
Auto-Tuning for Short-range Particle Simulation

Chair of Scientific Computing
Department of Informatics
Technical University of Munich

Fabio Gratl, Steffen Seckler, Nikola Tchipev, Philipp Neumann, Hans-Joachim Bungartz
{f.gratl,s.seckler,n.tchipev,bungartz}@tum.de, philipp.neumann@uni-hamburg.de

We thank the Intel Parallel Computing Center “ExScaMIC­KNL” and the 
Federal  Ministry  of  Education  and  Research,  Germany,  project  “Task­
based load balancing and auto­tuning in particle simulations” (TaLPas), 
grant number 01IH16008 for financial support of this research.

In N-Body simulations, the time-to-solution can change 
drastically depending on simulation parameters and the 
configuration of the scenario. Different algorithms or 
parallelization patterns can be applied to improve the 
performance for a specific scenario. However, no 
combination is optimal for every situation. Highly 
impactful characteristics like the particle distribution or 
local densities can change significantly over the course of 
simulations. This means that the optimal algorithm 
combination can change anytime during the simulation.
To tackle this problem of specialization, we created the 
C++ library AutoPas [1]. It is designed to act as a base 
layer for arbitrary N-Body simulations while obtaining 
optimal node-level performance through auto-tuning. The 
library determines the best performing combination of 
algorithms for finding particle pairs, data structures, and 
OpenMP parallelization patterns. Should the optimum 
change, the library alters the combination at runtime.
We integrated AutoPas into the software ls1 mardyn [2,3], 
a molecular dynamics simulator for large numbers of 
small rigid molecules.
This poster showcases the concepts behind AutoPas and 
how to integrate it into existing code bases. Furthermore, 
we show run time results for a spinodal decomposition 
scenario in which we achieve and sustain optimal node-
level performance by this auto-tuning approach.

Abstract Auto-Tuning

● Common interfaces for particle containers, particle-pair 
 traversals, OpenMP parallelization scheme, etc.
 → strategy pattern

● Periodic testing (every N steps) of various combinations
● Restriction of test space via user
● Outlook: Machine learning, Bayesian statistics

AutoPas Overview

Spinodal Decomposition

●Node-Level C++ header lib
●User defines:

 Properties of particles
 Pairwise particle interactions

●AutoPas provides:
 Containers: Direct sum, 
linked cells, Verlet lists, 
cluster lists

 (Non-)Load balanced 
traversals: Coloring, locks, 
buffers

 Data layouts: AoS, SoA
●Dynamic tuning at run-time

3D view 2D slice
●4M particles, 240x240x240 domain, cutoff radius rc=2.5
●Hardware: Haswell (SuperMUC, Phase 2), 28 threads
●AutoPas configuration: linked cells/ 8-way coloring (c08), 
lock-based slicing (sli)

Integration in ls1 mardyn
● ls1 mardyn: simulation software for large systems of rigid 
 molecules

● New molecule class to interface ls1 mardyn and AutoPas 
 particle descriptions

● Wrapper for main AutoPas interface to replace original 
 particle container

● Challenge: Distributed-memory support (potentially 
 different AutoPas containers on different ranks)
 → subject to current work

Scientific Computing
Department of Informatics

Universität Hamburg

References:
[1] F. Gratl, S. Seckler, N. Tchipev, H.-J. Bungartz, P. Neumann. AutoPas: Auto-Tuning for 

Particle Simulations. Accepted for IPDPS 2019 proceedings, 2019
[2] C. Niethammer et al. ls1 mardyn: The massively parallel molecular dynamics code for 

large systems. Journal of Chemical Theory and Computation 10(10):4455-4464, 2014
[3] N. Tchipev et al. TweTriS: Twenty trillion-atom simulation. International Journal of High 

Performance Computing Applications, published online, 2019


	Slide 1

