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1 Introduction

Classification based on density estimation has been widely discussed in the lit-
erature on statistical learning and pattern recognition. A point or an area in
the space can be classified using the density functions which represent the pop-
ularity of the points from each class. The corresponding class label at a specific
point should be the class with the largest density at the same coordinate.

The estimated density function is discretized by the adaptive sparse-grid-based
density estimation method on basis functions centered at grid points rather than
on the data points. [4] Thus, the costs of evaluating the estimated density func-
tion are independent from the number of data points.

Originally, the sparse grid method was developed to solve partial differential
equations [7]. With the sparse grid method, we use density estimation to ap-
proximate the population density functions. A sparse grid is initialized for each
class. In this work, the size and the structure of the sparse grids can be adaptive
to the datasets and thus can be different from each other. The class label of a
specific point is then determined by the dominant density value.

To optimize the sparse grid size while preserving the accuracy of the model, we
developed a coarsening algorithm in the SGpp Library which reduces the grid
size by coarsening the points located in area where the classification confidence
is high enough [6]. This algorithm removes points according to the scores of each
points evaluated and the coarsening configuration given by the users. Hence,
the coarsening results of each sparse grid can be different from each other.

In this thesis, we will first demonstrate the basics of sparse grid and density
estimation, then present the coarsening algorithm and the testing results.

2 Introduction of Sparse Grid

Figure 1: Nodal and hierarchical basis of level n = 3 [2].

First, we give a brief introduction about sparse grids, for more details, see
[1]. The basic principle of sparse grids is a one-dimensional hierarchical system
of basis functions, see Fig 1 as an example. One of the commonly used basic



function is the hat function ¢(x) := max{1 — |z|,0}. The one-dimensional hi-
erarchical hat functions can then be expressed as ¢;; depending on the level [
and index 7 via translation and scaling as ¢;;(z) := ¢ (2'z — ). Then,ilt can be
extended to the d-dimensional case via a tensor product approach. See Figure
2 for an example in two dimension.

Figure 2: Two-dimensional basis function [2].

In the d-dimensional case, the level I = (I1,...,l4) and index ¢ = (i1,...,14)
become vectors and the corresponding basis function ¢;; = szl Gl i () 18
the product of the one-dimensional basis functions respectively. This results in
a set of subspaces W for which the grid points are the Cartesian product of the
one-dimensional ones with level [ in dimension k. In Figure 3, the grids of the
two-dimensional hierarchical increments W; up to level 3 in each dimension is
shown. We can only choose those subspaces W; which contribute most to the
overall solution according to the hierarchical scheme of increments. To this end,
we can cut off the tableau in Figure 3 along its diagonal. This leads to a sparse
grid space Ve(l) of level /.
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Figure 3: The grids of the two-dimensional hierarchical increments W; up to
level 3 in each dimension. According to the hierarchical scheme of increments,
we choose the upper triangle of spaces shown in black which contribute most to
the overall solution.

There are some efficient methods to construct sparse grids [1]. Since the

sparse grid construction is a standard task in the context of sparse grids, and
there are some libraries provide appropriate data structures and support corre-
sponding methods, we are not discussing this part in details.
In order to optimize the size of sparse grids, we can apply spatial adaptivity.
One way is to start with a coarse sparse grid and use proper algorithms to add
points in those regions of the domain that are most important. In classification
problems, an important domain should be the regions which near the borders
of several classes or the classes are overlapping with each other. Figure 4 shows
an example of this procedure. We define I as the set of all level index pairs cor-
responding to a sparse grid space Vz(l) and write a sparse grid function fy € Vj
as the linear combination

In() =Y aidii(x)

(Li)el

with NV = |I| basis functions ¢; ; and coefficients ay ;.



Figure 4: A regular sparse grid (left). A refined and coarsened sparse grid
(right)[1]

3 Density-Estimation based Classification with
Adaptive Sparse Grids

While learning Bayesian classifiers, continuous variables are normally handled
by assuming that they follow a Gaussian distribution or by discretization. This
work introduces a Bayesian classifier which estimates the true density of the data
points from each class using adaptive sparse grid for supervised classification.
Here, we present our approach to approximating the likelihood in Bayesian
classifier with sparse grid. Suppose we have a data set S = {@1,...,xnm} C
R? of samples drawn from an unknown distribution with unknown probability
density function f. The goal is to construct an estimated density function f of
f based on the data S. To this end, there are generally two methods, namely
parametric and non-parametric density estimation. Here, the adaptive sparse-
grid based density estimation belongs to the nonparametric methods, and it
requires only the given data samples to estimate the density and no additional
information about the data is necessary.

Suppose f. is an initial guess of the density function underlying the data S =
{z1,...,xp}. Our task is to find f in a suitable function space V such that

/= argmin/ (u(z) — fo(2))” da + || Lul|2..
ueV Q

Here, the left term ensures that the function f fits the initial guess f. as close
as possible, while the right term ||Lu||2, is a penalty or regularization term
imposing a smoothness constraint. A > 0 is the regularization parameter which
controls the trade-off between smoothness and fidelity. This equation is equiv-

alent to
M

/ u(x)s(x)dx + )\/ Lu(zx) - Ls(x)dx = L Zs (x;)

@ @ M=

for all test functions s € V and f. = & Zf\il 0z,, where d5, is the Dirac delta
function centered on ;. See [3] for more detailed explanation.

