then consider the family of functions :
fl.i(x) = f(2l ∗ x− i).
In order to create a sparse grid we have to put together the

subspaces defined by these functions.
Let’s call Wl the subspace at level l. Then,

Wl := span(fi,l, i ∈ I) where I is the index set:
Il := i : 1 ≤ ij ≤ 2lj − 1, ijodd, 1 ≤ j ≤ d. [4]

By combining the subspaces Wl we get a Sparse Grid of
level n, where lj ≤ n+ d− 1.

Fig. 1. Level 3 Sparse Grid

In Figure 1. we see the linear basis of level 3.
The basis functions can be extended to the d-dimensional

case with the tensor product approach :
f~l~i(~x)) := Πd

j=1flj ,ij (xj) , where ~l~i d-dimensional multi-
indices for each dimension. [4]

Now that we defined the Sparse Grid method, we can
employ the Sparse Grid Combination Technique in order to
solve function interpolation efficiently. This technique along

with the probability density estimation will be explained in
the following sections.

II. COMBINATION TECHNIQUE

In order to define the combination technique we have to
define a problem that needs to be solved. In this case we will
consider the partial differential equation Lu = f over the unit
cube Ω = [0, 1]d ⊂ Rd on which, the technique was originally
defined.

Problems of this type are usually solved using discretization
techniques. By solving this with a normal full grid with
mesh size hn = 2−n in both directions (we use d = 2 for
convenience) we end up in a linear system Ln,nun,n = fn,n.
The error of this solution is quite small (O(h2

n). However,
this kind of computation is proportionate to the amount of
grid points. To counter this issue we could use a sparse grid,
as mentioned in Section A. To achieve this, the function
of interest is discretized on a sequence of grids. The linear
combination of these is the sparse grid representation.

To specify, let Ωi,j be the uniform grid with mesh sizes
h1 = 2−i and h2 = 2−j . The linear combination of these
grids is defined as :
uCombn,n = Σi+j=n+1ui,j − Σi+j=nui,j , i, j ∈ [1, n]. [2]
This approach reduces the computational cost heavily as

it decreases the unknowns from O(h−2
n) to O(h−1

n log(h−1
n))

while the error is bounded : ecombn,n = O(h2
n ∗ log(h−1

n)) [2]
The combination of the uniform grids can be seen in Figure

2.
For higher dimensions, we would have to decompose

the finite element space that u is defined on as Si,j =
Σis=1Σjt=1Ts,t. Ts,t represents the subspace of Ss,t that does
not contain the grid points of Ss−1,t and Ss,t−1. Then,
∀u ∈ Si,j is represented by : u = Σis=1Σjt=1us,t, where
us,t ∈ Ts,t, s = 1, ..., i and t = 1, .., j [2].

Fig. 2. The combination of the interpolants in the full grids of the Sparse
Grid space with i+j=n and i+j=n+1.

In this work, we attempt to utilize the combination technique
to efficiently solve the probability density estimation problem.

III. PROBABILITY DENSITY ESTIMATION

Probability Density Estimation is a problem where we
try to reconstruct the density function from a given dataset.
This problem is already tackled in the SG++ project in the
datadriven module. The probability density estimation problem
can be expressed as : argminV

∫
Ω

(f(x) − fε(x))2dx +
λ||Λf ||2L2 ,where λ||Λ||2L2 is a regularization term and λ >
0 for smoothness. The optimization problem can then be
transformed to :

(R + λC)a = b, where C is a regularization matrix,
Rij =< fi, fj >, R,C ∈ RNXN , b ∈ RN and N is the
number of basis functions. This means that the number of
unknowns depends only on the number of grid points. Ad-
ditionally, for simplicity C can be set to the identity matrix.
Thus, we end up with the following system of linear equations:
(R+λI)a = b [3] where R , I and b are fixed. Additionally, λ
is set manually to the value that allows the probability density
estimation to generalize best to the test data. These allow us
to perform offline steps for efficiency.

At this point, we employ the combination technique. We
attempt to solve multiple probability density estimation prob-
lems using the datadriven module from the SG++ project on
the (full grid) subspaces of the Sparse Grid.

IV. IMPLEMENTATION

A. PDFFitter

For this task we created a fitter in the standards of the SG++
project. It provides an object to the module that inherits the
functionality of the standard SG++ fitters.

The fit function handles the online and offline phases of the
density estimation sub problems. It creates the full grid and fits
the model efficiently by splitting the computation in an offline
and an online step. As parameters, it requires a dataset, a
Grid object and a MultiIndex containing the levels of the
grid for each dimension. The grid is then constructed in the
buildGrid() function.

1) Online-Offline scheme: As mentioned in section III, the
probability density estimation problem can be expressed as
(R + λI)α = b . Given that R + λI are fixed we can look
for a decomposition PQ such that PQ = R + λI . This step
is the offline step and happens before training. The reason for
the existence of this step is the expected speedup in the online
(training) phase, where we use the already computed PQ in
order to solve the system.