Here, we to solve the problem in the second equation with Galerkin projection.
Hence, we define a finite-dimensional function space Viy C V as the span of the



basis functions in ® = {¢1,...,¢n} centered at grid points. And also set the
test space to Vy.

Next, we solve this problem by employing sparse grids, namely the sparse-grid-
based density estimation method.

The approximation fN € Vi of the density estimator f is a linear combination
fN = vazl a;¢; where the coefficients a = (aq,...,an) are the solution of a
system of linear equations Aa = b stemming from the second equation. The
system matrix A and the right hand side b depend on the choice of the dis-
cretization, i.e., the basis functions ¢1,...,¢nx and thus the space V.

Then, we apply a sparse grid discretization discussed in the previous section.
Let ® be the set of hierarchical basis functions of the (adaptive) sparse grid

space Ve(l) C H2,, oflevel £ € N. According to the Galerkin approach, we need
to find fN € Vg(l) such that

. P 1
/QfN(m)-qs(w)de/QLfN(x)-L¢(m)dw: M?d’(wi)

holds for all ¢ € ®. Since f N, the sparse grid function, is a linear combination of
the basis functions in ® with the coefficients a, we solve the previous equation
by solving the system of linear equations

(R+XC)a=b

with Rij = (¢i’¢j)L2’ Cz'j = (L¢i,L¢j)L2 and b7 = ﬁz;\il ¢1 (:17]‘), where
we used an arbitrary ordering of the N sparse grid basis functions ¢;,; and
coefficients aq;. Therefore, to obtain an estimated density function fN, we
define the sparse grid level £ € N-or the number of refinement steps—and
solve the linear equation system to get the coefficient vector a of the linear
combination corresponding to the sparse grid function fN. The level of the
sparse grid and the number of refinement or coarsening steps are parameters
that need to be chosen by the users.

4 Spatially Adaptivity of Sparse Grid

An adaptive sparse grid enable us to achieve better approximation accuracy
while optimize the size of the sparse grid. The spatially adaptivity of sparse
grid includes refinement and coarsening of the grid points. In the case of clas-
sification problem, each class has its own sparse grid. The algorithms that we
have developed evaluate each grid point in each sparse grid whether at the cur-
rent area the classification result is confident enough. If the density estimation
for some classes at this area are similar, then this area is ambiguous and the grid
point here should be refined to achieve higher classification confidence. On the
contrary, if for a specific area, one class dominates significantly, then we are able
to remove some of the grid points at this area without reduce the classification



accuracy largely.

Figure 5: Starting with a grid of level 2 (left), we refine one grid point, creating
all children in the hierarchical tree of basis functions (middle), and repeat this
once more (right). Also, it is necessary that for each grid point all hierarchical
ancestors exist. If they are missing, they have to be created recursively (gray
grid points) [5].

First, we give a short introduction about the basic idea of sparse grid re-
finement. An adaptive refinement can select which grid points in a sparse grid
structure should be refined next, due to local error estimation. Often, all 2d chil-
dren in the hierarchical structure are added to the current grid, if they haven’t
been created yet, see Figure 5. Note that it usually has to be ensured that all
missing parents have to be created. Alternatively, the hierarchical children of
all possible refinement candidates, i.e. grid points for which not all children
exist yet, could be considered to create only those which will contribute most
to the problem’s solution [5].

In the next subsection, we will present the idea behind our sparse grid coarsening
algorithm.

4.1 Grid-Point-Based Coarsening Algorithm

The basic idea of coarsening is to remove those points which locate in area
where the popularity of one class is significantly dominating the popularity of
the other classes. To this end, we need to find out the grid points whose density
function value of one class is significantly higher than the other ones. Besides,
the neighbors of the grid points to be coarsened should also lie in the area where
the classification confidence is high. What’s more, in order to keep the structure
of sparse grids, the points which are coarsened should not be the child points.
In this algorithm, we first find out the most dominant and the second most
dominant class label and the corresponding density function values, and com-
pute the difference between the popularity of these two classes. If the difference
value is large, then the current point is significantly dominated by the class
which has the maximum density value. In order to evaluate whether the cur-
rent observed point lies in the border of two or more classes, we need to evaluate
its neighbors as well. In the ideal case, the neighbors should also be dominated
by the same class as the current observed grid point. Besides, the closer the



Algorithm 1 Grid point based coarsening functor

Data: Sparse grid points with evaluated surpluses
Result: Score for the current sparse grid point
C :=all classes
p = current grid point
fi := density estimation value of class i at p
s1 = max(f;),i € C
1 = argmax i),i€eC

(f
Sg = max(fl)zeCandz;éll
lg—argmax( i), i€ Candi#l

score = 31 — 89
N := All neighboring grid points
d =3, cn 1/euclidean distance(n, p)
for n € N do
fl = density estimation of class i at n
d' = euclidean distance(n,p)
score, = [ — fi,
score = score + scorey, [(d - d’)
end
return —score

Algorithm 2 Grid point coarsening for classification

Data: Sparse grid points with evaluated surpluses
Result: Score for the current sparse grid point
C :=all classes
for ce C do
P :=all grid points in c
for p e P do
| score, = Grid point based coarsening functor (p)
end

end




neighbors are, the more important they are in the evaluation. Hence, we com-
pute the scores of the neighbors using similar measurement and the euclidean
distance to compute the weight for each neighbor. Similarly, the larger the score
of the neighbors is, the more likely it is that the point is in an area where the
classification confidence is high, and thus the point could be coarsened. As the
returned value, we use —score instead of score, since the coarsening function
will coarsen the points with the lowest score.

This algorithm is implemented in the SGpp library using C+4. The basic idea
of the pipeline can be described as the following:

After reading the data set, initialization, and the pre-computation part, the
grid points which are not parents will be scored by the coarsening functor. Af-
ter scoring, the function will choose the grid points that need to be removed
according to the scores and the coarsening configuration which is written in the
corresponding .json file. Two main configuration parameters for coarsening are
NumCoarsening, the number of coarsening, and threshold, the threshold value.
The function will choose NumCoarsening candidates and compare whether it
is lower than then threshold. If the condition is fulfilled, the candidates will then
be removed. And all the surpluses of the current sparse grid will be updated.

5 Experiments

We test our algorithm performance on the 2-dimensional Ripley dataset. The
well-known Ripley dataset problem consists of two classes where the data for
each class have been generated by a mixture of two Gaussian distributions.

5.1 Test on the Ripley dataset

In Figures 6-8 we show the visualization of the results. Figure 6 demonstrate
the result for coarsening one point. In Figure 7, the result for coarsening 2
points and the Figure 8 visualize coarsening 3 points.

In each graph, the background heatmaps represent the popularity of each class,
class 0 on the left side and class 1 on the right side. The lighter the color
is, the higher popularity the current class has. In the graphs, the black dots
are the sparse grid points that has children and these parent points cannot be
coarsened. The white dots are the child points in the sparse grid that could be
considered for coarsening. The sizes of the white points represent the scores of
the current point, and the larger the point is, the lower score it has and it will
be more likely to be removed. The red cross on the white point means that the
current grid point is removed according to the algorithm.

While coarsening one point, the function will coarsen the point that has the
lowest score, and in this case, it is the white point close to (0.45,0.75). As we
can see in Figure 6, the density of class 0 is significantly lower than the one
of class 1, and so do its neighbors. Hence, we can say it is very likely that
the points near this area will be labeled class 1. Therefore, we can remove the
current sparse grid point and the accuracy should not be largely influenced.



The similar results can be observed while coarsening two and three points. In
Figure 9, the score on validation set for each iteration is plotted. With initial
level of 5, we achieve a score at around 0.76 without removing any points. As
we increase the number of coarsened point, the score only slightly decreased.
However, in order to coarsen more than three points in this case, some error
with the Cholesky decomposition needs to be solved in the library.

Coarsening for class 0

Heatmap for density extimation class 0 Heatmap for density estimation class 1

1

Figure 6: Coarsen one point for class 0. Left: heatmap for class 0, right:
heatmap for class 1.



Coarsening for class 0
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Figure 7: Coarsen two points for class 0. Left: heatmap for class 0, right:
heatmap for class 1.
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Coarsening for class 0

Heatmap for density extimation class 0 Heatmap for density estimation class 1
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Coarsening for class 1

Figure 8: Coarsen three points for class 0. Left: heatmap for class 0, right:
heatmap for class 1.
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Figure 9: Score on Validation Data (Coarsened 0-3 points)
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5.2 Complexity of the Algorithm

The algorithm in this work is grid point based, which means that the complexity
of this algorithm does not depend on the size of the dataset. In Algorithm 2, it
first loops over all the classes. In each class, it evaluates the coarsening score for
all the grid points and in the evaluation functor, it loops over all the neighbors.
In D dimension, the number of neighbors is 2 - D. We define the number of
classes as C' and the maximum number of grid points in each class is P, then
the algorithm has order of D - C'- P time complexity.

6 Conclusion and Future work

In this work, we present a grid-point-based coarsening algorithm for sparse grid
in classification problem. This algorithm optimizes the size of the sparse grids
by removing the points that lies in domain which is less important in density
estimation. The advantage of a grid-point-based coarsening functor is that the
run time complexity of the algorithm depend on the size of the sparse grid and
it will not be influenced by the number of the data points. So it can also be
applied to large dataset. The threshold for coarsening score and the number
of grid points that need to be removed can be predefined by the users. After
introducing the algorithm, we tested it with a two-class and two-dimensional
Ripley dataset. The coarsening results visualized in Chapter 5 show that the
points that were removed by the algorithm consist with the choice when we
observe it manually.

The grid point coarsening algorithm should still be tested on more dataset, for
example, dataset with more than two classes and those in higher dimensions.
Besides, the border of the sparse grid should also be considered while removing
the grid points. Hence, this algorithm could still be improved in the future.
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