B. PDF Combigrid

The main functionality of our contribution is being driven
by the class PDFCombigrid. It is the core model of this
process.

The PDFCombigrid class is responsible for initializing
and combining the models for each subspace. In order to
achieve this, the ”Combigrid” and ”Datadriven” mod-
ules are combined. The combination happens by creating
an ”Operation” for the combigrid module to execute, and
a ”GeneralFunction” to provide the functionality of this

operation. In this general function the datadriven miner is
called.

Listing 1. Operation Definition
auto operation = std :: make shared<sgpp::combigrid::

CombigridOperation>(
grids , evaluators , levelManager, gf , exploitNesting) ;

In the above snippet we see the definition of an operation
which makes use of a ”GeneralFunction” gf. This function
contains the core functionality that is applied in each subspace
of the grid. The steps that this process follows are:

1) Create a full grid depending on the input (subspace) of
the function.

2) Fit a model on the grid.
3) Evaluate the model on every point of the full grid.
4) Store the result in a TreeStorage object.
The results, stored in the TreeStorage, are then combined

to produce the result of the probability density estimation on
a specific point.

This process can be executed both in sequential and parallel
mode.

The models trained for each subspace are stored in a
hashmap to be used in evaluation time.

The model is being initiated by setting ”combi” : 1
and then ”threads” : numberOfthreads inside the Grid
configuration.

C. Supporting code contribution

As mentioned, the grid is constructed in the function
buildGrid(). This function is meant to extend the functionality
of the ModelF ittingBase class by combining an extension
of the HashGenerator class to the existing implementa-
tion. To be specific, a function full has been added to the
HashGenerator class, that constructs a grid with different
levels for each dimension.

The above functions, along with some additional supporting
ones created for the FitterConfiguration as well as for
ModelF ittingBase are the most critical extensions in the
supporting code.

V. RESULTS

In order to test the performance of the proposed method, we
used five datasets of dimension 2, 4, 10, 15 and 20 respectively.
The datasets consist of real numbers in the domain (0, 1). We
examined the quality and speed of the procedure with different
settings in regards to the datadriven module miner.

A. Qualitative Comparison

For the qualitative comparison, we use the L2 loss on the 2
dimensional dataset for meaningful visualization. We consider
a grid of points in the area [0, 1). In the following graphs we
observe the probability density estimation of both procedures
on the grid (Figures 3, 4).

We can easily see a similar structure in the results. We chose
to use a grid of level 5 for this example. To get a clearer

Fig. 3. Combigrid level 5 probability density estimation test on a grid in
[0,1]

Fig. 4. Datadriven miner probability density estimation on a grid in [0,1]

view we present in 5 a loss plot using the L2 loss. We mark
the outliers with red. As outliers, we define the points where
the difference between the estimation with the combination
technique and the datadriven miner is larger than 0.01.

To showcase the improvement of the quality of the approxi-
mation, caused by increasing the level, we present in Figure 6
the L2 loss scatter plot for level 3 on the same domain. Again
we mark with red the points that have a loss larger than 0.01.
We can see that most of the points are well approximated.
However, the amount of ” outliers ” increases.

B. Speed Comparison

An important aspect of our contribution lies in the speed
boost of the combination technique and the potential it creates.
In this section, we investigate the computational consequences
of the increase of the level in the proposed method. Addition-
ally we compare the proposed method to the datadriven miner.

1) Complexity induced by level: In order to examine how
the increase of level affects the execution speed of the process,
we run the program for level 3 and 5 and measure the average
component2 execution time for the offline and online phase, as
well as the full execution time for both parallel and sequential
mode. The quality of the estimation can only get better as the
level increases (as seen in subsection V-A), but it is obviously
more time consuming.

2We refer to the independent subspaces as components

Fig. 5. L2-loss scatter plot for level 5

Fig. 6. L2 loss scatter plot for level 3

2) Comparison against datadriven miner: In order to com-
pare the previous settings to the datadriven miner, we provide
measurements for both the offline and online phases. It is
worth noting that for the combigrid experiments, the offline
and online execution times are measured as the average time
spent for each independent component. As the dimensions and
level grow, the number of the components increases. Given
that, we would want to see a smaller component execution
time in the plot.

Figure 7 compares the overall performance of the processes.
For level 5 we see a steady improvement of the parallel mode
against the sequential one. Additionally, we see that compared
to level 3 and the datadriven miner, the execution time of level
5 is vastly bigger. In order to get a closer look to level 3
and the datadriven miner performances, we present the same
Figure wthout level 5 in 8.

In Figure 8 we do not see the expected time improvement
against the datadriven miner. Taking this into consideration

Fig. 7. Full Execution Time comparison

Fig. 8. Full Execution Time comparison for level 3 and datadriven miner

we inspect further into the performance of the combination
technique.

To do so, we examine the performance of each phase
(online/offline) against the datadriven miner. For the combigrid
version we plot the average time spent for each phase, among
the components.

In Figure 9 we see the performance for the offline phase
in a sequential setting. The processes are comparable until
dimension 4. Given that for the combigrid plot we use the
average component time, we should consider as true execution
time a multiple of the one shown in the graph, since the
amount of components grows as the number of dimensions
grows. Taking that into consideration, the datadriven miner
should be considered preferable.

However, we notice a great deviation of execution times in
larger dimensions. If we take into consideration the subpace
processes independence, then the combigrid version is in a

very favourable position. That is because we can exploit this
property with parallelization.

In Figure 10 we see a similar pattern as in 9. Again
we consider the datadriven miner preferable. However, the
performance on the datasets with many dimensions leave great
promises again for the parallel execution of the combigrid
version.

In general, the time difference between level 5 and level 3
for the offline phase is not great. However, this is not the case
for the online phase.

Starting from Figure 11 we see level 5 going way over
the datadriven and combigrid level 3. However, level 3 re-
tains a decent performance. On the contrary, in the parallel
mode, level 3 performs way worse than the datadriven miner.
However, its performance on the sequential setting shows an
opportunity for higher exploitation and optimization of the
parallel version.

Fig. 9. Offline phase comparison for sequential mode

The combigrid module’s performance on the online phase
affects greatly the final execution time, preventing it from
achieving the expected improvement in speed. This behavior
might be caused by the demand of the process for higher level
of parallelization. Additionally, further optimizations can be
performed in the offline phase. In particular, we can exploit
the nature of the independent components, and correlate their
decompositions. That way, we avoid the calculation of multiple
decompositions, heavily reducing the offline execution time.

To summarize the results of the experiments, we observed
a worse performance of the combigrid probability density
estimation compared to the datadriven miner. Especially for
level 5 the execution time was discouraging. However, level 3
showed promising results in both the offline and online phases.
In the online phase, which consumes the most execution
time, it performs better per component when compared to the
datadriven miner. Given that the components are completely
independent from the others, a higher level of parallelization

Fig. 10. Offline phase comparison for parallel mode

Fig. 11. Online time comparison for sequential mode

would produce the desired results. In this setting, only 4
threads were used, which heavily underestimates the program’s
parallelization capacity.

VI. CONCLUSION

In this paper, we presented a different approach for tackling
the probability density estimation problem. In particular, we
utilized the combination technique to split the problem in
multiple sub problems. We performed a qualitative compar-
ison of the process with the datadriven miner. We showed
results quite close to the results produced by SG++ current
method. Furthermore, we compared the different settings of
the proposed method in both a qualitative and speed con-
text. The outcome was promising, leaving open space for
future improvements. In particular, it showed potential for
heavy speedups by optimizing the parallelization and by
providing more threads. This comes from the performance
of the combigrid in the sequential mode. Given that the

Fig. 12. Online time comparison for parallel mode

amount of components increases vastly as the dimensions
and level grows, the level of parallelization used in these
experiments could not utilize the independence of the sub
problems, resulting in extra synchronization overhead and
sequential execution. However, by using a larger number of
threads, we would take advantage of the sub problems mutual
independence and produce even faster results. Additionally, we
could optimize the offline phase by reducing the number of
computed decompositions, exploiting the relationship between
the components decompositions.

VII. APPENDICES

A. Datasets

The main dataset used for our experiments is the 10
dimensional friedman dataset. The rest of the datasets were
produced by manipulating the base dataset.

The friedman dataset is produced by the following formula:
y(X) = 10 ∗ sin(pi ∗X[:, 0] ∗X[:, 1]) + 20 ∗ (X[:, 2]− 0.5) ∗
∗2 + 10 ∗ X[:, 3] + 5 ∗ X[:, 4] + noise ∗ N(0, 1), where X
are independent features uniformly distributed on the interval
[0, 1].

B. Experiment Settings

The experiments were conducted on Intel Core i7-7500U
CPU @ 2.70GHz x 4 , using all 4 threads for the parallel
mode.

REFERENCES

[1] Jochen Garcke. Sparse grids in a nutshell.
[2] Michael Griebel. The combination technique for the sparse grid solution

of pde’s on multiprocessor machines. 2016.
[3] Benjamin Peherstorfer. Density estimation for large datasets with sparse

grids, February 2013.
[4] M. Griebel. T. Gerstner. Sparse grids. 2008.

	Introduction
	Sparse Grid Construction

	Combination Technique
	Probability Density Estimation
	Implementation
	PDFFitter
	Online-Offline scheme

	PDF Combigrid
	Supporting code contribution

	Results
	Qualitative Comparison
	Speed Comparison
	Complexity induced by level
	Comparison against datadriven miner

	Conclusion
	Appendices
	Datasets
	Experiment Settings

	References

